WO2023060531A1 - Time domain transmission on/off configuration - Google Patents

Time domain transmission on/off configuration Download PDF

Info

Publication number
WO2023060531A1
WO2023060531A1 PCT/CN2021/123982 CN2021123982W WO2023060531A1 WO 2023060531 A1 WO2023060531 A1 WO 2023060531A1 CN 2021123982 W CN2021123982 W CN 2021123982W WO 2023060531 A1 WO2023060531 A1 WO 2023060531A1
Authority
WO
WIPO (PCT)
Prior art keywords
time resource
slot
time
transmission
symbol
Prior art date
Application number
PCT/CN2021/123982
Other languages
French (fr)
Inventor
Zhi YAN
Hongmei Liu
Yuantao Zhang
Haiming Wang
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2021/123982 priority Critical patent/WO2023060531A1/en
Publication of WO2023060531A1 publication Critical patent/WO2023060531A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the subject matter disclosed herein generally relates to wireless communications, and more particularly relates to methods and apparatuses for configuring time domain transmission ON and transmission OFF.
  • New Radio NR
  • VLSI Very Large Scale Integration
  • RAM Random Access Memory
  • ROM Read-Only Memory
  • EPROM or Flash Memory Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • LAN Local Area Network
  • WAN Wide Area Network
  • UE User Equipment
  • eNB Evolved Node B
  • gNB Next Generation Node B
  • Uplink UL
  • Downlink DL
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • FPGA Field Programmable Gate Array
  • OFDM Orthogonal Frequency Division Multiplexing
  • RRC Radio Resource Control
  • RX User Entity/Equipment
  • TX Transmitter
  • TX Receiver
  • TDD Time Division Duplex
  • TDD Time Division Duplex
  • slot format indicates how each of slots within frames or within super frames or symbols within a single slot is used.
  • TDD there are some possible combinations of DL symbol (s) , UL symbol (s) , flexible symbol (s) within a slot or even longer time duration (e.g., frame) .
  • a DL symbol is used to transmit DL signals;
  • a UL symbol is used to transmit UL signals; and
  • a flexible symbol can be configured to a DL symbol or a UL symbol by higher layer signaling.
  • NR slot format indication includes cell-specific configuration (which means that all UEs in a cell are indicated with a specific slot format) , UE-specific configuration (which means each UE is indicated with a separate slot format) , and DCI indication (which means that the slot format of a UE can be indicated by a DCI) .
  • the slot format is configured in a periodic manner. All UEs within a cell are cell-specifically configured with several DL slots (D1) plus several DL symbols (d1) at the beginning of a period P, and several UL symbol (u1) plus several UL slots (U1) in the end of the period P, where the remaining slots and symbols in the period P (between DL slots and/or symbols and UL slots and/or symbols) are assumed to be “flexible” .
  • This configuration can be referred to as slot format P.
  • Each slot (e.g. slot k-1, slot k and slot k+1) that contains flexible symbols is a flexible slot.
  • All UEs within a cell may be further cell-specifically configured with another several DL slots (D2) plus several DL symbols (d2) at the beginning of a period P2, and several UL symbol (u2) plus several UL slots (U2) in the end of the period P2, where the remaining slots and symbols (between DL slots and/or symbols and UL slots and/or symbols) in the period P2 are assumed to be “flexible” .
  • This configuration can be referred to as slot format P2.
  • the slot format P2 has the same structure as the slot format P, except that each of D2, d2, u2 and U2 can be configured differently from each of D1, d1, u1 and U1.
  • Figure 2 illustrates a slot format combination with a period P (slot format P1) and another period P2 (slot format P2) .
  • the slot format is cyclically repeated with a period of P+P2 (i.e. two slot formats P and P2) in two frames (i.e. 20ms) . It implies that 20ms/ (P+P2) should be an integer.
  • the slot format combination (of two slot formats P and P2) starts from the first symbol (of the first slot) of every even frame, and cyclically repeated in two frames (i.e. in 20ms) .
  • N integer number of (P+P2) period.
  • slots/symbols mean slot (s) (e.g. D1 if d1 is configured as 0) or symbol (s) (e.g. d1 if D1 is configured as 0) or slot (s) and symbol (s) (e.g. D1 and d1) .
  • These DL slots/symbols are split by flexible slots/symbols and uplink slots/symbols.
  • DL slots/symbols (D1 and d1) and DL slots/symbols (D2 and d2) are split by flexible slots/symbols (in slot k-1, slot k and slot k+1) and uplink slots/symbols (u1 and U1) .
  • slots/symbols configured as “flexible” cell-specifically can be optionally configured to DL or UL via dedicated signaling (e.g. dedicated RRC signaling) .
  • the configured “flexible” slot is labeled via the slot index configured by higher layer.
  • Each slot that includes flexible symbols is flexible slot.
  • each of slot k-1, slot k and slot k+1 is a flexible slot.
  • the flexible slot format indication which indicates each of the flexible symbols in a single flexible slot is a DL slot or a UL slot, is done slot by slot.
  • the flexible symbol (s) in a flexible slot can be indicated as all downlink symbols, all uplink symbols, or a part of uplink symbols and a part of downlink symbols.
  • Figure 4 illustrates an example of flexible slots/symbols indication.
  • a particular slot for example, slot k or slot k+1, which is configured to be the flexible slot by cell-specific signaling
  • all symbols are indicated as DL symbols
  • all symbols are indicated as UL symbols
  • a part of symbols are indicated as DL symbols (e.g. 8 symbols are indicated as DL symbols) and a part of symbols are indicated as UL symbols (e.g. 6 symbols are indicated as UL symbols) .
  • slot k-1 (flexible slot k-1)
  • the first seven (7) symbols are cell-specifically configured as DL symbols. So, it is not allowed to reconfigure these seven DL symbols. For example, it is not allowed to reconfigure slot k-1 to have 8 DL symbols and 6 UL symbols.
  • the slot format can be dynamically indicated, e.g. by DCI format 2_0 in NR.
  • DCI format 2_0 which is scrambled by SFI_RNTI, is used for notifying following information to UE: slot format; COT (Channel Occupancy Time) duration, available RB set, and search space set group switching.
  • slot format indicator SFI
  • a bit string indicating Slot format indicator 1, Slot format indicator 2, ..., Slot format indicator N is defined.
  • DCI format 2_0 includes one or multiple SFI Index fields, where each SFI Index field carries an SFI indication (i.e. an Slot Format Combination ID) .
  • SFI Index 1 an SFI indication
  • Each slot format is defined in TS38.213 v15.7 Table 11.1.1-1 (only slot formats 0 to 13 are illustrated in Figure 5) .
  • slot format 3 means that symbols 0 to 12 in this slot are downlink (DL) symbols and symbol 13 in this slot is flexible symbol.
  • slot format 8 means that symbols 0 to 12 in this slot are flexible symbols and symbol 13 in this slot is uplink (UL) symbol.
  • Each Slot Format Combination ID indicates a combination of slot formats configured by higher layer signaling. For example, Slot Format Combination ID being equal to 2 indicates a combination of slot formats 3, 3, 3, 3, 6, 7, 8, which means that seven consecutive slots sequentially have the slot formats 3, 3, 3, 3, 6, 7, 8.
  • an NR slot format is configured, in which slots/symbols in a time duration are configured as downlink (DL) , or uplink (UL) or flexible.
  • the base station e.g. gNB
  • the base station can transmit data or signal to UE (s) .
  • some DL slots/symbols may be configured to OFF (maybe referred to as “switch off DL slots/symbols” or “mute DL slots/symbols) . It means that the base station (e.g. gNB) is not allowed to transmit data or signal in the DL slots/symbols that are configured to OFF, except for the signals that must be transmitted in these DL slots/symbols.
  • the base station e.g. gNB
  • This invention targets indicating DL and/or UL slots/symbols ON/OFF/pending.
  • a method at an UE comprises receiving configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof; and transmitting or receiving signal based on the configuration messages.
  • the time resource is slot or symbol.
  • the length of the time resource mask or the range of each time resource offset in the time resource offset set is determined by the number of DL time resources or UL time resources in the time duration.
  • the DL time resources include at least one of DL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as DL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as DL time resource (s) by higher layer signaling.
  • the UL time resources include at least one of UL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as UL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as UL time resource (s) by higher layer signaling.
  • the time duration may be determined by at least one of the periods of the time resource format indication, a configured number, and frame numerology.
  • the configuration messages may further include a set of combination IDs and combinations of time resource masks or of time resource offset sets, where each combination ID corresponds to one combination.
  • the method may further comprise receiving a control signal containing a field of a combination ID, wherein the position of the field in the control signal is configured by higher layer.
  • the method may further comprise receiving a control signal, the control signal includes an indication that can enable or disable the transmission pending time resource (s) .
  • a method at a base unit comprises transmitting configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof; and transmitting or receiving signal based on the configuration messages.
  • a remote unit comprises a transceiver that receives configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof, wherein the transceiver further transmits or receives signal based on the configuration messages.
  • a base unit comprises a transceiver that transmits configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof, wherein the transceiver further transmits or receives signal based on the configuration messages.
  • FIG. 1 illustrates slot format P
  • FIG. 2 illustrates slot format P and slot format P2
  • Figure 3 illustrates slot format P and slot format P2 in a period of two frames
  • Figure 4 illustrates an example of flexible slots/symbols indication
  • Figure 5 illustrates an example of indicating slot format by DCI format 2_0;
  • Figure 6 illustrates an example of the first embodiment
  • Figure 7 illustrates an example of a third embodiment
  • Figure 8 illustrates an example of a variety of the third embodiment
  • Figure 9 is a schematic flow chart diagram illustrating an embodiment of a method
  • Figure 10 is a schematic flow chart diagram illustrating another embodiment of a method.
  • Figure 11 is a schematic block diagram illustrating apparatuses according to one embodiment.
  • embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may generally all be referred to herein as a “circuit” , “module” or “system” . Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine-readable code, computer readable code, and/or program code, referred to hereafter as “code” .
  • code computer readable storage devices storing machine-readable code, computer readable code, and/or program code, referred to hereafter as “code” .
  • the storage devices may be tangible, non-transitory, and/or non-transmission.
  • the storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
  • modules may be implemented as a hardware circuit comprising custom very-large-scale integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very-large-scale integration
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in code and/or software for execution by various types of processors.
  • An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but, may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
  • a module of code may contain a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules and may be embodied in any suitable form and organized within any suitable type of data structure. This operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices.
  • the software portions are stored on one or more computer readable storage devices.
  • the computer readable medium may be a computer readable storage medium.
  • the computer readable storage medium may be a storage device storing code.
  • the storage device may be, for example, but need not necessarily be, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, random access memory (RAM) , read-only memory (ROM) , erasable programmable read-only memory (EPROM or Flash Memory) , portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Code for carrying out operations for embodiments may include any number of lines and may be written in any combination of one or more programming languages including an object-oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages.
  • the code may be executed entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user′s computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider an Internet Service Provider
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices, to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
  • the code may also be loaded onto a computer, other programmable data processing apparatus, or other devices, to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code executed on the computer or other programmable apparatus provides processes for implementing the functions specified in the flowchart and/or block diagram block or blocks.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • some DL slots/symbols may be configured to OFF to save power from network side.
  • the base station e.g. gNB
  • Such indication can be referred to as DL transmission ON/OFF indication.
  • the DL transmission ON/OFF indication can be done with a semi-persistent configuration by RRC signaling which may be cell-specifically or UE-specifically. Alternatively, the DL transmission ON/OFF indication can be done dynamically (e.g. by a DCI) .
  • the DL transmission ON/OFF indication cell-specifically means that the DL transmission ON/OFF indication applies to all UEs within a cell or to a group of UEs, while the DL transmission ON/OFF indication UE-specifically means that the DL transmission ON/OFF indication applies to a single UE. So, the DL transmission ON/OFF indication cell-specifically and the DL transmission ON/OFF indication UE-specifically can have basically the same configuration.
  • Both the DL transmission ON/OFF semi-persistent indication cell-specifically and UE-specifically can be made slot-based or symbol-based.
  • a first embodiment relates to slot-based cell-level/UE specific semi-persistent configuration.
  • the UE is configured with a slot format configuration.
  • the slot format configuration may include one or multiple (e.g. two) slot format indication periods (e.g. P and P2) with cyclical repetitions within two frames, as shown in Figure 3.
  • P and P2 i.e. two periods
  • the slot format configuration can be referred to as “slot combination configuration” .
  • the UE is configured with a slot mask with bitmap manner to indicate DL slot ON/OFF within a time duration (T slot ) .
  • the length of the slot mask is determined by the number of DL slots within the time duration (T slot ) .
  • the UE is configured with a slot offset set including one or multiple DL slot offsets that indicate which DL slots are DL transmission OFF slots within the time duration (T slot ) .
  • the time duration (T slot ) can be determined by any one of the following three options:
  • the slot mask or the slot offset set is individually configured for each slot format indication period.
  • M may be determined according to OFDM numerology. Multiple OFDM numerologies are supported as given in Table 1, where the OFDM numerology ⁇ for a bandwidth part is obtained from the higher layer parameter subcarrierSpacing ( ⁇ f) .
  • ⁇ ⁇ f 2 ⁇ *15 [kHz] 0 15 1 30 2 60 3 120 4 240
  • a bandwidth part can be configured to have a different OFDM numerology.
  • the time duration can be configured with a reference OFDM numerology.
  • the parameter M can be configured based on the reference OFDM numerology.
  • Other parameter for different numerologies can be derived based on the reference OFDM numerology.
  • the time duration (T slot ) is a fixed value of 20ms (i.e. two frames) .
  • a DL slot refers to a slot that all symbols of the slot are configured as DL symbols. That is, the DL slot includes the slot (s) configured as DL cell-specifically (including the slot combination configuration) , e.g. slot 0 and slot 1 shown in Figure 3.
  • each of the flexible slots which may include DL symbols and flexible symbols (e.g. slot k-1 in Figure 3) or may only include flexible symbols (e.g. slot k in Figure 3)
  • the flexible slot can be assumed to be a DL slot.
  • slot k-1 shown in Figure 3 if all flexible symbols of slot k-1 are configured as DL symbols UE-specifically by higher layer signaling (while the remaining symbols have been configured as DL symbols cell-specifically) , slot k-1 is assumed to be a DL slot.
  • slot k is assumed to be a DL slot.
  • the flexible slot is assumed to be a DL slot.
  • the flexible slot is assumed to be a DL slot no matter whether the remaining flexible symbols of slot k-1 are configured as DL symbols, UL symbols, or a combination of DL symbols and UL symbols.
  • slot k for slot k shown in Figure 3, if at least one flexible symbol of slot k is configured as DL symbol e.g. UE-specifically by higher layer signaling, slot k is assumed to be a DL slot.
  • slot k+1 if at least one flexible symbol of slot k+1 is configured as DL symbol e.g. UE-specifically by higher layer signaling, slot k+1 is assumed to be a DL slot.
  • the slot-based DL transmission ON/OFF configuration can be cell specific.
  • the slot-based DL transmission ON/OFF configuration can be UE specific.
  • Figure 6 illustrates an example of the first embodiment.
  • M is configured as 1.
  • P is 12 slots and P2 is 8 slots.
  • slot#2, slot#3 that are in the first slot format period
  • slot#12 and slot#13 i.e.
  • Each bit 1 in the n th position (starting from the 1 st position) of the slot mask indicates that DL slot#n-1 (starting from DL slot#0) is DL transmission OFF slot.
  • a slot offset set ⁇ 2, 3, 7, 8 ⁇ is configured, in which each slot offset indicates that DL slot# (slot offset) is DL transmission OFF slot.
  • slot #7-#9 and UL slots #10-#11 are not included in the slot mask nor considered in configuring the slot offset.
  • the symbols in slot #7 are configured as DL symbols e.g. UE-specifically configured (i.e. all symbols of slot #7 become DL symbols)
  • slot #7 is assumed to be a DL slot
  • the slot mask will become 0011000 0 11000 which has a length of 13 (i.e. 8+5)
  • the slot offset set will become ⁇ 2, 3, 8, 9 ⁇ if slot#2, slot#3, slot#12 and slot#13 are to be configured as DL transmission OFF slot.
  • all symbols in slot #8 are also configured as DL symbols e.g.
  • slot #8 is also assumed to be a DL slot in the slot mask configuration, then the slot mask will become 0011000 00 11000 which has a length of 14 (i.e. 9+5) , while the slot offset set will become ⁇ 2, 3, 9, 10 ⁇ if slot#2, slot#3, slot#12 and slot#13 are to be configured as DL transmission OFF slot.
  • each of the DL slots that are not configured as DL transmission OFF slot is assumed to be DL transmission ON slot.
  • 1 stands for DL transmission OFF slot while 0 stands for DL transmission ON slot.
  • DL transmission pending slot can be also introduced.
  • a DL transmission pending slot is a DL slot that can be configured as DL transmission ON slot or DL transmission OFF slot UE-specifically or dynamically (e.g. by DCI, that will be discussed later in a fourth embodiment) .
  • 1 stands for DL transmission OFF slot while 0 stands for DL transmission pending slot.
  • 1 stands for DL transmission pending slot while 0 stands for DL transmission ON slot.
  • the UE is supposed to drop or postpone the reception of PDSCH, PDCCH and/or CSI-RS in DL transmission OFF slots.
  • the length (or bit length) of the slot mask is determined by the number of DL slots in a configured time duration.
  • the flexible slot (s) and the UL slot (s) in the configured time duration are skipped in the slot mask.
  • the value range of each slot offset in the slot offset set is determined by the number of DL slots in the configured time duration. Note that if all or part of symbols of a flexible slot are configured to be DL symbol (s) , the flexible slot is assumed to be a DL slot in the slot on/off configuration.
  • the UL slot may also be configured as UL transmission OFF slot with the same principle as described above.
  • the UE is configured with a UL slot mask with bitmap manner to indicate UL slot ON/OFF/pending within a time duration (T ULslot ) .
  • the length of the UL slot mask is determined by the number of UL slots within the time duration (T ULslot ) .
  • the UE is configured with an UL slot offset set including one or multiple UL slot offsets that indicate which UL slots are UL transmission ON/OFF/pending slots within the time duration (T ULslot ) .
  • the length (or bit length) of the UL slot mask or the value range of each UL slot offset in the UL slot offset set is determined by the number of UL slots in the configured time duration (T ULslot ) , while the flexible slot (s) and the DL slot (s) in the configured time duration (T ULslot ) are skipped in the UL slot mask or in the value range of the UL slot offset set.
  • the flexible slot is assumed to an UL slot in the slot on/off configuration.
  • a second embodiment relates to symbol-based cell-level/UE specific semi-persistent configuration.
  • the UE is configured with a slot format configuration.
  • the slot format configuration may include one or multiple (e.g. two) slot format indication periods (e.g. P and P2) with repetitions within two frames, as shown in Figure 3.
  • the UE is configured with a symbol mask with bitmap manner to indicate DL symbol ON/OFF or DL symbol pending/OFF.
  • the length of the symbol mask is determined by the number of DL symbols within a time duration (T symbol ) .
  • the UE is configured with a symbol offset set including one or multiple symbol offsets that indicate which symbols are DL transmission OFF symbols within the time duration (T symbol ) .
  • the time duration (T symbol ) can be determined by any one of the following four options:
  • the time duration (T symbol ) is configured as the number of symbols in a slot (e.g. 14 symbols for one slot) .
  • the symbol mask or the symbol offset set is individually configured for each slot.
  • the symbol mask or the symbol offset set is individually configured for each slot format indication period.
  • M may be determined according to OFDM numerology as described in the first embodiment.
  • the time duration (T symbol ) is a fixed value of 20ms (i.e. two frames) .
  • the flexible symbol (s) and the UL symbol (s) within the time duration are skipped for determining the length of the symbol mask or determining the range of symbol offsets in the symbol offset set.
  • the symbol-based DL transmission ON/OFF configuration can be cell specific.
  • the symbol-based DL transmission ON/OFF configuration can be UE specific.
  • each of the DL symbols that are not configured as DL transmission OFF symbol is assumed to be DL transmission ON symbol.
  • 1 stands for DL transmission OFF symbol while 0 stands for DL transmission ON symbol.
  • DL transmission pending symbol can be also introduced.
  • a DL transmission pending symbol is a DL symbol that can be configured as DL transmission ON symbol or DL transmission OFF symbol UE-specifically or dynamically (e.g. by DCI, that will be discussed later in the fourth embodiment) .
  • 1 stands for DL transmission OFF symbol while 0 stands for DL transmission pending symbol.
  • 1 stands for DL transmission pending symbol while 0 stands for DL transmission ON symbol.
  • the UE is supposed to drop or postpone the reception of PDSCH, PDCCH and/or CSI-RS in DL transmission OFF symbols.
  • the length (or bit length) of the symbol mask is determined by the number of DL symbols in a configured time duration.
  • the flexible symbol (s) and the UL symbol (s) in the configured time duration are skipped in the symbol mask.
  • the value range of each symbol offset is determined by the number of DL symbols in the configured period time duration. If a flexible symbol is configured to a DL symbol e.g. UE-specifically, the flexible symbol is assumed to be a DL symbol in symbol on/off configuration.
  • the UL symbol may also be configured as UL transmission OFF symbol with the same principle as described above.
  • the UE is configured with a UL symbol mask with bitmap manner to indicate UL symbol ON/OFF/pending within a time duration (T ULsymbol ) .
  • the length of the UL symbol mask is determined by the number of UL symbols within the time duration (T ULsymbol ) .
  • the UE is configured with an UL symbol offset set including one or multiple UL symbol offsets that indicate which UL symbols are UL transmission ON/OFF/pending symbols within the time duration (T ULsymbol ) .
  • the length (or bit length) of the UL symbol mask or the value range of each UL symbol offset in the UL symbol offset set is determined by the number of UL symbols in the configured time duration (T ULsymbol ) , while the flexible symbol (s) and the DL symbol (s) in the configured time duration (T ULsymbol ) are skipped in the UL symbol mask or in the value range of the UL symbol offset set.
  • a flexible symbol may be configured, e.g. UE-specifically, to be UL symbol.
  • a third embodiment relates to cell-level/UE specific dynamic configuration, which can be made by a DCI.
  • slot-based dynamic DL transmission ON/OFF/pending configuration is made.
  • a DCI is used to indicate to the UE a slot mask combination that includes several mask patterns each of which indicates which slots are DL transmission ON/OFF/pending slots within a time duration (i.e. the length of the slot mask pattern) .
  • the time duration can be configured with the same option (e.g. any of options 1-3) described with reference to the first embodiment.
  • the UE is expected to get the slot mask indicator (e.g. Slot Mask Index 1) via the positionInDCI higher layer parameter.
  • the value of the slot mask indicator (e.g. Slot Mask Index 1) indicates an Slot mask Combination ID.
  • format 3 indicates slot mask pattern 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0 (for consecutive 10 slots, i.e. the time duration is 10 slots) , where 1 means DL transmission OFF slot while 0 means DL transmission ON slot, or 1 means DL transmission OFF slot while 0 means DL transmission pending slot, or 1 means DL transmission pending slot while 0 means DL transmission ON slot.
  • the slot mask combination can be alternatively slot offset set format combination (while the slot mask combination ID is slot offset set combination ID) , where each slot offset set format indicates a slot offset set.
  • the DCI for the slot-based dynamic DL transmission ON/OFF/pending configuration can be optionally differentiated by a new RNTI.
  • symbol-based dynamic DL transmission ON/OFF/pending configuration is made.
  • a DCI is used to indicate to the UE a symbol mask combination that includes several mask patterns each of which indicates which symbols are DL transmission ON/OFF/pending symbols within a time duration (i.e. the length of the slot mask pattern, e.g. 14 symbols in a slot) .
  • the time duration can be configured with the same option (e.g. any of options 2-1 to 2-4) described with reference to the variety of the first embodiment.
  • the UE is expected to get the symbol mask indicator (e.g. Symbol Mask Index 1) via the positionInDCI higher layer parameter.
  • the value of the symbol mask indicator (e.g. Symbol Mask Index 1) indicates an Symbol mask Combination ID.
  • each symbol mask format indicates a symbol mask pattern (e.g. symbol mask in a slot) .
  • format 3 indicates symbol mask pattern 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1 (for 14 consecutive symbols, i.e. the time duration is 14 symbols) , where 1 means DL transmission OFF symbol while 0 means DL transmission ON symbol, or 1 means DL transmission OFF symbol while 0 means DL transmission pending symbol, or 1 means DL transmission pending symbol while 0 means DL transmission ON symbol.
  • the symbol mask combination can be alternatively symbol offset set format combination (while the symbol mask combination ID is symbol offset set combination ID) , where each symbol offset set format indicates a symbol offset set.
  • the DCI for the symbol-based dynamic DL transmission ON/OFF/pending configuration can be optionally differentiated by another new RNTI.
  • each of the slot (s) or symbol (s) that are configured as pending cell-specifically or UE-specifically or dynamically by a DCI can be dynamically configured (e.g. by a DCI) as ON or OFF.
  • the DCI can be DCI format 0_1 or 1_1 scheduling DL signals if the slot (s) or symbol (s) that are configured as pending are DL slot (s) or DL symbol (s) .
  • a DCI format 1_1 schedules a PDSCH in symbols #2 to #4 of DL slot k, and DL slot k (having 14 symbols: symbols #0 to #13) has been configured with a symbol mask 11010001001000 in which 1 means DL transmission OFF while 0 means DL transmission pending.
  • symbols #2 to #4 are configured with “010” , i.e. symbols #2 and #4 are configured as DL transmission pending symbols
  • symbol #3 is configured as DL transmission OFF symbol.
  • a new or existing field in DCI can be used to indicate that each of the DL transmission pending symbols in scheduled symbols #2 to #4 is DL transmission ON symbol (i.e. DL transmission pending symbol (s) are enabled) .
  • DL transmission pending symbol (s) are enabled
  • 1 bit is enough for the enable or disable.
  • an existing field with an additional one bit or a new field with one bit both are referred to as “1-bit” field
  • the 1-bit field set to 1 means “enable” (i.e.
  • the 1-bit field set to 0 may mean “disable” (i.e. configure the DL transmission pending symbol (s) to DL transmission OFF symbol (s) ) .
  • symbols #2 and #4 that are DL transmission pending symbols, are enabled as DL transmission ON symbols
  • the PDSCH can be transmitted in symbols #2 to #4. Note that the PDSCH cannot be transmitted in symbol #3 because symbol #3 is configured as DL transmission OFF symbol which cannot be enabled.
  • the DL transmission pending slot (s) can be enabled as DL transmission ON slot (s) with the same manner, i.e. by 1-bit field in a DCI scheduling PDSCH in the DL transmission pending slot (s) .
  • the 1-bit field in DCI can enable the DL transmission pending slot or symbol as DL transmission ON slot or symbol, or disable the DL transmission pending slot or symbol as DL transmission OFF slot or symbol.
  • the UL transmission pending slot (s) or symbol (s) can be enabled as UL transmission ON slot (s) or symbol (s) or disabled as UL transmission OFF slot (s) or symbol (s) with the same manner, e.g. by 1-bit field in DCI format 0_0 or 1_0 scheduling PUSCH.
  • Figure 9 is a schematic flow chart diagram illustrating an embodiment of a method 900 according to the present application.
  • the method 900 is performed by an apparatus, such as a remote unit (UE) .
  • the method 900 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 900 may include 902 receiving configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof; and 904 transmitting or receiving signal based on the configuration messages.
  • the time resource is slot or symbol.
  • the signal is only transmitted or received in transmission ON time resource (s) , i.e. transmission ON slot (s) and/or transmission ON symbol (s) .
  • the length of the time resource mask or the range of each time resource offset in the time resource offset set is determined by the number of DL time resources or UL time resources in the time duration.
  • the DL time resources include at least one of DL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as DL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as DL time resource (s) by higher layer signaling.
  • the UL time resources include at least one of UL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as UL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as UL time resource (s) by higher layer signaling.
  • the time duration may be determined by at least one of the periods of the time resource format indication, a configured number, and frame numerology.
  • the configuration messages may further include a set of combination IDs and combinations of time resource masks or of time resource offset sets, where each combination ID corresponds to one combination.
  • the method may further comprise receiving a control signal containing a field of a combination ID, wherein the position of the field in the control signal is configured by higher layer.
  • the method may further comprise receiving a control signal, the control signal includes an indication that can enable or disable the transmission pending time resource (s) .
  • Figure 10 is a schematic flow chart diagram illustrating a further embodiment of a method 1000 according to the present application.
  • the method 1000 is performed by an apparatus, such as a base unit.
  • the method 1000 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 1000 may include 1002 transmitting configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof; and 1004 transmitting or receiving signal based on the configuration messages.
  • the time resource is slot or symbol.
  • the signal is only transmitted or received in transmission ON time resource (s) , i.e. transmission ON slot (s) and/or transmission ON symbol (s) .
  • the length of the time resource mask or the range of each time resource offset in the time resource offset set is determined by the number of DL time resources or UL time resources in the time duration.
  • the DL time resources include at least one of DL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as DL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as DL time resource (s) by higher layer signaling.
  • the UL time resources include at least one of UL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as UL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as UL time resource (s) by higher layer signaling.
  • the time duration may be determined by at least one of the periods of the time resource format indication, a configured number, and frame numerology.
  • the configuration messages may further include a set of combination IDs and combinations of time resource masks or of time resource offset sets, where each combination ID corresponds to one combination.
  • the method may further comprise transmitting a control signal containing a field of a combination ID, wherein the position of the field in the control signal is configured by higher layer.
  • the method may further comprise transmitting a control signal, the control signal includes an indication that can enable or disable the transmission pending time resource (s) .
  • Figure 11 is a schematic block diagram illustrating apparatuses according to one embodiment.
  • the UE i.e. the remote unit
  • the UE includes a processor, a memory, and a transceiver.
  • the processor implements a function, a process, and/or a method which are proposed in Figure 9.
  • the UE comprises a transceiver that receives configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof, wherein the transceiver further transmits or receives signal based on the configuration messages.
  • the time resource is slot or symbol.
  • the signal is only transmitted or received in transmission ON time resource (s) , i.e. transmission ON slot (s) and/or transmission ON symbol (s) .
  • the length of the time resource mask or the range of each time resource offset in the time resource offset set is determined by the number of DL time resources or UL time resources in the time duration.
  • the DL time resources include at least one of DL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as DL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as DL time resource (s) by higher layer signaling.
  • the UL time resources include at least one of UL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as UL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as UL time resource (s) by higher layer signaling.
  • the time duration may be determined by at least one of the periods of the time resource format indication, a configured number, and frame numerology.
  • the configuration messages may further include a set of combination IDs and combinations of time resource masks or of time resource offset sets, where each combination ID corresponds to one combination.
  • the transceiver may further receive a control signal containing a field of a combination ID, wherein the position of the field in the control signal is configured by higher layer.
  • the transceiver may further receive a control signal, the control signal includes an indication that can enable or disable the transmission pending time resource (s) .
  • the gNB i.e. base unit
  • the gNB includes a processor, a memory, and a transceiver.
  • the processors implement a function, a process, and/or a method which are proposed in Figure 10.
  • the base unit comprises a transceiver that transmits configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof, wherein the transceiver further transmits or receives signal based on the configuration messages.
  • the time resource is slot or symbol.
  • the signal is only transmitted or received in transmission ON time resource (s) , i.e. transmission ON slot (s) and/or transmission ON symbol (s) .
  • the length of the time resource mask or the range of each time resource offset in the time resource offset set is determined by the number of DL time resources or UL time resources in the time duration.
  • the DL time resources include at least one of DL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as DL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as DL time resource (s) by higher layer signaling.
  • the UL time resources include at least one of UL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as UL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as UL time resource (s) by higher layer signaling.
  • the time duration may be determined by at least one of the periods of the time resource format indication, a configured number, and frame numerology.
  • the configuration messages may further include a set of combination IDs and combinations of time resource masks or of time resource offset sets, where each combination ID corresponds to one combination.
  • the transceiver may further transmit a control signal containing a field of a combination ID, wherein the position of the field in the control signal is configured by higher layer.
  • the transceiver may further transmit a control signal, the control signal includes an indication that can enable or disable the transmission pending time resource (s) .
  • Layers of a radio interface protocol may be implemented by the processors.
  • the memories are connected with the processors to store various pieces of information for driving the processors.
  • the transceivers are connected with the processors to transmit and/or receive a radio signal. Needless to say, the transceiver may be implemented as a transmitter to transmit the radio signal and a receiver to receive the radio signal.
  • the memories may be positioned inside or outside the processors and connected with the processors by various well-known means.
  • each component or feature should be considered as an option unless otherwise expressly stated.
  • Each component or feature may be implemented not to be associated with other components or features.
  • the embodiment may be configured by associating some components and/or features. The order of the operations described in the embodiments may be changed. Some components or features of any embodiment may be included in another embodiment or replaced with the component and the feature corresponding to another embodiment. It is apparent that the claims that are not expressly cited in the claims are combined to form an embodiment or be included in a new claim.
  • the embodiments may be implemented by hardware, firmware, software, or combinations thereof.
  • the exemplary embodiment described herein may be implemented by using one or more application-specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, and the like.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and apparatuses for configuring time domain transmission ON and transmission OFF are disclosed. A method at an UE comprises receiving configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof; and transmitting or receiving signal based on the configuration messages. The time resource is slot or symbol.

Description

TIME DOMAIN TRANSMISSION ON/OFF CONFIGURATION FIELD
The subject matter disclosed herein generally relates to wireless communications, and more particularly relates to methods and apparatuses for configuring time domain transmission ON and transmission OFF.
BACKGROUND
The following abbreviations are herewith defined, at least some of which are referred to within the following description: New Radio (NR) , Very Large Scale Integration (VLSI) , Random Access Memory (RAM) , Read-Only Memory (ROM) , Erasable Programmable Read-Only Memory (EPROM or Flash Memory) , Compact Disc Read-Only Memory (CD-ROM) , Local Area Network (LAN) , Wide Area Network (WAN) , User Equipment (UE) , Evolved Node B (eNB) , Next Generation Node B (gNB) , Uplink (UL) , Downlink (DL) , Central Processing Unit (CPU) , Graphics Processing Unit (GPU) , Field Programmable Gate Array (FPGA) , Orthogonal Frequency Division Multiplexing (OFDM) , Radio Resource Control (RRC) , User Entity/Equipment (Mobile Terminal) , Transmitter (TX) , Receiver (RX) , Time Division Duplex (TDD) , Downlink Control Information (DCI) , Channel Occupancy Time (COT) , Slot Format Indicator (SFI) , Physical Downlink Control Channel (PDCCH) , Physical Downlink Shared Channel (PDSCH) , Channel State Information (CSI) , CSI Reference Signals (CSI-RS) , Radio Network Temporary Identifier (RNTI) .
In NR, slot format indicates how each of slots within frames or within super frames or symbols within a single slot is used. For TDD, there are some possible combinations of DL symbol (s) , UL symbol (s) , flexible symbol (s) within a slot or even longer time duration (e.g., frame) . A DL symbol is used to transmit DL signals; a UL symbol is used to transmit UL signals; and a flexible symbol can be configured to a DL symbol or a UL symbol by higher layer signaling.
NR slot format indication includes cell-specific configuration (which means that all UEs in a cell are indicated with a specific slot format) , UE-specific configuration (which means each UE is indicated with a separate slot format) , and DCI indication (which means that the slot format of a UE can be indicated by a DCI) .
For the cell-specific configuration, the slot format is configured in a periodic manner. All UEs within a cell are cell-specifically configured with several DL slots (D1) plus  several DL symbols (d1) at the beginning of a period P, and several UL symbol (u1) plus several UL slots (U1) in the end of the period P, where the remaining slots and symbols in the period P (between DL slots and/or symbols and UL slots and/or symbols) are assumed to be “flexible” . This configuration can be referred to as slot format P. As shown in Figure 1, in a DL-UL-Periodicity (P) (from slot 0 to slot n) , slot 0, slot 1, …slot k-2 (not shown) are DL slots (labeled as “nrofDLSlots (D1) ” ) , several symbols at the beginning of slot k-1 are DL symbols (labeled as “nrofDLSyms (d1) ” ) ; several symbols in the end of slot k+1 are UL symbols (labeled as “nrofULSyms (u1) ” ) , slot k+2 (not shown) , …, slot n-1 and slot n are UL slots (labeled as “nrofULSlots (U1) ” ) , while several symbols in the end of slot k-1 (i.e. after DL symbols in slot k-1) , all symbols in slot k, and several symbols at the beginning of slot k+1 (i.e. before UL symbols in slot k+1) are flexible symbols. Each slot (e.g. slot k-1, slot k and slot k+1) that contains flexible symbols is a flexible slot.
Optionally, for the cell-specific configuration, at most two slot formats with period of P and with period of P2 can be combined-configured. All UEs within a cell may be further cell-specifically configured with another several DL slots (D2) plus several DL symbols (d2) at the beginning of a period P2, and several UL symbol (u2) plus several UL slots (U2) in the end of the period P2, where the remaining slots and symbols (between DL slots and/or symbols and UL slots and/or symbols) in the period P2 are assumed to be “flexible” . This configuration can be referred to as slot format P2. The slot format P2 has the same structure as the slot format P, except that each of D2, d2, u2 and U2 can be configured differently from each of D1, d1, u1 and U1. Figure 2 illustrates a slot format combination with a period P (slot format P1) and another period P2 (slot format P2) .
The slot format is cyclically repeated with a period of P+P2 (i.e. two slot formats P and P2) in two frames (i.e. 20ms) . It implies that 20ms/ (P+P2) should be an integer. As shown in Figure 3, the slot format combination (of two slot formats P and P2) starts from the first symbol (of the first slot) of every even frame, and cyclically repeated in two frames (i.e. in 20ms) . In other words, two frames (20ms) include an integer number (=N) of (P+P2) period. It can be seen from Figure 3 that, in the two frames (20ms) , there are several non-consecutive DL slots/symbols (e.g. D1 and/or d1, D2 and/or d2) . Hereinafter, slots/symbols mean slot (s) (e.g. D1 if d1 is configured as 0) or symbol (s) (e.g. d1 if D1 is configured as 0) or slot (s) and symbol (s) (e.g. D1 and d1) . These DL slots/symbols are split by flexible slots/symbols and uplink slots/symbols. For example, DL slots/symbols (D1 and d1) and DL slots/symbols (D2 and d2)  are split by flexible slots/symbols (in slot k-1, slot k and slot k+1) and uplink slots/symbols (u1 and U1) .
For the UE-specific configuration, slots/symbols configured as “flexible” cell-specifically can be optionally configured to DL or UL via dedicated signaling (e.g. dedicated RRC signaling) . The configured “flexible” slot is labeled via the slot index configured by higher layer. Each slot that includes flexible symbols is flexible slot. For example, in the example of Figure 1, each of slot k-1, slot k and slot k+1 is a flexible slot. The flexible slot format indication, which indicates each of the flexible symbols in a single flexible slot is a DL slot or a UL slot, is done slot by slot.
The flexible symbol (s) in a flexible slot can be indicated as all downlink symbols, all uplink symbols, or a part of uplink symbols and a part of downlink symbols. Figure 4 illustrates an example of flexible slots/symbols indication. For a particular slot, for example, slot k or slot k+1, which is configured to be the flexible slot by cell-specific signaling, in option 1, all symbols are indicated as DL symbols; in option 2, all symbols are indicated as UL symbols; and in option 3, a part of symbols are indicated as DL symbols (e.g. 8 symbols are indicated as DL symbols) and a part of symbols are indicated as UL symbols (e.g. 6 symbols are indicated as UL symbols) . Note that in slot k-1 (flexible slot k-1) , the first seven (7) symbols are cell-specifically configured as DL symbols. So, it is not allowed to reconfigure these seven DL symbols. For example, it is not allowed to reconfigure slot k-1 to have 8 DL symbols and 6 UL symbols.
In addition to cell-specific configuration and UE-specific configuration for slot format indication, the slot format can be dynamically indicated, e.g. by DCI format 2_0 in NR. DCI format 2_0, which is scrambled by SFI_RNTI, is used for notifying following information to UE: slot format; COT (Channel Occupancy Time) duration, available RB set, and search space set group switching. If the higher layer parameter slotFormatCombToAddModList is configured, slot format indicator (SFI) , i.e. a bit string indicating Slot format indicator 1, Slot format indicator 2, …, Slot format indicator N, is defined.
DCI format 2_0 includes one or multiple SFI Index fields, where each SFI Index field carries an SFI indication (i.e. an Slot Format Combination ID) . As shown in Figure 5, UE is expected to get the SFI indication (e.g. SFI Index 1) via the positionInDCI higher layer parameter. The value of the SFI indication (e.g. SFI Index 1) indicates an Slot Format Combination ID that indicates a combination of slot formats. For example, as shown in Figure 5, when SFI Index 1 = 2, it indicates the Slot Format Combination ID being equal to 2 that  indicates a combination of  slot formats  3, 3, 3, 3, 6, 7, 8 (that is configured by higher layer signaling) . Each slot format is defined in TS38.213 v15.7 Table 11.1.1-1 (only slot formats 0 to 13 are illustrated in Figure 5) . For example, slot format 3 means that symbols 0 to 12 in this slot are downlink (DL) symbols and symbol 13 in this slot is flexible symbol. For another example, slot format 8 means that symbols 0 to 12 in this slot are flexible symbols and symbol 13 in this slot is uplink (UL) symbol.
Each Slot Format Combination ID indicates a combination of slot formats configured by higher layer signaling. For example, Slot Format Combination ID being equal to 2 indicates a combination of  slot formats  3, 3, 3, 3, 6, 7, 8, which means that seven consecutive slots sequentially have the  slot formats  3, 3, 3, 3, 6, 7, 8.
As a whole, based on at least one of cell-specific configuration, UE-specific configuration and DCI indication, an NR slot format is configured, in which slots/symbols in a time duration are configured as downlink (DL) , or uplink (UL) or flexible. In DL slots/symbols, the base station (e.g. gNB) can transmit data or signal to UE (s) .
Network energy saving is widely discussed. To save power from network side, some DL slots/symbols may be configured to OFF (maybe referred to as “switch off DL slots/symbols” or “mute DL slots/symbols) . It means that the base station (e.g. gNB) is not allowed to transmit data or signal in the DL slots/symbols that are configured to OFF, except for the signals that must be transmitted in these DL slots/symbols.
This invention targets indicating DL and/or UL slots/symbols ON/OFF/pending.
BRIEF SUMMARY
Methods and apparatuses for configuring time domain transmission ON and transmission OFF are disclosed.
In one embodiment, a method at an UE comprises receiving configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof; and transmitting or receiving signal based on the configuration messages. The time resource is slot or symbol.
In one embodiment, the length of the time resource mask or the range of each time resource offset in the time resource offset set is determined by the number of DL time  resources or UL time resources in the time duration. In particular, the DL time resources include at least one of DL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as DL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as DL time resource (s) by higher layer signaling. The UL time resources include at least one of UL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as UL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as UL time resource (s) by higher layer signaling.
In another embodiment, the time duration may be determined by at least one of the periods of the time resource format indication, a configured number, and frame numerology.
In still another embodiment, the configuration messages may further include a set of combination IDs and combinations of time resource masks or of time resource offset sets, where each combination ID corresponds to one combination. The method may further comprise receiving a control signal containing a field of a combination ID, wherein the position of the field in the control signal is configured by higher layer. In some embodiment, the method may further comprise receiving a control signal, the control signal includes an indication that can enable or disable the transmission pending time resource (s) .
In one embodiment, a method at a base unit comprises transmitting configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof; and transmitting or receiving signal based on the configuration messages.
In another embodiment, a remote unit (UE) comprises a transceiver that receives configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or  transmission pending time resource (s) or some combination thereof, wherein the transceiver further transmits or receives signal based on the configuration messages.
In yet another embodiment, a base unit comprises a transceiver that transmits configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof, wherein the transceiver further transmits or receives signal based on the configuration messages.
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only some embodiments, and are not therefore to be considered to be limiting of scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Figure 1 illustrates slot format P;
Figure 2 illustrates slot format P and slot format P2;
Figure 3 illustrates slot format P and slot format P2 in a period of two frames;
Figure 4 illustrates an example of flexible slots/symbols indication;
Figure 5 illustrates an example of indicating slot format by DCI format 2_0;
Figure 6 illustrates an example of the first embodiment;
Figure 7 illustrates an example of a third embodiment;
Figure 8 illustrates an example of a variety of the third embodiment;
Figure 9 is a schematic flow chart diagram illustrating an embodiment of a method;
Figure 10 is a schematic flow chart diagram illustrating another embodiment of a method; and
Figure 11 is a schematic block diagram illustrating apparatuses according to one embodiment.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art that certain aspects of the embodiments may be embodied as a system, apparatus, method, or program product.  Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may generally all be referred to herein as a “circuit” , “module” or “system” . Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine-readable code, computer readable code, and/or program code, referred to hereafter as “code” . The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
Certain functional units described in this specification may be labeled as “modules” , in order to more particularly emphasize their independent implementation. For example, a module may be implemented as a hardware circuit comprising custom very-large-scale integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
Modules may also be implemented in code and/or software for execution by various types of processors. An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but, may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
Indeed, a module of code may contain a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules and may be embodied in any suitable form and organized within any suitable type of data structure. This operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices. Where a module or portions of a module are implemented in software, the software portions are stored on one or more computer readable storage devices.
Any combination of one or more computer readable medium may be utilized. The computer readable medium may be a computer readable storage medium. The computer readable storage medium may be a storage device storing code. The storage device may be, for example, but need not necessarily be, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
A non-exhaustive list of more specific examples of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, random access memory (RAM) , read-only memory (ROM) , erasable programmable read-only memory (EPROM or Flash Memory) , portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Code for carrying out operations for embodiments may include any number of lines and may be written in any combination of one or more programming languages including an object-oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages. The code may be executed entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the very last scenario, the remote computer may be connected to the user′s computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
Reference throughout this specification to “one embodiment” , “an embodiment” , or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment” , “in an embodiment” , and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment, but mean “one or more but not all embodiments” unless expressly specified otherwise. The terms “including” , “comprising” , “having” , and variations thereof mean “including but are not limited to” , unless  otherwise expressly specified. An enumerated listing of items does not imply that any or all of the items are mutually exclusive, otherwise unless expressly specified. The terms “a” , “an” , and “the” also refer to “one or more” unless otherwise expressly specified.
Furthermore, described features, structures, or characteristics of various embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid any obscuring of aspects of an embodiment.
Aspects of different embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products according to embodiments. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, and combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, can be implemented by code. This code may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which are executed via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions specified in the schematic flowchart diagrams and/or schematic block diagrams for the block or blocks.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices, to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
The code may also be loaded onto a computer, other programmable data processing apparatus, or other devices, to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code executed on the computer or other programmable  apparatus provides processes for implementing the functions specified in the flowchart and/or block diagram block or blocks.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of apparatuses, systems, methods and program products according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
It should also be noted that in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may substantially be executed concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more blocks, or portions thereof, to the illustrated Figures.
Although various arrow types and line types may be employed in the flowchart and/or block diagrams, they are understood not to limit the scope of the corresponding embodiments. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the depicted embodiment. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted embodiment. It will also be noted that each block of the block diagrams and/or flowchart diagrams, and combinations of blocks in the block diagrams and/or flowchart diagrams, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and code.
The description of elements in each Figure may refer to elements of proceeding figures. Like numbers refer to like elements in all figures, including alternate embodiments of like elements.
As mentioned in the background part, some DL slots/symbols may be configured to OFF to save power from network side. The base station (e.g. gNB) indicates to the UE (s) which DL slot (s) /symbol (s) are configured to OFF, and which DL slot (s) /symbol (s) are configured to ON. Such indication can be referred to as DL transmission ON/OFF indication.
The DL transmission ON/OFF indication can be done with a semi-persistent configuration by RRC signaling which may be cell-specifically or UE-specifically. Alternatively, the DL transmission ON/OFF indication can be done dynamically (e.g. by a DCI) .
The DL transmission ON/OFF indication cell-specifically means that the DL transmission ON/OFF indication applies to all UEs within a cell or to a group of UEs, while the DL transmission ON/OFF indication UE-specifically means that the DL transmission ON/OFF indication applies to a single UE. So, the DL transmission ON/OFF indication cell-specifically and the DL transmission ON/OFF indication UE-specifically can have basically the same configuration.
Both the DL transmission ON/OFF semi-persistent indication cell-specifically and UE-specifically (maybe referred to as “cell-level/UE specific semi-persistent configuration” ) can be made slot-based or symbol-based.
A first embodiment relates to slot-based cell-level/UE specific semi-persistent configuration.
The UE is configured with a slot format configuration. For example, the slot format configuration may include one or multiple (e.g. two) slot format indication periods (e.g. P and P2) with cyclical repetitions within two frames, as shown in Figure 3. When both P and P2 (i.e. two periods) exist, the slot format configuration can be referred to as “slot combination configuration” .
According to the first embodiment, the UE is configured with a slot mask with bitmap manner to indicate DL slot ON/OFF within a time duration (T slot) . The length of the slot mask is determined by the number of DL slots within the time duration (T slot) .
According to a variety of the first embodiment, the UE is configured with a slot offset set including one or multiple DL slot offsets that indicate which DL slots are DL transmission OFF slots within the time duration (T slot) .
The time duration (T slot) can be determined by any one of the following three options:
Option 1: the time duration (T slot) is each slot format indication period (e.g. T slot =P, or T slot =P2) . In this condition, the slot mask or the slot offset set is individually configured for each slot format indication period.
Option 2: the time duration (T slot) is a configured number (e.g. M) times of the total slot format indication periods (e.g. T slot = M * (P + P2) ) , where M can be configured to 1, 2,  etc. Alternatively, M may be determined according to OFDM numerology. Multiple OFDM numerologies are supported as given in Table 1, where the OFDM numerologyμfor a bandwidth part is obtained from the higher layer parameter subcarrierSpacing (Δf) .
μ Δf = 2 μ*15 [kHz]
0 15
1 30
2 60
3 120
4 240
Table 1
A bandwidth part (BWP) can be configured to have a different OFDM numerology. In order to make the signaling easier, the time duration can be configured with a reference OFDM numerology. For example, the parameter M can be configured based on the reference OFDM numerology. When μ= 0 (e.g., subcarrier spacing of 15kHz) , M=1, which means the time duration (T slot) lasts for example 10ms, then for OFDM numerology μ=1, M should be 2 to align the same time duration (T slot) . Other parameter for different numerologies can be derived based on the reference OFDM numerology.
Option 3: the time duration (T slot) is a fixed value of 20ms (i.e. two frames) . 
In order to save the signaling overhead, the flexible slot (s) and the UL slot (s) within the time duration are skipped for determining the length of the slot mask or determining the range of slot offsets in the slot offset set. That is, only the DL slot (s) are included in the bitmap. A DL slot refers to a slot that all symbols of the slot are configured as DL symbols. That is, the DL slot includes the slot (s) configured as DL cell-specifically (including the slot combination configuration) , e.g. slot 0 and slot 1 shown in Figure 3.
Optional, for each of the flexible slots which may include DL symbols and flexible symbols (e.g. slot k-1 in Figure 3) or may only include flexible symbols (e.g. slot k in Figure 3) , if all flexible symbols in a flexible slot are configured (e.g. UE-specifically by higher layer signaling) as DL symbols (i.e. all symbols of the flexible slot are configured as DL symbols) , the flexible slot can be assumed to be a DL slot. For example, for slot k-1 shown in Figure 3, if all flexible symbols of slot k-1 are configured as DL symbols UE-specifically by higher layer signaling (while the remaining symbols have been configured as DL symbols cell-specifically) , slot k-1 is assumed to be a DL slot. For another example, for slot k shown in Figure 3, if all flexible symbols of slot k are configured as DL symbols UE-specifically by higher layer signaling, slot k is assumed to be a DL slot.
Further optionally, for all flexible slots (e.g. slot k-1, slot k, slot k+1 in Figure 3) , if at least one symbol (i.e. part symbol (s) ) of a flexible slot is configured (either cell-specifically or UE-specifically) as DL symbol, the flexible slot is assumed to be a DL slot. For example, for slot k-1 shown in Figure 3, since some symbols (i.e. d1) are configured as DL symbols cell-specifically, slot k-1 is assumed to be a DL slot no matter whether the remaining flexible symbols of slot k-1 are configured as DL symbols, UL symbols, or a combination of DL symbols and UL symbols. For another example, for slot k shown in Figure 3, if at least one flexible symbol of slot k is configured as DL symbol e.g. UE-specifically by higher layer signaling, slot k is assumed to be a DL slot. For yet another example, for slot k+1, if at least one flexible symbol of slot k+1 is configured as DL symbol e.g. UE-specifically by higher layer signaling, slot k+1 is assumed to be a DL slot.
When DL slot (s) are configured in the cell-specific configuration, the slot-based DL transmission ON/OFF configuration can be cell specific. On the other hand, when some DL slot (s) are further configured from flexible slot (s) in the UE-specific configuration, the slot-based DL transmission ON/OFF configuration can be UE specific.
Figure 6 illustrates an example of the first embodiment. As shown in Figure 6, suppose M is configured as 1. P is 12 slots and P2 is 8 slots. In the period P, seven (7) slots (including slot#0 to slot#6) are configured as DL slots (i.e. D1 = 7) ; and in the period P2, five (5) slots (including slot#12 to slot#16) are configured as DL slots (i.e. D2 = 5) . Therefore, slot#0 to slot#6 are DL slot#0 to DL slot#6; and slot#12 to slot#16 are DL slot#7 to DL slot#11. If slot#2, slot#3 (that are in the first slot format period) , slot#12 and slot#13 (i.e. DL slot#7 and DL slot#8 that are in the second slot format period) are configured as DL transmission OFF slot, the slot mask is configured as “001100011000” , which has a length of 12 (= D1 + D2 = 7 + 5) . Each bit 1 in the n th position (starting from the 1 st position) of the slot mask indicates that DL slot#n-1 (starting from DL slot#0) is DL transmission OFF slot. Alternatively, a slot offset set {2, 3, 7, 8} is configured, in which each slot offset indicates that DL slot# (slot offset) is DL transmission OFF slot. It can be seen that flexible slots #7-#9 and UL slots #10-#11 are not included in the slot mask nor considered in configuring the slot offset. Incidentally, if the symbols in slot #7 are configured as DL symbols e.g. UE-specifically configured (i.e. all symbols of slot #7 become DL symbols) , slot #7 is assumed to be a DL slot, then the slot mask will become 0011000 0 11000 which has a length of 13 (i.e. 8+5) , while the slot offset set will become {2, 3, 8, 9} if slot#2, slot#3, slot#12 and slot#13 are to be configured as DL transmission OFF slot. Further, if all  symbols in slot #8 are also configured as DL symbols e.g. UE-specifically configured, slot #8 is also assumed to be a DL slot in the slot mask configuration, then the slot mask will become 0011000 00 11000 which has a length of 14 (i.e. 9+5) , while the slot offset set will become {2, 3, 9, 10} if slot#2, slot#3, slot#12 and slot#13 are to be configured as DL transmission OFF slot.
In the above description of the first embodiment, each of the DL slots that are not configured as DL transmission OFF slot is assumed to be DL transmission ON slot. For example, in the slot mask, 1 stands for DL transmission OFF slot while 0 stands for DL transmission ON slot. DL transmission pending slot can be also introduced. A DL transmission pending slot is a DL slot that can be configured as DL transmission ON slot or DL transmission OFF slot UE-specifically or dynamically (e.g. by DCI, that will be discussed later in a fourth embodiment) . When DL transmission pending slot is introduced, in an alternative slot mask, 1 stands for DL transmission OFF slot while 0 stands for DL transmission pending slot. In a further alternative slot mask, 1 stands for DL transmission pending slot while 0 stands for DL transmission ON slot.
The UE is supposed to drop or postpone the reception of PDSCH, PDCCH and/or CSI-RS in DL transmission OFF slots.
As a whole, according to the first embodiment, the length (or bit length) of the slot mask is determined by the number of DL slots in a configured time duration. The flexible slot (s) and the UL slot (s) in the configured time duration are skipped in the slot mask. Similarly, according to the variety of the first embodiment, the value range of each slot offset in the slot offset set is determined by the number of DL slots in the configured time duration. Note that if all or part of symbols of a flexible slot are configured to be DL symbol (s) , the flexible slot is assumed to be a DL slot in the slot on/off configuration.
Incidentally, in order to save network energy for reception, the UL slot may also be configured as UL transmission OFF slot with the same principle as described above. For example, the UE is configured with a UL slot mask with bitmap manner to indicate UL slot ON/OFF/pending within a time duration (T ULslot) . The length of the UL slot mask is determined by the number of UL slots within the time duration (T ULslot) . In a variable manner, the UE is configured with an UL slot offset set including one or multiple UL slot offsets that indicate which UL slots are UL transmission ON/OFF/pending slots within the time duration (T ULslot) . Similarly, the length (or bit length) of the UL slot mask or the value range of each UL slot offset in the UL slot offset set is determined by the number of UL slots in the configured time duration (T ULslot) , while the flexible slot (s) and the DL slot (s) in the configured time duration (T ULslot) are  skipped in the UL slot mask or in the value range of the UL slot offset set. In addition, if all or part of symbols of a flexible slot are configured to be UL symbol (s) , the flexible slot is assumed to an UL slot in the slot on/off configuration.
A second embodiment relates to symbol-based cell-level/UE specific semi-persistent configuration.
The UE is configured with a slot format configuration. For example, the slot format configuration may include one or multiple (e.g. two) slot format indication periods (e.g. P and P2) with repetitions within two frames, as shown in Figure 3.
According to the second embodiment, the UE is configured with a symbol mask with bitmap manner to indicate DL symbol ON/OFF or DL symbol pending/OFF. In addition, the length of the symbol mask is determined by the number of DL symbols within a time duration (T symbol) .
According to a variety of the second embodiment, the UE is configured with a symbol offset set including one or multiple symbol offsets that indicate which symbols are DL transmission OFF symbols within the time duration (T symbol) .
The time duration (T symbol) can be determined by any one of the following four options:
Option 2-1: the time duration (T symbol) is configured as the number of symbols in a slot (e.g. 14 symbols for one slot) . In this condition, the symbol mask or the symbol offset set is individually configured for each slot.
Option 2-2: the time duration (T symbol) is each slot format indication period (e.g. T symbol = P slots, or T symbol = P2 slots) . In this condition, the symbol mask or the symbol offset set is individually configured for each slot format indication period.
Option 2-3: the time duration (T symbol) can be a configured number (e.g. M) times of the total slot format indication periods (e.g. T symbol = M * (P + P2) slots) , where M can be configured to 1, 2, etc. Alternatively, M may be determined according to OFDM numerology as described in the first embodiment.
Option 2-4: the time duration (T symbol) is a fixed value of 20ms (i.e. two frames) .
Similar to slot-based DL transmission ON/OFF configuration, in order to save the signaling overhead, the flexible symbol (s) and the UL symbol (s) within the time duration are skipped for determining the length of the symbol mask or determining the range of symbol offsets in the symbol offset set.
When DL symbol (s) are configured in the cell-specific configuration, the symbol-based DL transmission ON/OFF configuration can be cell specific. On the other hand, when some DL symbol (s) are further configured from flexible symbol (s) in the UE-specific configuration, the symbol-based DL transmission ON/OFF configuration can be UE specific.
In the above description of the second embodiment, each of the DL symbols that are not configured as DL transmission OFF symbol is assumed to be DL transmission ON symbol. For example, in the symbol mask, 1 stands for DL transmission OFF symbol while 0 stands for DL transmission ON symbol. DL transmission pending symbol can be also introduced. A DL transmission pending symbol is a DL symbol that can be configured as DL transmission ON symbol or DL transmission OFF symbol UE-specifically or dynamically (e.g. by DCI, that will be discussed later in the fourth embodiment) . When DL transmission pending symbol is introduced, in an alternative slot mask, 1 stands for DL transmission OFF symbol while 0 stands for DL transmission pending symbol. In a further alternative slot mask, 1 stands for DL transmission pending symbol while 0 stands for DL transmission ON symbol.
The UE is supposed to drop or postpone the reception of PDSCH, PDCCH and/or CSI-RS in DL transmission OFF symbols.
As a whole, according to the second embodiment, the length (or bit length) of the symbol mask is determined by the number of DL symbols in a configured time duration. The flexible symbol (s) and the UL symbol (s) in the configured time duration are skipped in the symbol mask. Similarly, according to the variety of the second embodiment, the value range of each symbol offset is determined by the number of DL symbols in the configured period time duration. If a flexible symbol is configured to a DL symbol e.g. UE-specifically, the flexible symbol is assumed to be a DL symbol in symbol on/off configuration.
Incidentally, in order to save network energy for reception, similar to slot-based cell-level/UE specific semi-persistent configuration for UL transmission OFF slot, the UL symbol may also be configured as UL transmission OFF symbol with the same principle as described above. For example, the UE is configured with a UL symbol mask with bitmap manner to indicate UL symbol ON/OFF/pending within a time duration (T ULsymbol) . The length of the UL symbol mask is determined by the number of UL symbols within the time duration (T ULsymbol) . In a variable manner, the UE is configured with an UL symbol offset set including one or multiple UL symbol offsets that indicate which UL symbols are UL transmission ON/OFF/pending symbols within the time duration (T ULsymbol) . Similarly, the length (or bit length) of the UL  symbol mask or the value range of each UL symbol offset in the UL symbol offset set is determined by the number of UL symbols in the configured time duration (T ULsymbol) , while the flexible symbol (s) and the DL symbol (s) in the configured time duration (T ULsymbol) are skipped in the UL symbol mask or in the value range of the UL symbol offset set. In addition, a flexible symbol may be configured, e.g. UE-specifically, to be UL symbol.
A third embodiment relates to cell-level/UE specific dynamic configuration, which can be made by a DCI.
According to the third embodiment, slot-based dynamic DL transmission ON/OFF/pending configuration is made. A DCI is used to indicate to the UE a slot mask combination that includes several mask patterns each of which indicates which slots are DL transmission ON/OFF/pending slots within a time duration (i.e. the length of the slot mask pattern) . The time duration can be configured with the same option (e.g. any of options 1-3) described with reference to the first embodiment. The UE is expected to get the slot mask indicator (e.g. Slot Mask Index 1) via the positionInDCI higher layer parameter. The value of the slot mask indicator (e.g. Slot Mask Index 1) indicates an Slot mask Combination ID. For example, as shown in Figure 7, when Slot Mask Index 1 = 2, it indicates the Slot mask Combination ID being equal to 2 that indicates a  slot mask combination  3, 3, 3, 3, 6, 7, 7 (that is configured by higher layer signaling) , in which each slot mask format indicates a slot mask pattern. For example, as shown in Figure 7, format 3 indicates  slot mask pattern  1, 1, 1, 1, 1, 1, 1, 0, 0, 0 (for consecutive 10 slots, i.e. the time duration is 10 slots) , where 1 means DL transmission OFF slot while 0 means DL transmission ON slot, or 1 means DL transmission OFF slot while 0 means DL transmission pending slot, or 1 means DL transmission pending slot while 0 means DL transmission ON slot. The slot mask combination can be alternatively slot offset set format combination (while the slot mask combination ID is slot offset set combination ID) , where each slot offset set format indicates a slot offset set. The DCI for the slot-based dynamic DL transmission ON/OFF/pending configuration can be optionally differentiated by a new RNTI.
According to a variety of the third embodiment, symbol-based dynamic DL transmission ON/OFF/pending configuration is made. A DCI is used to indicate to the UE a symbol mask combination that includes several mask patterns each of which indicates which symbols are DL transmission ON/OFF/pending symbols within a time duration (i.e. the length of the slot mask pattern, e.g. 14 symbols in a slot) . The time duration can be configured with the same option (e.g. any of options 2-1 to 2-4) described with reference to the variety of the first  embodiment. The UE is expected to get the symbol mask indicator (e.g. Symbol Mask Index 1) via the positionInDCI higher layer parameter. The value of the symbol mask indicator (e.g. Symbol Mask Index 1) indicates an Symbol mask Combination ID. For example, as shown in Figure 8, when Symbol Mask Index 1 = 2, it indicates the Symbol mask Combination ID being equal to 2 that indicates a  symbol mask combination  3, 3, 3, 3, 6, 7, 7 (that is configured by higher layer signaling) , in which each symbol mask format indicates a symbol mask pattern (e.g. symbol mask in a slot) . For example, as shown in Figure 8, format 3 indicates  symbol mask pattern  1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1 (for 14 consecutive symbols, i.e. the time duration is 14 symbols) , where 1 means DL transmission OFF symbol while 0 means DL transmission ON symbol, or 1 means DL transmission OFF symbol while 0 means DL transmission pending symbol, or 1 means DL transmission pending symbol while 0 means DL transmission ON symbol. The symbol mask combination can be alternatively symbol offset set format combination (while the symbol mask combination ID is symbol offset set combination ID) , where each symbol offset set format indicates a symbol offset set. The DCI for the symbol-based dynamic DL transmission ON/OFF/pending configuration can be optionally differentiated by another new RNTI.
According to a fourth embodiment, each of the slot (s) or symbol (s) that are configured as pending cell-specifically or UE-specifically or dynamically by a DCI (e.g. DCI format 2_0) can be dynamically configured (e.g. by a DCI) as ON or OFF.
The DCI can be DCI format 0_1 or 1_1 scheduling DL signals if the slot (s) or symbol (s) that are configured as pending are DL slot (s) or DL symbol (s) . For example, suppose a DCI format 1_1 schedules a PDSCH in symbols #2 to #4 of DL slot k, and DL slot k (having 14 symbols: symbols #0 to #13) has been configured with a symbol mask 11010001001000 in which 1 means DL transmission OFF while 0 means DL transmission pending. It can be seen that symbols #2 to #4 are configured with “010” , i.e. symbols #2 and #4 are configured as DL transmission pending symbols, and symbol #3 is configured as DL transmission OFF symbol. A new or existing field in DCI (e.g. DCI format 1_1) can be used to indicate that each of the DL transmission pending symbols in scheduled symbols #2 to #4 is DL transmission ON symbol (i.e. DL transmission pending symbol (s) are enabled) . Obviously, if all DL transmission pending symbols are enabled simultaneously, 1 bit is enough for the enable or disable. In other words, an existing field with an additional one bit or a new field with one bit (both are referred to as “1-bit” field) can be used. Incidentally, if the 1-bit field set to 1 means “enable” (i.e. configure the DL  transmission pending symbol (s) to DL transmission ON symbol (s) ) , the 1-bit field set to 0 may mean “disable” (i.e. configure the DL transmission pending symbol (s) to DL transmission OFF symbol (s) ) . When symbols #2 and #4, that are DL transmission pending symbols, are enabled as DL transmission ON symbols, the PDSCH can be transmitted in symbols #2 to #4. Note that the PDSCH cannot be transmitted in symbol #3 because symbol #3 is configured as DL transmission OFF symbol which cannot be enabled.
The DL transmission pending slot (s) can be enabled as DL transmission ON slot (s) with the same manner, i.e. by 1-bit field in a DCI scheduling PDSCH in the DL transmission pending slot (s) .
If, in the slot mask or symbol mask, 1 means pending while 0 means ON, the 1-bit field in DCI can enable the DL transmission pending slot or symbol as DL transmission ON slot or symbol, or disable the DL transmission pending slot or symbol as DL transmission OFF slot or symbol.
The UL transmission pending slot (s) or symbol (s) can be enabled as UL transmission ON slot (s) or symbol (s) or disabled as UL transmission OFF slot (s) or symbol (s) with the same manner, e.g. by 1-bit field in DCI format 0_0 or 1_0 scheduling PUSCH.
Figure 9 is a schematic flow chart diagram illustrating an embodiment of a method 900 according to the present application. In some embodiments, the method 900 is performed by an apparatus, such as a remote unit (UE) . In certain embodiments, the method 900 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
The method 900 may include 902 receiving configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof; and 904 transmitting or receiving signal based on the configuration messages. The time resource is slot or symbol. In particular, based on the configuration messages, the signal is only transmitted or received in transmission ON time resource (s) , i.e. transmission ON slot (s) and/or transmission ON symbol (s) .
The length of the time resource mask or the range of each time resource offset in the time resource offset set is determined by the number of DL time resources or UL  time resources in the time duration. In particular, the DL time resources include at least one of DL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as DL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as DL time resource (s) by higher layer signaling. The UL time resources include at least one of UL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as UL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as UL time resource (s) by higher layer signaling.
The time duration may be determined by at least one of the periods of the time resource format indication, a configured number, and frame numerology.
The configuration messages may further include a set of combination IDs and combinations of time resource masks or of time resource offset sets, where each combination ID corresponds to one combination. The method may further comprise receiving a control signal containing a field of a combination ID, wherein the position of the field in the control signal is configured by higher layer.
The method may further comprise receiving a control signal, the control signal includes an indication that can enable or disable the transmission pending time resource (s) .
Figure 10 is a schematic flow chart diagram illustrating a further embodiment of a method 1000 according to the present application. In some embodiments, the method 1000 is performed by an apparatus, such as a base unit. In certain embodiments, the method 1000 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
The method 1000 may include 1002 transmitting configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof; and 1004 transmitting or receiving signal based on the configuration messages. The time resource is slot or symbol. In particular, based on the configuration messages,  the signal is only transmitted or received in transmission ON time resource (s) , i.e. transmission ON slot (s) and/or transmission ON symbol (s) .
The length of the time resource mask or the range of each time resource offset in the time resource offset set is determined by the number of DL time resources or UL time resources in the time duration. In particular, the DL time resources include at least one of DL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as DL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as DL time resource (s) by higher layer signaling. The UL time resources include at least one of UL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as UL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as UL time resource (s) by higher layer signaling.
The time duration may be determined by at least one of the periods of the time resource format indication, a configured number, and frame numerology.
The configuration messages may further include a set of combination IDs and combinations of time resource masks or of time resource offset sets, where each combination ID corresponds to one combination. The method may further comprise transmitting a control signal containing a field of a combination ID, wherein the position of the field in the control signal is configured by higher layer.
The method may further comprise transmitting a control signal, the control signal includes an indication that can enable or disable the transmission pending time resource (s) .
Figure 11 is a schematic block diagram illustrating apparatuses according to one embodiment.
Referring to Figure 11, the UE (i.e. the remote unit) includes a processor, a memory, and a transceiver. The processor implements a function, a process, and/or a method which are proposed in Figure 9.
The UE comprises a transceiver that receives configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time  resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof, wherein the transceiver further transmits or receives signal based on the configuration messages. The time resource is slot or symbol. In particular, based on the configuration messages, the signal is only transmitted or received in transmission ON time resource (s) , i.e. transmission ON slot (s) and/or transmission ON symbol (s) .
The length of the time resource mask or the range of each time resource offset in the time resource offset set is determined by the number of DL time resources or UL time resources in the time duration. In particular, the DL time resources include at least one of DL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as DL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as DL time resource (s) by higher layer signaling. The UL time resources include at least one of UL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as UL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as UL time resource (s) by higher layer signaling.
The time duration may be determined by at least one of the periods of the time resource format indication, a configured number, and frame numerology.
The configuration messages may further include a set of combination IDs and combinations of time resource masks or of time resource offset sets, where each combination ID corresponds to one combination. The transceiver may further receive a control signal containing a field of a combination ID, wherein the position of the field in the control signal is configured by higher layer.
The transceiver may further receive a control signal, the control signal includes an indication that can enable or disable the transmission pending time resource (s) .
Referring to Figure 11, the gNB (i.e. base unit) includes a processor, a memory, and a transceiver. The processors implement a function, a process, and/or a method which are proposed in Figure 10.
The base unit comprises a transceiver that transmits configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time  resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof, wherein the transceiver further transmits or receives signal based on the configuration messages. The time resource is slot or symbol. In particular, based on the configuration messages, the signal is only transmitted or received in transmission ON time resource (s) , i.e. transmission ON slot (s) and/or transmission ON symbol (s) .
The length of the time resource mask or the range of each time resource offset in the time resource offset set is determined by the number of DL time resources or UL time resources in the time duration. In particular, the DL time resources include at least one of DL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as DL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as DL time resource (s) by higher layer signaling. The UL time resources include at least one of UL time resource (s) configured by the time resource format indication, time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as UL time resource (s) , and flexible time resource (s) configured by the time resource format indication and further reconfigured as UL time resource (s) by higher layer signaling.
The time duration may be determined by at least one of the periods of the time resource format indication, a configured number, and frame numerology.
The configuration messages may further include a set of combination IDs and combinations of time resource masks or of time resource offset sets, where each combination ID corresponds to one combination. The transceiver may further transmit a control signal containing a field of a combination ID, wherein the position of the field in the control signal is configured by higher layer.
The transceiver may further transmit a control signal, the control signal includes an indication that can enable or disable the transmission pending time resource (s) .
Layers of a radio interface protocol may be implemented by the processors. The memories are connected with the processors to store various pieces of information for driving the processors. The transceivers are connected with the processors to transmit and/or receive a radio signal. Needless to say, the transceiver may be implemented as a transmitter to transmit the radio signal and a receiver to receive the radio signal.
The memories may be positioned inside or outside the processors and connected with the processors by various well-known means.
In the embodiments described above, the components and the features of the embodiments are combined in a predetermined form. Each component or feature should be considered as an option unless otherwise expressly stated. Each component or feature may be implemented not to be associated with other components or features. Further, the embodiment may be configured by associating some components and/or features. The order of the operations described in the embodiments may be changed. Some components or features of any embodiment may be included in another embodiment or replaced with the component and the feature corresponding to another embodiment. It is apparent that the claims that are not expressly cited in the claims are combined to form an embodiment or be included in a new claim.
The embodiments may be implemented by hardware, firmware, software, or combinations thereof. In the case of implementation by hardware, according to hardware implementation, the exemplary embodiment described herein may be implemented by using one or more application-specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, and the like.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects to be only illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (11)

  1. A method of an UE, comprising:
    receiving configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof; and
    transmitting or receiving signal based on the configuration messages.
  2. The method of claim 1, wherein, the time resource is slot or symbol.
  3. The method of claim 1, wherein, the length of the time resource mask or the range of each time resource offset in the time resource offset set is determined by the number of DL time resources or UL time resources in the time duration.
  4. The method of claim 1, wherein, the time duration is determined by at least one of the periods of the time resource format indication, a configured number, and frame numerology.
  5. The method of claim 3, wherein,
    the DL time resources include at least one of
    DL time resource (s) configured by the time resource format indication,
    time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as DL time resource (s) , and
    flexible time resource (s) configured by the time resource format indication and further reconfigured as DL time resource (s) by higher layer signaling, and
    the UL time resources include at least one of
    UL time resource (s) configured by the time resource format indication,
    time resource (s) configured as flexible time resource by the time resource format indication with part of the time resource configured as UL time resource (s) , and
    flexible time resource (s) configured by the time resource format indication and further reconfigured as UL time resource (s) by higher layer signaling.
  6. The method of claim 1, wherein, the configuration messages further include a set of combination IDs and combinations of time resource masks or of time resource offset sets, where each combination ID corresponds to one combination.
  7. The method of claim 6, further comprising: receiving a control signal containing a field of a combination ID, wherein the position of the field in the control signal is configured by higher layer.
  8. The method of claim 1, further comprising: receiving a control signal, the control signal includes an indication that can enable or disable the transmission pending time resource (s) .
  9. An UE, comprising:
    a transceiver that receives configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof, wherein
    the transceiver further transmits or receives signal based on the configuration messages.
  10. A method of an base unit, comprising:
    transmitting configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time  resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof; and
    transmitting or receiving signal based on the configuration messages.
  11. A base unit, comprising:
    a transceiver that transmits configuration messages, wherein the configuration messages include time resource format indication with one or more periods, and the configuration messages further include a time resource mask or a time resource offset set within a time duration to indicate which time resources are transmission OFF time resource (s) or transmission ON time resource (s) or transmission pending time resource (s) or some combination thereof, wherein
    the transceiver further transmits or receives signal based on the configuration messages.
PCT/CN2021/123982 2021-10-15 2021-10-15 Time domain transmission on/off configuration WO2023060531A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/123982 WO2023060531A1 (en) 2021-10-15 2021-10-15 Time domain transmission on/off configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/123982 WO2023060531A1 (en) 2021-10-15 2021-10-15 Time domain transmission on/off configuration

Publications (1)

Publication Number Publication Date
WO2023060531A1 true WO2023060531A1 (en) 2023-04-20

Family

ID=85987207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123982 WO2023060531A1 (en) 2021-10-15 2021-10-15 Time domain transmission on/off configuration

Country Status (1)

Country Link
WO (1) WO2023060531A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039858A (en) * 2018-11-09 2021-06-25 三星电子株式会社 Method and apparatus for subband-based channel access in a wireless communication system
US20210212101A1 (en) * 2018-09-21 2021-07-08 Zte Corporation Methods, apparatus and systems for improving scheduling flexibility in a wireless communication
US20210235481A1 (en) * 2018-05-07 2021-07-29 Ntt Docomo, Inc. User terminal and radio communication method
CN113207110A (en) * 2018-09-07 2021-08-03 Oppo广东移动通信有限公司 Configuration information transmission method and terminal equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210235481A1 (en) * 2018-05-07 2021-07-29 Ntt Docomo, Inc. User terminal and radio communication method
CN113207110A (en) * 2018-09-07 2021-08-03 Oppo广东移动通信有限公司 Configuration information transmission method and terminal equipment
US20210212101A1 (en) * 2018-09-21 2021-07-08 Zte Corporation Methods, apparatus and systems for improving scheduling flexibility in a wireless communication
CN113039858A (en) * 2018-11-09 2021-06-25 三星电子株式会社 Method and apparatus for subband-based channel access in a wireless communication system

Similar Documents

Publication Publication Date Title
CN111066280B (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system
KR102109412B1 (en) Method and apparatus for transmitting and receving wireless signals in a wireless communicaiton system
JP6073514B2 (en) Method and apparatus for uplink resource allocation
US8879494B2 (en) Method and system for non-periodic feedback in carrier aggregation scenario
US20190052447A1 (en) Data transmission method, device, and system
US20130121278A1 (en) Method and apparatus for allocating resources in a wireless communication system
US11088804B2 (en) Reference signal transmission method, apparatus, and system
KR102109413B1 (en) Method and apparatus for transmitting and receiving wireless signal in a wireless communication system
US20210400511A1 (en) Methods and apparatuses for control resource mapping
US20220149996A1 (en) Method and apparatus for scheduling and hybrid automatic repeat request feedback in communication system
CN116326025A (en) Joint TCI status for DL and UL beam indication
TW202228463A (en) Facilitating downlink control information (dci) repetition on linked physical downlink control channel (pdcch) candidates of different search space sets
WO2022073189A1 (en) Simultaneous tci state activation for ul and dl
US20240040583A1 (en) Common tx beam indication and application for ul
WO2023060531A1 (en) Time domain transmission on/off configuration
US20220255700A1 (en) Method and apparatus for reporting channel state information through repeated uplink data transmission in network cooperative communication
US20230017292A1 (en) Media access control (mac) control element (ce) for configuring pathloss reference signal for sounding reference signal (srs)
US11317429B2 (en) Method for transmitting and receiving scheduling information in communication system
WO2023201704A1 (en) Network transmission on and off
WO2024082571A1 (en) Multi-trp operation with unified tci framework before indicating tci states by dci
US20240188170A1 (en) Partial frequency sounding
WO2023137654A1 (en) Single-dci multi-trp based ul transmission in unified tci framework
US20240098520A1 (en) Mac ce based common beam indication
WO2024026724A1 (en) Support of srs transmission with 8 antenna ports
WO2022032657A1 (en) Flexible triggering of aperiodic srs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960266

Country of ref document: EP

Kind code of ref document: A1