WO2023061746A1 - Wabenkörper zum zwecke der abgasnachbehandlung mit geschlitzten metallfolien - Google Patents

Wabenkörper zum zwecke der abgasnachbehandlung mit geschlitzten metallfolien Download PDF

Info

Publication number
WO2023061746A1
WO2023061746A1 PCT/EP2022/076784 EP2022076784W WO2023061746A1 WO 2023061746 A1 WO2023061746 A1 WO 2023061746A1 EP 2022076784 W EP2022076784 W EP 2022076784W WO 2023061746 A1 WO2023061746 A1 WO 2023061746A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb body
slots
foil
length
metal foils
Prior art date
Application number
PCT/EP2022/076784
Other languages
English (en)
French (fr)
Inventor
Christian Schmidt
Peter Hirth
Ferdi Kurth
Michael Voit
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Priority to KR1020247011134A priority Critical patent/KR20240051279A/ko
Priority to CN202280068544.4A priority patent/CN118103589A/zh
Publication of WO2023061746A1 publication Critical patent/WO2023061746A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/10Exhaust treating devices having provisions not otherwise provided for for avoiding stress caused by expansions or contractions due to temperature variations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/32Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/44Honeycomb supports characterised by their structural details made of stacks of sheets, plates or foils that are folded in S-form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing

Definitions

  • the invention relates to a honeycomb body for after-treatment of exhaust gases from an internal combustion engine, the honeycomb body being formed from a plurality of metal foils which are stacked on top of one another to form a stack of layers and wound around at least one pivot point, the stack of layers being formed alternately from smooth and at least partially structured metal foils , wherein the metal foils have a foil width and a foil length, the width of the foils running along the main flow direction of the honeycomb body from a gas inlet side to a gas outlet side and the foil length running transversely to this direction.
  • Different catalytic converters are installed in the exhaust line for the purpose of after-treating the exhaust gases of an internal combustion engine and in particular for converting the pollutants contained in the exhaust gas.
  • the catalytic converters regularly have a honeycomb body which can be flowed through along a large number of flow channels and which has a catalytically active surface on which the chemical reaction of the pollutants to form uncritical products takes place.
  • Metallic honeycomb bodies are known which are formed from a plurality of metal foils stacked on top of one another to form a stack of layers and cut to a defined length.
  • the metal foils stacked on top of one another are wound up around at least one pivot point, as a result of which the honeycomb body is formed.
  • Both smooth, unstructured metal foils and metal foils that are structured at least in sections are used for the honeycomb body are preferably stacked alternately.
  • the so-called cells form between the metal foils, which form the flow channels of the honeycomb body through which flow can occur along a main flow direction from a gas inlet side to a gas outlet side.
  • honeycomb body produced in this way which is also known as a carrier matrix, is then pressed into a housing known as a carrier tube and soldered to it.
  • a carrier tube a housing known as a carrier tube and soldered to it.
  • both the completely smooth metal foils and the metal foils that are structured at least in sections extend continuously over the entire axial length of the honeycomb body.
  • honeycomb bodies are designed in one piece along their axial extension and they therefore have only limited flexibility in the axial direction.
  • temperature differences arise both radially and axially in the honeycomb body due to the heat capacity of the metal foils and the support tube. These temperature gradients result in a torsional load on the honeycomb body between the cold and warm areas in the axial direction, which are transmitted in the form of tangential shear forces via the metal foils.
  • honeycomb body having the features of claim 1.
  • honeycomb body for the aftertreatment of exhaust gases from an internal combustion engine
  • the honeycomb body being formed from a plurality of metal foils which are stacked on top of one another to form a layer stack and are wound around at least one pivot point, the layer stack being composed alternately of smooth and at least partially structured metal foils is formed, with the metal foils having a foil width and a foil length, with the width of the foils running along the main flow direction of the honeycomb body from a gas inlet side to a gas outlet side and the foil length running transversely to this direction, with at least individual metal foils having at least individual slots which divide respective metal foil into several segments.
  • the foils are formed from thin sheets of metal having a length and width substantially greater than the thickness of each sheet.
  • the width of the metal foil designates the extension in the axial direction of the wound honeycomb body.
  • the length of the metal foil runs in a direction orthogonal to the width, and runs in the circumferential direction of the honeycomb body in the wound honeycomb body.
  • the metal foils have slits which cut through the metal foils at least in sections and thus produce a segmentation of the metal foil and thus of the honeycomb body.
  • a mechanical decoupling of the individual segments from one another takes place through the slits, as a result of which the flexibility of the honeycomb body is increased, while at the same time the structural integrity of the honeycomb body remains guaranteed, since the honeycomb body is not completely severed.
  • the slits run in the direction of the length of the film.
  • the slits run along the length of the foil, as a result of which the segmentation takes place in such a way that several segments are formed in a row in the axial direction.
  • the slots in the honeycomb body run in the circumferential direction of the honeycomb body.
  • the axial segments are advantageous in order in particular to generate increased flexibility of the honeycomb body, to compensate for thermally induced stresses in the honeycomb body and in particular to prevent the washcoat applied to the metal foils, ie the catalytically active coating, from breaking up and breaking off.
  • the slits are arranged parallel to one another along the width of the film and spaced apart from one another along the length of the film.
  • a number of slits running along the length of the film form a row of slits.
  • the slits within a row of slits are spaced apart from one another, so that the metal foil is not completely severed.
  • a preferred exemplary embodiment is characterized in that a plurality of slits are arranged in a row running along the length of the film, spaced apart from one another by a web.
  • the web helps to ensure that the slits do not cut through the entire length of the metal foil and the metal foil becomes unstable or destroyed as a result.
  • the strength of the respective metal foil can be influenced via the web width.
  • a plurality of rows of slots are arranged spaced apart from one another along the main flow direction, with preferably 1 to 20 rows of slots being provided, particularly preferably 1 to 12 rows of slots.
  • the webs arranged between the slits of a row of slits have a length of 0.5 mm to 20 mm, particularly preferably 1 mm to 10 mm. This dimension has also turned out to be particularly advantageous with regard to the sizes usually used for honeycomb bodies, in order to achieve the balance between flexibility and stability.
  • the length of the webs in the center and/or at the edge area of the respective metal foil is longer than the length of the webs between the center and edge area of the metal foil.
  • the slit width in the direction of the film width is less than 2 mm, particularly preferably less than 1 mm. Since the purpose of the slits is primarily to interrupt the shear forces occurring under thermal stress and, moreover, the slits should not have any exhaust-gas-conducting effect, it is expedient to keep the slits as narrow as possible.
  • the slits can advantageously be produced, for example, by means of a partially interrupted rolling knife. Alternatively, a rolling knife can also be made by controlled immersion in the plane of the foil.
  • the slots can also be produced by means of laser welding.
  • the rows of slits are unevenly distributed along the width of the film.
  • An uneven distribution of the rows of slots makes it particularly easy to react to specific installation situations. Different temperature profiles can thus be achieved on different honeycomb bodies, so that the interruption of the shear forces in individual areas of the honeycomb body must take place to a greater extent than in other areas.
  • the distances between the rows of slots in the area of the gas inlet side are different from the distances between the rows of slots on the gas outlet side.
  • a further advantage of the slits is a reduction in the axial heat conduction through the honeycomb body, as a result of which better heating behavior of the honeycomb body is achieved.
  • the slitting process is preferably integrated directly into the production process of the conventional honeycomb body and can be carried out on the individual metal foils that have been cut to size or on an endless metal foil.
  • both the smooth metal foils and the metal foils that are structured at least in sections are provided with slits.
  • the slitting process precedes the structuring process.
  • the slits and web lengths are adapted to the shortening factor applicable to the respective structure, for example a corrugation.
  • FIG. 1 shows a top view of a metal foil, showing the rows of slits spaced along the width of the foil and the slits arranged within the row of slits along the length of the foil,
  • FIG. 2 shows a sectional view through a honeycomb body in a support tube, with a plurality of rows of slots evenly spaced along the main flow direction being arranged,
  • FIG. 3 shows a sectional view through a honeycomb body in a support tube, with a plurality of rows of slots unevenly spaced along the main flow direction being arranged
  • FIG. 4 shows a sectional view through a honeycomb body in a support tube, with a plurality of rows of slits arranged at irregular intervals along the main flow direction. net are where the distances between the rows of slots on the gas inlet side and gas outlet side are different.
  • FIG. 1 shows a plan view of a metal foil 1.
  • the metal foil 1 shown is a smooth metal foil without a structure. What is described below for this smooth metal foil 1 can also apply to the same extent for a metal foil that is structured at least in sections.
  • the metal foil 1 has a plurality of slits 2 which run along the length 3 of the foil.
  • the individual rows of slits 4 are arranged spaced parallel to one another in the direction of the film width 5 .
  • the metal foil 1 is divided into segments 8 by the rows of slits 4 .
  • the segments 8 are arranged adjacent to one another in the axial direction of the finished honeycomb body.
  • Webs 6 , 7 are arranged between the individual slots 2 of a slot row 4 .
  • the webs 6 in the center of the metal foil 1 and on the outer edge regions are made wider than the webs 7 in the intermediate region
  • the metal foil 1 forms a single layer in the layer stack, which is then wound up to form the honeycomb body.
  • FIG. 2 shows a sectional view through a honeycomb body 9 which is arranged in a jacket tube 10 .
  • the honeycomb body 9 can be flowed through from a gas inlet side 11 to the gas outlet side 12 along the flow channels 16 formed through the metal foils.
  • the slits which divide the honeycomb body 9 into a plurality of segments 14 are indicated by reference number 13 .
  • the rows of slots 15 are arranged equidistantly over the axial extent of the honeycomb body 9 .
  • FIG. 3 shows a honeycomb body 9 in a jacket tube 10.
  • the honeycomb body 9 corresponds to the structure of the honeycomb body 9 shown in FIG. 2.
  • the reference symbols correspond to identical elements.
  • the rows of slots 15 are unevenly distributed, so that a narrow segment 17 is formed in the area of the gas inlet side 11, to which several segments 18 of equal width are connected.
  • FIG. 4 shows an alternative configuration of a honeycomb body 9.
  • the rows of slots 19 are arranged in such a way that the segments 20 become continuously wider from the gas inlet side 11 towards the gas outlet side 12.
  • the different features of the individual exemplary embodiments can also be combined with one another.
  • the arrangement of the rows of slots can also differ from the exemplary embodiments shown here.
  • the segments can also become wider or narrower from the gas outlet side to the gas inlet side.
  • FIGS. 1 to 4 are not restrictive and serve to clarify the idea of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

Wabenkörper zum Zwecke der Abgasnachbehandlung mit geschlitzten Metallfolien Die Erfindung betrifft einen Wabenkörper (9) zur Nachbehandlung von Abgasen einer Verbrennungskraftmaschine, wobei der Wabenkörper (9) aus einer Mehrzahl von Metallfolien (1) gebildet ist, die zu einem Lagenstapel aufeinandergestapelt sind und um zumindest einen Drehpunkt aufgewickelt sind, wobei der Lagenstapel abwechselnd aus glatten und zumindest teilweise strukturierten Metallfolien (1) gebildet ist, wobei die Metallfolien (1) eine Folienbreite (5) und einen Folienlänge (3) aufweisen, wobei die Breite (5) der Folien (1) entlang der Hauptdurchströmungsrichtung des Wabenköpers (9) von einer Gaseintrittsseite (11) hin zur einer Gasaustrittsseite (12) verläuft und die Folienlänge (3) quer zu dieser Richtung, wobei zumindest einzelne Metallfolien (1) zumindest einzelne Schlitze (2, 13) aufweisen, welche die jeweilige Metallfolie (1) in mehrere Segmente (8, 14, 17, 18, 20) unterteilen.

Description

Beschreibung
Wabenkörper zum Zwecke der Abgasnachbehandlung mit geschlitzten Metallfolien
Technisches Gebiet
Die Erfindung betrifft einen Wabenkörper zur Nachbehandlung von Abgasen einer Verbrennungskraftmaschine, wobei der Wabenkörper aus einer Mehrzahl von Metallfolien gebildet ist, die zu einem Lagenstapel aufeinandergestapelt sind und um zumindest einen Drehpunkt aufgewickelt sind, wobei der Lagenstapel abwechselnd aus glatten und zumindest teilweise strukturierten Metallfolien gebildet ist, wobei die Metallfolien eine Folienbreite und einen Folienlänge aufweisen, wobei die Breite der Folien entlang der Hauptdurchströmungsrichtung des Wabenköpers von einer Gaseintrittsseite hin zur einer Gasaustrittsseite verläuft und die Folienlänge quer zu dieser Richtung.
Stand der Technik
Zum Zwecke der Abgasnachbehandlung der Abgase einer Verbrennungskraftmaschine und insbesondere zur Konvertierung der im Abgas enthaltenen Schadstoffe werden in der Abgasstrecke unterschiedliche Katalysatoren verbaut. Die Katalysatoren weisen regelmäßig einen entlang einer Vielzahl von Strömungskanälen durchström baren Wabenkörper auf, welcher eine katalytisch aktive Oberfläche aufweist, an der die chemische Reaktion der Schadstoffe zu unkritischen Produkten stattfindet.
Bekannt sind metallische Wabenkörper, welche aus einer Mehrzahl von zu einem Lagenstapel aufeinandergestapelten und auf eine definierte Länge abgelängte Metallfolien gebildet sind. Die aufeinander gestapelten Metallfolien werden hierbei zumindest um einen Drehpunkt aufgewickelt, wodurch der Wabenkörper ausgebildet wird. Für den Wabenkörper kommen sowohl glatte unstrukturierte Metallfolien zum Einsatz als auch zumindest abschnittsweise strukturierte Metallfolien, welche bevorzugt abwechselnd aufeinander gestapelt sind. Zwischen den Metallfolien bilden sich die sogenannten Zellen aus, welche die entlang einer Hauptdurchströmungsrichtung von einer Gaseintrittsseite zu einer Gasaustrittsseite durch- strömbaren Strömungskanäle des Wabenkörpers ausbilden.
Der so erzeugte Wabenkörper, welcher auch als Trägermatrix bekannt ist, wird anschließend in ein als Trägerrohr bekanntes Gehäuse eingedrückt und mit diesem verlötet. Sowohl die vollständig glatten Metallfolien als auch die zumindest abschnittsweise strukturierten Metallfolien erstrecken sich bei bekannten Katalysatordesigns durchgehend über die komplette axiale Länge des Wabenkörpers.
Nachteilig an den bisher im Stand der Technik bekannten Ausführungen ist insbesondere, dass die bekannten Wabenkörper einteilig entlang ihrer axialen Erstreckung ausgeführt sind und diese somit nur eine begrenzte Flexibilität in axialer Richtung aufweisen. Bei schnellem Aufheizen beziehungsweise schnellem Abkühlen entstehen, bedingt durch die Wärmekapazität der Metallfolien und des Trägerrohrs, sowohl radial als auch axial Temperaturunterschiede in dem Wabenkörper. Aus diesen Temperaturgradienten resultiert eine Torsionsbelastung des Wabenkörpers zwischen den in axialer Richtung kalten und warmen Bereichen, welche in Form von tangentialen Schubkräften über die Metallfolien übertragen werden.
Bei thermisch hoch beanspruchten Anwendungen führt das Abbauen der tangentialen Schubkräfte beim Überschreiten der jeweiligen Streckgrenze des Materials der Metallfolien zu plastischen Deformationen der Metallfolien. Diese treten vornehmlich im radialen Randbereich des Wabenkörpers oder in dessen Zentrum auf, aber auch in den zwischen dem Zentrum und dem radialen Randbereich liegenden Zwischenbereichen. Resultierend aus dieser plastischen Deformation kann die Umsatzrate des Katalysators, aufgrund des Abplatzens der katalytisch aktiven Beschichtung verringert werden. Außerdem kann die Motorleistung durch die Erhöhung des Gegendrucks im Wabenkörper negativ beeinträchtigt werden. Außerdem kann es zu einer Funktionseinschränkung und im schlimmsten Fall zu einer Zerstörung von in Strömungsrichtung nachgelagerten Bauteilen kommen, da Teile der abgeplatzten katalytisch aktiven Beschichtung, insbesondere die darin enthaltenen Edelmetalle, unerwünschte chemische Wechselwirkungen mit den nachgelagerten Bauteilen auslösen können.
Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
Daher ist es die Aufgabe der vorliegenden Erfindung einen Wabenkörper zu schaffen, welcher eine erhöhte Flexibilität in axialer Richtung aufweist wodurch die plastische Deformation der Metallfolien bei thermisch hochbeanspruchten Anwendungen reduziert wird.
Die Aufgabe hinsichtlich des Wabenkörpers wird durch einen Wabenkörper mit den Merkmalen von Anspruch 1 gelöst.
Ein Ausführungsbeispiel der Erfindung betrifft einen Wabenkörper zur Nachbehandlung von Abgasen einer Verbrennungskraftmaschine, wobei der Wabenkörper aus einer Mehrzahl von Metallfolien gebildet ist, die zu einem Lagenstapel aufeinandergestapelt sind und um zumindest einen Drehpunkt aufgewickelt sind, wobei der Lagenstapel abwechselnd aus glatten und zumindest teilweise strukturierten Metallfolien gebildet ist, wobei die Metallfolien eine Folienbreite und einen Folienlänge aufweisen, wobei die Breite der Folien entlang der Hauptdurchströmungsrichtung des Wabenköpers von einer Gaseintrittsseite hin zur einer Gasaustrittsseite verläuft und die Folienlänge quer zu dieser Richtung, wobei zumindest einzelne Metallfolien zumindest einzelne Schlitze aufweisen, welche die jeweilige Metallfolie in mehrere Segmente unterteilen.
Die Folien sind aus dünnen Metallblechen gebildet, die eine Länge und eine Breite aufweisen, welche wesentlich länger sind als die Dicke des jeweiligen Bleches. In dem erfindungsgemäßen Wabenkörper bezeichnet die Breite der Metallfolie die Erstreckung in axialer Richtung des aufgewickelten Wabenkörpers. Die Länge der Metallfolie verläuft in einer orthogonalen Richtung zur Breite und verläuft im aufgewickelten Wabenkörper in Umfangsrichtung des Wabenkörpers. Die Metallfolien weisen Schlitze auf, welche die Metallfolien zumindest abschnittsweise durchtrennen und so eine Segmentierung der Metallfolie und somit des Wabenkörpers erzeugen. Durch die Schlitze findet eine mechanische Entkopplung der einzelnen Segmente voneinander statt, wodurch die Flexibilität des Wabenkörpers erhöht wird, wobei gleichzeitig die strukturelle Integrität des Wabenkörpers gewährleistet bleibt, da keine vollständige Durchtrennung des Wabenkörpers erfolgt.
Besonders vorteilhaft ist es, wenn die Schlitze in Richtung der Folienlänge verlaufen. Die Schlitze verlaufen entlang der Folienlänge, wodurch die Segmentierung derart erfolgt, dass mehrere in axialer Richtung aneinandergereiht Segmente entstehen. Durch das Aufrollen der Metallfolien verlaufen die Schlitze im Wabenkörper in Umfangsrichtung des Wabenkörpers. Die axialen Segmente sind vorteilhaft, um insbesondere eine erhöhte Flexibilität des Wabenkörpers zu erzeugen, um thermisch induzierte Spannungen im Wabenkörper zu kompensieren und insbesondere das Aufbrechen und Abbrechen des auf den Metallfolien aufgebrachten Washcoats, also der katalytisch aktiven Beschichtung, zu verhindern.
Auch ist es vorteilhaft, wenn die Schlitze entlang der Folienbreite parallel zueinander angeordnet sind und entlang der Folienlänge zueinander beabstandet angeordnet sind.
Mehrere entlang der Folienlänge verlaufende Schlitze bilden eine Schlitzreihe. Die Schlitze innerhalb einer Schlitzreihe sind zueinander beabstandet, so dass keine vollständige Durchtrennung der Metallfolie stattfindet.
Mehrere Schlitzreihen sind entlang der Folienbreite zueinander beabstandet und parallel zueinander angeordnet, wodurch die einzelnen axialen Segmente im aufgerollten Wabenkörper ausgebildet werden.
Ein bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass mehrere Schlitze in einer entlang der Folienlänge verlaufenden Reihe durch einen Steg zueinander beabstandet angeordnet sind. Der Steg trägt dazu bei, dass die Schlitze nicht die gesamte Metallfolie auf ihrer Länge durchtrennen und die Metallfolie dadurch instabil wird oder zerstört wird. Über die Stegbreite kann die Festigkeit der jeweiligen Metallfolie beeinflusst werden.
Auch ist es zu bevorzugen, wenn entlang der Hauptdurchströmungsrichtung mehrere Schlitzreihen zueinander beabstandet angeordnet sind, wobei bevorzugt 1 bis 20 Schlitzreihen vorgesehen sind, besonders bevorzugt 1 bis 12 Schlitzreihen.
Wabenkörper für den Bereich der Abgasnachbehandlung von PKWs haben regelmäßig eine axiale Länge von 30mm bis 180mm, weswegen sich in umfangreichen Untersuchungen gezeigt hat, dass eine Anzahl von 1 bis 20 Schlitzreihen beziehungsweise bevorzugt 1 bis 12 Schlitzreihen besonders vorteilhaft ist, um einerseits eine ausreichende Flexibilität zu erzeugen, um das Aufbrechen der katalytisch aktiven Beschichtung zu verhindern und andererseits eine ausreichende Stabilität im Lagenstapel zu haben, dass der mechanische Prozess des Aufrollens um den Wickeldom oder die Wickeldome nicht zu einer Beschädigung der Metallfolien führt.
Darüber hinaus ist es vorteilhaft, wenn die zwischen den Schlitzen einer Schlitzreihe angeordneten Stege eine Länge von 0,5mm bis 20mm aufweisen, besonders bevorzugt von 1 mm bis 10mm. Dieses Maß hat sich auch im Hinblick auf die gewöhnlich verwendeten Größen für Wabenkörper als besonders vorteilhaft herausgestellt, um die Balance zwischen Flexibilität und Stabilität zu erreichen.
Weiterhin ist es vorteilhaft, wenn die Länge der Stege im Zentrum und/oder am Randbereich der jeweiligen Metallfolie länger ist als die Länge der Stege zwischen Zentrum und Randbereich der Metallfolie.
Auch ist es zweckmäßig, wenn die Schlitzbreite in Richtung der Folienbreite weniger als 2mm beträgt, besonders bevorzugt weniger als 1 mm. Da der Zweck der Schlitze vorrangig die Unterbrechung der unter thermischer Belastung auftretenden Schubkräfte ist und darüber hinaus durch die Schlitze keine Abgasleitende Wirkung ausgeübt werden soll, ist es zweckmäßig die Schlitze möglichst schmal zu halten. Die Schlitze können vorteilhaft beispielsweise mittels eines partiell unterbrochenen rollierenden Messers erzeugt werden. Alternativ kann auch ein rollierendes Messer durch gesteuertes Eintauchen in die Folienebene erfolgen. Auch können die Schlitze mittels Laserschweißens erzeugt werden.
Darüber hinaus ist es vorteilhaft, wenn die Schlitzreihen entlang der Folienbreite ungleichmäßig verteilt sind. Durch eine ungleichmäßige Verteilung der Schlitzreihen kann besonders einfach auf spezifische Einbausituationen reagiert werden. So können an unterschiedlichen Wabenkörper unterschiedliche Temperaturverläufe erreicht werden, so dass die Unterbrechung der Schubkräfte an einzelnen Bereichen des Wabenkörpers in höherem Maß stattfinden muss als anderen Bereichen. Durch das gezielte Anordnen der Schlitzreihen kann hier eine auf den Einsatzfall individuell abgestimmte Lösung erreicht werden.
Weiterhin ist es zweckmäßig, wenn die Abstände der Schlitzreihen zueinander im Bereich der Gaseintrittsseite unterschiedlich sind zu den Abständen der Schlitzreihen an der Gasaustrittseite.
Dies ist insbesondere vorteilhaft, da die auftretenden Temperaturen an der Gaseintrittsseite und der Gasaustrittsseite voneinander abweichen können. Zwar gleicht sich die Temperatur über die Betriebszeit an, aber initial treten an der Gaseintrittsseite schneller höhere Temperaturen auf als an der Gasaustrittsseite, weswegen es hier zu einem zusätzlichen Temperaturgefälle kommt.
Ein weiterer Vorteil der Schlitze ist eine Reduktion der axialen Wärmeleitung durch den Wabenkörper, wodurch ein besseres Aufheizverhalten des Wabenkörpers erreicht wird.
Der Schlitzvorgang wird bevorzugt direkt in den Fertigungsprozess des herkömmlichen Wabenkörpers integriert und kann an den zugeschnittenen einzelnen Metallfolien oder an einer endlosen Metallfolie durchgeführt werden. Besonders bevorzugt werden sowohl die glatten Metallfolien als auch die zumindest abschnittsweise strukturierten Metallfolien mit Schlitzen versehen. Im Falle der zumindest abschnittsweise strukturierten Metallfolien wird der Schlitzvorgang dem Strukturierungsprozess vorgeschaltet. Insbesondere bei den zumindest abschnittsweise strukturierten Metallfolien werden die Schlitze und Steglängen an den für die jeweilige Struktur, beispielsweise eine Wellung, geltenden Verkürzungsfaktor angepasst.
Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und in der nachfolgenden Figurenbeschreibung beschrieben.
Kurze Beschreibung der Zeichnungen
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen detailliert erläutert. In den Zeichnungen zeigen:
Fig. 1 eine Aufsicht auf eine Metallfolie wobei die Schlitzreihen be- abstandet entlang der Folienbreite und die innerhalb der Schlitzreihe entlang der Folienlänge angeordneten Schlitze gezeigt sind,
Fig. 2 eine Schnittansicht durch einen Wabenkörper in einem Trägerrohr wobei mehrere entlang der Hauptdurchströmungsrichtung gleichmäßig beabstandete Schlitzreihen angeordnet sind,
Fig. 3 eine Schnittansicht durch einen Wabenkörper in einem Trägerrohr wobei mehrere entlang der Hauptdurchströmungs- richtung ungleichmäßig beabstandete Schlitzreihen angeordnet sind, und
Fig. 4 eine Schnittansicht durch einen Wabenkörper in einem Trägerrohr wobei mehrere entlang der Hauptdurchströmungs- richtung ungleichmäßig beabstandete Schlitzreihen angeord- net sind wobei die Abstände der Schlitzreihen an Gaseintrittsseite und Gasaustrittsseite unterschiedlich sind.
Bevorzugte Ausführung der Erfindung
Die Figur 1 zeigt eine Aufsicht auf eine Metallfolie 1. Die gezeigte Metallfolie 1 ist eine glatte Metallfolie ohne Struktur. Was im nachfolgenden für diese glatte Metallfolie 1 beschreiben ist, kann im gleichen Maße auch für eine zumindest abschnittsweise strukturierte Metallfolie zutreffen.
Die Metallfolie 1 weist eine Mehrzahl von Schlitzen 2 auf, welche entlang der Folienlänge 3 verlaufen. Die einzelnen Schlitzreihen 4 sind in Richtung der Folienbreite 5 parallel zueinander beabstandet angeordnet. Durch die Schlitzreihen 4 ist die Metallfolie 1 in Segmente 8 unterteilt. Die Segmente 8 sind in axialer Richtung des fertigen Wabenkörpers zueinander benachbart angeordnet.
Zwischen den einzelnen Schlitzen 2 einer Schlitzreihe 4 sind Stege 6, 7 angeordnet. Die Stege 6 im Zentrum der Metallfolie 1 und an den äußeren Randbereichen sind im Ausführungsbeispiel der Figur 1 breiter ausgeführt als die Stege 7 im Zwischenbereich
Die Metallfolie 1 bildet im Lagenstapel, welcher dann zum Wabenkörper aufgewickelt wird, eine einzelne Lage aus.
Figur 2 zeigt eine Schnittansicht durch einen Wabenkörper 9, der in einem Mantelrohr 10 angeordnet ist. Der Wabenkörper 9 ist von einer Gaseintrittsseite 11 hin zur Gasaustrittsseite 12 entlang der durch die Metallfolien ausgebildeten Strömungskanäle 16 durchströmbar. Mit dem Bezugszeichen 13 sind die Schlitze dargestellt, die den Wabenkörper 9 in mehrere Segmente 14 unterteilen. Im Ausführungsbeispiel der Figur 2 sind die Schlitzreihen 15 äquidistant über die axiale Erstreckung des Wabenkörpers 9 angeordnet. Figur 3 zeigt einen Wabenkörper 9 in einem Mantelrohr 10. Der Wabenkörper 9 entspricht dem Aufbau des in Figur 2 gezeigten Wabenkörpers 9. Die Bezugszeichen stimmen für identische Elemente überein.
Im Unterschied zur Figur 2 sind die Schlitzreihen 15 ungleichmäßig verteilt, so dass sich im Bereich der Gaseintrittsseite 11 ein schmales Segment 17 ausbildet an welches sich mehre gleich breite Segmente 18 anschließen.
Figur 4 zeigt eine alternative Ausgestaltung eines Wabenkörpers 9. Die Schlitzreihen 19 sind derart angeordnet, dass die Segmente 20 von der Gaseintrittsseite 11 hin zur Gasaustrittsseite 12 kontinuierlich breiter werden.
Die unterschiedlichen Merkmale der einzelnen Ausführungsbeispiele können auch untereinander kombiniert werden. Auch kann die Anordnung der Schlitzreihen abweichend von den hier gezeigten Ausführungsbeispielen erfolgen. So können die Segmente beispielsweise auch von der Gasaustrittsseite hin zur Gaseintrittsseite breiter oder schmaler werden.
Die Ausführungsbeispiele der Figuren 1 bis 4 weisen insbesondere keinen beschränkenden Charakter auf und dienen der Verdeutlichung des Erfindungsgedankens.
Bezugszeichenliste
1. Metallfolie
2. Schlitz
3. Folienlänge
4. Schlitzreihe
5. Folienbreite
6. Steg
7. Steg
8. Segment
9. Wabenkörper
10. Trägerrohr
11 . Gaseintrittsseite
12. Gasaustrittsseite
13. Schlitz
14. Segment
15. Schlitzreihe
16. Strömungskanäle
17. Segment
18. Segment
19. Schlitzreihe
20. Segment

Claims

Patentansprüche
1. Wabenkörper (9) zur Nachbehandlung von Abgasen einer Verbrennungskraftmaschine, wobei der Wabenkörper (9) aus einer Mehrzahl von Metallfolien (1) gebildet ist, die zu einem Lagenstapel aufeinandergestapelt sind und um zumindest einen Drehpunkt aufgewickelt sind, wobei der Lagenstapel abwechselnd aus glatten und zumindest teilweise strukturierten Metallfolien (1) gebildet ist, wobei die Metallfolien (1) eine Folienbreite (5) und einen Folienlänge (3) aufweisen, wobei die Breite (5) der Folien (1) entlang der Hauptdurchströmungsrichtung des Wabenköpers (9) von einer Gaseintrittsseite (11) hin zur einer Gasaustrittsseite (12) verläuft und die Folienlänge (3) quer zu dieser Richtung, d a d u r c h g e k e n n z e i c h n e t , dass zumindest einzelne Metallfolien (1 ) zumindest einzelne Schlitze (2, 13) aufweisen, welche die jeweilige Metallfolie (1) in mehrere Segmente (8, 14, 17, 18, 20) unterteilen.
2. Wabenkörper (9) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Schlitze (2, 13) in Richtung der Folienlänge (3) verlaufen.
3. Wabenkörper (9) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Schlitze (2, 13) entlang der Folienbreite (5) parallel zueinander angeordnet sind und entlang der Folienlänge (3) zueinander beabstandet angeordnet sind.
4. Wabenkörper (9) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass mehrere Schlitze (2, 13) in einer entlang der Folienlänge (3) verlaufenden Reihe durch einen Steg (6, 7) zueinander beabstandet angeordnet sind.
5. Wabenkörper (9) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass entlang der Hauptdurchströmungsrichtung mehrere Schlitzreihen (4, 15, 19) zueinander beabstandet angeordnet sind, wobei bevorzugt 1 bis 20 Schlitzreihen (4, 15, 19) vorgesehen sind, besonders bevorzugt 1 bis 12 Schlitzreihen (4, 15,19). Wabenkörper (9) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die zwischen den Schlitzen (2, 13) einer Schlitzreihe (4, 15, 19) angeordneten Stege (6, 7) eine Länge von 0,5mm bis 20mm aufweisen, besonders bevorzugt von 1mm bis 10mm. Wabenkörper (9) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Länge der Stege (6) im Zentrum und/oder am Randbereich der jeweiligen Metallfolie (1) länger ist als die Länge der Stege (7) zwischen Zentrum und Randbereich der Metallfolie (1). Wabenkörper (9) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Schlitzbreite in Richtung der Folienbreite (5) weniger als 2mm beträgt, besonders bevorzugt weniger als 1mm. Wabenkörper (9) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Schlitzreihen (15, 19) entlang der Folienbreite (5) ungleichmäßig verteilt sind. Wabenkörper (9) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Abstände der Schlitzreihen zueinander im Bereich der Gaseintrittsseite (11) unterschiedlich sind zu den Abständen der Schlitzreihen an der Gasaustrittseite (12).
PCT/EP2022/076784 2021-10-11 2022-09-27 Wabenkörper zum zwecke der abgasnachbehandlung mit geschlitzten metallfolien WO2023061746A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247011134A KR20240051279A (ko) 2021-10-11 2022-09-27 슬롯 형성된 금속 포일을 갖는 배기가스 후처리용 벌집형 몸체
CN202280068544.4A CN118103589A (zh) 2021-10-11 2022-09-27 用于排气后处理的具有开槽的金属箔的蜂窝体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021211453.9A DE102021211453A1 (de) 2021-10-11 2021-10-11 Wabenkörper zum Zwecke der Abgasnachbehandlung mit geschlitzten Metallfolien
DE102021211453.9 2021-10-11

Publications (1)

Publication Number Publication Date
WO2023061746A1 true WO2023061746A1 (de) 2023-04-20

Family

ID=84053276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/076784 WO2023061746A1 (de) 2021-10-11 2022-09-27 Wabenkörper zum zwecke der abgasnachbehandlung mit geschlitzten metallfolien

Country Status (4)

Country Link
KR (1) KR20240051279A (de)
CN (1) CN118103589A (de)
DE (1) DE102021211453A1 (de)
WO (1) WO2023061746A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104884A1 (de) * 2022-11-18 2024-05-23 Emitec Technologies GmbH Vorrichtung zur abgasnachbehandlung mit einer geschlitzten matrix

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0705962A1 (de) * 1994-10-04 1996-04-10 Nippondenso Co., Ltd. Honigwabenstruktur und katalytischer Konverter der einen solchen katalytischen Träger enthält
EP0682742B1 (de) * 1993-02-08 1996-10-23 Emitec Gesellschaft für Emissionstechnologie mbH Elektrisch beheizbarer wabenkörper mit durch schlitze erhöhtem widerstand
EP0569400B2 (de) * 1991-01-31 1997-04-23 Emitec Gesellschaft für Emissionstechnologie mbH Wabenkörper mit inhomogener elektrischer beheizung
US5791043A (en) * 1995-05-22 1998-08-11 Nippondenso Co., Ltd. Process of producing metal catalyst carrier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0569400B2 (de) * 1991-01-31 1997-04-23 Emitec Gesellschaft für Emissionstechnologie mbH Wabenkörper mit inhomogener elektrischer beheizung
EP0682742B1 (de) * 1993-02-08 1996-10-23 Emitec Gesellschaft für Emissionstechnologie mbH Elektrisch beheizbarer wabenkörper mit durch schlitze erhöhtem widerstand
EP0705962A1 (de) * 1994-10-04 1996-04-10 Nippondenso Co., Ltd. Honigwabenstruktur und katalytischer Konverter der einen solchen katalytischen Träger enthält
US5791043A (en) * 1995-05-22 1998-08-11 Nippondenso Co., Ltd. Process of producing metal catalyst carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104884A1 (de) * 2022-11-18 2024-05-23 Emitec Technologies GmbH Vorrichtung zur abgasnachbehandlung mit einer geschlitzten matrix

Also Published As

Publication number Publication date
DE102021211453A1 (de) 2023-04-13
KR20240051279A (ko) 2024-04-19
CN118103589A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
EP1743697B1 (de) Blechfolie mit Mikrostuktur
DE10304814C5 (de) Verfahren und Werkzeug zur Herstellung von strukturierten Blechlagen; Katalysator-Trägerkörper
DE8908738U1 (de) Wabenkörper mit internen Strömungsleitflächen, insbesondere Katalysatorkörper für Kraftfahrzeuge
DE19525261A1 (de) Metallisches Abgasreinigungssubstrat
WO2004004902A1 (de) Verfahren und vorrichtung zum räumlich inhomogenen beschichten eines wabenkörpers und inhomogen beschichteter wabenkörper
WO2023061746A1 (de) Wabenkörper zum zwecke der abgasnachbehandlung mit geschlitzten metallfolien
EP0316596A2 (de) Verfahren und Vorrichtung zur Herstellung eines Trägerkörpers für einen katalytischen Reaktor
EP0121175B1 (de) Katalysator-Trägerkörper für Verbrennungskraftmaschinen aus konisch wendelförmig gewickelten Blechstreifen
EP0121174B1 (de) Katalysator-Trägerkörper für Verbrennungskraftmaschinen mit Dehnungsschlitzen
DE10392744B4 (de) Nicht-zylindrischer Katalysator-Trägerkörper sowie Verfahren zu seiner Herstellung
WO2003087549A1 (de) Kalibrierter katalysator-trägerkörper mit wellmantel und verfahren zu dessen herstellung
EP2864604B1 (de) Konischer wabenkörper mit schräg radial nach aussen verlaufenden kanälen
EP1163432A1 (de) Katalysatorkörper mit anströmseitig verringerter wanddicke
EP1633506B1 (de) Verfahren und vorrichtung zur herstellung eines strukturierten blechbandes
EP1733790B1 (de) Strukturierte Metallfolie für einen Wabenkörper
EP3847348B1 (de) Katalysator mit metallischem wabenkörper
EP1300555A9 (de) Katalysator
EP2604341B1 (de) Matrix und Verfahren zu ihrer Herstellung
EP1373692A1 (de) Verfahren zur herstellung einer einstückigen, strukturierten blechfolie mit einem loch, blechfolie und wabenkörper
EP0969929A1 (de) Wabenkörper, insbesondere katalysator-trägerkörper, mit verstärkter wandstruktur
WO2015162202A1 (de) Verfahren zur beeinflussung einer fluidströmung
DE102021211213B3 (de) Elektrisch beheizbarer Wabenkörper mit Welllagen unterschiedlicher Zelldichte
WO2024115288A1 (de) Vorrichtung zur nachbehandlung von abgasen
AT515277B1 (de) Abgaskatalysator
EP2568138B1 (de) Flexible, flächige Rohmatrize für einen Katalysator, sowie entsprechender Katalysator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247011134

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022778013

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022778013

Country of ref document: EP

Effective date: 20240513