WO2023060460A1 - Backscatter reflection suspension - Google Patents

Backscatter reflection suspension Download PDF

Info

Publication number
WO2023060460A1
WO2023060460A1 PCT/CN2021/123424 CN2021123424W WO2023060460A1 WO 2023060460 A1 WO2023060460 A1 WO 2023060460A1 CN 2021123424 W CN2021123424 W CN 2021123424W WO 2023060460 A1 WO2023060460 A1 WO 2023060460A1
Authority
WO
WIPO (PCT)
Prior art keywords
backscatter
duration
communication
base station
reflection
Prior art date
Application number
PCT/CN2021/123424
Other languages
French (fr)
Inventor
Min Huang
Kangqi LIU
Chao Wei
Mingxi YIN
Rui Hu
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/123424 priority Critical patent/WO2023060460A1/en
Publication of WO2023060460A1 publication Critical patent/WO2023060460A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for backscatter reflection suspension.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs.
  • a UE may communicate with a base station via downlink communications and uplink communications.
  • Downlink (or “DL” ) refers to a communication link from the base station to the UE
  • uplink (or “UL” ) refers to a communication link from the UE to the base station.
  • New Radio which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP- OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • the method may include receiving, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the method may include receiving, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • the method may include transmitting, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the method may include transmitting, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • the method may include receiving, from a base station, a message to initiate backscatter communication.
  • the method may include performing a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the apparatus may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to receive, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the one or more processors may be configured to receive, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • the apparatus may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to transmit, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the one or more processors may be configured to transmit, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • the apparatus may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to receive, from a base station, a message to initiate backscatter communication.
  • the one or more processors may be configured to perform a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a base station.
  • the set of instructions when executed by one or more processors of the base station, may cause the base station to transmit, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the set of instructions when executed by one or more processors of the base station, may cause the base station to transmit, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a backscatter device.
  • the set of instructions when executed by one or more processors of the backscatter device, may cause the backscatter device to receive, from a base station, a message to initiate backscatter communication.
  • the set of instructions when executed by one or more processors of the backscatter device, may cause the backscatter device to perform a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the apparatus may include means for receiving, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the apparatus may include means for receiving, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • the apparatus may include means for transmitting, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the apparatus may include means for transmitting, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • the apparatus may include means for receiving, from a base station, a message to initiate backscatter communication.
  • the apparatus may include means for performing a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios.
  • Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements.
  • some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) .
  • Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components.
  • Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects.
  • transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) .
  • RF radio frequency
  • aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
  • UE user equipment
  • Figs. 3-4 are diagrams illustrating examples of backscatter communication, in accordance with the present disclosure.
  • Figs. 5-6 are diagrams illustrating examples associated with backscatter reflection suspension, in accordance with the present disclosure.
  • Figs. 7-9 are diagrams illustrating example processes associated with backscatter reflection suspension, in accordance with the present disclosure.
  • Figs. 10-12 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
  • NR New Radio
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples.
  • the wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities.
  • UE user equipment
  • a base station 110 is an entity that communicates with UEs 120.
  • a base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) .
  • Each base station 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
  • a base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) .
  • CSG closed subscriber group
  • a base station 110 for a macro cell may be referred to as a macro base station.
  • a base station 110 for a pico cell may be referred to as a pico base station.
  • a base station 110 for a femto cell may be referred to as a femto base station or an in-home base station.
  • the BS 110a may be a macro base station for a macro cell 102a
  • the BS 110b may be a pico base station for a pico cell 102b
  • the BS 110c may be a femto base station for a femto cell 102c.
  • a base station may support one or multiple (e.g., three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) .
  • the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • the wireless network 100 may include one or more relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) .
  • a relay station may be a UE 120 that can relay transmissions for other UEs 120.
  • the BS 110d e.g., a relay base station
  • the BS 110a e.g., a macro base station
  • a base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
  • the wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100.
  • macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110.
  • the network controller 130 may communicate with the base stations 110 via a backhaul communication link.
  • the base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit.
  • a UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio)
  • Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity.
  • Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices.
  • Some UEs 120 may be considered a Customer Premises Equipment.
  • a UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks 100 may be deployed in a given geographic area.
  • Each wireless network 100 may support a particular RAT and may operate on one or more frequencies.
  • a RAT may be referred to as a radio technology, an air interface, or the like.
  • a frequency may be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • the wireless network 100 may include a backscatter device 120f.
  • the backscatter device 120f may correspond to a UE 120 as described herein.
  • the backscatter device 120f may communicate with the UE 120a by reflecting a signal received from the base station 110, as described herein.
  • Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands.
  • devices of the wireless network 100 may communicate using one or more operating bands.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4a or FR4-1 52.6 GHz –71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • frequencies included in these operating bands may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • the UE 120 may include a communication manager 140.
  • the communication manager 140 may receive, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and receive, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
  • the base station 110 may include a communication manager 150.
  • the communication manager 150 may transmit, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and transmit, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
  • the backscatter device 120f may include a communication manager 160.
  • the communication manager 160 may receive, from a base station, a message to initiate backscatter communication; and perform a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period. Additionally, or alternatively, the communication manager 160 may perform one or more other operations described herein.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • the base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ⁇ 1) .
  • the UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ⁇ 1) .
  • a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) .
  • the transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120.
  • MCSs modulation and coding schemes
  • CQIs channel quality indicators
  • the base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120.
  • the transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • the transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t.
  • each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.
  • Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream.
  • Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal.
  • the modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
  • a set of antennas 252 may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r.
  • R received signals e.g., R received signals
  • each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254.
  • DEMOD demodulator component
  • Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples.
  • Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • CQI CQI parameter
  • the network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292.
  • the network controller 130 may include, for example, one or more devices in a core network.
  • the network controller 130 may communicate with the base station 110 via the communication unit 294.
  • One or more antennas may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280.
  • the transmit processor 264 may generate reference symbols for one or more reference signals.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110.
  • the modem 254 of the UE 120 may include a modulator and a demodulator.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 5-12) .
  • the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240.
  • the base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244.
  • the base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications.
  • the modem 232 of the base station 110 may include a modulator and a demodulator.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 5-12) .
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with backscatter reflection suspension, as described in more detail elsewhere herein.
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.
  • the memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively.
  • the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • a UE includes means for receiving, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and/or means for receiving, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • the means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • a base station includes means for transmitting, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and/or means for transmitting, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • the means for the base station to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • a backscatter device includes means for receiving, from a base station, a message to initiate backscatter communication; and/or means for performing a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the means for the backscatter device to perform operations described herein may include, for example, one or more of communication manager 160, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of backscatter communication, in accordance with the present disclosure.
  • IoT Internet-of-Things
  • IoT technology may include passive IoT (e.g., NR passive IoT for 5G Advanced) .
  • a terminal e.g., a UE
  • the terminal may accumulate energy from radio signaling. Additionally, the terminal may accumulate solar energy to supplement accumulated energy from radio signaling.
  • a communication distance may be up to 30 meters (or more) to facilitate feasible network coverage over a large area (e.g., 5000 square meters) , such as in a warehouse.
  • the power consumption of a passive IoT terminal may be less than 0.1 milliwatts (mW) to support operation without a battery, and the terminal may be relatively inexpensive to facilitate cost-sensitive uses.
  • a positioning accuracy of a passive IoT terminal may be approximately 3-5 meters in the horizontal and the vertical directions (e.g., for 90%of UEs) .
  • Passive IoT may be useful in connection with industrial sensors, for which battery replacement may be prohibitively difficult or undesirable (e.g., for safety monitoring or fault detection in smart factories, infrastructures, or environments) .
  • features of passive IoT devices such as low cost, small size, maintenance-free, durable, long lifespan, or the like, may facilitate smart logistics/warehousing (e.g., in connection with automated asset management by replacing radio frequency identification (RFID) tags) .
  • RFID radio frequency identification
  • passive IoT may be useful in connection with smart home networks for household item management, wearable devices (e.g., wearable devices for medical monitoring for which patients do not need to replace batteries) , and/or environment monitoring.
  • 5G+/6G wireless networks may utilize a type of passive IoT device referred to as an “ambient backscatter device” or a “backscatter device. ”
  • a backscatter device 305 may employ a simplified hardware design (e.g., including a power splitter, an energy harvester, and a microcontroller) that does not include a battery, such that the backscatter device 305 relies on energy harvesting for power, and that does not include a radio wave generation circuit, such that the backscatter device 305 is capable of transmitting information only by reflecting a radio wave.
  • a RF source 310 e.g., a base station 110
  • the backscatter device 305 may begin to reflect the radio wave that is radiated on the backscatter device 305 via a backscatter link 315.
  • a channel between the RF source 310 and the backscatter device 305 of the backscatter link 315 may be associated with a channel response value h BD .
  • the backscatter device 305 may have reflection on periods and reflection off periods that follow a pattern that is based at least in part on the transmission of information bits by the backscatter device 305.
  • a UE 120 may detect the reflection pattern of the backscatter device 305 and obtain the backscatter communication information via the backscatter link 315.
  • a channel between the UE 120 and the backscatter device 305 of the backscatter link 315 may be associated with a channel response value h DU .
  • the RF source 310 and the UE 120 may communicate (e.g., reference signals and/or data signals) via a direct link 320.
  • a channel between the RF source 310 and the UE 120 of the direct link 320 may be associated with a channel response value h BU .
  • the backscatter device 305 may use an information modulation scheme, such as amplitude shift keying (ASK) modulation or on-off keying (OOK) modulation.
  • ASK amplitude shift keying
  • OOK on-off keying
  • the backscatter device 305 may switch on reflection when transmitting an information bit “1” and switch off reflection when transmitting an information bit “0. ”
  • the RF source 310 may transmit a particular radio wave (e.g., a reference signal or a data signal, such as a physical downlink shared channel (PDSCH) ) , which may be denoted as x (n) .
  • the information bits of the backscatter device 305 may be denoted as s (n) where s (n) ⁇ ⁇ 0, 1 ⁇ .
  • the UE 120 may first decode x (n) based at least in part on the value of h BU (n) by treating the backscatter link 315 signal as interference. The UE 120 may then detect the existence of the signal component ⁇ f h BD (n) h DU (n) x (n) by subtracting h BU (n) x (n) from y (n) .
  • Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of backscatter communication, in accordance with the present disclosure.
  • a UE in order to detect backscatter information, a UE must determine the channel response value of a direct link with a base station. For example, to read the backscatter information (e.g., detect the existence of the signal component ⁇ f h BD (n) h DU (n) x (n) ) , the UE must first estimate the channel response value h BU (n) in the direct link. In some examples, the UE may receive a large amount of information from a single backscatter device, or the UE may receive information from a large number of backscatter devices. Thus, during backscatter receiving, the UE may need to perform real-time updating of the channel response value h BU (n) due to radio channel time variance.
  • the reflected signal may interfere with (e.g., pollute) the estimation of h BU (n) by the UE (i.e., the UE may estimate resulting in inaccurate estimation.
  • estimation of the UE may estimate the existence of the backscatter term ⁇ f h BD (n) h DU (n) x (n) in the received signal y (n) with error, thereby degrading a performance of reception of backscatter information at the UE.
  • Some techniques and apparatuses described herein provide for backscatter reflection suspension at a backscatter device.
  • the backscatter device refrains from signal reflection.
  • a base station may transmit a reference signal for channel estimation by a UE.
  • the UE may perform channel estimation using the reference signal without interference from a backscatter communication of the backscatter device. Accordingly, the channel estimation is improved, thereby enabling the UE to detect and decode a backscatter communication (e.g., using an estimated channel response value) with improved accuracy.
  • a backscatter communication e.g., using an estimated channel response value
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 associated with backscatter reflection suspension, in accordance with the present disclosure.
  • example 500 includes communication between a base station 110, a UE 120, and a backscatter device 305 (e.g., which may correspond to backscatter device 120f) .
  • the base station 110, the UE 120, and the backscatter device 305 may be included in a wireless network, such as wireless network 100.
  • the base station 110 and the UE 120 may communicate via a wireless access link (e.g., a direct link, as described above) , which may include an uplink and a downlink.
  • the backscatter device 305 and the UE 120 may communicate via a backscatter link, as described above.
  • the base station 110 may transmit, and the backscatter device 305 may receive, a backscatter periodicity configuration (e.g., a message indicating the backscatter periodicity configuration) .
  • the backscatter periodicity configuration may include information indicating a first duration (e.g., a length of time) for a backscatter communication period (which may be referred to as a “backscatter communication period duration” or a “period length” ) and/or a second duration (e.g., a length of time) for a backscatter reflection suspension (which may be referred to as a “backscatter reflection suspension duration” or a “reflection-suspend duration length” ) in the backscatter communication period.
  • a first duration e.g., a length of time
  • a backscatter communication period duration which may be referred to as a “backscatter communication period duration” or a “period length”
  • a second duration
  • a backscatter communication period is a time period in which the backscatter device is to perform backscatter communication (e.g., information transmission by the backscatter device 305 is to follow a periodicity) .
  • Backscatter communication periods may occur according to a periodicity indicated by the backscatter communication period duration. For example, if the backscatter communication period duration is two slots, then every two slots (e.g., within a particular time period) may correspond to a respective backscatter communication period.
  • the backscatter reflection suspension duration is a time period in a backscatter communication period in which the backscatter device 305 is to refrain from signal reflection.
  • a portion of the backscatter communication period that is outside of the backscatter reflection suspension duration may be referred to as a “backscatter reflection execution duration. ”
  • the information of the backscatter periodicity configuration may indicate the backscatter reflection execution duration in addition to, or instead of, indicating the backscatter reflection suspension duration.
  • the information may indicate the backscatter communication period duration by a time interval (e.g., a quantity of seconds, a quantity of symbols, a quantity of slots, or the like) and/or the information may indicate the backscatter reflection suspension duration by a time interval.
  • the information may indicate the backscatter communication period duration by a first quantity of backscatter transmission bits and/or the information may indicate the backscatter reflection suspension duration by a second quantity of backscatter transmission bits.
  • the backscatter reflection suspension may occur at the start of a backscatter communication period. However, other time positions for the backscatter reflection suspension are possible, such as at the end of a backscatter communication period or in the middle of a backscatter communication period.
  • the backscatter communication period duration and the backscatter reflection suspension duration may be defined by a standard, and the backscatter device 305 may be provisioned (e.g., hard-coded) with the information indicating the backscatter communication period duration and the backscatter reflection suspension duration.
  • the backscatter device 305 may not receive the backscatter periodicity configuration from the base station 110.
  • the base station 110 may transmit, and the UE 120 may receive, a backscatter periodicity configuration (e.g., a message indicating the backscatter periodicity configuration) .
  • the backscatter periodicity configuration may include information indicating the backscatter communication period duration and the backscatter reflection suspension duration, as described above. As described above, the information may indicate the backscatter communication period duration by a first quantity of backscatter transmission bits and/or the information may indicate the backscatter reflection suspension duration by a second quantity of backscatter transmission bits.
  • the UE 120 may determine the backscatter communication period duration by multiplying the first quantity of backscatter transmission bits by a duration of a backscatter transmission bit (e.g., which may be fixed or configured) at the backscatter device 305 and/or the UE 120 may determine the backscatter reflection suspension duration by multiplying the second quantity of backscatter transmission bits by the duration of the backscatter transmission bit.
  • a backscatter transmission bit e.g., which may be fixed or configured
  • the base station 110 may transmit, and the UE 120 may receive, a reference signal for channel estimation during a backscatter reflection suspension 525.
  • the backscatter device 305 may refrain from performing signal reflection, as described below.
  • the UE 120 may perform channel estimation of a channel between the UE 120 and the base station 110 (e.g., of the direct link) using the reference signal. For example, the UE 120 may estimate the channel response (or channel status) value h BU (n) . In this way, the UE 120 may estimate the channel without interference from the backscatter device 305.
  • the base station 110 may transmit a signal for a communication (e.g., for the UE 12) , such as a reference signal or a data signal (e.g., a PDSCH) , in accordance with the backscatter communication period duration and the backscatter reflection suspension duration (e.g., the base station 110 may transmit a radio wave, such as a continuous wave, that radiates on the UE 120 and the backscatter device 305) .
  • a signal for a communication e.g., for the UE 12
  • a reference signal e.g., a data signal
  • the base station 110 may transmit a radio wave, such as a continuous wave, that radiates on the UE 120 and the backscatter device 305) .
  • the base station 110 may transmit the signal outside of (e.g., following) the backscatter reflection suspension 525 in the backscatter communication period 520 (e.g., during a backscatter reflection execution duration of the backscatter communication period 520) .
  • the signal may be for use by the backscatter device 305 for a backscatter communication.
  • the backscatter device 305 may perform a backscatter communication in accordance with the backscatter communication period duration and the backscatter reflection suspension duration. For example, as described above, the backscatter device 305 may refrain from (e.g., suspend) performing signal reflection during the backscatter reflection suspension 525 in the backscatter communication period 520. As an example, the backscatter device 305 may refrain from performing signal reflection by transmitting (e.g., generating) a sequence of all zero prefix bits prior to a transmission of data bits using ASK or OOK modulation. Because each bit in the sequence is zero, the backscatter device 305 does not perform signal reflection when transmitting the sequence.
  • transmitting e.g., generating
  • the backscatter device 305 may perform signal reflection (e.g., radio wave reflection) outside of (e.g., following) the backscatter reflection suspension 525 in the backscatter communication period 520.
  • the backscatter device 305 may perform the signal reflection during the backscatter reflection execution duration of the backscatter communication period.
  • the backscatter device 305 may perform the signal reflection outside of the backscatter reflection suspension 525 by turning on reflection (to transmit a data bit “1” ) and/or by turning off reflection (to transmit a data bit “0” ) for a sequence of data bits that are to be transmitted.
  • the backscatter device 305 may perform the signal reflection outside of the backscatter reflection suspension 525 using ASK or OOK modulation.
  • the UE 120 may receive the backscatter communication in accordance with the backscatter communication period duration and the backscatter reflection suspension duration. For example, the UE 120 may receive the backscatter communication outside of (e.g., following) the backscatter reflection suspension 525 in the backscatter communication period 520. To receive the backscatter communication, the UE 120 may detect a signal for the backscatter communication, in a combination of the signal for the backscatter communication and the signal for the communication from the base station 110, using the channel estimation of the direct link.
  • the UE 120 may receive a signal (e.g., y (n) ) that is a superposition of the signal for the backscatter communication and the signal for the communication from the base station 110, and the UE 120 may detect and decode the signal for the backscatter communication (e.g., ⁇ f h BD (n) h ) U (n) s (n) x (n) ) from the superposition signal based at least in part on the channel response (or channel state) value (e.g., h BU (n) ) estimated by the UE 120.
  • the channel estimation result which is updated by the UE 120 in real time (e.g., during backscatter reflection suspension per backscatter communication period) , improves the reception performance of the backscatter communication at the UE 120.
  • another backscatter communication period 550 may follow (e.g., immediately follow) the backscatter communication period 520.
  • the base station 110, the UE 120, and/or the backscatter device 305 may perform one or more operations, as described above, in accordance with the backscatter communication period duration and the backscatter reflection suspension duration.
  • the base station 110 may transmit a reference signal to the UE 120 for channel estimation (e.g., without interference from the backscatter device 305) during a backscatter reflection suspension 555 in the backscatter communication period 550 (e.g., the base station 110 may transmit a reference signal for channel estimation during backscatter reflection suspension in each backscatter communication period) .
  • the backscatter device 305 may perform, and the UE 120 may receive, the backscatter communication in multiple backscatter communication periods (e.g., if the amount of backscatter information is relatively large) .
  • the periodicity of the backscatter communication period may continue until transmission of the backscatter communication is complete.
  • the backscatter device 305 may perform, and the UE 120 may receive, the backscatter communication in a single backscatter communication period (e.g., if the amount of backscatter information is relatively small) .
  • Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
  • Fig. 6 is a diagram illustrating an example 600 associated with backscatter reflection suspension, in accordance with the present disclosure.
  • a base station 110 a UE 120, and a backscatter device 305 (e.g., which may correspond to backscatter device 120f) may communicate with one another.
  • a backscatter device 305 e.g., which may correspond to backscatter device 120f
  • the base station 110 may transmit, and the backscatter device 305 may receive, a message indicating a backscatter periodicity configuration, as described above.
  • the backscatter device 305 may not receive the backscatter periodicity configuration from the base station 110, as described above.
  • the base station 110 may transmit, and the UE 120 may receive, a message indicating a backscatter periodicity configuration, as described above.
  • the base station 110 may transmit, and the backscatter device 305 may receive, an energy harvesting signal (e.g., an energy harvesting radio wave) .
  • the energy harvesting signal may be a dummy signal or may carry information (e.g., for one or more UEs) .
  • the backscatter device 305 may accumulate energy from the energy harvesting signal in order to perform signal reflection. Additionally, or alternatively, the backscatter device 305 may accumulate energy from another source, such as solar, wind, or the like.
  • the base station 110 may transmit, and the backscatter device 305 may receive, a message to initiate backscatter communication (e.g., to start backscatter transmission) .
  • the message may provide a trigger for the backscatter device 305 to start transmitting information by switching on and off signal reflection in a sequence that corresponds to information bits for the information.
  • the message to initiate backscatter communication may include an identifier (e.g., a unique identifier) of the backscatter device 305. Accordingly, based at least in part on identifying the identifier of the backscatter device 305 in the message, the backscatter device 305 may begin reflection-based information transmission.
  • the base station 110 may transmit, and the UE 120 may receive, a message to initiate backscatter communication detection. The message may provide a trigger for the UE 120 to start detecting signal reflection from the backscatter device 305.
  • the backscatter device 305 may refrain from signal reflection, as described above.
  • the base station 110 may transmit, and the UE 120 may receive, a reference signal for channel estimation, as described above.
  • the UE 120 may perform channel estimation of a channel between the base station 110 and the UE 120 using the reference signal, as described above.
  • the base station 110 may transmit a reference signal or a data signal (e.g., a continuous wave signal) that radiates on the UE 120 and the backscatter device 305, as described above.
  • the backscatter device 305 may perform a backscatter communication by performing signal reflection of the reference signal or the data signal, as described above. For example, to indicate an information bit “1” of the backscatter communication, the backscatter device 305 may switch on signal reflection, and to indicate an information bit “0” of the backscatter communication, the backscatter device 305 may switch off signal reflection.
  • the UE 120 may receive the reference signal or the data signal (shown by reference number 645) and receive the signal reflection for the backscatter communication (shown by reference number 650) , and the UE 120 may detect the backscatter communication (e.g., detect the signal reflection) , as described above.
  • the UE 120 may identify the signal reflection for the backscatter communication based at least in part on the channel estimation performed by the UE 120, as described above.
  • the UE 120 may accurately estimate a channel status of a direct link with the base station 110. In this way, the UE 120 may accurately detect the backscatter signal and decode the backscatter communication (e.g., the backscatter link information) based at least in part on the channel status. Accordingly, the reliability of ambient backscatter communication is improved. Moreover, by increasing the success ratio of backscatter transmission, the throughput of ambient backscatter communication is also increased.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 700 is an example where the UE (e.g., UE 120) performs operations associated with backscatter reflection suspension.
  • process 700 may include receiving, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period (block 710) .
  • the UE e.g., using communication manager 140 and/or reception component 1002, depicted in Fig. 10) may receive, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period, as described above.
  • process 700 may include receiving, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period (block 720) .
  • the UE e.g., using communication manager 140 and/or reception component 1002, depicted in Fig. 10.
  • the UE may receive, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period, as described above.
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 700 includes performing (e.g., using communication manager 140 and/or channel estimation component 1008, depicted in Fig. 10) estimation of a channel between the UE and the base station using the reference signal.
  • the backscatter reflection suspension is at a start of the backscatter communication period.
  • the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
  • process 700 includes receiving (e.g., using communication manager 140 and/or reception component 1002, depicted in Fig. 10) , from the base station, a message to initiate backscatter communication detection.
  • process 700 includes receiving (e.g., using communication manager 140 and/or reception component 1002, depicted in Fig. 10) a backscatter communication in accordance with the first duration and the second duration.
  • the backscatter communication is received in multiple backscatter communication periods.
  • receiving the backscatter communication includes detecting (e.g., using communication manager 140 and/or detection component 1010, depicted in Fig. 10) a signal for the backscatter communication, in a combination of the signal for the backscatter communication and a signal for a communication from the base station, based at least in part on a channel estimation of a channel between the UE and the base station.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a base station, in accordance with the present disclosure.
  • Example process 800 is an example where the base station (e.g., base station 110) performs operations associated with backscatter reflection suspension.
  • process 800 may include transmitting, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period (block 810) .
  • the base station e.g., using communication manager 150 and/or transmission component 1104, depicted in Fig. 11
  • process 800 may include transmitting, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period (block 820) .
  • the base station e.g., using communication manager 150 and/or transmission component 1104, depicted in Fig. 11
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the backscatter reflection suspension is at a start of the backscatter communication period.
  • the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
  • process 800 includes transmitting (e.g., using communication manager 150 and/or transmission component 1104, depicted in Fig. 11) an energy harvesting signal for the backscatter device.
  • process 800 includes transmitting (e.g., using communication manager 150 and/or transmission component 1104, depicted in Fig. 11) , to the backscatter device, a message to initiate backscatter communication.
  • process 800 includes transmitting (e.g., using communication manager 150 and/or transmission component 1104, depicted in Fig. 11) , to the UE, a message to initiate backscatter communication detection.
  • process 800 includes transmitting (e.g., using communication manager 150 and/or transmission component 1104, depicted in Fig. 11) a signal, in accordance with the first duration and the second duration, for use by the backscatter device for a backscatter communication.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a backscatter device, in accordance with the present disclosure.
  • Example process 900 is an example where the backscatter device (e.g., backscatter device 305) performs operations associated with backscatter reflection suspension.
  • the backscatter device e.g., backscatter device 305
  • process 900 may include receiving, from a base station, a message to initiate backscatter communication (block 910) .
  • the backscatter device e.g., using communication manager 160 and/or reception component 1202, depicted in Fig. 12
  • process 900 may include performing a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period (block 920) .
  • the backscatter device e.g., using communication manager 160 and/or transmission component 1204, depicted in Fig. 12
  • Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • performing the backscatter communication includes refraining (e.g., using communication manager 160 and/or signal reflection component 1208, depicted in Fig. 12) from performing signal reflection during the backscatter reflection suspension in the backscatter communication period, and performing (e.g., using communication manager 160 and/or signal reflection component 1208, depicted in Fig. 12) signal reflection in the backscatter communication period outside of the backscatter reflection suspension.
  • refraining from performing signal reflection during the backscatter reflection suspension comprises transmitting a sequence of all zero prefix bits that is prior to a transmission of data bits using amplitude shift keying modulation or on-off keying modulation.
  • the backscatter reflection suspension is at a start of the backscatter communication period.
  • process 900 includes receiving (e.g., using communication manager 160 and/or reception component 1202, depicted in Fig. 12) , from the base station, information indicating the first duration and the second duration.
  • the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
  • the backscatter communication is performed in multiple backscatter communication periods.
  • process 900 includes receiving (e.g., using communication manager 160 and/or reception component 1202, depicted in Fig. 12) an energy harvesting signal from the base station.
  • process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
  • Fig. 10 is a diagram of an example apparatus 1000 for wireless communication.
  • the apparatus 1000 may be a UE, or a UE may include the apparatus 1000.
  • the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004.
  • the apparatus 1000 may include the communication manager 140.
  • the communication manager 140 may include one or more of a channel estimation component 1008 or a detection component 1010, among other examples.
  • the apparatus 1000 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7, or a combination thereof.
  • the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006.
  • the reception component 1002 may provide received communications to one or more other components of the apparatus 1000.
  • the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1000.
  • the reception component 1002 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006.
  • one or more other components of the apparatus 1000 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006.
  • the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006.
  • the transmission component 1004 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
  • the reception component 1002 may receive, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the reception component 1002 may receive, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • the reception component 1002 may receive, from the base station, a message to initiate backscatter communication detection.
  • the reception component 1002 may receive a backscatter communication in accordance with the first duration and the second duration.
  • the channel estimation component 1008 may perform channel estimation of a channel between the UE and the base station using the reference signal.
  • the detection component 1010 may detect a signal for the backscatter communication, in a combination of the signal for the backscatter communication and a signal for a communication from the base station, based at least in part on a channel estimation of a channel between the UE and the base station.
  • Fig. 10 The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
  • Fig. 11 is a diagram of an example apparatus 1100 for wireless communication.
  • the apparatus 1100 may be a base station, or a base station may include the apparatus 1100.
  • the apparatus 1100 includes a reception component 1102 and a transmission component 1104, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1100 may communicate with another apparatus 1106 (such as a UE, a base station, or another wireless communication device) using the reception component 1102 and the transmission component 1104.
  • the apparatus 1100 may include the communication manager 150.
  • the communication manager 150 may include a configuration component 1108, among other examples.
  • the apparatus 1100 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally, or alternatively, the apparatus 1100 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8, or a combination thereof.
  • the apparatus 1100 and/or one or more components shown in Fig. 11 may include one or more components of the base station described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 11 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1102 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1106.
  • the reception component 1102 may provide received communications to one or more other components of the apparatus 1100.
  • the reception component 1102 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1100.
  • the reception component 1102 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2.
  • the transmission component 1104 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1106.
  • one or more other components of the apparatus 1100 may generate communications and may provide the generated communications to the transmission component 1104 for transmission to the apparatus 1106.
  • the transmission component 1104 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1106.
  • the transmission component 1104 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2. In some aspects, the transmission component 1104 may be co-located with the reception component 1102 in a transceiver.
  • the transmission component 1104 may transmit, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the transmission component 1104 may transmit, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • the transmission component 1104 may transmit an energy harvesting signal for the backscatter device.
  • the transmission component 1104 may transmit, to the backscatter device, a message to initiate backscatter communication.
  • the transmission component 1104 may transmit, to the UE, a message to initiate backscatter communication detection.
  • the transmission component 1104 may transmit a signal, in accordance with the first duration and the second duration, for use by the backscatter device for a backscatter communication.
  • the configuration component 1108 may determine a configuration for the first duration and the second duration for the at least one of the UE or the backscatter device.
  • Fig. 11 The number and arrangement of components shown in Fig. 11 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 11. Furthermore, two or more components shown in Fig. 11 may be implemented within a single component, or a single component shown in Fig. 11 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 11 may perform one or more functions described as being performed by another set of components shown in Fig. 11.
  • Fig. 12 is a diagram of an example apparatus 1200 for wireless communication.
  • the apparatus 1200 may be a backscatter device, or a backscatter device may include the apparatus 1200.
  • the apparatus 1200 includes a reception component 1202 and a transmission component 1204, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1200 may communicate with another apparatus 1206 (such as a UE, a base station, or another wireless communication device) using the reception component 1202 and the transmission component 1204.
  • the apparatus 1200 may include the communication manager 160.
  • the communication manager 160 may include a signal reflection component 1208, among other examples.
  • the apparatus 1200 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally, or alternatively, the apparatus 1200 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9, or a combination thereof.
  • the apparatus 1200 and/or one or more components shown in Fig. 12 may include one or more components of the backscatter device described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 12 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1202 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1206.
  • the reception component 1202 may provide received communications to one or more other components of the apparatus 1200.
  • the reception component 1202 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1200.
  • the reception component 1202 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the backscatter device described in connection with Fig. 2.
  • the transmission component 1204 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1206.
  • one or more other components of the apparatus 1200 may generate communications and may provide the generated communications to the transmission component 1204 for transmission to the apparatus 1206.
  • the transmission component 1204 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1206.
  • the transmission component 1204 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the backscatter device described in connection with Fig. 2. In some aspects, the transmission component 1204 may be co-located with the reception component 1202 in a transceiver.
  • the reception component 1202 may receive, from a base station, a message to initiate backscatter communication.
  • the transmission component 1204 may perform a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • the reception component 1202 may receive, from the base station, information indicating the first duration and the second duration.
  • the reception component 1202 may receive an energy harvesting signal from the base station.
  • the signal reflection component 1208 may refrain from performing signal reflection during the backscatter reflection suspension in the backscatter communication period.
  • the signal reflection component 1208 may perform signal reflection in the backscatter communication period outside of the backscatter reflection suspension.
  • Fig. 12 The number and arrangement of components shown in Fig. 12 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 12. Furthermore, two or more components shown in Fig. 12 may be implemented within a single component, or a single component shown in Fig. 12 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 12 may perform one or more functions described as being performed by another set of components shown in Fig. 12.
  • a method of wireless communication performed by a user equipment (UE) comprising: receiving, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and receiving, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • UE user equipment
  • Aspect 2 The method of Aspect 1, further comprising: performing channel estimation of a channel between the UE and the base station using the reference signal.
  • Aspect 3 The method of any of Aspects 1-2, wherein the backscatter reflection suspension is at a start of the backscatter communication period.
  • Aspect 4 The method of any of Aspects 1-3, wherein the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
  • Aspect 5 The method of any of Aspects 1-4, further comprising: receiving, from the base station, a message to initiate backscatter communication detection.
  • Aspect 6 The method of any of Aspects 1-5, further comprising: receiving a backscatter communication in accordance with the first duration and the second duration.
  • Aspect 7 The method of Aspect 6, wherein the backscatter communication is received in multiple backscatter communication periods.
  • Aspect 8 The method of any of Aspects 6-7, wherein receiving the backscatter communication comprises: detecting a signal for the backscatter communication, in a combination of the signal for the backscatter communication and a signal for a communication from the base station, based at least in part on a channel estimation of a channel between the UE and the base station.
  • a method of wireless communication performed by a base station comprising: transmitting, to at least one of a user equipment (UE) or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and transmitting, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  • UE user equipment
  • Aspect 10 The method of Aspect 9, wherein the backscatter reflection suspension is at a start of the backscatter communication period.
  • Aspect 11 The method of any of Aspects 9-10, wherein the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
  • Aspect 12 The method of any of Aspects 9-11, further comprising: transmitting an energy harvesting signal for the backscatter device.
  • Aspect 13 The method of any of Aspects 9-12, further comprising: transmitting, to the backscatter device, a message to initiate backscatter communication.
  • Aspect 14 The method of any of Aspects 9-13, further comprising: transmitting, to the UE, a message to initiate backscatter communication detection.
  • Aspect 15 The method of any of Aspects 9-14, further comprising: transmitting a signal, in accordance with the first duration and the second duration, for use by the backscatter device for a backscatter communication.
  • a method of wireless communication performed by a backscatter device comprising: receiving, from a base station, a message to initiate backscatter communication; and performing a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  • Aspect 17 The method of Aspect 16, wherein performing the backscatter communication comprises: refraining from performing signal reflection during the backscatter reflection suspension in the backscatter communication period; and performing signal reflection in the backscatter communication period outside of the backscatter reflection suspension.
  • Aspect 18 The method of Aspect 17, wherein refraining from performing signal reflection during the backscatter reflection suspension comprises: transmitting a sequence of all zero prefix bits that is prior to a transmission of data bits using amplitude shift keying modulation or on-off keying modulation.
  • Aspect 19 The method of any of Aspects 16-18, wherein the backscatter reflection suspension is at a start of the backscatter communication period.
  • Aspect 20 The method of any of Aspects 16-19, further comprising: receiving, from the base station, information indicating the first duration and the second duration.
  • Aspect 21 The method of Aspect 20, wherein the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
  • Aspect 22 The method of any of Aspects 16-21, wherein the backscatter communication is performed in multiple backscatter communication periods.
  • Aspect 23 The method of any of Aspects 16-22, further comprising: receiving an energy harvesting signal from the base station.
  • Aspect 24 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-8.
  • Aspect 25 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-8.
  • Aspect 26 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-8.
  • Aspect 27 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-8.
  • Aspect 28 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-8.
  • Aspect 29 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 9-15.
  • Aspect 30 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 9-15.
  • Aspect 31 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 9-15.
  • Aspect 32 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 9-15.
  • Aspect 33 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 9-15.
  • Aspect 34 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 16-23.
  • Aspect 35 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 16-23.
  • Aspect 36 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 16-23.
  • Aspect 37 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 16-23.
  • Aspect 38 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 16-23.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) .
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period. The UE may receive, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period. Numerous other aspects are described.

Description

BACKSCATTER REFLECTION SUSPENSION
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for backscatter reflection suspension.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs. A UE may communicate with a base station via downlink communications and uplink communications. “Downlink” (or “DL” ) refers to a communication link from the base station to the UE, and “uplink” (or “UL” ) refers to a communication link from the UE to the base station.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different UEs to communicate on a municipal, national, regional, and/or global level. New Radio (NR) , which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP- OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
Some aspects described herein relate to a method of wireless communication performed by an apparatus of a user equipment (UE) . The method may include receiving, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period. The method may include receiving, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
Some aspects described herein relate to a method of wireless communication performed by an apparatus of a base station. The method may include transmitting, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period. The method may include transmitting, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
Some aspects described herein relate to a method of wireless communication performed by an apparatus of a backscatter device. The method may include receiving, from a base station, a message to initiate backscatter communication. The method may include performing a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
Some aspects described herein relate to an apparatus for wireless communication at a UE. The apparatus may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to receive, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in  the backscatter communication period. The one or more processors may be configured to receive, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
Some aspects described herein relate to an apparatus for wireless communication at a base station. The apparatus may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to transmit, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period. The one or more processors may be configured to transmit, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
Some aspects described herein relate to an apparatus of for wireless communication at a backscatter device. The apparatus may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to receive, from a base station, a message to initiate backscatter communication. The one or more processors may be configured to perform a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a base station. The set of instructions, when executed by one or more processors of the base station, may cause the base station to transmit, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a  second duration of a backscatter reflection suspension in the backscatter communication period. The set of instructions, when executed by one or more processors of the base station, may cause the base station to transmit, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a backscatter device. The set of instructions, when executed by one or more processors of the backscatter device, may cause the backscatter device to receive, from a base station, a message to initiate backscatter communication. The set of instructions, when executed by one or more processors of the backscatter device, may cause the backscatter device to perform a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for receiving, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period. The apparatus may include means for receiving, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for transmitting, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period. The apparatus may include means for transmitting, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for receiving, from a base station, a message to initiate backscatter communication. The apparatus may include means for performing a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages, will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
While aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios. Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements. For example, some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) . Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components. Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects. For example, transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) . It is intended that aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
Figs. 3-4 are diagrams illustrating examples of backscatter communication, in accordance with the present disclosure.
Figs. 5-6 are diagrams illustrating examples associated with backscatter reflection suspension, in accordance with the present disclosure.
Figs. 7-9 are diagrams illustrating example processes associated with backscatter reflection suspension, in accordance with the present disclosure.
Figs. 10-12 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. One skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be  practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
While aspects may be described herein using terminology commonly associated with a 5G or New Radio (NR) radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure. The wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples. The wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities. A base station 110 is an entity that communicates with UEs 120. A base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) . Each base station 110 may provide communication coverage for a particular geographic area. In the Third Generation Partnership Project (3GPP) , the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) . A base station 110 for a macro cell may be referred to as a macro base station. A base station 110 for a pico cell may be referred to as a pico base station. A base station 110 for a femto cell may be referred to as a femto base station or an in-home base station. In the example shown in Fig. 1, the BS 110a may be a macro base station for a macro cell 102a, the BS 110b may be a pico base station for a pico cell 102b, and the BS 110c may be a femto base station for a femto cell 102c. A base station may support one or multiple (e.g., three) cells.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) . In some examples, the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
The wireless network 100 may include one or more relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) . A relay station may be a UE 120 that can relay transmissions for other UEs 120. In the example shown in Fig. 1, the BS 110d (e.g., a relay base station) may communicate with the BS 110a (e.g., a macro base station) and the UE 120d in order to facilitate communication between the BS 110a and the UE 120d. A base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
The wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different  impacts on interference in the wireless network 100. For example, macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110. The network controller 130 may communicate with the base stations 110 via a backhaul communication link. The base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
The UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile. A UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit. A UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, and/or any other suitable device that is configured to communicate via a wireless medium.
Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity. Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices. Some UEs 120 may be considered a Customer Premises Equipment. A UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components. In some examples, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory  components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In general, any number of wireless networks 100 may be deployed in a given geographic area. Each wireless network 100 may support a particular RAT and may operate on one or more frequencies. A RAT may be referred to as a radio technology, an air interface, or the like. A frequency may be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network. In such examples, a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
In some examples, the wireless network 100 may include a backscatter device 120f. The backscatter device 120f may correspond to a UE 120 as described herein. As shown, the backscatter device 120f may communicate with the UE 120a by reflecting a signal received from the base station 110, as described herein.
Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is  identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4-1 (52.6 GHz –71 GHz) , FR4 (52.6 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above examples in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band. It is contemplated that the frequencies included in these operating bands (e.g., FR1, FR2, FR3, FR4, FR4-a, FR4-1, and/or FR5) may be modified, and techniques described herein are applicable to those modified frequency ranges.
In some aspects, the UE 120 may include a communication manager 140. As described in more detail elsewhere herein, the communication manager 140 may receive, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and receive, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
In some aspects, the base station 110 may include a communication manager 150. As described in more detail elsewhere herein, the communication manager 150 may transmit, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a  backscatter reflection suspension in the backscatter communication period; and transmit, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
In some aspects, the backscatter device 120f may include a communication manager 160. As described in more detail elsewhere herein, the communication manager 160 may receive, from a base station, a message to initiate backscatter communication; and perform a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period. Additionally, or alternatively, the communication manager 160 may perform one or more other operations described herein.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure. The base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ≥ 1) . The UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ≥ 1) .
At the base station 110, a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) . The transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120. The base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120. The transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. The transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing  (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t. For example, each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232. Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal. The modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
At the UE 120, a set of antennas 252 (shown as antennas 252a through 252r) may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r. For example, each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254. Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples. Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples. In some examples, one or more components of the UE 120 may be included in a housing 284.
The network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292. The network controller 130 may include,  for example, one or more devices in a core network. The network controller 130 may communicate with the base station 110 via the communication unit 294.
One or more antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at the UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280. The transmit processor 264 may generate reference symbols for one or more reference signals. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110. In some examples, the modem 254 of the UE 120 may include a modulator and a demodulator. In some examples, the UE 120 includes a transceiver. The transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266. The transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 5-12) .
At the base station 110, the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240. The base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244. The base station 110 may include a scheduler 246 to schedule one or more UEs 120 for  downlink and/or uplink communications. In some examples, the modem 232 of the base station 110 may include a modulator and a demodulator. In some examples, the base station 110 includes a transceiver. The transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230. The transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 5-12) .
The controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with backscatter reflection suspension, as described in more detail elsewhere herein. For example, the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein. The memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively. In some examples, the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein. In some examples, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, a UE includes means for receiving, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and/or means for receiving, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period. The means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252,  modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
In some aspects, a base station includes means for transmitting, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and/or means for transmitting, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period. The means for the base station to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
In some aspects, a backscatter device includes means for receiving, from a base station, a message to initiate backscatter communication; and/or means for performing a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period. In some aspects, the means for the backscatter device to perform operations described herein may include, for example, one or more of communication manager 160, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of backscatter communication, in accordance with the present disclosure.
Some wireless communication devices may be considered as Internet-of-Things (IoT) devices. IoT technology may include passive IoT (e.g., NR passive IoT for 5G Advanced) . In passive IoT, a terminal (e.g., a UE) may not include a battery,  and the terminal may accumulate energy from radio signaling. Additionally, the terminal may accumulate solar energy to supplement accumulated energy from radio signaling. In passive IoT, a communication distance may be up to 30 meters (or more) to facilitate feasible network coverage over a large area (e.g., 5000 square meters) , such as in a warehouse. Moreover, the power consumption of a passive IoT terminal (e.g., a UE) may be less than 0.1 milliwatts (mW) to support operation without a battery, and the terminal may be relatively inexpensive to facilitate cost-sensitive uses. A positioning accuracy of a passive IoT terminal may be approximately 3-5 meters in the horizontal and the vertical directions (e.g., for 90%of UEs) .
Passive IoT may be useful in connection with industrial sensors, for which battery replacement may be prohibitively difficult or undesirable (e.g., for safety monitoring or fault detection in smart factories, infrastructures, or environments) . Additionally, features of passive IoT devices, such as low cost, small size, maintenance-free, durable, long lifespan, or the like, may facilitate smart logistics/warehousing (e.g., in connection with automated asset management by replacing radio frequency identification (RFID) tags) . Furthermore, passive IoT may be useful in connection with smart home networks for household item management, wearable devices (e.g., wearable devices for medical monitoring for which patients do not need to replace batteries) , and/or environment monitoring. To achieve further cost reduction and zero-power communication, 5G+/6G wireless networks may utilize a type of passive IoT device referred to as an “ambient backscatter device” or a “backscatter device. ”
A backscatter device 305 (e.g., a tag, a sensor, or the like) may employ a simplified hardware design (e.g., including a power splitter, an energy harvester, and a microcontroller) that does not include a battery, such that the backscatter device 305 relies on energy harvesting for power, and that does not include a radio wave generation circuit, such that the backscatter device 305 is capable of transmitting information only by reflecting a radio wave. To facilitate communication of the backscatter device 305, an RF source 310 (e.g., a base station 110) may transmit an energy harvesting wave to the backscatter device 305. Once energy is sufficiently accumulated at the backscatter device 305, the backscatter device 305 may begin to reflect the radio wave that is radiated on the backscatter device 305 via a backscatter link 315. A channel between the RF source 310 and the backscatter device 305 of the backscatter link 315 may be associated with a channel response value h BD. As described below, the backscatter device 305 may have reflection on periods and reflection off periods that follow a  pattern that is based at least in part on the transmission of information bits by the backscatter device 305. A UE 120 (e.g., a reader, a sink node, or the like) , may detect the reflection pattern of the backscatter device 305 and obtain the backscatter communication information via the backscatter link 315. A channel between the UE 120 and the backscatter device 305 of the backscatter link 315 may be associated with a channel response value h DU. In addition, the RF source 310 and the UE 120 may communicate (e.g., reference signals and/or data signals) via a direct link 320. A channel between the RF source 310 and the UE 120 of the direct link 320 may be associated with a channel response value h BU.
The backscatter device 305 may use an information modulation scheme, such as amplitude shift keying (ASK) modulation or on-off keying (OOK) modulation. For ASK or OOK modulation, the backscatter device 305 may switch on reflection when transmitting an information bit “1” and switch off reflection when transmitting an information bit “0. ”
In backscatter communication, the RF source 310 may transmit a particular radio wave (e.g., a reference signal or a data signal, such as a physical downlink shared channel (PDSCH) ) , which may be denoted as x (n) . The information bits of the backscatter device 305 may be denoted as s (n) where s (n) ∈ {0, 1} . Accordingly, the signal received at the UE 120 may be denoted as y (n) where y (n) = (h BU (n) +σ fh BD (n) h DU (n) s (n) ) x (n) +noise and σ f is a reflection coefficient. When s (n) =0, the backscatter device 305 may switch off reflection, such that the UE 120 receives only the direct link 320 signal (i.e., y (n) =h BU (n) x (n) +noise) . When s (n) =1, the backscatter device 305 may switch on reflection, such that the UE 120 receives a superposition of both the direct link 320 signal and the backscatter link 315 signal (i.e., y (n) = (h BU (n) +σ fh BD (n) h DU (n) ) x (n) +noise) . To receive the information bits transmitted by the backscatter device 305, the UE 120 may first decode x (n) based at least in part on the value of h BU (n) by treating the backscatter link 315 signal as interference. The UE 120 may then detect the existence of the signal component σ fh BD (n) h DU (n) x (n) by subtracting h BU (n) x (n) from y (n) .
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of backscatter communication, in accordance with the present disclosure.
As described above, in order to detect backscatter information, a UE must determine the channel response value of a direct link with a base station. For example, to read the backscatter information (e.g., detect the existence of the signal component σ fh BD (n) h DU (n) x (n) ) , the UE must first estimate the channel response value h BU (n) in the direct link. In some examples, the UE may receive a large amount of information from a single backscatter device, or the UE may receive information from a large number of backscatter devices. Thus, during backscatter receiving, the UE may need to perform real-time updating of the channel response value h BU (n) due to radio channel time variance. However, as shown in Fig. 4, during an information transmission of the backscatter device, if reflection is switched on (e.g., the transmitted bit is “1” ) while the UE is estimating a channel state of the direct link, the reflected signal may interfere with (e.g., pollute) the estimation of h BU (n) by the UE (i.e., the UE may estimate
Figure PCTCN2021123424-appb-000001
Figure PCTCN2021123424-appb-000002
resulting in inaccurate estimation. Thus, based on the inaccurate estimation (e.g., estimation of
Figure PCTCN2021123424-appb-000003
the UE may estimate the existence of the backscatter term σ fh BD (n) h DU (n) x (n) in the received signal y (n) with error, thereby degrading a performance of reception of backscatter information at the UE.
Some techniques and apparatuses described herein provide for backscatter reflection suspension at a backscatter device. During backscatter reflection suspension, the backscatter device refrains from signal reflection. Moreover, during backscatter reflection suspension, a base station may transmit a reference signal for channel estimation by a UE. In this way, the UE may perform channel estimation using the reference signal without interference from a backscatter communication of the backscatter device. Accordingly, the channel estimation is improved, thereby enabling the UE to detect and decode a backscatter communication (e.g., using an estimated channel response value) with improved accuracy. Thus, the performance, and therefore throughput, of backscatter communication is improved.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
Fig. 5 is a diagram illustrating an example 500 associated with backscatter reflection suspension, in accordance with the present disclosure. As shown in Fig. 5, example 500 includes communication between a base station 110, a UE 120, and a backscatter device 305 (e.g., which may correspond to backscatter device 120f) . In some aspects, the base station 110, the UE 120, and the backscatter device 305 may be  included in a wireless network, such as wireless network 100. The base station 110 and the UE 120 may communicate via a wireless access link (e.g., a direct link, as described above) , which may include an uplink and a downlink. The backscatter device 305 and the UE 120 may communicate via a backscatter link, as described above.
As shown by reference number 505, the base station 110 may transmit, and the backscatter device 305 may receive, a backscatter periodicity configuration (e.g., a message indicating the backscatter periodicity configuration) . The backscatter periodicity configuration may include information indicating a first duration (e.g., a length of time) for a backscatter communication period (which may be referred to as a “backscatter communication period duration” or a “period length” ) and/or a second duration (e.g., a length of time) for a backscatter reflection suspension (which may be referred to as a “backscatter reflection suspension duration” or a “reflection-suspend duration length” ) in the backscatter communication period.
In some aspects, a backscatter communication period is a time period in which the backscatter device is to perform backscatter communication (e.g., information transmission by the backscatter device 305 is to follow a periodicity) . Backscatter communication periods may occur according to a periodicity indicated by the backscatter communication period duration. For example, if the backscatter communication period duration is two slots, then every two slots (e.g., within a particular time period) may correspond to a respective backscatter communication period. In some aspects, the backscatter reflection suspension duration is a time period in a backscatter communication period in which the backscatter device 305 is to refrain from signal reflection. A portion of the backscatter communication period that is outside of the backscatter reflection suspension duration may be referred to as a “backscatter reflection execution duration. ” In some aspects, the information of the backscatter periodicity configuration may indicate the backscatter reflection execution duration in addition to, or instead of, indicating the backscatter reflection suspension duration.
In some aspects, the information may indicate the backscatter communication period duration by a time interval (e.g., a quantity of seconds, a quantity of symbols, a quantity of slots, or the like) and/or the information may indicate the backscatter reflection suspension duration by a time interval. In some aspects (e.g., if the backscatter device 305 does not include a clock or a timer) , the information may indicate the backscatter communication period duration by a first quantity of backscatter  transmission bits and/or the information may indicate the backscatter reflection suspension duration by a second quantity of backscatter transmission bits. The backscatter reflection suspension may occur at the start of a backscatter communication period. However, other time positions for the backscatter reflection suspension are possible, such as at the end of a backscatter communication period or in the middle of a backscatter communication period.
In some aspects, the backscatter communication period duration and the backscatter reflection suspension duration may be defined by a standard, and the backscatter device 305 may be provisioned (e.g., hard-coded) with the information indicating the backscatter communication period duration and the backscatter reflection suspension duration. Here, the backscatter device 305 may not receive the backscatter periodicity configuration from the base station 110.
As shown by reference number 510, the base station 110 may transmit, and the UE 120 may receive, a backscatter periodicity configuration (e.g., a message indicating the backscatter periodicity configuration) . The backscatter periodicity configuration may include information indicating the backscatter communication period duration and the backscatter reflection suspension duration, as described above. As described above, the information may indicate the backscatter communication period duration by a first quantity of backscatter transmission bits and/or the information may indicate the backscatter reflection suspension duration by a second quantity of backscatter transmission bits. Here, the UE 120 may determine the backscatter communication period duration by multiplying the first quantity of backscatter transmission bits by a duration of a backscatter transmission bit (e.g., which may be fixed or configured) at the backscatter device 305 and/or the UE 120 may determine the backscatter reflection suspension duration by multiplying the second quantity of backscatter transmission bits by the duration of the backscatter transmission bit.
As shown by reference number 515, in a backscatter communication period 520, the base station 110 may transmit, and the UE 120 may receive, a reference signal for channel estimation during a backscatter reflection suspension 525. During the backscatter reflection suspension 525, the backscatter device 305 may refrain from performing signal reflection, as described below. As shown by reference number 530, the UE 120 may perform channel estimation of a channel between the UE 120 and the base station 110 (e.g., of the direct link) using the reference signal. For example, the UE 120 may estimate the channel response (or channel status) value h BU (n) . In this  way, the UE 120 may estimate the channel without interference from the backscatter device 305.
As shown by reference number 535, the base station 110 may transmit a signal for a communication (e.g., for the UE 12) , such as a reference signal or a data signal (e.g., a PDSCH) , in accordance with the backscatter communication period duration and the backscatter reflection suspension duration (e.g., the base station 110 may transmit a radio wave, such as a continuous wave, that radiates on the UE 120 and the backscatter device 305) . For example, the base station 110 may transmit the signal outside of (e.g., following) the backscatter reflection suspension 525 in the backscatter communication period 520 (e.g., during a backscatter reflection execution duration of the backscatter communication period 520) . The signal may be for use by the backscatter device 305 for a backscatter communication.
As shown by reference number 540, the backscatter device 305 may perform a backscatter communication in accordance with the backscatter communication period duration and the backscatter reflection suspension duration. For example, as described above, the backscatter device 305 may refrain from (e.g., suspend) performing signal reflection during the backscatter reflection suspension 525 in the backscatter communication period 520. As an example, the backscatter device 305 may refrain from performing signal reflection by transmitting (e.g., generating) a sequence of all zero prefix bits prior to a transmission of data bits using ASK or OOK modulation. Because each bit in the sequence is zero, the backscatter device 305 does not perform signal reflection when transmitting the sequence.
The backscatter device 305 may perform signal reflection (e.g., radio wave reflection) outside of (e.g., following) the backscatter reflection suspension 525 in the backscatter communication period 520. For example, the backscatter device 305 may perform the signal reflection during the backscatter reflection execution duration of the backscatter communication period. As an example, the backscatter device 305 may perform the signal reflection outside of the backscatter reflection suspension 525 by turning on reflection (to transmit a data bit “1” ) and/or by turning off reflection (to transmit a data bit “0” ) for a sequence of data bits that are to be transmitted. In other words, the backscatter device 305 may perform the signal reflection outside of the backscatter reflection suspension 525 using ASK or OOK modulation.
As shown by reference number 545, the UE 120 may receive the backscatter communication in accordance with the backscatter communication period duration and  the backscatter reflection suspension duration. For example, the UE 120 may receive the backscatter communication outside of (e.g., following) the backscatter reflection suspension 525 in the backscatter communication period 520. To receive the backscatter communication, the UE 120 may detect a signal for the backscatter communication, in a combination of the signal for the backscatter communication and the signal for the communication from the base station 110, using the channel estimation of the direct link. In other words, the UE 120 may receive a signal (e.g., y (n) ) that is a superposition of the signal for the backscatter communication and the signal for the communication from the base station 110, and the UE 120 may detect and decode the signal for the backscatter communication (e.g., σ fh BD (n) h )  U (n) s (n) x (n) ) from the superposition signal based at least in part on the channel response (or channel state) value (e.g., h BU (n) ) estimated by the UE 120. In this way, the channel estimation result, which is updated by the UE 120 in real time (e.g., during backscatter reflection suspension per backscatter communication period) , improves the reception performance of the backscatter communication at the UE 120.
As shown, another backscatter communication period 550 may follow (e.g., immediately follow) the backscatter communication period 520. As shown, in the backscatter communication period 550, the base station 110, the UE 120, and/or the backscatter device 305 may perform one or more operations, as described above, in accordance with the backscatter communication period duration and the backscatter reflection suspension duration. For example, the base station 110 may transmit a reference signal to the UE 120 for channel estimation (e.g., without interference from the backscatter device 305) during a backscatter reflection suspension 555 in the backscatter communication period 550 (e.g., the base station 110 may transmit a reference signal for channel estimation during backscatter reflection suspension in each backscatter communication period) .
In some aspects, the backscatter device 305 may perform, and the UE 120 may receive, the backscatter communication in multiple backscatter communication periods (e.g., if the amount of backscatter information is relatively large) . For example, the periodicity of the backscatter communication period may continue until transmission of the backscatter communication is complete. In some aspects, the backscatter device 305 may perform, and the UE 120 may receive, the backscatter communication in a single  backscatter communication period (e.g., if the amount of backscatter information is relatively small) .
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
Fig. 6 is a diagram illustrating an example 600 associated with backscatter reflection suspension, in accordance with the present disclosure. As shown in Fig. 6, a base station 110, a UE 120, and a backscatter device 305 (e.g., which may correspond to backscatter device 120f) may communicate with one another.
As shown by reference number 605, the base station 110 may transmit, and the backscatter device 305 may receive, a message indicating a backscatter periodicity configuration, as described above. In some aspects, the backscatter device 305 may not receive the backscatter periodicity configuration from the base station 110, as described above. As shown by reference number 610, the base station 110 may transmit, and the UE 120 may receive, a message indicating a backscatter periodicity configuration, as described above.
As shown by reference number 615, the base station 110 may transmit, and the backscatter device 305 may receive, an energy harvesting signal (e.g., an energy harvesting radio wave) . The energy harvesting signal may be a dummy signal or may carry information (e.g., for one or more UEs) . The backscatter device 305 may accumulate energy from the energy harvesting signal in order to perform signal reflection. Additionally, or alternatively, the backscatter device 305 may accumulate energy from another source, such as solar, wind, or the like.
As shown by reference number 620, the base station 110 may transmit, and the backscatter device 305 may receive, a message to initiate backscatter communication (e.g., to start backscatter transmission) . The message may provide a trigger for the backscatter device 305 to start transmitting information by switching on and off signal reflection in a sequence that corresponds to information bits for the information. The message to initiate backscatter communication may include an identifier (e.g., a unique identifier) of the backscatter device 305. Accordingly, based at least in part on identifying the identifier of the backscatter device 305 in the message, the backscatter device 305 may begin reflection-based information transmission. As shown by reference number 625, the base station 110 may transmit, and the UE 120 may receive, a message to initiate backscatter communication detection. The message may provide a  trigger for the UE 120 to start detecting signal reflection from the backscatter device 305.
As shown by reference number 630, during a backscatter reflection suspension of a backscatter communication period (e.g., in accordance with the backscatter periodicity configuration) , the backscatter device 305 may refrain from signal reflection, as described above. As shown by reference number 635, also during the backscatter reflection suspension, the base station 110 may transmit, and the UE 120 may receive, a reference signal for channel estimation, as described above. As shown by reference number 640, additionally during the backscatter reflection suspension, the UE 120 may perform channel estimation of a channel between the base station 110 and the UE 120 using the reference signal, as described above.
As shown by reference number 645, after the backscatter reflection suspension (e.g., during a backscatter execution duration) , the base station 110 may transmit a reference signal or a data signal (e.g., a continuous wave signal) that radiates on the UE 120 and the backscatter device 305, as described above. As shown by reference number 650, the backscatter device 305 may perform a backscatter communication by performing signal reflection of the reference signal or the data signal, as described above. For example, to indicate an information bit “1” of the backscatter communication, the backscatter device 305 may switch on signal reflection, and to indicate an information bit “0” of the backscatter communication, the backscatter device 305 may switch off signal reflection.
As shown by reference number 655, the UE 120 may receive the reference signal or the data signal (shown by reference number 645) and receive the signal reflection for the backscatter communication (shown by reference number 650) , and the UE 120 may detect the backscatter communication (e.g., detect the signal reflection) , as described above. For example, the UE 120 may identify the signal reflection for the backscatter communication based at least in part on the channel estimation performed by the UE 120, as described above.
By suspending backscatter signal transmission (e.g., suspending the signal reflection of the backscatter device 305) , the UE 120 may accurately estimate a channel status of a direct link with the base station 110. In this way, the UE 120 may accurately detect the backscatter signal and decode the backscatter communication (e.g., the backscatter link information) based at least in part on the channel status. Accordingly, the reliability of ambient backscatter communication is improved. Moreover, by  increasing the success ratio of backscatter transmission, the throughput of ambient backscatter communication is also increased.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with the present disclosure. Example process 700 is an example where the UE (e.g., UE 120) performs operations associated with backscatter reflection suspension.
As shown in Fig. 7, in some aspects, process 700 may include receiving, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period (block 710) . For example, the UE (e.g., using communication manager 140 and/or reception component 1002, depicted in Fig. 10) may receive, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include receiving, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period (block 720) . For example, the UE (e.g., using communication manager 140 and/or reception component 1002, depicted in Fig. 10) may receive, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, process 700 includes performing (e.g., using communication manager 140 and/or channel estimation component 1008, depicted in Fig. 10) estimation of a channel between the UE and the base station using the reference signal.
In a second aspect, alone or in combination with the first aspect, the backscatter reflection suspension is at a start of the backscatter communication period.
In a third aspect, alone or in combination with one or more of the first and second aspects, the information indicates the first duration by a first quantity of  backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 700 includes receiving (e.g., using communication manager 140 and/or reception component 1002, depicted in Fig. 10) , from the base station, a message to initiate backscatter communication detection.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 700 includes receiving (e.g., using communication manager 140 and/or reception component 1002, depicted in Fig. 10) a backscatter communication in accordance with the first duration and the second duration.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the backscatter communication is received in multiple backscatter communication periods.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, receiving the backscatter communication includes detecting (e.g., using communication manager 140 and/or detection component 1010, depicted in Fig. 10) a signal for the backscatter communication, in a combination of the signal for the backscatter communication and a signal for a communication from the base station, based at least in part on a channel estimation of a channel between the UE and the base station.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a base station, in accordance with the present disclosure. Example process 800 is an example where the base station (e.g., base station 110) performs operations associated with backscatter reflection suspension.
As shown in Fig. 8, in some aspects, process 800 may include transmitting, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period (block 810) . For example, the base station (e.g., using communication manager 150 and/or transmission component 1104, depicted in Fig. 11) may transmit, to at least one of a UE or a backscatter device,  information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include transmitting, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period (block 820) . For example, the base station (e.g., using communication manager 150 and/or transmission component 1104, depicted in Fig. 11) may transmit, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period, as described above.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the backscatter reflection suspension is at a start of the backscatter communication period.
In a second aspect, alone or in combination with the first aspect, the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
In a third aspect, alone or in combination with one or more of the first and second aspects, process 800 includes transmitting (e.g., using communication manager 150 and/or transmission component 1104, depicted in Fig. 11) an energy harvesting signal for the backscatter device.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 800 includes transmitting (e.g., using communication manager 150 and/or transmission component 1104, depicted in Fig. 11) , to the backscatter device, a message to initiate backscatter communication.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 800 includes transmitting (e.g., using communication manager 150 and/or transmission component 1104, depicted in Fig. 11) , to the UE, a message to initiate backscatter communication detection.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 800 includes transmitting (e.g., using communication manager 150 and/or transmission component 1104, depicted in Fig. 11) a signal, in accordance with  the first duration and the second duration, for use by the backscatter device for a backscatter communication.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a backscatter device, in accordance with the present disclosure. Example process 900 is an example where the backscatter device (e.g., backscatter device 305) performs operations associated with backscatter reflection suspension.
As shown in Fig. 9, in some aspects, process 900 may include receiving, from a base station, a message to initiate backscatter communication (block 910) . For example, the backscatter device (e.g., using communication manager 160 and/or reception component 1202, depicted in Fig. 12) may receive, from a base station, a message to initiate backscatter communication, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include performing a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period (block 920) . For example, the backscatter device (e.g., using communication manager 160 and/or transmission component 1204, depicted in Fig. 12) may perform a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period, as described above.
Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, performing the backscatter communication includes refraining (e.g., using communication manager 160 and/or signal reflection component 1208, depicted in Fig. 12) from performing signal reflection during the backscatter reflection suspension in the backscatter communication period, and performing (e.g., using communication manager 160 and/or signal reflection component 1208, depicted in Fig. 12) signal reflection in the backscatter communication period outside of the backscatter reflection suspension.
In a second aspect, alone or in combination with the first aspect, refraining from performing signal reflection during the backscatter reflection suspension comprises transmitting a sequence of all zero prefix bits that is prior to a transmission of data bits using amplitude shift keying modulation or on-off keying modulation.
In a third aspect, alone or in combination with one or more of the first and second aspects, the backscatter reflection suspension is at a start of the backscatter communication period.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 900 includes receiving (e.g., using communication manager 160 and/or reception component 1202, depicted in Fig. 12) , from the base station, information indicating the first duration and the second duration.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the backscatter communication is performed in multiple backscatter communication periods.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, process 900 includes receiving (e.g., using communication manager 160 and/or reception component 1202, depicted in Fig. 12) an energy harvesting signal from the base station.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
Fig. 10 is a diagram of an example apparatus 1000 for wireless communication. The apparatus 1000 may be a UE, or a UE may include the apparatus 1000. In some aspects, the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004. As further shown, the apparatus 1000 may  include the communication manager 140. The communication manager 140 may include one or more of a channel estimation component 1008 or a detection component 1010, among other examples.
In some aspects, the apparatus 1000 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7, or a combination thereof. In some aspects, the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006. The reception component 1002 may provide received communications to one or more other components of the apparatus 1000. In some aspects, the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1000. In some aspects, the reception component 1002 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006. In some aspects, one or more other components of the apparatus 1000 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006. In some aspects, the transmission component 1004 may perform signal processing on the  generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006. In some aspects, the transmission component 1004 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
The reception component 1002 may receive, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period. The reception component 1002 may receive, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
The reception component 1002 may receive, from the base station, a message to initiate backscatter communication detection. The reception component 1002 may receive a backscatter communication in accordance with the first duration and the second duration.
The channel estimation component 1008 may perform channel estimation of a channel between the UE and the base station using the reference signal. The detection component 1010 may detect a signal for the backscatter communication, in a combination of the signal for the backscatter communication and a signal for a communication from the base station, based at least in part on a channel estimation of a channel between the UE and the base station.
The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
Fig. 11 is a diagram of an example apparatus 1100 for wireless communication. The apparatus 1100 may be a base station, or a base station may  include the apparatus 1100. In some aspects, the apparatus 1100 includes a reception component 1102 and a transmission component 1104, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1100 may communicate with another apparatus 1106 (such as a UE, a base station, or another wireless communication device) using the reception component 1102 and the transmission component 1104. As further shown, the apparatus 1100 may include the communication manager 150. The communication manager 150 may include a configuration component 1108, among other examples.
In some aspects, the apparatus 1100 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally, or alternatively, the apparatus 1100 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8, or a combination thereof. In some aspects, the apparatus 1100 and/or one or more components shown in Fig. 11 may include one or more components of the base station described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 11 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1102 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1106. The reception component 1102 may provide received communications to one or more other components of the apparatus 1100. In some aspects, the reception component 1102 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1100. In some aspects, the reception component 1102 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2.
The transmission component 1104 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1106. In some aspects, one or more other components of the apparatus 1100 may generate communications and may provide the generated communications to the transmission component 1104 for transmission to the apparatus 1106. In some aspects, the transmission component 1104 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1106. In some aspects, the transmission component 1104 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2. In some aspects, the transmission component 1104 may be co-located with the reception component 1102 in a transceiver.
The transmission component 1104 may transmit, to at least one of a UE or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period. The transmission component 1104 may transmit, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
The transmission component 1104 may transmit an energy harvesting signal for the backscatter device. The transmission component 1104 may transmit, to the backscatter device, a message to initiate backscatter communication. The transmission component 1104 may transmit, to the UE, a message to initiate backscatter communication detection.
The transmission component 1104 may transmit a signal, in accordance with the first duration and the second duration, for use by the backscatter device for a backscatter communication. The configuration component 1108 may determine a configuration for the first duration and the second duration for the at least one of the UE or the backscatter device.
The number and arrangement of components shown in Fig. 11 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 11. Furthermore, two or more components shown in Fig. 11 may be implemented within a  single component, or a single component shown in Fig. 11 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 11 may perform one or more functions described as being performed by another set of components shown in Fig. 11.
Fig. 12 is a diagram of an example apparatus 1200 for wireless communication. The apparatus 1200 may be a backscatter device, or a backscatter device may include the apparatus 1200. In some aspects, the apparatus 1200 includes a reception component 1202 and a transmission component 1204, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1200 may communicate with another apparatus 1206 (such as a UE, a base station, or another wireless communication device) using the reception component 1202 and the transmission component 1204. As further shown, the apparatus 1200 may include the communication manager 160. The communication manager 160) may include a signal reflection component 1208, among other examples.
In some aspects, the apparatus 1200 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally, or alternatively, the apparatus 1200 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9, or a combination thereof. In some aspects, the apparatus 1200 and/or one or more components shown in Fig. 12 may include one or more components of the backscatter device described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 12 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1202 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1206. The reception component 1202 may provide received communications to one or more other components of the apparatus 1200. In some aspects, the reception component 1202 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital  conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1200. In some aspects, the reception component 1202 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the backscatter device described in connection with Fig. 2.
The transmission component 1204 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1206. In some aspects, one or more other components of the apparatus 1200 may generate communications and may provide the generated communications to the transmission component 1204 for transmission to the apparatus 1206. In some aspects, the transmission component 1204 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1206. In some aspects, the transmission component 1204 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the backscatter device described in connection with Fig. 2. In some aspects, the transmission component 1204 may be co-located with the reception component 1202 in a transceiver.
The reception component 1202 may receive, from a base station, a message to initiate backscatter communication. The transmission component 1204 may perform a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
The reception component 1202 may receive, from the base station, information indicating the first duration and the second duration. The reception component 1202 may receive an energy harvesting signal from the base station.
The signal reflection component 1208 may refrain from performing signal reflection during the backscatter reflection suspension in the backscatter communication period. The signal reflection component 1208 may perform signal reflection in the backscatter communication period outside of the backscatter reflection suspension.
The number and arrangement of components shown in Fig. 12 are provided as an example. In practice, there may be additional components, fewer components,  different components, or differently arranged components than those shown in Fig. 12. Furthermore, two or more components shown in Fig. 12 may be implemented within a single component, or a single component shown in Fig. 12 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 12 may perform one or more functions described as being performed by another set of components shown in Fig. 12.
The following provides an overview of some Aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a user equipment (UE) , comprising: receiving, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and receiving, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
Aspect 2: The method of Aspect 1, further comprising: performing channel estimation of a channel between the UE and the base station using the reference signal.
Aspect 3: The method of any of Aspects 1-2, wherein the backscatter reflection suspension is at a start of the backscatter communication period.
Aspect 4: The method of any of Aspects 1-3, wherein the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
Aspect 5: The method of any of Aspects 1-4, further comprising: receiving, from the base station, a message to initiate backscatter communication detection.
Aspect 6: The method of any of Aspects 1-5, further comprising: receiving a backscatter communication in accordance with the first duration and the second duration.
Aspect 7: The method of Aspect 6, wherein the backscatter communication is received in multiple backscatter communication periods.
Aspect 8: The method of any of Aspects 6-7, wherein receiving the backscatter communication comprises: detecting a signal for the backscatter communication, in a combination of the signal for the backscatter communication and a signal for a communication from the base station, based at least in part on a channel estimation of a channel between the UE and the base station.
Aspect 9: A method of wireless communication performed by a base station, comprising: transmitting, to at least one of a user equipment (UE) or a backscatter  device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and transmitting, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
Aspect 10: The method of Aspect 9, wherein the backscatter reflection suspension is at a start of the backscatter communication period.
Aspect 11: The method of any of Aspects 9-10, wherein the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
Aspect 12: The method of any of Aspects 9-11, further comprising: transmitting an energy harvesting signal for the backscatter device.
Aspect 13: The method of any of Aspects 9-12, further comprising: transmitting, to the backscatter device, a message to initiate backscatter communication.
Aspect 14: The method of any of Aspects 9-13, further comprising: transmitting, to the UE, a message to initiate backscatter communication detection.
Aspect 15: The method of any of Aspects 9-14, further comprising: transmitting a signal, in accordance with the first duration and the second duration, for use by the backscatter device for a backscatter communication.
Aspect 16: A method of wireless communication performed by a backscatter device, comprising: receiving, from a base station, a message to initiate backscatter communication; and performing a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
Aspect 17: The method of Aspect 16, wherein performing the backscatter communication comprises: refraining from performing signal reflection during the backscatter reflection suspension in the backscatter communication period; and performing signal reflection in the backscatter communication period outside of the backscatter reflection suspension.
Aspect 18: The method of Aspect 17, wherein refraining from performing signal reflection during the backscatter reflection suspension comprises: transmitting a sequence of all zero prefix bits that is prior to a transmission of data bits using amplitude shift keying modulation or on-off keying modulation.
Aspect 19: The method of any of Aspects 16-18, wherein the backscatter reflection suspension is at a start of the backscatter communication period.
Aspect 20: The method of any of Aspects 16-19, further comprising: receiving, from the base station, information indicating the first duration and the second duration.
Aspect 21: The method of Aspect 20, wherein the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
Aspect 22: The method of any of Aspects 16-21, wherein the backscatter communication is performed in multiple backscatter communication periods.
Aspect 23: The method of any of Aspects 16-22, further comprising: receiving an energy harvesting signal from the base station.
Aspect 24: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-8.
Aspect 25: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-8.
Aspect 26: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-8.
Aspect 27: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-8.
Aspect 28: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-8.
Aspect 29: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 9-15.
Aspect 30: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 9-15.
Aspect 31: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 9-15.
Aspect 32: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 9-15.
Aspect 33: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 9-15.
Aspect 34: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 16-23.
Aspect 35: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 16-23.
Aspect 36: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 16-23.
Aspect 37: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 16-23.
Aspect 38: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 16-23.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution,  procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As used herein, a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods are described herein without reference to specific software code, since those skilled in the art will understand that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, “satisfying a threshold” may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. Many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. The disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar  language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) . Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (35)

  1. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    receive, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and
    receive, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  2. The apparatus of claim 1, wherein the one or more processors are further configured to:
    perform channel estimation of a channel between the UE and the base station using the reference signal.
  3. The apparatus of claim 1, wherein the backscatter reflection suspension is at a start of the backscatter communication period.
  4. The apparatus of claim 1, wherein the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
  5. The apparatus of claim 1, wherein the one or more processors are further configured to:
    receive, from the base station, a message to initiate backscatter communication detection.
  6. The apparatus of claim 1, wherein the one or more processors are further configured to:
    receive a backscatter communication in accordance with the first duration and the second duration.
  7. The apparatus of claim 6, wherein the backscatter communication is received in multiple backscatter communication periods.
  8. The apparatus of claim 6, wherein the one or more processors, to receive the backscatter communication, are configured to:
    detect a signal for the backscatter communication, in a combination of the signal for the backscatter communication and a signal for a communication from the base station, based at least in part on a channel estimation of a channel between the UE and the base station.
  9. An apparatus for wireless communication at a base station, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    transmit, to at least one of a user equipment (UE) or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and
    transmit, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  10. The apparatus of claim 9, wherein the backscatter reflection suspension is at a start of the backscatter communication period.
  11. The apparatus of claim 9, wherein the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
  12. The apparatus of claim 9, wherein the one or more processors are further configured to:
    transmit an energy harvesting signal for the backscatter device.
  13. The apparatus of claim 9, wherein the one or more processors are further configured to:
    transmit, to the backscatter device, a message to initiate backscatter communication.
  14. The apparatus of claim 9, wherein the one or more processors are further configured to:
    transmit, to the UE, a message to initiate backscatter communication detection.
  15. The apparatus of claim 9, wherein the one or more processors are further configured to:
    transmit a signal, in accordance with the first duration and the second duration, for use by the backscatter device for a backscatter communication.
  16. An apparatus for wireless communication at a backscatter device, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    receive, from a base station, a message to initiate backscatter communication; and
    perform a backscatter communication in accordance with a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period.
  17. The apparatus of claim 16, wherein the one or more processors, to perform the backscatter communication, are configured to:
    refrain from performing signal reflection during the backscatter reflection suspension in the backscatter communication period; and
    perform signal reflection in the backscatter communication period outside of the backscatter reflection suspension.
  18. The apparatus of claim 17, wherein the one or more processors, to refrain from performing signal reflection during the backscatter reflection suspension, are configured to:
    transmit a sequence of all zero prefix bits that is prior to a transmission of data bits using amplitude shift keying modulation or on-off keying modulation.
  19. The apparatus of claim 16, wherein the backscatter reflection suspension is at a start of the backscatter communication period.
  20. The apparatus of claim 16, wherein the one or more processors are further configured to:
    receive, from the base station, information indicating the first duration and the second duration.
  21. The apparatus of claim 20, wherein the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
  22. The apparatus of claim 16, wherein the backscatter communication is performed in multiple backscatter communication periods.
  23. The apparatus of claim 16, wherein the one or more processors are further configured to:
    receive an energy harvesting signal from the base station.
  24. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving, from a base station, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and
    receiving, from the base station, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  25. The method of claim 24, further comprising:
    performing channel estimation of a channel between the UE and the base station using the reference signal.
  26. The method of claim 24, wherein the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
  27. The method of claim 24, further comprising:
    receiving, from the base station, a message to initiate backscatter communication detection.
  28. The method of claim 24, further comprising:
    receiving a backscatter communication in accordance with the first duration and the second duration.
  29. The method of claim 28, wherein receiving the backscatter communication comprises:
    detecting a signal for the backscatter communication, in a combination of the signal for the backscatter communication and a signal for a communication from the base station, based at least in part on a channel estimation of a channel between the UE and the base station.
  30. A method of wireless communication performed by a base station, comprising:
    transmitting, to at least one of a user equipment (UE) or a backscatter device, information indicating a first duration of a backscatter communication period and a second duration of a backscatter reflection suspension in the backscatter communication period; and
    transmitting, to the UE, a reference signal for channel estimation during the backscatter reflection suspension in the backscatter communication period.
  31. The method of claim 30, wherein the information indicates the first duration by a first quantity of backscatter transmission bits, and the information indicates the second duration by a second quantity of backscatter transmission bits.
  32. The method of claim 30, further comprising:
    transmitting an energy harvesting signal for the backscatter device.
  33. The method of claim 30, further comprising:
    transmitting, to the backscatter device, a message to initiate backscatter communication.
  34. The method of claim 30, further comprising:
    transmitting, to the UE, a message to initiate backscatter communication detection.
  35. The method of claim 30, further comprising:
    transmitting a signal, in accordance with the first duration and the second duration, for use by the backscatter device for a backscatter communication.
PCT/CN2021/123424 2021-10-13 2021-10-13 Backscatter reflection suspension WO2023060460A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/123424 WO2023060460A1 (en) 2021-10-13 2021-10-13 Backscatter reflection suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/123424 WO2023060460A1 (en) 2021-10-13 2021-10-13 Backscatter reflection suspension

Publications (1)

Publication Number Publication Date
WO2023060460A1 true WO2023060460A1 (en) 2023-04-20

Family

ID=85988132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123424 WO2023060460A1 (en) 2021-10-13 2021-10-13 Backscatter reflection suspension

Country Status (1)

Country Link
WO (1) WO2023060460A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092926A (en) * 2017-11-21 2018-05-29 北京交通大学 The parameter estimation algorithm of passive backscatter communication channel
CN109547183A (en) * 2018-12-06 2019-03-29 电子科技大学 A kind of full duplex environment backscatter communication system, transmission method and resource allocation methods
WO2019226202A2 (en) * 2017-12-21 2019-11-28 Georgia Tech Research Corporation System for sensing backscatter tag communications from retrodirective antenna arrays
CN113395224A (en) * 2021-04-30 2021-09-14 中国信息通信研究院 Backscattering communication method, device and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092926A (en) * 2017-11-21 2018-05-29 北京交通大学 The parameter estimation algorithm of passive backscatter communication channel
WO2019226202A2 (en) * 2017-12-21 2019-11-28 Georgia Tech Research Corporation System for sensing backscatter tag communications from retrodirective antenna arrays
CN109547183A (en) * 2018-12-06 2019-03-29 电子科技大学 A kind of full duplex environment backscatter communication system, transmission method and resource allocation methods
CN113395224A (en) * 2021-04-30 2021-09-14 中国信息通信研究院 Backscattering communication method, device and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION: "Discussion on Reference Signal for UL and DL", 3GPP DRAFT; R4-2109749, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting ;20210519 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052008464 *

Similar Documents

Publication Publication Date Title
WO2023000287A1 (en) Interference mitigation using reconfigurable intelligent surfaces
WO2022027062A1 (en) Downlink control information size configuration in cross-carrier scheduling scenarios
US11683786B1 (en) Paging optimization for network power saving
WO2023123187A1 (en) Quasi co-location configuration for energy harvest powered device
US11716689B2 (en) Energy harvesting based on pre-emption indications
US20230041404A1 (en) Determining a beam failure instance count for beam failure detection
US20240129993A1 (en) Known transmission control indicator duration
WO2023060460A1 (en) Backscatter reflection suspension
WO2023122949A1 (en) Techniques for beam determination and reporting in backscatter communication
US11627476B2 (en) Determining beam tracking frequencies using signal-to-noise ratios associated with user equipments
WO2023050441A1 (en) Discontinuous reception timer configurations for joint channel estimation
WO2023087243A1 (en) Channel state information reports during a small data transfer session
US20240187079A1 (en) Implicit beam switch
WO2022257039A1 (en) Implicit beam switch
US20240187911A1 (en) Measurement and reporting for aerial user equipment
US20240187086A1 (en) Downlink control information for reconfigurable intelligent surface beam training
WO2023050444A1 (en) Power control configuration
WO2023077396A1 (en) Techniques for determining a beam failure detection reference signal set and resetting a beam after a beam failure recovery
WO2023035131A1 (en) Synchronization signal blocks from non-serving cells
US20220085958A1 (en) Beam switch timing for a periodic channel state information reference signals
WO2023130248A1 (en) Prioritizing high speed train (hst) cells over non-hst cells
WO2023130312A1 (en) Aperiodic channel state information reporting for cross-carrier scheduling
WO2023216023A1 (en) Network controlled user equipment feedback of model inference error of network node beam predictions
US20230084678A1 (en) Transmission configuration indicator states for subbands
WO2023137611A1 (en) Reference signal index and machine learning for beam prediction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960204

Country of ref document: EP

Kind code of ref document: A1