WO2023061448A1 - 抑制变换器宽频振荡的方法、装置、电子设备和存储介质 - Google Patents

抑制变换器宽频振荡的方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2023061448A1
WO2023061448A1 PCT/CN2022/125107 CN2022125107W WO2023061448A1 WO 2023061448 A1 WO2023061448 A1 WO 2023061448A1 CN 2022125107 W CN2022125107 W CN 2022125107W WO 2023061448 A1 WO2023061448 A1 WO 2023061448A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
broadband
impedance
component
voltage
Prior art date
Application number
PCT/CN2022/125107
Other languages
English (en)
French (fr)
Other versions
WO2023061448A8 (zh
WO2023061448A9 (zh
Inventor
卢东斌
卢宇
邹强
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2023061448A1 publication Critical patent/WO2023061448A1/zh
Publication of WO2023061448A8 publication Critical patent/WO2023061448A8/zh
Publication of WO2023061448A9 publication Critical patent/WO2023061448A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present application relates to the technical field of power electronics, in particular, to a method, device, electronic equipment and storage medium for suppressing wide-band oscillation of a converter.
  • the new energy base interacts with the DC transmission system and the weakly synchronous power grid, and there is strong coupling between the diversified power electronic devices and the motor, and there are subsynchronous oscillations, supersynchronous oscillations, and broadband oscillations, which restrict Large-scale consumption of new energy.
  • the traditional way to suppress subsynchronous oscillation is by adding damping controller (SSDC) in HVDC converter control.
  • the design method is to design a bandpass filter at a frequency point or several frequency points where the unit has a subsynchronous oscillation problem, obtain the required subsynchronous frequency signal through phase compensation and proportional amplification, and superimpose the above subsynchronous frequency signal on the DC Current command value to provide positive electrical damping for the turbogenerator.
  • Each exemplary embodiment of the present application proposes a method, device, device and storage medium for suppressing wide-band oscillation of a converter.
  • a method for suppressing broadband oscillation of a converter which is used to suppress oscillation of a converter system within a wide frequency range.
  • the converter system includes at least a converter and an AC system connected thereto.
  • the method includes: determining the frequency band range and impedance control target value of the broadband oscillation that the converter needs to suppress according to the system requirements of the converter; calculating the broadband component of the AC bus voltage of the converter within the frequency band range; At least after the coordinate transformation of the broadband component of the AC bus voltage within the frequency band range is performed, the broadband feature quantity converted to the DC side of the converter is extracted; when the AC bus voltage is within the frequency band range
  • the amplitude of the broadband component exceeds or is equal to the duration of the first startup threshold, and when it is greater than or equal to the first time threshold, the processed broadband feature value is obtained by performing phase compensation and/or proportional processing on the broadband feature quantity
  • the broadband feature quantity wherein, the parameters of the phase compensation link and/or the proportional link are determined according to the impedance control
  • the system requirements of the converter include requirements for suppressing broadband oscillations of the AC system, and the broadband oscillations include subsynchronous oscillations and/or supersynchronous oscillations.
  • the converter is a rectifier for converting AC to DC or an inverter for converting DC to AC.
  • the converter includes at least one of a grid commutation converter for HVDC transmission, a voltage source converter for flexible DC transmission, a wind power converter, an energy storage converter, and a photovoltaic inverter. A sort of.
  • the frequency band range includes one frequency point or multiple frequency points between 0.1 Hz and 10000 Hz.
  • the impedance is a frequency-domain transfer function between the disturbance voltage and the response current at the port of the converter, the impedance is decomposed into a positive sequence impedance and a negative sequence impedance, and the impedance control target values respectively include the The impedance magnitude control target value and the impedance phase angle control target value of the positive sequence impedance and/or the negative sequence impedance.
  • the step of suppressing the broadband oscillation of the AC system includes: reducing or increasing the impedance amplitude control target value or the impedance phase angle control target value of the converter, so that The impedance of the converter and the impedance of the external system are not equal in magnitude.
  • the step of suppressing the broadband oscillation of the AC system includes: reducing or increasing the impedance amplitude control target value or the impedance phase angle control target value of the converter, so that The phase angle difference between the impedance of the converter and the impedance of the external system is not 180 degrees.
  • the step of calculating the broadband component of the AC bus voltage of the converter within the frequency range includes: performing Fourier transform on the AC bus voltage to obtain Impedance magnitude and impedance phase angle at each frequency point.
  • the broadband components of the AC bus voltage within the frequency band include positive sequence components and/or negative sequence components.
  • the step of extracting the broadband feature quantity converted to the DC side of the converter including: combining the broadband frequency component of the AC bus voltage within the frequency range, or/and the power frequency component of the AC bus voltage, or/and part of the AC bus voltage outside the frequency band range
  • the broadband feature quantity converted to the DC side is extracted.
  • the coordinate transformation includes ⁇ coordinate transformation and dq coordinate transformation.
  • the phase angle of the dq coordinate transformation is the output phase angle of the phase-locked loop of the converter based on the AC bus voltage, or the phase angle of the phase-locked loop based on the power frequency component of the AC bus voltage The output phase angle, or the phase locked loop output phase angle based on the sum of the broadband frequency component and the power frequency component of the AC bus voltage within the frequency range.
  • the broadband feature quantity includes the q-axis component, the d-axis component, or the root mean square value of the two obtained after the dq coordinate transformation;
  • the q-axis component includes q-axis voltage, q-axis voltage The positive sequence component, the negative sequence component of the q-axis voltage, or the amount of the three after passing through the band-pass filter;
  • the d-axis component includes the d-axis voltage after the DC blocking link, the positive sequence component of the d-axis voltage, and the d-axis voltage Negative sequence component or the amount of the three through the band-pass filter respectively.
  • the first start-up threshold is set individually or collectively for each frequency point, the value range of the first start-up threshold is between 0pu and 0.1pu of the rated AC voltage, and the first time threshold The value range is between 0s and 10s.
  • the step of performing phase compensation and/or proportional link processing on the broadband feature quantity further includes: limiting the broadband feature quantity or/and the processed broadband feature quantity link processing.
  • the step of determining the parameters of the phase compensation link and/or the proportional link according to the impedance control target value includes: passing the converter system through at least one of theoretical analysis, simulation and experiment.
  • the second method is to determine the parameters of the phase compensation link and/or the proportional link so as to satisfy the impedance control target value.
  • the converter system at least includes a converter and an AC system connected thereto
  • the device includes: a detection unit configured to detect the The AC bus voltage of the converter; and the control unit is configured to: determine the frequency band range and impedance control target value of the converter that needs to suppress broadband oscillation according to the system requirements of the converter; calculate the AC bus voltage of the converter at the Broadband components within the frequency band range; after performing coordinate transformation on at least the broadband components of the AC bus voltage within the frequency band range, extracting broadband feature quantities transformed to the DC side of the converter; when the When the amplitude of the broadband component of the converter within the frequency band of the AC bus voltage exceeds or is equal to the duration of the first startup threshold, when it is greater than or equal to the first time threshold, phase compensation is performed on the broadband feature quantity Link and/or proportional link processing to obtain processed broadband feature quantities, wherein the parameters of the phase compensation link and/or proportional link are determined according to the impedance control
  • an electronic device including: one or more processors; and a storage device configured to store one or more programs; wherein, when the one or more programs are executed by the one or more When executed by multiple processors, the one or more processors are made to perform the steps in any one of the aforementioned methods.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the aforementioned method is implemented.
  • the traditional additional damping controller does not distinguish positive and negative sequences during coordinate transformation, nor can it distinguish sub-/super-synchronous components of AC systems, so it is not suitable for new energy access systems.
  • the additional damping controller affects all frequency bands of the DC transmission system, especially the frequencies around the design point. When the frequency band to be damped is wide or there are many frequency points, there are complex problems in design.
  • the broadband oscillation is realized by modulating the DC current command value inhibition.
  • FIG. 1A is a schematic structural diagram of a grid commutation converter according to an embodiment of the present application
  • Fig. 1B is a schematic structural diagram of a voltage source converter according to an embodiment of the present application.
  • Fig. 1C is a schematic structural diagram of an energy storage converter according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a high-voltage direct current transmission structure using the grid commutation converter of Fig. 1A according to an embodiment of the present application;
  • Fig. 3 is a schematic flow chart of a method for suppressing broadband oscillation of a converter according to an embodiment of the present application
  • Fig. 4 is a control block diagram of a converter broadband oscillation suppression method according to an embodiment of the present application.
  • Fig. 5 is a functional block diagram of a device for suppressing broadband oscillation of a converter according to an embodiment of the present application.
  • Fig. 6 is a block diagram of an electronic device according to an embodiment of the present application.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this application will be thorough and complete, and will fully convey the concept of the example embodiments to those skilled in the art.
  • the same reference numerals denote the same or similar parts in the drawings, and thus their repeated descriptions will be omitted.
  • This application proposes a method, device, device and storage medium for suppressing broadband oscillation of a converter, by calculating the broadband component of the AC bus voltage of the converter, and modulating the DC current command value according to the impedance amplitude of the broadband component to achieve broadband Oscillation suppression.
  • the technical solution of the present application obtains and controls the broadband components to be suppressed through Fourier transform, and has the function of separately suppressing sub-synchronous and super-synchronous components.
  • the converter in the embodiment of the present application includes at least one of a grid commutation converter for high-voltage direct current transmission, a voltage source converter for flexible direct current transmission, a wind power converter, an energy storage converter or a photovoltaic inverter.
  • FIG. 1A is a schematic structural diagram of a grid-commutated converter according to an embodiment of the present application.
  • the grid commutation converter adopts a twelve-pulse bridge circuit, and has twelve bridge arms 1 in total, and each bridge arm 1 can be composed of thyristors connected in series.
  • X1 and X2 represent the positive terminal and the negative terminal of the DC side of the grid commutated converter, respectively.
  • FIG. 1B is a schematic structural diagram of a voltage source converter according to an embodiment of the present application.
  • the voltage source converter adopts a modular multilevel converter, and has six bridge arms in total, and each bridge arm is composed of N submodules 2 and a reactor 3 connected in series.
  • the sub-module 2 is a sub-module of a half-bridge structure or a sub-module of a full-bridge structure.
  • the sub-module of the half-bridge structure can be composed of two IGBT devices 4 and a capacitor 5 .
  • the full bridge sub-module can be composed of four IGBT devices 6 and one capacitor 7 .
  • X3 and X4 represent the positive terminal and the negative terminal of the DC side of the voltage source converter, respectively.
  • Fig. 1C is a schematic structural diagram of an energy storage converter according to an embodiment of the present application.
  • the energy storage converter has six bridge arms 8 , and each bridge arm 8 is composed of IGBTs connected in series or in parallel.
  • X5 and X6 represent the positive terminal and negative terminal of the DC side of the energy storage converter, respectively.
  • FIG. 2 is a schematic diagram of a high-voltage direct current transmission structure using the grid-commutated converter of FIG. 1A according to an embodiment of the present application.
  • the converter system is a HVDC transmission system.
  • the main circuit of the HVDC power transmission system includes a rectifier station 100, an inverter station 200, a first DC line 150, a second DC line 160, a rectifier station ground electrode line 114, a rectifier station ground electrode 115, an inverter station ground electrode line 214 and The ground electrode 215 of the inverter station.
  • the rectifier station 100 includes a first DC pole 110, a second DC pole 120, a first AC filter bank 118, a first AC system 140, a converter transformer incoming switch, and a metal return switch 113 , Earth return switch 190, bipolar neutral zone isolation switch 174, 175, 184 and 185.
  • the first DC pole 110 includes a first valve group/converter 111, a first converter transformer 116, a first DC pole neutral bus switch 119, a first DC filter 93, a first A smoothing reactor 91 , a first DC filter isolation switch 171 , a first pole bus isolation switch 172 and a first metal circuit isolation switch 173 .
  • the first valve group/converter 111 is a grid commutated converter.
  • the grid commutation converter includes but not limited to at least one of a six-pulse bridge circuit and a twelve-pulse bridge circuit.
  • the pulsating bridge circuit includes, but is not limited to, semi-controlled power semiconductor devices that cannot be turned off, generally thyristor devices.
  • the second DC pole 120 includes a second valve group/converter 121, a second converter transformer 126, a second DC pole neutral bus switch 129, a second DC filter 94, a second smoothing Reactor 92 , second DC filter isolation switch 181 , second pole busbar isolation switch 182 and second metal return line isolation switch 183 .
  • the second valve group/converter 121 is a grid commutated converter.
  • the inverter station 200 includes a third DC pole 210, a fourth DC pole 220, a second AC filter bank 218, a second AC system 240, a converter transformer incoming switch, and a ground pole line isolation switch. 213 , metal loop isolation switch 290 , bipolar neutral zone isolation switch 274 , 275 , 284 and 285 .
  • the third DC pole 210 includes a third valve group/inverter 211, a third converter transformer 216, a third DC pole neutral bus switch 219, a third DC filter 97, a third smoothing Reactor 95 , third DC filter isolation switch 271 , third pole busbar isolation switch 272 and third metal return line isolation switch 273 .
  • the third valve group/converter 211 is a grid commutated converter.
  • the fourth DC pole 220 includes a fourth valve group/inverter 221, a fourth converter transformer 226, a fourth DC pole neutral bus switch 229, a fourth DC filter 98, a fourth smoothing wave Reactor 96 , fourth DC filter isolation switch 281 , fourth pole busbar isolation switch 282 and fourth metal return line isolation switch 283 .
  • the fourth valve group/converter 221 is a grid commutated converter.
  • the various switches mentioned above include but not limited to at least one of a mechanical switch, a knife switch and a DC circuit breaker.
  • the rectifier station 100 is connected to the ground electrode 115 through the ground electrode line 114 .
  • the inverter station 200 is connected to the ground pole 215 through the ground pole line 214 .
  • the first AC system 140 of the rectifier station 100 converts AC power into DC power through its first valve group/converter 111, and transmits it to the inverter station 200 through the DC lines 150 and 160, and the inverter station 200 passes through its
  • the third converter 211 converts the DC power into AC power and sends it to the second AC system 240 of the inverter station 200, so as to realize DC power forward transmission.
  • the converter of the rectifier station generally operates under current control, and the converter of the inverter station generally operates under voltage control or maximum firing angle control (AMAX).
  • AMAX maximum firing angle control
  • the analog signals collected by the rectifier station 100 and the inverter station 200 are: high-voltage bus current IDH, low-voltage bus current IDNC, pole bus current IDL, pole-neutral bus current IDNE, DC Filter head-end current IZT1, ground electrode current IDEL, pole bus voltage UDL and pole-neutral bus voltage UDN, as well as the AC bus voltage UAC (three-phase) of the first AC system 140 and the second AC system 240 and flow into the converter transformer The alternating current IAC (three-phase).
  • FIG. 3 is a schematic flowchart of a method for suppressing broadband oscillation of a converter according to an embodiment of the present application.
  • a converter system may include at least a converter and its connected AC system.
  • the impedance control target value is input.
  • the frequency band range and impedance control target value of the converter that needs to suppress broadband oscillation are determined according to the system requirements of the converter.
  • the system requirements of the converter include requirements for suppressing broadband oscillation of an AC system.
  • the broadband oscillation here may include subsynchronous oscillation and/or supersynchronous oscillation.
  • the suppressing the broadband oscillation of the AC system includes reducing or increasing the impedance amplitude control target value or the impedance phase angle control target value of the converter, so that the converter impedance and the external impedance are within the amplitude unequal, or/and make the phase angle difference between the converter impedance and the external impedance not be 180 degrees.
  • the high-voltage direct current transmission system when there is a turbo-generator in the AC system connected to it, if there is a risk of subsynchronous oscillation between the high-voltage direct current transmission system and the turbo-generator, the connected The requirement of the AC system is to suppress the subsynchronous oscillation of the generator.
  • the AC system connected to the HVDC transmission system needs to suppress possible broadband oscillations.
  • the suppression method of the present application can be used to reduce or increase the impedance amplitude control target value of the high-voltage direct current transmission system converter, so that the converter impedance and external impedance (such as the external AC system impedance ) are not equal in magnitude.
  • the targeted frequency range when suppressing the subsynchronous oscillation of the HVDC power transmission system and the turbogenerator, may be one frequency point or multiple frequency points.
  • the frequency range when suppressing the broadband oscillation of high-voltage DC transmission, new energy and weak AC systems, can be multiple frequency points.
  • the frequency band range may be between 0.1 Hz and 10000 Hz, such as 12-36 Hz or 56-98 Hz.
  • the above-mentioned impedance is a frequency-domain transfer function between the disturbance voltage and the response current at the port of the converter, which is a set of impedances at a group of frequency points.
  • the above impedance can be decomposed into positive sequence impedance and negative sequence impedance, and the impedance control target value respectively includes the impedance amplitude control target value and the impedance phase angle control target value of the positive sequence impedance and/or the negative sequence impedance.
  • the positive-sequence impedance and negative-sequence impedance at frequency fi are calculated as:
  • U + (f i ) is the positive sequence component of the disturbance voltage when the frequency is f i
  • I + (f i ) is the positive sequence component of the response current when the frequency is f i
  • U - (f i ) is the positive sequence component of the frequency Disturbance voltage negative sequence component at f i
  • I - (f i ) is the response current negative sequence component at frequency f i .
  • the target value of positive sequence impedance amplitude at frequency f i is expressed as
  • the target value of negative sequence impedance amplitude at frequency f i is expressed as
  • the broadband component of the AC bus voltage of the converter within the frequency band is calculated.
  • the above calculation of the broadband component of the AC bus voltage of the converter within the frequency range includes performing Fourier transform on the AC bus voltage to obtain the impedance magnitude of each frequency point within the frequency range value and phase angle.
  • the Fourier transform includes but not limited to discrete Fourier transform (DFT) and fast Fourier transform (FFT).
  • the three-phase AC bus voltage contains a broadband component
  • the broadband component of an integer frequency it can be expressed as:
  • the above-mentioned AC bus voltage is Fourier transformed to obtain the broadband components of the above-mentioned frequency ranges.
  • the positive sequence component is:
  • the negative sequence components are:
  • At least the broadband component of the AC bus voltage within the frequency band is subjected to coordinate transformation, and then the broadband feature quantity converted to the DC side is extracted.
  • the broadband component of the AC bus voltage within the frequency range, or/and the power frequency component of the AC bus voltage, or/and part of the AC bus voltage outside the frequency band is subjected to coordinate transformation to extract the broadband feature quantity converted to the DC side.
  • the broadband feature quantity converted from the broadband component to the DC side is extracted.
  • Umf0 + is the positive sequence component amplitude of the power frequency component
  • Umf0- is the negative sequence component amplitude of the power frequency component
  • ⁇ 0 is the angular velocity of the power frequency component
  • is the phase angle of the dq coordinate transformation, and ⁇ can be selected as the output phase angle of the phase-locked loop of the converter based on the AC bus voltage, or the output of the phase-locked loop based on the power frequency component of the AC bus voltage The phase angle, or the output phase angle of the phase-locked loop based on the sum of the broadband frequency component and the power frequency component of the AC bus voltage within the frequency range.
  • the broadband feature quantity includes the q-axis component, the d-axis component, or the root mean square value of the above two;
  • the q-axis component includes the q-axis voltage u q and the positive sequence component of the q-axis voltage Negative sequence component of q-axis voltage Or the amount of the above three after passing through the band-pass filter;
  • the d-axis component includes the d-axis voltage after passing through the DC blocking link Positive sequence component of d-axis voltage d-axis voltage negative sequence component Or the amount of the above three through the band-pass filter respectively. It should be noted that since the double frequency component in the q-axis component and the d-axis component is produced by the negative sequence component of the power frequency component, the above-mentioned broadband feature quantity does not include the double frequency component and
  • the bandwidth of the above-mentioned bandpass filter can be set according to the requirement of the AC system to determine the frequency range that requires impedance control, and convert it to the DC side of the converter.
  • may also be the output phase angle of the phase-locked loop of the converter based on the AC bus voltage, or the output phase of the phase-locked loop based on the broadband component of the AC bus voltage within the frequency range. angle, or the output phase angle of the phase-locked loop based on the sum of the broadband frequency component and the power frequency component of the AC bus voltage within the frequency range.
  • the broadband feature Quantities are processed by a phase compensation link and/or a proportional link to obtain processed broadband feature quantities, wherein the parameters of the phase compensation link and/or proportional link are determined according to the impedance control target value.
  • the criterion for the amplitude of the broadband component to exceed the first activation threshold is as follows:
  • U mj+ is the amplitude of the positive sequence component of the broadband component at frequency j
  • U mk+ is the amplitude of the broadband component at frequency k
  • U ml+ is the amplitude of the positive sequence component of the broadband component at frequency l
  • U st+ , U stj+ , U stk+ , U stl+ are start-up thresholds, and the value range is between 0pu and 0.1pu of the rated AC voltage.
  • the first starting threshold may be calculated according to simulation or may be an empirical value.
  • the processed broadband feature quantity obtained is always superimposed on the DC current command value of the converter and the DC voltage command value, or superimposed on the active power command value of the converter, output to modulate the DC current and DC voltage, or active power.
  • the value range of the first time threshold may be between 0s and 10s, and the value may be calculated according to simulation or may be an empirical value.
  • the phase compensation link and/or ratio is performed on the broadband feature quantity
  • the obtained processed broadband feature quantity is immediately superimposed on the DC current command value, DC voltage command value or active power command value of the converter and then output to modulate the DC current, DC voltage or active power.
  • the phase compensation link controls the impedance phase angle to reach a target value.
  • the phase compensation link uses the transfer function:
  • ⁇ x is the angular frequency of the frequency point that requires phase compensation
  • is the lagging phase angle that needs to be compensated at the ⁇ x angular frequency point
  • T 1 and T 2 are the time constants of the phase compensation link
  • a is the phase compensation link The time constant ratio of .
  • the selection principle of the parameter ⁇ of the phase compensation link is obtained through theoretical analysis, simulation or experiment according to the transfer function characteristics of the converter system.
  • the proportional link realizes the control of the impedance amplitude to reach the target value.
  • the scale link parameter is a scale coefficient, which is used to scale up or down the broadband feature quantity. The selection principle of the proportional link parameters is obtained through theoretical analysis, simulation or experiment according to the transfer function characteristics of the converter system.
  • a limiting link may be added.
  • the above-mentioned wide-band feature quantity after the above-mentioned links can be superimposed on the DC current command value, DC voltage command value or active power command value of the converter.
  • the converter performs DC current, DC voltage and active power modulation according to the above-mentioned command value, thereby suppressing the broadband oscillation of the converter system.
  • Fig. 4 is a control block diagram of a method for suppressing broadband oscillation of a converter according to an embodiment of the present application.
  • the three-phase AC bus voltages u a , u b and uc are transformed by FFT to obtain the amplitude and phase angle of the broadband components that need to suppress broadband oscillation, and then obtain the broadband components and power frequency of the three-phase AC bus voltage The sum of the components u a_f , u b_f and u c_f . After the broadband component and the power frequency component undergo ⁇ coordinate transformation and dq coordinate transformation, the broadband feature quantity is obtained.
  • the logic When the amplitude of the broadband component is greater than the first start-up threshold, select the logic to select the broadband feature quantity, and output the DC current command value, DC voltage command value or active power superimposed on the converter through the phase compensation link, the proportional link and the limiting link instruction value.
  • the logic selection When the amplitude of the broadband component is not greater than the first start threshold, the logic selection is 0, and the modulation value is not output.
  • the output of the current regulator is the firing angle reference value ⁇ ord .
  • the above-mentioned method for suppressing broadband oscillation of a converter can suppress the positive sequence component and the negative sequence component of the three-phase AC bus voltage respectively.
  • Fig. 5 is a functional block diagram of a device for suppressing broadband oscillation of a converter according to an embodiment of the present application.
  • the device shown in Fig. 5 can be used to suppress the oscillation of a converter system in a wide frequency range, the converter system comprising at least the converter and its connected AC system.
  • the converter broadband oscillation suppression device 9 may include a detection unit 10 and a control unit 11 .
  • the detection unit 10 is configured to detect the AC bus voltage of the converter.
  • the detection unit 10 can be a conventional PT device and its sampling circuit to detect the AC bus voltage.
  • control unit 11 is configured to determine, according to the system requirements of the converter, the frequency band range in which the converter needs to suppress broadband oscillation and the impedance control target value; calculate the AC bus voltage of the converter within the frequency range Broadband component; at least the broadband component of the AC bus voltage within the frequency band range is subjected to coordinate transformation to extract the broadband feature quantity transformed to the DC side of the converter; when the AC bus voltage is within the frequency band range When the amplitude of the broadband component of the converter within exceeds or is equal to the first start threshold and the duration is greater than or equal to the first time threshold, by performing phase compensation link and/or proportional link processing on the broadband feature quantity, it is obtained The processed broadband feature quantity, wherein the parameters of the phase compensation link and/or the proportional link are determined according to the impedance control target value; and
  • the processed broadband feature quantity is superimposed on the DC current command value, DC voltage command value or active power command value of the converter and then output, so as to modulate the DC current and DC voltage of the converter accordingly.
  • FIG. 6 shows a block diagram of an electronic device according to an exemplary embodiment of the present application.
  • electronic device 600 is in the form of a general-purpose computing device.
  • Components of the electronic device 600 may include, but are not limited to: at least one processing unit 610, at least one storage unit 620, a bus 630 connecting different system components (including the storage unit 620 and the processing unit 610), a display unit 640, and the like.
  • the storage unit stores program codes, and the program codes can be executed by the processing unit 610, so that the processing unit 610 executes the methods described in this specification according to various exemplary embodiments of the present application.
  • the processing unit 610 may execute the method as shown in FIG. 1 .
  • the processing unit 610 shown in FIG. 6 can also implement the control logic shown in FIGS. 3 to 4 when executing the computer program.
  • the storage unit 620 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 6201 and/or a cache storage unit 6202 , and may further include a read-only storage unit (ROM) 6203 .
  • RAM random access storage unit
  • ROM read-only storage unit
  • Storage unit 620 may also include a program/utility 6204 having a set (at least one) of program modules 6205, such program modules 6205 including but not limited to: an operating system, one or more application programs, other program modules, and program data, Implementations of networked environments may be included in each or some combination of these examples.
  • Bus 630 may represent one or more of several types of bus structures, including a memory cell bus or memory cell controller, a peripheral bus, an accelerated graphics port, a processing unit, or a local area using any of a variety of bus structures. bus.
  • the electronic device 600 can also communicate with one or more external devices 700 (such as keyboards, pointing devices, Bluetooth devices, etc.), and can also communicate with one or more devices that enable the user to interact with the electronic device 600, and/or communicate with Any device (eg, router, modem, etc.) that enables the electronic device 600 to communicate with one or more other computing devices. Such communication may occur through input/output (I/O) interface 650 .
  • the electronic device 600 can also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet) through the network adapter 660 .
  • the network adapter 660 can communicate with other modules of the electronic device 600 through the bus 630 . It should be appreciated that although not shown, other hardware and/or software modules may be used in conjunction with electronic device 600, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system, etc.
  • exemplary embodiments described here can be implemented by software, or by combining software with necessary hardware.
  • the technical solutions according to the embodiments of the present application can be embodied in the form of software products, which can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.) or on the network, including Several instructions enable a computing device (which may be a personal computer, server, mobile terminal or network device, etc.) to execute the method according to the embodiment of the present application.
  • a software product may utilize any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • a computer readable storage medium may include a data signal carrying readable program code in baseband or as part of a carrier wave traveling as part of a data signal. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a readable storage medium may also be any readable medium other than a readable storage medium that can send, propagate or transport a program for use by or in conjunction with an instruction execution system, apparatus or device.
  • the program code contained on the readable storage medium may be transmitted by any suitable medium, including but not limited to wireless, cable, optical cable, RF, etc., or any suitable combination of the above.
  • Program codes for performing the operations of the present application can be written in any combination of one or more programming languages, including object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural programming Language - such as "C" or similar programming language.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (e.g., using an Internet service provider). business to connect via the Internet).
  • LAN local area network
  • WAN wide area network
  • Internet service provider e.g., a wide area network
  • the above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by one device, the computer-readable medium can realize the aforementioned functions.
  • modules in the above embodiments can be distributed in the device according to the description of the embodiment, and corresponding changes can also be made in one or more devices that are only different from the embodiment.
  • the modules in the above embodiments can be combined into one module, and can also be further split into multiple sub-modules.
  • the embodiment of the present application by calculating the broadband component of the AC bus voltage of the converter within the frequency band range, after performing coordinate transformation on the broadband component, extracting the broadband feature quantity transformed to the DC side, and converting it to As the modulation quantity controlled by the converter, it suppresses the broadband oscillation that occurs in the converter system.
  • the suppression of subsynchronous oscillations of turbogenerators and broadband oscillations after large-scale new energy access provides guarantees for the safe operation of power systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

提供一种抑制变换器宽频振荡的方法、装置、电子设备和存储介质,用于抑制变换器系统在宽频带范围内的振荡。方法包括:根据变换器的系统需求确定变换器需要抑制宽频振荡的频带范围和阻抗控制目标值;计算变换器的交流母线电压在频带范围内的宽频分量;将至少交流母线电压在频带范围内的宽频分量进行坐标变换后,提取出变换到直流侧的宽频特征量;当交流母线电压在频带范围内的宽频分量的幅值,超过或等于第一启动阈值的持续时间大于或等于第一时间阈值时,将宽频特征量经过相位补偿环节和/或比例环节后,叠加到变换器的直流电流指令值、直流电压指令值或有功功率指令值后输出来调制直流电流、直流电压或有功功率。

Description

抑制变换器宽频振荡的方法、装置、电子设备和存储介质
相关申请
本申请要求于2021年10月13日提交中国专利局、申请号为202111194151.1、申请名称为“抑制变换器宽频振荡的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子技术领域,具体而言,涉及一种抑制变换器宽频振荡的方法、装置、电子设备和存储介质。
背景技术
在大规模新能源接入系统中,新能源基地与直流输电系统以及弱同步电网交互影响,多样化电力电子装置与电机存在强耦合,存在次同步振荡、超同步振荡、宽频振荡现象,从而制约新能源大规模消纳。
以新能源接入的高压直流输电系统为例,存在高压直流输电、风力发电机和汽轮发电机组的次同步振荡问题。
传统抑制次同步振荡的方法为,通过在高压直流输电换流器控制中附加阻尼控制器(SSDC)。设计方法为在机组存在次同步振荡问题的一个频率点或几个频率点设计一个带通滤波器,通过相位补偿和比例放大得到所需的次同步频率信号,将上述次同步频率信号叠加到直流电流指令值,来为汽轮发电机提供正的电气阻尼。
发明内容
本申请各示例性的实施例提出一种抑制变换器宽频振荡的方法、装置、设备和存储介质果。
根据本申请的一方面,提出一种抑制变换器宽频振荡的方法,用于抑制变换器系统在宽频带范围内的振荡,所述变换器系统至少包括变换器及其连接的交流系统,所述方法包括:根据所述变换器的系统需求确定所述变换器需要抑制的宽频振荡的频带范围和阻抗控制目标值;计算所述变换器的交流母线电压在所述频带范围内的宽频分量;将至少所述交流母线电压在所述频带范围内的所述宽频分量进行坐标变换后,提取出变换到所述变换器的直流侧的宽频特征量;当所述交流母线电压在所述频带范围内的所述宽频分量的幅值超过或等于第一启动阈值的持续时间,大于或等于第 一时间阈值时,通过对所述宽频特征量进行相位补偿环节和/或比例环节处理,获得已处理的宽频特征量,其中,所述相位补偿环节和/或比例环节的参数根据所述阻抗控制目标值确定;以及将所述已处理的宽频特征量叠加到所述变换器的直流电流指令值、直流电压指令值或有功功率指令值后输出,从而相应地调制所述变换器的直流电流、直流电压或有功功率。
在一实施例中,所述变换器的系统需求包括抑制所述交流系统的宽频振荡的需求,所述宽频振荡包括次同步振荡和/或超同步振荡。
在一实施例中,所述变换器为交流变换为直流的整流器或直流变换为交流的逆变器。
在一实施例中,所述变换器包括高压直流输电的电网换相换流器、柔性直流输电的电压源换流器、风电变流器、储能变流器和光伏逆变器中的至少一种。
在一实施例中,所述频带范围包括在0.1Hz至10000Hz之间的一个频率点或多个频率点。
在一实施例中,阻抗为所述变换器的端口处扰动电压与响应电流之间的频域传递函数,所述阻抗分解为正序阻抗和负序阻抗,所述阻抗控制目标值分别包括所述正序阻抗和/或所述负序阻抗的阻抗幅值控制目标值和阻抗相角控制目标值。
在一实施例中,所述抑制所述交流系统的宽频振荡的步骤,包括:减小或增大所述变换器的所述阻抗幅值控制目标值或所述阻抗相角控制目标值,使所述变换器的阻抗和外部系统的阻抗在幅值上不相等。
在一实施例中,所述抑制所述交流系统的宽频振荡的步骤,包括:减小或增大所述变换器的所述阻抗幅值控制目标值或所述阻抗相角控制目标值,使所述变换器的所述阻抗和所述外部系统的所述阻抗的相角差不为180度。
在一实施例中,所述计算所述变换器的交流母线电压在所述频带范围内的宽频分量的步骤,包括:通过对所述交流母线电压进行傅里叶变换,得到所述频带范围内各频率点的阻抗幅值和阻抗相角。
在一实施例中,所述交流母线电压在所述频带范围内的宽频分量包括正序分量和/或负序分量。
在一实施例中,所述将至少所述交流母线电压在所述频带范围内的所 述宽频分量进行所述坐标变换后,提取出变换到所述变换器的直流侧的宽频特征量的步骤,包括:将所述交流母线电压在所述频带范围内的所述宽频分量、或/和所述交流母线电压的工频分量、或/和部分所述交流母线电压在所述频带范围外的宽频分量、或所述交流母线电压进行坐标变换后提取出变换到直流侧的宽频特征量。
在一实施例中,所述坐标变换包括αβ坐标变换以及dq坐标变换。
在一实施例中,所述dq坐标变换的相角为所述变换器基于所述交流母线电压的锁相环的输出相角,或者基于所述交流母线电压的工频分量的锁相环的输出相角,或者基于所述交流母线电压在所述频带范围内的宽频分量和工频分量的和的锁相环输出相角。
在一实施例中,所述宽频特征量包括所述dq坐标变换后得到的q轴分量、d轴分量,或二者的均方根值;所述q轴分量包括q轴电压、q轴电压正序分量、q轴电压负序分量或三者分别经带通滤波器后的量;以及所述d轴分量包括经过隔直环节后的d轴电压、d轴电压正序分量、d轴电压负序分量或三者分别经带通滤波器的量。
在一实施例中,所述第一启动阈值针对各频率点单独或统一进行设置,所述第一启动阈值的取值范围为额定交流电压的0pu~0.1pu之间,所述第一时间阈值取值范围为0s~10s之间。
在一实施例中,所述对所述宽频特征量进行相位补偿环节和/或比例环节处理的步骤,还包括:将所述宽频特征量或/和所述已处理的宽频特征量进行限幅环节的处理。
在一实施例中,所述所述相位补偿环节和/或比例环节的参数根据所述阻抗控制目标值确定的步骤,包括:将所述变换器系统通过理论分析、仿真和试验中的至少一种,确定所述相位补偿环节和/或比例环节的参数,以满足所述阻抗控制目标值。
根据本申请的另一方面,用于抑制变换器系统在宽频带范围内的振荡,所述变换器系统至少包括变换器及其连接的交流系统,所述装置包括:检测单元,配置为检测所述变换器的交流母线电压;以及控制单元,配置为:根据变换器的系统需求确定所述变换器需要抑制宽频振荡的频带范围和阻抗控制目标值;计算所述变换器的交流母线电压在所述频带范围内的宽频分量;将至少所述交流母线电压在所述频带范围内的所述宽频分量进行坐标变换后,提取出变换到所述变换器的直流侧的宽频特征量;当所述交流 母线电压在所述频带范围内的所述变换器的宽频分量的幅值超过或等于第一启动阈值的持续时间,大于或等于第一时间阈值时,通过对所述宽频特征量进行相位补偿环节和/或比例环节处理,获得已处理的宽频特征量,其中,所述相位补偿环节和/或比例环节的参数根据所述阻抗控制目标值确定;以及将所述已处理的宽频特征量叠加到所述变换器的直流电流指令值、直流电压指令值或有功功率指令值后输出,从而相应地调制所述变换器的直流电流、直流电压或有功功率。
根据本申请的一方面,提供一种电子设备,包括:一个或多个处理器;以及存储装置,配置为存储一个或多个程序;其中,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器执行如前述任一所述的方法中的步骤。
根据本申请的一方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如前述的方法。
发明人发现,传统的附加阻尼控制器在坐标变换时不区分正负序,也不能对交流系统的次/超同步分量进行区分,不适用于新能源接入系统。同时,附加阻尼控制器对直流输电系统所有频率段尤其是设计点周边频率产生影响,当需要阻尼的频带较宽或频率点较多时,存在设计复杂问题。
本申请实施例提供的技术方案,通过计算所述变换器的交流母线电压的宽频分量;当所述宽频分量的阻抗幅值超过第一启动阈值时,通过对直流电流指令值进行调制实现宽频振荡抑制。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的等同实施例。
图1A是本申请一实施例的电网换相换流器结构示意图;
图1B是本申请一实施例的电压源换流器结构示意图;
图1C是本申请一实施例的储能变流器结构示意图;
图2是本申请一实施例的采用图1A电网换相换流器的高压直流输电结构示意图;
图3是本申请一实施例的变换器宽频振荡抑制方法的流程示意图;
图4是本申请一实施例的变换器宽频振荡抑制方法的控制框图;
图5是本申请一实施例的变换器宽频振荡抑制装置的功能框图。
图6是本申请一实施例的电子设备的框图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例。相反,提供这些实施例使得本申请将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有这些特定细节中的一个或更多,或者可以采用其它的方式、组元、材料、装置或等。在这些情况下,将不详细示出或描述公知结构、方法、装置、实现、材料或者操作。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
本领域技术人员可以理解,附图只是示例实施例的示意图,附图中的模块或流程并不一定是实施本申请所必须的,因此不能用于限制本申请的保护范围。
下面描述本申请的装置实施例,其可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,可参照本申请方法实施例。
本申请提出一种抑制变换器宽频振荡的方法、装置、设备和存储介质,通过计算变换器的交流母线电压的宽频分量,根据宽频分量的阻抗幅值对直流电流指令值进行调制,来实现宽频振荡抑制。
本申请技术方案通过傅里叶变换得到需要抑制的宽频分量,并进行控制,具备分别抑制次/超同步分量功能。本申请实施例的变换器包括高压直流输电的电网换相换流器、柔性直流输电的电压源换流器、风电变流器、储能变流器或光伏逆变器的至少一种。
下面结合附图对本申请的实施例进行详细描述。
图1A是本申请一实施例的电网换相换流器结构示意图。
如图1A所示,电网换相换流器采用十二脉动桥式电路,共有十二个桥臂1,每个桥臂1可由晶闸管串联组成。X1和X2分别表示电网换相换流器直流侧的正端和负端。
图1B是本申请一实施例的电压源换流器结构示意图。
如图1B所示,电压源换流器采用模块化多电平换流器,共有六个桥臂,每个桥臂由N个子模块2和一个电抗器3串联组成。子模块2为半桥结构的子模块或全桥结构的子模块。半桥结构的子模块可由两个IGBT器件4和一个电容5组成。全桥子模块可由四个IGBT器件6和一个电容7组成。X3和X4分别表示电压源换流器直流侧的正端和负端。
图1C是本申请一实施例的储能变流器结构示意图。
如图1C所示,储能变流器共有六个桥臂8,每个桥臂8由IGBT串联或并联组成。X5和X6分别表示储能变流器直流侧的正端和负端。
图2是本申请一实施例的采用图1A电网换相换流器的高压直流输电结构示意图。
如图2所示,变换器系统为高压直流输电系统。高压直流输电系统主回路包括整流站100、逆变站200、第一直流线路150、第二直流线路160、整流站接地极线路114、整流站接地极115、逆变站接地极线路214和逆变站接地极215。
在一实施例中,整流站100包括第一直流极110、第二直流极120、第一交流滤波器组118、第一交流系统140及换流变压器进线开关、金属回线转换开关113、大地回线转换开关190、双极中性区隔离刀闸174、175、184和185。
在一实施例中,第一直流极110包括第一阀组/换流器111、第一换流变压器116、第一直流极中性母线开关119、第一直流滤波器93、第一平波电抗器91、第一直流滤波器隔离刀闸171、第一极母线隔离刀闸172和第一金属回线隔离刀闸173。
在一实施例中,第一阀组/换流器111为电网换相换流器。电网换相换流器包括但不限于六脉动桥式电路、十二脉动桥式电路的至少一种。所述脉动桥式电路包括但不限于不可关断的半控型功率半导体器件,一般为晶闸管器件。
在一实施例中,第二直流极120包括第二阀组/换流器121、第二换流变压器126、第二直流极中性母线开关129、第二直流滤波器94、第二平波电抗器92、第二直流滤波器隔离刀闸181、第二极母线隔离刀闸182和第二金属回线隔离刀闸183。
在一实施例中,第二阀组/换流器121为电网换相换流器。
在一实施例中,逆变站200包括第三直流极210、第四直流极220、第二交流滤波器组218、第二交流系统240及换流变压器进线开关、接地极线路隔离刀闸213、金属回线隔离刀闸290、双极中性区隔离刀闸274、275、284和285。
在一实施例中,第三直流极210包括第三阀组/换流器211、第三换流变压器216、第三直流极中性母线开关219、第三直流滤波器97、第三平波电抗器95、第三直流滤波器隔离刀闸271、第三极母线隔离刀闸272和第三金属回线隔离刀闸273。
在一实施例中,第三阀组/换流器211为电网换相换流器。
在一实施例中,第四直流极220包括第四阀组/换流器221、第四换流变压器226、第四直流极中性母线开关229、第四直流滤波器98、第四平波电抗器96、第四直流滤波器隔离刀闸281、第四极母线隔离刀闸282和第四金属回线隔离刀闸283。
在一实施例中,第四阀组/换流器221为电网换相换流器。
在一实施例中,上述提到的各种开关,包括但不限于机械开关、刀闸和直流断路器中的至少一种。
在一实施例中,整流站100通过接地极线路114与接地极115连接。逆变站200通过接地极线路214与接地极215连接。功率正送时,整流站100的第一交流系统140通过其第一阀组/换流器111将交流电转化为直流电,通过直流线路150、160输送到逆变站200,逆变站200通过其第三换流器211将直流电转化为交流电送到逆变站200的第二交流系统240,从而实现直流功率正送。整流站的换流器一般在电流控制下运行,逆变站的换流器一般在电压控制或最大触发角控制(AMAX)下运行。
在一实施例中,整流站100和逆变站200采集的模拟量信号为:换流器直流侧的高压母线电流IDH、低压母线电流IDNC、极母线电流IDL、极中性母线电流IDNE、直流滤波器首端电流IZT1、接地极电流IDEL、极母线电压UDL和极中性母线电压UDN,以及第一交流系统140和第二交流系统240的交流母线电压UAC(三相)和流入换流变压器的交流电流IAC(三相)。
图3是本申请一实施例的变换器宽频振荡抑制方法的流程示意图。
图3所示方法可用于抑制变换器系统在宽频带范围内的振荡。变换器系统可至少包括变换器及其连接的交流系统。
如图3所示,在S110中,输入阻抗控制目标值。
在一实施例中,根据变换器的系统需求确定变换器需要抑制宽频振荡的频带范围和阻抗控制目标值。
在一实施例中,所述变换器的系统需求包括抑制交流系统宽频振荡的需求。这里的宽频振荡可包括次同步振荡和/或超同步振荡。
在一实施例中,所述抑制所述交流系统宽频振荡包括减小或增大所述变换器的阻抗幅值控制目标值或阻抗相角控制目标值,使变换器阻抗和外部阻抗在幅值上不相等,或/和使变换器阻抗和外部阻抗的相角差不为180度。具体为根据稳定性分析、仿真和试验中的至少一种中易发生振荡的频 率点,减小或增大该频率点的阻抗幅值或相角,以防止发生振荡。
在一实施例中,以高压直流输电系统为例,当其所连接的交流系统中有汽轮发电机时,如果存在高压直流输电系统和汽轮发电机的次同步振荡风险,则其所连接的交流系统需求为抑制发电机次同步振荡。当高压直流输电系统所连接的交流系统中有大规模新能源接入时,新能源、高压直流输电和弱交流系统存在宽频振荡风险。为了提升新能源消纳能力,高压直流输电系统所连接的交流系统需求为抑制可能发生的宽频振荡。抑制发电机次同步振荡或宽频振荡,可通过本申请的抑制方法减小或增大高压直流输电系统变换器的阻抗幅值控制目标值,使变换器阻抗和外部阻抗(如外部的交流系统阻抗)在幅值上不相等。
在一实施例中,在抑制高压直流输电系统和汽轮发电机的次同步振荡时,针对的频带范围可为一个频率点或多个频率点。当抑制高压直流输电、新能源和弱交流系统的宽频振荡时,频带范围可为多个频率点。在一实施例中,频带范围可在0.1Hz~10000Hz之间取值,例如为12~36Hz或56~98Hz。
在一实施例中,上述阻抗为变换器端口处扰动电压与响应电流之间的频域传递函数,为一族频率点下的阻抗集合。上述阻抗可分解为正序阻抗和负序阻抗,所述阻抗控制目标值分别包括所述正序阻抗和/或所述负序阻抗的阻抗幅值控制目标值和阻抗相角控制目标值。通过对变换器系统进行稳定性分析满足稳定判据,或者通过仿真或试验分析变换器系统的阻抗特性来确定变换器的阻抗控制目标值,避免变换器系统的宽频振荡。
在一实施例中,频率为f i时的正序阻抗和负序阻抗计算为:
Figure PCTCN2022125107-appb-000001
式中,U +(f i)为频率为f i时的扰动电压正序分量,I +(f i)为频率为f i时的响应电流正序分量,U -(f i)为频率为f i时的扰动电压负序分量,I -(f i)为频率为f i时的响应电流负序分量。
频率为f i时的正序阻抗幅值目标值表示为|Z r+(f i)|,频率为f i时的正序阻抗相角目标值表示为∠Z r+(f i)。频率为f i时的负序阻抗幅值目标值表示为|Z r-(f i)|,频率为f i时的负序阻抗相角目标值表示为∠Z r-(f i)。
在S120中,计算交流母线电压的宽频分量。
在一实施例中,计算所述变换器的交流母线电压在所述频带范围内的宽频分量。
在一实施例中,上述计算所述变换器的交流母线电压在所述频带范围内的宽频分量包括对所述交流母线电压进行傅里叶变换从而得到所述频带范围内各频率点的阻抗幅值和相角。所述傅里叶变换包括但不限于离散傅里叶变换(DFT)、快速傅里叶变换(FFT)。
在一实施例中,例如,假设三相交流母线电压含有宽频分量,只考虑整数次频率的宽频分量,则可以表示为:
Figure PCTCN2022125107-appb-000002
式中,
Figure PCTCN2022125107-appb-000003
为频率为n的正序分量的初相角,
Figure PCTCN2022125107-appb-000004
为频率为n的负序分量的初相角。U mn+为频率为n的正序分量的幅值,U mn-为频率为n的负序分量的幅值。
在一实施例中,假设需要抑制宽频振荡的频带范围为n=j,n=k和n=l,将上述交流母线电压进行傅里叶变换得到上述频带范围的宽频分量。
Figure PCTCN2022125107-appb-000005
其中,正序分量为:
Figure PCTCN2022125107-appb-000006
负序分量为:
Figure PCTCN2022125107-appb-000007
在S130中,αβ变换和dq变换。
在一实施例中,将至少所述交流母线电压在所述频带范围内的宽频分量进行坐标变换后,提取出变换到直流侧的宽频特征量。
在一实施例中,将所述交流母线电压在所述频带范围内的宽频分量、或/和所述交流母线电压的工频分量、或/和部分所述交流母线电压在所述频带范围外的宽频分量、或所述交流母线电压进行坐标变换后提取出变换到直流侧的宽频特征量。
在一实施例中,将所述交流母线电压在所述频带范围内的宽频分量进行αβ坐标变换以及dq坐标变换后,提取出所述宽频分量变换到直流侧的宽频特征量。
将三相交流母线电压在所述频带范围内的宽频分量从abc坐标系变换到αβ坐标系,以所述交流母线电压在所述频带范围内的宽频分量和所述交流母线电压的工频分量进行坐标变换为例,可以表示为:
Figure PCTCN2022125107-appb-000008
式中,U mf0+为工频分量的正序分量幅值,U mf0-为工频分量的负序分量幅值,ω 0为工频分量的角速度,
Figure PCTCN2022125107-appb-000009
为工频分量的正序分量初相角,
Figure PCTCN2022125107-appb-000010
为工频分量的负序分量初相角。
将三相交流母线电压在所述频带范围内的宽频分量从αβ坐标系变换到同步旋转的dq坐标系,有
Figure PCTCN2022125107-appb-000011
式中,θ为dq坐标变换的相角,θ可选择为变换器基于所述交流母线电压的锁相环的输出相角,或者基于所述交流母线电压的工频分量的锁相环的输出相角,或者基于所述交流母线电压在所述频带范围内的宽频分量和工频分量的和的锁相环的输出相角。
宽频特征量包括q轴分量、d轴分量,或以上二者的均方根值;q轴分量包括q轴电压u q、q轴电压正序分量
Figure PCTCN2022125107-appb-000012
q轴电压负序分量
Figure PCTCN2022125107-appb-000013
或以上三者分别经带通滤波器后的量;所述d轴分量包括经过隔直环节后的d轴电压
Figure PCTCN2022125107-appb-000014
d轴电压正序分量
Figure PCTCN2022125107-appb-000015
d轴电压负序分量
Figure PCTCN2022125107-appb-000016
或以上三者分别经带通滤波器的量。需要说明的是,由于q轴分量、d轴分量中的二倍频分量是由工频分量的负序分量产生,上述宽频特征量不包含二倍频分量
Figure PCTCN2022125107-appb-000017
Figure PCTCN2022125107-appb-000018
在一实施例中,上述带通滤波器的带宽可根据交流系统需求确定需要进行阻抗控制的频带范围,折算到变换器的直流侧进行设置。
在一实施例中,θ也可为变换器基于所述交流母线电压的锁相环的输出相角,或者基于所述交流母线电压在所述频带范围内的宽频分量的锁相环的输出相角,或者基于所述交流母线电压在所述频带范围内的宽频分量和工频分量的和的锁相环的输出相角。
在S140中,宽频阻抗控制。
在一实施例中,当所述交流母线电压在所述频带范围内的宽频分量的幅值超过或等于第一启动阈值的持续时间,大于或等于第一时间阈值时,通过对所述宽频特征量进行相位补偿环节和/或比例环节处理获得已处理的宽频特征量,其中,所述相位补偿环节和/或比例环节的参数根据所述 阻抗控制目标值确定。
将所述已处理的宽频特征量叠加到所述变换器的直流电流指令值、直流电压指令值或有功功率指令值后输出从而调制直流电流、直流电压或有功功率,所述相位补偿环节和/或比例环节参数根据所述阻抗控制目标值确定。
在一实施例中,以正序分量为例,假设频带范围为n=j,k,l,宽频分量的幅值超过第一启动阈值的判据如下:
Figure PCTCN2022125107-appb-000019
式中,U mj+为宽频分量在频率为j时的正序分量幅值,U mk+为宽频分量在频率为k时的幅值,U ml+为宽频分量在频率为l时的正序分量幅值,U st+,U stj+,U stk+,U stl+,为启动阈值,取值范围为额定交流电压的0pu~0.1pu之间。在一实施例中,该第一启动阈值可根据仿真计算得到或者可为经验值。
当第一启动阈值为零时,通过对所述宽频特征量进行相位补偿环节和/或比例环节处理后,将获得的已处理的宽频特征量总是叠加到所述变换器的直流电流指令值和直流电压指令值,或叠加到所述变换器的有功功率指令值后,输出来调制直流电流和直流电压,或有功功率。
在一实施例中,第一时间阈值取值范围可为0s~10s之间,该值可根据仿真计算得到或者可为经验值。
当第一时间阈值为零时,所述交流母线电压在所述频带范围内的宽频分量的幅值超过或等于第一启动阈值后,通过对所述宽频特征量进行相位补偿环节和/或比例环节处理,将获得的已处理的宽频特征量,立即叠加到所述变换器的直流电流指令值、直流电压指令值或有功功率指令值后输出来调制直流电流、直流电压或有功功率。
在一实施例中,相位补偿环节实现对阻抗相角进行控制,达到目标值。例如,相位补偿环节采用传递函数:
Figure PCTCN2022125107-appb-000020
其参数由下式确定:
Figure PCTCN2022125107-appb-000021
式中,ω x为需要进行相位补偿的频率点的角频率;φ为ω x角频率点需要进行补偿的滞后相位角度;T 1、T 2为相位补偿环节的时间常数,a为相位补偿环节的时间常数比值。
在一实施例中,相位补偿环节参数φ的选取原则是根据变换器系统的传递函数特性,通过理论分析、仿真或试验中的得到。
在一实施例中,比例环节实现对阻抗幅值进行控制,达到目标值。比例环节参数为比例系数,用于按比例放大或缩小宽频特征量。比例环节参数的选取原则是根据变换器系统的传递函数特性,通过理论分析、仿真或试验得到。
在一实施例中,上述宽频特征量经过相位补偿环节和比例环节后可再增加限幅环节。
在一实施例中,经过上述环节的上述宽频特征量可叠加到所述变换器的直流电流指令值、直流电压指令值或有功功率指令值。变换器按照上述指令值进行直流电流、直流电压和有功功率调制,从而抑制变换器系统的宽频振荡。
图4是本申请一实施例的变换器宽频振荡抑制方法的控制框图。
如图4所示,三相交流母线电压u a,u b和u c经过FFT变换后得到需要抑制宽频振荡的宽频分量幅值及相角,进而得到三相交流母线电压的宽频分量和工频分量的和u a_f,u b_f和u c_f。宽频分量和工频分量经αβ坐标变换及dq坐标变换后得到宽频特征量。当宽频分量幅值大于第一启动阈值时,选取逻辑选择宽频特征量,经相位补偿环节、比例环节和限幅环节输出叠加到所述变换器的直流电流指令值、直流电压指令值或有功功率指令值。当宽频分量幅值不大于第一启动阈值时,选取逻辑选择0,不输出调制量。当上述变换器为电网换相换流器时,电流调节器输出为触发角参考值α ord
在一实施例中,上述变换器宽频振荡抑制方法可针对三相交流母线电压正序分量和负序分量分别进行抑制。
图5是本申请一实施例的变换器宽频振荡抑制装置的功能框图。
图5所示装置可用于抑制变换器系统在宽频带范围内的振荡,所述变换器系统至少包括变换器及其连接的交流系统。
参见图5,变换器宽频振荡抑制装置9可包括检测单元10、控制单元11。
在一实施例中,检测单元10配置为,检测变换器的交流母线电压。例如,检测单元10可为常规PT装置及其采样电路,检测交流母线电压。
在一实施例中,控制单元11配置为,根据变换器的系统需求确定变换器需要抑制宽频振荡的频带范围和阻抗控制目标值;计算所述变换器的交流母线电压在所述频带范围内的宽频分量;将至少所述交流母线电压在所述频带范围内的宽频分量进行坐标变换后提取出变换到所述变换器的直流侧的宽频特征量;当所述交流母线电压在所述频带范围内的所述变换器的宽频分量的幅值超过或等于第一启动阈值的持续时间大于或等于第一时间阈值时,通过对所述宽频特征量进行相位补偿环节和/或比例环节处理,获得已处理的宽频特征量,其中,所述相位补偿环节和/或比例环节的参数根据所述阻抗控制目标值确定;以及
将所述已处理的宽频特征量叠加到所述变换器的直流电流指令值、直流电压指令值或有功功率指令值后输出,从而相应地调制所述变换器的直流电流、直流电压。
图6示出根据本申请一示例性实施例的电子设备的框图。
需要理解的是,图6所示的电子设备600仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图6所示,电子设备600是以通用计算设备的形式表现。电子设备600的组件可以包括但不限于:至少一个处理单元610、至少一个存储单元620、连接不同系统组件(包括存储单元620和处理单元610)的总线630、显示单元640等。其中,存储单元存储有程序代码,程序代码可以被处理单元610执行,使得处理单元610执行本说明书描述的根据本申请各种示例性实施方式的方法。例如,处理单元610可以执行如图1中所示的方法。图6中所示的处理单元610执行计算机程序时还可实现图3至图4所示的控制逻辑。
存储单元620可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)6201和/或高速缓存存储单元6202,还可以进一步包括只读存储单元(ROM)6203。
存储单元620还可以包括具有一组(至少一个)程序模块6205的程序/实用工具6204,这样的程序模块6205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线630可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中 的任意总线结构的局域总线。
电子设备600也可以与一个或多个外部设备700(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备600交互的设备通信,和/或与使得该电子设备600能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口650进行。并且,电子设备600还可以通过网络适配器660与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器660可以通过总线630与电子设备600的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备600使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施例可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。根据本申请实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端或者网络设备等)执行根据本申请实施例的方法。
软件产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读存储介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读存储介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。可读存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本申请操作的程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件 包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该设备执行时,使得该计算机可读介质实现前述功能。
本领域技术人员可以理解上述各模块可以按照实施例的描述分布于装置中,也可以进行相应变化唯一不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
本申请实施例提供的技术方案,通过计算所述变换器的交流母线电压在所述频带范围内的宽频分量,对宽频分量进行坐标变换后,提取出变换到直流侧的宽频特征量,将其作为变换器控制的调制量,抑制变换器系统出现的宽频振荡。例如,抑制汽轮发电机的次同步振荡和大规模新能源接入后的宽频振荡,为电力系统安全运行提供保障。
以上实施例仅为说明本申请的技术思想,不能以此限定本申请的保护范围,凡是按照本申请提出的技术思想,在技术方案基础上所做的任何改动,均落入本申请保护范围之内。

Claims (20)

  1. 一种抑制变换器宽频振荡的方法,用于抑制变换器系统在宽频带范围内的振荡,所述变换器系统至少包括变换器及其连接的交流系统,所述方法包括:
    根据所述变换器的系统需求确定所述变换器需要抑制的宽频振荡的频带范围和阻抗控制目标值;
    计算所述变换器的交流母线电压在所述频带范围内的宽频分量;
    将至少所述交流母线电压在所述频带范围内的所述宽频分量进行坐标变换后,提取出变换到所述变换器的直流侧的宽频特征量;
    当所述交流母线电压在所述频带范围内的所述宽频分量的幅值超过或等于第一启动阈值的持续时间,大于或等于第一时间阈值时,通过对所述宽频特征量进行相位补偿环节和/或比例环节处理,获得已处理的宽频特征量,其中,所述相位补偿环节和/或比例环节的参数根据所述阻抗控制目标值确定;以及
    将所述已处理的宽频特征量叠加到所述变换器的直流电流指令值、直流电压指令值或有功功率指令值后输出,从而相应地调制所述变换器的直流电流、直流电压或有功功率。
  2. 根据权利要求1所述的方法,其中,所述变换器的系统需求包括抑制所述交流系统的宽频振荡的需求,所述宽频振荡包括次同步振荡和/或超同步振荡。
  3. 根据权利要求1所述的方法,其中,所述变换器为交流变换为直流的整流器或直流变换为交流的逆变器。
  4. 根据权利要求1所述的方法,其中,所述变换器包括高压直流输电的电网换相换流器、柔性直流输电的电压源换流器、风电变流器、储能变流器和光伏逆变器中的至少一种。
  5. 根据权利要求1所述的方法,其中,所述频带范围包括在0.1Hz至10000Hz之间的一个频率点或多个频率点。
  6. 根据权利要求1所述的方法,其中,阻抗为所述变换器的端口处扰动电压与响应电流之间的频域传递函数,所述阻抗分解为正序阻抗和负序阻抗,所述阻抗控制目标值分别包括所述正序阻抗和/或所述负序阻抗的阻抗幅值控制目标值和阻抗相角控制目标值。
  7. 根据权利要求6所述的方法,其中,所述抑制所述交流系统的宽频 振荡的步骤,包括:减小或增大所述变换器的所述阻抗幅值控制目标值或所述阻抗相角控制目标值,使所述变换器的阻抗和外部系统的阻抗在幅值上不相等。
  8. 根据权利要求6所述的方法,其中,所述抑制所述交流系统的宽频振荡的步骤,包括:减小或增大所述变换器的所述阻抗幅值控制目标值或所述阻抗相角控制目标值,使所述变换器的所述阻抗和所述外部系统的所述阻抗的相角差不为180度。
  9. 根据权利要求1所述的方法,其中,所述计算所述变换器的交流母线电压在所述频带范围内的宽频分量的步骤,包括:通过对所述交流母线电压进行傅里叶变换,得到所述频带范围内各频率点的阻抗幅值和阻抗相角。
  10. 根据权利要求1所述的方法,其中,所述交流母线电压在所述频带范围内的宽频分量包括正序分量和/或负序分量。
  11. 根据权利要求1所述的方法,其中,所述将至少所述交流母线电压在所述频带范围内的所述宽频分量进行所述坐标变换后,提取出变换到所述变换器的直流侧的宽频特征量的步骤,包括:
    将所述交流母线电压在所述频带范围内的所述宽频分量、或/和所述交流母线电压的工频分量、或/和部分所述交流母线电压在所述频带范围外的宽频分量、或所述交流母线电压进行坐标变换后提取出变换到直流侧的宽频特征量。
  12. 根据权利要求1所述的方法,其中,所述坐标变换包括αβ坐标变换以及dq坐标变换。
  13. 根据权利要求12所述的方法,其中,所述dq坐标变换的相角为所述变换器基于所述交流母线电压的锁相环的输出相角,或者基于所述交流母线电压的工频分量的锁相环的输出相角,或者基于所述交流母线电压在所述频带范围内的宽频分量和工频分量的和的锁相环输出相角。
  14. 根据权利要求12所述的方法,其中,所述宽频特征量包括所述dq坐标变换后得到的q轴分量、d轴分量,或二者的均方根值;所述q轴分量包括q轴电压、q轴电压正序分量、q轴电压负序分量或三者分别经带通滤波器后的量;以及所述d轴分量包括经过隔直环节后的d轴电压、d轴电压正序分量、d轴电压负序分量或三者分别经带通滤波器的量。
  15. 根据权利要求1所述的方法,其中,所述第一启动阈值针对各频率点单独或统一进行设置,所述第一启动阈值的取值范围为额定交流电压的0pu~0.1pu之间,所述第一时间阈值取值范围为0s~10s之间。
  16. 根据权利要求1所述的方法,其中,所述对所述宽频特征量进行相位补偿环节和/或比例环节处理的步骤,还包括:将所述宽频特征量或/和所述已处理的宽频特征量进行限幅环节的处理。
  17. 根据权利要求1所述的方法,其中,所述所述相位补偿环节和/或比例环节的参数根据所述阻抗控制目标值确定的步骤,包括:将所述变换器系统通过理论分析、仿真和试验中的至少一种,确定所述相位补偿环节和/或比例环节的参数,以满足所述阻抗控制目标值。
  18. 一种抑制变换器宽频振荡的装置,用于抑制变换器系统在宽频带范围内的振荡,所述变换器系统至少包括变换器及其连接的交流系统,所述装置包括:
    检测单元,配置为检测所述变换器的交流母线电压;以及
    控制单元,配置为:
    根据变换器的系统需求确定所述变换器需要抑制宽频振荡的频带范围和阻抗控制目标值;
    计算所述变换器的交流母线电压在所述频带范围内的宽频分量;
    将至少所述交流母线电压在所述频带范围内的所述宽频分量进行坐标变换后,提取出变换到所述变换器的直流侧的宽频特征量;
    当所述交流母线电压在所述频带范围内的所述变换器的宽频分量的幅值超过或等于第一启动阈值的持续时间,大于或等于第一时间阈值时,通过对所述宽频特征量进行相位补偿环节和/或比例环节处理,获得已处理的宽频特征量,其中,所述相位补偿环节和/或比例环节的参数根据所述阻抗控制目标值确定;以及
    将所述已处理的宽频特征量叠加到所述变换器的直流电流指令值、直流电压指令值或有功功率指令值后输出,从而相应地调制所述变换器的直流电流、直流电压或有功功率。
  19. 一种电子设备,包括:
    一个或多个处理器;以及存储装置,配置为存储一个或多个程序;
    其中,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器执行如权利要求1至17中任一所述的方法中的步骤。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时执行如权利要求1至17中任一所述的方法中的步骤。
PCT/CN2022/125107 2021-10-13 2022-10-13 抑制变换器宽频振荡的方法、装置、电子设备和存储介质 WO2023061448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111194151.1A CN114094598A (zh) 2021-10-13 2021-10-13 抑制变换器宽频振荡的方法及装置
CN202111194151.1 2021-10-13

Publications (3)

Publication Number Publication Date
WO2023061448A1 true WO2023061448A1 (zh) 2023-04-20
WO2023061448A8 WO2023061448A8 (zh) 2023-06-15
WO2023061448A9 WO2023061448A9 (zh) 2024-03-21

Family

ID=80296817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125107 WO2023061448A1 (zh) 2021-10-13 2022-10-13 抑制变换器宽频振荡的方法、装置、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN114094598A (zh)
WO (1) WO2023061448A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116613751A (zh) * 2023-07-19 2023-08-18 国网江西省电力有限公司电力科学研究院 一种新能源并网系统的小干扰稳定性分析方法及系统
CN116961031A (zh) * 2023-07-31 2023-10-27 长沙理工大学 一种柔性直流输电系统高频振荡分频抑制及参数设计方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094598A (zh) * 2021-10-13 2022-02-25 南京南瑞继保电气有限公司 抑制变换器宽频振荡的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202309095U (zh) * 2011-09-13 2012-07-04 上海交通大学 基于可控变压器的功率振荡抑制器
CN108493958A (zh) * 2018-03-26 2018-09-04 湖南大学 新能源发电场站宽频带振荡抑制装备及其控制方法
CN111431193A (zh) * 2020-03-30 2020-07-17 云南电网有限责任公司电力科学研究院 一种风电机组宽频段附加阻尼控制方法
EP3709467A1 (en) * 2019-03-13 2020-09-16 Siemens Gamesa Renewable Energy A/S Reduction of subsynchronous active power oscillations in grid forming pwm converters for wind turbine generators
CN112436528A (zh) * 2020-11-25 2021-03-02 国家电网有限公司 一种电力系统宽频带振荡保护方法及系统
CN114094598A (zh) * 2021-10-13 2022-02-25 南京南瑞继保电气有限公司 抑制变换器宽频振荡的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202309095U (zh) * 2011-09-13 2012-07-04 上海交通大学 基于可控变压器的功率振荡抑制器
CN108493958A (zh) * 2018-03-26 2018-09-04 湖南大学 新能源发电场站宽频带振荡抑制装备及其控制方法
EP3709467A1 (en) * 2019-03-13 2020-09-16 Siemens Gamesa Renewable Energy A/S Reduction of subsynchronous active power oscillations in grid forming pwm converters for wind turbine generators
CN111431193A (zh) * 2020-03-30 2020-07-17 云南电网有限责任公司电力科学研究院 一种风电机组宽频段附加阻尼控制方法
CN112436528A (zh) * 2020-11-25 2021-03-02 国家电网有限公司 一种电力系统宽频带振荡保护方法及系统
CN114094598A (zh) * 2021-10-13 2022-02-25 南京南瑞继保电气有限公司 抑制变换器宽频振荡的方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116613751A (zh) * 2023-07-19 2023-08-18 国网江西省电力有限公司电力科学研究院 一种新能源并网系统的小干扰稳定性分析方法及系统
CN116613751B (zh) * 2023-07-19 2023-11-07 国网江西省电力有限公司电力科学研究院 一种新能源并网系统的小干扰稳定性分析方法及系统
CN116961031A (zh) * 2023-07-31 2023-10-27 长沙理工大学 一种柔性直流输电系统高频振荡分频抑制及参数设计方法
CN116961031B (zh) * 2023-07-31 2024-05-10 长沙理工大学 一种柔性直流输电系统高频振荡分频抑制及参数设计方法

Also Published As

Publication number Publication date
WO2023061448A8 (zh) 2023-06-15
CN114094598A (zh) 2022-02-25
WO2023061448A9 (zh) 2024-03-21

Similar Documents

Publication Publication Date Title
WO2023061448A1 (zh) 抑制变换器宽频振荡的方法、装置、电子设备和存储介质
US9252601B2 (en) Method for controlling a power converter in a wind turbine generator
Boussaid et al. A novel strategy for shunt active filter control
KR102010117B1 (ko) 전류형 인버터 차동 보호 방법 및 보호계전 장치
CN108418226B (zh) 开绕组双逆变器光伏发电系统的无功补偿控制方法
CN109327036B (zh) 一种用于提高电网电能质量的级联型储能系统及控制方法
WO2015196838A1 (zh) 一种三相不间断电源的控制方法、装置和三相不间断电源
WO2020211423A1 (zh) 一种光伏逆变器以及相应开关频率控制的方法
Das et al. Improvement in power quality using hybrid power filters based on RLS algorithm
Konishi et al. A consideration of stable operating power limits in VSC-HVDC systems
CN104518525B (zh) 交直流混合电网功率变流器的保护控制系统及其控制方法
Murshid et al. Analysis and control of weak grid interfaced autonomous solar water pumping system for industrial and commercial applications
CN117439114B (zh) 一种构网型直驱风机的宽频振荡抑制方法及系统
Singh et al. VSC-HVDC transmission system and its dynamic stability analysis
CN112821453A (zh) 一种并网逆变器的功率控制方法、装置和并网逆变器
Das et al. Multi-objective control strategy for power quality improvement in wind-solar distributed generation system under harmonically distorted grid
Xavier et al. Adaptive saturation scheme for a multifunctional single-phase photovoltaic inverter
Ni et al. Overview on fault-tolerant four-switch three-phase voltage source converters
Das et al. Self-Synchronizing Control Enabling Disruption-Free Operation and Seamless Mode Transitions in Wind–Solar Based Hybrid AC/DC Microgrid
Rozanov et al. Multifunctional power quality controller based on power electronic converter
Mao et al. Stability analysis method for interconnected AC islanded microgrids
CN110034580B (zh) 电网电压不平衡下逆变器的比例降阶谐振控制策略方法
Hirase et al. Virtual synchronous generator based pole control in high-voltage DC transmission systems
JP2003134843A (ja) Pwm電力変換装置の制御方法
CN108306294B (zh) 一种电流谐波的缓解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880384

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023025087

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023025087

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231129