WO2023061134A1 - 灵活以太的时隙资源配置方法、终端及存储介质 - Google Patents

灵活以太的时隙资源配置方法、终端及存储介质 Download PDF

Info

Publication number
WO2023061134A1
WO2023061134A1 PCT/CN2022/118516 CN2022118516W WO2023061134A1 WO 2023061134 A1 WO2023061134 A1 WO 2023061134A1 CN 2022118516 W CN2022118516 W CN 2022118516W WO 2023061134 A1 WO2023061134 A1 WO 2023061134A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
time slot
flexe
sending device
receiving device
Prior art date
Application number
PCT/CN2022/118516
Other languages
English (en)
French (fr)
Inventor
李久明
王芝刚
王丽珍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023061134A1 publication Critical patent/WO2023061134A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiment of the present application relates to but not limited to the technical field of data input, and in particular relates to a flexible Ethernet time slot resource allocation method, a terminal and a storage medium.
  • a negotiation method for modifying time slot configuration content is defined, which can dynamically modify the customer service time slots uploaded by members in the time slot resource pool group of the FlexE group.
  • the service data uploaded by the member will be delayed.
  • the sending device sends a request signal to the receiving device, and after receiving the response signal returned by the receiving end according to the request signal, switches the current channel to the second channel. channel to conduct customer business interactions through a second channel.
  • this channel switching method when the sending device cannot receive the response signal returned by the receiving device, it cannot perform channel switching, thereby increasing the number of packet loss.
  • Embodiments of the present application provide a flexible Ethernet time slot resource configuration method, a terminal, and a storage medium.
  • the embodiment of the present application provides a flexible Ethernet time slot resource configuration method
  • the flexible Ethernet forwarding channel FlexE Client includes a first channel and a second channel
  • the method includes: configuring the sending device and the receiving device The channel switching mode of the forwarding channel FlexE Client; when the sending device sends a channel switching command to the receiving device through an overhead frame, determine the response duration of the channel switching command; when the channel switching mode is a forced mode And the response duration is longer than the overhead frame negotiation period, the receiving device scans the overhead frame sent by the sending device, and obtains the current time slot corresponding to the sending device on the overhead frame, and the sending device starts from the first A channel is switched to the second channel; when the current time slot is different from the time slot of the receiving device, the receiving device switches from the first channel to the second channel.
  • the embodiment of the present application also provides a terminal, including: a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • a terminal including: a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the program, it realizes: the flexible Ethernet time slot resource allocation method.
  • the embodiment of the present application further provides a computer-readable storage medium storing computer-executable instructions, and the computer-executable instructions are used for: executing the flexible Ethernet time slot resource allocation method.
  • Fig. 1 is a hierarchical schematic diagram of a FlexE time slot port provided by an embodiment of the present application
  • Fig. 2 is a flow chart of the strong cutting mode provided by one embodiment of the present application.
  • FIG. 3 is a flowchart of a standard negotiation mode provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of a standard negotiation mode provided by another embodiment of the present application.
  • Fig. 5 is the FlexE Client time slot application schematic diagram that an embodiment of the present application provides
  • Fig. 6 is a schematic diagram of FlexE Client time slot switching provided by an embodiment of the present application.
  • FlexE also called calendar (Calendar) information.
  • the channels corresponding to these two communication information are respectively defined as the first channel (Calendar A) and the second channel (Calendar B). , namely channel A and channel B.
  • the bandwidth of FlexE can be the same or different in Calendar A and Calendar B, and the local and remote intercommunication is implemented through overhead frames to realize switching. For example, if the total bandwidth of FlexE is 200M, Calendar A can allocate 100M, Calendar B can allocate 100M, or Calendar A can allocate 50M, and Calendar B can allocate 150M.
  • the communication process of the FlexE bandwidth when one end is defined as a sending device, the other end is defined as a receiving device.
  • Calendar A is the main channel
  • Calendar B is the backup channel
  • Calendar B is the main channel channel
  • Calendar A is the backup channel
  • the sending device sends an overhead frame to the receiving device A channel switching command CR.
  • the receiving device After receiving the channel switching command CR, the receiving device returns a response command CA to the sending device.
  • the sending device switches the current communication channel from the main channel to the standby channel. aisle.
  • This channel switching process depends on the stable FlexE, but in the actual working process, there are many factors that affect the stability of the communication, which will cause the FlexE to lose packets from time to time during the communication process.
  • the FlexE communication process cannot transmit the channel switching command or response command in time, the way of channel switching through the response of both parties cannot complete the channel switching in time, thereby increasing the packet loss rate in the communication process.
  • the embodiment of the present application provides a flexible Ethernet time slot resource configuration method, terminal and storage medium.
  • the channel switching mode By configuring the channel switching mode on the sending device and the receiving device, when the channel switching mode is forced switching mode, according to the sending device to the receiving device
  • the device sends the response time of the channel switching command to determine whether to implement the forced switching mode.
  • the sending device executes the forced switching mode to switch the channel from the first channel to the second channel.
  • the receiving device also switches from the first channel to the second channel, so that the channel switching can be completed in time when the FlexE is unstable.
  • the flexible Ethernet forwarding channel FlexE Client includes a first channel and a second channel.
  • the forwarding channel FlexE Client of the Flexible Ethernet applies for a time slot from the time slot resource pool FlexE Group of the Flexible Ethernet according to the bandwidth demand, and the available time slot in the time slot resource pool FlexE Group
  • the forwarding channel FlexE Client performs time slot binding on the time slot resource pool FlexE Group; when the available time slots in the slot resource pool FlexE Group do not meet the bandwidth demand, the current forwarding channel
  • the time slot request of the FlexE Client is cached, waiting for the available time slot in the time slot resource pool FlexE Group to meet the time slot requested by the forwarding channel FlexE Client.
  • the time slot resource pool FlexE Group contains a certain amount of time slot resources, and the time slot resources in each time slot resource pool FlexE Group can be allocated to multiple forwarding channels FlexE Clients, and each forwarding channel FlexE The time slots occupied by the clients can be the same or different.
  • the forwarding channel FlexE Client1 occupies two grids of time slot resources
  • the forwarding channel FlexE Client2 occupies two and a half grids of time slot resources
  • the forwarding channel FlexE Client3 and The forwarding channel FlexE Client4 occupies one time slot resource.
  • a FlexE Client in a plurality of forwarding channels FlexE Client applies for a time slot or releases a time slot from the time slot resource pool FlexE Group
  • the time slot resource will be caused Changes of all time slots in the pool FlexE Group. Therefore, whether the forwarding channel FlexE Client applies for a time slot from the time slot resource pool FlexE Group or releases a time slot, all forwarding channel FlexE Clients bound to the forwarding channel FlexE Client need to be adjusted, which may cause each forwarding channel Switching between the first channel and the second channel under FlexE Client.
  • a time slot resource pool FlexE Group when the time slot bound by the forwarding channel FlexE Client is changed from an available state to an unavailable state, the time slot bound by the forwarding channel FlexE Client is changed from the forwarding channel FlexE Client, and trigger channel switching mode. For example, when the time slot of Calendar A in the forwarding channel FlexE Client is unavailable due to external factors, Calendar A cannot perform data transmission. At this time, the forwarding channel FlexE Client switches from Calendar A to Calendar B, thereby occupying Calendar A The time slots are released to be used by other forwarding channel FlexE Clients to improve the effective utilization of time slot resources.
  • Calendar A when Calendar A is used as the main channel of the forwarding channel FlexE Client1 for communication in the flexible Ethernet, then Calendar B is used as the standby channel of the forwarding channel FlexE Client1.
  • the time slot size of Calendar A cannot meet the communication needs of both ends of the communication, it is necessary to expand the capacity of Calendar A or switch Calendar A. If you directly expand the capacity of Calendar A, the current communication will be delayed or the communication content will be lost during the expansion preparation process. Therefore, switching Calendar A directly to a channel with a larger time slot can effectively reduce communication delays. It is understandable that when it is determined that the current time slot of Calendar A cannot meet the current communication needs, the capacity of Calendar B of the forwarding channel FlexE Client is expanded, and Calendar A continues to perform the communication process.
  • the sending device After Calendar B is bound to a larger time slot, the sending device sends a channel switching command CR to the receiving device, and the receiving device returns a response command CA to the sending device after receiving the channel switching command CR.
  • the sending device and the receiving device will switch the forwarding channel FlexE Client from Calendar A to Calendar B synchronously, that is, Calendar B will become the main channel and Calendar A will be the backup channel, thus effectively reducing the communication delay and reducing the Packet loss rate.
  • the channel switching command CR is sent to the receiving device through the overhead frame.
  • the overhead frame is transmitted on an overhead channel with a small bandwidth. The transmission process of the overhead channel is not affected by the first channel and the second channel. Impact. For example, if the total bandwidth of the forwarding channel FlexE Client is 200M, 2M can be allocated to the overhead channel, and the remaining 198M can be allocated equally or unevenly to the first channel and the second channel.
  • Channel switching mode such as standard negotiation mode or forced cut mode, in the actual working process, the channel switching mode can be selected according to the stability of the current channel.
  • the forced cut mode of channel timeslot resource allocation method comprises the following steps:
  • the response duration can be calculated and determined according to the sending time point and the current time point when the sending device sends the channel switching instruction to the receiving device.
  • the current time point is the time when no reply instruction is received from the receiving device. For example, if the sending time is 1:50:50 and the current time is 1:51:05, the response time is 15 seconds. It can be understood that the response duration can also be calculated and determined according to the sending time stamp and the current time stamp of the channel switching instruction sent by the sending device to the receiving device.
  • the receiving device scans the overhead frame sent by the sending device, and acquires the current time slot corresponding to the sending device on the overhead frame, and then the sending device switches from the first channel to the second channel.
  • the overhead frame negotiation period is a preset duration, which can be set according to the normal handshake time of each channel. For example, in the normal handshake process, if the sending device sends the channel switch command CR to the time when it receives the response command CA of the channel switch command CR is 5 seconds, then the overhead frame negotiation period can be set to 5 seconds. When the response time is longer than 5 seconds, the current overhead channel cannot transmit commands normally by default. At this time, the receiving device regularly scans the overhead frames on the overhead channel, so as to switch according to the time slots carried in the overhead frames. Wherein, the time slot carried in the overhead frame is related to the channel.
  • the sending device wants to switch from Calendar A to Calendar B, the CR instruction on the overhead frame sent by the sending device to the receiving device will become 1. That is to say, during the channel switching process, the CR instructions on the overhead frame are different, therefore, the current time slot corresponding to the sending device on the overhead frame can be obtained according to this feature. After obtaining the current time slot of the sending device, the corresponding sending end of the sending device is forced to switch from the first channel Calendar A to the second channel Calendar B.
  • the sending device since the sending device is performing a forced switching process, and when the sending device is about to perform channel switching, the CR command sent to the receiving device will change. For example, before channel switching, the sending device sends a CR command to the receiving device as 0; when the sending device is about to switch channels, the sending device sends a CR command to the receiving device as 1. Since the receiving device has not yet performed a forced cut, the receiving device should receive the CR instruction of the sending device as 0. When the receiving device receives the CR instruction of the sending device and becomes 1, the receiving device can determine that the sending device has executed the forced cut process.
  • the receiving device also performs a strong switching process to switch from Calendar A to Calendar B, and maintain the same time slot as the sending device, thereby improving the accuracy of data transmission.
  • the sending device sends the converted channel switching command CR to the receiving device, and then performs the channel switching process to shorten the time difference between the sending device and the receiving device when performing strong switching, thereby improving the accuracy of data transmission.
  • the standard negotiation mode can be configured as the channel switching mode at both ends of the communication. As shown in Figure 3, the standard negotiation mode includes the following steps:
  • the sending device sends a channel switching instruction to the receiving device, and waits to receive a response instruction returned by the receiving device according to the channel switching instruction.
  • the sending device changes the CR from 0 to 1 by changing the value of the channel switching command CR on the overhead frame.
  • the receiving device receives the switching command CR as 1, it can determine that the sending device wants to switch channels, so it returns a response command CA to the sending device, and the response command CA also changes from 0 to 1, indicating that it agrees to switch channels.
  • the sending device receives the response command CA as 1, it sends a control command C, and the control command C also changes from 0 to 1 to control the receiving device to switch time slots synchronously, that is, switch from Calendar A to Calendar B.
  • the CR, CA, and C on the overhead frame are restored to 0 to prepare for the next channel switching.
  • the standard negotiation mode when the channel switching mode is configured as a standard negotiation mode, as shown in FIG. 4 , the standard negotiation mode also includes the following steps:
  • the response duration can be calculated and determined according to the sending time point and the current time point when the sending device sends the channel switching instruction to the receiving device.
  • the current time point is the time when no reply instruction is received from the receiving device.
  • the data exchange between two ends is involved. When one end requests channel switching but the other end does not agree to switch channels, in the standard negotiation mode, maintaining the original channel can effectively improve the accuracy of data transmission. Therefore, in this embodiment, after the sending device sends the channel switching instruction to the receiving device, the receiving device may not return a response instruction. For example, the sending device sends a channel switching command with CR as 1 to the receiving device.
  • the sending device will restore the channel switching command CR if it does not receive the response command CA after one overhead frame negotiation period. Value, that is, change CR from 1 to 0 to improve the accuracy of the next channel switching process.
  • the time slot resource pool FlexE Group randomly assigns time slots to the channels between current devices.
  • the ports of the two devices are in the UP state at this time. For example, if the two devices are connected through a network cable, the two devices are in the UP state at this time. In this UP state, for the user end, the user defaults that the ports of the two devices are in a normal connection state.
  • the time slot allocated to the device channel by the time slot resource pool FlexE Group is an unavailable time slot, even if the ports of the two devices are in the UP state, the two devices in the UP state cannot communicate normally. Based on this, in this embodiment, the states of the physical ports at both ends of the time slot resource pool FlexE Group are set to the physical state and the time slot available state.
  • the physical state is the overhead channel state, which is used for data transmission
  • the time slot available state is the state used to configure the available time slots for the physical state, that is, when the ports of the two devices are in the UP state, the resources from the time slot resource pool
  • the available time slots in the FlexE Group are selected and assigned to the device channel, so that users only need to pay attention to the status of the device instead of the time slot status of the channel. Based on this, it can be judged whether the device can communicate normally, which simplifies the user configuration process and improves the user experience. The amount of network planning.
  • the forwarding channel FlexE Client bound to the FlexE Group in the slot resource pool is triggered to supplement the slots and trigger the channel switching mode. It can be understood that when the physical port changes from the unavailable state to the available state, it can be determined that the time slots of the current physical port may be insufficient, therefore, the physical port is supplemented with time slots through the time slot resource pool FlexE Group.
  • the replenishment process is put into the cache to wait for enough time slots in the time slot resource pool FlexE Group to be supplemented before executing the time slot Supplementary process.
  • the equipment at both ends of the forwarding channel FlexE Client changes, such as card insertion, ownership board insertion, etc., all will cause the time slot of the corresponding channel on the forwarding channel FlexE Client to be deleted.
  • the forwarding channel FlexE Client is switched to the second channel, and the next data transmission process is completed by using the time slot of the second channel.
  • the flexible Ethernet application process includes the following steps:
  • Step 1 The FlexE Client applies for and releases time slots from the FlexE Group according to the bandwidth demand. As shown in Figure 1, multiple FlexE Clients can apply for time slots from the time slot resource pool FlexE Group according to their own bandwidth requirements; or release time slots to the time slot resource pool FlexE Group when they do not need time slots. To enable other FlexE Clients to take advantage of the released time slot. When applying for time slots, if the time slots in the time slot resource pool FlexE Group are insufficient, wait for the available time slots in the time slot resource pool FlexE Group to increase, and then supplement the FlexE Client time slots.
  • Step 2 After the FlexE Group in the time slot resource pool allocates the time slot to the FlexE Client, the FlexE Client binds the time slot to the FlexE Group in the time slot resource pool, so that during the binding period of the FlexE Client, only the FlexE Client can use the time slot .
  • Step 3 During the normal working process of the time slot of the FlexE Client, determine whether the real-time FlexE Client needs to perform Calendar switching. If so, check whether the FlexE Group bound to the FlexE Client has a CR action that has not received a CA response. If so, Then put the update operation of the current FlexE Client into the cache, and after the FlexE Group corresponding to the CR action that has not received the CA response receives the CA response, complete the previous FlexE Group Calendar switch, and then perform all other FlexE to be switched The channel switching command CR request corresponding to the Client's Calendar.
  • the FlexE Group bound to the FlexE Client does not have a CR action that has not received a CA response, update the standby Calendar of the FlexE Client and send a CR request for time slot switching of the FlexE Group.
  • the request-acknowledge mechanism (Request-Acknowledge mechanism) embedded in the overhead channel.
  • the overhead frame transmitted in the overhead channel includes the following three commands: calendar switching request, calendar switching response and effective calendar, that is, channel switching command CR, response command CA and control command C.
  • Calendar A is represented by code 0
  • Calendar B is represented by code 1.
  • Step 4 after receiving the CA response from the receiving device, first update the Calendar control of the hardware corresponding to the FlexE Client, the current standby Calendar is changed to the active Calendar, and the current active Calendar is changed to the standby Calendar, so that the active calendar
  • the time slot is updated to the spare time slot, and the C bit value is updated to the current Calendar control value.
  • Step 5 For the direction of the receiving device of the FlexE Client, regularly scan the overhead frame of the physical port (PHY), after obtaining the current time slot of the current sending direction of the sending device, update the value of the main Calendar time slot of the receiving device of the FlexE Client, That is to update the time slot of the receiving device of the FlexE Client to the current time slot of the sending device.
  • Calendar A and Calendar B switch in a dynamic process, that is, after a certain dynamic switching period, the active Calendar on the FlexE Client becomes Backup Calendar, and the backup Calendar becomes the primary Calendar.
  • Step 6 When the time slot of the physical port bound to the FlexE Group changes from the available state to the unavailable state, or when the subcard or the belonging board is removed or inserted on the physical port, the FlexE Client time slot of the physical port will be triggered. Delete, and initiate the Calendar switching action in step 3; if the status of the physical port bound to the FlexE Group changes from unavailable to available, it will trigger the FlexE Client under the bound FlexE Group to allocate time slots to Supplement the FlexE Client time slots with insufficient bandwidth, and initiate the handover action in step 3 at the same time.
  • the realization of the physical port state definition includes but is not limited to the following aspects: first, the sending device is a FlexE port, and the receiving device is an Ethernet port.
  • the sending device is configured as a FlexE port
  • the receiving device is configured as a FlexE port.
  • the device of the sending device is in the UP state, The overhead frame can be received, and if the physical port error warning (RPF warning) of the receiving device is received, the link status is UP, but the time slot is unavailable.
  • the sending device and the receiving device are relative terms, that is, the local end is the sending device, and the opposite end is the receiving device; the local end is the receiving device, and the opposite end is the sending device.
  • the premise of the switching is that the receiving device and the sending device can complete the normal handshake process. However, if the network link fluctuates, it will cause the sending device and the receiving device to fail to shake hands normally.
  • the configuration parameter constraints of the sending device and the receiving device are added to the FlexE Group, that is, the channel switching mode is configured on the sending device and the receiving device.
  • the channel switching mode includes standard negotiation mode and forced switching mode .
  • the standard negotiation mode only changes the overhead frame according to the CR mark, that is, the receiving device notifies the FlexE Client to change the time slot according to the CR mark;
  • the forced cut mode is to increase the regular scanning overhead frame in the standard negotiation mode, and obtain the time slot of the sending device in the current sending direction value, and update the main Calendar time slot of the receiving device according to the current time slot value sent by the sending device.
  • this mode can achieve lossless switching under the condition of normal handshake; when the forced switching mode is selected, then in step 4.
  • the sending device of the FlexE Client performs forced switching, and the receiving device performs forced switching according to the scanned overhead frames, so that the communication can be performed normally and the reliability of the channel switching process can be improved.
  • an embodiment of the present application also provides a terminal, including: a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • a terminal including: a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the terminal includes: one or more processors and memories, and the processors and memories may be connected through a bus or in other ways.
  • the memory can be used to store non-transitory software programs and non-transitory computer-executable programs, such as the time slot resource configuration method of flexible Ethernet shown in FIG. 2 , FIG. 3 or FIG. 4 .
  • the processor executes the non-transitory software program and instructions stored in the memory, so as to realize the flexible Ethernet time slot resource configuration method in FIG. 2 , FIG. 3 or FIG. 4 .
  • the memory can include a program storage area and a data storage area, wherein the program storage area can store the operating system and at least one application program required by the function; the data storage area can store the time slot for executing the flexible Ethernet shown in Figure 2, Figure 3 or Figure 4 The data required by the resource configuration method, etc.
  • the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage devices.
  • the memory may include memory located remotely from the processor, and these remote memories may be connected to the terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transitory software programs and instructions required to realize the time slot resource allocation method of Fig. 2, Fig. 3 or Fig. 4 are stored in the memory, and when executed by one or more processors, execute Fig. 2, Fig. 3 Or the method for configuring flexible Ethernet time slot resources in FIG. 4 , for example, execute the method steps S110 to S140 in FIG. 2 , the method steps S210 to S220 in FIG. 3 , and the method step S230 in FIG. 4 described above.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are used to execute the flexible Ethernet time slot resource configuration method.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors, for example, executed by a processor in the above-mentioned terminal, so that the above-mentioned one or multiple processors execute the time slot resource configuration method of flexible Ethernet in FIG. 2, FIG. 3 or FIG. 4, for example, execute method steps S110 to S140 in FIG. Method step S230 in FIG. 4 .
  • node embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • an embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by a processor or a controller, for example, by the above-mentioned Execution by a processor in the node embodiment can cause the above-mentioned processor to execute the method for dynamically adjusting the database model in the above-mentioned embodiment, for example, perform the above-described method step S100 in FIG. 2 , method step S200 in FIG. 3 , The method steps S300 to S400 in FIG. 4 , the method steps S410 to S420 in FIG. 5 , and the method steps S430 to S440 in FIG. 6 .
  • the embodiment of the present application includes: the flexible Ethernet forwarding channel FlexE Client in this embodiment includes the first channel and the second channel, and by configuring the channel switching mode of the forwarding channel FlexE Client where the sending device and the receiving device are located, when the sending device Send the channel switching command to the receiving device through the overhead frame, determine the response time of the channel switching command, and when the channel switching mode is forced mode and the response time is longer than the overhead frame negotiation period, the receiving device scans the overhead frame sent by the sending device, and obtains the overhead The frame corresponds to the current time slot of the sending device, and then the sending device switches from the first channel to the second channel. When the current time slot is different from the time slot of the receiving device, the receiving device also switches from the first channel to the second channel. This enables the channel switching to be performed normally when the sending device cannot receive the response signal returned by the receiving device, thereby improving the efficiency of channel switching and reducing the time for service damage.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请提供了一种灵活以太的时隙资源配置方法、终端及存储介质。该方法中的灵活以太的转发通道FlexE Client包括第一通道和第二通道,并通过配置发送设备和接收设备所处的转发通道FlexE Client的通道切换模式,当发送设备向接收设备通过开销帧发送通道切换指令,确定通道切换指令的应答时长(S110),并且当通道切换模式为强切模式且应答时长大于开销帧协商周期,接收设备扫描发送设备发送的开销帧,并获取开销帧上对应发送设备的当前时隙,然后发送设备从第一通道切换到第二通道(S120),当该当前时隙与接收设备的时隙不相同,接收设备也从第一通道切换到第二通道(S130)。

Description

灵活以太的时隙资源配置方法、终端及存储介质
相关申请的交叉引用
本申请基于申请号为202111183791.2、申请日为2021年10月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于数据输入技术领域,尤其涉及一种灵活以太的时隙资源配置方法、终端及存储介质。
背景技术
在灵活以太(FlexE)协议中定义了时隙配置内容修改的协商方法,可以动态地修改FlexE组的时隙资源池group中成员上传的客户业务时隙。当灵活以太下的时隙资源池FlexE group中的成员发生故障或者需要扩容时,该成员上传的业务数据出现延时。在一些情形下,在FlexE group中的成员发生故障或者需要扩容时,发送设备向接收设备发送请求信号,并在接收到收端根据该请求信号返回的应答信号后,将当前通道切换到第二通道,以通过第二通道进行客户业务交互。这种通道切换方式,当发送设备无法接收到接收设备返回的应答信号时,则无法进行通道切换,从而增加丢包数量。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了灵活以太的时隙资源配置方法、终端及存储介质。
第一方面,本申请实施例提供了灵活以太的时隙资源配置方法,所述灵活以太的转发通道FlexE Client包括第一通道和第二通道,所述方法包括:配置发送设备和接收设备所处的所述转发通道FlexE Client的通道切换模式;当所述发送设备通过开销帧向所述接收设备发送通道切换指令,确定所述通道切换指令的应答时长;当所述通道切换模式为强切模式且所述应答时长大于开销帧协商周期,所述接收设备扫描所述发送设备发送的所述开销帧,并获取所述开销帧上对应发送设备的当前时隙,所述发送设备从所述第一通道切换到所述第二通道;当所述当前时隙与所述接收设备的时隙不相同,所述接收设备从所述第一通道切换到所述第二通道。
第二方面,本申请实施例还提供了终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现:所述的灵活以太的时隙资 源配置方法。
第三方面,本申请实施例还提供了计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于:执行所述的灵活以太的时隙资源配置方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的FlexE时隙端口层次化示意图;
图2是本申请一个实施例提供的强切模式的流程图;
图3是本申请一个实施例提供的标准协商模式的流程图;
图4是本申请另一个实施例提供的标准协商模式的流程图;
图5是本申请一个实施例提供的FlexE Client时隙申请示意图;
图6是本申请一个实施例提供的FlexE Client时隙切换示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
随着通讯设备的接口速度从10M带宽提高到100M、1G、10G,每隔几年业务速度就翻几倍,以适应网路上业务流量的需求。目前通讯设备商用光模块的速度已经达到100G,并开始大量商用。在光模块速度开始超越100G时,光模块研发技术上遇到的困难越来越大,光模块的生产成本急剧增加。在从100G向400G发展中,虽然已经研发出400G的光模块,但400G的光模块的价格昂贵,超过了4个100G光模块的价格,导致400G光模块缺少商用的经济价值。在不增加成本的情况下,为了解决400G业务的传递需求,能够在100G光模块上传递400G业务,国际标准组织定义了灵活以太(FlexE)协议。
根据FlexE协议标准,FlexE下记录了两种不同的通道信息,也叫日历(Calendar)信息,这两种通信息对应的通道分别定义为第一通道(Calendar A)和第二通道(Calendar B),即通道A和通道B。FlexE的带宽在Calendar A和Calendar B中可以是相同的,也可以是不相同的,并通过开销帧进行本地与远端互通以实现切换。比如,FlexE的带宽总共有200M,则Calendar A可以分配100M、Calendar B分配100M,也可以是Calendar A分配50M、Calendar B分配150M。FlexE的带宽在通信过程中,一端定义为发送设备时,另一端则定义为接收设备。当发送设备和接收设备当前正在使用Calendar A互通时,则Calendar A为主用通道,Calendar B为备用通道;反之,当发送设备和接收设备当前正在使用Calendar B互通时,则Calendar B为主用通道,Calendar A为备用通道。
目前,FlexE的发送设备和接收设备在互通过程中,当需要进行第一通道和第二通道的切换时,例如,当前通道需要扩容或者当前通道故障等情况,发送设备通过开销帧向接收设备发送一个通道切换指令CR,接收设备在接收到该通道切换指令CR后,向发送设备返回一个应答指令CA,发送设备在接收到该应答指令CA后,将当前互通的通道从主用通道切换到备用通道。这种通道切换过程,依赖于稳定的FlexE,而实际工作过程中,存在许多影响通信稳定的因素,从而导致FlexE在通信过程中不定时的会出现丢包现象。当FlexE通信过程无法及时传输通道切换指令或应答指令时,通过双方应答来进行通道切换的方式,无法及时完成通道切换,从而增加通信过程的丢包率。
基于此,本申请实施例提供了灵活以太的时隙资源配置方法、终端及存储介质,通过在发送设备和接收设备配置通道切换模式,当通道切换模式为强切模式时,根据发送设备向接收设备发送通道切换指令的应答时长来判断是否执行强切模式,当应答时长大于开销帧协商周期时,发送设备执行强切模式,以将通道从第一通道切换到第二通道,同时接收设备在确定发送设备的当前时隙与自己的时隙不相同时,接收设备也从第一通道切换到第二通道,从而在FlexE不稳定的情况下,及时完成通道切换。
在本申请实施例提供的灵活以太的时隙资源配置方法中,灵活以太的转发通道FlexE Client包括第一通道和第二通道。在灵活以太的发送设备和接收设备需要进行通信时,灵活以太的转发通道FlexE Client根据带宽需求量向灵活以太的时隙资源池FlexE Group申请时隙,当时隙资源池FlexE Group内的可用时隙满足转发通道FlexE Client申请的时隙时,则转发通道FlexE Client对时隙资源池FlexE Group进行时隙绑定;当时隙资源池FlexE Group内的可用时隙不满足带宽需求量,将当前转发通道FlexE Client的时隙请求进行缓存,等待时隙资源池FlexE Group内的可用时隙满足转发通道FlexE Client申请的时隙。比如,如图1所示,时隙资源池FlexE Group包含一定量的时隙资源,每个时隙资源池FlexE Group内的时隙资源 可以分配给多个转发通道FlexE Client,每个转发通道FlexE Client所占用的时隙大小可以相同,也可以不相同,从图1可知,转发通道FlexE Client1占用两格的时隙资源、转发通道FlexE Client2占用两格半的时隙资源、转发通道FlexE Client3和转发通道FlexE Client4均占用一格的时隙资源。
在一些实施例中,在一个时隙资源池FlexE Group中,当多个转发通道FlexE Client中的一个FlexE Client向时隙资源池FlexE Group申请时隙或者释放时隙,均会引起该时隙资源池FlexE Group中所有时隙的变化。因此,不管是转发通道FlexE Client向时隙资源池FlexE Group申请时隙,还是释放时隙,转发通道FlexE Client绑定的所有转发通道FlexE Client均需要进行调整,从而也就可能引起每个转发通道FlexE Client下的第一通道和第二通道的切换。
在一些实施例中,在一个时隙资源池FlexE Group中,当转发通道FlexE Client绑定的时隙从可用状态变更为不可用状态,则将转发通道FlexE Client绑定的时隙从转发通道FlexE Client中删除,并触发通道切换模式。例如,转发通道FlexE Client中Calendar A的时隙由于受到外界因素的影响导致不可用时,则Calendar A无法进行数据传输,此时,转发通道FlexE Client从Calendar A切换到Calendar B,从而将Calendar A占用的时隙释放出来,以给其他转发通道FlexE Client使用,提高时隙资源的有效利用率。
在一些实施例中,当灵活以太中以Calendar A作为转发通道FlexE Client1的主用通道进行通信时,则Calendar B作为转发通道FlexE Client1的备用通道。在通信过程中,若Calendar A的时隙大小无法满足通信两端的通信需求,则需要对Calendar A进行扩容,或者对Calendar A进行切换。若对Calendar A直接进行扩容,则在扩容准备过程中,会使当前通信延时或者通信内容丢失。因此,将Calendar A直接切换到更大时隙的通道上,能够有效减少通信延时。可以理解的是,当确定Calendar A的当前时隙无法满足当前通信需求时,通过对转发通道FlexE Client的Calendar B进行扩容,同时Calendar A继续执行通信过程。在Calendar B绑定到更大时隙后,发送设备向接收设备发送一个通道切换指令CR,接收设备在接收到该通道切换指令CR后,向发送设备返回一个应答指令CA,在发送设备接收到该应答指令CA后,发送设备和接收设备同步将转发通道FlexE Client从Calendar A切换到Calendar B,即将Calendar B变成主用通道,将Calendar A变成备用通道,从而有效减少通信时延,降低丢包率。在这个过程中,通道切换指令CR是通过开销帧发送到接收设备,开销帧是在一个很小带宽的开销通道上进行传输的,该开销通道的传输过程,不受第一通道和第二通道的影响。例如,转发通道FlexE Client总的带宽大小为200M,则可以分配2M给开销通道,剩余的198M可以均分或者不均分的配置给第一通道和第二通道。
在Calendar A和Calendar B的切换过程中,为了提高通信数据的传输效率和准确率,降 低通信不稳定导致通道切换指令或者应答指令传输不及时带来的影响,可以通过在通信之前配置通道两端的通道切换模式,例如标准协商模式或强切模式,在实际工作过程中,通道切换模式可以根据当前通道的稳定性进行选择。
参照图2,通道时隙资源配置方法的强切模式包括以下步骤:
S110、当发送设备向接收设备通过开销帧发送通道切换指令,确定通道切换指令的应答时长。
可以理解的是,应答时长可以根据发送设备向接收设备发送通道切换指令的发送时间点和当前时间点进行计算确定。其中,当前时间点为未接收到接收设备返回应答指令的时间。例如,发送时间点为1点50分50秒,当前时间点为1点51分05秒,则应答时长为15秒。可以理解的是,应答时长也可以根据发送设备向接收设备发送通道切换指令的发送时间戳和当前时间戳进行计算确定。
S120、当应答时长大于开销帧协商周期,接收设备扫描发送设备发送的开销帧,并获取开销帧上对应发送设备的当前时隙,然后发送设备从第一通道切换到第二通道。
可以理解的是,开销帧协商周期是预先设置的一个时长,可以根据每个通道的正常握手时间来设置。例如,正常握手过程中,发送设备从发送通道切换指令CR的时间点到接收到该通道切换指令CR的应答指令CA的时间点为5秒,则开销帧协商周期可以设置为5秒。当应答时长大于5秒,则默认当前开销通道无法正常传输指令。此时,接收设备定时扫描开销通道上的开销帧,以根据开销帧上携带的时隙进行切换。其中,开销帧上携带的时隙与通道相关。例如,当前工作的通道为Calendar A,则发送设备发送的开销帧上的CR指令为0,接收设备接收到的开销帧上的CR指令也为0。若发送设备想要从Calendar A切换到Calendar B,则发送设备向接收设备发送的开销帧上的CR指令会变为1。也就是说,在通道切换过程中,开销帧上的CR指令是不相同的,因此,可根据该特征来获取开销帧上对应发送设备的当前时隙。在获取到发送设备的当前时隙后,发送设备对应的发送端从第一通道Calendar A强制切换到第二通道Calendar B上。
S130、当该当前时隙与接收设备的时隙不相同,接收设备从第一通道切换到第二通道。
可以理解的是,由于发送设备是执行强切过程,而发送设备在即将执行通道切换时,向接收设备发送的CR指令会发生变化。例如,发送设备在通道切换前,向接收设备发送的CR指令为0;发送设备在即将进行通道切换时,向接收设备发送的CR指令为1。而接收设备由于还没有进行强切,因此,接收设备接收该发送设备的CR指令应当为0,当接收到该发送设备的CR指令变成1,接收设备则可以确定发送设备执行了强切过程,因此,接收设备也执行强切过程,以从Calendar A切换到Calendar B,与发送设备保持在同一个时隙上,从而提高 数据传输的准确度。在这个过程中,发送设备向接收设备发送了变换后的通道切换指令CR后,再执行通道切换过程,以缩短发送设备和接收设备两端执行强切时的时间差,从而提高数据传输准确率。
在一些实施例中,在通道进行通信过程中,也会存在稳定的通信环境,因此,在环境稳定的情况下,可在通信两端配置标准协商模式作为通道切换模式。如图3所示,标准协商模式包括以下步骤:
S210、发送设备向接收设备发送通道切换指令,并等待接收该接收设备根据通道切换指令返回的应答指令。
S220、当发送设备接收到应答指令,发送设备和接收设备从第一通道切换到第二通道。
可以理解的是,在标准协商模式中,当通道需要切换时,发送设备通过改变开销帧上通道切换指令CR的值,将CR从0变成1。接收设备在接收到切换指令CR为1时,可确定发送设备想进行通道切换,因此,向发送设备返回一个应答指令CA,该应答指令CA也从0变成1,表示同意进行通道切换。发送设备在接收到应答指令CA为1时,发送一个控制指令C,控制指令C也从0变成1,以控制接收设备同步进行时隙切换,即从Calendar A切换到Calendar B。在完成通道切换后,开销帧上的CR、CA和C均恢复为0,以为下次通道切换做准备。
在一些实施例中,当通道切换模式配置为标准协商模式,如图4所示,标准协商模式下还包括以下步骤:
S230、当应答时长大于开销帧协商周期,恢复发送设备的通道切换指令。
可以理解的是,应答时长可以根据发送设备向接收设备发送通道切换指令的发送时间点和当前时间点进行计算确定。其中,当前时间点为未接收到接收设备返回应答指令的时间。在灵活以太的通信过程中,涉及两端的数据交互,当一端请求切换通道,另一端不同意切换通道时,在标准协商模式下,维持原来的通道,能有效提高数据传输的准确率。因此,在本实施例中,当发送设备向接收设备发送通道切换指令后,接收设备可以不返回应答指令。例如,发送设备向接收设备发送CR为1的通道切换指令,接收设备若不返回应答指令,则发送设备在一个开销帧协商周期后,若未接收到应答指令CA,则恢复通道切换指令CR的值,即将CR从1变回0,以提高下次通道切换过程的准确度。
在一些实施例中,当灵活以太的时隙资源池FlexE Group两端的物理端口的状态设置为一种状态时,即仅仅设置为物理状态时,当FlexE Group两端的设备连接时,时隙资源池FlexE Group是随机分配时隙给当前设备之间的通道。但是,此时两个设备的端口是处于UP状态,例如,两个设备通过网线连接,则两个设备此时处于UP状态。在这种UP状态下对用户端来说,用户是默认两个设备的端口是处于正常连接状态。若此时时隙资源池FlexE Group分配 给该设备通道的时隙是不可用的时隙,则即使两个设备的端口是处于UP状态,两个处于UP状态的设备也无法进行正常的通信。基于此,本实施例通过将时隙资源池FlexE Group两端的物理端口的状态设置为物理状态和时隙可用状态。其中,物理状态为开销通道状态,即用于进行数据传输;时隙可用状态为用于给物理状态配置可用时隙的状态,即在两个设备的端口处于UP状态时,从时隙资源池FlexE Group中选取可用的时隙分配给该设备通道,从而使得用户只需关注设备的状态,而无需关注通道的时隙状态,据此判断出设备是否能够正常通信,简化用户配置过程,提升用户网络规划量。
在一些实施例中,当时隙资源池FlexE Group的物理端口从不可用状态变更为可用状态,触发绑定时隙资源池FlexE Group的转发通道FlexE Client进行时隙补充,并触发通道切换模式。可用理解的是,在物理端口从不可用状态变更为可用状态时,可以确定当前物理端口的时隙可能不足,因此,通过时隙资源池FlexE Group对该物理端口进行时隙补充。在进行时隙补充时,若时隙资源池FlexE Group内的时隙不足,则将该补充过程放入缓存,以等待时隙资源池FlexE Group内的时隙足够补充时,再执行该时隙补充过程。
在一些实施例中,在转发通道FlexE Client两端的设备发生变化时,例如卡拔插、归属板拔插等,均会引起转发通道FlexE Client上对应通道的时隙删除。当对应通道发生时隙删除后,则将该转发通道FlexE Client切换到第二通道上,利用第二通道的时隙,完成接下来的数据传输过程。
在一些实施例中,在灵活以太的应用过程中,包括以下步骤:
步骤一、FlexE Client根据带宽需求量向FlexE Group申请与释放时隙。如图1所示,多个FlexE Client均可以根据自身的带宽需求量向时隙资源池FlexE Group申请申请时隙;或在自身不需要时隙时,向时隙资源池FlexE Group释放时隙,以使其他FlexE Client能够利用该释放的时隙。在申请时隙时,若时隙资源池FlexE Group内的时隙不足,则等待时隙资源池FlexE Group内可用时隙增加后,再进行FlexE Client时隙的补充。
步骤二、在时隙资源池FlexE Group对FlexE Client完成时隙分配后,FlexE Client对时隙资源池FlexE Group进行时隙绑定,从而在FlexE Client绑定期间,只有FlexE Client能够利用该时隙。
步骤三、在FlexE Client的时隙正常工作过程中,判断实时FlexE Client是否需要进行Calendar切换,若需要,则检查FlexE Client绑定的FlexE Group是否存在未接收到CA应答的CR动作,若存在,则将当前FlexE Client的更新操作放至缓存中,待未接收到CA应答的CR动作对应的FlexE Group接收到CA应答后,完成上一次的FlexE Group的Calendar切换,然后进行其他所有待切换的FlexE Client的Calendar对应的通道切换指令CR请求。若FlexE  Client绑定的FlexE Group不存在未接收到CA应答的CR动作,则更新该FlexE Client的备用Calendar,并发送该FlexE Group的时隙切换CR请求。在Calendar A和Calendar B之间进行切换的过程中,通过开销通道内嵌的请求-确认机制(Request-Acknowledge机制)实现。在开销通道内传输的开销帧中,包括以下三个指令:日历切换请求、日历切换应答和生效日历,即通道切换指令CR、应答指令CA和控制指令C。可用理解的时,在生效日历中,Calendar A由编码0表示,Calendar B由编码1表示。
步骤四、如图5所示,在接收到接收设备CA应答后,首先更新FlexE Client对应的硬件的Calendar控制,当前备用Calendar变更为主用Calendar,当前主用Calendar变更为备用Calendar,使主用时隙更新为备用时隙,并更新C比特值为当前Calendar控制值。当接收到接收设备CA应答超时,则进行发送设备的CR比特值恢复,即还是使用当前主用Calendar。
步骤五、对于FlexE Client的接收设备方向,定时扫描物理端口(PHY)的开销帧,在获取到发送设备当前发送方向的当前时隙后,更新FlexE Client的接收设备的主用Calendar时隙值,即将FlexE Client的接收设备的时隙更新为发送设备的当前时隙。如图6所示,在Calendar A和Calendar B之间的切换过程中,Calendar A和Calendar B在动态过程中切换,即经过一定的动态切换周期后,FlexE Client上的主用Calendar就变成了备用Calendar,而备用Calendar则变成主用Calendar。
步骤六、在FlexE Group绑定的物理端口的时隙从可用状态变更为不可用状态,或者物理端口发生子卡拔插、归属板拔插等现象时,将引起该物理端口的FlexE Client时隙删除,并发起步骤三的Calendar切换动作;若FlexE Group绑定的物理端口状态发生从不可用状态变更为可用状态时,则会触发所绑定的FlexE Group下的FlexE Client进行时隙分配,以进行带宽不足的FlexE Client时隙补充,同时发起步骤三的切换动作。其中,物理端口状态定义实现包括但不限于以下方面:第一、发送设备为FlexE端口,接收设备为以太端口,例如,发送设备的设备为UP状态,但是接收不到开销帧,则为线路接收侧信号丢失警告(LOF警告),即链路状态UP,但时隙为不可用状态;第二、发送设备配置为FlexE端口,接收设备配置为FlexE端口,例如,发送设备的设备为UP状态,能接收到开销帧,若接收设备物理端口错误警告(RPF警告),则链路状态UP,但时隙为不可用状态。在本实施例中,发送设备和接收设备均为相对而言,即本端为发送设备,则对端为接收设备;本端为接收设备,则对端为发送设备。
在步骤一至步骤六的Calendar A和Calendar B的切换过程中,虽然能够完成无损切换,但是,切换的前提均是接收设备和发送设备能够完成正常握手过程。但是,网络链路如果出现震荡,则会导致发送设备和接收设备无法正常握手。
基于此,考虑网络通信不稳定的情况,对FlexE Group增加发送设备和接收设备的配置参数约束,即在发送设备和接收设备配置通道切换模式,其中,通道切换模式包括标准协商模式和强切模式。标准协商模式仅根据CR标记来变更开销帧,即接收设备根据CR标记通告FlexE Client进行时隙变更;强切模式是在标准协商模式下增加定时扫描开销帧,获取发送设备当前发送方向的时隙值,并根据发送设备发送的当前时隙值更新接收设备的主用Calendar时隙。
对于发送设备进行Calendar切换模式选择时,当选择标准协商模式,则如步骤三和步骤四所示,该模式在能正常握手的情况下,可实现无损切换;当选择强切模式,则在步骤四接收应答超时时,FlexE Client的发送设备进行强制切换,接收设备根据扫描到的开销帧进行强制切换,从而使得通信正常执行,提高通道切换过程的可靠性。
另外,本申请实施例还提供了终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述实施例的灵活以太的时隙资源配置方法。
该终端包括:一个或多个处理器和存储器,处理器和存储器可以通过总线或者其他方式连接。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如图2、图3或者图4的灵活以太的时隙资源配置方法。处理器通过运行存储在存储器中的非暂态软件程序以及指令,从而实现图2、图3或者图4的灵活以太的时隙资源配置方法。
存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行图2、图3或者图4的灵活以太的时隙资源配置方法所需的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现图2、图3或者图4的灵活以太的时隙资源配置方法所需的非暂态软件程序以及指令存储在存储器中,当被一个或者多个处理器执行时,执行图2、图3或者图4的灵活以太的时隙资源配置方法,例如,执行以上描述的图2中的方法步骤S110至S140、图3中的方法步骤S210至S220、图4中的方法步骤S230。
本申请实施例还提供了计算机可读存储介质,存储有计算机可执行指令,计算机可执行 指令用于执行灵活以太的时隙资源配置方法。
在一实施例中,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,被上述终端中的一个处理器执行,可使得上述一个或多个处理器执行图2、图3或者图4的灵活以太的时隙资源配置方法,例如,执行以上描述的图2中的方法步骤S110至S140、图3中的方法步骤S210至S220、图4中的方法步骤S230。
以上所描述的节点实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述节点实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的数据库模型动态调整的方法,例如,执行以上描述的图2中的方法步骤S100、图3中的方法步骤S200、图4中的方法步骤S300至S400、图5中的方法步骤S410至S420、图6中的方法步骤S430至S440。
本申请实施例包括:本实施例中的灵活以太的转发通道FlexE Client包括第一通道和第二通道,并通过配置发送设备和接收设备所处的转发通道FlexE Client的通道切换模式,当发送设备向接收设备通过开销帧发送通道切换指令,确定通道切换指令的应答时长,并且当通道切换模式为强切模式且应答时长大于开销帧协商周期,接收设备扫描发送设备发送的开销帧,并获取开销帧上对应发送设备的当前时隙,然后发送设备从第一通道切换到第二通道,当该当前时隙与接收设备的时隙不相同,接收设备也从第一通道切换到第二通道,使得在发送设备无法接收到接收设备返回的应答信号时,也能正常进行通道切换,提高通道切换效率,减少业务受损时间。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域 普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的若干实施方式进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 灵活以太的时隙资源配置方法,其中,所述灵活以太的转发通道FlexE Client包括第一通道和第二通道,所述方法包括:
    配置发送设备和接收设备所处的所述转发通道FlexE Client的通道切换模式;
    当所述发送设备通过开销帧向所述接收设备发送通道切换指令,确定所述通道切换指令的应答时长;
    当所述通道切换模式为强切模式且所述应答时长大于开销帧协商周期,所述接收设备扫描所述发送设备发送的所述开销帧,并获取所述开销帧上对应发送设备的当前时隙,所述发送设备从所述第一通道切换到所述第二通道;
    当所述当前时隙与所述接收设备的时隙不相同,所述接收设备从所述第一通道切换到所述第二通道。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    当所述通道切换模式为标准协商模式,所述发送设备等待接收所述接收设备根据所述通道切换指令返回的应答指令;
    当所述发送设备接收到所述应答指令,所述发送设备和所述接收设备从所述第一通道切换到所述第二通道。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述灵活以太的时隙资源池FlexE Group两端的物理端口的状态包括物理状态和时隙可用状态;所述物理状态为用于进行数据传输的开销通道状态,所述时隙可用状态为用于给所述物理状态配置可用时隙的状态。
  4. 根据权利要求1所述的方法,其中,在所述配置发送设备和接收设备所处的所述转发通道FlexE Client的通道切换模式之前,所述方法还包括:
    所述转发通道FlexE Client根据带宽需求量向所述灵活以太的时隙资源池FlexE Group申请时隙或释放时隙;
    当所述时隙资源池FlexE Group内的可用时隙满足所述转发通道FlexE Client申请的时隙,所述转发通道FlexE Client对所述时隙资源池FlexE Group进行时隙绑定。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    当所述时隙资源池FlexE Group内的可用时隙不满足所述转发通道FlexE Client申请的时隙,将当前所述转发通道FlexE Client的时隙请求进行缓存。
  6. 根据权利要求4所述的方法,其中,所述方法还包括:
    当所述转发通道FlexE Client绑定的时隙从可用状态变更为不可用状态,将所述转发通道 FlexE Client绑定的时隙从所述转发通道FlexE Client中删除,并触发所述通道切换模式。
  7. 根据权利要求3所述的方法,其中,所述方法还包括:
    当所述时隙资源池FlexE Group的物理端口从不可用状态变更为可用状态,触发绑定所述时隙资源池FlexE Group的转发通道FlexE Client进行时隙补充,并触发所述通道切换模式。
  8. 根据权利要求2所述的方法,其中,所述方法还包括:
    当所述通道切换模式为标准协商模式且所述应答时长大于开销帧协商周期,恢复所述发送设备的通道切换指令。
  9. 终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现:
    如权利要求1-8任一项所述的灵活以太的时隙资源配置方法。
  10. 计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于:
    执行权利要求1-8任一项所述的灵活以太的时隙资源配置方法。
PCT/CN2022/118516 2021-10-11 2022-09-13 灵活以太的时隙资源配置方法、终端及存储介质 WO2023061134A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111183791.2 2021-10-11
CN202111183791.2A CN115967996A (zh) 2021-10-11 2021-10-11 灵活以太的时隙资源配置方法、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2023061134A1 true WO2023061134A1 (zh) 2023-04-20

Family

ID=85889316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118516 WO2023061134A1 (zh) 2021-10-11 2022-09-13 灵活以太的时隙资源配置方法、终端及存储介质

Country Status (2)

Country Link
CN (1) CN115967996A (zh)
WO (1) WO2023061134A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031132A (zh) * 2006-02-28 2007-09-05 华为技术有限公司 一种无线资源管理系统及基于该系统的切换控制方法
CN111641979A (zh) * 2020-04-30 2020-09-08 华为技术有限公司 一种Wi-Fi点对点业务的实现方法以及相关设备
CN112491492A (zh) * 2019-09-12 2021-03-12 华为技术有限公司 一种时隙协商的方法和设备
CN112787844A (zh) * 2020-06-28 2021-05-11 中兴通讯股份有限公司 客户端状态处理方法、装置、网络设备和可读存储介质
JP2021525483A (ja) * 2018-05-31 2021-09-24 ホアウェイ・テクノロジーズ・カンパニー・リミテッド フレキシブルイーサネット(登録商標)における伝送チャネルの帯域幅調整方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031132A (zh) * 2006-02-28 2007-09-05 华为技术有限公司 一种无线资源管理系统及基于该系统的切换控制方法
JP2021525483A (ja) * 2018-05-31 2021-09-24 ホアウェイ・テクノロジーズ・カンパニー・リミテッド フレキシブルイーサネット(登録商標)における伝送チャネルの帯域幅調整方法および装置
CN112491492A (zh) * 2019-09-12 2021-03-12 华为技术有限公司 一种时隙协商的方法和设备
CN111641979A (zh) * 2020-04-30 2020-09-08 华为技术有限公司 一种Wi-Fi点对点业务的实现方法以及相关设备
CN112787844A (zh) * 2020-06-28 2021-05-11 中兴通讯股份有限公司 客户端状态处理方法、装置、网络设备和可读存储介质

Also Published As

Publication number Publication date
CN115967996A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
EP3840311B1 (en) Traffic scheduling method, device, and system
US6445701B1 (en) Channel access scheme for use in network communications
US6507587B1 (en) Method of specifying the amount of bandwidth to reserve for use in network communications
US20200163011A1 (en) Method, device, and system for deploying network slice
CN110061855B (zh) 一种业务处理方法、系统和装置
CN116405461A (zh) 一种数据处理方法、网元设备以及可读存储介质
KR20190043567A (ko) 통신 방법 및 장치
WO2014079308A1 (zh) 一种时隙资源占用处理方法及装置
JP2002057699A (ja) パケット伝送方式、パケット伝送方法及び記録媒体
CN113179327A (zh) 基于大容量内存的高并发协议栈卸载方法、设备、介质
US6665263B1 (en) VP protection system and VP protection method
CN107483628B (zh) 基于dpdk的单向代理方法及系统
WO2023061134A1 (zh) 灵活以太的时隙资源配置方法、终端及存储介质
CN111432438B (zh) 一种基站处理任务实时迁移方法
CN111131081B (zh) 一种支持多进程的高性能单向传输的方法和装置
CN115509644B (zh) 算力卸载方法、装置、电子设备和存储介质
CN113179228B (zh) 一种提高交换机堆叠可靠性的方法、装置、设备及介质
CN107995315B (zh) 业务板间信息的同步方法、装置、存储介质及计算机设备
CN108924066B (zh) 报文转发方法和装置
CN114143730A (zh) 信令处理方法、通信系统、电子设备和存储介质
CN114615142B (zh) 一种业务处理的方法和装置
CN114201117B (zh) 缓存数据的处理方法、装置、计算机设备及存储介质
CN114390053B (zh) 业务内容调度方法、装置、设备及存储介质
WO2024067805A1 (zh) 一种承载关联方法、装置、设备及可读存储介质
US9391850B2 (en) Method and apparatus for quality-of-service (QoS) management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE