WO2023060769A1 - 测堵测漏结构及测堵测漏方法 - Google Patents

测堵测漏结构及测堵测漏方法 Download PDF

Info

Publication number
WO2023060769A1
WO2023060769A1 PCT/CN2021/141585 CN2021141585W WO2023060769A1 WO 2023060769 A1 WO2023060769 A1 WO 2023060769A1 CN 2021141585 W CN2021141585 W CN 2021141585W WO 2023060769 A1 WO2023060769 A1 WO 2023060769A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
float
channel
gas
product
Prior art date
Application number
PCT/CN2021/141585
Other languages
English (en)
French (fr)
Inventor
罗坚
陈荣豪
王华清
许益玉
吴汉森
阮蒙宇
朱斌
Original Assignee
迈得医疗工业设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迈得医疗工业设备股份有限公司 filed Critical 迈得医疗工业设备股份有限公司
Publication of WO2023060769A1 publication Critical patent/WO2023060769A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements

Definitions

  • the present application relates to a detection structure, in particular to a plugging and leakage detection structure and a plugging and leakage detection method.
  • Blockage detection and leak detection can be detected using the same detection structure.
  • it is generally judged by detecting the air pressure at the inlet end of the product after blowing air at the inlet end of the product. If the air pressure at the inlet end drops or drops slowly, it means that the product is blocked.
  • this detection method can only detect the presence of clogging or most of the pore diameter clogging, but there is no way to detect a small amount of clogging.
  • the air pressure change rate of the air intake section is used to judge the clogging of the product, but in this way, for a specific clogging situation, the air pressure change rate at the air intake end is first fast and then slow, resulting in an unsteady air pressure change rate, which also leads to The air pressure change rate and the blockage situation do not show a complete correlation, so it is difficult to intuitively judge the blockage situation according to the air pressure change rate.
  • Another detection solution is to place a sensor at the outlet of the product, and then blow air at the inlet. If the sensor does not detect gas, the product is clogged. However, this detection method is still unable to detect a small amount of blockage. Therefore, it is necessary to provide an effective plugging and leak detection scheme, which can accurately judge the degree of blockage and leakage.
  • the present application firstly provides a plugging and leak detection structure, including an air intake passage assembly, a detection passage, a float and a detection assembly, the float is located in the detection passage, and the detection gas passes through the air intake passage assembly to be tested.
  • the product enters the detection channel, the float moves along the detection channel under the action of the detection gas, and the detection component detects the moving speed of the float in the detection channel to determine the product to be tested blockage or leakage.
  • the detection channel includes an air inlet and an air outlet
  • the movement range of the float is located between the air inlet and the air outlet
  • the air inlet is used for the The detection gas enters the detection channel
  • the gas outlet is used for the gas between the gas outlet and the float to leave the detection channel.
  • the detection gas enters the detection channel and acts on the float, so that the float moves in the detection channel.
  • the detection channel is located on the side of the float away from the air inlet, and as the space for the float gradually decreases, the internal air pressure begins to increase continuously. And this part of the air pressure acts on the float and becomes a resistance to the movement of the float, thereby affecting the detection result of the float by the detection component.
  • the setting of the gas outlet allows the gas inside the detection channel on the side of the float away from the air inlet to be discharged to the outside with the movement of the float, thereby preventing the movement of the float from being hindered, so that the detection result of the detection component on the float is more accurate.
  • the inner wall of the detection channel is in clearance fit with the float in the circumferential direction.
  • the inner wall of the detection channel abuts against the float in the axial direction, when the float moves along the detection channel under the action of the detection gas, the inner wall of the detection channel will generate frictional resistance against the float, thus affecting the detection assembly.
  • Test results for floats The inner wall of the detection channel cooperates with the float in the circumferential direction, so that the detection gas will not only act on the float to make the float move in the detection channel, but also enter the gap between the float and the inner wall of the detection channel, so that the float is free from the pressure of the detection channel.
  • the resistance of the inner wall is converted to the resistance of the detected gas.
  • the resistance of the detection gas is naturally much smaller than the resistance of the inner wall of the detection channel, so that the detection gas can play a lubricating role. And the detection gas moves in the same direction as the float, so that the resistance of the detection gas to the float is even smaller. Therefore, the inner wall of the detection channel cooperates with the float in the circumferential direction, so that the resistance encountered by the float during movement is greatly reduced, thereby improving the accuracy of the detection result of the detection component for the float.
  • the extension direction of the detection channel is approximately along the vertical direction, so that the float can be reset by its own gravity after the detection is completed, thereby reducing the cost and simplifying the structure. If ⁇ >30°, when reset, the float will abut against the inner wall of the detection channel under its own gravity, so that the inner wall of the detection channel will generate resistance to prevent the float from resetting, and the resistance is even enough to prevent the float from resetting under its own gravity. Reset, causing the float to fail to reset automatically.
  • the plugging and leak detection structure further includes a reset channel, the reset channel communicates with the detection channel, reset gas passes through the reset channel into the detection channel, and the float The resetting gas reversely moves along the detection channel.
  • the detection component includes a sensor, and the sensor detects the time required for the float to move a preset distance along the detection channel.
  • the detection float Either set a scale on the detection channel, and determine the length of the detection channel through which the float passes within a fixed time by taking pictures. Therefore, the length cost of the detection channel that the detection float passes through in a fixed time is relatively high. Relatively speaking, the time required for the detection float to pass the preset distance has lower requirements for the measurement accuracy of the sensor, and at least only two The sensor will do.
  • the number of the sensors is multiple, and the multiple sensors are distributed on the detection channel at intervals along a preset distance.
  • the air inlet channel assembly includes a first sealing member and a second sealing member, and the first sealing member and the second sealing member respectively seal and communicate with the two ends of the product to be tested. , the two ends of the first sealing member are respectively sealed and communicated with the gas supply device providing the detection gas and the product to be tested, and the two ends of the second sealing member are respectively sealed and communicated with the product to be tested and the detection channel.
  • the present application additionally provides a method for detecting plugging and leakage, which includes the following steps: controlling the detection gas to flow through the product to be tested and the float in sequence, and detecting the moving speed of the float under the action of the detection gas to judge the product to be tested. Blockage or leakage.
  • the moving speed of the float under the action of the detection gas is determined by detecting the time when the float passes through two detection points with a preset distance.
  • Fig. 1 is a structural schematic diagram of the front view direction of the plugging and leak detection structure in the embodiment of the present application.
  • Fig. 2 is a structural schematic diagram of the side view direction of the plugging and leak detection structure in the embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of the detection channel in the plugging and leakage detection structure in the embodiment of the present application.
  • Fig. 4 is a structural schematic diagram of the rear view direction of the plugging and leak detection structure in the embodiment of the present application.
  • a component when a component is said to be “mounted on” another component, it may be directly mounted on another component or there may be an intervening component.
  • a component When a component is said to be “set on” another component, it may be set directly on the other component or there may be an intervening component at the same time.
  • a component When a component is said to be “fixed” to another component, it may be directly fixed to the other component or there may be an intervening component at the same time.
  • the embodiment of the present application firstly provides a plugging and leakage detection structure as shown in FIGS.
  • the intake passage assembly 100 includes a first sealing member 110 , a second sealing member 120 , a first driving member 130 and a second driving member 140 .
  • the first driving member 130 drives the first sealing member 110 to move toward or away from the second sealing member 120
  • the second driving member 140 drives the second sealing member 120 to move toward or away from the second sealing member 120 .
  • the product 500 to be tested is first placed on the carrier 600 , and then the product 500 to be tested follows the carrier 600 to move between the first sealing member 110 and the second sealing member 120 .
  • the plugging and leak detection structure further includes a positioning member.
  • the positioner clamps the carrier 600 so that the position of the carrier 600 is fixed.
  • the first sealing member 110 and the second sealing member 120 move toward each other to respectively seal and communicate with the two ends of the product 500 to be tested.
  • One end of the first sealing member 110 communicates with the product 500 to be tested, and the other end communicates with a gas supply device for providing detection gas.
  • the detection gas can be non-toxic and harmless gas, such as air, nitrogen, oxygen, inert gas, etc. In consideration of cost reduction, the detection gas can be selected as air.
  • One end of the second sealing member 120 communicates with the product 500 to be tested, and the other end communicates with the detection channel 200 .
  • the first seal 110 and the gas supply device are in sealed communication through a hose, and the second The sealing member 120 and the detection channel 200 are in sealed communication through a hose.
  • the second driving member 140 is canceled and the first driving member 130 remains.
  • the first sealing member 110 abuts against the product to be tested 500 and drives the product to be tested 500 to move upward relative to the carrier 600 to abut against the second sealing member 120, so as to realize the first sealing member 110
  • the two ends of the product 500 to be tested are in sealing communication with the second sealing member 120 .
  • the first sealing member 110 is reset under the drive of the first driving member 130 , so that the product 500 to be tested returns to the carrier 600 under its own gravity.
  • the detection channel 200 includes an air inlet 210 and an air outlet 220 .
  • the float 400 is located in the detection channel 200 and can move along the detection channel 200 .
  • the movement range of the float 400 in the detection channel 200 is between the air inlet 210 and the air outlet 220 .
  • the gas inlet 210 is in sealing communication with the second sealing member 120 , so that the detection gas can enter the detection channel 200 from the gas inlet 210 .
  • the gas outlet 220 is used for the gas between the gas outlet 220 and the float 400 to leave the detection channel 200 .
  • the gas outlet 220 is provided with a regulator 230 for controlling the velocity of the gas between the gas outlet 220 and the float 400 leaving the detection channel 200 .
  • the adjusting member 230 may adopt one of a speed regulating valve, an exhaust valve, a needle valve, and a shut-off valve. If the gas outlet 220 is not provided, the detection gas enters the detection channel 200 and acts on the float 400, so that the float 400 moves in the detection channel 200. At this time, the detection channel 200 is located on the side of the float 400 facing away from the air inlet 210 . As the moving space of the float 400 gradually decreases, the internal air pressure begins to increase continuously. This part of the air pressure acts on the float 400 and becomes a resistance to the movement of the float 400 , thereby affecting the detection result of the float 400 by the detection assembly 300 .
  • the setting of the air outlet 220 makes the gas inside the detection channel 200 located on the side of the float 400 away from the air inlet 210 discharged to the outside with the movement of the float 400, thereby preventing the movement of the float 400 from being hindered, so that the detection assembly 300 is The detection result of the float 400 is more accurate.
  • the air inlet 210 is arranged at one end of the detection channel 200
  • the air outlet 220 is arranged at the other end of the detection channel 200 .
  • the detection gas enters the detection channel 200 after passing through the first sealing member 110 , the product to be tested 500 and the second sealing member 120 in sequence.
  • the detection gas entering the detection channel 200 acts on the float 400 to make the float 400 move in the detection channel 200 .
  • the detection channel 200 is made of transparent plastic, and there is an angle ⁇ between the extension direction of the detection channel 200 and the vertical direction, 0 ⁇ 30°.
  • is 0, 5°, 10°, 15°, 20°, 30°.
  • the extension direction of the detection channel 200 is approximately along the vertical direction, so that the float 400 can be reset by its own gravity after the detection is completed, thereby reducing the cost and simplifying the structure.
  • the float 400 will abut against the inner wall of the detection channel 200 under its own gravity, so that the inner wall of the detection channel 200 will generate resistance to prevent the reset of the float 400 and the resistance is even enough to prevent the float 400 from resetting. Reset under its own gravity, causing the float 400 to fail to reset automatically.
  • the inner wall of the detection channel 200 is in clearance fit with the float 400 in the circumferential direction. If the inner wall of the detection channel 200 abuts against the float 400 in the axial direction, when the float 400 moves along the detection channel 200 under the action of the detection gas, the inner wall of the detection channel 200 will generate frictional resistance against the float 400, thereby affecting the detection assembly.
  • the inner wall of the detection channel 200 is in clearance fit with the float 400 in the circumferential direction, so that the detection gas will not only act on the float 400 to make the float 400 move in the detection channel 200 but also enter the gap between the float 400 and the inner wall of the detection channel 200, thereby This makes the float 400 turn from being resisted by the inner wall of the detection channel 200 to being resisted by the detected gas.
  • the resistance of the detection gas is naturally much smaller than the resistance of the inner wall of the detection channel 200 , so that the detection gas can play a lubricating role.
  • the detection gas moves in the same direction as the float 400 , so that the resistance of the detection gas to the float 400 is even smaller.
  • the inner wall of the detection channel 200 is clearance-fitted with the float 400 in the circumferential direction, so that the resistance encountered by the float 400 during movement is greatly reduced, thereby improving the accuracy of the detection result of the float 400 by the detection assembly 300 .
  • the detection assembly 300 includes a plurality of sensors, and the plurality of sensors are distributed outside the detection channel 200 at intervals.
  • the type of sensor can be selected from proximity sensor, photoelectric sensor, magnetic switch, proximity sensor, photoelectric sensor, etc.
  • the distance between the sensor close to the air inlet 210 and the air inlet 210 is d
  • the distance between the air inlet 210 and the air outlet 220 is D
  • 0 ⁇ d/D ⁇ 0.3 Specifically, d/D can be 0, 0.1, 0.2, 0.3.
  • the distance between another sensor and the air inlet 210 is L, 0.1 ⁇ L/D ⁇ 0.9.
  • L/D can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.
  • the distribution range of the sensors of the detection assembly 300 is concentrated in the initial movement stage of the float 400 in the detection channel 200, and the float 400 in the initial movement stage
  • the moving speed of 400 has a stronger linear correlation with the blockage or leakage of the float 400 .
  • the separation distance between the two sensors is determined according to a preset distance.
  • the detection component 300 determines the moving speed of the float 400 under the action of the detection gas by detecting the time required for the float 400 to move from one sensor to another in the detection channel 200 , so as to determine the blockage or leakage of the product 500 to be tested.
  • Detecting the moving speed of the float 400 in the detection channel 200 includes two schemes, one is to detect the length of the detection channel 200 that the float 400 passes within a fixed time, and the other is to detect the time required for the float 400 to pass a preset distance. However, to detect the length of the float 400 passing through the detection channel 200 within a fixed time, the sensor needs to be able to accurately measure the position of the float 400 .
  • either the detection channel 200 is covered with sensors, so as to detect the position reached by the float 400 within a fixed time, so as to further calculate the length of the detection channel 200 that the float 400 passes within a fixed time. Either by measuring the distance between the sensor and the float 400 , which requires higher measurement accuracy of the sensor. Either a scale is set on the detection channel 200, and the length of the detection channel 200 that the float 400 passes within a fixed time is determined by taking pictures. Therefore, the length cost of the detection channel 200 through which the detection float 400 passes within a fixed time is relatively high. Relatively speaking, the time required for the detection float 400 to pass the preset distance has lower requirements for the measurement accuracy of the sensor, and at least only Just set up two sensors.
  • the shape of the float 400 may be spherical, cylindrical or conical.
  • the material of the float 400 can be plastic or metal, which can be determined according to the setting of the detection channel 200 and the amount of detection gas.
  • the product under test 500 leaks the less the product under test 500 leaks, the tighter the product under test 500 is, and the greater the pressure of the test gas after passing through the product under test 500 is.
  • the detection gas will act on the float 400 after passing through the product 500 to be tested. Therefore, the greater the pressure after the detection gas passes through the product 500 to be tested, the faster the float 400 will move in the detection channel 200 under the action of the detection gas.
  • the present application additionally provides a method for measuring plugging and leak detection, comprising the following steps:
  • Step 1 first place qualified products on the carrier 600, then the qualified products follow the carrier 600 to move between the first sealing member 110 and the second sealing member 120, and the positioning member clamps the carrier 600;
  • Step 2 Driven by the first driving member 130 and the second driving member 140, the first sealing member 110 and the second sealing member 120 move toward each other to respectively seal and communicate with the two ends of the product 500 to be tested;
  • Step 3 The gas supply device releases the detection gas.
  • the detection gas flows through the first sealing member 110 , the product to be tested 500 and the second sealing member 120 in sequence, then enters the detection channel 200 and acts on the float 400 .
  • the float 400 passes through two detection points formed by two sensors distributed according to a preset distance interval under the action of the detection gas, and the moving speed under the action of the detection gas is determined according to the time when the float 400 passes through the two detection points;
  • Step 4 After the test is over, the gas supply device stops releasing the detection gas, and the float 400 resets under its own gravity;
  • Step 5 Driven by the first driving member 130 and the second driving member 140, the first sealing member 110 and the second sealing member 120 move in opposite directions to separate from the two ends of the product 500 to be tested, and the positioning member no longer clamps Holding the carrier 600, the qualified product follows the carrier 600 and moves to leave between the first sealing member 110 and the second sealing member 120;
  • Step 6 Place the product 500 to be tested on the carrier 600, and repeat steps 1-5;
  • Step 7 Compare the moving speed of the float 400 detected by the product to be tested 500 with the moving speed of the float 400 of the qualified product, and determine the clogging and leakage of the product to be tested 500 according to the deviation between the two.
  • steps 1-5 are determined when the product 500 to be tested is detected by the plugging and leak detection structure for the first time, and can be detected directly from step 6 in the subsequent detection process, and the moving speed of the float 400 of the qualified product already known The comparison is made to determine the clogging and leakage of the product 500 under test.
  • the detection channel 200 can also extend along the horizontal direction.
  • the plugging and leak detection structure also includes a reset channel.
  • the reset channel communicates with the detection channel 200 .
  • the reset gas enters the detection channel 200 from the reset channel and acts on the float 400, so that the float 400 moves reversely along the detection channel 200 to the air inlet 210, so that the reset of the float 400 is not limited by the placement form of the detection channel 200, expanding The scope of application of the plugging and leakage detection structure.
  • the reset gas can be non-toxic and harmless gas, such as air, nitrogen, oxygen, inert gas and so on. In consideration of cost reduction, the reset gas can be selected as air.
  • the detection component 300 can use a distance sensor.
  • the distance sensor is arranged at the end of the detection channel 200 away from the air inlet 210 , and the air outlet 220 cannot be arranged at the other end of the detection channel 200 , but is close to the other end of the detection channel 200 .
  • the distance sensor detects the distance between the float 400 and the distance sensor.
  • the degree of clogging and leakage that can be detected currently ranges from 10% to 100%.
  • the range of detected blockages and leaks will further increase.

Abstract

一种测堵测漏结构,包括进气通道组件(100)、检测通道(200)、浮子(400)和检测组件(300),浮子(400)位于检测通道(200)内,检测气体从进气通道组件(100)经过待测产品(500)进入检测通道(200),浮子(400)在检测气体作用下沿着检测通道(200)移动,检测组件(300)通过检测浮子(400)在检测通道(200)内的移动速度以判断待测产品(500)的堵塞或者泄漏状况,还包括一种测堵测漏方法。

Description

测堵测漏结构及测堵测漏方法
相关申请
本申请要求2021年10月14日申请的,申请号为202111200451.6,发明名称为“测堵测漏结构及测堵测漏方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及检测结构,特别是涉及一种测堵测漏结构及测堵测漏方法。
背景技术
对于医疗器械类产品,产品的管路是否存在堵塞或者泄漏,对于产品的性能至关重要。测堵和测漏可以采用相同的检测结构进行检测。针对医疗器械类产品的现有测堵测漏结构,一般采用在产品的进气端吹气后检测进气端的气压情况进行判断。若是进气端气压下降或者下降缓慢,则说明产品存在堵塞。但是,这种检测方式只能检测存在堵塞或者大部分孔径堵塞的情况,而对于少量堵塞并没有办法进行检测。若采用检测进气段的气压变化速率来判断产品的堵塞情况,但是如此一来,对于特定堵塞情况,进气端的气压变化速率是先快后慢,导致气压变化速率并不恒定,也就导致气压变化速率和堵塞情况并不呈现出完全的相关关系,从而难以根据气压变化速率直观判断堵塞情况。还有一种检测方案是在产品的出气端放置感应器,然后在进气端吹气。如果传感器未检测到气体则说明产品存在堵塞。但是,这种检测方式仍然无法检测少量堵塞的情况。因此,有必要提供一种有效的测堵测漏方案,可以对堵塞和泄漏程度进行准确判断。
发明内容
有鉴于此,有必要提供一种改进的测堵测漏结构及测堵测漏方法,该测堵测漏结构能够准确检测出产品的堵塞和泄漏程度,该测堵测漏方法可以准确检测出产品的堵塞和泄漏程度。
本申请首先提供一种测堵测漏结构,包括进气通道组件、检测通道、浮子和检测组件,所述浮子位于所述检测通道内,检测气体从所述进气通道组件经过所述待测产品进入所述检测通道,所述浮子在所述检测气体作用下沿着所述检测通道移动,所述检测组件通过检测所述浮子在所述检测通道内的移动速度以判断所述待测产品的堵塞或者泄漏状况。
通过采用上述技术方案,当待测产品发生堵塞时,待测产品的堵塞越少,待测产品越通畅,检测气体通过待测产品之后的气压也就越大。同理,当待测产品发生泄漏时,待测产品的泄漏越少,待测产品越密封,检测气体通过待测产品之后的气压也就越大。而检测气体通过待测产品之后会作用于浮子,因此检测气体通过待测产品之后的气压越大,浮子在检测气体作用下在检测通道内的移动速度也就越快。因此,无论待测产品是存在堵塞还是存在泄漏,堵塞情况或者泄漏情况均和浮子的移动速度呈现出相关性。因此,可以根据浮子的移动速度不仅去判断待测产品是否堵塞或者泄漏,而且可以去判断待测产品的堵塞或者泄漏的程度。
在本申请的一个实施方式中,所述检测通道包括进气口和出气口,所述浮子的移动范围位于所述进气口和所述出气口之间,所述进气口用于所述检测气体进入所述检测通道,所述出气口用于所述出气口和所述浮子之间的气体离开所述检测通道。
通过采用上述技术方案,若未设置出气口,则检测气体进入检测通道并作用于浮子,使得浮子在检测通道内移动。此时,检测通道位于浮子背离进气口的一侧随着浮子的移动空间逐渐减小,从而内部的气压开始不断增大。而这部分气压作用于浮子,成为阻碍浮子移动的阻力,从而影响检测组件对浮子的检测结果。因此,出气口的设置使得位于浮子背离进气口的一侧的检测通道内部的气体随着浮子的移动排出至外界,从而避免浮子移动受到阻碍,从而使得检测组件对浮子的检测结果较为准确。
在本申请的一个实施方式中,所述检测通道的内壁在周向上和所述浮子间隙配合。
通过采用上述技术方案,若是检测通道的内壁在轴向上和浮子抵接,则浮子在检测气体作用下沿着检测通道移动时,检测通道的内壁会产生对浮子的摩擦阻力,从而影响检测组件对浮子的检测结果。而检测通道的内壁在周向上和浮子间隙配合,从而检测气体不仅会作用于浮子以使得浮子在检测通道内移动还会进入浮子和检测通道内壁之间的间隙,从而使得浮子从受到检测通道的内壁的阻力转为受到检测气体的阻力。检测气体的阻力自然远小于检测通道的内壁的阻力,从而使得检测气体能够起到润滑的作用。而检测气体又和浮子的移动方向相同,从而使得检测气体对浮子的阻力就更小。因此,检测通道的内壁在周向上和浮子间隙配合,使得浮子移动过程中受到的阻力大大降低,从而提高检测组件对浮子的检测结果的准确度。
在本申请的一个实施方式中,所述检测通道的延伸方向和竖直方向之间存在夹角α,0≤α≤30°。
通过采用上述技术方案,检测通道的延伸方向近似沿着竖直方向,从而使得浮子能够在检测结束之后依靠自身重力进行复位,从而能够降低成本, 精简结构。若α>30°,则在进行复位时,浮子会在自身重力作用下与检测通道的内壁抵接,从而检测通道的内壁会产生阻止浮子复位的阻力且阻力甚至足以阻止浮子在自身重力作用下复位,导致浮子无法自动复位。
在本申请的一个实施方式中,所述测堵测漏结构还包括复位通道,所述复位通道和所述检测通道连通,复位气体从所述复位通道通入所述检测通道,所述浮子在所述复位气体作用下沿着所述检测通道反向移动。
通过采用上述技术方案,无论检测通道如何设置,浮子均会在复位气体的作用下完成复位,从而扩大测堵测漏结构的适用范围。
在本申请的一个实施方式中,所述检测组件包括传感器,所述传感器检测所述浮子沿着所述检测通道移动预设距离所需的时间。
通过采用上述技术方案,检测浮子在检测通道内的移动速度包括两种方案,一种是检测浮子在固定时间内通过的检测通道的长度,另一种是检测浮子通过预设距离所需要的时间。但是,若是检测浮子在固定时间内通过检测通道的长度,则需要传感器能够准确测定出浮子的位置。而此时,要么沿着检测通道布满传感器,从而方可检测到浮子在固定时间内到达的位置,从而进一步计算出浮子在固定时间内通过的检测通道的长度。要么是通过测量传感器和浮子之间的距离,而这对于传感器的测量精度要求较高。要么是在检测通道上设置刻度,通过拍照的方式确定浮子在固定时间内通过的检测通道的长度。因此,检测浮子在固定时间内通过的检测通道的长度成本要求较高,相对来讲,检测浮子通过预设距离所需要的时间,对于传感器的测量精度要求较低,而且最少只需要设置两个传感器即可。
在本申请的一个实施方式中,所述传感器的数量设置有多个,多个所述传感器沿着预设距离间隔分布在所述检测通道上。
在本申请的一个实施方式中,所述进气通道组件包括第一密封件和第二密封件,所述第一密封件和所述第二密封件分别密封连通所述待测产品的两端,所述第一密封件的两端分别密封连通提供检测气体的供气装置和所述待测产品,所述第二密封件的两端分别密封连通所述待测产品和所述检测通道。
本申请另外提供一种测堵测漏方法,包括如下步骤:控制检测气体依次流经待测产品和浮子,检测所述浮子在所述检测气体作用下的移动速度以判断所述待测产品的堵塞或者泄漏情况。
在本申请的一个实施方式中,检测所述浮子通过预设距离的两个检测位点的时间来确定所述浮子在检测气体作用下的移动速度。
附图说明
图1为本申请实施例中测堵测漏结构前视方向的结构示意图。
图2为本申请实施例中测堵测漏结构侧视方向的结构示意图。
图3为本申请实施例中测堵测漏结构中检测通道的结构示意图。
图4为本申请实施例中测堵测漏结构后视方向的结构示意图。
附图标记:100、进气通道组件;110、第一密封件;120、第二密封件;130、第一驱动件;140、第二驱动件;200、检测通道;210、进气口;220、出气口;230、调节件;300、检测组件;400、浮子;500、待测产品;600、载具。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施 方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
需要说明的是,当组件被称为“装设于”另一个组件,它可以直接装设在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的实施例首先提供如图1-4所示的一种测堵测漏结构,包括进气通道组件100、检测通道200、检测组件300和浮子400。
参照图1和图2,进气通道组件100包括第一密封件110、第二密封件120、第一驱动件130和第二驱动件140。第一驱动件130驱动第一密封件110朝向或者远离第二密封件120移动,第二驱动件140驱动第二密封件120朝向或者远离第二密封件120移动。在检测时,先将待测产品500放置于载具600上,然后待测产品500跟随载具600运动至第一密封件110和第二密封件120之间。在一些实施方式中,该测堵测漏结构还包括定位件。在载具600运动至第一密封件110和第二密封件120之间后,定位件夹持载具600,以使得载 具600的位置得以固定。第一密封件110和第二密封件120相向运动至分别密封连通待测产品500的两端。第一密封件110的一端和待测产品500连通,另一端和提供检测气体的供气装置连通。检测气体选用无毒无害气体即可,例如空气、氮气、氧气、惰性气体等。出于降低成本考虑,检测气体可选为空气。第二密封件120的一端和待测产品500连通,另一端和检测通道200连通。为了避免第一密封件110移动过程中和供气装置断开和第二密封件120移动过程中和检测通道200断开,第一密封件110和供气装置通过软管进行密封连通,第二密封件120和检测通道200通过软管进行密封连通。在一些实施方式中,当第一密封件110和第二密封件120分别位于待测产品500的下方和上方时,取消第二驱动件140而保留第一驱动件130。在第一驱动件130驱动下,第一密封件110和待测产品500抵接并带动待测产品500相对载具600向上移动至与第二密封件120抵接,以实现第一密封件110和第二密封件120密封连通待测产品500的两端。在检测完毕之后,第一密封件110在第一驱动件130驱动下复位,从而待测产品500在自身重力作用下回到载具600。
参照图3,检测通道200包括进气口210和出气口220。浮子400位于检测通道200内并可沿着检测通道200移动。浮子400在检测通道200内的移动范围位于进气口210和出气口220之间。进气口210和第二密封件120密封连通,使得检测气体能够从进气口210进入检测通道200。出气口220用于出气口220和浮子400之间的气体离开检测通道200。在一些实施方式中,出气口220设置有用于控制出气口220和浮子400之间的气体离开检测通道200速度的调节件230。具体的,调节件230可以采用调速阀、排气阀、针阀、截流阀其中一种。若未设置出气口220,则检测气体进入检测通道200并作用于 浮子400,使得浮子400在检测通道200内移动。此时,检测通道200位于浮子400背离进气口210的一侧随着浮子400的移动空间逐渐减小,从而内部的气压开始不断增大。而这部分气压作用于浮子400,成为阻碍浮子400移动的阻力,从而影响检测组件300对浮子400的检测结果。因此,出气口220的设置使得位于浮子400背离进气口210的一侧的检测通道200内部的气体随着浮子400的移动排出至外界,从而避免浮子400移动受到阻碍,从而使得检测组件300对浮子400的检测结果较为准确。在图1所示的具体实施方式中,进气口210设置在检测通道200的一端,而出气口220设置在检测通道200的另一端。检测气体依次经过第一密封件110、待测产品500和第二密封件120后进入检测通道200。进入检测通道200的检测气体作用于浮子400,使得浮子400在检测通道200内移动。检测通道200的材质为透明塑料,检测通道200的延伸方向和竖直方向之间存在夹角α,0≤α≤30°。可选的,α为0、5°、10°、15°、20°、30°。在图1所示的具体实施方式中,α=0,从而使得检测通道200引导浮子400在检测气体作用下沿着竖直方向移动。检测通道200的延伸方向近似沿着竖直方向,从而使得浮子400能够在检测结束之后依靠自身重力进行复位,从而能够降低成本,精简结构。若α>30°,则在进行复位时,浮子400会在自身重力作用下与检测通道200的内壁抵接,从而检测通道200的内壁会产生阻止浮子400复位的阻力且阻力甚至足以阻止浮子400在自身重力作用下复位,导致浮子400无法自动复位。检测通道200的内壁在周向上和浮子400间隙配合。若是检测通道200的内壁在轴向上和浮子400抵接,则浮子400在检测气体作用下沿着检测通道200移动时,检测通道200的内壁会产生对浮子400的摩擦阻力,从而影响检测组件300对浮子400的检测结果。而检测通道200的内壁在周向上和浮子400间隙配合,从而检测 气体不仅会作用于浮子400以使得浮子400在检测通道200内移动还会进入浮子400和检测通道200内壁之间的间隙,从而使得浮子400从受到检测通道200的内壁的阻力转为受到检测气体的阻力。检测气体的阻力自然远小于检测通道200的内壁的阻力,从而使得检测气体能够起到润滑的作用。而检测气体又和浮子400的移动方向相同,从而使得检测气体对浮子400的阻力就更小。因此,检测通道200的内壁在周向上和浮子400间隙配合,使得浮子400移动过程中受到的阻力大大降低,从而提高检测组件300对浮子400的检测结果的准确度。
参照图1和图4,检测组件300包括多个传感器,多个传感器间隔分布在检测通道200外部。传感器的种类可以选择接近传感器、光电传感器、磁性开关、接近传感器、光电传感器等。在图1所示的具体实施方式中,传感器的数量设置有两个,其中一个传感器靠近进气口210。靠近进气口210的传感器和进气口210的距离为d,进气口210和出气口220的距离为D,0≤d/D≤0.3。具体的,d/D可以为0、0.1、0.2、0.3。另一个传感器和进气口210的距离为L,0.1≤L/D≤0.9。具体的,L/D可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9。相比于其中一个传感器靠近进气口210,另一个传感器靠近出气口220的情况,检测组件300的传感器的分布范围集中于浮子400在检测通道200内初始移动阶段,而在初始移动阶段的浮子400的移动速度和浮子400的堵塞或者泄漏情况线性相关性更强。两个传感器之间的间隔距离根据预设距离进行确定。检测组件300通过检测浮子400在检测通道200内从一个传感器移动至另一个传感器所需的时间来确定浮子400在检测气体作用下的移动速度,从而判断待测产品500的堵塞或者泄漏情况。检测浮子400在检测通道200内的移动速度包括两种方案,一种是检测浮子400在固定时间内通过的检 测通道200的长度,另一种是检测浮子400通过预设距离所需要的时间。但是,若是检测浮子400在固定时间内通过检测通道200的长度,则需要传感器能够准确测定出浮子400的位置。而此时,要么沿着检测通道200布满传感器,从而方可检测到浮子400在固定时间内到达的位置,从而进一步计算出浮子400在固定时间内通过的检测通道200的长度。要么是通过测量传感器和浮子400之间的距离,而这对于传感器的测量精度要求较高。要么是在检测通道200上设置刻度,通过拍照的方式确定浮子400在固定时间内通过的检测通道200的长度。因此,检测浮子400在固定时间内通过的检测通道200的长度成本要求较高,相对来讲,检测浮子400通过预设距离所需要的时间,对于传感器的测量精度要求较低,而且最少只需要设置两个传感器即可。
浮子400的形状可以是球状、圆柱状或者圆锥状。浮子400的材质可以是塑料材质、也可以是金属材质,具体可以根据检测通道200的设置、检测气体用量进行确定。
当待测产品500发生堵塞时,待测产品500的堵塞越少,待测产品500越通畅,检测气体通过待测产品500之后的气压也就越大。同理,当待测产品500发生泄漏时,待测产品500的泄漏越少,待测产品500越密封,检测气体通过待测产品500之后的气压也就越大。而检测气体通过待测产品500之后会作用于浮子400,因此检测气体通过待测产品500之后的气压越大,浮子400在检测气体作用下在检测通道200内的移动速度也就越快。因此,无论待测产品500是存在堵塞还是存在泄漏,堵塞情况或者泄漏情况均和浮子400的移动速度呈现出相关性。因此,可以根据浮子400的移动速度不仅去判断待测产品500是否堵塞或者泄漏,而且可以去判断待测产品500的堵塞或者泄漏的程度。
本申请另外提供一种测堵测漏方法,包括如下步骤:
步骤1:先将合格产品放置于载具600上,然后合格产品跟随载具600运动至第一密封件110和第二密封件120之间,定位件夹持载具600;
步骤2:在第一驱动件130和第二驱动件140的驱动下,第一密封件110和第二密封件120相向运动至分别密封连通待测产品500的两端;
步骤3:供气装置释放检测气体,检测气体依次流经第一密封件110、待测产品500和第二密封件120后进入检测通道200并作用于浮子400。浮子400在检测气体作用下通过由按照预设距离间隔分布的两个传感器形成的两个检测位点,根据浮子400通过两个检测位点的时间来确定在检测气体作用下的移动速度;
步骤4:测试结束后,供气装置停止释放检测气体,浮子400在自身重力作用下复位;
步骤5:在第一驱动件130和第二驱动件140的驱动下,第一密封件110和第二密封件120相反运动至与待测产品500的两端分别断开,定位件不再夹持载具600,合格产品跟随载具600运动至离开第一密封件110和第二密封件120之间;
步骤6:将待测产品500放置于载具600上,重复步骤1-5;
步骤7:将待测产品500所检测到的浮子400移动速度和合格产品的浮子400移动速度进行对比,根据两者的偏差确定待测产品500的堵塞和泄漏情况。
当然,步骤1-5是在该测堵测漏结构初次检测待测产品500时进行确定,在后续检测过程中可以直接从步骤6开始进行检测,并与已经获知的合格产品的浮子400移动速度进行对比以确定待测产品500的堵塞和泄漏情况。
可以理解的是,检测通道200也可以沿着水平方向延伸。此时,该测堵 测漏结构还包括复位通道。复位通道和检测通道200连通。复位气体从复位通道进入检测通道200并作用于浮子400,使得浮子400沿着检测通道200反向移动至进气口210,从而使得浮子400的复位不受限于检测通道200的放置形态,扩大测堵测漏结构的使用范围。复位气体选用无毒无害气体即可,例如空气、氮气、氧气、惰性气体等。出于降低成本考虑,复位气体可选为空气。
可以理解的是,当检测通道200的材质为铝或者其他不透明材质时,检测组件300可以采用距离传感器。而此时,距离传感器设置在检测通道200远离进气口210的一端,出气口220不能设置在检测通道200的另一端,而是靠近检测通道200的另一端。距离感应器检测浮子400到距离传感器之间的距离。
可以理解的是,在实际使用过程中,受限于现有检测组件300的灵敏度,目前可以检测出堵塞和泄漏程度范围在10%-100%。但是,随着检测组件300的灵敏度提升,检测出的堵塞和泄漏范围将进一步增大。
以上所述实施方式的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施方式中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围内。

Claims (10)

  1. 一种测堵测漏结构,其特征在于:包括进气通道组件、检测通道、浮子和检测组件,所述浮子位于所述检测通道内,检测气体从所述进气通道组件经过待测产品进入所述检测通道,所述浮子在所述检测气体作用下沿着所述检测通道移动,所述检测组件通过检测所述浮子在所述检测通道内的移动速度以判断所述待测产品的堵塞或者泄漏状况。
  2. 根据权利要求1所述的测堵测漏结构,其中:所述检测通道包括进气口和出气口,所述浮子的移动范围位于所述进气口和所述出气口之间,所述进气口用于所述检测气体进入所述检测通道,所述出气口用于所述出气口和所述浮子之间的气体离开所述检测通道。
  3. 根据权利要求1所述的测堵测漏结构,其中:所述检测通道的内壁在周向上和所述浮子间隙配合。
  4. 根据权利要求1所述的测堵测漏结构,其中:所述检测通道的延伸方向和竖直方向之间存在夹角α,0≤α≤30°。
  5. 根据权利要求1所述的测堵测漏结构,其中:所述测堵测漏结构还包括复位通道,所述复位通道和所述检测通道连通,复位气体从所述复位通道通入所述检测通道,所述浮子在所述复位气体作用下沿着所述检测通道反向移动。
  6. 根据权利要求1所述的测堵测漏结构,其中:所述检测组件包括传感器,所述传感器检测所述浮子沿着所述检测通道移动预设距离所需的时间。
  7. 根据权利要求6所述的测堵测漏结构,其中:所述传感器的数量设置有多个,多个所述传感器沿着预设距离间隔分布在所述检测通道上。
  8. 根据权利要求1所述的测堵测漏结构,其中:所述进气通道组件包括 第一密封件和第二密封件,所述第一密封件和所述第二密封件分别密封连通所述待测产品的两端,所述第一密封件的两端分别密封连通提供所述检测气体的供气装置和所述待测产品,所述第二密封件的两端分别密封连通所述待测产品和所述检测通道。
  9. 一种测堵测漏方法,其特征在于:包括如下步骤:控制检测气体依次流经待测产品和浮子,检测所述浮子在所述检测气体作用下的移动速度以判断所述待测产品的堵塞或者泄漏情况。
  10. 根据权利要求9所述的测堵测漏方法,其中:检测所述浮子通过预设距离的两个检测位点的时间来确定所述浮子在检测气体作用下的移动速度。
PCT/CN2021/141585 2021-10-14 2021-12-27 测堵测漏结构及测堵测漏方法 WO2023060769A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111200451.6A CN113804365A (zh) 2021-10-14 2021-10-14 测堵测漏结构及测堵测漏方法
CN202111200451.6 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023060769A1 true WO2023060769A1 (zh) 2023-04-20

Family

ID=78937809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141585 WO2023060769A1 (zh) 2021-10-14 2021-12-27 测堵测漏结构及测堵测漏方法

Country Status (2)

Country Link
CN (1) CN113804365A (zh)
WO (1) WO2023060769A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804365A (zh) * 2021-10-14 2021-12-17 迈得医疗工业设备股份有限公司 测堵测漏结构及测堵测漏方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3527689C1 (de) * 1985-07-30 1986-10-09 Beutler Maschinenbau- und Vertriebsgesellschaft Inhaber Wolfgang Beutler, 1000 Berlin Vorrichtung zum Feststellen des Vorhandenseins eines Gases
EP0884573A2 (en) * 1997-06-11 1998-12-16 The BOC Group plc Fluid detection device
CN102768104A (zh) * 2012-06-25 2012-11-07 苏州华爱电子有限公司 饮水机的水系统检漏装置及其检漏方法
CN203549093U (zh) * 2013-09-29 2014-04-16 上海三维精密模具制造有限公司 一种阀门漏气检测装置
CN210243107U (zh) * 2019-04-30 2020-04-03 华帝股份有限公司 一种喷嘴防堵塞检测装置
CN111609977A (zh) * 2020-05-20 2020-09-01 潍坊力创电子科技有限公司 一种燃油泄漏报警器及其实现方法
CN212082747U (zh) * 2020-05-26 2020-12-04 青海盐湖工业股份有限公司 一种用于化工装置的密封性检测装置
KR102260347B1 (ko) * 2020-08-07 2021-06-03 배광성 수중 구조물의 누수 측정장치
CN113804365A (zh) * 2021-10-14 2021-12-17 迈得医疗工业设备股份有限公司 测堵测漏结构及测堵测漏方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3527689C1 (de) * 1985-07-30 1986-10-09 Beutler Maschinenbau- und Vertriebsgesellschaft Inhaber Wolfgang Beutler, 1000 Berlin Vorrichtung zum Feststellen des Vorhandenseins eines Gases
EP0884573A2 (en) * 1997-06-11 1998-12-16 The BOC Group plc Fluid detection device
CN102768104A (zh) * 2012-06-25 2012-11-07 苏州华爱电子有限公司 饮水机的水系统检漏装置及其检漏方法
CN203549093U (zh) * 2013-09-29 2014-04-16 上海三维精密模具制造有限公司 一种阀门漏气检测装置
CN210243107U (zh) * 2019-04-30 2020-04-03 华帝股份有限公司 一种喷嘴防堵塞检测装置
CN111609977A (zh) * 2020-05-20 2020-09-01 潍坊力创电子科技有限公司 一种燃油泄漏报警器及其实现方法
CN212082747U (zh) * 2020-05-26 2020-12-04 青海盐湖工业股份有限公司 一种用于化工装置的密封性检测装置
KR102260347B1 (ko) * 2020-08-07 2021-06-03 배광성 수중 구조물의 누수 측정장치
CN113804365A (zh) * 2021-10-14 2021-12-17 迈得医疗工业设备股份有限公司 测堵测漏结构及测堵测漏方法

Also Published As

Publication number Publication date
CN113804365A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
US8234911B2 (en) Method and apparatus for detecting a leak in a double pipe
CN103244833B (zh) 燃气管道泄漏检测和定位的方法及系统
WO2023060769A1 (zh) 测堵测漏结构及测堵测漏方法
ATE480704T1 (de) Leckerkennnungsverfahren sowie ventil und brennstoffsystem dafür
CN102636322B (zh) 一种输液器气密性/通气性自动检测装置及其检测方法
CN113125144B (zh) 一种自闭阀测试系统及测试装置
US20070240493A1 (en) Sprayer-sniffer probe
JP2009198472A (ja) 高圧ガス流量計測装置及び流量計測方法
CN210108647U (zh) 一种阀门的密闭性能和通风性能综合检测设备
CN205049302U (zh) 一种高压阀门密封性能检测装置
JP2006162417A (ja) 全圧・静圧測定ベンチュリ方式流量測定装置
CN214584019U (zh) 一种自闭阀测试系统及测试装置
CN201269771Y (zh) 零漏失量音速喷嘴法气体流量标准装置
CN212007656U (zh) 一种电池箱电解液泄漏检测装置
CN215931209U (zh) 测堵测漏结构
CN109268691B (zh) 一种自动预判易挥发化学介质管道泄漏的系统
CN115950493A (zh) 一种适用于亚声速流道的流量测试系统及测试方法
CN206348025U (zh) 一种气化炉煤气流速测量装置
CN105784020B (zh) 一种矩针管流量计
CN105181271A (zh) 用于管道泄漏监测系统性能测试的泄放装置及测试方法
CN202562713U (zh) 一种输液器气密性/通气性自动检测装置
CN205679440U (zh) 一种能够实现恒流量等速采样的采样系统
CN201828388U (zh) 一种用于车辆舱体的气密性测试装置
CN210266734U (zh) 一种可调节监测距离的气体管道泄漏监测装置
KR20160001590U (ko) 내부 공기 유동을 이용한 이중배관 밀폐 손상 탐지 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960492

Country of ref document: EP

Kind code of ref document: A1