WO2023060766A1 - 阶梯式充电电路及充电方法 - Google Patents

阶梯式充电电路及充电方法 Download PDF

Info

Publication number
WO2023060766A1
WO2023060766A1 PCT/CN2021/141398 CN2021141398W WO2023060766A1 WO 2023060766 A1 WO2023060766 A1 WO 2023060766A1 CN 2021141398 W CN2021141398 W CN 2021141398W WO 2023060766 A1 WO2023060766 A1 WO 2023060766A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
output
modules
charging module
output interface
Prior art date
Application number
PCT/CN2021/141398
Other languages
English (en)
French (fr)
Inventor
黄亚标
朱建国
张金磊
钟承祥
Original Assignee
深圳市永联科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市永联科技股份有限公司 filed Critical 深圳市永联科技股份有限公司
Publication of WO2023060766A1 publication Critical patent/WO2023060766A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the technical field of charging circuit structures, in particular to a stepped charging circuit and a charging method.
  • mainstream combined chargers usually use multiple charging modules with small charging power for simple combined charging, that is, all charging modules are directly connected to the same output interface.
  • the output power of the charger can be adjusted according to the charging demand of the equipment to be charged in this way, the utilization rate of the charging module can be improved, but when the output interface is occupied by a vehicle with a small demand, the output capacity will still be wasted.
  • the embodiment of the present application provides a ladder-type charging circuit and charging method, which can realize the dynamic allocation and interoperability of the charging modules among the various terminals, and ensure the utilization rate of the charging modules. At the same time, the charging efficiency is improved.
  • the embodiment of the present application provides a stepped charging circuit, including:
  • n charging modules AC power supply, AC contactor, power distribution controller, n charging modules, n output interfaces and a relay arranged between the first charging module and the second charging module, wherein the first charging module and the second charging module are For any two different charging modules among the n charging modules, the n charging modules correspond to the n output interfaces one by one, and n is an integer greater than 1;
  • the input end of the AC contactor is connected to the AC power supply, the control end of the AC contactor is connected to the first control end of the power distribution controller, and the output end of the AC contactor is respectively connected to the AC input end of each charging module in the n charging modules;
  • each charging module is connected to the corresponding output interface of each charging module, and the communication terminal of each charging module is connected to the first control terminal of the power distribution controller;
  • the input terminal of the relay is connected to the DC output terminal of the first charging module, the output terminal of the relay is connected to the DC output terminal of the second charging module, and the control terminal of the relay is connected to the second control terminal of the power distribution controller;
  • the power distribution controller is used to select from the remaining n- Determine m charging modules in one charging module, close the relay between each charging module in the m charging modules and the charging module corresponding to the i-th output interface, i is an integer greater than 0 and less than or equal to n, m is an integer greater than 0 and less than n.
  • the implementation mode of the present application provides a charging method applied to the charging circuit disclosed in the first aspect of the embodiment of the present invention, including:
  • the embodiments of the present application provide a charging pile, which includes the charging circuit as disclosed in the first aspect of the embodiments of the present invention.
  • the charging modules are divided into n groups and fixedly matched with n output interfaces, and then the n output interfaces are connected through a stepped dynamic allocation array.
  • the power distribution controller receives the charging demand of the device to be charged connected to a certain output interface, and then controls the stepped dynamic distribution array through the charging demand to realize the allocation and interoperability of charging modules between terminals, ensuring charging While improving the utilization rate of the module, the charging efficiency is improved.
  • the stepped dynamic allocation array has a simple structure and uses a small number of array units, which can further reduce the cost while being convenient to use.
  • FIG. 1 is a circuit block diagram of a stepped charging circuit provided in an embodiment of the present application
  • FIG. 2 is a circuit block diagram of another stepped charging circuit provided in an embodiment of the present application.
  • Fig. 3 is a circuit block diagram of a power distribution controller provided in an embodiment of the present application.
  • an embodiment means that a particular feature, result, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are independent or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
  • a stepped charging circuit which may include: an AC power supply, an AC contactor, a power distribution controller, several charging modules, several output interfaces and several relays.
  • the number of charging modules is the same as the number of output interfaces, and is at least 2, and there is a one-to-one correspondence between the two.
  • the number of relays is determined by the number of charging modules.
  • the charging circuit may include: an AC power source 101, an AC contactor 102, a power distribution controller 103, a first charging module 104, a second charging module 105, a first output interface 106, a second Two output interfaces 107 and a relay 108 .
  • the AC power supply 101 is composed of an AC output and an AC circuit breaker, wherein the AC circuit breaker can be used as a main switch for controlling the opening of the AC output.
  • the input terminal of the AC contactor 102 is connected to the AC power source 101, the control terminal of the AC contactor 102 is connected to the first control terminal of the power distribution controller 103, and the output terminals of the AC contactor 102 are respectively connected to the first charging module 104 and the second charging module 105 AC input.
  • the DC output end of the first charging module 104 is connected to the first output interface 106
  • the DC output end of the second charging module 105 is connected to the second output interface 107
  • the first charging module 104 and the second charging module 105 The communication terminal is connected to the first control terminal of the power distribution controller 103 .
  • the input end of the relay 108 is connected to the DC output end of the first charging module 104, the output end of the relay 108 is connected to the DC output end of the second charging module 105, and the control end of the relay 108 is connected to the power distribution controller 103. Second control terminal.
  • the device to be charged is charged through the first output interface 106/second output interface 107, and the first charging module 104/second charging module 105 corresponding to the first output interface 106/second output interface 107
  • the power distribution controller 103 can close the relay between the first charging module 104 and the second charging module 105, and the second charging module 105/first charging module 104 Call, so that the combined output power of the first output interface 106/second output interface 107 is greater than or equal to the power required by the device to be charged, and the device to be charged has been charged.
  • the number of charging modules in the charging circuit proposed by this application is far greater than 2, and the above-mentioned charging circuit structure can be regarded as a basic unit, which is used to assist in understanding that the number of charging modules is much larger The structure and working logic of the charging circuit in 2.
  • the charging circuit may include: an AC power source 201, an AC contactor 301, a power distribution controller 401, n charging modules 501-50n, n output interfaces 601-60n, and A relay between a charging module and a second charging module, wherein n charging modules correspond to n output interfaces one by one, and n is an integer greater than 1.
  • the first charging module and the second charging module can be understood as any two different charging modules among the n charging modules 501-50n.
  • a relay is provided between any two different charging modules among the n charging modules 501-50n.
  • the input end of the relay is connected to the DC output end of the first charging module
  • the output end of the relay is connected to the DC output end of the second charging module
  • the control end of the relay is connected to the second control end of the power distribution controller 401 .
  • the number k of relays can also be expressed by formula 1:
  • the AC power supply 201 is still composed of an AC output and an AC circuit breaker, wherein the AC circuit breaker can be used as a main switch to control the opening of the AC output.
  • the input terminal of the AC contactor 301 is connected to the AC power supply 201, the control terminal of the AC contactor 301 is connected to the first control terminal of the power distribution controller 401, and the output terminal of the AC contactor 301 is respectively connected to each of the n charging modules 501-50n. AC input terminal of a charging module.
  • the DC output terminal of each charging module in the n charging modules 501-50n is connected to the corresponding output interface, as shown in FIG. 2, that is, the DC output terminal of the charging module 501 is connected to the output interface 601, The DC output end of 502 is connected to the output interface 602, and the DC output end of the charging module 50n is connected to the output interface 60n.
  • the communication terminal of each of the n charging modules 501 - 50n is connected to the first control terminal of the power distribution controller 401 .
  • the power distribution controller 401 may include: a central control chip 402, a first communication interface 403, a second communication interface 404, a first digital signal output array 405 and a second digital signal output array 405.
  • Signal output array 406 may be an STM32 chip, and the first digital signal output array 405 and the second digital signal output array 406 may be relay output arrays.
  • the central control chip 402 can also be other chips, and the first digital signal output array 405 and the second digital signal output array 406 can also be one or more of a relay output array, a transistor output array, and a thyristor output array. combination, this application does not limit it.
  • the input ends of the first communication interface 403 , the second communication interface 404 and the first digital signal output array 405 can be directly connected to the central control chip 402 respectively.
  • the output terminal of the first digital signal output array 405 is the first control terminal of the power distribution controller.
  • the input terminal of the second digital signal output array 406 is connected to the central control chip through the signal distribution interface 407, wherein the signal distribution interface 407 is used to transmit the control signal sent by the central control chip 402 to any of the second digital signal output array 406.
  • a second digital signal output port, the signal distribution interface 407 can be RS486 or other communication interfaces that can realize point-to-point communication control.
  • the output terminal of the second digital signal output array 406 is the second control terminal of the power distribution controller.
  • the second digital signal output array 406 may be composed of several expansion boards, wherein each expansion board is provided with several second digital signal output ports, and each second digital signal output port Corresponding to one relay, that is, each second digital signal output port is connected to the control terminal of its corresponding relay. Based on this, in an optional implementation manner, the relays may also be grouped so that each group of relays corresponds to one expansion board.
  • this application provides a grouping method.
  • the n charging modules 501-50n are arranged in sequence according to the order of the labels, and the charging modules with small labels are arranged first.
  • the front of the large charging module for example: [charging module 501, charging module 502, ..., charging module 50n-1, charging module 50n].
  • find the relay connected to the first charging module that is, the DC output terminal of the charging module 501 among all the relays, as the first relay group 701;
  • the charging module that is, the relay connected to the DC output terminal of the charging module 502, is used as the second relay group 702; until the n-1th relay group 70n-1 is obtained. Therefore, in the subsequent deployment and interoperability process, it is possible to directly go to the relay group corresponding to the charging module to be deployed to search for a corresponding relay for operation, thereby improving efficiency.
  • the power distribution control The controller 401 can determine m charging modules from the remaining n-1 charging modules, and close the relay between each charging module in the m charging modules and the charging module corresponding to the i-th output interface, so that the i-th The combined output power of the two output interfaces is greater than or equal to the power required by the device to be charged, and the device to be charged has been charged.
  • i is an integer greater than 0 and less than or equal to n
  • m is an integer greater than 0 and less than n.
  • this application also provides a method for determining m charging modules, which specifically includes: the power distribution controller 401 may first determine k candidate charging modules from the remaining n-1 charging modules, wherein the k candidate The working state of each candidate charging module in the charging module is idle, and k is an integer greater than 0 and less than n. Specifically, when the corresponding output interface of the charging module is activated, the charging module will switch to the use state, and mark its working state as "use”. Based on this, the power distribution controller 401 may sequentially query the working state identification of each charging module in the remaining n-1 charging modules, and determine k charging modules in an idle state.
  • the difference between the power required by the device to be charged and the output power of the charging module corresponding to the i-th output interface is determined.
  • m charging modules are determined among the k candidate charging modules. Specifically, the sum of the output powers of the m charging modules is greater than the difference between the power required by the device to be charged and the output power of the charging module corresponding to the i-th output interface.
  • the power distribution controller 401 can also be used to monitor the m charging modules.
  • each output interface corresponds to a charging gun. When the charging gun is used, it will send an instruction to the power distribution controller 401 to be used, and then let the power distribution controller 401 know that its corresponding output interface is used.
  • the power distribution controller 401 controls to disconnect the relay between the charging module corresponding to the first output interface and the charging module corresponding to the i-th output interface, wherein the first The output interface is any one of the output interfaces corresponding to each of the m charging modules. Then determine j charging modules from the remaining n-m-1 charging modules, and close the relay between each charging module in the j charging modules and the charging module corresponding to the i-th output interface, where j is greater than or equal to An integer of 0 and less than or equal to n-m-1.
  • the deployment and interoperability of charging modules between terminals can be realized through the charging demand control stepped dynamic allocation array, while ensuring the utilization rate of charging modules , improving the charging efficiency.
  • the stepped dynamic allocation array has a simple structure and uses a small number of array units, which can further reduce the cost while being convenient to use.
  • the present application also provides a charging method applicable to the charging circuit described in any one of the above implementation modes, specifically, the charging method includes:
  • determining m charging modules from the remaining n-1 charging modules can be achieved in the following manner:
  • m charging modules are determined among the k candidate charging modules, wherein the sum of the output powers of the m charging modules is greater than The difference between the power required by the device to be charged and the output power of the charging module corresponding to the i-th output interface.
  • the charging method after closing the relay between each of the m charging modules and the charging module corresponding to the i-th output interface, the charging method further includes:
  • the relay between the charging module corresponding to the first output interface and the charging module corresponding to the i-th output interface is disconnected, wherein the first output interface is for each of the m charging modules. Any one of the output interfaces corresponding to the charging modules;
  • the present application further provides a charging pile, where the charging pile includes the charging circuit described in any one of the foregoing implementation manners.
  • circuits, devices, equipment, etc. may be implemented in other ways.
  • the implementations of circuits, devices, equipment, etc. described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or Components may be combined or integrated into another system, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented not only in the form of hardware, but also in the form of software program modules.
  • the integrated units may be stored in a computer-readable memory if implemented in the form of a software program module and sold or used as an independent product.
  • the technical solution of the present application is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned memory includes: various media that can store program codes such as U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种阶梯式充电电路及充电方法,该充电电路包括:交流电源、交流接触器、功率分配控制器、n个充电模块、n个输出接口以及设置于第一充电模块和第二充电模块之间的继电器;交流接触器的输入端连接交流电源,交流接触器的控制端连接功率分配控制器的第一控制端,交流接触器的输出端分别连接n个充电模块中的每个充电模块的交流输入端;每个充电模块的直流输出端连接每个充电模块对应的输出接口,每个充电模块的通讯端连接功率分配控制器的第一控制端;继电器的输入端连接第一充电模块的直流输出端,继电器的输出端连接第二充电模块的直流输出端,继电器的控制端连接功率分配控制器的第二控制端。

Description

阶梯式充电电路及充电方法
本申请要求于2021年10月11日提交中国专利局、申请号为202111178905.4、申请名称为“阶梯式充电电路及充电方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及充电电路结构技术领域,具体涉及一种阶梯式充电电路及充电方法。
背景技术
当前,随着新能源汽车的慢慢普及,市面上涌现了各种类型的新能源车辆。而这些车辆的性能参数方面表现得参差不齐,继而为了满足不同性能参数的车辆的充电需求,运营方往往会选择充电功率较大的充电机。但是,充电功率较大的充电机在给充电功率需求小的车辆充电时,会造成输出能力的浪费,且充电模块无法工作在最高效率点,造成资源的利用率低,变相的提升了成本。
目前,主流的组合式充电机通常采用多台充电功率较小的充电模块进行简单的组合充电,即,使所有充电模块都与同一个输出接口直接连接。这样做虽然可以根据待充电的设备的充电需求调节充电机的输出功率,提高充电模块的利用率,但是,在输出接口被需求较小的车辆占用时,还是会造成输出能力的浪费。
发明内容
为了解决现有技术中存在的上述问题,本申请实施方式提供了一种阶梯式充电电路及充电方法,可以实现各个终端之间充电模块的动态分配以及调配互用,在保障充电模块的利用率的同时,提高了充电效率。
第一方面,本申请的实施方式提供了一种阶梯式充电电路,包括:
交流电源、交流接触器、功率分配控制器、n个充电模块、n个输出接口以及设置于第一充电模块和第二充电模块之间的继电器,其中,第一充电模块和第二充电模块为n个充电模块中任意两个不同的充电模块,n个充电模块与n个输出接口一一对应,n为大于1的整数;
交流接触器的输入端连接交流电源,交流接触器的控制端连接功率分配控制器的第一控制端,交流接触器的输出端分别连接n个充电模块中的每个充电模块的交流输入端;
每个充电模块的直流输出端连接每个充电模块对应的输出接口,每个充电模块的通讯端连接功率分配控制器的第一控制端;
继电器的输入端连接第一充电模块的直流输出端,继电器的输出端连接第二充电模块的直流输出端,继电器的控制端连接功率分配控制器的第二控制端;
其中,在通过第i个输出接口对待充电设备进行充电,且第i个输出接口对应的充电模块的输出功率小于待充电设备所需的功率时,功率分配控制器,用于从剩余的n-1个充电模块中确定m个充电模块,闭合m个充电模块中的每个充电模块与第i个输出接口对应的充电模块之间的继电器,i为大于0且小于或等于n的整数,m为大于0且小于n的整数。
第二方面,本申请实施方式提供一种应用于本发明实施例第一方面公开的充电电路的充电方法,包括:
在通过第i个输出接口对待充电设备进行充电,且第i个输出接口对应的充电模块的输出功率小于待充电设备所需的功率时,从剩余的n-1个充电模块中确定m个充电模块;
闭合m个充电模块中的每个充电模块与第i个输出接口对应的充电模块之间的继电器。
第三方面,本申请实施方式提供一种充电桩,该充电桩包括如本发明实施例第一方面公开的充电电路。
实施本申请实施方式,具有如下有益效果:
可以看出,在本申请实施方式中,通过将充电模块分为n组与n个输出接口固定匹配,再通过阶梯式动态分配阵列将n个输出接口连接。在充电时,由功率分配控制器接收某一输出接口连接的待充电设备的充电需求,继而通过该充电需求控制阶梯式动态分配阵列来实现各个终端之间充电模块的调配互用,在保障充电模块的利用率的同时,提高了充电效率。同时,阶梯式动态分配阵列结构简单、所使用的阵列单元数量较少,在使用方便的同时,可以进一步的降低成本。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施方式提供的一种阶梯式充电电路的电路框图;
图2为本申请实施方式提供的另一种阶梯式充电电路的电路框图;
图3为本申请实施方式提供的一种功率分配控制器的电路框图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施方式”意味着,结合实施方式描述的特定特征、结果或特性可以包含在本申请的至少一个实施方式中。在说明书中的各个位置出现该短语并不一定均是指相同的实施方式,也不是与其它实施方式互斥的独立的或备选的实施方式。本领域技术人员显式地和隐式地理解的是,本文所描述的实施方式可以与其它实施方式相结合。
在本申请中,公开了一种阶梯式的充电电路,该电路可以包括:交流电源、交流接触器、功率分配控制器、若干个充电模块、若干个输出接口以及若干个继电器。示例性的,在本实施方式中,充电模块的数量与输出接口的数量相同,且最少为2,同时,两者之间为一一对应的关系。而继电器的数量,则是由充电模块的数量进行确定。
接下来,将以2个充电模块的情况为例,对本申请提出的充电电路进行描述。具体而言,如图1所示,该充电电路可以包括:交流电源101、交流接触器102、功率分配控制器103、第一充电模块104、第二充电模块105、第一输出接口106、第二输出接口107以及继电器108。
在本实施方式中,交流电源101由交流输出和交流断路器组成,其中,交流断路器可以作为总开关,用于控制交流输出的开启。交流接触器102的输入端连接交流电源101,交流接触器102的控制端连接功率分配控制器103的第一控制端,交流接触器102的输出端分别连接第一充电模块104和第二充电模块105的交流输入端。
在本实施方式中,第一充电模块104的直流输出端连接第一输出接口106,第二充电模块105的直流输出端连接第二输出接口107,第一充电模块104和第二充电模块105的通讯端连接功率分配控制器103的第一控制端。
在本实施方式中,继电器108的输入端连接第一充电模块104的直流输出端,继电器108的输出端连接第二充电模块105的直流输出端,继电器108的控制端连接功率分配控制器103的第二控制端。
在本实施方式中,在通过第一输出接口106/第二输出接口107对待充电设备进行充电,且第一输出接口106/第二输出接口107对应的第一充电模块104/第二充电模块105的输出功率小于待充电设备所需的功率时,功率分配控制器103可以,闭合第一充电模块104和第二充电模块105之间的继电器,对第二充电模块105/第一充电模块104进行调用,以使第一输出接口106/第二输出接口107的组合输出功率大于或等于待充电设备所需的功率,已对待充电设备进行充电。
当然,在实际运用中,本申请所提出的充电电路中的充电模块的数量是远远大于2的,上述的充电电路结构可以视为一个基础单元,用于辅助理解充电模块的数量是远远大于2的充电电路的结构和工作逻辑。
以下,将以n个充电模块的情况为例,对本申请提出的充电电路进行描述。具体而言,如图2所示,该充电电路可以包括:交流电源201、交流接触器301、功率分配控制器401、n个充电模块501-50n、n个输出接口601-60n以及设置于第一充电模块和第二充电模块之间的继电器,其中,n个充电模块与n个输出接口一一对应,n为大于1的整数。
在本实施方式中,第一充电模块和第二充电模块可以理解为n个充电模块501-50n中的任意两个不同的充电模块。换句话说,即n个充电模块501-50n中的任意两个不同的充电模块之间,都设置有一个继电器。具体而言,继电器的输入端连接第一充电模块的直流输出端,继电器的输出端连接第二充电模块的直流输出端,继电器的控制端连接功率分配控制器401的第二控制端。基于此,继电器的数量k也可以通过公式①进行表示:
Figure PCTCN2021141398-appb-000001
在本实施方式中,交流电源201依旧由交流输出和交流断路器组成,其中,交流断路器可以作为总开关,用于控制交流输出的开启。交流接触器301的输入端连接交流电源201,交流接触器301的控制端连接功率分配控制器401的第一控制端,交流接触器301的输出端分别连接n个充电模块501-50n中的每个充电模块的交流输入端。
在本实施方式中,n个充电模块501-50n中的每个充电模块的直流输出端连接对应的输出接口,如图2所示,即充电模块501的直流输出端连接输出接口601、充电模块502的直流输出端连接输出接口602、充电模块50n的直流输出端连接输出接口60n。同时,n个充电模块501-50n中的每个充电模块的通讯端连接功率分配控制器401的第一控制端。
同时,在本实施方式中,如图3所示,功率分配控制器401可以包括:中控芯片402、第一通讯接口403、第二通讯接口404、第一数字信号输出阵列405和第二数字信号输出阵列406。具体而言,中控芯片402可以是STM32芯片,第一数字信号输出阵列405和第二数字信号输出阵列406可以是继电器输出阵列。当然,中控芯片402也可以是其他芯片,而第一数字信号输出阵列405和第二数字信号输出阵列406也可以是继电器输出阵列、晶体管输出阵列、晶闸管输出阵列中的一种或多种的组合,本申请对此不做限制。
在本实施方式中,第一通讯接口403、第二通讯接口404和第一数字信号输出阵列405的输入端,可以分别与中控芯片402直接连接。第一数字信号输出阵列405的输出端为功率分配控制器的第一控制端。第二数字信号输出阵列406的输入端与中控芯片通过信号分发接口407连接,其中,信号分发接口407用于将中控芯片402发出的控制信号传递给第二数字信号输出阵列406中的任意一个第二数字信号输出端口,信号分发接口407可以是RS486或其他可以是实 现点对点通讯控制的通讯接口。第二数字信号输出阵列406的输出端为功率分配控制器的第二控制端。
在可选的实施方式中,第二数字信号输出阵列406可以由若干个扩展板组成,其中,每个扩展板上设置有若干个第二数字信号输出端口,且每个第二数字信号输出端口对应于一个继电器,即,该每个第二数字信号输出端口与其对应的继电器的控制端连接。基于此,在可选的实施方式中,还可以将继电器进行分组,使每一组继电器对应于一个扩展板。
具体而言,本申请中提供了一种分组方法,如图2所示,在该实施方式中,预先将n个充电模块501-50n按照标号的顺序依次排列,标号小的充电模块排在标号大的充电模块的前面,例如:【充电模块501、充电模块502、……、充电模块50n-1、充电模块50n】。确定排列顺序后,在所有继电器中找出与第1位充电模块,即充电模块501的直流输出端连接的继电器,作为第1组继电器组701;再在剩下的继电器中找出与第2位充电模块,即充电模块502的直流输出端连接的继电器,作为第2组继电器组702;直至得到第n-1组继电器组70n-1。由此,在后续的调配互用的过程中,可以直接前往被调配的充电模块对应的继电器组中查找相应的继电器进行操作,提升了效率。
基于上述电路结构,在本实施方式中,在通过第i个输出接口对待充电设备进行充电,且第i个输出接口对应的充电模块的输出功率小于待充电设备所需的功率时,功率分配控制器401可以从剩余的n-1个充电模块中确定m个充电模块,闭合该m个充电模块中的每个充电模块与第i个输出接口对应的充电模块之间的继电器,以使第i个输出接口的组合输出功率大于或等于待充电设备所需的功率,已对待充电设备进行充电。其中,i为大于0且小于或等于n的整数,m为大于0且小于n的整数。
具体而言,对于确定m个充电模块的方法,在本实施方式中,可以根据上述确定的充电模块的排序向前或向后依次寻找符合要求的充电模块,直至确定m个充电模块。同时,本申请中也提供了一种确定m个充电模块的方法,具体包括:功率分配控制器401可以首先从剩余的n-1个充电模块中确定k个候选充电模块,其中,k个候选充电模块中的每个候选充电模块的工作状态为空闲,k为大于0且小于n的整数。具体而言,当充电模块对应的输出接口被激活后,该充电模块会切换为使用状态,将自身的工作状态标识标记为“使用”。基于此, 功率分配控制器401可以依次查询剩余的n-1个充电模块中的每个充电模块的工作状态标识,确定处于空闲状态的k个充电模块。
然后,确定待充电设备所需的功率与第i个输出接口对应的充电模块的输出功率的差。最后,根据待充电设备所需的功率与第i个输出接口对应的充电模块的输出功率的差,在k个候选充电模块中确定m个充电模块。具体而言,该m个充电模块的输出功率的和,大于待充电设备所需的功率与第i个输出接口对应的充电模块的输出功率的差。
此外,在本实施方式中,在闭合m个充电模块中的每个充电模块与第i个输出接口对应的充电模块之间的继电器之后,功率分配控制器401还可以用于监测该m个充电模块中的每个充电模块对应的输出接口的使用情况。具体而言,每个输出接口均对应一个充电枪,当充电枪被使用时,会向功率分配控制器401发出被使用的指令,继而使功率分配控制器401知晓其对应的输出接口被使用。
基于此,当监测到第一输出接口被使用时,功率分配控制器401控制断开该第一输出接口对应的充电模块与第i个输出接口对应的充电模块之间的继电器,其中,第一输出接口为m个充电模块中的每个充电模块对应的输出接口中的任意一个输出接口。再从剩余的n-m-1个充电模块中确定j个充电模块,闭合j个充电模块中的每个充电模块与第i个输出接口对应的充电模块之间的继电器,其中,j为大于或等于0且小于或等于n-m-1的整数。
由此,通过本申请的实施方式所提供的阶梯式充电电路,实现了通过充电需求控制阶梯式动态分配阵列来实现各个终端之间充电模块的调配互用,在保障充电模块的利用率的同时,提高了充电效率。同时,阶梯式动态分配阵列结构简单、所使用的阵列单元数量较少,在使用方便的同时,可以进一步的降低成本。
此外,本申请还提供了一种适用于上述任意一种实施方式所述的充电电路的充电方法,具体而言,该充电方法包括:
在通过第i个输出接口对待充电设备进行充电,且第i个输出接口对应的充电模块的输出功率小于待充电设备所需的功率时,从剩余的n-1个充电模块中确定m个充电模块;闭合m个充电模块中的每个充电模块与第i个输出接口对应的充电模块之间的继电器。
在本实施方式中,从剩余的n-1个充电模块中确定m个充电模块,可以通 过以下方式实现:
从剩余的n-1个充电模块中确定k个候选充电模块,其中,k个候选充电模块中的每个候选充电模块的工作状态为空闲,k为大于0且小于n的整数;
确定待充电设备所需的功率与第i个输出接口对应的充电模块的输出功率的差;
根据待充电设备所需的功率与第i个输出接口对应的充电模块的输出功率的差,在k个候选充电模块中确定m个充电模块,其中,m个充电模块的输出功率的和,大于待充电设备所需的功率与第i个输出接口对应的充电模块的输出功率的差。
在本实施方式中,在闭合m个充电模块中的每个充电模块与第i个输出接口对应的充电模块之间的继电器之后,该充电方法还包括:
监测m个充电模块中的每个充电模块对应的输出接口的使用情况;
当监测到第一输出接口被使用时,断开第一输出接口对应的充电模块与第i个输出接口对应的充电模块之间的继电器,其中,第一输出接口为m个充电模块中的每个充电模块对应的输出接口中的任意一个输出接口;
从剩余的n-m-1个充电模块中确定j个充电模块,闭合j个充电模块中的每个充电模块与第i个输出接口对应的充电模块之间的继电器,其中,j为大于或等于0且小于或等于n-m-1的整数。
此外,在一个可能的实施方式中,本申请还提供了一种充电桩,该充电桩包括了上述任意一种实施方式所述的充电电路。
需要说明的是,对于前述的各发明实施方式,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施方式均属于可选实施方式,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施方式中,对各个实施方式的描述都各有侧重,某个实施方式中没有详述的部分,可以参见其他实施方式的相关描述。
在本申请所提供的几个实施方式中,应该理解到,所揭露的电路、装置、设备等,均可通过其它的方式实现。例如,以上所描述的电路、装置、设备等实施方式仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。
所述集成的单元如果以软件程序模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施方式所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施方式的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本申请实施方式进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应 理解为对本申请的限制。

Claims (10)

  1. 一种阶梯式充电电路,其特征在在于,所述充电电路包括:
    交流电源、交流接触器、功率分配控制器、n个充电模块、n个输出接口以及设置于第一充电模块和第二充电模块之间的继电器,其中,所述第一充电模块和所述第二充电模块为所述n个充电模块中任意两个不同的充电模块,所述n个充电模块与所述n个输出接口一一对应,n为大于1的整数;
    所述交流接触器的输入端连接所述交流电源,所述交流接触器的控制端连接所述功率分配控制器的第一控制端,所述交流接触器的输出端分别连接所述n个充电模块中的每个充电模块的交流输入端;
    所述每个充电模块的直流输出端连接所述每个充电模块对应的输出接口,所述每个充电模块的通讯端连接所述功率分配控制器的第一控制端;
    所述继电器的输入端连接所述第一充电模块的直流输出端,所述继电器的输出端连接所述第二充电模块的直流输出端,所述继电器的控制端连接所述功率分配控制器的第二控制端;
    其中,在通过第i个输出接口对待充电设备进行充电,且所述第i个输出接口对应的充电模块的输出功率小于所述待充电设备所需的功率时,所述功率分配控制器,用于从剩余的n-1个充电模块中确定m个充电模块,闭合所述m个充电模块中的每个充电模块与所述第i个输出接口对应的充电模块之间的继电器,i为大于0且小于或等于n的整数,m为大于0且小于n的整数。
  2. 根据权利要求1所述的充电电路,其特征在于,
    所述功率分配控制器包括:中控芯片、第一通讯接口、第二通讯接口、第一数字信号输出阵列和第二数字信号输出阵列;
    所述第一通讯接口、所述第二通讯接口和所述第一数字信号输出阵列的输入端,分别与所述中控芯片连接;
    所述第一数字信号输出阵列的输出端为所述功率分配控制器的第一控制端;
    所述第二数字信号输出阵列的输入端与所述中控芯片通过信号分发接口连接,其中,所述信号分发接口用于将所述中控芯片发出的控制信号传递给所述第二数字信号输出阵列中的任意一个第二数字信号输出端口;
    所述第二数字信号输出阵列的输出端为所述功率分配控制器的第二控制 端。
  3. 根据权利要求2所述的充电电路,其特征在于,
    所述中控芯片为STM32芯片,所述信号分发接口为RS485接口。
  4. 根据权利要求2所述的充电电路,其特征在于,
    所述第一数字信号输出阵列和所述第二数字信号输出阵列为继电器输出阵列、晶体管输出阵列、晶闸管输出阵列中的一种或多种的组合。
  5. 根据权利要求1-4中任意一项所述的充电电路,其特征在于,在所述从剩余的n-1个充电模块中确定m个充电模块方面,所述功率分配控制器,具体用于:
    从所述剩余的n-1个充电模块中确定k个候选充电模块,其中,所述k个候选充电模块中的每个候选充电模块的工作状态为空闲,k为大于0且小于n的整数;
    确定所述待充电设备所需的功率与所述第i个输出接口对应的充电模块的输出功率的差;
    根据所述待充电设备所需的功率与所述第i个输出接口对应的充电模块的输出功率的差,在所述k个候选充电模块中确定所述m个充电模块,其中,所述m个充电模块的输出功率的和,大于所述待充电设备所需的功率与所述第i个输出接口对应的充电模块的输出功率的差。
  6. 根据权利要求1-4中任意一项所述的充电电路,其特征在于,在所述闭合所述m个充电模块中的每个充电模块与所述第i个输出接口对应的充电模块之间的继电器之后,所述功率分配控制器,还用于:
    监测所述m个充电模块中的每个充电模块对应的输出接口的使用情况;
    当监测到第一输出接口被使用时,断开所述第一输出接口对应的充电模块与所述第i个输出接口对应的充电模块之间的继电器,其中,所述第一输出接口为所述m个充电模块中的每个充电模块对应的输出接口中的任意一个输出接口;
    从剩余的n-m-1个充电模块中确定j个充电模块,闭合所述j个充电模块中的每个充电模块与所述第i个输出接口对应的充电模块之间的继电器,其中,j为大于或等于0且小于或等于n-m-1的整数。
  7. 一种应用于如权利要求1-6中任一项所述的充电电路的充电方法,其特征在于,所述充电方法包括:
    在通过第i个输出接口对待充电设备进行充电,且所述第i个输出接口对应的充电模块的输出功率小于所述待充电设备所需的功率时,从剩余的n-1个充电模块中确定m个充电模块;
    闭合所述m个充电模块中的每个充电模块与所述第i个输出接口对应的充电模块之间的继电器。
  8. 根据权利要求7所述的充电方法,其特征在于,所述从剩余的n-1个充电模块中确定m个充电模块,包括:
    从所述剩余的n-1个充电模块中确定k个候选充电模块,其中,所述k个候选充电模块中的每个候选充电模块的工作状态为空闲,k为大于0且小于n的整数;
    确定所述待充电设备所需的功率与所述第i个输出接口对应的充电模块的输出功率的差;
    根据所述待充电设备所需的功率与所述第i个输出接口对应的充电模块的输出功率的差,在所述k个候选充电模块中确定所述m个充电模块,其中,所述m个充电模块的输出功率的和,大于所述待充电设备所需的功率与所述第i个输出接口对应的充电模块的输出功率的差。
  9. 根据权利要求7或8所述的充电方法,其特征在于,在所述闭合所述m个充电模块中的每个充电模块与所述第i个输出接口对应的充电模块之间的继电器之后,所述充电方法还包括:
    监测所述m个充电模块中的每个充电模块对应的输出接口的使用情况;
    当监测到第一输出接口被使用时,断开所述第一输出接口对应的充电模块与所述第i个输出接口对应的充电模块之间的继电器,其中,所述第一输出接口 为所述m个充电模块中的每个充电模块对应的输出接口中的任意一个输出接口;
    从剩余的n-m-1个充电模块中确定j个充电模块,闭合所述j个充电模块中的每个充电模块与所述第i个输出接口对应的充电模块之间的继电器,其中,j为大于或等于0且小于或等于n-m-1的整数。
  10. 一种充电桩,其特征在于,所述充电桩包括如权利要求1-6中任意一项所述的充电电路。
PCT/CN2021/141398 2021-10-11 2021-12-25 阶梯式充电电路及充电方法 WO2023060766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111178905.4A CN113619433B (zh) 2021-10-11 2021-10-11 阶梯式充电电路及充电方法
CN202111178905.4 2021-10-11

Publications (1)

Publication Number Publication Date
WO2023060766A1 true WO2023060766A1 (zh) 2023-04-20

Family

ID=78390814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141398 WO2023060766A1 (zh) 2021-10-11 2021-12-25 阶梯式充电电路及充电方法

Country Status (2)

Country Link
CN (1) CN113619433B (zh)
WO (1) WO2023060766A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113619433B (zh) * 2021-10-11 2021-12-17 深圳市永联科技股份有限公司 阶梯式充电电路及充电方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810894A (zh) * 2015-05-08 2015-07-29 山东鲁能智能技术有限公司 一种电动汽车分体式直流充电桩、系统及方法
CN207283228U (zh) * 2017-10-26 2018-04-27 深圳驿普乐氏科技有限公司 一种充电桩及其功率分配电路
CN109455106A (zh) * 2018-10-17 2019-03-12 国网浙江省电力有限公司杭州供电公司 一种电动汽车智能充电站
CN109941144A (zh) * 2019-02-14 2019-06-28 深圳市永联科技股份有限公司 一种充电效率优先动态柔性分配功率的充电系统和方法
CN110212624A (zh) * 2019-07-09 2019-09-06 成都智邦科技有限公司 一种适用于公交或物流场站的电动汽车充电设备及方法
EP3628534A1 (de) * 2018-09-25 2020-04-01 Innogy SE Mehrfachladeanschlussvorrichtung für elektrofahrzeuge
CN113619433A (zh) * 2021-10-11 2021-11-09 深圳市永联科技股份有限公司 阶梯式充电电路及充电方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795877B (zh) * 2015-05-08 2017-07-18 山东鲁能智能技术有限公司 电动汽车一体化直流充电机、系统及方法
EP3663124A1 (en) * 2018-12-07 2020-06-10 David Timothy Patrick Watson System and method for controlling charging of an electric energy storage system of an electric vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810894A (zh) * 2015-05-08 2015-07-29 山东鲁能智能技术有限公司 一种电动汽车分体式直流充电桩、系统及方法
CN207283228U (zh) * 2017-10-26 2018-04-27 深圳驿普乐氏科技有限公司 一种充电桩及其功率分配电路
EP3628534A1 (de) * 2018-09-25 2020-04-01 Innogy SE Mehrfachladeanschlussvorrichtung für elektrofahrzeuge
CN109455106A (zh) * 2018-10-17 2019-03-12 国网浙江省电力有限公司杭州供电公司 一种电动汽车智能充电站
CN109941144A (zh) * 2019-02-14 2019-06-28 深圳市永联科技股份有限公司 一种充电效率优先动态柔性分配功率的充电系统和方法
CN110212624A (zh) * 2019-07-09 2019-09-06 成都智邦科技有限公司 一种适用于公交或物流场站的电动汽车充电设备及方法
CN113619433A (zh) * 2021-10-11 2021-11-09 深圳市永联科技股份有限公司 阶梯式充电电路及充电方法

Also Published As

Publication number Publication date
CN113619433B (zh) 2021-12-17
CN113619433A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
KR101719262B1 (ko) 충전기, 충전 단말기, 충전 시스템, 충전 제어방법, 프로그램 및 기록매체
CN103944739B (zh) 智能poe电源供电系统及其高效poe电源管理方法
US20130088084A1 (en) Networklized DC Power System
US9509160B2 (en) Fast charging terminal
WO2023000732A1 (zh) 一种充放电电路和电子设备
WO2017071280A1 (zh) 电池倍压充电电路和移动终端
CN103777734A (zh) 机柜式服务器系统与其操作方法
CN107294172A (zh) 终端设备、电源适配器及充电控制方法
CN110800183A (zh) 多节电芯的充电方法、装置、介质及电子设备
US20170117724A1 (en) Battery voltage-multiplying charging circuit and mobile terminal
CN104218632A (zh) 电源供应装置
CN218691735U (zh) 一种锂电池化成分容装置
WO2023060766A1 (zh) 阶梯式充电电路及充电方法
CN108233699A (zh) 一种电源管理芯片、供电系统和电子设备
CN106330468A (zh) 一种以太网供电装置以及以太网供电方法
CN115663978B (zh) 电池储能供电系统、电池包的电压均衡方法、装置
JP6990271B2 (ja) 充電回路および電子機器
CA2989841A1 (en) Power adapter, terminal device, charging system, and charging method
CN112993418A (zh) 储能系统
WO2023077671A1 (zh) 功率分配装置、充电系统、充电设备、充电站和充电方法
US10230244B2 (en) Multi-bay modular battery charging system
CN115276181A (zh) 电池组的并机控制方法、装置、设备及存储介质
CN115158092A (zh) 充放电装置、飞行设备和充放电控制方法及其控制装置
EP4199429A1 (en) Network power sourcing system
CN114513036B (zh) 一种便携式储能电源并包系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE