WO2023060474A1 - 一种探测装置、分流电路及终端设备 - Google Patents

一种探测装置、分流电路及终端设备 Download PDF

Info

Publication number
WO2023060474A1
WO2023060474A1 PCT/CN2021/123528 CN2021123528W WO2023060474A1 WO 2023060474 A1 WO2023060474 A1 WO 2023060474A1 CN 2021123528 W CN2021123528 W CN 2021123528W WO 2023060474 A1 WO2023060474 A1 WO 2023060474A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
shunt
current
current signal
Prior art date
Application number
PCT/CN2021/123528
Other languages
English (en)
French (fr)
Inventor
刘健
蔡中华
何世栋
高磊
张化红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180101976.6A priority Critical patent/CN117897623A/zh
Priority to PCT/CN2021/123528 priority patent/WO2023060474A1/zh
Publication of WO2023060474A1 publication Critical patent/WO2023060474A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices

Definitions

  • the present application relates to the technical field of laser radar, in particular to a detection device, a shunt circuit and a terminal device.
  • the laser detection device mainly includes a laser transmitter, a laser receiver and a processor.
  • the laser transmitter can emit laser signals.
  • the laser signal will be reflected after encountering an object, so that the laser receiver can detect the reflected signal, convert the reflected signal into an electrical signal, and perform corresponding processing on the electrical signal (for example, amplify, convert, etc.) and output it to the processing
  • the processor can then determine the distance between the laser detection device and the object and the light intensity information of the reflected signal.
  • the electrical signal converted by the laser receiver based on the reflected signal will exceed the range that the processor can receive, making it impossible for the processor to accurately obtain the corresponding signal of the reflected signal.
  • the electrical signal of the signal causes the processor to determine the distance between the laser detection device and the object and the light intensity information of the reflected signal to be inaccurate. In this way, the light intensity range of the reflected signal that the laser detection device can detect is limited.
  • the embodiment of the present application provides a detection device, a shunt circuit and a terminal device, which are used to increase the light intensity range of the reflected signal that the detection device can detect.
  • This method can be applied to the Internet of Vehicles, such as vehicle-to-everything (V2X), long-term evolution-vehicle (LTE-V), vehicle-vehicle (V2V), etc. .
  • V2X vehicle-to-everything
  • LTE-V long-term evolution-vehicle
  • V2V vehicle-vehicle
  • the embodiment of the present application provides a detection device.
  • the detection device may include: a detection unit, a photoelectric conversion unit, and a shunt circuit; wherein, the detection unit may be used to receive an optical signal, and the optical signal may include a reflected signal of a laser emission signal; the photoelectric conversion unit may be used to convert The received optical signal is photoelectrically converted to obtain a current signal, and the current signal includes the first current signal; the shunt circuit can be used to shunt the first current signal to obtain N second current signals, and the N second current signals are used to generate N second voltage signals V i ; wherein, N is an integer greater than or equal to 1, and i is an integer greater than or equal to 1 and less than or equal to N.
  • the shunt circuit can perform a shunt operation on the first current signal in the current signal, and N second currents can be obtained.
  • signal, and the N second current signals can be used to generate multiple voltage signals, so that the detecting device can output multiple voltage signals.
  • the detection device detects a reflection signal with a relatively high light intensity
  • the voltage signal obtained after the current signal corresponding to the reflection signal is processed by the detection device will not be saturated (that is, the voltage that can be received by the subsequent processing circuit within the value range of the signal), thereby effectively increasing the light intensity range of the reflected signal that the detection device can detect.
  • “higher light intensity” can be understood as the light intensity of the current reflected signal exceeds the range of light intensity that can be detected by the detection device.
  • Different detection devices can correspond to different light intensity ranges. For example, for a laser detection device, the light intensity range is 500cd-5000cd; for another example, for an infrared light detection device, the light intensity range is 100cd-1000cd.
  • the current value of the current signal obtained by the photoelectric conversion unit performing photoelectric conversion on the optical signal is greater than a preset threshold.
  • the above-mentioned shunt circuit performs a shunt operation on the first current signal in the current signal to obtain a plurality of second currents signal, and the plurality of second current signals can be used to generate a plurality of second voltage signals.
  • the N second voltage signals V i may be used to determine the distance information of the target object generating the reflection signal and/or the intensity information of the light signal. In this design, since the N second voltage signals do not saturate, the distance information of the target object and/or the intensity information of the light signal determined according to the N second voltage signals are more accurate.
  • the above shunt circuit may shunt the first current signal based on N preset first control signals to obtain N second current signals.
  • one preset first control signal may correspond to one bias voltage
  • N preset first control signals correspond to N bias voltages VB i .
  • Values of the N bias voltages may be the same or different, which is not specifically limited in this embodiment of the present application.
  • the N preset first control signals correspond one-to-one to the N second current signals. Two current signals.
  • the above-mentioned shunt circuit can shunt the first current signal based on N preset first control signals, so that the shunt circuit can quickly shunt the first current signal, so that the subsequent processing circuit can receive the reflected signal corresponding to voltage signal, thereby effectively improving the efficiency of determining the distance information between the target object and the detection device and/or the intensity information of the above-mentioned optical signal.
  • the above shunt circuit may include N second shunt circuits, and the N second shunt circuits may shunt the first current signal based on N preset first control signals to obtain N second current signal.
  • each of the N second shunt circuits is in one-to-one correspondence with each of the N preset first control signals, and each of the first control signals is associated with the N preset first control signals.
  • Each second current signal in the second current signals corresponds one to one. That is to say, each second shunt circuit can shunt the first current signal based on the corresponding first control signal to obtain a second current signal.
  • the second shunt circuit 1 shunts the first current signal based on the first control signal 1 to obtain a second current signal 1; for example, the second shunt circuit 2 shunts the first current signal based on the first control signal 2, A second current signal 2 can be obtained.
  • each second shunt circuit can be based on its corresponding first control signal.
  • the first current signal is shunted, and each second shunt circuit can obtain a second current signal conforming to its preset dynamic range (ie, the value range of the current signal).
  • the above shunt circuit can also shunt the first current signal based on the received N second control signals to obtain N fourth current signals, and the N fourth current signals can be used to generate N third voltage signals V i' .
  • one second control signal may correspond to one bias voltage
  • N second control signals correspond to N bias voltages VB i′ .
  • Values of the N bias voltages may be the same or different, which is not specifically limited in this embodiment of the present application.
  • the "received N second control signals" may be received by the shunt circuit from the post-processing circuit, wherein the post-processing circuit may be an external processing circuit of the detection device, or an internal processing circuit of the detection device circuit.
  • the N second control signals may be dynamically determined according to the N second voltage signals output by the shunt circuit. For example, according to the second voltage signal V 1 , the second control signal 1 is determined; according to the second voltage signal 2 , the second control signal 2 is determined.
  • the N third voltage signals V i' may be used to determine the distance information of the target object generating the reflection signal and/or the intensity information of the light signal.
  • the N third voltage signals will not be saturated, the distance information between the target object and the detection device and/or the intensity information of the above-mentioned optical signal determined according to the N third voltage signals V i' are more accurate. precise.
  • the above-mentioned shunt circuit further includes a first shunt circuit
  • the above-mentioned current signal further includes a third current signal; wherein, the first shunt circuit can be used to perform shunt processing on the third current signal, and the third current signal The signal can be used to generate the first voltage signal V 0 .
  • the first shunt circuit performs a shunt operation on the part of the current signal corresponding to the reflected signal that is smaller than the preset threshold to obtain the third current signal, so that this part of the current signal can be quickly output.
  • the magnitude of the current value corresponding to the third current signal is smaller than the aforementioned preset threshold.
  • the first voltage signal V 0 may be used to determine the distance information of the target object that generates the reflection signal and/or the intensity information of the light signal.
  • the first voltage signal generated based on the third current signal can be used to determine the distance information of the target object that generates the reflected signal and/or the intensity information of the light signal, so that the distance information of the target object determined by the detection device and /or the intensity information of the optical signal is more accurate.
  • the embodiment of the present application further provides a shunt circuit, and the shunt circuit may be the shunt circuit in the above detection device.
  • the shunt circuit may include: a first node N 1 , N second shunt circuits, and N processing circuits; the first node N 1 is coupled to the input terminals of the N second shunt circuits, and the N second shunt circuits The output terminals of the circuit are respectively coupled to the input terminals of N processing circuits; wherein, N is an integer greater than or equal to 1; wherein: the first node N1 can be used to input the first current signal into N second shunt circuits; N The second shunt circuit can be used to shunt the first current signal to obtain N second current signals; the N processing circuits can be used to process the N second current signals to generate N second voltage signals V i .
  • each second shunt circuit can shunt the first current signal to obtain a corresponding second current signal, and
  • the processing circuit corresponding to the second shunt circuit can also process the second current signal to generate a second voltage signal.
  • the shunt circuit can output multiple voltage signals, so that the voltage signal output by the shunt circuit will not be saturated.
  • the above N second voltage signals may be used to determine the distance information of the target object generating the reflection signal and/or the intensity information of the light signal.
  • the above N second voltage signals may be used to determine the distance information of the target object generating the reflection signal and/or the intensity information of the light signal.
  • the above shunt circuit may also include a first component and a first shunt circuit; wherein, the output end of the first component is coupled to the input end of the first shunt circuit, and the output end of the first component
  • the first node N1 is respectively coupled to the input terminals of N second shunt circuits; wherein, the first component can be used to obtain a current signal, and the current signal includes the above-mentioned first current signal and the third current signal; the first shunt The circuit can be used to divide the current signal to obtain a third current signal, and the third current signal is used to generate the first voltage signal V 0 .
  • the split current, and the N second current signals and the third current signals obtained after the split can generate multiple voltage signals, so that the voltage signal output by the split circuit will not be saturated.
  • the first voltage signal V 0 may be used to determine the distance information of the target object generating the reflection signal and/or the intensity information of the light signal.
  • the specific description and beneficial effects of this design please refer to the description related to the second aspect above.
  • a current value of the above-mentioned current signal is greater than a preset threshold, and a current value of the third current signal is smaller than a preset threshold.
  • the N second shunt circuits may shunt the first current signal based on the N preset first control signals, so as to obtain N second current signals.
  • the N second shunt circuits may shunt the first current signal based on the N preset first control signals, so as to obtain N second current signals.
  • the N processing circuits can also be used to receive N second control signals; the N second shunt circuits can also be used to divide the first current signal based on the N second control signals, so as to obtain N fourth current signals; the N processing circuits can also be used to process the N fourth current signals to obtain N third voltage signals V i′ .
  • the N processing circuits can also be used to process the N fourth current signals to obtain N third voltage signals V i′ .
  • the i-th second shunt circuit among the N second shunt circuits may include a discharge circuit D i , each of the N processing circuits includes a first resistor R sensor , a second Node N 2 , the first capacitor C 1 and the amplifier circuit; wherein, the input terminal of the discharge circuit D i is coupled to the first node N 1 , the first resistor R sensor is connected to the output terminal of the discharge circuit Di and the input terminal of the amplifier circuit Coupled separately, one end of the first capacitor C1 is respectively coupled to the first resistor R sensor and the input end of the amplifier circuit through the second node N2 , and the other end is grounded.
  • the discharge circuit D i can be used to shunt the first current signal to obtain a second current signal
  • the first resistance R sensor can be used to convert the second current signal into a fourth voltage signal, and input it into the amplifying circuit
  • the circuit can be used to amplify the fourth voltage signal to obtain the second voltage signal V i .
  • the processing circuit can convert the second current signal obtained by shunting the bleeder circuit into a voltage signal, and further amplify the output.
  • the post-processing circuit can capture an accurate voltage signal, thereby making the determined distance information of the target object and/or the intensity information of the light signal more accurate.
  • the above discharge circuit D i may be one of the following devices: a diode, a metal oxide semiconductor field effect transistor (MOS) field effect transistor, or a triode.
  • MOS metal oxide semiconductor field effect transistor
  • the amplifying circuit includes a first amplifying circuit, and the first amplifying circuit can be used to amplify the fourth voltage signal to obtain the second voltage signal V i .
  • the first amplifying circuit may include a second amplifier T 2
  • the second amplifier T 2 may include one or more amplifiers, which is not specifically limited in this embodiment of the present application.
  • the amplifying circuit has a relatively simple structure, which effectively reduces the complexity of implementing the processing circuit.
  • the above-mentioned amplifying circuit may include a logarithmic amplifying circuit and a second amplifying circuit, the input end of the logarithmic amplifying circuit is coupled with the first resistance R sensor , and the output end of the logarithmic amplifying circuit may be connected to the input end of the second amplifying circuit Coupling; the logarithmic amplifier circuit can be used to amplify the fourth voltage signal to obtain the fifth voltage signal; the second amplifier circuit can be used to amplify the fifth voltage signal to obtain the second voltage signal V i .
  • Embodiment 2 by designing a logarithmic amplifier circuit and a second amplifier circuit in the above-mentioned amplifier circuit, the dynamic range (that is, the range of the output voltage) of the above-mentioned amplifier circuit can be effectively improved, which can make it easier to process the second voltage signal output by the circuit. Captured by the post-processing circuit.
  • the above-mentioned logarithmic amplifier circuit may include a second amplifier T 2 , a second resistor R 1 , an equivalent diode D 3 , a third node N 3 and a second capacitor C 2 , and the above-mentioned second amplifier circuit Including a third amplifier T3 ; wherein, one end of the second resistor R1 is coupled to the output end of the second amplifier T2 , and the other end is respectively coupled to the input end of the equivalent diode D3 and the input end of the third amplifier T3 ; One end of the second capacitor C 2 is coupled to the output end of the equivalent diode D 3 through the third node N 3 , and the other end is grounded.
  • the second amplifier T2 logarithmically amplifies the voltage signal converted from the second current signal, and then outputs it to the third amplifier T3 , and then the third amplifier T3 can further amplify the logarithmically amplified voltage signal amplify to obtain a second voltage signal corresponding to the second current signal.
  • the above-mentioned equivalent diode D 3 may be any one of a diode, a MOS transistor, or a triode.
  • the equivalent diode D 3 can be realized in many ways, which can effectively reduce the complexity of the logarithmic amplifier circuit.
  • the first component is a photoelectric conversion device, and the first component can also be used to receive an optical signal and convert the optical signal into a current signal.
  • the first component has the function of photoelectric signal conversion, which further enables the shunt circuit to perform shunt processing on the current signal corresponding to the light signal reflected by the target object.
  • the above-mentioned first shunt circuit may include a first amplifier T 1 .
  • the first amplifier T1 may be used to convert the third current signal obtained by the shunting circuit of the first shunt circuit to obtain a corresponding voltage signal, and amplify the voltage signal to obtain the above-mentioned first voltage signal.
  • the realization of the above-mentioned first shunt circuit is relatively simple.
  • the first amplifier T1 may be one or more amplifiers, which is not specifically limited in this embodiment of the present application.
  • an embodiment of the present application provides a terminal device, including the detecting device described in any one of the above-mentioned first aspect and possible designs in the first aspect.
  • some terminal devices include but are not limited to: smart home devices (such as TVs, sweeping robots, smart desk lamps, audio systems, smart lighting systems, electrical control systems, home background music, home theater systems, intercom systems, video surveillance, etc.), smart transportation equipment (such as cars, ships, drones, trains, trucks, trucks, etc.), smart manufacturing equipment (such as robots, industrial equipment, smart logistics, smart factories, etc.), smart terminals (mobile phones, computers , Tablet PCs, PDAs, Desktops, Headphones, Audio, Wearable Devices, Car Devices, Virtual Reality Devices, Augmented Reality Devices, etc.).
  • Fig. 1 is a schematic structural diagram of a laser detection device applicable to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a laser receiver applicable to an embodiment of the present application
  • Fig. 3 is a schematic structural diagram of a detection device provided by an embodiment of the present application.
  • Fig. 4A is a possible structural schematic diagram of a shunt circuit provided by an embodiment of the present application.
  • Fig. 4B is another possible structural schematic diagram of the shunt circuit provided by the embodiment of the present application.
  • Fig. 4C is another possible structural schematic diagram of the shunt circuit provided by the embodiment of the present application.
  • FIG. 5A is one of the possible schematic diagrams of a shunt circuit provided by the embodiment of the present application.
  • Fig. 5B is the second possible schematic diagram of a shunt circuit provided by the embodiment of the present application.
  • Fig. 6 is the third possible schematic diagram of a shunt circuit provided by the embodiment of the present application.
  • Fig. 7 is the fourth possible schematic diagram of a shunt circuit provided by the embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another detection device provided by the embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of another detection device provided by the embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of another detection device provided by an embodiment of the present application.
  • the detection device can be used to detect the distance of the target object.
  • the detection device takes a laser detection device 100 as an example, and the laser detection device 100 may include a laser transmitter 1 , a laser receiver 2 and a processing circuit 3 .
  • the laser transmitter 1 can emit a laser signal, and the target object 4 will reflect the corresponding optical signal (ie, the reflected signal) after receiving the laser signal; the laser receiver 2 can detect the reflected signal reflected by the target object 4, and convert the reflected signal The corresponding voltage signal is obtained through processing, and the voltage signal is input into the processing circuit 3; the processing circuit 3 can determine the distance between the target object 4 and the laser detection device 100 and the intensity information of the reflected signal according to the voltage signal.
  • Fig. 2 shows a possible structural schematic diagram of the above-mentioned laser receiver 2, in Fig. 2, V CC is the optical signal input end of the laser receiver 2, V bias is the control signal input end of the laser receiver 2 and V out is the output terminal of the laser receiver 2; the laser receiver 2 includes a photoelectric conversion device 201 and an amplification circuit 202.
  • the photoelectric conversion device 201 can convert the optical signal received from the input terminal V CC of the laser receiver 2 to obtain a current signal, and input the current signal to the amplifying circuit 202 .
  • the amplifying circuit 202 includes an amplifier T 0 and a resistor R 0 , and the amplifier T 0 can convert the current signal to obtain a voltage signal 1 based on the control signal input from the control signal input terminal V bias , and amplify the voltage signal 1 The voltage signal 2 is obtained, and the voltage signal 2 is output through the output terminal V out .
  • the amplifying circuit 202 can output the voltage signal 2 to the processing circuit 3, and the processing circuit 3 can perform analog-to-digital conversion on the voltage signal 2 after receiving the voltage signal 2 to obtain the above-mentioned reflection signal from the target The time when the object 4 returns to the laser receiver 2 , and then according to this time, the distance between the target object 4 and the laser detection device 100 and the intensity information of the reflected signal of the target object 4 are calculated.
  • the distance between the target object 4 and the laser detection device 100 is too short or when the reflected power of the target object 4 is too large, the light intensity of the reflected signal of the target object will be relatively large, which will cause the laser receiver 2 to perform a detection of the reflected signal.
  • the voltage value of the voltage signal 2 obtained by the conversion process exceeds the voltage range that the processing circuit 3 can receive (that is, the output voltage of the laser receiver 2 is saturated), so that the processing circuit 3 cannot accurately calculate the target object 4 and the laser detection device.
  • the distance of 100, and the intensity information corresponding to the reflected signal is
  • an embodiment of the present application provides a detection device, which includes a detection unit, a photoelectric conversion unit, and a shunt circuit; wherein the detection unit can be used to receive an optical signal, and the optical signal can include reflections of laser emission signals signal; the photoelectric conversion unit can be used to photoelectrically convert the received optical signal to obtain a current signal, and the current signal includes the first current signal; the shunt circuit can be used to shunt the first current signal to obtain N second current signals , the N second current signals are used to generate N second voltage signals V i ; wherein, N is an integer greater than or equal to 1, and i is an integer greater than or equal to 1 and less than or equal to N.
  • a shunt circuit is provided in the detection device, and the shunt circuit can perform a shunt operation on the first current signal to obtain N second current signals, and each second current signal can generate a voltage signal , so that the detection device can output multiple voltage signals.
  • the detection device detects a reflection signal with a relatively high light intensity
  • the voltage signal obtained after the current signal corresponding to the reflection signal is processed by the detection device will not be saturated (that is, the voltage signal that can be received by the subsequent processing circuit within the value range), which can effectively increase the light intensity range of the reflected signal that the detection device can detect.
  • the "reflection signal with high light intensity” can be understood as the light intensity of the current reflection signal exceeds the range of light intensity that can be detected by the detection device.
  • laser light includes infrared light, ultraviolet light, etc.
  • different laser detection devices can detect different light intensity ranges.
  • the infrared light detection device can detect the light intensity range of 500cd-5000cd; another example, the ultraviolet light detection device can detect the light intensity range of 100cd-1000cd.
  • the detection device may be a laser detection device.
  • the above-mentioned laser detection device may be installed on the vehicle. Furthermore, during the running of the vehicle, the above-mentioned laser detection device can detect the laser signal reflected by the target object.
  • the laser detection device can determine the current signal corresponding to the laser signal, and divide the current signal to obtain multiple current signals, and process the multiple current signals to obtain multiple voltage signals; thus, the laser detection device can output multiple A voltage signal, so that the voltage signal output by the laser detection device will not be saturated, so that the laser detection device can also accurately obtain the distance information between the target object and the laser detection device and/or the target object when it detects a reflection signal with a large light intensity.
  • the intensity information of the reflected laser signal can effectively increase the light intensity range of the reflected signal that the laser detection device can detect, and then the laser detection device can determine more obstacles on the road, so that the vehicle can optimize its own driving path, effectively Improve the safety of autonomous driving or assisted driving.
  • the laser detection device may also have other application scenarios.
  • the above-mentioned infrared light detection device may be installed on the unmanned aerial vehicle.
  • the infrared light detection device can detect the infrared light signal reflected by the target object, and the infrared light detection device performs shunt processing on the current signal generated by the infrared light signal to obtain multiple current signals, and then generate Multiple voltage signals can effectively avoid the saturation of the voltage signal output by the infrared light detection device, so that the infrared light detection device can accurately determine the distance between the target object and the infrared light detection device according to the infrared light signal, so that the drone enters the danger zone.
  • the drone can be alerted.
  • the above-mentioned laser detection device may also be an ultraviolet light detection device, a visible light detection device, etc., and no more examples are given here.
  • the detection apparatus disclosed in the embodiment of the present application may be applied to a terminal device with signal processing capability.
  • the detection device may be a terminal device or an independent unit.
  • the detection device is an independent unit, the unit may be embedded in the terminal device.
  • the terminal device can perform shunt processing on the current signal corresponding to the reflection signal, so that the voltage signal output by the detection device will not be saturated (that is, the post-processing circuit can within the value range of the received voltage signal), thereby effectively increasing the light intensity range of the reflected signal that the detection device can detect.
  • the terminal device can be a smart device with signal processing capabilities, including but not limited to: smart home devices, such as TVs, sweeping robots, smart desk lamps, audio systems, smart lighting systems, electrical control systems, home background music, home theater systems , intercom system, video surveillance, etc.; intelligent transportation equipment, such as cars, ships, drones, trains, trucks, trucks, etc.; intelligent manufacturing equipment, such as robots, industrial equipment, etc.
  • the terminal device may also be a computer device with signal processing capabilities, such as a desktop computer, a personal computer, a server, and the like.
  • the terminal device may also be a portable electronic device with a shunt capability, such as a mobile phone, a tablet computer, a handheld computer, an earphone, an audio system, a wearable device (such as a smart watch), a vehicle device, a virtual reality device, an augmented reality device wait.
  • a portable electronic device with a shunt capability such as a mobile phone, a tablet computer, a handheld computer, an earphone, an audio system, a wearable device (such as a smart watch), a vehicle device, a virtual reality device, an augmented reality device wait.
  • the "coupling" in the following embodiments of the present application may be an electrical connection, and the electrical connection between two electrical components may be a direct or indirect connection between two electrical components.
  • the connection between A and B can be either direct connection between A and B, or indirect connection between A and B through one or more other electrical components, such as A and B connection, or A and C direct connection, C and B are directly connected, and A and B are connected through C.
  • the coupling between A and B can enable the transmission of electric energy between A and B.
  • FIG. 3 is a schematic circuit diagram of a detection device according to an embodiment of the present application.
  • the detection device may include a detection unit 301 , a photoelectric conversion unit 302 and a shunt circuit 303 .
  • the input end a1 of the detection unit 301 is used to receive the optical signal
  • the output end a2 of the detection unit 301 is coupled with the input end b1 of the photoelectric conversion unit 302, and is used to input the received optical signal into the photoelectric conversion unit 302
  • the output end b 2 of the photoelectric conversion unit 302 is coupled to the input end c 1 of the shunt circuit 303 .
  • the above-mentioned optical signal includes the reflection signal of the laser emission signal; the photoelectric conversion unit 302 can be used to perform photoelectric conversion on the received optical signal to obtain a current signal 1, and input the current signal 1 into the shunt circuit 303.
  • the current signal 1 includes the first current signal; furthermore, the shunt circuit 303 can be used to shunt the first current signal to obtain N second current signals, and the N second current signals are used to generate N second voltage signals; Wherein, N is an integer greater than or equal to 1.
  • the shunt circuit 303 can perform a shunt operation on the first current signal to generate one or more second voltage signals, so that the voltage signal corresponding to the light signal with higher light intensity detected by the detection device will not Saturation (that is, not exceeding the value range of the voltage signal that the post-processing circuit can receive), effectively increases the light intensity range of the reflected signal that the detection device can detect.
  • the shunt circuit 303 performs a shunt operation on the first current signal, and there are many implementation ways, including but not limited to the following ways:
  • the shunt circuit 303 can shunt the first current signal based on N preset first control signals to obtain N second current signals, and the N second current signals can be used to generate N second voltage signals V i .
  • each preset first control signal corresponds to a preset bias voltage
  • the preset bias voltage refers to the pre-configured in the shunt circuit 303 when the technician designs the shunt circuit 303 bias voltage.
  • the number of N is not specifically limited in this embodiment of the present application.
  • the shunt circuit 303 can shunt the first current signal based on 4 preset first control signals to obtain 4 second current signals, and then obtain 4 current signals based on these 4 current signals.
  • a second voltage signal V 1 , V 2 , V 3 and V 4 can be shunt the first current signal based on 4 preset first control signals to obtain 4 second current signals, and then obtain 4 current signals based on these 4 current signals.
  • the above N preset first control signals correspond to the N second current signals one by one, that is, the first current signal is shunted based on the bias voltage corresponding to one first control signal, which can A second current signal is obtained.
  • the first control signal 1 corresponds to the bias voltage VB 1
  • the shunt circuit 303 can shunt the first current signal based on the bias voltage VB 1 to obtain the second current signal 1 .
  • the first control signal 2 corresponds to the bias voltage VB 2
  • the shunt circuit 303 can shunt the first current signal based on the bias voltage VB 2 to obtain the second current signal 2 .
  • the first control signal 3 corresponds to the bias voltage VB 3
  • the shunt circuit 303 can shunt the first current signal based on the bias voltage VB 3 to obtain the second current signal 3 .
  • the shunt circuit 303 directly performs a shunt operation based on the preset first control signal, so as to effectively improve the shunt efficiency of the shunt circuit 303 .
  • the shunt circuit 303 can shunt the first current signal based on N preset first control signals to obtain N second current signals, and the N second current signals can be used to generate N second voltage signals V i ; then the shunt circuit 303 shunts the first current signal based on the received N second control signals to obtain N fourth current signals, and the N fourth current signals are used to generate N third voltage signals V i ' .
  • the "received N second control signals" may be received by the shunt circuit 303 from the post-processing circuit, wherein the post-processing circuit may be an external processing circuit of the detection device 300, or the detection device 300 internal processing circuit.
  • One received second control signal may correspond to one bias voltage VB i′
  • N received second control signals may correspond to N bias voltages.
  • the current values corresponding to the N second current signals are different from the current values corresponding to the fourth current signals
  • the voltage values corresponding to the N second voltage signals are different from the voltage values corresponding to the N third voltage signals.
  • the above N received second control signals correspond to the N fourth current signals one by one, that is, the first current signal can be shunted based on the bias voltage corresponding to one second control signal, which can A fourth current signal is obtained.
  • the shunt circuit 303 can shunt the first current signal based on the bias voltage VB 1' to obtain the fourth current signal 1 .
  • the shunt circuit 303 can shunt the first current signal based on the bias voltage VB 2' to obtain the fourth current signal 2 .
  • the shunt circuit 303 can shunt the first current signal based on the bias voltage VB 3' to obtain the fourth current signal 3 .
  • the first control signal please refer to the related description in the way 1.
  • the above N second control signals are determined after the above N first control signals are determined.
  • the post-stage processing circuit may determine N bias voltages corresponding to the N second control signals based on the N second voltage signals.
  • the larger the voltage value corresponding to the second voltage signal the larger the value of the bias voltage corresponding to the second control signal set by the post-processing circuit.
  • the post-processing circuit can determine the second control The value of the bias voltage corresponding to the signal.
  • the voltage value corresponding to the second voltage signal 1 is 80v, then the bias voltage corresponding to the second control signal 1 is 75v; the voltage value corresponding to the second voltage signal 2 is 50v, then the bias voltage corresponding to the second control signal 2
  • the voltage is 55v; the voltage value corresponding to the second voltage signal 3 is 30v, and the bias voltage corresponding to the second control signal 3 is 35v.
  • the voltage value corresponding to the second voltage signal (v) The value of the bias voltage corresponding to the second control signal (v) 80 75 50 55 30 35
  • mapping relationship in Table 1 is only an example, not a limitation, and there may be more mapping relationships between the voltage value corresponding to the second voltage signal and the bias voltage value corresponding to the second control signal, It is only necessary that the voltage value corresponding to the second voltage signal is proportional to the value of the bias voltage corresponding to the second control signal.
  • FIG. 4A shows a possible structural diagram of the shunt circuit 303 .
  • N takes 4 as an example.
  • the shunt circuit 303 includes a first subcircuit and a second subcircuit; as shown in (a) in FIG.
  • the first subcircuit in the shunt circuit 303 can receive the current signal 1, and 4 preset first control signals divide the first current signal in the current signal 1 to obtain 4 second current signals, and input the second sub-circuit in the shunt circuit 303; the second sub-circuit in the shunt circuit 303 The circuit obtains 4 second voltage signals according to the 4 second current signals: V 1 , V 2 , V 3 and V 4 , and inputs these 4 second voltage signals into the post-stage processing circuit; the post-stage processing circuit according to this Four second voltage signals and the mapping relationship between the voltage values corresponding to the second voltage signals and the bias voltage values corresponding to the second control signals determine four second control signals, and the four second control signals The signal is input to the first subcircuit in the shunt circuit 303; as shown in (b) in Figure 4A, the first subcircuit in the shunt circuit 303 can shunt the first current signal again based on the 4 second control signals to obtain 4
  • the fourth current signal is input to the second sub-circuit in the
  • the shunt circuit 303 performs a shunt operation on the first current signal based on N preset first control signals to obtain N second current signals, and converts the N second current signals into N second After the voltage signal; based on the N second control signals, the shunt operation may be performed on the first current signal again to obtain N fourth current signals.
  • the N second control signals are dynamically determined according to the N second voltage signals, so that the third voltage signal determined according to the fourth current signal obtained by shunting again can be better adapted to the voltage reception of the post-processing circuit. scope.
  • N second voltage signals or N third voltage signals may be used to determine the distance information of the target object generating the reflection signal and/or the intensity information of the light signal.
  • the shunt circuit 303 may include: a first node N 1 , N second shunt circuits (ie, second shunt circuits 1-N), and N processing circuits (ie, processing circuit 1, processing circuit 2, ... , processing circuit N); the first node N1 is respectively coupled to the input ends of the N second shunt circuits, and the output ends of the N second shunt circuits are respectively coupled to the input ends of the N processing circuits; wherein, N is greater than An integer equal to 1.
  • the first node N1 is an electrical node formed by connecting N second shunt circuits, which is the connection point of the N second shunt circuits in actual hardware.
  • the first node N1 can be used to input the first current signal into N second shunt circuits, and each second shunt circuit in the N second shunt circuits can shunt the first current signal to obtain N The second current signal; each second shunt circuit can input the second current signal obtained by the shunt into its corresponding processing circuit, and then the processing circuit can process the second current signal to generate a second voltage signal.
  • the N processing circuits process the N second current signals to obtain N second voltage signals.
  • the second shunt circuit 1 corresponds to the processing circuit 1
  • the second shunt circuit 2 corresponds to the processing circuit 2
  • the second shunt circuit n corresponds to the processing circuit N.
  • the second shunt circuit 1 can shunt the first current signal to obtain the second current signal I 1 , and input the second current signal I 1 to the corresponding processing circuit 1, and then the pair of processing circuits 1 can perform the second current signal I 1
  • the second current signal I 1 is processed to generate a second voltage signal V 1 .
  • the second shunt circuit 2 can shunt the first current signal to obtain the second current signal I 2 , and input the second current signal I 2 to the corresponding processing circuit 2, and then the pair of processing circuits 2 can The second current signal I 2 is processed to generate a second voltage signal V 2 .
  • the second shunt circuit N can shunt the first current signal to obtain the second current signal I n , and input the second current signal I n into the corresponding processing circuit N, and then the pair of processing circuits N can The second current signal In is processed to generate a second voltage signal V N .
  • the processing circuits 1 to N also include control signal input terminals VB 1 -VB N , and the processing circuits 1 to N can input corresponding control signals into the N second shunt circuits, and then the N second shunt circuits
  • the two-way shunt circuit can shunt the first current according to the control signal.
  • the N second shunt circuits shunt the first current signal, and there are various implementation manners, including but not limited to the following implementation manners:
  • N second shunt circuits can shunt the first current signal based on N preset first control signals to obtain N second current signals, and N second current signals can be used to generate N second current signals. voltage signal.
  • the N second shunt circuits are in one-to-one correspondence with the N preset first control signals, and the N preset first control signals are in one-to-one correspondence with the N second current signals. That is to say, a second shunt circuit can shunt the first current signal based on the bias voltage corresponding to the first control signal to obtain a second current signal.
  • the second shunt circuit 1 may shunt the first current signal based on the bias voltage VB 1 corresponding to the first control signal 1 to obtain the second current signal 1 .
  • the second shunt circuit 2 may shunt the first current signal based on the bias voltage VB 2 corresponding to the first control signal 2 to obtain the second current signal 2 .
  • the second shunt circuit 3 can shunt the first current signal by corresponding to the bias voltage VB 3 with the first control signal 3 to obtain the second current signal 3 .
  • the preset first control signal may correspond to one preset bias voltage
  • the N preset first control signals correspond to N preset bias voltages.
  • Values of the N preset bias voltages may be the same or different, which is not specifically limited in this embodiment of the present application.
  • bias voltage 1-bias voltage N can both be 5V, or the value of bias voltage 1-bias voltage 3 is 5V, and the value of bias voltage 4-bias voltage N is 10V.
  • the value of the Nth bias voltage among the N bias voltages may be twice the value of the N+1th bias voltage.
  • N takes 1, 2, and 3 as examples, the value of the bias voltage VB 1 corresponding to the first control signal 1 is 20v, the value of the bias voltage VB 2 corresponding to the first control signal 2 is 10v, and the value of the bias voltage VB 2 corresponding to the first control signal 2 is 10v.
  • a control signal 3 corresponds to a value of 5v for the bias voltage VB 3 .
  • the N second shunt circuits directly perform a shunt operation based on the preset first control signal, effectively improving the shunt efficiency of the N second shunt circuits.
  • N second shunt circuits can shunt the first current signal based on N preset first control signals to obtain N second current signals, and N second current signals can be used to generate N second current signals voltage signal; then, the N second shunt circuits shunt the first current signal based on the received N second control signals to obtain N fourth current signals, and the N fourth current signals are used to generate N the third voltage signal V i' .
  • the N second shunt circuits are in one-to-one correspondence with the N received second control signals, and the N received first control signals are in one-to-one correspondence with the N fourth current signals. That is to say, a second shunt circuit can shunt the first current signal based on a bias voltage corresponding to a second control signal to obtain a fourth current signal.
  • the second shunt circuit 1 may shunt the first current signal based on the bias voltage VB 1 corresponding to the second control signal 1 to obtain the fourth current signal 1 .
  • the second shunt circuit 2 may shunt the first current signal based on the bias voltage VB 2 corresponding to the second control signal 2 to obtain the fourth current signal 2 .
  • the second shunt circuit 3 can shunt the first current signal by corresponding to the bias voltage VB 3 with the second control signal 3 to obtain the fourth current signal 3 .
  • the post-processing circuit can determine N bias voltages corresponding to the N second control signals based on the N second voltage signals output by the shunt circuit 303 .
  • the post-processing circuit may determine N bias voltages corresponding to the N second control signals based on the N second voltage signals output by the N second shunt circuits.
  • the larger the voltage value corresponding to the second voltage signal is, the larger the value of the bias voltage corresponding to the second control signal is set by the post-processing circuit.
  • the shunt circuit 303 includes a second shunt circuit 1, a second shunt circuit 2, and a second shunt circuit 3, and a processing circuit 1, a processing circuit 2, and a processing circuit 3 ;
  • the first node N 1 respectively inputs the first current signal into the second shunt circuit 1, the second shunt circuit 2, and the second shunt circuit 3; wherein, the second shunt circuit 1 is based on the preset first control signal 1 corresponding
  • the bias voltage VB 1 performs a shunt operation on the first current signal to obtain a second current signal 1, and inputs the second current signal 1 into the processing circuit 1, and then the processing circuit 1 generates a second voltage signal V based on the second current signal 1 1 , and input to the post-processing circuit;
  • the second shunt circuit 2 performs a shunt operation on the first current signal based on the preset bias voltage VB 2 corresponding to the first control signal 2 to obtain the second current signal 2, and the second
  • the subsequent processing circuit determines the second control signal 1 , the second control signal 2 and the second control signal 3 according to the second voltage signal V 1 , the second voltage signal V 2 and the second voltage signal V 3 .
  • the post-processing circuit inputs the second control signal 1 into the processing circuit 1, and the processing circuit 1 converts the second control signal 1 into a corresponding voltage signal VB 1' and inputs it into the second shunt circuit 1, and then the second shunt circuit 1 is based on the
  • the voltage signal VB 1' performs a shunt operation on the first current signal again to obtain a fourth current signal 1, and inputs the fourth current signal 1 into the processing circuit 1, and then the processing circuit 1 generates a third voltage based on the fourth current signal 1
  • the signal V 1' is input to the post-processing circuit.
  • the post-processing circuit inputs the second control signal 2 into the processing circuit 2, and the processing circuit 2 converts the second control signal 2 into a corresponding voltage signal VB 2' and inputs it into the second shunt circuit 2, and then the second shunt circuit 2 is based on the
  • the voltage signal VB 2' performs a shunt operation on the first current signal again to obtain a fourth current signal 2, and inputs the fourth current signal 2 into the processing circuit 2, and then the processing circuit 2 generates a third voltage based on the fourth current signal 2
  • the signal V 2' is input to the post-processing circuit.
  • the post-processing circuit inputs the second control signal 3 into the processing circuit 3, and the processing circuit 3 converts the second control signal 3 into a corresponding voltage signal VB 3' and inputs it into the second shunt circuit 3, and then the second shunt circuit 3 is based on the
  • the voltage signal VB 3' performs a shunt operation on the first current signal again to obtain a fourth current signal 3, and inputs the fourth current signal 3 into the processing circuit 3, and then the processing circuit 3 generates a third voltage based on the fourth current signal 3
  • the signal V 3' is input to the post-processing circuit.
  • each of the N second shunt circuits first performs a shunt operation based on a preset first control signal, and then performs a shunt operation based on a second control signal.
  • the second control signal is dynamically determined according to the second voltage signal output by the corresponding second shunt circuit, so that the second shunt circuit can be shunted again, and the quasi-commutation operation can be performed to obtain the third voltage signal better adapted to the The voltage receiving range of the post-processing circuit.
  • the shunt circuit 303 may further include a first shunt circuit 3031 and a first component 3032 .
  • the input terminal 32a of the first component 3032 can be used to obtain the above-mentioned current signal 1; the input terminal 31a of the first shunt circuit 3031 is coupled with the output terminal 32b of the first component 3032 through the first node N1 , and then the first The shunt circuit 3031 can perform a shunt operation on the third current signal among the above current signals to obtain the third current signal, and convert the third current signal to obtain the first voltage signal V 0 , and pass it through the output terminal of the first shunt circuit 3031 31b output.
  • the input terminal 32a of the first component 3032 can be coupled with the power supply V CC of the detection device 300 , and the above-mentioned current signal 1 can be obtained through the power supply V CC .
  • the input terminal 32 a of the first component 3032 may also be coupled to the output terminal b2 of the photoelectric conversion unit 302 to receive the above-mentioned current signal 1 from the photoelectric conversion unit 302 .
  • the shunt circuit 303 may also include a first shunt circuit 3031 and a first component 3032
  • the first node N1 may also be connected to N second shunt circuits, the first shunt circuit 3031 and the first component 3032
  • the formed electrical nodes are the connection points of the N second shunt circuits, the first shunt circuit 3031 and the first component 3032 in actual hardware.
  • the above-mentioned current signal is greater than a preset threshold, and the current value of the third current signal is smaller than the preset threshold. That is to say, the first shunt circuit 3031 performs a shunt operation on the part of the current signal obtained by the first component that is smaller than the preset threshold to obtain the third current signal, so that the part of the current signal can be quickly output.
  • the first voltage signal V 0 may be used to determine distance information of the target object generating the reflected signal and/or intensity information of the light signal. In this way, the distance information of the target object and/or the intensity information of the light signal determined by the detection device are further made more accurate.
  • the first shunt circuit may include a first amplifier.
  • the first amplifier may be one or more amplifiers, that is, the first shunt circuit may include one or more amplifiers.
  • the embodiments of this application do not make specific limitations.
  • the first amplifier takes amplifier T1 as an example, the first shunt circuit 3031 includes amplifier T1 , and the input end of amplifier T1 is the input end 31a of the first shunt circuit 3031 , the output terminal of the amplifier T1 is the output terminal 31b of the first shunt circuit 3031, and then the amplifier T1 can be used to perform shunt processing on the third current signal to obtain a third current signal; and perform conversion processing on the third current signal, A first voltage signal V 0 is obtained.
  • the first amplifier takes amplifier T1 and amplifier T11 as examples, the input terminal of amplifier T1 is the input terminal 31a of the first shunt circuit 3031, and the output terminal of amplifier T1 Coupled with the input terminal of the amplifier T11 , the output terminal of the amplifier T11 is the output terminal 31b of the first shunt circuit 3031; furthermore, the amplifier T1 can be used to perform shunt processing on the third current signal to obtain the third current signal; and The third current signal is converted to obtain the corresponding voltage signal 1, and the voltage signal 1 is input to the amplifier T 11 ; the amplifier T 11 amplifies the voltage signal 1 again to obtain the first voltage signal V 0 .
  • the above example is only an illustration of the first shunt circuit 3031 , and in other possible embodiments, the number of amplifiers in the first shunt circuit 3031 may be more.
  • the above-mentioned first component 3032 may be a photoelectric conversion device D
  • the input terminal 32a of the first component 3032 is the input terminal of the photoelectric conversion device D
  • the output terminal 32b of the first component 3032 is the The output terminal of the photoelectric conversion device D
  • the photoelectric conversion device D can receive the optical signal and convert the optical signal into the above-mentioned current signal.
  • the input end of the photoelectric conversion device D is used to receive an optical signal (that is, the reflected signal of the target object), and convert the optical signal into the above-mentioned current signal, and pass through the first node N 1 inputs the first current signal of the current signals into the second shunt circuit 1 , and inputs the third current signal of the current signals into the first shunt circuit through the first node N 1 .
  • an optical signal that is, the reflected signal of the target object
  • the first component 3032 may also be an acoustic-electric conversion device, a magneto-electric conversion device, and the like.
  • the N second shunt circuits may be realized by bleeder circuits D 1 -D N. That is, the second shunt circuit 1 may include a discharge circuit D 1 , the second shunt circuit 2 may include a discharge circuit D 2 , the second shunt circuit 3 may include a discharge circuit D 3 , ..., and so on, the second shunt circuit
  • the circuit N may include a bleeder circuit DN .
  • the discharge circuits D 1 -D N can be realized by equivalent diodes.
  • the "equivalent diode" in the embodiment of the present application refers to a component that has the conductive function of a diode.
  • the equivalent diode can be any one of a diode, a MOS transistor, or a triode. Examples are not specifically limited.
  • a second shunt circuit is taken as an example.
  • the second shunt circuit 1 may include an equivalent diode D1, and the input terminal of the equivalent diode D1 is The first node N1 is coupled, the output end of the equivalent diode D1 is coupled to the input end of the processing circuit 1, and then the second shunt circuit 1 can shunt the above-mentioned first current signal to obtain the second current signal, and convert the second Signal input processing circuit 1.
  • the above example is only an illustration of the second shunt circuit, not a limitation.
  • the number of second shunt circuits may be greater, and correspondingly, the specific implementation manners of other second shunt circuits are similar to the specific implementation manners of the second shunt circuit 1 , which will not be repeated here.
  • each of the N processing circuits may include a first resistor R sensor , a second node N 2 , a first capacitor C 1 and an amplification circuit.
  • the second node N 2 is an electrical node formed by connecting the control signal input terminal (VB 1 ) of the processing circuit to the internal components of the processing circuit; in actual hardware, it is the connection point of the components, such as the first resistor R sensor , the connection point of the first capacitor C 1 and the amplifier circuit.
  • the processing circuit 1 may include a first resistor R sensor , a second node N 2 , a first capacitor C 1 and an amplification circuit 3033 .
  • the first resistor R sensor can convert the second current signal 1 received from the second shunt circuit 1 to obtain a corresponding fourth voltage signal, and input the fourth voltage signal to the amplifying circuit 3033, and the amplifying circuit 3033 The fourth voltage signal is amplified to obtain a second voltage signal V1 and output.
  • the amplifying circuit 3033 is realized by a first amplifying circuit.
  • the first amplifying circuit may include one or more amplifiers. That is to say, the first amplifying circuit may be a single-stage amplifying circuit or a multi-stage amplifying circuit.
  • the first amplifying circuit in FIG. 6 is an example of a single-stage amplifying circuit, that is, the first amplifying circuit includes a second amplifier T 2 , that is, the amplifying circuit 3033 is realized by the second amplifier T 2 .
  • the second amplifier T2 can receive the fourth voltage signal from the first resistor R sensor , and amplify the fourth voltage signal to obtain the second voltage signal V1 and output it.
  • the structure of the amplifying circuit 3033 is relatively simple, which effectively reduces the complexity of implementing the processing circuit.
  • the amplifier circuit 3033 includes a logarithmic amplifier circuit and a second amplifier circuit, the input terminal of the logarithmic amplifier circuit is coupled to the first resistor R sensor , and the output terminal of the logarithmic amplifier circuit is coupled to the input terminal of the second amplifier circuit;
  • the logarithmic amplifying circuit is used to amplify the fourth voltage signal to obtain the fifth voltage signal; the second amplifying circuit can be used to amplify the fifth voltage signal to obtain the second voltage signal V 1 .
  • the logarithmic amplifier circuit may include a second amplifier T 2 , a second resistor R 1 , an equivalent diode D 3 , a third node N 3 and a second capacitor C 2 , and the second amplifier circuit may Including a third amplifier T3 ; wherein, one end of the second resistor R1 is coupled to the output end of the second amplifier T2 , and the other end is respectively coupled to the input end of the equivalent diode D3 and the input end of the third amplifier T3 ; One end of the second capacitor C2 is coupled to the output end of the equivalent diode D3 through the third node N3 , and the other end is grounded.
  • the second amplifier T2 can logarithmically amplify the fourth voltage signal output by the first resistor R sensor to obtain the fifth voltage signal, and input the fifth voltage signal to the third amplifier T3 ; the third amplifier T3 can It is used to amplify the fifth voltage signal to obtain the second voltage signal V 1 .
  • the third node N 3 is an electrical node formed by connecting another control signal input terminal (VB 1′ ) of the processing circuit 1 to the internal components of the processing circuit 1; in actual hardware, it is the connection point of the components, For example, the connection point of the second capacitor C 2 , the equivalent diode D 3 and the control signal input terminal (VB 1′ ).
  • the equivalent diode D 3 is a component having a diode conduction function, for example, may be any one of a diode, a MOS transistor, or a triode, which is not specifically limited in this embodiment of the present application.
  • the logarithmic amplifying circuit and the second amplifying circuit may further include more amplifiers.
  • the amplifying circuit can logarithmically amplify the second voltage signal, effectively improving the dynamic range (ie, the range of the output voltage) of the amplifying circuit.
  • shunt circuit 303 can also be applied in other detection devices. This is merely an example, not a limitation.
  • both the first voltage signal V 0 and the second voltage signal V 1 above can be used to determine the distance signal of the target object and/or the intensity information of the reflected signal of the target object.
  • the detecting device 300 may further include an analog-to-digital converter 304 and a processor 305 .
  • the input end of the analog-to-digital converter 304 is connected to the output end of the shunt circuit 303 , and the output end of the analog-to-digital converter 304 is connected to the input end of the processor 305 .
  • the analog-to-digital converter 304 is used to convert the voltage signal (that is, the first voltage signal V 0 and the second voltage signal V 1 ) into a second digital signal, and output the second digital signal to the processor 305 for processing
  • the unit 305 may determine the distance information of the target object and/or the intensity information of the reflected signal of the target object based on the second digital signal.
  • the processor 305 may obtain the moment when the first digital electrical signal (the driving signal used when the transmitted signal corresponding to the reflected signal is transmitted) and the moment when the second digital electrical signal is started to be received, and determine the two The first time difference between two moments, the first time difference can be subtracted from the constant time spent by the detection unit 301, the photoelectric conversion unit 302, the shunt circuit 303 and the analog-to-digital converter 30, so that the laser signal can be obtained from the laser signal.
  • the processor 305 may determine the distance between the laser detection device and the target object and the light intensity information of the reflected signal according to the second time difference.
  • the processor 305 may determine the above-mentioned N second control signals based on the digital signal, and send them to the shunt circuit 303, so that the shunt circuit 303 may, based on the above-mentioned N second control signals, determine the above-mentioned N second control signals from the photoelectric conversion unit 302 The current signal performs shunt operation.
  • the detection device 300 may further include a signal conditioning circuit 306 , and the signal conditioning circuit 306 may be connected in series between the shunt circuit 303 and the analog-to-digital converter 304 .
  • the signal conditioning circuit 306 can filter out some interference signals in the voltage signal, further making the voltage signal received by the analog-to-digital converter 304 more accurate.
  • FIG. 10 is an exemplary laser detection device provided by the embodiment of the present application. Next, a complete introduction to the embodiment of the present application will be made based on FIG. 10 .
  • the laser detection device 1000 shown in FIG. 10 includes a detection unit 1001 , a photoelectric conversion unit 1002 , a shunt circuit 1003 , an analog-to-digital converter 1004 , a processor 1005 , a signal conditioning circuit 1006 and a laser emitting unit 1007 .
  • the output end of the detection unit 1001 is connected to the input end of the photoelectric conversion unit 1002, the output end of the photoelectric conversion unit 1002 is connected to the input end of the shunt circuit 1003, and the output end of the shunt circuit 1003 is connected to the input end of the signal conditioning circuit 1006.
  • the output end of the signal conditioning circuit 1006 is connected to the input end of the analog-to-digital converter 1004, and the output end of the analog-to-digital converter 1004 is connected to the processor 1005; the processor 1005 is connected to the laser emitting unit 1007.
  • the processor 1005 can send the first digital signal to the laser emitting unit 1007, and the laser emitting unit 1007 can emit the laser signal to the target object driven by the first digital signal.
  • the detection unit 1001 can detect the light signal reflected by the target object, and input the light signal into the photoelectric conversion unit 1002; the photoelectric conversion unit 1002 can be used to photoelectrically convert the received light signal to obtain a current signal, and input the current signal into the shunt Circuit 1003, the current signal includes a first current signal and a third current signal; furthermore, the shunt circuit 1003 can shunt the first current signal to obtain N second current signals, and based on the N second current signals, generate N a second voltage signal; and the shunt circuit 1003 can perform a shunt operation on the third current signal to obtain a third current signal, and determine the first voltage signal based on the third current signal.
  • the shunt circuit 1003 inputs the first voltage signal and N second voltage signals into the analog-to-digital converter 1004, and the analog-to-digital converter 1004 converts the first voltage signal and the N second voltage signals to obtain the second digital signal, and input the second digital signal into the processor 1005.
  • the processor 1005 can determine the distance information between the target object and the laser detection device 1000 and the intensity information of the reflected signal according to the second digital signal.
  • the shunt circuit 1003 can perform a shunt operation on the first current signal to generate one or more second voltage signals, so that the voltage signal corresponding to the light signal with higher light intensity detected by the detection device will not Saturation, and then the detection device can accurately calculate the distance between the target object and the detection device and the intensity information of the light signal, effectively increasing the light intensity range of the reflected signal that the detection device can detect.
  • connection mentioned in the embodiments of the present application can be a direct connection.
  • it may not be a direct connection, but a connection through some components.
  • the application examples are not limited here.
  • An embodiment of the present application also provides a sensor system, which includes one or more detection devices described above.
  • the sensor system may also include one or more of millimeter-wave radars and camera devices, and the number of millimeter-wave radars may be one or more, and the number of camera devices may also be one or more.
  • An embodiment of the present application also provides a vehicle, the vehicle carrying the above sensor system.
  • the vehicle may also include a braking system, a control system, and the like.
  • the sensor system is used to detect the distance between the vehicle and other objects
  • the control system is used to issue control instructions according to the distance detected by the sensor system
  • the braking system is used to execute the control instructions issued by the control system.
  • the embodiment of the present application also provides an unmanned aerial vehicle device carrying the above-mentioned sensor system.
  • the drone device may also include a braking system, a control system, and the like.
  • the sensor system is used to detect the distance between the drone equipment and other objects
  • the control system is used to issue control instructions according to the distance detected by the sensor system
  • the braking system is used to execute the control instructions issued by the control system.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Abstract

本申请公开了一种探测装置、分流电路及终端设备,该探测装置可以包括:探测单元、光电转换单元以及分流电路;光电转换单元通过探测单元接收的光信号,进行光电转换得到电流信号,该电流信号包含第一电流信号;分流电路可以对第一电流信号分流,得到N个第二电流信号,且该N个第二电流信号用于产生N个第二电压信号。如此,在探测装置探测到的光强度较大的反射信号的情况下,该探测装置可以对该反射信号对应的电流信号执行分流操作,使得该探测装置可以输出的电压信号不会饱和,进而使得该目标物体的反射信号被完整地获取,有效增大探测装置能探测的反射信号的光强度范围。

Description

一种探测装置、分流电路及终端设备 技术领域
本申请涉及激光雷达技术领域,特别涉及一种探测装置、分流电路及终端设备。
背景技术
随着科学技术的不断发展,在测距领域出现了激光测距、微波雷达测距、超声波测距等方式。其中,激光探测装置主要包括激光发射器、激光接收器和处理器。激光发射器可以发射激光信号。激光信号遇到物体后会被反射,这样,激光接收器可以探测反射信号,并将该反射信号转换为电信号,以及对该电信号进行相应处理(例如,放大、转换等)后输出至处理器,进而处理器可以确定激光探测装置与物体之间的距离以及反射信号的光强度信息。
但是,若反射信号的光强度较大(例如,光强度超出5000cd),会导致激光接收器根据该反射信号转换得到的电信号超出处理器可接收的范围,使得处理器无法准确获取反射信号对应的电信号,从而导致处理器确定激光探测装置与物体之间的距离和以及反射信号的光强度信息不准确。如此,激光探测装置所能探测的反射信号的光强度范围受限。
因此,如何提升激光探测装置能探测的反射信号的光强度范围(也可称作动态范围),是亟需解决的技术问题。
发明内容
本申请实施例提供了一种探测装置、分流电路及终端设备,用以提升探测装置所能探测的反射信号的光强度范围。该方法可以应用于车联网,如车辆外联(vehicle-to-everything,V2X)、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车辆-车辆(vehicle-vehicle,V2V)等。
第一方面,本申请实施例提供了一种探测装置。
示例性的,该探测装置可以包括:探测单元、光电转换单元以及分流电路;其中,探测单元可以用于接收光信号,该光信号可以包含激光发射信号的反射信号;光电转换单元可以用于将接收到的光信号进行光电转换得到电流信号,该电流信号包含第一电流信号;分流电路可以用于对第一电流信号分流,以得到N个第二电流信号,该N个第二电流信号用于产生N个第二电压信号V i;其中,N为大于等于1的整数,i为大于等于1且小于等于N的整数。
在本申请实施例中,在该探测装置中的光电转换单元对光信号进行光电转换得到电流信号之后,分流电路可以对电流信号中的第一电流信号执行分流操作,可以得到N个第二电流信号,并且该N个第二电流信号可以用于产生多个电压信号,使得该探测装置可以输出多个电压信号。如此,在探测装置探测到的光强度较大的反射信号时,通过该探测装置对该反射信号对应的电流信号进行处理之后得到的电压信号不会饱和(即在后级处理电路可接收的电压信号的取值范围之内),进而有效增大探测装置能探测的反射信号的光强度范围。
需要说明的是,“光强度较大”可以理解为当前反射信号的光强度超出了探测装置所能 探测的光强度范围。不同的探测装置,可以对应不同的光强度范围。例如,对于激光探测装置,光强度范围为500cd-5000cd;又例如,对于红外光探测装置,光强度范围为100cd-1000cd。
在一种可能的设计中,上述光电转换单元对上述光信号进行光电转换得到的电流信号的电流值大小大于预设阈值。在该设计中,仅在目标物体的反射信号对应的电流信号的电流值大小大于预设阈值时,上述分流电路才对该电流信号中的第一电流信号执行分流操作,得到多个第二电流信号,并且该多个第二电流信号可以用于产生多个第二电压信号。
在一种可能的设计中,N个第二电压信号V i可以用于确定产生反射信号的目标物体的距离信息和/或光信号的强度信息。在该设计中,由于N个第二电压信号不会发生饱和,使得根据这N个第二电压信号确定的目标物体的距离信息和/或上述光信号的强度信息更为准确。
在一种可能的设计中,上述分流电路可以基于N个预设的第一控制信号对第一电流信号分流,以得到N个第二电流信号。其中,一个预设的第一控制信号可以对应一个偏置电压,N个预设的第一控制信号则对应N个偏置电压VB i。这N个偏置电压的取值可以相同或不同,本申请实施例不作具体的限制。
需要说明的是,N个预设的第一控制信号与N个第二电流信号一一对应,也就是说,基于一个预设的第一控制信号对第一电流信号进行分流,可以得到一个第二电流信号。
在该设计中,上述分流电路可以基于N个预设的第一控制信号对第一电流信号分流,使得分流电路可以对第一电流信号快速分流,使得后级处理电路可以更快接收反射信号对应的电压信号,进而有效提升确定目标物体与探测装置的距离信息和/或上述光信号的强度信息的效率。
在一种可能的设计中,上述分流电路中可以包含N个第二分流电路,该N个第二分流电路可以基于N个预设的第一控制信号对第一电流信号分流,以得到N个第二电流信号。
需要说明的是,N个第二分流电路中的每个第二分流电路与N个预设的第一控制信号中的每个第一控制信号一一对应,每个第一控制信号与N个第二电流信号中的每个第二电流信号一一对应。也就是说,每个第二分流电路可以基于与其对应的第一控制信号对第一电流信号进行分流,得到一个第二电流信号。例如,第二分流电路1基于第一控制信号1,对第一电流信号分流,可以得到第二电流信号1;例如,第二分流电路2基于第一控制信号2,对第一电流信号分流,可以得到第二电流信号2。
在该设计中,通过在上述分流电路中设置与N个预设的第一控制信号一一对应的N个第二分流电路,使得每个第二分流电路可以基于其对应的第一控制信号对第一电流信号分流,进而每个第二分流电路可以获得符合其预设的动态范围(即电流信号的取值范围)的第二电流信号。
在一种可能的设计中,上述分流电路还可以基于接收到的N个第二控制信号对第一电流信号分流,以得到N个第四电流信号,该N个第四电流信号可以用于产生N个第三电压信号V i'。其中,一个第二控制信号可以对应一个偏置电压,N个第二控制信号则对应N个偏置电压VB i'。这N个偏置电压的取值可以相同或不同,本申请实施例不作具体的限制。
需要说明的是,“接收到的N个第二控制信号”可以是分流电路从后级处理电路接收的,其中,后级处理电路可以是探测装置的外部处理电路,或者,探测装置的内部处理电路。可选的,N个第二控制信号可以是根据分流电路输出的N个第二电压信号动态确定的。 例如,根据第二电压信号V 1,确定第二控制信号1;根据第二电压信号2,确定第二控制信号2。
在一种可能的设计中,N个第三电压信号V i'可以用于确定产生反射信号的目标物体的距离信息和/或光信号的强度信息。在该设计中,由于N个第三电压信号不会发生饱和,使得根据这N个第三电压信号V i'确定的目标物体与探测装置的距离信息和/或上述光信号的强度信息更为准确。
在一种可能的设计中,上述分流电路还包含第一分流电路,上述电流信号还包括第三电流信号;其中,第一分流电路可以用于对第三电流信号执行分流处理,该第三电流信号可以用于产生第一电压信号V 0。在该设计中,通过第一分流电路对反射信号对应的电流信号中小于预设阈值的部分电流信号,执行分流操作,得到第三电流信号,使得该部分的电流信号可以快速输出。
需要说明的是,第三电流信号对应的电流值的大小小于上述预设阈值。
在一种可能的设计中,上述第一电压信号V 0可以用于确定产生反射信号的目标物体的距离信息和/或光信号的强度信息。在该设计中,基于第三电流信号产生的第一电压信号可以用于确定产生反射信号的目标物体的距离信息和/或光信号的强度信息,进一步使得探测装置确定的目标物体的距离信息和/或光信号的强度信息更准确。
第二方面,本申请实施例还提供了一种分流电路,该分流电路可以是为上述探测装置中的分流电路。
示例性的,该分流电路可以包括:第一节点N 1、N个第二分流电路和N个处理电路;第一节点N 1与N个第二分流电路的输入端耦合,N个第二分流电路的输出端分别与N个处理电路的输入端耦合;其中,N为大于等于1的整数;其中:第一节点N 1可以用于将第一电流信号输入N个第二分流电路;N个第二分流电路可以用于对第一电流信号分流,以得到N个第二电流信号;N个处理电路可以用于对N个第二电流信号处理以产生N个第二电压信号V i
在本申请实施例中,通过在分流电路中设置N个第二分流电路和N个处理电路,使得每个第二分流电路可以对第一电流信号进行分流,得到相应的第二电流信号,并且与该第二分流电路对应的处理电路还可以对该第二电流信号处理以产生第二电压信号。如此,使得分流电路可以输出多个电压信号,进而使得分流电路输出的电压信号不会饱和。
在一种可能的设计中,上述N个第二电压信号可以用于确定产生反射信号的目标物体的距离信息和/或光信号的强度信息。该设计的具体描述和有益效果,请参见前文第二方面相关的描述。
在一种可能的设计中,上述分流电路还可以包含第一元器件和第一分流电路;其中,第一元器件的输出端与第一分流电路的输入端耦合,第一元器件的输出端通过第一节点N 1分别与N个第二分流电路的输入端耦合;其中,第一元器件可以用于获取电流信号,该电流信号包含上述第一电流信号和第三电流信号;第一分流电路可以用于对上述电流信号分流得到第三电流信号,第三电流信号用于产生第一电压信号V 0
在该设计中,通过设置用于获取电流信号的第一元器件,并且第一元器件的输出端与第一分流电路、N个第二分流电路的输入端分别耦合,实现了对上述电流信号的分流,并且分流后得到的N个第二电流信号和第三电流信号,可以产生多个电压信号,使得分流电路输出的电压信号不会饱和。
在一种可能的设计中,第一电压信号V 0可以用于确定产生反射信号的目标物体的距离信息和/或光信号的强度信息。该设计的具体描述和有益效果,请参见前文第二方面相关的描述。
在一种可能的设计中,上述电流信号的电流值大小大于预设阈值,上述第三电流信号的电流值大小小于预设阈值。该设计的具体描述和有益效果,请参见前文第二方面相关的描述。
在一种可能的设计中,N个第二分流电路可以基于N个预设的第一控制信号对第一电流信号分流,以得到N个第二电流信号。该设计的具体描述和有益效果,请参见前文第二方面相关的描述。
在一种可能的设计中,N个处理电路还可以用于接收N个第二控制信号;N个第二分流电路还可以用于基于N个第二控制信号对第一电流信号分流,以得到N个第四电流信号;N个处理电路还可以用于对N个第四电流信号处理,以得到N个第三电压信号V i'。该设计的具体描述和有益效果,请参见前文第二方面相关的描述。
在一种可能的设计中,N个第二分流电路中的第i个第二分流电路可以包括泄放电路D i,N个处理电路中的每个处理电路包括第一电阻R sensor、第二节点N 2、第一电容C 1和放大电路;其中,泄放电路D i的输入端与第一节点N 1耦合,第一电阻R sensor与泄放电路Di的输出端和放大电路的输入端分别耦合,第一电容C 1的一端通过第二节点N 2与第一电阻R sensor和放大电路的输入端分别耦合,另一端接地。其中:泄放电路D i可以用于对第一电流信号进行分流,得到第二电流信号;第一电阻R sensor可以用于将第二电流信号转换为第四电压信号,并输入放大电路;放大电路可以用于对第四电压信号进行放大,得到第二电压信号V i
在该设计中,给出了第二分流电路和处理电路的具体实现方式,并且该处理电路可以将泄放电路分流得到的第二电流信号转换为电压信号,并进一步放大输出。如此,使得后级处理电路可以捕捉到准确的电压信号,进而使得确定出的目标物体的距离信息和/或光信号的强度信息更准确。
在一种可能的设计中,上述泄放电路D i可以为下述器件之一:二极管、金属氧化物半导体型(metal oxide semiconductor field effect transistor,MOS)场效应管、或者三极管。在该设计中,泄放电路有多种实现方式,简化了泄放电路的实现,降低了电路的复杂性。
应理解,上述处理电路中的放大电路有多种实现方式,包括但不限于以下实施方式:
实施方式1,上述放大电路包括第一放大电路,第一放大电路可以用于对第四电压信号进行放大,得到第二电压信号V i。其中,第一放大电路可以包括第二放大器T 2,该第二放大器T 2可以包括一个或多个放大器,本申请实施例不作具体的限定。
在实施方式1,上述放大电路的结构比较简单,有效降低上述处理电路实现的复杂度。
实施方式2,上述放大电路可以包括对数放大电路和第二放大电路,对数放大电路的输入端与第一电阻R sensor耦合,对数放大电路的输出端可以与第二放大电路的输入端耦合;对数放大电路可以用于对第四电压信号进行放大,得到第五电压信号;第二放大电路可以用于对第五电压信号进行放大,得到第二电压信号V i
在实施方式2,通过在上述放大电路中设计对数放大电路和第二放大电路,有效提升上述放大电路的动态范围(即输出电压的范围),可以使得处理电路输出的第二电压信号更容易被后级处理电路捕捉到。
在一种可能的设计中,上述对数放大电路可以包括第二放大器T 2、第二电阻R 1、等效二极管D 3、第三节点N 3和第二电容C 2,上述第二放大电路包括第三放大器T 3;其中,第二电阻R 1的一端与第二放大器T 2的输出端耦合,另一端与该等效二极管D 3的输入端、第三放大器T 3的输入端分别耦合;第二电容C 2的一端通过第三节点N 3与等效二极管D 3的输出端耦合,另一端接地。
在该设计中,第二放大器T 2对第二电流信号转换得到的电压信号进行对数放大后,输出至第三放大器T 3,进而第三放大器T 3可以对对数放大后的电压信号进一步放大,得到第二电流信号对应的第二电压信号。
在一种可能的设计中,上述等效二极管D 3可以为二极管、MOS管、或者三极管中的任一种。在该设计中,等效二极管D 3有多种实现方式,有效降低对数放大电路的复杂度。
在一种可能的设计中,上述第一元器件为光电转换器件,进而第一元器件,还可以用于接收光信号,以及将光信号转换成电流信号。在该设计中,第一元器件具备了光电信号转换的功能,进一步使得上述分流电路可以对目标物体反射的光信号对应电流信号进行分流处理。
在一种可能的设计中,上述第一分流电路可以包括第一放大器T 1。其中,第一放大器T 1可以用于对第一分流电路分流得到的第三电流信号进行转换处理得到相应的电压信号,并对该电压信号进行放大,得到上述第一电压信号。在该设计中,通过在第一分流电路设置第一放大器T 1,使得上述第一分流电路的实现较为简单。
需要说明的是,第一放大器T 1可以是一个或多个放大器,本申请实施例不作具体的限制。
第三方面,本申请实施例提供了一种终端设备,包括上述第一方面以及第一方面中可能的设计中任一项所述的探测装置。示例性的,一些终端设备的举例包括但不限于:智能家居设备(诸如电视、扫地机器人、智能台灯、音响系统、智能照明系统、电器控制系统、家庭背景音乐、家庭影院系统、对讲系统、视频监控等)、智能运输设备(诸如汽车、轮船、无人机、火车、货车、卡车等)、智能制造设备(诸如机器人、工业设备、智能物流、智能工厂等)、智能终端(手机、计算机、平板电脑、掌上电脑、台式机、耳机、音响、穿戴设备、车载设备、虚拟现实设备、增强现实设备等)。
上述第三方面的有益效果,具体请参照上述第一方面中相应设计可以达到的技术效果,这里不再重复赘述。
附图说明
图1是本申请实施例适用的激光探测装置的结构示意图;
图2是本申请实施例适用的一种激光接收器的结构示意图;
图3是本申请实施例提供的一种探测装置的结构示意图;
图4A是本申请实施例提供的分流电路的一种可能的结构示意图;
图4B是本申请实施例提供的分流电路的另一种可能的结构示意图;
图4C是本申请实施例提供的分流电路的另一种可能的结构示意图;
图5A是本申请实施例提供的一种分流电路可能的示意图之一;
图5B是本申请实施例提供的一种分流电路可能的示意图之二;
图6是本申请实施例提供的一种分流电路可能的示意图之三;
图7是本申请实施例提供的一种分流电路可能的示意图之四;
图8是本申请实施例提供的另一种探测装置的结构示意图;
图9是本申请实施例提供的又一种探测装置的结构示意图;
图10是本申请实施例提供的另一种探测装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
需要理解的是,在本申请实施例的下列描述中,“多个”可以理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。例如,下文所指出的“第一控制信号”和“第二控制信号”,只是用于指示不同的控制信号,而并不具有先后顺序、优先级或重要程度上的不同。
在对本申请实施例提供的技术方案进行详细的解释说明之前,先对本申请实施例涉及的应用场景予以介绍。
当前,在许多场景下,可以通过探测装置实现对目标物体的距离的探测。示例性的,请参见图1,探测装置以激光探测装置100为例,激光探测装置100可以包括激光发射器1、激光接收器2和处理电路3。
其中,激光发射器1可以发射激光信号,目标物体4接收到激光信号后会反射相应的光信号(即反射信号);激光接收器2可以探测目标物体4反射的反射信号,将反射信号进行转换处理得到相应的电压信号,并将该电压信号输入处理电路3;处理电路3可以根据该电压信号,确定目标物体4与激光探测装置100的距离以及该反射信号的强度信息。
图2示出了上述激光接收器2的一种可能的结构示意图,在图2中,V CC为激光接收器2的光信号输入端、V bias为激光接收器2的控制信号输入端和V out为激光接收器2的输出端;激光接收器2包括光电转换器件201和放大电路202。
其中,光电转换器件201可以对从激光接收器2的输入端V CC接收到的光信号进行转换处理,得到电流信号,并将该电流信号输入放大电路202。
其中,放大电路202包括放大器T 0和电阻R 0,进而放大器T 0可以基于控制信号输入端V bias输入的控制信号,对该电流信号进行转换处理得到电压信号1,将该电压信号1进行放大得到电压信号2,并通过输出端V out输出电压信号2。
在一种可能的实施方式中,放大电路202可以将电压信号2输出至处理电路3,处理电路3接收到电压信号2后,可以对该电压信号2进行模数转换,得到上述反射信号从目标物体4返回至激光接收器2的时间,进而根据该时间,计算出目标物体4与激光探测装置100之间的距离以及目标物体4的反射信号的强度信息。
然而,当目标物体4与激光探测装置100的距离过近时或目标物体4的反射功率过大时,目标物体的反射信号的光强度会较大,会导致激光接收器2对该反射信号进行转换处理得到的电压信号2的电压值大小超出处理电路3所能接收的电压范围(即激光接收器2输出的电压饱和),进而使得处理电路3无法准确计算出的目标物体4与激光探测装置100 的距离,以及反射信号对应的强度信息。
因此,如何避免激光接收器2输出的电压饱和,以使激光探测装置100可以准确探测目标物体的距离和/或目标物体的反射信号的强度信息,从而增大激光探测装置的探测范围,是亟需解决的技术问题。
有鉴于此,本申请实施例提供了一种探测装置,该探测装置包括探测单元、光电转换单元以及分流电路;其中,探测单元可以用于接收光信号,该光信号可以包含激光发射信号的反射信号;光电转换单元可以用于将接收到的光信号进行光电转换得到电流信号,该电流信号包含第一电流信号;分流电路可以用于对第一电流信号分流,以得到N个第二电流信号,该N个第二电流信号用于产生N个第二电压信号V i;其中,N为大于等于1的整数,i为大于等于1且小于等于N的整数。
在本申请实施例中,在探测装置中设置了分流电路,该分流电路可以对第一电流信号执行分流操作,可以得到N个第二电流信号,且每个第二电流信号可以产生一个电压信号,使得探测装置可以输出多个电压信号。如此,在探测装置探测到光强度较大的反射信号时,通过该探测装置对该反射信号对应的电流信号进行处理之后得到的电压信号不会饱和(即在后级处理电路可接收的电压信号的取值范围之内),可以有效增大探测装置能探测的反射信号的光强度范围。
需要说明的是,“光强度较大的反射信号”可以理解为当前反射信号的光强度超出了探测装置所能探测的光强度范围。应理解,激光包括红外光、紫外光等,相应的,不同的激光探测装置所能探测的光强度范围不同。例如,红外光探测装置所能探测的光强度范围为500cd-5000cd;又例如,紫外光探测装置所能探测的光强度范围为100cd-1000cd。
下面结合具体的示例对本申请实施中的所提供的探测装置的应用场景进行说明。
在一种可能的实施方式中,上述探测装置可以为激光探测装置。示例性的,对于具有自动驾驶模式或者辅助驾驶模式的车辆来说,车辆上可以安装有上述激光探测装置。进而,在车辆行驶的过程中,上述激光探测装置可以探测目标物体反射的激光信号。激光探测装置可以确定该激光信号对应的电流信号,并对该电流信号进行分流处理,得到多个电流信号,以及对多个电流信号进行处理得到多个电压信号;如此,激光探测装置可以输出多个电压信号,使得激光探测装置输出的电压信号不会饱和,从而激光探测装置在探测到光强度较大的反射信号时,也可以准确获取目标物体与激光探测装置的距离信息和/或目标物体反射的激光信号的强度信息,有效增大激光探测装置能探测的反射信号的光强度范围,进而激光探测装置可以确定路面上更多的障碍物,从而使得车辆可以优化其自身的行驶路径,有效提升自动驾驶或辅助驾驶的安全性。
进一步的,若上述激光探测装置为红外光探测装置,该激光探测装置还可以有其他的应用场景。示例性的,对于无人机来说,无人机上可以安装有上述红外光探测装置。这样,在无人机飞行的过程中,红外光探测装置可以探测目标物体反射的红外光信号,红外光探测装置对该红外光信号产生的电流信号进行分流处理,得到多个电流信号,进而产生多个电压信号,有效避免红外光探测装置输出的电压信号饱和,使得红外光探测装置可以根据该红外光信号,准确确定目标物体与红外光探测装置之间的距离,从而使得无人机进入危险范围内时(即检测到危险范围内的目标物体),可以对无人机进行告警。
应理解,上述激光探测装置还可以为紫外光探测装置、可见光探测装置等,这里不再一一举例。
需要说明的是,本申请实施例所公开的探测装置可以应用于具有信号处理能力的终端设备。在本申请一些实施例中,探测装置可以是终端设备或一个独立的单元,当探测装置是一个独立的单元时,该单元可以嵌入在终端设备中。如此,在探测装置探测到的光强度较大的反射信号时,终端设备可以对该反射信号对应的电流信号进行分流处理,使得探测装置输出的电压信号不会饱和(即在后级处理电路可接收的电压信号的取值范围之内),进而有效增大探测装置能探测的反射信号的光强度范围。其中,终端设备可以是具有信号处理能力的智能设备,包括但不限于:智能家居设备,诸如电视、扫地机器人、智能台灯、音响系统、智能照明系统、电器控制系统、家庭背景音乐、家庭影院系统、对讲系统、视频监控等;智能运输设备,诸如汽车、轮船、无人机、火车、货车、卡车等;智能制造设备,诸如机器人、工业设备、等。或者,终端设备也可以是具有信号处理能力的计算机设备,例如台式机、个人计算机、服务器等。还应当理解的是,终端设备也可以是具有分流能力的便携式电子设备,诸如手机、平板电脑、掌上电脑、耳机、音响、穿戴设备(如智能手表)、车载设备、虚拟现实设备、增强现实设备等。
下面结合具体的附图,对本申请实施例提供的探测装置的结构进行介绍。
需要指出的是,本申请下列实施例中的“耦合”可以是电连接,两个电学元件电连接可以是两个电学元件之间的直接或间接连接。例如,A与B连接,既可以是A与B直接连接,也可以是A与B之间通过一个或多个其它电学元件间接连接,例如A与B连接,也可以是A与C直接连接,C与B直接连接,A与B之间通过C实现了连接。总之,A与B之间耦合,可以使A与B之间能够传输电能。
示例性的,请参见图3,图3是本申请实施例的一种探测装置的电路结构示意图,如图3所示,该探测装置可以包括探测单元301、光电转换单元302以及分流电路303。
其中,探测单元301的输入端a 1用于接收光信号,探测单元301的输出端a 2与光电转换单元302的输入端b 1耦合,用于将接收到的光信号输入光电转换单元302;光电转换单元302的输出端b 2与分流电路303的输入端c 1耦合。
在一种可能的实施方式中,上述光信号包含激光发射信号的反射信号;光电转换单元302可以用于将接收到的光信号进行光电转换得到电流信号1,并把该电流信号1输入分流电路303,电流信号1包含第一电流信号;进而分流电路303可以用于对第一电流信号分流,以得到N个第二电流信号,N个第二电流信号用于产生N个第二电压信号;其中,N为大于等于1的整数。在该实施方式中,由于分流电路303可以对第一电流信号执行分流操作,产生一个或多个第二电压信号,进而使得探测装置探测到的光强度较大的光信号对应的电压信号不会饱和(即不会超出后级处理电路可接收的电压信号的取值范围),有效增大探测装置能探测的反射信号的光强度范围。
需要说明的是,分流电路303对第一电流信号执行分流操作,有多种实现方式,包括但不限于以下方式:
方式1,分流电路303可以基于N个预设的第一控制信号对第一电流信号分流,以得到N个第二电流信号,N个第二电流信号可以用于产生N个第二电压信号V i
需要说明的是,“每个预设的第一控制信号”对应一个预设的偏置电压,预设的偏置电压是指在技术人员设计分流电路303时,预先配置在分流电路303中的偏置电压。其中,对于N的数量,本申请实施例不作具体的限制。
示例性的,N以4为例,分流电路303可以基于4个预设的第一控制信号对第一电流 信号分流,以得到4个第二电流信号,进而可以根据这4个电流信号得到4个第二电压信号V 1、V 2、V 3和V 4
可以理解的是,上述N个预设的第一控制信号与N个第二电流信号一一对应,也就是说,基于一个第一控制信号对应的偏置电压对第一电流信号进行分流,可以得到一个第二电流信号。例如,第一控制信号1对应偏置电压VB 1,则分流电路303可以基于偏置电压VB 1,对第一电流信号进行分流,可以得到第二电流信号1。又例如,第一控制信号2对应偏置电压VB 2,则分流电路303可以基于偏置电压VB 2,对第一电流信号进行分流,可以得到第二电流信号2。再例如,第一控制信号3对应偏置电压VB 3,则分流电路303可以基于偏置电压VB 3,对第一电流信号进行分流,可以得到第二电流信号3。
在方式1中,分流电路303直接基于预设的第一控制信号,执行分流操作,有效提升分流电路303的分流效率。
方式2,分流电路303可以基于N个预设的第一控制信号对第一电流信号分流,以得到N个第二电流信号,N个第二电流信号可以用于产生N个第二电压信号V i;然后分流电路303再基于接收到的N个第二控制信号对第一电流信号分流,以得到N个第四电流信号,N个第四电流信号用于产生N个第三电压信号V i'
需要说明的是,“接收到的N个第二控制信号”可以是分流电路303从后级处理电路接收的,其中,后级处理电路可以是探测装置300的外部处理电路,或者,探测装置300的内部处理电路。一个接收到的第二控制信号可以对应一个偏置电压VB i',N个接收到的第二控制信号则对应N个偏置电压。其中,N个第二电流信号对应的电流值大小与第四电流信号对应的电流值大小不同,N个第二电压信号对应的电压值大小与N个第三电压信号对应的电压值大小不同。
可以理解的是,上述N个接收到的第二控制信号与N个第四电流信号一一对应,也就是说,基于一个第二控制信号对应的偏置电压对第一电流信号进行分流,可以得到一个第四电流信号。例如,第二控制信号1对应偏置电压VB 1',则分流电路303可以基于偏置电压VB 1',对第一电流信号进行分流,可以得到第四电流信号1。又例如,第二控制信号2对应偏置电压VB 2',则分流电路303可以基于偏置电压VB 2',对第一电流信号进行分流,可以得到第四电流信号2。再例如,第二控制信号3对应偏置电压VB 3',则分流电路303可以基于偏置电压VB 3',对第一电流信号进行分流,可以得到第四电流信号3。对于第一控制信号的说明,请参见方式1中的相关描述。
其中,上述N个第二控制信号是在上述N个第一控制信号确定之后确定的。
在一种可能的实施方式中,分流电路303基于N个第一控制信号,得到N个第二电流信号之后,可以将N个第二电流信号转换为N个第二电压信号,并输出至后级处理电路;后级处理电路可以基于这N个第二电压信号,确定N个第二控制信号对应的N个偏置电压。其中,第二电压信号对应的电压值越大,则后级处理电路设置的第二控制信号对应的偏置电压取值越大。
示例性的,第二电压信号对应的电压值与第二控制信号对应的偏置电压取值之间存在如表1所示的映射关系,后级处理电路可以根据该映射关系,确定第二控制信号对应的偏置电压取值。例如,第二电压信号1对应的电压值为80v,则第二控制信号1对应的偏置电压为75v;第二电压信2对应的电压值为50v,则第二控制信号2对应的偏置电压为55v;第二电压信号3对应的电压值为30v,则第二控制信号3对应的偏置电压为35v。
表1
第二电压信号对应的电压值(v) 第二控制信号对应的偏置电压取值(v)
80 75
50 55
30 35
可以理解的是,上述表1中的映射关系仅仅是示例,并非限定,第二电压信号对应的电压值与第二控制信号对应的偏置电压取值之间还可以存在更多的映射关系,只需第二电压信号对应的电压值与第二控制信号对应的偏置电压取值成正比例关系即可。
下面结合完整的示例,对方式2的技术方案进行说明。
示例性的,请参见图4A,图4A示出了分流电路303的一种可能的结构示意图。N以4为例,在图4A中分流电路303包括第一子电路和第二子电路;图4A中(a)所示,分流电路303中的第一子电路可以接收电流信号1,并基于4个预设的第一控制信号对电流信号1中的第一电流信号分流,以得到4个第二电流信号,并输入分流电路303中的第二子电路;分流电路303中的第二子电路根据这4个第二电流信号得到4个第二电压信号:V 1、V 2、V 3和V 4,并将这4个第二电压信号输入后级处理电路;后级处理电路根据这4个第二电压信号以及第二电压信号对应的电压值与第二控制信号对应的偏置电压取值之间的映射关系,确定出4个第二控制信号,并将这4个第二控制信号输入分流电路303中的第一子电路;如图4A中(b)所示,分流电路303中的第一子电路可以基于这4个第二控制信号对第一电流信号再次分流,得到4个第四电流信号,并输入分流电路303中的第二子电路;分流电路303中的第二子电路根据这4个第二电流信号得到4个第三电压信号:V 1'、V 2'、V 3'和V 4',并将这4个第三电压信号输入后级处理电路。
在方式2中,分流电路303基于N个预设的第一控制信号,对第一电流信号执行分流操作,得到N个第二电流信号,并将N个第二电流信号转换为N个第二电压信号之后;还可以基于N个第二控制信号,对第一电流信号再次执行分流操作,得到N个第四电流信号。而这N个第二控制信号是根据N个第二电压信号动态确定的,可以使得根据再次分流得到的第四电流信号确定的第三电压信号更好地适配于后级处理电路的电压接收范围。
应理解,上述N个第二电压信号或N个第三电压信号可以用于确定产生反射信号的目标物体的距离信息和/或光信号的强度信息。
下面结合具体的示例对分流电路303的实现方式进行介绍。
请参见图4B,图4B示出了分流电路303的一种可能的结构示意图。在图4B中,分流电路303可以包括:第一节点N 1、N个第二分流电路(即第二分流电路1-N)和N个处理电路(即处理电路1、处理电路2、……、处理电路N);第一节点N 1与这N个第二分流电路的输入端分别耦合,N个第二分流电路的输出端分别与N个处理电路的输入端耦合;其中,N为大于等于1的整数。
应理解,第一节点N 1是N个第二分流电路连接所形成的电气节点,在实际硬件中即为N个第二分流电路的连接点。其中,第一节点N 1可以用于将第一电流信号输入N个第二分流电路,进而N个第二分流电路中的每个第二分流电路可以对第一电流信号分流,以得到N个第二电流信号;每个第二分流电路可以将其分流得到的第二电流信号输入与其对应的处理电路,进而该处理电路,对可以对第二电流信号处理以产生第二电压信号。相应的,N个处理电路对N个第二电流信号进行处理,可以得到N个第二电压信号。
应理解,N个第二分流电路和N个处理电路可以一一对应。例如,第二分流电路1与处理电路1对应,第二分流电路2与处理电路2对应,以此类推,第二分流电路n与处理电路N对应。
示例性的,第二分流电路1可以对第一电流信号分流,以得到第二电流信号I 1,并将第二电流信号I 1输入与其对应的处理电路1,进而处理电路1对可以对第二电流信号I 1进行处理以产生第二电压信号V 1
又示例性的,第二分流电路2可以对第一电流信号分流,以得到第二电流信号I 2,并将第二电流信号I 2输入与其对应的处理电路2,进而处理电路2对可以对第二电流信号I 2进行处理以产生第二电压信号V 2
再示例性的,第二分流电路N可以对第一电流信号分流,以得到第二电流信号I n,并将第二电流信号I n输入与其对应的处理电路N,进而处理电路N对可以对第二电流信号I n进行处理以产生第二电压信号V N
如图4B所示,处理电路1至处理电路N还包括控制信号输入端VB 1-VB N,处理电路1至处理电路N可以将相应的控制信号输入N个第二分流电路,进而N个第二分流电路可以根据该控制信号,对第一电流进行分流。
相应的,N个第二分流电路对第一电流信号进行分流,有多种实施方式,包括但不限于以下实施方式:
方式1,N个第二分流电路可以基于N个预设的第一控制信号对第一电流信号分流,以得到N个第二电流信号,N个第二电流信号可以用于产生N个第二电压信号。
需要说明的是,N个第二分流电路与N个预设的第一控制信号一一对应,N个预设的第一控制信号与N个第二电流信号一一对应。也就是说,一个第二分流电路可以基于一个第一控制信号对应的偏置电压对第一电流信号进行分流,可以得到一个第二电流信号。
例如,第二分流电路1可以基于第一控制信号1对应的偏置电压VB 1,对第一电流信号进行分流,得到第二电流信号1。又例如,第二分流电路2可以基于第一控制信号2对应的偏置电压VB 2,对第一电流信号进行分流,得到第二电流信号2。再例如,第二分流电路3可以第一控制信号3对应偏置电压VB 3,对第一电流信号进行分流,得到第二电流信号3。
其中,预设的第一控制信号可以对应一个预设的偏置电压,N个预设的第一控制信号则对应N个预设的偏置电压。这N个预设的偏置电压的取值可以相同或不同,本申请实施例不作具体的限制。
示例性的,偏置电压1-偏置电压N的取值可以均为5V,或者,偏置电压1-偏置电压3的取值为5V、偏置电压4-偏置电压N的取值为10V。
可选的,N个偏置电压中的第N个偏置电压的取值可以是第N+1个偏置电压的取值的2倍。
示例性的,N以1、2、3为例,第一控制信号1对应的偏置电压VB 1的取值为20v,第一控制信号2对应偏置电压VB 2的取值为10v,第一控制信号3对应偏置电压VB 3的取值为5v。
在方式1中,N个第二分流电路直接基于预设的第一控制信号,执行分流操作,有效提升N个第二分流电路的分流效率。
方式2,N个第二分流电路可以基于N个预设的第一控制信号对第一电流信号分流, 以得到N个第二电流信号,N个第二电流信号可以用于产生N个第二电压信号;然后,这N个第二分流电路再基于接收到的N个第二控制信号对第一电流信号分流,以得到N个第四电流信号,N个第四电流信号用于产生N个第三电压信号V i'
可以理解的是,N个第二分流电路与N个接收到的第二控制信号一一对应,N个接收到的第一控制信号与N个第四电流信号一一对应。也就是说,一个第二分流电路可以基于一个第二控制信号对应的偏置电压对第一电流信号进行分流,可以得到一个第四电流信号。例如,第二分流电路1可以基于第二控制信号1对应的偏置电压VB 1,对第一电流信号进行分流,得到第四电流信号1。又例如,第二分流电路2可以基于第二控制信号2对应的偏置电压VB 2,对第一电流信号进行分流,得到第四电流信号2。再例如,第二分流电路3可以第二控制信号3对应偏置电压VB 3,对第一电流信号进行分流,得到第四电流信号3。
由前文的描述可知,后级处理电路可以基于分流电路303输出的N个第二电压信号,确定N个第二控制信号对应的N个偏置电压。相应的,后级处理电路可以基于N个第二分流电路输出的N个第二电压信号,确定N个第二控制信号对应的N个偏置电压。其中,第二电压信号对应的电压值越大,则后级处理电路设置的第二控制信号对应的偏置电压取值越大。
下面结合具体的示例介绍方式2的技术方案。
示例性的,请参见图4C,N以3为例,分流电路303包括第二分流电路1、第二分流电路2、和第二分流电路3,以及处理电路1、处理电路2和处理电路3;第一节点N 1将第一电流信号分别输入第二分流电路1、第二分流电路2、和第二分流电路3;其中,第二分流电路1基于预设的第一控制信号1对应的偏置电压VB 1对第一电流信号执行分流操作,得到第二电流信号1,并将第二电流信号1输入处理电路1,进而处理电路1基于第二电流信号1,生成第二电压信号V 1,并输入后级处理电路;第二分流电路2基于预设的第一控制信号2对应的偏置电压VB 2对第一电流信号执行分流操作,得到第二电流信号2,并将第二电流信号2输入处理电路2,进而处理电路2基于第二电流信号2,生成第二电压信号V 2,并输入后级处理电路;第二分流电路3基于预设的第一控制信号3对应的偏置电压VB 3对第一电流信号执行分流操作,得到第二电流信号3,并将第二电流信号3输入处理电路3,进而处理电路3基于第二电流信号3,生成第二电压信号V 3,并输入后级处理电路。
后级处理电路根据第二电压信号V 1、第二电压信号V 2和第二电压信号V 3,确定出第二控制信号1、第二控制信号2和第二控制信号3。后级处理电路将第二控制信号1输入处理电路1,处理电路1将第二控制信号1转换为对应的电压信号VB 1',并输入第二分流电路1,进而第二分流电路1基于该电压信号VB 1',对第一电流信号再次执行分流操作,得到第四电流信号1,并将第四电流信号1输入处理电路1,进而处理电路1基于第四电流信号1,生成第三电压信号V 1',并输入后级处理电路。
后级处理电路将第二控制信号2输入处理电路2,处理电路2将第二控制信号2转换为对应的电压信号VB 2',并输入第二分流电路2,进而第二分流电路2基于该电压信号VB 2',对第一电流信号再次执行分流操作,得到第四电流信号2,并将第四电流信号2输入处理电路2,进而处理电路2基于第四电流信号2,生成第三电压信号V 2',并输入后级处理电路。
后级处理电路将第二控制信号3输入处理电路3,处理电路3将第二控制信号3转换 为对应的电压信号VB 3',并输入第二分流电路3,进而第二分流电路3基于该电压信号VB 3',对第一电流信号再次执行分流操作,得到第四电流信号3,并将第四电流信号3输入处理电路3,进而处理电路3基于第四电流信号3,生成第三电压信号V 3',并输入后级处理电路。
在方式2中,N个第二分流电路中的每个分流电路首先基于预设的第一控制信号,执行分流操作;然后再基于第二控制信号,执行分流操作。而第二控制信号是根据其对应的第二分流电路输出的第二电压信号动态确定的,可以使得该第二分流电路再次分流,并进行准换操作得到第三电压信号更好地适配于后级处理电路的电压接收范围。
可选的,请继续参见图4B,分流电路303还可以包含第一分流电路3031和第一元器件3032。其中,第一元器件3032的输入端32a可以用于获取上述电流信号1;第一分流电路3031的输入端31a通过第一节点N 1与第一元器件3032的输出端32b耦合,进而第一分流电路3031可以对上述电流信号中的第三电流信号执行分流操作,得到第三电流信号,并第三电流信号转换处理,得到第一电压信号V 0,并通过第一分流电路3031的输出端31b输出。
在一种可能的实施方式中,第一元器件3032的输入端32a可以与探测装置300的电源V CC耦合,通过电源V CC获取上述电流信号1。在另一种可能的实施方式中,第一元器件3032的输入端32a还可以与光电转换单元302的输出端b2耦合,从光电转换单元302接收上述电流信号1。
应理解,在分流电路303还可以包含第一分流电路3031和第一元器件3032时,第一节点N 1还可以是N个第二分流电路、第一分流电路3031以及第一元器件3032连接所形成的电气节点,在实际硬件中即为N个第二分流电路、第一分流电路3031以及第一元器件3032的连接点。
在一种可能的实施方式中,上述电流信号大于预设阈值,第三电流信号的电流值大小小于该预设阈值。也就是说,通过第一分流电路3031对第一元器件获得的电流信号中小于预设阈值的部分电流信号,执行分流操作,得到第三电流信号,使得该部分的电流信号可以快速输出。
在一种可能的实施方式中,第一电压信号V 0可以用于确定产生反射信号的目标物体的距离信息和/或光信号的强度信息。如此,进一步使得探测装置确定的目标物体的距离信息和/或光信号的强度信息更准确。
下面结合具体的附图,介绍分流电路303中各个部分可能的实现方式。
1、分流电路303中的第一分流电路。
在一种可能的实施方式中,第一分流电路可以包含第一放大器。其中,第一放大器可以是一个或多个放大器,即第一分流电路可以包含一个或多个放大器。本申请实施例不作具体的限制。
示例性的,请参见图5A,在图5A中,第一放大器以放大器T 1为例,第一分流电路3031包括放大器T 1,放大器T 1的输入端即第一分流电路3031的输入端31a,放大器T 1的输出端即第一分流电路3031的输出端31b,进而放大器T 1可以用于对第三电流信号执行分流处理,得到第三电流信号;并对第三电流信号进行转换处理,得到第一电压信号V 0
又示例性的,请参见图5B,在图5B中,第一放大器以放大器T 1和放大器T 11为例,放大器T1的输入端即第一分流电路3031的输入端31a,放大器T1的输出端与放大器T 11 的输入端耦合,放大器T 11的输出端即第一分流电路3031的输出端31b;进而放大器T 1可以用于对第三电流信号执行分流处理,得到第三电流信号;并对第三电流信号进行转换处理,得到相应的电压信号1,并把电压信号1输入放大器T 11;放大器T 11对电压信号1再次放大,得到第一电压信号V 0
可以理解的是,上述示例仅仅是对第一分流电路3031举例说明,在其他可能的实施例中,第一分流电路3031中的放大器的数量还可以更多。
2、第一元器件。
在一种可能的实施方式中,上述第一元器件3032可以为光电转换器件D,第一元器件3032的输入端32a即光电转换器件D的输入端,第一元器件3032的输出端32b即光电转换器件D的输出端,进而光电转换器件D可以接收光信号,以及将光信号转换成上述电流信号。
示例性的,请继续参见图5A或图5B,光电转换器件D的输入端用于接收光信号(即目标物体的反射信号),并将该光信号转换成上述电流信号,并通过第一节点N 1将电流信号中的第一电流信号输入第二分流电路1,以及通过第一节点N 1将电流信号中的第三电流信号输入第一分流电路。
需要说明的是,在其他的一些实施例中,第一元器件3032还可以是声电转换器件、磁电转换器件等。
3、分流电路303中的N个第二分流电路。
在一种可能的实施方式中,N个第二分流电路可以通过泄放电路D 1-D N实现。即第二分流电路1可以包括泄放电路D 1,第二分流电路2可以包括泄放电路D 2,第二分流电路3可以包括泄放电路D 3,……,以此类推,第二分流电路N可以包括泄放电路D N。其中,泄放电路D 1-D N可以通过等效二极管实现。可以理解的是,本申请实施例中“等效二极管”是指具备二极管的导电功能的元器件,例如,该等效二极管可以为二极管、MOS管、或者三极管中的任一种,本申请实施例不作具体的限定。
示例性的,请继续参见图5A或图5B,图5A或图5B中以一个第二分流电路为例,第二分流电路1可以包括等效二极管D 1,等效二极管D 1的输入端与第一节点N 1耦合,等效二极管D 1的输出端与处理电路1的输入端耦合,进而第二分流电路1可以对上述第一电流信号分流处理,得到第二电流信号,并把第二信号输入处理电路1。
应理解上述示例仅仅是对第二分流电路举例说明,并非限定。在其他实施例第二分流电路的数量可以更多,相应的,其他第二分流电路的具体实施方式与第二分流电路1的具体实施方式类似,这里不再赘述。
4、分流电路303中的N个处理电路。
在一种可能的实施方式中,N个处理电路中的每个处理电路可以包括第一电阻R sensor、第二节点N 2、第一电容C 1和放大电路。
应理解,第二节点N 2是处理电路的控制信号输入端(VB 1)与处理电路的内部元器件连接形成的电气节点;在实际硬件中即为元器件的连接点,例如第一电阻R sensor、第一电容C 1和放大电路的连接点。
示例性的,请继续参见图5A或图5B,在图5A或图5B中,处理电路1可以包括第一电阻R sensor、第二节点N 2、第一电容C 1和放大电路3033。其中,第一电阻R sensor可以对其从第二分流电路1接收的第二电流信号1进行转换处理,得到相应的第四电压信号,并 将该第四电压信号输入放大电路3033,放大电路3033对该第四电压信号进行放大得到第二电压信号V 1并输出。
应理解上述示例仅仅是对处理电路举例说明,并非限定。在其他实施例第二分流电路的数量可以更多,相应的,其他处理电路的具体实施方式与处理电路1的具体实施方式类似,这里不再赘述。
需要说明的是,放大电路3033有多种实现方式,包括但不限于以下实施方式:
实施方式1,放大电路3033通过第一放大电路实现。
其中,第一放大电路可以包括一个或多个放大器。也就是说,第一放大电路可以是单级放大电路,也可以是多级放大电路。
示例性的,请参见图6,图6中第一放大电路以单级放大电路为例,即第一放大电路包括第二放大器T 2,即放大电路3033通过第二放大器T 2实现。其中,第二放大器T 2可以从第一电阻R sensor接收第四电压信号,并对该第四电压信号进行放大得到第二电压信号V 1并输出。
在实施方式1,放大电路3033的结构比较简单,有效降低处理电路实现的复杂度。
实施方式2,放大电路3033包括对数放大电路和第二放大电路,对数放大电路的输入端与第一电阻R sensor耦合,对数放大电路的输出端与第二放大电路的输入端耦合;对数放大电路,用于对第四电压信号进行放大,得到第五电压信号;第二放大电路可以用于对第五电压信号进行放大,得到第二电压信号V 1
示例性的,请参见图7,对数放大电路可以包括第二放大器T 2、第二电阻R 1、等效二极管D 3、第三节点N 3和第二电容C 2,第二放大电路可以包括第三放大器T 3;其中,第二电阻R 1的一端与第二放大器T 2的输出端耦合,另一端与等效二极管D 3的输入端、第三放大器T 3的输入端分别耦合;第二电容C 2的一端通过第三节点N 3与等效二极管D 3的输出端耦合,另一端接地。如此,第二放大器T 2可以对第一电阻R sensor输出的第四电压信号进行对数放大,得到第五电压信号,并将第五电压信号输入第三放大器T 3;第三放大器T 3可以用于对第五电压信号进行放大,得到第二电压信号V 1
应理解,第三节点N 3是处理电路1的另一控制信号输入端(VB 1')与处理电路1的内部元器件连接形成的电气节点;在实际硬件中即为元器件的连接点,例如第二电容C 2、等效二极管D 3和控制信号输入端(VB 1')的连接点。等效二极管D 3是具备二极管导电功能的元器件,例如可以是二极管、MOS管、或者三极管中的任一种,本申请实施例不作具体的限定。
应理解,上述示例仅仅是对对数放大电路和第二放大电路的举例说明,并非限定。在其他的实施例中,对数放大电路和第二放大电路还可以包括更多的放大器。
在实施方式2,通过在放大电路中设计对数放大电路,使得放大电路可以对第二电压信号进行对数放大,有效提升上述放大电路的动态范围(即输出电压的范围)。
需要说明的是,上述分流电路303还可以应用在其他探测装置中。这里仅仅是示例,而非限定。
需要说明的是,上述第一电压信号V 0和第二电压信号V 1均可以用于确定目标物体的距离信号和/或目标物体的反射信号的强度信息。
在一些实施例中,如图8所示,探测装置300还可以包括模数转换器304和处理器305。模数转换器304的输入端与分流电路303的输出端连接,模数转换器304的输出端与处理 器305的输入端连接。其中,模数转换器304用于将电压信号(即上述第一电压信号V 0和第二电压信号V 1)转换为第二数字信号,并将该第二数字信号输出至处理器305,处理器305可以基于该第二数字信号,确定目标物体的距离信息和/或目标物体的反射信号的强度信息。
示例性的,处理器305可以获取开始输出第一数字电信号(反射信号对应的发射信号进行发射时所用的驱动信号)的时刻,以及开始接收上述第二数字电信号的时刻,并确定这两个时刻之间的第一时间差,可以将第一时间差减去探测单元301、光电转换单元302、分流电路303和模数转换器30运作所花费的恒定时间,从而可以得到激光信号从被激光发射器发射的时刻到探测装置300接收到反射信号的时刻之间的第二时间差。之后,处理器305可以根据第二时间差,确定激光探测装置与目标物体的距离和反射信号的光强度信息。
可选的,处理器305可以基于该数字信号,确定上述N个第二控制信号,并发送至分流电路303,使得分流电路303可以基于上述N个第二控制信号,对从光电转换单元302接收的电流信号执行分流操作。
可选地,请参见图9,该探测装置300还可以包括信号调理电路306,该信号调理电路306可以串接在分流电路303与模数转换器304之间。如此,可以信号调理电路306过滤出电压信号中的一些干扰信号,进一步使得模数转换器304接收到的电压信号更准确。
请参见图10,图10为本申请实施例提供的一种示例性的激光探测装置,接下来将基于图10对本申请实施例进行完整性的介绍。
图10所示的激光探测装置1000包括探测单元1001、光电转换单元1002以及分流电路1003、模数转换器1004、处理器1005、信号调理电路1006以及激光发射单元1007。
其中,探测单元1001的输出端与光电转换单元1002的输入端连接,光电转换单元1002的输出端与分流电路1003的输入端连接,分流电路1003的输出端连接与信号调理电路1006的输入端连接,信号调理电路1006的输出端与模数转换器1004的输入端连接,模数转换器1004的输出端与处理器1005连接;处理器1005与激光发射单元1007连接。
其中,处理器1005可以向激光发射单元1007发送第一数字信号,激光发射单元1007可以在第一数字信号的驱动下向目标物体发射激光信号。探测单元1001可以探测目标物体反射的光信号,并将该光信号输入光电转换单元1002;光电转换单元1002可以用于将接收到的光信号进行光电转换得到电流信号,并把该电流信号输入分流电路1003,该电流信号包含第一电流信号和第三电流信号;进而分流电路1003可以对第一电流信号分流,以得到N个第二电流信号,并基于该N个第二电流信号,产生N个第二电压信号;以及分流电路1003可以对第三电流信号执行分流操作,以得到第三电流信号,并基于该第三电流信号确定第一电压信号。
进一步的,分流电路1003将第一电压信号和N个第二电压信号输入模数转换器1004,模数转换器1004对第一电压信号和这N个第二电压信号进行转换,得到第二数字信号,并将第二数字信号输入处理器1005。
处理器1005可以根据第二数字信号,确定目标物体与激光探测装置1000的距离信息,以及反射信号的强度信息。
在该实施例中,由于分流电路1003可以对第一电流信号执行分流操作,产生一个或多个第二电压信号,进而使得探测装置探测到的光强度较大的光信号对应的电压信号不会 饱和,进而探测装置可以准确计算目标物体与探测装置的距离和光信号的强度信息,有效增大探测装置能探测的反射信号的光强度范围。
需要说明的是,本申请实施例中所述的“连接”,均可以为直接连接,可选地,在其他可能的情况下,也可以不为直接连接,而是通过一些元件进行连接,本申请实施例在此不做限定。
本申请实施例还提供了一种传感器系统,该传感器系统包含一个或多个上述探测装置。可选地,该传感器系统还可以包含毫米波雷达、摄像装置等中的一个或多个,且毫米波雷达的数量可以为一个或多个,摄像装置的数量也可以为一个或多个。
本申请实施例还提供了一种车辆,该车辆承载了上述传感器系统。可选地,该车辆还可以包含制动系统、控制系统等等。该传感器系统用于探测车辆与其他物体之间的距离,该控制系统用于根据传感器系统探测出的距离发出控制指令,该制动系统用于执行控制系统发出的控制指令。
本申请实施例还提供了一种无人机设备,该无人机设备承载了上述传感器系统。可选地,该无人机设备还可以包含制动系统、控制系统等等。该传感器系统用于探测无人机设备与其他物体之间的距离,该控制系统用于根据传感器系统探测出的距离发出控制指令,该制动系统用于执行控制系统发出的控制指令。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种探测装置,其特征在于,包括探测单元、光电转换单元以及分流电路;
    所述探测单元用于接收光信号,所述光信号包含激光发射信号的反射信号;
    所述光电转换单元用于将所述接收到的光信号进行光电转换得到电流信号,所述电流信号包含第一电流信号;
    所述分流电路用于对所述第一电流信号分流,以得到N个第二电流信号,所述N个第二电流信号用于产生N个第二电压信号V i;其中,N为大于等于1的整数,i为大于等于1且小于等于N的整数。
  2. 根据权利要求1所述的装置,其特征在于,所述N个第二电压信号用于确定产生所述反射信号的目标物体的距离信息和/或所述光信号的强度信息。
  3. 根据权利要求1或2所述的装置,其特征在于,所述分流电路用于基于N个预设的第一控制信号对所述第一电流信号分流,以得到所述N个第二电流信号。
  4. 根据权利要求3所述的装置,其特征在于,所述分流电路包含N个第二分流电路,所述N个第二分流电路用于基于所述N个预设的第一控制信号对所述第一电流信号分流,以得到所述N个第二电流信号。
  5. 根据权利要求1-4任一项所述的装置,其特征在于,所述分流电路还用于基于接收到的N个第二控制信号对所述第一电流信号分流,以得到N个第四电流信号,所述N个第四电流信号用于产生N个第三电压信号V i'
  6. 根据权利要求5所述的装置,其特征在于,所述N个第三电压信号V i'用于确定产生所述反射信号的目标物体的距离信息和/或所述光信号的强度信息。
  7. 根据权利要求1-5任一项所述的装置,其特征在于,所述分流电路还包含第一分流电路,所述电流信号还包含第三电流信号,所述第三电流信号用于产生第一电压信号V 0
    其中,所述第一分流电路用于对所述第三电流信号执行分流处理。
  8. 根据权利要求7所述的装置,其特征在于,所述第一电压信号V 0用于确定产生所述反射信号的目标物体的距离信息和/或所述光信号的强度信息。
  9. 根据权利要求7或8所述的装置,其特征在于,所述电流信号大于预设阈值,所述第三电流信号的电流值大小小于所述预设阈值。
  10. 一种分流电路,其特征在于,包括:第一节点N 1、N个第二分流电路和N个处理电路;所述第一节点N 1与所述N个第二分流电路的输入端耦合,所述N个第二分流电路的输出端分别与所述N个处理电路的输入端耦合;其中,N为大于等于1的整数;
    所述第一节点N 1用于将第一电流信号输入所述N个第二分流电路;
    所述N个第二分流电路,用于对所述第一电流信号分流,以得到N个第二电流信号;所述N个处理电路,用于对所述N个第二电流信号处理以产生N个第二电压信号V i
    其中,i为大于等于1且小于等于N的整数。
  11. 根据权利要求10所述的电路,其特征在于,所述分流电路还包含第一元器件、第一分流电路、所述第一元器件的输出端与所述第一分流电路的输入端耦合,所述第一元器件的输出端通过所述第一节点N 1分别与所述N个第二分流电路的输入端耦合;
    所述第一元器件,用于获取电流信号,所述电流信号包含所述第一电流信号和第三电流信号;
    所述第一分流电路,用于对所述第三电流信号执行分流操作,所述第三电流信号用于产生第一电压信号V 0
  12. 根据权利要求10或11所述的电路,其特征在于,所述N个第二分流电路用于基于N个预设的第一控制信号对所述第一电流信号分流,以得到所述N个第二电流信号。
  13. 根据权利要求10-12中任一项所述的电路,其特征在于,所述N个处理电路,还用于接收N个第二控制信号;
    所述第N个第二分流电路,还用于基于所述N个第二控制信号对所述第一电流信号分流,以得到N个第四电流信号;
    所述N个处理电路,还用于对所述N个第四电流信号处理,以得到N个第三电压信号V i'
  14. 根据权利要求10-13任一项所述的电路,其特征在于,所述N个第二分流电路中的第i个第二分流电路包括泄放电路D i,所述N个处理电路中的每个处理电路包括第一电阻R sensor、第二节点N 2、第一电容C 1和放大电路;其中,所述泄放电路D i的输入端与所述第一节点N 1耦合,所述第一电阻R sensor与所述泄放电路D i的输出端和所述放大电路的输入端分别耦合,所述第一电容C 1的一端通过所述第二节点N 2与所述第一电阻R sensor和所述放大电路的输入端分别耦合,另一端接地;其中:
    所述泄放电路D i,用于对所述第一电流信号进行分流,得到所述第二电流信号;
    所述第一电阻R sensor,用于将所述第二电流信号转换为第四电压信号,并输入所述放大电路;
    所述放大电路,用于对所述第四电压信号进行放大,得到所述第二电压信号V i
  15. 根据权利要求14所述的电路,其特征在于,所述放大电路包括第一放大电路,所述第一放大电路,用于对所述第四电压信号进行放大,得到所述第二电压信号V i
  16. 根据权利要求15所述的电路,其特征在于,所述第一放大电路包括第二放大器T 2
  17. 根据权利要求14所述的电路,其特征在于,所述放大电路包括对数放大电路和第二放大电路,所述对数放大电路的输入端与所述第一电阻R sensor耦合,所述对数放大电路的输出端与所述第二放大电路的输入端耦合;
    所述对数放大电路,用于对所述第四电压信号进行放大,得到所述第五电压信号;
    所述第二放大电路,用于对所述第五电压信号进行放大,得到所述第二电压信号V i
  18. 根据权利要求17所述的电路,其特征在于,所述对数放大电路包括第二放大器T 2、第二电阻R 1、等效二极管D 3、第三节点N 3和第二电容C 2,所述第二放大电路包括第三放大器T 3;其中,所述第二电阻R 1的一端与所述第二放大器T 2的输出端耦合,另一端与所述等效二极管D 3的输入端、所述第三放大器T 3的输入端分别耦合;所述第二电容C 2的一端通过所述第三节点N 3与所述等效二极管D 3的输出端耦合,另一端接地。
  19. 根据权利要求11-18任一项所述的电路,其特征在于,所述第一元器件为光电转换器件,所述第一元器件,还用于:
    接收光信号,将所述光信号转换成所述电流信号。
  20. 根据权利要求11-19任一项所述的电路,其特征在于,所述第一分流电路包括第一放大器T 1
  21. 根据权利要求18-20任一项所述的电路,其特征在于,所述泄放电路D i或所述等效二极管D 3为下述器件之一:
    二极管、MOS管、或者三极管。
  22. 根据权利要求10-21任一项所述的电路,其特征在于,所述N个第二电压信号用于确定产生所述反射信号的目标物体的距离信息和/或所述光信号的强度信息。
  23. 根据权利要求11-22任一项所述的电路,其特征在于,所述第一电压信号V 0用于确定产生所述反射信号的目标物体的距离信息和/或所述光信号的强度信息。
  24. 根据权利要求13-23所述的电路,其特征在于,所述N个第三电压信号用于确定产生所述反射信号的目标物体的距离信息和/或所述光信号的强度信息。
  25. 根据权利要求11-24任一项所述的电路,其特征在于,所述电流信号的电流值大小大于预设阈值,所述第三电流信号的电流值大小小于所述预设阈值。
  26. 一种终端设备,其特征在于,包括如权利要求1-9任一项所述的探测装置。
PCT/CN2021/123528 2021-10-13 2021-10-13 一种探测装置、分流电路及终端设备 WO2023060474A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180101976.6A CN117897623A (zh) 2021-10-13 2021-10-13 一种探测装置、分流电路及终端设备
PCT/CN2021/123528 WO2023060474A1 (zh) 2021-10-13 2021-10-13 一种探测装置、分流电路及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/123528 WO2023060474A1 (zh) 2021-10-13 2021-10-13 一种探测装置、分流电路及终端设备

Publications (1)

Publication Number Publication Date
WO2023060474A1 true WO2023060474A1 (zh) 2023-04-20

Family

ID=85988138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123528 WO2023060474A1 (zh) 2021-10-13 2021-10-13 一种探测装置、分流电路及终端设备

Country Status (2)

Country Link
CN (1) CN117897623A (zh)
WO (1) WO2023060474A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200910317A (en) * 2007-08-17 2009-03-01 Univ Nat Formosa A high-sensitivity position detector capable of differentiating a background light
CN103134529A (zh) * 2011-11-25 2013-06-05 欧姆龙株式会社 光电传感器
US20140291488A1 (en) * 2013-03-26 2014-10-02 Excelitas Canada Inc. Optical Receiver with Fast Recovery Time
CN106787683A (zh) * 2016-11-25 2017-05-31 厦门思力科电子科技有限公司 一种自适应电流电压转换电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200910317A (en) * 2007-08-17 2009-03-01 Univ Nat Formosa A high-sensitivity position detector capable of differentiating a background light
CN103134529A (zh) * 2011-11-25 2013-06-05 欧姆龙株式会社 光电传感器
US20140291488A1 (en) * 2013-03-26 2014-10-02 Excelitas Canada Inc. Optical Receiver with Fast Recovery Time
CN106787683A (zh) * 2016-11-25 2017-05-31 厦门思力科电子科技有限公司 一种自适应电流电压转换电路

Also Published As

Publication number Publication date
CN117897623A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
US20160293647A1 (en) Digital imaging and pulse detection pixel
US11125615B2 (en) Data output device
US9948393B2 (en) Visible light communication system and method and related device
CN107968658B (zh) 用于lidar系统的模数转换器
US20190253030A1 (en) High dynamic range transimpedance amplifier
WO2021051970A1 (zh) 飞行时间的测量方法、装置、存储介质和激光雷达
US11333765B2 (en) Distance measuring device and method
CN211577420U (zh) 跨阻抗放大器tia布置和用于光检测和测距lidar系统的接收器
CN107817484B (zh) 激光雷达放大电路的放大倍数处理方法及装置
WO2021036619A1 (zh) 电流电压调节方法、装置、设备及存储介质
WO2023060474A1 (zh) 一种探测装置、分流电路及终端设备
CN112162291A (zh) 一种激光雷达信号处理电路及激光雷达
US9948259B2 (en) Noise-based gain adjustment and amplitude estimation system
CN107450105B (zh) 红外对管检测装置与系统
US11624811B2 (en) Apparatus and method for increasing LIDAR sensing distance
CN211348623U (zh) 激光雷达信号降噪装置
US20190094340A1 (en) High Speed Illumination Driver for TOF Applications
US9851202B2 (en) Determining a return laser signal associated with a target in laser range finders
US10241948B2 (en) Differential amplitude detector
WO2023092722A1 (zh) 提高雷达系统激光测距能力的方法、装置及存储介质
WO2022160622A1 (zh) 一种距离测量方法、装置及系统
US20090224826A1 (en) Output circuit of vacuum-tube amplifier
Kufner et al. Hybrid design of an optical detector for terrestrial laser range finding
CN109301689A (zh) 具有温度噪声抑制功能的光信号发射装置和光电检测设备
WO2019148475A1 (en) Methods and systems with dynamic gain determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021960216

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021960216

Country of ref document: EP

Effective date: 20240412