WO2023058903A1 - Automized micro combinatorial chemical reaction system and optimized combinatorial chemical synthesis method using same - Google Patents

Automized micro combinatorial chemical reaction system and optimized combinatorial chemical synthesis method using same Download PDF

Info

Publication number
WO2023058903A1
WO2023058903A1 PCT/KR2022/012803 KR2022012803W WO2023058903A1 WO 2023058903 A1 WO2023058903 A1 WO 2023058903A1 KR 2022012803 W KR2022012803 W KR 2022012803W WO 2023058903 A1 WO2023058903 A1 WO 2023058903A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
unit
reaction
product
flow rate
Prior art date
Application number
PCT/KR2022/012803
Other languages
French (fr)
Korean (ko)
Inventor
김동표
안광노
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220064123A external-priority patent/KR20230051049A/en
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2023058903A1 publication Critical patent/WO2023058903A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus

Definitions

  • the present invention relates to an automated micro combinatorial chemical reactor and an optimized combinatorial chemical synthesis method using the same.
  • Micro-reactor devices can maximize the reaction efficiency of general organic synthesis based on fast mass and heat transfer due to high surface-to-volume ratios. While thermothermally stable compounds can be synthesized with conventional batch reaction methods, reaction kinetics can be controlled with microreactors. In particular, it is possible to control unstable and short-lived highly reactive organolithium intermediates through precise residence time control, which is of great interest because it plays an important role in organic synthesis including Active Pharmaceutical Ingredients (API) by ultra-fast synthetic chemical intermediates. is dragging
  • An object of the present invention is to solve the above problems, a combinational chemical reaction apparatus capable of quickly finding optimal synthesis conditions (high yield) and rapidly producing various compounds under the optimal synthesis conditions, and It is to provide an optimized combinatorial chemical synthesis method using the same.
  • Another object of the present invention is to provide a combinatorial chemical reaction apparatus having a high yield while rapidly producing a plurality of types of products, and an optimized combinatorial chemical synthesis method using the same.
  • raw materials including one or a plurality of first raw materials, one or a plurality of second raw materials, and one or a plurality of third raw materials are supplied, respectively, and the flow rates of the raw materials are respectively
  • a raw material supply unit 100 including a plurality of flow rate regulators for controlling;
  • a plurality of intermediate micro mixers (M1, M2, M3, M4) generating a first mixture by mixing the first raw material and the second raw material supplied from the raw material supply unit 100 and the intermediate by reacting the first mixture
  • An intermediate reaction unit 200 comprising a plurality of tubular intermediate reactors to generate;
  • An intermediate reaction control unit 300 including an intermediate reaction control valve member for controlling at least one of the length of the tubular intermediate reactor and the type of the second raw material to be supplied;
  • a first product micro mixer (M5) for generating a second mixture by mixing the intermediate supplied from the intermediate reaction unit 200 and the third raw material supplied from the raw material supply unit 100,
  • An automated micro combinatorial chemical reactor 10 including a first product reaction unit 400 for producing a
  • reaction time of the first mixture is controlled by the flow rate of the first raw material and the second raw material controlled by the flow rate controller and the reaction volume of the tubular intermediate reactor controlled by the intermediate reaction control valve member. It may be
  • the plurality of intermediate micro-mixers include a first intermediate micro-mixer, a second intermediate micro-mixer, . . . , ith intermediate micromixer, . . . , And an n-th intermediate micro-mixer (n is a natural number, i is a natural number, 1 ⁇ i ⁇ n), wherein a plurality of the tubular intermediate reactors include a first tubular intermediate reactor, a second tubular intermediate reactor, ... , the ith tubular intermediate reactor, ... , And an nth tubular intermediate reactor (n is a natural number, i is a natural number, 1 ⁇ i ⁇ n), wherein the n intermediate micromixers and the n tubular intermediate reactors may be connected in series alternately in order. there is.
  • reaction volume of the tubular intermediate reactor may be controlled by arbitrarily selecting the i-th intermediate micro-mixer supplying the second raw material.
  • any one of a plurality of the second raw materials is supplied to the i-th intermediate micro-mixer, and any one of the supplied second raw materials is mixed with the first raw material in the i-th intermediate micro-mixer to form the first mixture It may form, and the first mixture reacts while passing through the reaction volume to produce the intermediate.
  • reaction volume is the volume of the ith tubular intermediate reactor, . . . , and the volume of the nth tubular intermediate reactor.
  • the flow rate controller controls the flow rate of the singular or plural number of the first raw material, the singular or plural number of the second raw material, and the singular or plural number of the third raw material, respectively. It may include a raw material flow rate regulator, one or more second raw material flow rate regulators, and one or more third raw material flow rate regulators.
  • the intermediate reaction control valve member is a first intermediate reaction control valve, ... , ith intermediate reaction control valve, ... , And an n th intermediate reaction control valve (n is a natural number, i is a natural number, 1 ⁇ i ⁇ n), wherein the n intermediate reaction control valves are connected in parallel to each other, and the n intermediate reaction control valves are each In order, the first intermediate micromixer, . . . , ith intermediate micromixer, . . .
  • the n intermediate reaction control valves are connected in series with the second raw material flow rate controller, respectively, and the n intermediate reaction control valves are each independently opened (open ) or closing, the second raw material may be supplied to or blocked from each of the n intermediate micromixers.
  • the raw material supply unit 100 further includes a second raw material supply valve member, and the second raw material is a 2-1 raw material, . . . , 2-j raw material, . . . , And a 2-m raw material (m is a natural number, j is a natural number, 1 ⁇ j ⁇ m), wherein the m second raw materials are different from each other, and the second raw material flow rate controller is the m second raw material A 2-1 raw material flow rate controller for controlling the flow rate of raw materials, respectively... , 2-j raw material flow rate controller, . . .
  • a 2-m raw material flow rate controller (m is a natural number, j is a natural number, 1 ⁇ j ⁇ m), wherein the second raw material supply valve member is a 2-1 raw material supply valve, . , 2-j raw material supply valve, . . . , and 2-m raw material supply valves (j is a natural number, m is a natural number, 1 ⁇ j ⁇ m), wherein the m second raw material supply valves are sequentially configured as a 2-1 raw material flow rate controller, . . . , 2-j raw material flow rate controller, . . .
  • the m second raw material supply valves are connected in parallel with each other, and the m second raw material supply valves are each in series with the intermediate reaction unit 200 It may be connected to, and by opening or closing the m second raw material supply valves independently, respectively, supplying or blocking any one of the m second raw materials to the intermediate micromixer.
  • the raw material supply unit 100 further includes a third raw material supply valve member, and the third raw material is a 3-1 raw material, . . . , 3-k raw material, . . . , and 3-p raw materials (p is a natural number, k is a natural number, 1 ⁇ k ⁇ p), the p third raw materials are different from each other, and the third raw material supply valve member is the 3-1 raw material supply valve, ... , 3-k raw material supply valve, . . .
  • the raw material further includes a single or a plurality of fourth raw materials
  • the raw material supply unit 100 supplies the fourth raw material and controls the flow rate of the fourth raw material, a fourth raw material flow rate regulator, and a fourth raw material supply valve member
  • the automated micro combinatorial chemical reactor 10 further includes a second product reaction unit 500, wherein the second product reaction unit 500 comprises the second product reaction unit 500.
  • a second product micro mixer (M6) for generating a third mixture by mixing the first product supplied from the first product reaction unit 400 and the fourth raw material supplied from the raw material supply unit 100, A second product is manufactured, and the fourth raw material is the 4-1 raw material, . . . , 4-h raw material, ...
  • the fourth raw material supply valve member is the 4-1 raw material supply valve, ... , 4-h raw material supply valve, . . . , and a 4-q raw material supply valve (h is a natural number, q is a natural number, 1 ⁇ h ⁇ q), wherein the q fourth raw material supply valves are connected in parallel to each other, and the q fourth raw material supply valves are connected in parallel to each other.
  • a valve is connected in series with the fourth raw material flow rate controller, respectively, the fourth raw material flow rate controller is connected in series with the second product reaction unit 500, respectively, and the q number of fourth raw material supply valves are respectively connected. By independently opening or closing, any one of the q fourth raw materials may be supplied to or blocked from the second product reaction unit 500 , respectively.
  • the intermediate reaction control valve member may include a solenoid valve.
  • the lifetime of the intermediate may be 1 millisecond (ms) to 100 seconds (s).
  • the intermediate micro mixer may be a T-shaped intermediate micro mixer.
  • micro combinatorial chemical reactor 10 may further include a temperature control unit for adjusting the temperature of the intermediate reaction unit and the first product reaction unit.
  • the temperature controller may include a circulating thermostat and a cooling chamber.
  • the temperature controller may adjust the temperature of the intermediate reaction unit and the first product reaction unit to any one temperature selected from the range of -80 to 50 °C.
  • the automated micro combinatorial chemical reaction apparatus may further include an artificial intelligence unit controlling the raw material supply unit, the intermediate reaction unit, the intermediate reaction control unit, the first product reaction unit, and the temperature control unit. .
  • the artificial intelligence unit uses a Bayesian optimization algorithm to derive an optimized value of the reaction volume of the intermediate reaction unit, the flow rate of the raw material, the reaction temperature of the intermediate reaction unit, and the reaction temperature of the first product reaction unit.
  • the second raw material is n -butyllithium, sec -butyllithium, n -hexyllithium, n -octyllithium, tert -octyllithium, n -decyllithium, phenyllithium, 1-naphthyllithium, 4-butylphenyl and at least one organolithium compound selected from the group consisting of lithium, p -tolyllithium, 4-phenylbutyllithium, cyclohexyllithium, 4-butylcyclohexyllithium and 4-cyclohexylbutyllithium.
  • the automated micro combinatorial chemical reactor may further include an analysis unit including an analyzer for analyzing a product generated from any one selected from the group consisting of the first product reaction unit and the second product reaction unit.
  • the analysis unit Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), and ultraviolet-visible spectroscopy It may include any one device selected from the group consisting of analysis methods (UV-Vis).
  • FT-IR Fourier transform infrared spectroscopy
  • NMR nuclear magnetic resonance spectroscopy
  • GC-MS gas chromatography mass spectrometry
  • LC-MS liquid chromatography mass spectrometry
  • UV-Vis ultraviolet-visible spectroscopy
  • an automated micro combination chemical reactor comprising a raw material supply unit 100, an intermediate reaction unit 200, an intermediate reaction control unit 300 and a first product reaction unit 400 (a) supplying a plurality of raw materials including a first raw material, a second raw material, and a third raw material by adjusting the flow rate, respectively, using a plurality of flow rate controllers of the raw material supply unit, respectively; doing; (b) mixing the first raw material and the second raw material supplied from the raw material supply unit in any one of a plurality of intermediate micro-mixers of the intermediate reaction unit to produce a first mixture, and one of a plurality of the tubular intermediate reactors Generating an intermediate by reacting the first mixture in the above; And (c) mixing the intermediate supplied from the intermediate reaction unit and the third raw material supplied from the raw material supply unit in a first product micro mixer of the first product reaction unit to produce a second mixture and prepare a first product.
  • the valve member of the intermediate reaction control unit is provided with an optimized combinatorial chemical synthesis
  • the raw material further includes a single or a plurality of fourth raw materials
  • the raw material supply unit 100 supplies the fourth raw material and controls the flow rate of the fourth raw material, a fourth raw material flow rate regulator, and a fourth raw material supply valve member
  • the automated micro combinational chemical reactor 10 may further include a second product reaction unit 500 .
  • the optimized combinatorial chemical synthesis method after step (c), (d) the first product supplied from the first product reaction unit 400 and the fourth raw material supplied from the raw material supply unit 100 mixing in the second product micro mixer of the second product reaction unit 500 to create a third mixture and to prepare a second product; may further include.
  • the optimized combinatorial chemical synthesis method uses the flow rate of the first raw material and the second raw material controlled by the flow rate controller and the reaction volume of the tubular intermediate reactor controlled by the valve member to determine the first mixture. It may be to control the reaction time of
  • the automated micro combinatorial chemical reaction device may include a temperature control unit for controlling the temperature of the intermediate reaction unit and the first product reaction unit; and an artificial intelligence unit controlling the raw material supply unit, the intermediate reaction unit, the intermediate reaction control unit, the first product reaction unit, and the temperature control unit.
  • the artificial intelligence unit uses a Bayesian optimization algorithm to derive an optimized value of the reaction volume of the intermediate reaction unit, the flow rate of the raw material, the reaction temperature of the intermediate reaction unit, and the reaction temperature of the first product reaction unit.
  • the automated micro combinatorial chemical reactor and the optimized combinatorial chemical synthesis method using the same of the present invention can quickly find optimal synthesis conditions (high yield), and can rapidly produce various compounds under the optimal synthetic conditions. there is.
  • the automated micro combinatorial chemical reactor and the optimized combinatorial chemical synthesis method using the same of the present invention have the effect of having high yields while rapidly producing a plurality of types of products.
  • FIG. 1 shows a schematic diagram of an automated micro combinatorial chemical reactor according to one embodiment of the present invention.
  • Figure 2a is a schematic diagram of an autocollector used in an automated micro combinatorial chemical reactor according to an embodiment of the present invention.
  • Figure 2b is a schematic diagram showing the operation of the autocollector used in the automated micro combinatorial chemical reactor according to one embodiment of the present invention.
  • Figure 3a shows the results when an optimization reaction experiment was performed 15 times to secure a high yield of the first product by additionally using a Bayesian optimization algorithm in the automated micro combinatorial chemical reactor of Example 1.
  • Figure 3b shows the yield when the optimization reaction experiment of Figure 3a was performed 15 times.
  • Figure 4 shows the 1 H NMR results of the 4e compound prepared using the automated micro combinatorial chemical reactor of Example 2.
  • Figure 6 shows the 1 H NMR results of the 4f compound prepared using the automated micro combinatorial chemical reactor of Example 2.
  • Figure 8 shows the 1 H NMR results of the 4h compound prepared using the automated micro combinatorial chemical reactor of Example 2.
  • Figure 9 shows the 13 C NMR results of the 4h compound prepared using the automated micro combinatorial chemical reactor of Example 2.
  • FIG. 10 shows the 1 H NMR results of the 4i compound prepared using the automated micro combinatorial chemical reactor of Example 2.
  • first and second to be used below may be used to describe various components, but the components are not limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
  • a component when referred to as being “formed” or “layered” on another component, it may be formed or laminated directly on the front or one side of the surface of the other component, but intermediate It should be understood that other components may be further present.
  • FIG. 1 shows a schematic diagram of an automated micro combinatorial chemical reactor according to one embodiment of the present invention.
  • the present invention supplies raw materials including one or a plurality of first raw materials, one or a plurality of second raw materials, and one or a plurality of third raw materials, respectively, and the flow rate of the raw materials
  • a raw material supply unit 100 including a plurality of flow rate regulators for controlling each;
  • a plurality of intermediate micro mixers (M1, M2, M3, M4) generating a first mixture by mixing the first raw material and the second raw material supplied from the raw material supply unit 100 and the intermediate by reacting the first mixture
  • An intermediate reaction unit 200 comprising a plurality of tubular intermediate reactors to generate;
  • An intermediate reaction control unit 300 including an intermediate reaction control valve member for controlling at least one of the length of the tubular intermediate reactor and the type of the second raw material to be supplied;
  • a first product micro mixer (M5) for generating a second mixture by mixing the intermediate supplied from the intermediate reaction unit 200 and the third raw material supplied from the raw material supply unit 100, Provides an automated micro-combination chemical reactor 10 including a first product reaction unit 400 for producing
  • reaction time of the first mixture is controlled by the flow rate of the first raw material and the second raw material controlled by the flow rate controller and the reaction volume of the tubular intermediate reactor controlled by the intermediate reaction control valve member. It may be
  • the plurality of intermediate micro-mixers include a first intermediate micro-mixer, a second intermediate micro-mixer, . . . , ith intermediate micromixer, . . . , And an n-th intermediate micro-mixer (n is a natural number, i is a natural number, 1 ⁇ i ⁇ n), wherein a plurality of the tubular intermediate reactors include a first tubular intermediate reactor, a second tubular intermediate reactor, ... , the ith tubular intermediate reactor, ... , And an nth tubular intermediate reactor (n is a natural number, i is a natural number, 1 ⁇ i ⁇ n), wherein the n intermediate micromixers and the n tubular intermediate reactors may be connected in series alternately in order. there is.
  • reaction volume of the tubular intermediate reactor may be controlled by arbitrarily selecting the i-th intermediate micro-mixer supplying the second raw material.
  • any one of a plurality of the second raw materials is supplied to the i-th intermediate micro-mixer, and any one of the supplied second raw materials is mixed with the first raw material in the i-th intermediate micro-mixer to form the first mixture It may form, and the first mixture reacts while passing through the reaction volume to produce the intermediate.
  • reaction volume is the volume of the ith tubular intermediate reactor, . . . , and the volume of the nth tubular intermediate reactor.
  • the flow rate controller controls the flow rate of the singular or plural number of the first raw material, the singular or plural number of the second raw material, and the singular or plural number of the third raw material, respectively. It may include a raw material flow rate regulator, one or more second raw material flow rate regulators, and one or more third raw material flow rate regulators.
  • the intermediate reaction control valve member is a first intermediate reaction control valve, ... , ith intermediate reaction control valve, ... , And an n th intermediate reaction control valve (n is a natural number, i is a natural number, 1 ⁇ i ⁇ n), wherein the n intermediate reaction control valves are connected in parallel to each other, and the n intermediate reaction control valves are each In order, the first intermediate micromixer, . . . , ith intermediate micromixer, . . .
  • the n intermediate reaction control valves are connected in series with the second raw material flow rate controller, respectively, and the n intermediate reaction control valves are each independently opened (open ) or closing, the second raw material may be supplied to or blocked from each of the n intermediate micromixers.
  • the raw material supply unit 100 further includes a second raw material supply valve member, and the second raw material is a 2-1 raw material, . . . , 2-j raw material, . . . , And a 2-m raw material (m is a natural number, j is a natural number, 1 ⁇ j ⁇ m), wherein the m second raw materials are different from each other, and the second raw material flow rate controller is the m second raw material A 2-1 raw material flow rate controller for controlling the flow rate of raw materials, respectively... , 2-j raw material flow rate controller, . . .
  • a 2-m raw material flow rate controller (m is a natural number, j is a natural number, 1 ⁇ j ⁇ m), wherein the second raw material supply valve member is a 2-1 raw material supply valve, . , 2-j raw material supply valve, . . . , and 2-m raw material supply valves (j is a natural number, m is a natural number, 1 ⁇ j ⁇ m), wherein the m second raw material supply valves are sequentially configured as a 2-1 raw material flow rate controller, . . . , 2-j raw material flow rate controller, . . .
  • the m second raw material supply valves are connected in parallel with each other, and the m second raw material supply valves are each in series with the intermediate reaction unit 200 It may be connected to, and by opening or closing the m second raw material supply valves independently, respectively, supplying or blocking any one of the m second raw materials to the intermediate micromixer.
  • the raw material supply unit 100 further includes a third raw material supply valve member, and the third raw material is a 3-1 raw material, . . . , 3-k raw material, . . . , and 3-p raw materials (p is a natural number, k is a natural number, 1 ⁇ k ⁇ p), the p third raw materials are different from each other, and the third raw material supply valve member is the 3-1 raw material supply valve, ... , 3-k raw material supply valve, . . .
  • the raw material further includes a single or a plurality of fourth raw materials
  • the raw material supply unit 100 supplies the fourth raw material and controls the flow rate of the fourth raw material, a fourth raw material flow rate regulator, and a fourth raw material supply valve member
  • the automated micro combinatorial chemical reactor 10 further includes a second product reaction unit 500, wherein the second product reaction unit 500 comprises the second product reaction unit 500.
  • a second product micro mixer (M6) for generating a third mixture by mixing the first product supplied from the first product reaction unit 400 and the fourth raw material supplied from the raw material supply unit 100, A second product is manufactured, and the fourth raw material is the 4-1 raw material, . . . , 4-h raw material, ...
  • the fourth raw material supply valve member is the 4-1 raw material supply valve, ... , 4-h raw material supply valve, . . . , and a 4-q raw material supply valve (h is a natural number, q is a natural number, 1 ⁇ h ⁇ q), wherein the q fourth raw material supply valves are connected in parallel to each other, and the q fourth raw material supply valves are connected in parallel to each other.
  • a valve is connected in series with the fourth raw material flow rate controller, respectively, the fourth raw material flow rate controller is connected in series with the second product reaction unit 500, respectively, and the q number of fourth raw material supply valves are respectively connected. By independently opening or closing, any one of the q fourth raw materials may be supplied to or blocked from the second product reaction unit 500 , respectively.
  • the intermediate reaction control valve member may include a solenoid valve.
  • the lifetime of the intermediate may be 1 millisecond (ms) to 100 seconds (s).
  • the intermediate micro mixer may be a T-shaped intermediate micro mixer.
  • micro combinatorial chemical reactor 10 may further include a temperature control unit for adjusting the temperature of the intermediate reaction unit and the first product reaction unit.
  • the temperature controller may include a circulating thermostat and a cooling chamber.
  • the temperature controller may adjust the temperature of the intermediate reaction unit and the first product reaction unit to any one temperature selected from the range of -80 to 50 °C.
  • the temperature is less than -80 ° C., it is not preferable because it is difficult to manufacture intermediates and first products in the intermediate reaction part and the first product reaction part, respectively, and when it exceeds 50 ° C., the intermediate reaction part and the first product In the product reaction unit, by-products other than the target material may be produced, which is undesirable.
  • the automated micro combinatorial chemical reaction apparatus may further include an artificial intelligence unit controlling the raw material supply unit, the intermediate reaction unit, the intermediate reaction control unit, the first product reaction unit, and the temperature control unit. .
  • the artificial intelligence unit uses a Bayesian optimization algorithm to derive an optimized value of the reaction volume of the intermediate reaction unit, the flow rate of the raw material, the reaction temperature of the intermediate reaction unit, and the reaction temperature of the first product reaction unit.
  • the second raw material is n -butyllithium, sec -butyllithium, n -hexyllithium, n -octyllithium, tert -octyllithium, n -decyllithium, phenyllithium, 1-naphthyllithium, 4-butylphenyl and at least one organolithium compound selected from the group consisting of lithium, p -tolyllithium, 4-phenylbutyllithium, cyclohexyllithium, 4-butylcyclohexyllithium and 4-cyclohexylbutyllithium.
  • the automated micro combinatorial chemical reactor may further include an analysis unit including an analyzer for analyzing a product generated from any one selected from the group consisting of the first product reaction unit and the second product reaction unit.
  • the analysis unit Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), and ultraviolet-visible spectroscopy It may include any one device selected from the group consisting of analysis methods (UV-Vis).
  • FT-IR Fourier transform infrared spectroscopy
  • NMR nuclear magnetic resonance spectroscopy
  • GC-MS gas chromatography mass spectrometry
  • LC-MS liquid chromatography mass spectrometry
  • UV-Vis ultraviolet-visible spectroscopy
  • the present invention is an optimized combination using an automated micro combination chemical reactor 10 including a raw material supply unit 100, an intermediate reaction unit 200, an intermediate reaction control unit 300 and a first product reaction unit 400
  • a chemical synthesis method (a) supplying a plurality of raw materials including a first raw material, a second raw material, and a third raw material by adjusting the flow rate, respectively, using a plurality of flow rate controllers of the raw material supply unit 100, respectively step; (b) mixing the first raw material and the second raw material supplied from the raw material supply unit 100 in any one of a plurality of intermediate micro mixers of the intermediate reaction unit 200 to produce a first mixture, and generating an intermediate by reacting the first mixture in at least one of the tubular intermediate reactors; and (c) mixing the intermediate supplied from the intermediate reaction unit 200 and the third raw material supplied from the raw material supply unit 100 in a first product micromixer of the first product reaction unit 400. 2, generating a mixture and preparing a first product; and providing an optimized combinatorial chemical synthesis method in which the valve
  • the raw material further includes a single or a plurality of fourth raw materials
  • the raw material supply unit 100 supplies the fourth raw material and controls the flow rate of the fourth raw material, a fourth raw material flow rate regulator, and a fourth raw material supply valve member
  • the automated micro combinational chemical reactor 10 may further include a second product reaction unit 500 .
  • the optimized combinatorial chemical synthesis method after step (c), (d) the first product supplied from the first product reaction unit 400 and the fourth raw material supplied from the raw material supply unit 100 mixing in the second product micro mixer of the second product reaction unit 500 to create a third mixture and to prepare a second product; may further include.
  • the optimized combinatorial chemical synthesis method uses the flow rate of the first raw material and the second raw material controlled by the flow rate controller and the reaction volume of the tubular intermediate reactor controlled by the valve member to determine the first mixture. It may be to control the reaction time of
  • the automated micro combinatorial chemical reaction device may include a temperature control unit for controlling the temperature of the intermediate reaction unit and the first product reaction unit; and an artificial intelligence unit controlling the raw material supply unit, the intermediate reaction unit, the intermediate reaction control unit, the first product reaction unit, and the temperature control unit.
  • the artificial intelligence unit uses a Bayesian optimization algorithm to derive an optimized value of the reaction volume of the intermediate reaction unit, the flow rate of the raw material, the reaction temperature of the intermediate reaction unit, and the reaction temperature of the first product reaction unit.
  • FIG. 1 shows a schematic diagram of an automated micro combinatorial chemical reactor according to one embodiment of the present invention. Referring to FIG. 1, an automated micro combinatorial chemical reactor of Examples 1 and 2 was prepared.
  • Example 1 When using the first raw material, the second raw material, and the third raw material
  • syringe pump (Harvard Apparatus) (p1, p2, p3, p4), wherein the syringe pump can stop, start and flow through a MATLAB program in serial communication through an RS-232 interface. set to control.
  • n- butyllithium n - BuLi, Sigma-Aldrich
  • phenyllithium PhLi, Sigma-Aldrich
  • sec -butyllithium sec -butyllithium, s -BuLi, Sigma-Aldrich
  • Syringe pumps p2, p3, p4
  • high-purity PTFE tubes (1/16" od, 0.03" id
  • polyethylene ether ketone 1/4-28 nuts IDEX HEALTH & SCIENCE
  • the three types of the third raw material are solenoid valves, each of which is a third raw material supply valve, using a high purity PTFE tube (1/16" od, 0.03" id) and a polyethylene ether ketone 1/4-28 nut (IDEX HEALTH & SCIENCE) (LVM15R3HY-6C1U, SMC Korea) (v8, v9, v10) was connected in series, and the three solenoid valves (v8, v9, v10) were connected in parallel to each other to form a third raw material supply valve member.
  • IDEX HEALTH & SCIENCE VMM15R3HY-6C1U, SMC Korea
  • the third raw material supply valve member (v8, v9, v10) is connected in series with a high-performance isocratic pump (hp1), which is a third raw material injector, and the fourth raw material supply valve member (v11, v12, v13) is 4 It was connected in series with a high-performance isocratic pump (hp2), which is a raw material injector.
  • hp1 high-performance isocratic pump
  • hp2 high-performance isocratic pump
  • Each solenoid valve in the second raw material supply valve member and the third raw material supply valve member is connected to a control box self-manufactured based on a microcontroller (Arduino Uno) of Interaction Design Institutelvera (Italy), and the microcontroller and MathWorks (MA, USA)
  • the opening and closing were controlled by serial communication using a PC MATLAB program.
  • the intermediate reaction unit mixes the first raw material and the second raw material supplied from the raw material supply unit 100 to generate a first mixture, a plurality of intermediate micro mixers M1, M2, M3, M4 and the first mixture It includes a plurality of tubular intermediate reactors for reacting to produce intermediates.
  • the intermediate is a compound represented by Structural Formula 1 below.
  • the intermediate micromixer was prepared as four stainless steel (SUS304) micromixers (Sanko Seiki Co.) (M1, M2, M3, M4) with a T-shape and an inner diameter of 250 ⁇ m.
  • a stainless steel (SUS304) tube having an inner diameter of 250 ⁇ m and a stainless steel (SUS304) tube having an inner diameter of 1000 ⁇ m were purchased from GL Science and used.
  • the stainless steel (SUS304) tube having an inner diameter of 250 ⁇ m was cut to 4 cm and used, and the stainless steel (SUS304) tube with an inner diameter of 1000 ⁇ m was cut to 70, 26 and 4 cm.
  • the stainless steel (SUS304) tube having an inner diameter of 1000 ⁇ m was also used as a cooling unit, and in this case, it was cut to 50 cm and used.
  • the intermediate micromixer and the tubular intermediate reactor were alternately connected in series using stainless steel fittings (GL Science, 1/16" OUW) to form an intermediate reaction unit.
  • the second raw material supply valve member (v5, v6, v7) of the raw material supply unit uses a high-purity PTFE tube (1/16" od, 0.03" id) and a polyethylene ether ketone 1/4-28 nut (IDEX HEALTH & SCIENCE) and connected in series with four solenoid valves (v1, v2, v3, v4), which are intermediate reaction control valves, and the four solenoid valves (v1, v2, v3, v4) are respectively the intermediate micro mixers (M1, M2, M3, M4) and high-purity PTFE tubes (1/16" od, 0.03" id) and polyethylene ether ketone 1/4-28 nuts (IDEX HEALTH & SCIENCE) were connected in series.
  • the intermediate reaction control valve member including the four solenoid valves (v1, v2, v3, v4) is a first raw material (2-bromophenyl isothiocyanate) Br and a second raw material ( n- BuLi, PhLi and It is for controlling the reaction volume (V R ) in which the exchange reaction of Li occurs in any one selected from s -BuLi).
  • the solenoid valve is connected to a control box self-manufactured based on a microcontroller (Arduino Uno) of Interaction Design Institutelvera (Italy), and a PC MATLAB program of the microcontroller and MathWorks (MA, USA). Opening/closing was controlled by serial communication using .
  • the first product micromixer of the first product reaction unit mixes the intermediate supplied from the intermediate reaction unit 200 and the third raw material supplied from the raw material supply unit 100 to generate a second mixture. It includes a mixer (M5), and is to prepare the first product.
  • the first product may be a compound represented by Structural Formula 2 below.
  • R 1 is a hydrogen atom as the third raw material is selected from the group consisting of phenyl- (2a), p -anisyl- (2b) and p -nitrophenyl- (2c) isocyanate solution (solvent: THF) , a methoxy group (-O-CH 3 ), or a nitric acid group (-NO 2 ).
  • R 1 is a hydrogen atom as the third raw material is selected from the group consisting of phenyl- (2a), p -anisyl- (2b) and p -nitrophenyl- (2c) isocyanate solution (solvent: THF) , a methoxy group (-O-CH 3 ), or a nitric acid group (-NO 2 ).
  • the first product micromixer was a T-shaped stainless steel (SUS304) micromixer (Sanko Seiki Co.) (M5) having an inner diameter of 250 ⁇ m.
  • the intermediate reaction unit 200 and the first product reaction unit 400 are disposed in a specially designed cooling chamber connected to a circulating thermostat to control temperature T.
  • the circulation thermostat (RW3-2035, 20L, -35 ⁇ 150°C) of Jeio Tech (Korea) is connected to a computer through RS-232 method and communicates with the PC through Modbus protocol. You can control speed, etc.
  • a typical FT-IR spectrometer (Jasco FT/IR-4600 spectrometer) includes a sealed flow cell accessory based on an IR light source/laser transmissive ZnSe window (path length 0.1 mm) to build a flow-based in-line IR system. (Specac®) is installed.
  • the sealed flow cell accessory aligns to the FT-IR spectrometer unit through a dedicated holder and connects to the AMR through a 1/16" Swagelok fitting connected to the flow cell.
  • Flow-based monitoring is maintained continuously, with spectral data 8 scans per sample. was set to be collected at 20 second intervals.
  • Acquired data can be processed in real time through the MACRO program developed in-house based on MATLAB and Python languages, and is expressed as yield or conversion data.
  • Example 2 When using the first raw material, the second raw material, the third raw material, and the fourth raw material
  • the raw material supply unit was prepared in the same manner as the raw material supply unit of Example 1, except that a fourth raw material additionally included and a fourth raw material supply valve member including a fourth raw material supply valve was further included.
  • the three types of fourth raw materials are solenoid valves, each of which is a fourth raw material supply valve, using a high purity PTFE tube (1/16" od, 0.03" id) and a polyethylene ether ketone 1/4-28 nut (IDEX HEALTH & SCIENCE) (LVM15R3HY-6C1U, SMC Korea) (v11, v12, v13) and connected in series, and the three solenoid valves (v11, v12, v13) were connected in parallel to each other to form a fourth raw material supply valve member.
  • IDEX HEALTH & SCIENCE IDEX HEALTH & SCIENCE
  • the fourth raw material supply valve member (v11, v12, v13) is connected in series with a high-performance isocratic pump (hp2), which is a fourth raw material flow rate controller.
  • each solenoid valve is connected to a control box self-manufactured based on a microcontroller (Arduino Uno) of Interaction Design Institutelvera (Italy), and a microcontroller and PC MATLAB of MathWorks (MA, USA) Opening/closing was controlled by serial communication using a program.
  • a microcontroller Arduino Uno
  • PC MATLAB of MathWorks
  • the intermediate reaction part was prepared in the same way as the intermediate reaction part of Example 1.
  • the intermediate reaction control unit was prepared in the same manner as the intermediate reaction control unit of Example 1.
  • the first product micromixer of the first product reaction unit mixes the intermediate supplied from the intermediate reaction unit 200 and the third raw material supplied from the raw material supply unit 100 to generate a second mixture. It includes a mixer (M5), and is to prepare the first product.
  • the first product may be a compound represented by Structural Formula 2 below.
  • R 1 is a hydrogen atom as the third raw material is selected from the group consisting of phenyl- (2a), p -anisyl- (2b) and p -nitrophenyl- (2c) isocyanate solution (solvent: THF) , a methoxy group (-O-CH 3 ), or a nitric acid group (-NO 2 ).
  • the first product micromixer was a T-shaped stainless steel (SUS304) micromixer (Sanko Seiki Co.) (M5) having an inner diameter of 250 ⁇ m.
  • the second product reaction unit includes a second product micromixer configured to generate a third mixture by mixing the first product supplied from the first product reaction unit and the fourth raw material supplied from the raw material supply unit, and to make a product.
  • the residence time of the first product (time until the first product reaches the second micro mixer) may be 1 to 3 seconds.
  • the second product micro mixer was a T-shaped stainless steel (SUS304) micro mixer (Sanko Seiki Co.) (M6) having an inner diameter of 250 ⁇ m.
  • the intermediate reaction unit 200 and the first product reaction unit 400 are disposed in a specially designed cooling chamber connected to a circulating thermostat to control temperature T.
  • the circulation thermostat (RW3-2035, 20L, -35 ⁇ 150°C) of Jeio Tech (Korea) is connected to a computer through RS-232 method and communicates with the PC through Modbus protocol. You can control speed, etc.
  • a typical FT-IR spectrometer (Jasco FT/IR-4600 spectrometer) includes a sealed flow cell accessory based on an IR light source/laser transmissive ZnSe window (path length 0.1 mm) to build a flow-based in-line IR system. (Specac®) is installed.
  • the sealed flow cell accessory aligns to the FT-IR spectrometer unit through a dedicated holder and connects to the AMR through a 1/16" Swagelok fitting connected to the flow cell.
  • Flow-based monitoring is maintained continuously, with spectral data 8 scans per sample. was set to be collected at 20 second intervals.
  • Acquired data can be processed in real time through the MACRO program developed in-house based on MATLAB and Python languages, and is expressed as yield or conversion data.
  • Figure 2a is a schematic diagram of the autocollector used in the automated micro combinatorial chemical reactor of one embodiment of the present invention
  • Figure 2b is a schematic diagram showing the operation of the autocollector used in the automated micro combinatorial chemical reactor of one embodiment of the present invention.
  • the autocollector was fabricated using CNC milling with a rotary plate capable of loading 10 vials (30 mL, 1 for waste, 9 for samples) to enable sequential sample collection.
  • the rotation plate was connected to the rotation axis of a stepper motor (23HS5623-P4-8, HandsOnTech, Malaysia).
  • the stepper motor was connected to a microstep driver (TB6600, DFRobot, China) to precisely control the rotation angle and speed.
  • the connection between the central computer with MATLAB installed and the motor was made through an open source based microcontroller PC R3 DIP board (Arduino, Italy).
  • the rotation information of the stepper motor was determined according to the commands of the central computer through serial communication with the PC board, and sample collection, reactor stabilization, and cleaning processes were possible in each situation.
  • Test Example 1 Confirmation of optimal conditions for securing high yield of the first product
  • Type of second raw material (organolithium), flow rate (Q), reaction volume (V R and optimized values of the reaction temperature (T) were derived.
  • the flow rate (Q) of each raw material is 6 to 24 mL/min
  • the reaction temperature (T) of the intermediate reaction part and the first product reaction part is continuously controlled in the range of -20 to 20 ° C, respectively
  • the types of the second raw material (organolithium) were n- butyllithium ( n - BuLi), phenyllithium (PhLi), and sec -butyllithium ( s -BuLi), and the reaction volumes ( VR ) were 787, 237, 33 and It was controlled discontinuously with 2 ⁇ L.
  • the flow rate (Q) is the flow rate (Q 1 ) of 2-bromophenyl isothiocyanate as the first raw material, and the second raw material (organolithium) (from the group consisting of n-BuLi, PhLi and s-BuLi It is the sum of the flow rate (Q 2 ) and the flow rate (Q 3 ) of the third raw material (4-nitrophenyl isocyanate), and each ratio (Q 1 : Q 2 : Q 3 ) is 4: It was adjusted to 1:3.
  • reaction volumes (V R ) of 787, 237, 33, and 2 ⁇ L were set by adjusting the injection position of n -butyllithium, specifically, in series with four intermediate micro mixers (M1, M2, M3, and M4), respectively.
  • the reaction volume was controlled by supplying n -butyllithium to any one of the above four intermediate micromixers by independently opening or closing the connected valves (v1, v2, v3, v4).
  • reaction conditions for the initial experiments were randomly selected within a range of parameters and the reaction results were automatically analyzed by inline FT-IR. A total of 15 experiments were repeated to derive optimized values for the type of organolithium, flow rate (Q), reaction volume ( VR ), and reaction temperature (T).
  • Figure 3a shows the results when an optimization reaction experiment was performed 15 times to secure a high yield of the first product by additionally using a Bayesian optimization algorithm in the automated micro combinatorial chemical reactor of Example 1, and Figure 3b shows the result.
  • the yield is summarized and shown when the optimization reaction experiment of FIG. 3a is performed 15 times.
  • phenyllithium (PhLi) is used as the second raw material (organolithium)
  • the flow rate (Q) is 17 mL/min
  • the reaction volume ( VR ) is 2 ⁇ L
  • the reaction temperature (T) is 19 °C In one case, it can be confirmed that the yield of the first product reaches 90% within 1 hour and 30 minutes.
  • Test Example 2 Confirmation of the second product yield according to the reaction volume of the first product
  • the tubular reactor connecting the first product reaction unit 400 and the second product reaction unit 500 has an inner diameter of 250 purchased from GL Science and cut to 4 cm. At least one selected from the group consisting of ⁇ m stainless steel (SUS304) tubes and stainless steel (SUS304) tubes having an inner diameter of 1000 ⁇ m cut into 70, 26, and 4 cm, respectively, was used.
  • SUS304 stainless steel
  • SUS304 stainless steel
  • reaction volume of the first product is set to 393, 785, 1,571 and 3,142 ⁇ L by using various tubular reactors connecting the first product reaction unit 400 and the second product reaction unit 500. Accordingly, the residence time of the first product and the yield of the second product in the tubular reactor are summarized in Table 1 below.
  • the yield of the second product is not significantly affected by the change in residence time of the first product represented by Structural Formula 2 below, because the first product represented by Structural Formula 2 is relatively stable .
  • R 1 is a hydrogen atom as the third raw material is selected from the group consisting of phenyl- (2a), p -anisyl- (2b) and p -nitrophenyl- (2c) isocyanate solution (solvent: THF) , a methoxy group (-O-CH 3 ), or a nitric acid group (-NO 2 ).
  • the reaction volume of the first product was fixed at 393 ⁇ L.
  • Test Example 3 Preparation of 9 products according to the types of the third raw material and the fourth raw material
  • the conditions of the automated micro combinatorial chemical synthesizer of Example 2 were set to 2 ⁇ L and 19 ° C.
  • FIG. 4 shows the 1 H NMR results of the 4e compound prepared using the automated micro combinatorial reactor of Example 2, and FIG. It shows the 13 C NMR result of the 4e compound prepared by
  • FIG. 6 shows the 1 H NMR results of the 4f compound prepared using the automated micro combinatorial reactor of Example 2
  • FIG. 7 shows the 4f compound prepared using the automated micro combinatorial reactor of Example 2. It shows the 13 C NMR result of the compound.
  • FIG. 8 shows the 1 H NMR results of the 4h compound prepared using the automated micro combinatorial reactor of Example 2
  • FIG. 9 shows the 4h compound prepared using the automated micro combinatorial reactor of Example 2. It shows the 13 C NMR result of the compound.
  • FIG. 10 shows the 1 H NMR results of the 4i compound prepared using the automated micro combinatorial reactor of Example 2
  • FIG. 11 shows the 4i prepared using the automated micro combinatorial reactor of Example 2. It shows the 13 C NMR result of the compound.
  • Table 3 summarizes the yields of 9 types of products prepared using the automated micro combinatorial chemical reactor of Example 2, respectively.
  • the yield is an isolated yield of a product separated through crystallization and column chromatography.
  • the automated micro combinatorial chemical reactor of Example 1 produces 9 types of products in high yield (65 to 98%) without human intervention within 20 minutes of operating time from the injection of the first and second raw materials. production can be verified.
  • the automated micro combinatorial chemical reactor and the optimized combinatorial chemical synthesis method using the same of the present invention can quickly find optimal synthesis conditions (high yield), and can rapidly produce various compounds under the optimal synthetic conditions. there is.
  • the automated micro combinatorial chemical reactor and the optimized combinatorial chemical synthesis method using the same of the present invention have the effect of having high yields while rapidly producing a plurality of types of products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Disclosed are an automized micro combinatorial chemical reaction system and an optimized combinatorial chemical synthesis method using same. The automized micro combinatorial chemical reaction system comprises: a raw material supply unit (100); an intermediate reaction unit (200); an intermediate reaction control unit (300); and a first product reaction unit (400), and has the effect of producing plural types of products rapidly and at high yields.

Description

자동화된 마이크로 조합화학 반응장치 및 그를 이용한 최적화 조합화학 합성방법Automated micro combinatorial chemical reactor and optimized combinatorial chemical synthesis method using the same
본 발명은 자동화된 마이크로 조합화학 반응장치 및 그를 이용한 최적화 조합화학 합성방법에 관한 것이다.The present invention relates to an automated micro combinatorial chemical reactor and an optimized combinatorial chemical synthesis method using the same.
화학 합성을 위한 유동 기술 및 마이크로 반응 장치는 의약물질뿐만 아니라 유기 합성을 위한 핵심 도구로서 자리잡고 있다. 마이크로 반응 장치는 높은 표면 대 부피 비율에 기인한 빠른 물질 및 열전달을 기반으로 일반적인 유기 합성의 반응 효율을 극대화할 수 있다. 기존의 배치 반응법으로 열열학적으로 안정한 화합물 합성이 가능한 반면, 마이크로 반응 장치는 반응속도론적 제어가 가능하다. 특히 정밀한 체류 시간 제어를 통해 불안정하고 수명이 짧은 고반응성 유기 리튬 중간체의 제어가 가능하여, 초고속 합성화학 중간체에 의해 의약 활성성분(Active Pharmaceutical Ingredients, API)을 포함한 유기합성에서 중요한 역할을 하므로 큰 관심을 끌고 있다.Flow technologies and micro-reactors for chemical synthesis are becoming key tools for organic synthesis as well as pharmaceuticals. Micro-reactor devices can maximize the reaction efficiency of general organic synthesis based on fast mass and heat transfer due to high surface-to-volume ratios. While thermothermally stable compounds can be synthesized with conventional batch reaction methods, reaction kinetics can be controlled with microreactors. In particular, it is possible to control unstable and short-lived highly reactive organolithium intermediates through precise residence time control, which is of great interest because it plays an important role in organic synthesis including Active Pharmaceutical Ingredients (API) by ultra-fast synthetic chemical intermediates. is dragging
그럼에도 불구하고 매우 짧은 반응시간을 포함하여 다양한 반응 변수를 탐색하는 과정에서의 시행착오로 인해 마이크로 반응 장치 기반의 초고속 화학 방법론이 광범위하게 활용되지 못하고 있다. 초고속 화학에서 생성되는 반응 중간체는 각각 고유의 불안정성에 따른 화학적 반응성과 수명시간이 달라서, 이를 고려한 반응 체류시간과 온도 등의 영향을 조사하여 선택성 및 생산성을 최적화하는 일은 합성화학뿐만 아니라 흐름화학 반응시스템에 대한 공학적 이해를 함께 필요로 한다. 또한, 고반응성 초고속 합성화학은 일반적으로 발화성 및 산소 또는 습기 등에 대한 취약성 등으로 인해 고숙련 연구자에게도 적절한 반응을 수행하기가 어렵다. 게다가 마이크로 반응 장치에서 다양한 반응 변수 조합의 정밀한 개별 수행을 필요로 함에 따라 최적의 합성 조건을 찾는 데 시간과 비용이 많이 소요된다.Nevertheless, due to trial and error in the process of exploring various reaction parameters, including very short reaction times, ultrafast chemistry methodologies based on microreactors have not been widely used. Reaction intermediates produced in ultrafast chemistry have different chemical reactivity and life time due to their inherent instability, so optimizing selectivity and productivity by examining the effects of reaction residence time and temperature in consideration of this is not only synthetic chemistry but also flow chemistry reaction systems It requires an engineering understanding of In addition, highly reactive ultrafast synthetic chemistry is generally difficult to perform appropriate reactions even for highly skilled researchers due to ignitability and vulnerability to oxygen or moisture. In addition, it is time-consuming and costly to find optimal synthesis conditions as precise individual performance of various reaction parameter combinations is required in a micro-reactor.
따라서, 최적의 합성 조건을 빠르게 찾을 수 있으면서, 상기 최적의 합성 조건에서 빠른 속도로 다양한 화합물을 제조할 수 있는 조합화학 관련 연구가 필요하다.Therefore, there is a need for research on combinatorial chemistry that can quickly find optimal synthesis conditions and rapidly produce various compounds under the optimal synthesis conditions.
본 발명의 목적은 상기 문제점들을 해결하기 위한 것으로, 최적의 합성 조건(높은 수율)을 빠른 시간 내에 찾을 수 있고, 상기 최적의 합성 조건에서 빠른 속도로 다양한 화합물을 제조할 수 있는 조합화학 반응장치 및 그를 이용한 최적화 조합화학 합성방법을 제공하는데 있다.An object of the present invention is to solve the above problems, a combinational chemical reaction apparatus capable of quickly finding optimal synthesis conditions (high yield) and rapidly producing various compounds under the optimal synthesis conditions, and It is to provide an optimized combinatorial chemical synthesis method using the same.
본 발명의 다른 목적은 복수 종류의 생산물을 빠르게 생산하면서도 각각 높은 수율을 갖는 조합화학 반응장치 및 그를 이용한 최적화 조합화학 합성방법을 제공하는데 있다.Another object of the present invention is to provide a combinatorial chemical reaction apparatus having a high yield while rapidly producing a plurality of types of products, and an optimized combinatorial chemical synthesis method using the same.
본 발명의 일 측면에 따르면, 단수개 또는 복수개의 제1 원료, 단수개 또는 복수개의 제2 원료 및 단수개 또는 복수개의 제3 원료를 포함하는 원료를 각각 공급하고, 상기 원료의 유량 속도를 각각 조절하는 복수개의 유량속도 조절기를 포함하는 원료 공급부(100); 상기 원료 공급부(100)로부터 공급받은 상기 제1 원료와 상기 제2 원료를 혼합하여 제1 혼합물을 생성하는 복수개의 중간체 마이크로 혼합기(M1, M2, M3, M4) 및 상기 제1 혼합물을 반응시켜 중간체를 생성하는 복수개의 튜브형 중간체 반응기를 포함하는 중간체 반응부(200); 상기 튜브형 중간체 반응기의 길이 및 공급되는 상기 제2 원료의 종류 중 1종 이상을 조절하는 중간체 반응조절 밸브부재를 포함하는 중간체 반응 조절부(300); 및 상기 중간체 반응부(200)로부터 공급받은 상기 중간체와 상기 원료 공급부(100)로부터 공급받은 상기 제3 원료를 혼합하여 제2 혼합물을 생성하는 제1 생산물 마이크로 혼합기(M5)를 포함하고, 제1 생산물을 제조하는 제1 생산물 반응부(400);를 포함하는 자동화된 마이크로 조합화학 반응장치(10)가 제공된다.According to one aspect of the present invention, raw materials including one or a plurality of first raw materials, one or a plurality of second raw materials, and one or a plurality of third raw materials are supplied, respectively, and the flow rates of the raw materials are respectively A raw material supply unit 100 including a plurality of flow rate regulators for controlling; A plurality of intermediate micro mixers (M1, M2, M3, M4) generating a first mixture by mixing the first raw material and the second raw material supplied from the raw material supply unit 100 and the intermediate by reacting the first mixture An intermediate reaction unit 200 comprising a plurality of tubular intermediate reactors to generate; An intermediate reaction control unit 300 including an intermediate reaction control valve member for controlling at least one of the length of the tubular intermediate reactor and the type of the second raw material to be supplied; And a first product micro mixer (M5) for generating a second mixture by mixing the intermediate supplied from the intermediate reaction unit 200 and the third raw material supplied from the raw material supply unit 100, An automated micro combinatorial chemical reactor 10 including a first product reaction unit 400 for producing a product is provided.
또한, 상기 유량속도 조절기로 조절된 제1 원료 및 상기 제2 원료의 유량속도와, 상기 중간체 반응조절 밸브부재에 의해 조절된 상기 튜브형 중간체 반응기의 반응부피에 의해 상기 제1 혼합물의 반응 시간을 제어하는 것일 수 있다.In addition, the reaction time of the first mixture is controlled by the flow rate of the first raw material and the second raw material controlled by the flow rate controller and the reaction volume of the tubular intermediate reactor controlled by the intermediate reaction control valve member. it may be
또한, 복수개의 상기 중간체 마이크로 혼합기가 제1 중간체 마이크로 혼합기, 제2 중간체 마이크로 혼합기, …, 제i 중간체 마이크로 혼합기, …, 및 제n 중간체 마이크로 혼합기(n은 자연수, i는 자연수, 1≤i≤n)를 포함하고, 복수개의 상기 튜브형 중간체 반응기가 제1 튜브형 중간체 반응기, 제2 튜브형 중간체 반응기, …, 제i 튜브형 중간체 반응기, …, 및 제n 튜브형 중간체 반응기 (n은 자연수, i는 자연수, 1≤i≤n)를 포함하고, 상기 n개의 중간체 마이크로 혼합기와 상기 n개의 튜브형 중간체 반응기는 순서대로 교대로 직렬로 연결되는 것일 수 있다.In addition, the plurality of intermediate micro-mixers include a first intermediate micro-mixer, a second intermediate micro-mixer, . . . , ith intermediate micromixer, . . . , And an n-th intermediate micro-mixer (n is a natural number, i is a natural number, 1≤i≤n), wherein a plurality of the tubular intermediate reactors include a first tubular intermediate reactor, a second tubular intermediate reactor, ... , the ith tubular intermediate reactor, ... , And an nth tubular intermediate reactor (n is a natural number, i is a natural number, 1≤i≤n), wherein the n intermediate micromixers and the n tubular intermediate reactors may be connected in series alternately in order. there is.
또한, 상기 제2 원료를 공급하는 상기 제i 중간체 마이크로 혼합기를 임의로 선택함에 의해 튜브형 중간체 반응기의 반응부피가 조절되는 것일 수 있다.In addition, the reaction volume of the tubular intermediate reactor may be controlled by arbitrarily selecting the i-th intermediate micro-mixer supplying the second raw material.
또한, 복수개의 상기 제2 원료 중 어느 하나가 상기 제i 중간체 마이크로 혼합기로 공급되고, 공급된 상기 제2 원료 중 어느 하나가 상기 제i 중간체 마이크로 혼합기에서 상기 제1 원료와 혼합되어 상기 제1 혼합물을 형성하고, 상기 제1 혼합물이 상기 반응부피를 통과하며 반응하여 상기 중간체를 생성하는 것일 수 있다.In addition, any one of a plurality of the second raw materials is supplied to the i-th intermediate micro-mixer, and any one of the supplied second raw materials is mixed with the first raw material in the i-th intermediate micro-mixer to form the first mixture It may form, and the first mixture reacts while passing through the reaction volume to produce the intermediate.
또한, 상기 반응부피가 제i 튜브형 중간체 반응기의 부피, …, 및 제n 튜브형 중간체 반응기의 부피를 모두 포함할 수 있다.In addition, the reaction volume is the volume of the ith tubular intermediate reactor, . . . , and the volume of the nth tubular intermediate reactor.
또한, 상기 유량속도 조절기가 단수개 또는 복수개의 상기 제1 원료, 단수개 또는 복수개의 상기 제2 원료 및 단수개 또는 복수개의 상기 제3 원료의 유량속도를 각각 조절하는 단수개 또는 복수개의 제1 원료 유량속도 조절기, 단수개 또는 복수개의 제2 원료 유량속도 조절기 및 단수개 또는 복수개의 제3 원료 유량속도 조절기를 포함할 수 있다.In addition, the flow rate controller controls the flow rate of the singular or plural number of the first raw material, the singular or plural number of the second raw material, and the singular or plural number of the third raw material, respectively. It may include a raw material flow rate regulator, one or more second raw material flow rate regulators, and one or more third raw material flow rate regulators.
또한, 상기 중간체 반응조절 밸브부재가 제1 중간체 반응조절 밸브, …, 제i 중간체 반응조절 밸브, …, 및 제n 중간체 반응조절 밸브(n은 자연수, i는 자연수, 1≤i≤n)를 포함하고, 상기 n개의 중간체 반응조절 밸브가 서로 병렬로 연결되고, 상기 n개의 중간체 반응조절 밸브가 각각 순서대로 상기 제1 중간체 마이크로 혼합기, …, 제i 중간체 마이크로 혼합기, …, 및 제n 중간체 마이크로 혼합기와 직렬로 연결되고, 상기 n개의 중간체 반응조절 밸브가 각각 상기 제2 원료 유량속도 조절기와 직렬로 연결되고, 상기 n개의 중간체 반응조절 밸브가 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 상기 제2 원료를 상기 n개의 중간체 마이크로 혼합기에 각각 공급하거나 차단하는 것일 수 있다.In addition, the intermediate reaction control valve member is a first intermediate reaction control valve, ... , ith intermediate reaction control valve, ... , And an n th intermediate reaction control valve (n is a natural number, i is a natural number, 1≤i≤n), wherein the n intermediate reaction control valves are connected in parallel to each other, and the n intermediate reaction control valves are each In order, the first intermediate micromixer, . . . , ith intermediate micromixer, . . . , And connected in series with the nth intermediate micromixer, the n intermediate reaction control valves are connected in series with the second raw material flow rate controller, respectively, and the n intermediate reaction control valves are each independently opened (open ) or closing, the second raw material may be supplied to or blocked from each of the n intermediate micromixers.
또한, 상기 원료 공급부(100)가 제2 원료공급 밸브부재를 추가로 포함하고, 상기 제2 원료가 제2-1 원료, …, 제2-j 원료, …, 및 제2-m 원료(m은 자연수, j는 자연수, 1≤j≤m)를 각각 포함하고, 상기 m개의 제2 원료는 서로 다르고, 상기 제2 원료 유량속도 조절기가 상기 m개의 제2 원료의 유량속도를 각각 조절하는 제2-1 원료 유량속도 조절기, …, 제2-j 원료 유량속도 조절기, …, 및 제2-m 원료 유량속도 조절기(m은 자연수, j는 자연수, 1≤j≤m)를 포함하고, 상기 제2 원료공급 밸브부재가 제2-1 원료공급 밸브, …, 제2-j 원료공급 밸브, …, 및 제2-m 원료공급 밸브(j는 자연수, m은 자연수, 1≤j≤m)를 포함하고, 상기 m개의 제2 원료공급 밸브가 각각 순서대로 제2-1 원료 유량속도 조절기, …, 제2-j 원료 유량속도 조절기, …, 및 제2-m 원료 유량속도 조절기와 직렬로 연결되고, 상기 m개의 제2 원료공급 밸브가 서로 병렬로 연결되고, 상기 m개의 제2 원료공급 밸브가 각각 상기 중간체 반응부(200)와 직렬로 연결되고, 상기 m개의 제2 원료공급 밸브를 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 상기 m개의 제2 원료 중 어느 하나를 중간체 마이크로 혼합기에 각각 공급하거나 차단하는 것일 수 있다.In addition, the raw material supply unit 100 further includes a second raw material supply valve member, and the second raw material is a 2-1 raw material, . . . , 2-j raw material, . . . , And a 2-m raw material (m is a natural number, j is a natural number, 1≤j≤m), wherein the m second raw materials are different from each other, and the second raw material flow rate controller is the m second raw material A 2-1 raw material flow rate controller for controlling the flow rate of raw materials, respectively... , 2-j raw material flow rate controller, . . . , and a 2-m raw material flow rate controller (m is a natural number, j is a natural number, 1≤j≤m), wherein the second raw material supply valve member is a 2-1 raw material supply valve, . , 2-j raw material supply valve, . . . , and 2-m raw material supply valves (j is a natural number, m is a natural number, 1≤j≤m), wherein the m second raw material supply valves are sequentially configured as a 2-1 raw material flow rate controller, . . . , 2-j raw material flow rate controller, . . . , and connected in series with the 2-m raw material flow rate controller, the m second raw material supply valves are connected in parallel with each other, and the m second raw material supply valves are each in series with the intermediate reaction unit 200 It may be connected to, and by opening or closing the m second raw material supply valves independently, respectively, supplying or blocking any one of the m second raw materials to the intermediate micromixer.
또한, 상기 원료 공급부(100)가 제3 원료공급 밸브부재를 추가로 포함하고, 상기 제3 원료가 제3-1 원료, …, 제3-k 원료, …, 및 제3-p 원료(p는 자연수, k는 자연수, 1≤k≤p)를 각각 포함하고, 상기 p개의 제3 원료는 서로 다르고, 상기 제3 원료공급 밸브부재가 제3-1 원료공급 밸브, …, 제3-k 원료공급 밸브, …, 및 제3-p 원료공급 밸브(k는 자연수, p은 자연수, 1≤k≤p)를 포함하고, 상기 p개의 제3 원료공급 밸브가 서로 병렬로 연결되고, 상기 p개의 제3 원료공급 밸브가 각각 상기 제3 원료 유량속도 조절기와 직렬로 연결되고, 상기 제3 원료 유량속도 조절기가 각각 상기 제1 생산물 반응부(400)와 직렬로 연결되고, 상기 p개의 제3 원료공급 밸브를 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 상기 p개의 제3 원료 중 어느 하나를 제1 생산물 반응부(400)에 각각 공급하거나 차단하는 것일 수 있다.In addition, the raw material supply unit 100 further includes a third raw material supply valve member, and the third raw material is a 3-1 raw material, . . . , 3-k raw material, . . . , and 3-p raw materials (p is a natural number, k is a natural number, 1≤k≤p), the p third raw materials are different from each other, and the third raw material supply valve member is the 3-1 raw material supply valve, … , 3-k raw material supply valve, . . . , and 3-p raw material supply valves (k is a natural number, p is a natural number, 1≤k≤p), wherein the p third raw material supply valves are connected in parallel to each other, and the p third raw material supply valves are connected in parallel to each other. Valves are connected in series with the third raw material flow rate controller, respectively, the third raw material flow rate controller is connected in series with the first product reaction unit 400, respectively, and the p number of third raw material supply valves are respectively connected. By independently opening or closing, any one of the p third raw materials may be supplied to or blocked from the first product reaction unit 400 , respectively.
또한, 상기 원료가 단수개 또는 복수개의 제4 원료를 추가로 포함하고, 상기 원료 공급부(100)가 상기 제4 원료를 공급하고 상기 제4 원료의 유량속도를 조절하는 제4 원료 유량속도 조절기, 및 제4 원료공급 밸브부재를 추가로 포함하고, 상기 자동화된 마이크로 조합화학 반응장치(10)가 제2 생산물 반응부(500)를 추가로 포함하고, 상기 제2 생산물 반응부(500)가 상기 제1 생산물 반응부(400)로부터 공급받은 상기 제1 생산물과 상기 원료 공급부(100)로부터 공급받은 상기 제4 원료를 혼합하여 제3 혼합물을 생성하는 제2 생산물 마이크로 혼합기(M6)를 포함하고, 제2 생산물을 제조하는 것이고, 상기 제4 원료가 제4-1 원료, …, 제4-h 원료, …, 및 제4-q 원료(q는 자연수, h는 자연수, 1≤h≤q)를 각각 포함하고, 상기 q개의 제4 원료는 서로 다르고, 상기 제4 원료공급 밸브부재가 제4-1 원료공급 밸브, …, 제4-h 원료공급 밸브, …, 및 제4-q 원료공급 밸브(h는 자연수, q은 자연수, 1≤h≤q)를 포함하고, 상기 q개의 제4 원료공급 밸브가 서로 병렬로 연결되고, 상기 q개의 제4 원료공급 밸브가 각각 상기 제4 원료 유량속도 조절기와 직렬로 연결되고, 상기 제4 원료 유량속도 조절기가 각각 상기 제2 생산물 반응부(500)와 직렬로 연결되고, 상기 q개의 제4 원료공급 밸브를 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 상기 q개의 제4 원료 중 어느 하나를 제2 생산물 반응부(500)에 각각 공급하거나 차단하는 것일 수 있다.In addition, the raw material further includes a single or a plurality of fourth raw materials, and the raw material supply unit 100 supplies the fourth raw material and controls the flow rate of the fourth raw material, a fourth raw material flow rate regulator, and a fourth raw material supply valve member, wherein the automated micro combinatorial chemical reactor 10 further includes a second product reaction unit 500, wherein the second product reaction unit 500 comprises the second product reaction unit 500. A second product micro mixer (M6) for generating a third mixture by mixing the first product supplied from the first product reaction unit 400 and the fourth raw material supplied from the raw material supply unit 100, A second product is manufactured, and the fourth raw material is the 4-1 raw material, . . . , 4-h raw material, ... , and 4-q raw materials (q is a natural number, h is a natural number, 1≤h≤q), the q number of fourth raw materials are different from each other, and the fourth raw material supply valve member is the 4-1 raw material supply valve, … , 4-h raw material supply valve, . . . , and a 4-q raw material supply valve (h is a natural number, q is a natural number, 1≤h≤q), wherein the q fourth raw material supply valves are connected in parallel to each other, and the q fourth raw material supply valves are connected in parallel to each other. A valve is connected in series with the fourth raw material flow rate controller, respectively, the fourth raw material flow rate controller is connected in series with the second product reaction unit 500, respectively, and the q number of fourth raw material supply valves are respectively connected. By independently opening or closing, any one of the q fourth raw materials may be supplied to or blocked from the second product reaction unit 500 , respectively.
또한, 상기 중간체 반응 조절 밸브부재가 솔레노이드 밸브를 포함할 수 있다.In addition, the intermediate reaction control valve member may include a solenoid valve.
또한, 상기 중간체의 수명이 1 밀리초(ms) 내지 100 초(s)일 수 있다.In addition, the lifetime of the intermediate may be 1 millisecond (ms) to 100 seconds (s).
또한, 상기 중간체 마이크로 혼합기가 T자형 중간체 마이크로 혼합기일 수 있다.In addition, the intermediate micro mixer may be a T-shaped intermediate micro mixer.
또한, 상기 마이크로 조합화학 반응장치(10)가 상기 중간체 반응부 및 상기 제1 생산물 반응부의 온도를 조절하는 온도 조절부;를 추가로 포함할 수 있다.In addition, the micro combinatorial chemical reactor 10 may further include a temperature control unit for adjusting the temperature of the intermediate reaction unit and the first product reaction unit.
또한, 상기 온도 조절부가 순환 항온조 및 쿨링 챔버(cooling camber)를 포함할 수 있다.In addition, the temperature controller may include a circulating thermostat and a cooling chamber.
또한, 상기 온도 조절부가 상기 중간체 반응부 및 상기 제1 생산물 반응부의 온도를 -80 내지 50 ℃ 범위에서 선택된 어느 하나의 온도로 조절할 수 있다.In addition, the temperature controller may adjust the temperature of the intermediate reaction unit and the first product reaction unit to any one temperature selected from the range of -80 to 50 °C.
또한, 상기 자동화된 마이크로 조합화학 반응장치가 상기 원료 공급부, 상기 중간체 반응부, 상기 중간체 반응 조절부, 상기 제1 생산물 반응부 및 상기 온도 조절부를 제어하는 인공 지능부;를 추가로 포함할 수 있다.In addition, the automated micro combinatorial chemical reaction apparatus may further include an artificial intelligence unit controlling the raw material supply unit, the intermediate reaction unit, the intermediate reaction control unit, the first product reaction unit, and the temperature control unit. .
또한, 상기 인공지능부가 베이지안 최적화 알고리즘을 사용하여 상기 중간체 반응부의 반응 부피, 상기 원료의 유량속도, 상기 중간체 반응부의 반응온도 및 상기 제1 생산물 반응부의 반응온도의 최적화 값을 도출하는 것일 수 있다.In addition, the artificial intelligence unit uses a Bayesian optimization algorithm to derive an optimized value of the reaction volume of the intermediate reaction unit, the flow rate of the raw material, the reaction temperature of the intermediate reaction unit, and the reaction temperature of the first product reaction unit.
또한, 상기 제2 원료가 n-부틸리튬, sec-부틸리튬, n-헥실리튬, n-옥틸리튬, tert-옥틸리튬, n-데실리튬, 페닐리튬, 1-나프틸리튬, 4-부틸페닐리튬, p-톨릴리튬, 4-페닐부틸리튬, 사이클로헥실리튬, 4-부틸사이클로헥실리튬 및 4-사이클로헥실부틸리튬으로 이루어진 군으로부터 선택된 1종 이상의 유기리튬 화합물을 포함할 수 있다.In addition, the second raw material is n -butyllithium, sec -butyllithium, n -hexyllithium, n -octyllithium, tert -octyllithium, n -decyllithium, phenyllithium, 1-naphthyllithium, 4-butylphenyl and at least one organolithium compound selected from the group consisting of lithium, p -tolyllithium, 4-phenylbutyllithium, cyclohexyllithium, 4-butylcyclohexyllithium and 4-cyclohexylbutyllithium.
또한, 상기 자동화된 마이크로 조합화학 반응장치가 상기 제1 생산물 반응부 및 상기 제2 생산물 반응부로 이루어진 군으로부터 선택된 어느 하나에서 생성된 생산물을 분석하기 위한 분석기를 포함하는 분석부;를 추가로 포함할 수 있다.In addition, the automated micro combinatorial chemical reactor may further include an analysis unit including an analyzer for analyzing a product generated from any one selected from the group consisting of the first product reaction unit and the second product reaction unit. can
또한, 상기 분석부가 푸리에 변환 적외선 분광기(FT-IR), 핵자기공명 분광법 (NMR), 기체 크로마토그래피 질량분석법(GC-MS), 액체 크로마토그래피 질량분석법(LC-MS), 및 자외선-가시선 분광분석법(UV-Vis)으로 이루어진 군으로부터 선택된 어느 하나의 장치를 포함할 수 있다.In addition, the analysis unit Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), and ultraviolet-visible spectroscopy It may include any one device selected from the group consisting of analysis methods (UV-Vis).
본 발명의 다른 하나의 측면에 따르면, 원료 공급부(100), 중간체 반응부(200), 중간체 반응 조절부(300) 및 제1 생산물 반응부(400)를 포함하는 자동화된 마이크로 조합화학 반응장치를 사용하는 최적화 조합화학 합성방법이고, (a) 상기 원료 공급부의 복수개의 유량속도 조절기를 각각 사용하여 제1 원료, 제2 원료 및 제3 원료를 포함하는 복수개의 원료를 유량 속도를 각각 조절하여 공급하는 단계; (b) 상기 원료 공급부로부터 공급받은 상기 제1 원료와 상기 제2 원료를 상기 중간체 반응부의 복수개의 중간체 마이크로 혼합기 중 어느 하나에서 혼합하여 제1 혼합물을 생성하고, 복수개의 상기 튜브형 중간체 반응기 중 1종 이상에서 상기 제1 혼합물을 반응시켜 중간체를 생성하는 단계; 및 (c) 상기 중간체 반응부로부터 공급받은 상기 중간체와 상기 원료 공급부로부터 공급받은 상기 제3 원료를 상기 제1 생산물 반응부의 제1 생산물 마이크로 혼합기에서 혼합하여 제2 혼합물을 생성하고 제1 생산물을 제조하는 단계;를 포함하고, 상기 중간체 반응 조절부의 밸브부재가 상기 튜브형 중간체 반응기의 길이를 조절하는 것인 최적화 조합화학 합성방법이 제공된다.According to another aspect of the present invention, an automated micro combination chemical reactor comprising a raw material supply unit 100, an intermediate reaction unit 200, an intermediate reaction control unit 300 and a first product reaction unit 400 (a) supplying a plurality of raw materials including a first raw material, a second raw material, and a third raw material by adjusting the flow rate, respectively, using a plurality of flow rate controllers of the raw material supply unit, respectively; doing; (b) mixing the first raw material and the second raw material supplied from the raw material supply unit in any one of a plurality of intermediate micro-mixers of the intermediate reaction unit to produce a first mixture, and one of a plurality of the tubular intermediate reactors Generating an intermediate by reacting the first mixture in the above; And (c) mixing the intermediate supplied from the intermediate reaction unit and the third raw material supplied from the raw material supply unit in a first product micro mixer of the first product reaction unit to produce a second mixture and prepare a first product. Including, the valve member of the intermediate reaction control unit is provided with an optimized combinatorial chemical synthesis method that controls the length of the tubular intermediate reactor.
또한, 상기 원료가 단수개 또는 복수개의 제4 원료를 추가로 포함하고, 상기 원료 공급부(100)가 상기 제4 원료를 공급하고 상기 제4 원료의 유량속도를 조절하는 제4 원료 유량속도 조절기, 및 제4 원료공급 밸브부재를 추가로 포함하고, 상기 자동화된 마이크로 조합화학 반응장치(10)가 제2 생산물 반응부(500)를 추가로 포함할 수 있다.In addition, the raw material further includes a single or a plurality of fourth raw materials, and the raw material supply unit 100 supplies the fourth raw material and controls the flow rate of the fourth raw material, a fourth raw material flow rate regulator, and a fourth raw material supply valve member, and the automated micro combinational chemical reactor 10 may further include a second product reaction unit 500 .
또한, 상기 최적화 조합화학 합성방법이 상기 단계 (c) 이후에, (d) 상기 제1 생산물 반응부(400)로부터 공급받은 상기 제1 생산물과 상기 원료 공급부(100)로부터 공급받은 상기 제4 원료를 상기 제2 생산물 반응부(500)의 제2 생산물 마이크로 혼합기에서 혼합하여 제3 혼합물을 생성하고 제2 생산물을 제조하는 단계;를 추가로 포함할 수 있다.In addition, the optimized combinatorial chemical synthesis method, after step (c), (d) the first product supplied from the first product reaction unit 400 and the fourth raw material supplied from the raw material supply unit 100 mixing in the second product micro mixer of the second product reaction unit 500 to create a third mixture and to prepare a second product; may further include.
또한, 상기 최적화 조합화학 합성방법이 상기 유량속도 조절기로 조절된 상기 제1 원료 및 상기 제2 원료의 유량속도와, 상기 밸브부재에 의해 조절된 상기 튜브형 중간체 반응기의 반응부피에 의해 상기 제1 혼합물의 반응 시간을 제어하는 것일 수 있다.In addition, the optimized combinatorial chemical synthesis method uses the flow rate of the first raw material and the second raw material controlled by the flow rate controller and the reaction volume of the tubular intermediate reactor controlled by the valve member to determine the first mixture. It may be to control the reaction time of
또한, 상기 자동화된 마이크로 조합화학 반응장치가 상기 중간체 반응부 및 상기 제1 생산물 반응부의 온도를 조절하는 온도 조절부; 및 상기 원료 공급부, 상기 중간체 반응부, 상기 중간체 반응 조절부, 상기 제1 생산물 반응부 및 상기 온도 조절부를 제어하는 인공 지능부;를 추가로 포함할 수 있다.In addition, the automated micro combinatorial chemical reaction device may include a temperature control unit for controlling the temperature of the intermediate reaction unit and the first product reaction unit; and an artificial intelligence unit controlling the raw material supply unit, the intermediate reaction unit, the intermediate reaction control unit, the first product reaction unit, and the temperature control unit.
또한, 상기 인공지능부가 베이지안 최적화 알고리즘을 사용하여 상기 중간체 반응부의 반응 부피, 상기 원료의 유량속도, 상기 중간체 반응부의 반응온도 및 상기 제1 생산물 반응부의 반응온도의 최적화 값을 도출하는 것일 수 있다.In addition, the artificial intelligence unit uses a Bayesian optimization algorithm to derive an optimized value of the reaction volume of the intermediate reaction unit, the flow rate of the raw material, the reaction temperature of the intermediate reaction unit, and the reaction temperature of the first product reaction unit.
본 발명의 자동화된 마이크로 조합화학 반응장치 및 그를 이용한 최적화 조합화학 합성방법은 최적의 합성 조건(높은 수율)을 빠른 시간 내에 찾을 수 있고, 상기 최적의 합성 조건에서 빠른 속도로 다양한 화합물을 제조할 수 있다.The automated micro combinatorial chemical reactor and the optimized combinatorial chemical synthesis method using the same of the present invention can quickly find optimal synthesis conditions (high yield), and can rapidly produce various compounds under the optimal synthetic conditions. there is.
또한, 본 발명의 자동화된 마이크로 조합화학 반응장치 및 그를 이용한 최적화 조합화학 합성방법은 복수 종류의 생산물을 빠르게 생산하면서도 각각 높은 수율을 갖는 효과가 있다.In addition, the automated micro combinatorial chemical reactor and the optimized combinatorial chemical synthesis method using the same of the present invention have the effect of having high yields while rapidly producing a plurality of types of products.
이 도면들은 본 발명의 예시적인 실시예를 설명하는데 참조하기 위함이므로, 본 발명의 기술적 사상을 첨부한 도면에 한정해서 해석하여서는 아니 된다.Since these drawings are for reference in explaining exemplary embodiments of the present invention, the technical spirit of the present invention should not be construed as being limited to the accompanying drawings.
도 1은 본 발명 하나의 실시예에 따른 자동화된 마이크로 조합화학 반응장치의 개략도를 나타낸 것이다.1 shows a schematic diagram of an automated micro combinatorial chemical reactor according to one embodiment of the present invention.
도 2a는 본 발명 하나의 실시예에 따른 자동화된 마이크로 조합화학 반응장치에서 사용한 autocollector의 모식도이다.Figure 2a is a schematic diagram of an autocollector used in an automated micro combinatorial chemical reactor according to an embodiment of the present invention.
도 2b는 본 발명 하나의 실시예에 따른 자동화된 마이크로 조합화학 반응장치에서 사용한 autocollector를 운용하는 것을 나타낸 모식도이다.Figure 2b is a schematic diagram showing the operation of the autocollector used in the automated micro combinatorial chemical reactor according to one embodiment of the present invention.
도 3a는 실시예 1의 자동화된 마이크로 조합화학 반응장치에 베이지안 최적화 알고리즘을 추가로 사용하여 제1 생산물의 높은 수율 확보를 위한 최적화 반응실험을 15번 수행하였을 때 결과를 나타낸 것이다.Figure 3a shows the results when an optimization reaction experiment was performed 15 times to secure a high yield of the first product by additionally using a Bayesian optimization algorithm in the automated micro combinatorial chemical reactor of Example 1.
도 3b는 상기 도 3a의 최적화 반응실험을 15번 수행하였을 때 수율을 정리하여 나타낸 것이다.Figure 3b shows the yield when the optimization reaction experiment of Figure 3a was performed 15 times.
도 4는 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4e 화합물의 1H NMR 결과를 나타낸 것이다.Figure 4 shows the 1 H NMR results of the 4e compound prepared using the automated micro combinatorial chemical reactor of Example 2.
도 5는 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4e 화합물의 13C NMR 결과를 나타낸 것이다.5 shows the 13 C NMR results of the 4e compound prepared using the automated micro combinatorial chemical reactor of Example 2.
도 6은 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4f 화합물의 1H NMR 결과를 나타낸 것이다.Figure 6 shows the 1 H NMR results of the 4f compound prepared using the automated micro combinatorial chemical reactor of Example 2.
도 7은 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4f 화합물의 13C NMR 결과를 나타낸 것이다.7 shows the 13 C NMR results of the 4f compound prepared using the automated micro combinatorial chemical reactor of Example 2.
도 8은 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4h 화합물의 1H NMR 결과를 나타낸 것이다.Figure 8 shows the 1 H NMR results of the 4h compound prepared using the automated micro combinatorial chemical reactor of Example 2.
도 9는 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4h 화합물의 13C NMR 결과를 나타낸 것이다.Figure 9 shows the 13 C NMR results of the 4h compound prepared using the automated micro combinatorial chemical reactor of Example 2.
도 10은 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4i 화합물의 1H NMR 결과를 나타낸 것이다.FIG. 10 shows the 1 H NMR results of the 4i compound prepared using the automated micro combinatorial chemical reactor of Example 2. FIG.
도 11은 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4i 화합물의 13C NMR 결과를 나타낸 것이다.11 shows the 13 C NMR results of the 4i compound prepared using the automated micro combinatorial chemical reactor of Example 2.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하도록 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention.
그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, the following description is not intended to limit the present invention to specific embodiments, and in describing the present invention, if it is determined that the detailed description of related known technologies may obscure the gist of the present invention, the detailed description will be omitted. .
본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used herein are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, operation, component, or combination thereof described in the specification, but one or more other features or It should be understood that the presence or addition of numbers, steps, operations, components, or combinations thereof is not precluded.
또한, 이하에서 사용될 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Also, terms including ordinal numbers such as first and second to be used below may be used to describe various components, but the components are not limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
또한, 어떤 구성요소가 다른 구성요소 상에 "형성되어" 있다거나 "적층되어" 있다고 언급된 때에는, 그 다른 구성요소의 표면 상의 전면 또는 일면에 직접 부착되어 형성되어 있거나 적층되어 있을 수도 있지만, 중간에 다른 구성요소가 더 존재할 수도 있다고 이해되어야 할 것이다.In addition, when a component is referred to as being “formed” or “layered” on another component, it may be formed or laminated directly on the front or one side of the surface of the other component, but intermediate It should be understood that other components may be further present.
이하, 자동화된 마이크로 조합화학 반응장치 및 그를 이용한 최적화 조합화학 합성방법에 대하여 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.Hereinafter, an automated micro combinatorial chemical reactor and an optimized combinatorial chemical synthesis method using the same will be described in detail. However, this is presented as an example, and the present invention is not limited thereby, and the present invention is only defined by the scope of the claims to be described later.
도 1은 본 발명 하나의 실시예에 따른 자동화된 마이크로 조합화학 반응장치의 개략도를 나타낸 것이다.1 shows a schematic diagram of an automated micro combinatorial chemical reactor according to one embodiment of the present invention.
도 1을 참고하면, 본 발명은 단수개 또는 복수개의 제1 원료, 단수개 또는 복수개의 제2 원료 및 단수개 또는 복수개의 제3 원료를 포함하는 원료를 각각 공급하고, 상기 원료의 유량 속도를 각각 조절하는 복수개의 유량속도 조절기를 포함하는 원료 공급부(100); 상기 원료 공급부(100)로부터 공급받은 상기 제1 원료와 상기 제2 원료를 혼합하여 제1 혼합물을 생성하는 복수개의 중간체 마이크로 혼합기(M1, M2, M3, M4) 및 상기 제1 혼합물을 반응시켜 중간체를 생성하는 복수개의 튜브형 중간체 반응기를 포함하는 중간체 반응부(200); 상기 튜브형 중간체 반응기의 길이 및 공급되는 상기 제2 원료의 종류 중 1종 이상을 조절하는 중간체 반응조절 밸브부재를 포함하는 중간체 반응 조절부(300); 및 상기 중간체 반응부(200)로부터 공급받은 상기 중간체와 상기 원료 공급부(100)로부터 공급받은 상기 제3 원료를 혼합하여 제2 혼합물을 생성하는 제1 생산물 마이크로 혼합기(M5)를 포함하고, 제1 생산물을 제조하는 제1 생산물 반응부(400);를 포함하는 자동화된 마이크로 조합화학 반응장치(10)를 제공한다.Referring to FIG. 1, the present invention supplies raw materials including one or a plurality of first raw materials, one or a plurality of second raw materials, and one or a plurality of third raw materials, respectively, and the flow rate of the raw materials A raw material supply unit 100 including a plurality of flow rate regulators for controlling each; A plurality of intermediate micro mixers (M1, M2, M3, M4) generating a first mixture by mixing the first raw material and the second raw material supplied from the raw material supply unit 100 and the intermediate by reacting the first mixture An intermediate reaction unit 200 comprising a plurality of tubular intermediate reactors to generate; An intermediate reaction control unit 300 including an intermediate reaction control valve member for controlling at least one of the length of the tubular intermediate reactor and the type of the second raw material to be supplied; And a first product micro mixer (M5) for generating a second mixture by mixing the intermediate supplied from the intermediate reaction unit 200 and the third raw material supplied from the raw material supply unit 100, Provides an automated micro-combination chemical reactor 10 including a first product reaction unit 400 for producing a product.
또한, 상기 유량속도 조절기로 조절된 제1 원료 및 상기 제2 원료의 유량속도와, 상기 중간체 반응조절 밸브부재에 의해 조절된 상기 튜브형 중간체 반응기의 반응부피에 의해 상기 제1 혼합물의 반응 시간을 제어하는 것일 수 있다.In addition, the reaction time of the first mixture is controlled by the flow rate of the first raw material and the second raw material controlled by the flow rate controller and the reaction volume of the tubular intermediate reactor controlled by the intermediate reaction control valve member. it may be
또한, 복수개의 상기 중간체 마이크로 혼합기가 제1 중간체 마이크로 혼합기, 제2 중간체 마이크로 혼합기, …, 제i 중간체 마이크로 혼합기, …, 및 제n 중간체 마이크로 혼합기(n은 자연수, i는 자연수, 1≤i≤n)를 포함하고, 복수개의 상기 튜브형 중간체 반응기가 제1 튜브형 중간체 반응기, 제2 튜브형 중간체 반응기, …, 제i 튜브형 중간체 반응기, …, 및 제n 튜브형 중간체 반응기 (n은 자연수, i는 자연수, 1≤i≤n)를 포함하고, 상기 n개의 중간체 마이크로 혼합기와 상기 n개의 튜브형 중간체 반응기는 순서대로 교대로 직렬로 연결되는 것일 수 있다.In addition, the plurality of intermediate micro-mixers include a first intermediate micro-mixer, a second intermediate micro-mixer, . . . , ith intermediate micromixer, . . . , And an n-th intermediate micro-mixer (n is a natural number, i is a natural number, 1≤i≤n), wherein a plurality of the tubular intermediate reactors include a first tubular intermediate reactor, a second tubular intermediate reactor, ... , the ith tubular intermediate reactor, ... , And an nth tubular intermediate reactor (n is a natural number, i is a natural number, 1≤i≤n), wherein the n intermediate micromixers and the n tubular intermediate reactors may be connected in series alternately in order. there is.
또한, 상기 제2 원료를 공급하는 상기 제i 중간체 마이크로 혼합기를 임의로 선택함에 의해 튜브형 중간체 반응기의 반응부피가 조절되는 것일 수 있다.In addition, the reaction volume of the tubular intermediate reactor may be controlled by arbitrarily selecting the i-th intermediate micro-mixer supplying the second raw material.
또한, 복수개의 상기 제2 원료 중 어느 하나가 상기 제i 중간체 마이크로 혼합기로 공급되고, 공급된 상기 제2 원료 중 어느 하나가 상기 제i 중간체 마이크로 혼합기에서 상기 제1 원료와 혼합되어 상기 제1 혼합물을 형성하고, 상기 제1 혼합물이 상기 반응부피를 통과하며 반응하여 상기 중간체를 생성하는 것일 수 있다.In addition, any one of a plurality of the second raw materials is supplied to the i-th intermediate micro-mixer, and any one of the supplied second raw materials is mixed with the first raw material in the i-th intermediate micro-mixer to form the first mixture It may form, and the first mixture reacts while passing through the reaction volume to produce the intermediate.
또한, 상기 반응부피가 제i 튜브형 중간체 반응기의 부피, …, 및 제n 튜브형 중간체 반응기의 부피를 모두 포함할 수 있다.In addition, the reaction volume is the volume of the ith tubular intermediate reactor, . . . , and the volume of the nth tubular intermediate reactor.
또한, 상기 유량속도 조절기가 단수개 또는 복수개의 상기 제1 원료, 단수개 또는 복수개의 상기 제2 원료 및 단수개 또는 복수개의 상기 제3 원료의 유량속도를 각각 조절하는 단수개 또는 복수개의 제1 원료 유량속도 조절기, 단수개 또는 복수개의 제2 원료 유량속도 조절기 및 단수개 또는 복수개의 제3 원료 유량속도 조절기를 포함할 수 있다.In addition, the flow rate controller controls the flow rate of the singular or plural number of the first raw material, the singular or plural number of the second raw material, and the singular or plural number of the third raw material, respectively. It may include a raw material flow rate regulator, one or more second raw material flow rate regulators, and one or more third raw material flow rate regulators.
또한, 상기 중간체 반응조절 밸브부재가 제1 중간체 반응조절 밸브, …, 제i 중간체 반응조절 밸브, …, 및 제n 중간체 반응조절 밸브(n은 자연수, i는 자연수, 1≤i≤n)를 포함하고, 상기 n개의 중간체 반응조절 밸브가 서로 병렬로 연결되고, 상기 n개의 중간체 반응조절 밸브가 각각 순서대로 상기 제1 중간체 마이크로 혼합기, …, 제i 중간체 마이크로 혼합기, …, 및 제n 중간체 마이크로 혼합기와 직렬로 연결되고, 상기 n개의 중간체 반응조절 밸브가 각각 상기 제2 원료 유량속도 조절기와 직렬로 연결되고, 상기 n개의 중간체 반응조절 밸브가 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 상기 제2 원료를 상기 n개의 중간체 마이크로 혼합기에 각각 공급하거나 차단하는 것일 수 있다.In addition, the intermediate reaction control valve member is a first intermediate reaction control valve, ... , ith intermediate reaction control valve, ... , And an n th intermediate reaction control valve (n is a natural number, i is a natural number, 1≤i≤n), wherein the n intermediate reaction control valves are connected in parallel to each other, and the n intermediate reaction control valves are each In order, the first intermediate micromixer, . . . , ith intermediate micromixer, . . . , And connected in series with the nth intermediate micromixer, the n intermediate reaction control valves are connected in series with the second raw material flow rate controller, respectively, and the n intermediate reaction control valves are each independently opened (open ) or closing, the second raw material may be supplied to or blocked from each of the n intermediate micromixers.
또한, 상기 원료 공급부(100)가 제2 원료공급 밸브부재를 추가로 포함하고, 상기 제2 원료가 제2-1 원료, …, 제2-j 원료, …, 및 제2-m 원료(m은 자연수, j는 자연수, 1≤j≤m)를 각각 포함하고, 상기 m개의 제2 원료는 서로 다르고, 상기 제2 원료 유량속도 조절기가 상기 m개의 제2 원료의 유량속도를 각각 조절하는 제2-1 원료 유량속도 조절기, …, 제2-j 원료 유량속도 조절기, …, 및 제2-m 원료 유량속도 조절기(m은 자연수, j는 자연수, 1≤j≤m)를 포함하고, 상기 제2 원료공급 밸브부재가 제2-1 원료공급 밸브, …, 제2-j 원료공급 밸브, …, 및 제2-m 원료공급 밸브(j는 자연수, m은 자연수, 1≤j≤m)를 포함하고, 상기 m개의 제2 원료공급 밸브가 각각 순서대로 제2-1 원료 유량속도 조절기, …, 제2-j 원료 유량속도 조절기, …, 및 제2-m 원료 유량속도 조절기와 직렬로 연결되고, 상기 m개의 제2 원료공급 밸브가 서로 병렬로 연결되고, 상기 m개의 제2 원료공급 밸브가 각각 상기 중간체 반응부(200)와 직렬로 연결되고, 상기 m개의 제2 원료공급 밸브를 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 상기 m개의 제2 원료 중 어느 하나를 중간체 마이크로 혼합기에 각각 공급하거나 차단하는 것일 수 있다.In addition, the raw material supply unit 100 further includes a second raw material supply valve member, and the second raw material is a 2-1 raw material, . . . , 2-j raw material, . . . , And a 2-m raw material (m is a natural number, j is a natural number, 1≤j≤m), wherein the m second raw materials are different from each other, and the second raw material flow rate controller is the m second raw material A 2-1 raw material flow rate controller for controlling the flow rate of raw materials, respectively... , 2-j raw material flow rate controller, . . . , and a 2-m raw material flow rate controller (m is a natural number, j is a natural number, 1≤j≤m), wherein the second raw material supply valve member is a 2-1 raw material supply valve, . , 2-j raw material supply valve, . . . , and 2-m raw material supply valves (j is a natural number, m is a natural number, 1≤j≤m), wherein the m second raw material supply valves are sequentially configured as a 2-1 raw material flow rate controller, . . . , 2-j raw material flow rate controller, . . . , and connected in series with the 2-m raw material flow rate controller, the m second raw material supply valves are connected in parallel with each other, and the m second raw material supply valves are each in series with the intermediate reaction unit 200 It may be connected to, and by opening or closing the m second raw material supply valves independently, respectively, supplying or blocking any one of the m second raw materials to the intermediate micromixer.
또한, 상기 원료 공급부(100)가 제3 원료공급 밸브부재를 추가로 포함하고, 상기 제3 원료가 제3-1 원료, …, 제3-k 원료, …, 및 제3-p 원료(p는 자연수, k는 자연수, 1≤k≤p)를 각각 포함하고, 상기 p개의 제3 원료는 서로 다르고, 상기 제3 원료공급 밸브부재가 제3-1 원료공급 밸브, …, 제3-k 원료공급 밸브, …, 및 제3-p 원료공급 밸브(k는 자연수, p은 자연수, 1≤k≤p)를 포함하고, 상기 p개의 제3 원료공급 밸브가 서로 병렬로 연결되고, 상기 p개의 제3 원료공급 밸브가 각각 상기 제3 원료 유량속도 조절기와 직렬로 연결되고, 상기 제3 원료 유량속도 조절기가 각각 상기 제1 생산물 반응부(400)와 직렬로 연결되고, 상기 p개의 제3 원료공급 밸브를 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 상기 p개의 제3 원료 중 어느 하나를 제1 생산물 반응부(400)에 각각 공급하거나 차단하는 것일 수 있다.In addition, the raw material supply unit 100 further includes a third raw material supply valve member, and the third raw material is a 3-1 raw material, . . . , 3-k raw material, . . . , and 3-p raw materials (p is a natural number, k is a natural number, 1≤k≤p), the p third raw materials are different from each other, and the third raw material supply valve member is the 3-1 raw material supply valve, … , 3-k raw material supply valve, . . . , and 3-p raw material supply valves (k is a natural number, p is a natural number, 1≤k≤p), wherein the p third raw material supply valves are connected in parallel to each other, and the p third raw material supply valves are connected in parallel to each other. Valves are connected in series with the third raw material flow rate controller, respectively, the third raw material flow rate controller is connected in series with the first product reaction unit 400, respectively, and the p number of third raw material supply valves are respectively connected. By independently opening or closing, any one of the p third raw materials may be supplied to or blocked from the first product reaction unit 400 , respectively.
또한, 상기 원료가 단수개 또는 복수개의 제4 원료를 추가로 포함하고, 상기 원료 공급부(100)가 상기 제4 원료를 공급하고 상기 제4 원료의 유량속도를 조절하는 제4 원료 유량속도 조절기, 및 제4 원료공급 밸브부재를 추가로 포함하고, 상기 자동화된 마이크로 조합화학 반응장치(10)가 제2 생산물 반응부(500)를 추가로 포함하고, 상기 제2 생산물 반응부(500)가 상기 제1 생산물 반응부(400)로부터 공급받은 상기 제1 생산물과 상기 원료 공급부(100)로부터 공급받은 상기 제4 원료를 혼합하여 제3 혼합물을 생성하는 제2 생산물 마이크로 혼합기(M6)를 포함하고, 제2 생산물을 제조하는 것이고, 상기 제4 원료가 제4-1 원료, …, 제4-h 원료, …, 및 제4-q 원료(q는 자연수, h는 자연수, 1≤h≤q)를 각각 포함하고, 상기 q개의 제4 원료는 서로 다르고, 상기 제4 원료공급 밸브부재가 제4-1 원료공급 밸브, …, 제4-h 원료공급 밸브, …, 및 제4-q 원료공급 밸브(h는 자연수, q은 자연수, 1≤h≤q)를 포함하고, 상기 q개의 제4 원료공급 밸브가 서로 병렬로 연결되고, 상기 q개의 제4 원료공급 밸브가 각각 상기 제4 원료 유량속도 조절기와 직렬로 연결되고, 상기 제4 원료 유량속도 조절기가 각각 상기 제2 생산물 반응부(500)와 직렬로 연결되고, 상기 q개의 제4 원료공급 밸브를 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 상기 q개의 제4 원료 중 어느 하나를 제2 생산물 반응부(500)에 각각 공급하거나 차단하는 것일 수 있다.In addition, the raw material further includes a single or a plurality of fourth raw materials, and the raw material supply unit 100 supplies the fourth raw material and controls the flow rate of the fourth raw material, a fourth raw material flow rate regulator, and a fourth raw material supply valve member, wherein the automated micro combinatorial chemical reactor 10 further includes a second product reaction unit 500, wherein the second product reaction unit 500 comprises the second product reaction unit 500. A second product micro mixer (M6) for generating a third mixture by mixing the first product supplied from the first product reaction unit 400 and the fourth raw material supplied from the raw material supply unit 100, A second product is manufactured, and the fourth raw material is the 4-1 raw material, . . . , 4-h raw material, ... , and 4-q raw materials (q is a natural number, h is a natural number, 1≤h≤q), the q number of fourth raw materials are different from each other, and the fourth raw material supply valve member is the 4-1 raw material supply valve, … , 4-h raw material supply valve, . . . , and a 4-q raw material supply valve (h is a natural number, q is a natural number, 1≤h≤q), wherein the q fourth raw material supply valves are connected in parallel to each other, and the q fourth raw material supply valves are connected in parallel to each other. A valve is connected in series with the fourth raw material flow rate controller, respectively, the fourth raw material flow rate controller is connected in series with the second product reaction unit 500, respectively, and the q number of fourth raw material supply valves are respectively connected. By independently opening or closing, any one of the q fourth raw materials may be supplied to or blocked from the second product reaction unit 500 , respectively.
또한, 상기 중간체 반응 조절 밸브부재가 솔레노이드 밸브를 포함할 수 있다.In addition, the intermediate reaction control valve member may include a solenoid valve.
또한, 상기 중간체의 수명이 1 밀리초(ms) 내지 100 초(s)일 수 있다.In addition, the lifetime of the intermediate may be 1 millisecond (ms) to 100 seconds (s).
또한, 상기 중간체 마이크로 혼합기가 T자형 중간체 마이크로 혼합기일 수 있다.In addition, the intermediate micro mixer may be a T-shaped intermediate micro mixer.
또한, 상기 마이크로 조합화학 반응장치(10)가 상기 중간체 반응부 및 상기 제1 생산물 반응부의 온도를 조절하는 온도 조절부;를 추가로 포함할 수 있다.In addition, the micro combinatorial chemical reactor 10 may further include a temperature control unit for adjusting the temperature of the intermediate reaction unit and the first product reaction unit.
또한, 상기 온도 조절부가 순환 항온조 및 쿨링 챔버(cooling camber)를 포함할 수 있다.In addition, the temperature controller may include a circulating thermostat and a cooling chamber.
또한, 상기 온도 조절부가 상기 중간체 반응부 및 상기 제1 생산물 반응부의 온도를 -80 내지 50 ℃ 범위에서 선택된 어느 하나의 온도로 조절할 수 있다. 상기 온도가 -80 ℃ 미만인 경우 상기 중간체 반응부 및 상기 제1 생산물 반응부에서 각각 중간체 및 제1 생산물이 제조되기 어려운 온도이므로 바람직하지 않고, 50 ℃를 초과할 경우 상기 중간체 반응부 및 상기 제1 생산물 반응부에서 각각 목표하는 물질 외의 부산물이 제조될 수 있어 바람직하지 않다. In addition, the temperature controller may adjust the temperature of the intermediate reaction unit and the first product reaction unit to any one temperature selected from the range of -80 to 50 °C. When the temperature is less than -80 ° C., it is not preferable because it is difficult to manufacture intermediates and first products in the intermediate reaction part and the first product reaction part, respectively, and when it exceeds 50 ° C., the intermediate reaction part and the first product In the product reaction unit, by-products other than the target material may be produced, which is undesirable.
또한, 상기 자동화된 마이크로 조합화학 반응장치가 상기 원료 공급부, 상기 중간체 반응부, 상기 중간체 반응 조절부, 상기 제1 생산물 반응부 및 상기 온도 조절부를 제어하는 인공 지능부;를 추가로 포함할 수 있다.In addition, the automated micro combinatorial chemical reaction apparatus may further include an artificial intelligence unit controlling the raw material supply unit, the intermediate reaction unit, the intermediate reaction control unit, the first product reaction unit, and the temperature control unit. .
또한, 상기 인공지능부가 베이지안 최적화 알고리즘을 사용하여 상기 중간체 반응부의 반응 부피, 상기 원료의 유량속도, 상기 중간체 반응부의 반응온도 및 상기 제1 생산물 반응부의 반응온도의 최적화 값을 도출하는 것일 수 있다.In addition, the artificial intelligence unit uses a Bayesian optimization algorithm to derive an optimized value of the reaction volume of the intermediate reaction unit, the flow rate of the raw material, the reaction temperature of the intermediate reaction unit, and the reaction temperature of the first product reaction unit.
또한, 상기 제2 원료가 n-부틸리튬, sec-부틸리튬, n-헥실리튬, n-옥틸리튬, tert-옥틸리튬, n-데실리튬, 페닐리튬, 1-나프틸리튬, 4-부틸페닐리튬, p-톨릴리튬, 4-페닐부틸리튬, 사이클로헥실리튬, 4-부틸사이클로헥실리튬 및 4-사이클로헥실부틸리튬으로 이루어진 군으로부터 선택된 1종 이상의 유기리튬 화합물을 포함할 수 있다.In addition, the second raw material is n -butyllithium, sec -butyllithium, n -hexyllithium, n -octyllithium, tert -octyllithium, n -decyllithium, phenyllithium, 1-naphthyllithium, 4-butylphenyl and at least one organolithium compound selected from the group consisting of lithium, p -tolyllithium, 4-phenylbutyllithium, cyclohexyllithium, 4-butylcyclohexyllithium and 4-cyclohexylbutyllithium.
또한, 상기 자동화된 마이크로 조합화학 반응장치가 상기 제1 생산물 반응부 및 상기 제2 생산물 반응부로 이루어진 군으로부터 선택된 어느 하나에서 생성된 생산물을 분석하기 위한 분석기를 포함하는 분석부;를 추가로 포함할 수 있다.In addition, the automated micro combinatorial chemical reactor may further include an analysis unit including an analyzer for analyzing a product generated from any one selected from the group consisting of the first product reaction unit and the second product reaction unit. can
또한, 상기 분석부가 푸리에 변환 적외선 분광기(FT-IR), 핵자기공명 분광법 (NMR), 기체 크로마토그래피 질량분석법(GC-MS), 액체 크로마토그래피 질량분석법(LC-MS), 및 자외선-가시선 분광분석법(UV-Vis)으로 이루어진 군으로부터 선택된 어느 하나의 장치를 포함할 수 있다.In addition, the analysis unit Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), and ultraviolet-visible spectroscopy It may include any one device selected from the group consisting of analysis methods (UV-Vis).
본 발명은 원료 공급부(100), 중간체 반응부(200), 중간체 반응 조절부(300) 및 제1 생산물 반응부(400)를 포함하는 자동화된 마이크로 조합화학 반응장치(10)를 사용하는 최적화 조합화학 합성방법이고, (a) 상기 원료 공급부(100)의 복수개의 유량속도 조절기를 각각 사용하여 제1 원료, 제2 원료 및 제3 원료를 포함하는 복수개의 원료를 유량 속도를 각각 조절하여 공급하는 단계; (b) 상기 원료 공급부(100)로부터 공급받은 상기 제1 원료와 상기 제2 원료를 상기 중간체 반응부(200)의 복수개의 중간체 마이크로 혼합기 중 어느 하나에서 혼합하여 제1 혼합물을 생성하고, 복수개의 상기 튜브형 중간체 반응기 중 1종 이상에서 상기 제1 혼합물을 반응시켜 중간체를 생성하는 단계; 및 (c) 상기 중간체 반응부(200)로부터 공급받은 상기 중간체와 상기 원료 공급부(100)로부터 공급받은 상기 제3 원료를 상기 제1 생산물 반응부(400)의 제1 생산물 마이크로 혼합기에서 혼합하여 제2 혼합물을 생성하고 제1 생산물을 제조하는 단계;를 포함하고, 상기 중간체 반응 조절부(300)의 밸브부재가 상기 튜브형 중간체 반응기의 길이를 조절하는 것인 최적화 조합화학 합성방법을 제공한다.The present invention is an optimized combination using an automated micro combination chemical reactor 10 including a raw material supply unit 100, an intermediate reaction unit 200, an intermediate reaction control unit 300 and a first product reaction unit 400 A chemical synthesis method, (a) supplying a plurality of raw materials including a first raw material, a second raw material, and a third raw material by adjusting the flow rate, respectively, using a plurality of flow rate controllers of the raw material supply unit 100, respectively step; (b) mixing the first raw material and the second raw material supplied from the raw material supply unit 100 in any one of a plurality of intermediate micro mixers of the intermediate reaction unit 200 to produce a first mixture, and generating an intermediate by reacting the first mixture in at least one of the tubular intermediate reactors; and (c) mixing the intermediate supplied from the intermediate reaction unit 200 and the third raw material supplied from the raw material supply unit 100 in a first product micromixer of the first product reaction unit 400. 2, generating a mixture and preparing a first product; and providing an optimized combinatorial chemical synthesis method in which the valve member of the intermediate reaction control unit 300 controls the length of the tubular intermediate reactor.
또한, 상기 원료가 단수개 또는 복수개의 제4 원료를 추가로 포함하고, 상기 원료 공급부(100)가 상기 제4 원료를 공급하고 상기 제4 원료의 유량속도를 조절하는 제4 원료 유량속도 조절기, 및 제4 원료공급 밸브부재를 추가로 포함하고, 상기 자동화된 마이크로 조합화학 반응장치(10)가 제2 생산물 반응부(500)를 추가로 포함할 수 있다.In addition, the raw material further includes a single or a plurality of fourth raw materials, and the raw material supply unit 100 supplies the fourth raw material and controls the flow rate of the fourth raw material, a fourth raw material flow rate regulator, and a fourth raw material supply valve member, and the automated micro combinational chemical reactor 10 may further include a second product reaction unit 500 .
또한, 상기 최적화 조합화학 합성방법이 상기 단계 (c) 이후에, (d) 상기 제1 생산물 반응부(400)로부터 공급받은 상기 제1 생산물과 상기 원료 공급부(100)로부터 공급받은 상기 제4 원료를 상기 제2 생산물 반응부(500)의 제2 생산물 마이크로 혼합기에서 혼합하여 제3 혼합물을 생성하고 제2 생산물을 제조하는 단계;를 추가로 포함할 수 있다.In addition, the optimized combinatorial chemical synthesis method, after step (c), (d) the first product supplied from the first product reaction unit 400 and the fourth raw material supplied from the raw material supply unit 100 mixing in the second product micro mixer of the second product reaction unit 500 to create a third mixture and to prepare a second product; may further include.
또한, 상기 최적화 조합화학 합성방법이 상기 유량속도 조절기로 조절된 상기 제1 원료 및 상기 제2 원료의 유량속도와, 상기 밸브부재에 의해 조절된 상기 튜브형 중간체 반응기의 반응부피에 의해 상기 제1 혼합물의 반응 시간을 제어하는 것일 수 있다.In addition, the optimized combinatorial chemical synthesis method uses the flow rate of the first raw material and the second raw material controlled by the flow rate controller and the reaction volume of the tubular intermediate reactor controlled by the valve member to determine the first mixture. It may be to control the reaction time of
또한, 상기 자동화된 마이크로 조합화학 반응장치가 상기 중간체 반응부 및 상기 제1 생산물 반응부의 온도를 조절하는 온도 조절부; 및 상기 원료 공급부, 상기 중간체 반응부, 상기 중간체 반응 조절부, 상기 제1 생산물 반응부 및 상기 온도 조절부를 제어하는 인공 지능부;를 추가로 포함할 수 있다.In addition, the automated micro combinatorial chemical reaction device may include a temperature control unit for controlling the temperature of the intermediate reaction unit and the first product reaction unit; and an artificial intelligence unit controlling the raw material supply unit, the intermediate reaction unit, the intermediate reaction control unit, the first product reaction unit, and the temperature control unit.
또한, 상기 인공지능부가 베이지안 최적화 알고리즘을 사용하여 상기 중간체 반응부의 반응 부피, 상기 원료의 유량속도, 상기 중간체 반응부의 반응온도 및 상기 제1 생산물 반응부의 반응온도의 최적화 값을 도출하는 것일 수 있다.In addition, the artificial intelligence unit uses a Bayesian optimization algorithm to derive an optimized value of the reaction volume of the intermediate reaction unit, the flow rate of the raw material, the reaction temperature of the intermediate reaction unit, and the reaction temperature of the first product reaction unit.
[실시예] [Example]
이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, a preferred embodiment of the present invention will be described. However, this is for illustrative purposes and the scope of the present invention is not limited thereby.
<자동화된 마이크로 조합화학 반응장치><Automated Micro Combination Chemical Reactor>
도 1은 본 발명 하나의 실시예에 따른 자동화된 마이크로 조합화학 반응장치의 개략도를 나타낸 것이다. 도 1을 참고하여 실시예 1 및 2의 자동화된 마이크로 조합화학 반응장치를 제조하였다.1 shows a schematic diagram of an automated micro combinatorial chemical reactor according to one embodiment of the present invention. Referring to FIG. 1, an automated micro combinatorial chemical reactor of Examples 1 and 2 was prepared.
실시예 1: 제1 원료, 제2 원료 및 제3 원료를 사용한 경우Example 1: When using the first raw material, the second raw material, and the third raw material
원료 공급부(100)Raw material supply unit 100
제1 원료인 2-브로모페닐 이소티오시아네이트(2-bromophenyl isothiocyanate, Alfa Aesar) 및 제2 원료인 n-부틸리튬(n-butyllithium, n-BuLi, Sigma-Aldrich), 페닐리튬(phenyllithium, PhLi, Sigma-Aldrich) 및 sec-부틸리튬(sec-butyllithium, s-BuLi, Sigma-Aldrich)를 각각 공급하는 SGE Analytical Science에서 구입한 기밀 주사기(실린지, syringe)(50 mL, 내경: 27.6 mm)가 장착된 PHD Ultra 실린지 펌프(Harvard Apparatus)(p1, p2, p3, p4)를 포함하고, 상기 실린지 펌프는 RS-232 인터페이스를 통한 직렬 통신에서 MATLAB 프로그램을 통해 정지, 시작 및 유속을 제어할 수 있도록 설정하였다.The first raw material, 2-bromophenyl isothiocyanate (Alfa Aesar) and the second raw material, n- butyllithium, n - BuLi, Sigma-Aldrich, phenyllithium, Airtight syringe (syringe) (50 mL, inner diameter: 27.6 mm) purchased from SGE Analytical Science, which supplies PhLi, Sigma-Aldrich) and sec -butyllithium, s -BuLi, Sigma-Aldrich, respectively. ) equipped with a PHD Ultra syringe pump (Harvard Apparatus) (p1, p2, p3, p4), wherein the syringe pump can stop, start and flow through a MATLAB program in serial communication through an RS-232 interface. set to control.
n-부틸리튬(n-butyllithium, n-BuLi, Sigma-Aldrich), 페닐리튬(phenyllithium, PhLi, Sigma-Aldrich) 및 sec-부틸리튬(sec-butyllithium, s-BuLi, Sigma-Aldrich)를 각각 공급하는 실린지 펌프(p2, p3, p4)는 고순도 PTFE 튜브(1/16" od, 0.03" id) 및 폴리에틸렌 에테르 케톤 1/4-28 너트(IDEX HEALTH & SCIENCE)를 이용하여 각각 제2 원료공급 밸브인 솔레노이드 밸브(LVM15R3HY-6C1U, SMC Korea)(v5, v6, v7)와 직렬로 연결하였다. 이때 3개의 솔레노이드 밸브(v5, v6, v7)는 서로 병렬로 연결하여 제2 원료공급 밸브부재를 형성하였다.Supplied n- butyllithium ( n - BuLi, Sigma-Aldrich), phenyllithium (PhLi, Sigma-Aldrich) and sec -butyllithium ( sec -butyllithium, s -BuLi, Sigma-Aldrich) respectively Syringe pumps (p2, p3, p4) using high-purity PTFE tubes (1/16" od, 0.03" id) and polyethylene ether ketone 1/4-28 nuts (IDEX HEALTH & SCIENCE) each supply the second raw material It was connected in series with the valve solenoid valve (LVM15R3HY-6C1U, SMC Korea) (v5, v6, v7). At this time, the three solenoid valves (v5, v6, v7) are connected in parallel to each other to form a second raw material supply valve member.
제3 원료는 3 종류를 사용하였고, 각각 phenyl- (2a), p-anisyl- (2b) 및 p-nitrophenyl- (2c) isocyanate 용액(용매: THF)을 사용하였다. Three types of third raw materials were used, and phenyl- (2a), p -anisyl- (2b) and p -nitrophenyl- (2c) isocyanate solutions (solvent: THF) were used, respectively.
3 종류의 상기 제3 원료는 고순도 PTFE 튜브(1/16" od, 0.03" id) 및 폴리에틸렌 에테르 케톤 1/4-28 너트(IDEX HEALTH & SCIENCE)를 이용하여 각각 제3 원료공급 밸브인 솔레노이드 밸브(LVM15R3HY-6C1U, SMC Korea)(v8, v9, v10)와 직렬로 연결하였고, 상기 3개의 솔레노이드 밸브(v8, v9, v10)는 서로 병렬로 연결하여 제3 원료공급 밸브부재를 형성하였다.The three types of the third raw material are solenoid valves, each of which is a third raw material supply valve, using a high purity PTFE tube (1/16" od, 0.03" id) and a polyethylene ether ketone 1/4-28 nut (IDEX HEALTH & SCIENCE) (LVM15R3HY-6C1U, SMC Korea) (v8, v9, v10) was connected in series, and the three solenoid valves (v8, v9, v10) were connected in parallel to each other to form a third raw material supply valve member.
상기 제3 원료공급 밸브부재(v8, v9, v10)는 제3 원료 주입기인 high-performance isocratic pump(hp1)과 직렬로 연결하였고, 상기 제4 원료공급 밸브부재(v11, v12, v13)는 제4 원료 주입기인 high-performance isocratic pump(hp2)와 직렬로 연결하였다.The third raw material supply valve member (v8, v9, v10) is connected in series with a high-performance isocratic pump (hp1), which is a third raw material injector, and the fourth raw material supply valve member (v11, v12, v13) is 4 It was connected in series with a high-performance isocratic pump (hp2), which is a raw material injector.
상기 제2 원료공급 밸브부재 및 상기 제3 원료공급 밸브부재에서 각각의 솔레노이드 밸브는 Interaction Design Institutelvera(Italy)의 마이크로 컨트롤러(Arduino Uno)를 기반으로 자체 제작한 컨트롤 박스에 연결되며, 마이크로 컨트롤러와 MathWorks (MA, USA)의 PC MATLAB 프로그램을 이용한 시리얼 통신으로 개폐를 제어하였다.Each solenoid valve in the second raw material supply valve member and the third raw material supply valve member is connected to a control box self-manufactured based on a microcontroller (Arduino Uno) of Interaction Design Institutelvera (Italy), and the microcontroller and MathWorks (MA, USA) The opening and closing were controlled by serial communication using a PC MATLAB program.
중간체 반응부(200) Intermediate reaction unit 200
중간체 반응부는 상기 원료 공급부(100)로부터 공급받은 상기 제1 원료와 상기 제2 원료를 혼합하여 제1 혼합물을 생성하는 복수개의 중간체 마이크로 혼합기(M1, M2, M3, M4) 및 상기 제1 혼합물을 반응시켜 중간체를 생성하는 복수개의 튜브형 중간체 반응기를 포함한다.The intermediate reaction unit mixes the first raw material and the second raw material supplied from the raw material supply unit 100 to generate a first mixture, a plurality of intermediate micro mixers M1, M2, M3, M4 and the first mixture It includes a plurality of tubular intermediate reactors for reacting to produce intermediates.
이때, 상기 중간체는 아래 구조식 1로 표시되는 화합물이다.In this case, the intermediate is a compound represented by Structural Formula 1 below.
[구조식 1][Structural Formula 1]
Figure PCTKR2022012803-appb-img-000001
Figure PCTKR2022012803-appb-img-000001
중간체 마이크로 혼합기는 T자형이며 내부 지름이 250 μm인 스테인리스강(SUS304) 마이크로 혼합기 4개(Sanko Seiki Co.)(M1, M2, M3, M4)로 준비하였다.The intermediate micromixer was prepared as four stainless steel (SUS304) micromixers (Sanko Seiki Co.) (M1, M2, M3, M4) with a T-shape and an inner diameter of 250 μm.
튜브형 중간체 반응기는 내부 지름이 250 μm인 스테인리스강(SUS304) 튜브와, 내부 지름이 1000 μm인 스테인리스강(SUS304) 튜브를 GL Science에서 구입하여 사용하였다. 상기 내부 지름이 250 μm인 스테인리스강(SUS304) 튜브는 4 cm로 절단하여 사용하였고, 상기 내부 지름이 1000 μm인 스테인리스강(SUS304) 튜브는 70, 26 및 4 cm로 절단하여 사용하였다. As the tubular intermediate reactor, a stainless steel (SUS304) tube having an inner diameter of 250 μm and a stainless steel (SUS304) tube having an inner diameter of 1000 μm were purchased from GL Science and used. The stainless steel (SUS304) tube having an inner diameter of 250 μm was cut to 4 cm and used, and the stainless steel (SUS304) tube with an inner diameter of 1000 μm was cut to 70, 26 and 4 cm.
상기 내부 지름이 1000 μm인 스테인리스강(SUS304) 튜브는 냉각 장치(cooling unit)로도 사용되었는데, 이 경우 50 cm로 절단하여 사용하였다.The stainless steel (SUS304) tube having an inner diameter of 1000 μm was also used as a cooling unit, and in this case, it was cut to 50 cm and used.
상기 중간체 마이크로 혼합기와 상기 튜브형 중간체 반응기를 스테인리스강 피팅(stainless steel fitting, GL Science, 1/16" OUW)을 사용하여 순서대로 교대로 직렬로 연결하여 중간체 반응부를 형성하였다. The intermediate micromixer and the tubular intermediate reactor were alternately connected in series using stainless steel fittings (GL Science, 1/16" OUW) to form an intermediate reaction unit.
중간체 반응 조절부(300) Intermediate reaction controller 300
상기 원료 공급부의 제2 원료공급 밸브부재(v5, v6, v7)를 고순도 PTFE 튜브 (1/16" od, 0.03" id) 및 폴리에틸렌 에테르 케톤 1/4-28 너트(IDEX HEALTH & SCIENCE)를 사용하여 중간체 반응조절 밸브인 4개의 솔레노이드 밸브(v1, v2, v3, v4)와 직렬로 연결하였으며, 상기 4개의 솔레노이드 밸브(v1, v2, v3, v4)는 각각 상기 중간체 마이크로 혼합기(M1, M2, M3, M4)와 고순도 PTFE 튜브 (1/16" od, 0.03" id) 및 폴리에틸렌 에테르 케톤 1/4-28 너트(IDEX HEALTH & SCIENCE)를 사용하여 직렬로 연결하였다.The second raw material supply valve member (v5, v6, v7) of the raw material supply unit uses a high-purity PTFE tube (1/16" od, 0.03" id) and a polyethylene ether ketone 1/4-28 nut (IDEX HEALTH & SCIENCE) and connected in series with four solenoid valves (v1, v2, v3, v4), which are intermediate reaction control valves, and the four solenoid valves (v1, v2, v3, v4) are respectively the intermediate micro mixers (M1, M2, M3, M4) and high-purity PTFE tubes (1/16" od, 0.03" id) and polyethylene ether ketone 1/4-28 nuts (IDEX HEALTH & SCIENCE) were connected in series.
상기 4개의 솔레노이드 밸브(v1, v2, v3, v4)를 포함하는 중간체 반응조절 밸브부재는 제1 원료(2-브로모페닐 이소티오시아네이트)에서 Br과 제2 원료(n-BuLi, PhLi 및 s-BuLi 중 선택된 어느 하나)에서 Li의 교환 반응이 일어나는 반응 부피(VR)를 제어하기 위한 것이다. The intermediate reaction control valve member including the four solenoid valves (v1, v2, v3, v4) is a first raw material (2-bromophenyl isothiocyanate) Br and a second raw material ( n- BuLi, PhLi and It is for controlling the reaction volume (V R ) in which the exchange reaction of Li occurs in any one selected from s -BuLi).
상기 포함하는 중간체 반응조절 밸브부재에서 솔레노이드 밸브는 Interaction Design Institutelvera(Italy)의 마이크로 컨트롤러(Arduino Uno)를 기반으로 자체 제작한 컨트롤 박스에 연결되며, 마이크로 컨트롤러와 MathWorks (MA, USA)의 PC MATLAB 프로그램을 이용한 시리얼 통신으로 개폐를 제어하였다.In the intermediate reaction control valve member including the above, the solenoid valve is connected to a control box self-manufactured based on a microcontroller (Arduino Uno) of Interaction Design Institutelvera (Italy), and a PC MATLAB program of the microcontroller and MathWorks (MA, USA). Opening/closing was controlled by serial communication using .
제1 생산물 반응부(400)First product reaction unit 400
제1 생산물 반응부의 제1 생산물 마이크로 혼합기는 상기 중간체 반응부(200)로부터 공급받은 상기 중간체와 상기 원료 공급부(100)로부터 공급받은 상기 제3 원료를 혼합하여 제2 혼합물을 생성하는 제1 생산물 마이크로 혼합기(M5)를 포함하고, 제1 생산물을 제조하는 것이다.The first product micromixer of the first product reaction unit mixes the intermediate supplied from the intermediate reaction unit 200 and the third raw material supplied from the raw material supply unit 100 to generate a second mixture. It includes a mixer (M5), and is to prepare the first product.
이때, 상기 제1 생산물은 아래 구조식 2로 표시되는 화합물일 수 있다. In this case, the first product may be a compound represented by Structural Formula 2 below.
[구조식 2][Structural Formula 2]
Figure PCTKR2022012803-appb-img-000002
Figure PCTKR2022012803-appb-img-000002
상기 구조식 2에서, In Structural Formula 2,
R1은 상기 제3 원료를 phenyl- (2a), p-anisyl- (2b) 및 p-nitrophenyl- (2c) isocyanate 용액(용매: THF)으로 이루어진 군으로부터 선택된 어느 하나를 선택함에 따라 각각 수소원자, 메톡시기(-O-CH3), 또는 질산기(-NO2)이다.R 1 is a hydrogen atom as the third raw material is selected from the group consisting of phenyl- (2a), p -anisyl- (2b) and p -nitrophenyl- (2c) isocyanate solution (solvent: THF) , a methoxy group (-O-CH 3 ), or a nitric acid group (-NO 2 ).
상기 구조식 2로 표시되는 제1 생산물과 염화 암모늄(Ammonium Chloride)의 포화수용액과의 혼합을 통해 반응 종결(quenching)을 유도하여 최종적으로 아래 구조식 3으로 표시되는 제1 생산물을 획득할 수 있다. By mixing the first product represented by Structural Formula 2 with a saturated aqueous solution of ammonium chloride, quenching is induced to finally obtain the first product represented by Structural Formula 3 below.
[구조식 3][Structural Formula 3]
Figure PCTKR2022012803-appb-img-000003
Figure PCTKR2022012803-appb-img-000003
상기 구조식 3에서, In Structural Formula 3,
R1은 상기 제3 원료를 phenyl- (2a), p-anisyl- (2b) 및 p-nitrophenyl- (2c) isocyanate 용액(용매: THF)으로 이루어진 군으로부터 선택된 어느 하나를 선택함에 따라 각각 수소원자, 메톡시기(-O-CH3), 또는 질산기(-NO2)이다.R 1 is a hydrogen atom as the third raw material is selected from the group consisting of phenyl- (2a), p -anisyl- (2b) and p -nitrophenyl- (2c) isocyanate solution (solvent: THF) , a methoxy group (-O-CH 3 ), or a nitric acid group (-NO 2 ).
상기 제1 생산물 마이크로 혼합기는 T자형이며 내부 지름이 250 μm인 스테인리스강(SUS304) 마이크로 혼합기(Sanko Seiki Co.)(M5)를 사용하였다.The first product micromixer was a T-shaped stainless steel (SUS304) micromixer (Sanko Seiki Co.) (M5) having an inner diameter of 250 μm.
상기 중간체 반응부(200) 및 상기 제1 생산물 반응부(400)는 온도(T)를 제어하기 위해 순환 항온조와 연결된 특별히 설계된 쿨링 챔버에 배치되었다. Jeio Tech (Korea)의 순환 항온조(RW3-2035, 20L, -35 ~ 150℃)는 RS-232 방식으로 컴퓨터와 연결되어 Modbus 프로토콜을 통해 PC와 통신하며, MATLAB 프로그램을 통해 냉각수의 목표 온도 및 펌핑 속도 등을 제어할 수 있다.The intermediate reaction unit 200 and the first product reaction unit 400 are disposed in a specially designed cooling chamber connected to a circulating thermostat to control temperature T. The circulation thermostat (RW3-2035, 20L, -35 ~ 150℃) of Jeio Tech (Korea) is connected to a computer through RS-232 method and communicates with the PC through Modbus protocol. You can control speed, etc.
일반적인 FT-IR 분광기(Jasco FT/IR-4600 분광기)에는 흐름 기반 인-라인 IR 시스템을 구축하기 위해 IR 광원/레이저가 투과 가능한 ZnSe 창 (경로 길이 0.1mm)을 기반으로 하는 밀봉된 흐름 셀 액세서리 (Specac®)가 장착되어 있다. 밀봉된 플로우 셀 액세서리는 전용 홀더를 통해 FT-IR 분광기 장치에 정렬되고 플로우 셀에 연결된 1/16" Swagelok 피팅을 통해 AMR에 연결된다. 흐름 기반 모니터링은 지속적으로 유지되며 스펙트럼 데이터는 샘플당 8 스캔으로 20 초 간격으로 수집되도록 설정하였다.A typical FT-IR spectrometer (Jasco FT/IR-4600 spectrometer) includes a sealed flow cell accessory based on an IR light source/laser transmissive ZnSe window (path length 0.1 mm) to build a flow-based in-line IR system. (Specac®) is installed. The sealed flow cell accessory aligns to the FT-IR spectrometer unit through a dedicated holder and connects to the AMR through a 1/16" Swagelok fitting connected to the flow cell. Flow-based monitoring is maintained continuously, with spectral data 8 scans per sample. was set to be collected at 20 second intervals.
획득한 데이터는 MATLAB 및 Python 언어를 기반으로 자체 개발한 MACRO 프로그램을 통해 실시간으로 처리할 수 있으며, yield 또는 변환 데이터로 표현된다.Acquired data can be processed in real time through the MACRO program developed in-house based on MATLAB and Python languages, and is expressed as yield or conversion data.
정상 상태에 도달한 후, 별도로 명시되지 않는 한 반응기 또는 인-라인 분석 장치 후에 생성물 용액을 30 초 동안 수집하였다.After reaching steady state, the product solution was collected for 30 seconds after the reactor or in-line analyzer unless otherwise specified.
실시예 2: 제1 원료, 제2 원료, 제3 원료 및 제4 원료를 사용한 경우Example 2: When using the first raw material, the second raw material, the third raw material, and the fourth raw material
원료 공급부(100)Raw material supply unit 100
제4 원료를 추가로 포함하고, 제4 원료공급 밸브를 포함하는 제4 원료공급 밸브부재를 추가로 포함하는 것을 제외하고는 실시예 1의 원료 공급부와 동일하게 원료 공급부를 준비하였다.The raw material supply unit was prepared in the same manner as the raw material supply unit of Example 1, except that a fourth raw material additionally included and a fourth raw material supply valve member including a fourth raw material supply valve was further included.
상기 제4 원료는 3 종류를 사용하였고, 각각 benzyl- (3a), p-chloro benzyl- (3b) 및 p-trifluoromethoxy benzyl- (3c) bromide 용액(용매: THF)을 사용하였다.Three types of the fourth raw material were used, and benzyl- (3a), p -chloro benzyl- (3b), and p -trifluoromethoxy benzyl- (3c) bromide solutions (solvent: THF) were used, respectively.
3 종류의 상기 제4 원료는 고순도 PTFE 튜브(1/16" od, 0.03" id) 및 폴리에틸렌 에테르 케톤 1/4-28 너트(IDEX HEALTH & SCIENCE)를 이용하여 각각 제4 원료공급 밸브인 솔레노이드 밸브(LVM15R3HY-6C1U, SMC Korea)(v11, v12, v13)와 직렬로 연결하였고, 상기 3개의 솔레노이드 밸브(v11, v12, v13)는 서로 병렬로 연결하여 제4 원료공급 밸브부재를 형성하였다.The three types of fourth raw materials are solenoid valves, each of which is a fourth raw material supply valve, using a high purity PTFE tube (1/16" od, 0.03" id) and a polyethylene ether ketone 1/4-28 nut (IDEX HEALTH & SCIENCE) (LVM15R3HY-6C1U, SMC Korea) (v11, v12, v13) and connected in series, and the three solenoid valves (v11, v12, v13) were connected in parallel to each other to form a fourth raw material supply valve member.
상기 제4 원료공급 밸브부재(v11, v12, v13)는 제4 원료 유량속도 조절기인 high-performance isocratic pump(hp2)와 직렬로 연결하였다.The fourth raw material supply valve member (v11, v12, v13) is connected in series with a high-performance isocratic pump (hp2), which is a fourth raw material flow rate controller.
상기 제4 원료공급 밸브부재에서 각각의 솔레노이드 밸브는 Interaction Design Institutelvera(Italy)의 마이크로 컨트롤러(Arduino Uno)를 기반으로 자체 제작한 컨트롤 박스에 연결되며, 마이크로 컨트롤러와 MathWorks (MA, USA)의 PC MATLAB 프로그램을 이용한 시리얼 통신으로 개폐를 제어하였다.In the fourth raw material supply valve member, each solenoid valve is connected to a control box self-manufactured based on a microcontroller (Arduino Uno) of Interaction Design Institutelvera (Italy), and a microcontroller and PC MATLAB of MathWorks (MA, USA) Opening/closing was controlled by serial communication using a program.
중간체 반응부(200) Intermediate reaction unit 200
중간체 반응부는 실시예 1의 중간체 반응부와 동일하게 준비하였다.The intermediate reaction part was prepared in the same way as the intermediate reaction part of Example 1.
중간체 반응 조절부(300) Intermediate reaction controller 300
중간체 반응 조절부는 실시예 1의 중간체 반응 조절부와 동일하게 준비하였다.The intermediate reaction control unit was prepared in the same manner as the intermediate reaction control unit of Example 1.
제1 생산물 반응부(400)First product reaction unit 400
제1 생산물 반응부의 제1 생산물 마이크로 혼합기는 상기 중간체 반응부(200)로부터 공급받은 상기 중간체와 상기 원료 공급부(100)로부터 공급받은 상기 제3 원료를 혼합하여 제2 혼합물을 생성하는 제1 생산물 마이크로 혼합기(M5)를 포함하고, 제1 생산물을 제조하는 것이다.The first product micromixer of the first product reaction unit mixes the intermediate supplied from the intermediate reaction unit 200 and the third raw material supplied from the raw material supply unit 100 to generate a second mixture. It includes a mixer (M5), and is to prepare the first product.
이때, 상기 제1 생산물은 아래 구조식 2로 표시되는 화합물일 수 있다. In this case, the first product may be a compound represented by Structural Formula 2 below.
[구조식 2][Structural Formula 2]
Figure PCTKR2022012803-appb-img-000004
Figure PCTKR2022012803-appb-img-000004
상기 구조식 2에서, In Structural Formula 2,
R1은 상기 제3 원료를 phenyl- (2a), p-anisyl- (2b) 및 p-nitrophenyl- (2c) isocyanate 용액(용매: THF)으로 이루어진 군으로부터 선택된 어느 하나를 선택함에 따라 각각 수소원자, 메톡시기(-O-CH3), 또는 질산기(-NO2)이다.R 1 is a hydrogen atom as the third raw material is selected from the group consisting of phenyl- (2a), p -anisyl- (2b) and p -nitrophenyl- (2c) isocyanate solution (solvent: THF) , a methoxy group (-O-CH 3 ), or a nitric acid group (-NO 2 ).
상기 제1 생산물 마이크로 혼합기는 T자형이며 내부 지름이 250 μm인 스테인리스강(SUS304) 마이크로 혼합기(Sanko Seiki Co.)(M5)를 사용하였다.The first product micromixer was a T-shaped stainless steel (SUS304) micromixer (Sanko Seiki Co.) (M5) having an inner diameter of 250 μm.
제2 생산물 반응부(500)Second product reaction unit 500
상기 제2 생산물 반응부는 상기 제1 생산물 반응부로부터 공급받은 상기 제1 생산물과 상기 원료 공급부로부터 공급받은 상기 제4 원료를 혼합하여 제3 혼합물을 생성하는 제2 생산물 마이크로 혼합기를 포함하고, 제2 생산물을 제조하는 것이다.The second product reaction unit includes a second product micromixer configured to generate a third mixture by mixing the first product supplied from the first product reaction unit and the fourth raw material supplied from the raw material supply unit, and to make a product.
이때 상기 제1 생산물의 체류 시간(제1 생산물이 제2 마이크로 혼합기에 도달하기 전까지 시간)은 1 내지 3초 일 수 있다. 상기 제1 생산물의 체류 시간이 1초 미만일 경우 제2 생산물의 수율이 높지 않아 바람직하지 않고, 3초를 초과할 경우 상기 구조식 2의 -SLi가 =S로 변화하거나 분해되어 제4 원료와 반응이 어려움으로 바람직하지 않다. At this time, the residence time of the first product (time until the first product reaches the second micro mixer) may be 1 to 3 seconds. When the retention time of the first product is less than 1 second, the yield of the second product is not high, which is not preferable, and when it exceeds 3 seconds, -SLi in Structural Formula 2 is changed to =S or decomposed to react with the fourth raw material. Not desirable due to difficulty.
상세하게는, 상기 제1 생산물의 체류 시간이 3초를 초과할 때부터 상기 구조식 2의 -SLi가 =S로 변화 또는 분해가 진행되나, 그 속도가 느려 최종적으로 제2 생산물의 수율은 변화하지 않는 것을 확인할 수 있다(아래 시험예 2 참고). 한편, 상기 제1 생산물의 체류 시간이 3초를 초과할 경우 상기 구조식 2로 표시되는 제1 생산물의 분해 및 종결이 거의 진행되었기 때문에 제4 원료와 반응이 어려워 바람직하지 않다.Specifically, when the residence time of the first product exceeds 3 seconds, -SLi in Structural Formula 2 is changed or decomposed to =S, but the rate is slow, so the yield of the second product does not change. It can be confirmed that it does not (see Test Example 2 below). On the other hand, when the residence time of the first product exceeds 3 seconds, since the decomposition and termination of the first product represented by Structural Formula 2 has almost progressed, it is difficult to react with the fourth raw material, which is not preferable.
상기 제2 생산물 마이크로 혼합기는 T자형이며 내부 지름이 250 μm인 스테인리스강(SUS304) 마이크로 혼합기(Sanko Seiki Co.)(M6)를 사용하였다.The second product micro mixer was a T-shaped stainless steel (SUS304) micro mixer (Sanko Seiki Co.) (M6) having an inner diameter of 250 μm.
상기 중간체 반응부(200) 및 상기 제1 생산물 반응부(400)는 온도(T)를 제어하기 위해 순환 항온조와 연결된 특별히 설계된 쿨링 챔버에 배치되었다. Jeio Tech (Korea)의 순환 항온조(RW3-2035, 20L, -35 ~ 150℃)는 RS-232 방식으로 컴퓨터와 연결되어 Modbus 프로토콜을 통해 PC와 통신하며, MATLAB 프로그램을 통해 냉각수의 목표 온도 및 펌핑 속도 등을 제어할 수 있다.The intermediate reaction unit 200 and the first product reaction unit 400 are disposed in a specially designed cooling chamber connected to a circulating thermostat to control temperature T. The circulation thermostat (RW3-2035, 20L, -35 ~ 150℃) of Jeio Tech (Korea) is connected to a computer through RS-232 method and communicates with the PC through Modbus protocol. You can control speed, etc.
일반적인 FT-IR 분광기(Jasco FT/IR-4600 분광기)에는 흐름 기반 인-라인 IR 시스템을 구축하기 위해 IR 광원/레이저가 투과 가능한 ZnSe 창 (경로 길이 0.1mm)을 기반으로 하는 밀봉된 흐름 셀 액세서리 (Specac®)가 장착되어 있다. 밀봉된 플로우 셀 액세서리는 전용 홀더를 통해 FT-IR 분광기 장치에 정렬되고 플로우 셀에 연결된 1/16" Swagelok 피팅을 통해 AMR에 연결된다. 흐름 기반 모니터링은 지속적으로 유지되며 스펙트럼 데이터는 샘플당 8 스캔으로 20 초 간격으로 수집되도록 설정하였다.A typical FT-IR spectrometer (Jasco FT/IR-4600 spectrometer) includes a sealed flow cell accessory based on an IR light source/laser transmissive ZnSe window (path length 0.1 mm) to build a flow-based in-line IR system. (Specac®) is installed. The sealed flow cell accessory aligns to the FT-IR spectrometer unit through a dedicated holder and connects to the AMR through a 1/16" Swagelok fitting connected to the flow cell. Flow-based monitoring is maintained continuously, with spectral data 8 scans per sample. was set to be collected at 20 second intervals.
획득한 데이터는 MATLAB 및 Python 언어를 기반으로 자체 개발한 MACRO 프로그램을 통해 실시간으로 처리할 수 있으며, yield 또는 변환 데이터로 표현된다.Acquired data can be processed in real time through the MACRO program developed in-house based on MATLAB and Python languages, and is expressed as yield or conversion data.
정상 상태에 도달한 후, 별도로 명시되지 않는 한 반응기 또는 인-라인 분석 장치 후에 생성물 용액을 30 초 동안 수집하였다.After reaching steady state, the product solution was collected for 30 seconds after the reactor or in-line analyzer unless otherwise specified.
도 2a는 본 발명 하나의 실시예의 자동화된 마이크로 조합화학 반응장치에서 사용한 autocollector의 모식도이고, 도 2b는 본 발명 하나의 실시예의 자동화된 마이크로 조합화학 반응장치에서 사용한 autocollector를 운용하는 것을 나타낸 모식도이다.Figure 2a is a schematic diagram of the autocollector used in the automated micro combinatorial chemical reactor of one embodiment of the present invention, Figure 2b is a schematic diagram showing the operation of the autocollector used in the automated micro combinatorial chemical reactor of one embodiment of the present invention.
도 2a 및 2b에 따르면, Autocollector는 순차적으로 샘플 수집을 가능하게 하기 위해 10개의 바이알(30 mL, 폐기물용 1개, 샘플용 9개)를 로드할 수 있는 회전 플레이트가 CNC milling을 사용하여 제작되었으며, 회전을 미세하게 제어하기 위해 상기 회전 플레이트를 stepper motor(23HS5623-P4-8, HandsOnTech, Malaysia)의 회전축에 연결하였다. 또한, microstep driver(TB6600, DFRobot, China)에 상기 stepper motor 를 연결하여 회전 각도와 속도를 정밀하게 제어하였다. MATLAB이 설치된 중앙 컴퓨터와 모터 간의 연결은 오픈 소스 기반의 마이크로 컨트롤러인 Arduino R3 DIP board(Arduino, Italy)를 통해 이루어졌다. Stepper motor의 회전 정보는 Arduino board와 직렬 통신을 통해 중앙 컴퓨터의 명령에 따라 결정되었으며 각 상황에서 샘플 수집, 반응기 안정화 및 세척 프로세스가 가능하였다.According to Figures 2a and 2b, the autocollector was fabricated using CNC milling with a rotary plate capable of loading 10 vials (30 mL, 1 for waste, 9 for samples) to enable sequential sample collection. In order to finely control the rotation, the rotation plate was connected to the rotation axis of a stepper motor (23HS5623-P4-8, HandsOnTech, Malaysia). In addition, the stepper motor was connected to a microstep driver (TB6600, DFRobot, China) to precisely control the rotation angle and speed. The connection between the central computer with MATLAB installed and the motor was made through an open source based microcontroller Arduino R3 DIP board (Arduino, Italy). The rotation information of the stepper motor was determined according to the commands of the central computer through serial communication with the Arduino board, and sample collection, reactor stabilization, and cleaning processes were possible in each situation.
[시험예] [Test Example]
시험예 1: 제1 생산물의 높은 수율 확보를 위한 최적의 조건 확인Test Example 1: Confirmation of optimal conditions for securing high yield of the first product
제1 생산물을 높은 수율로 합성하기 위해 자동화된 마이크로 조합화학 반응장치를 사용하여 베이지안 최적화 알고리즘에 따른 제2 원료(유기리튬)의 종류, 각각 원료의 유량속도(Q), 반응부피(VR) 및 반응 온도(T)의 최적화 값을 도출하였다.Type of second raw material (organolithium), flow rate (Q), reaction volume (V R and optimized values of the reaction temperature (T) were derived.
상세하게는, 각각 원료의 유량속도(Q)는 6 내지 24 mL/min, 중간체 반응부 및 제1 생산물 반응부의 반응 온도(T)는 -20 내지 20 ℃의 범위에서 각각 연속적으로 제어되는 반면, 제2 원료(유기리튬)의 종류는 n-부틸리튬(n - BuLi), 페닐리튬(PhLi) 및 sec-부틸리튬(s-BuLi)으로, 반응부피(VR)는 787, 237, 33 및 2 μL로 불연속적으로 제어되었다. Specifically, the flow rate (Q) of each raw material is 6 to 24 mL/min, the reaction temperature (T) of the intermediate reaction part and the first product reaction part is continuously controlled in the range of -20 to 20 ° C, respectively, The types of the second raw material (organolithium) were n- butyllithium ( n - BuLi), phenyllithium (PhLi), and sec -butyllithium ( s -BuLi), and the reaction volumes ( VR ) were 787, 237, 33 and It was controlled discontinuously with 2 μL.
이때 상기 유량속도(Q)는 제1 원료인 2-브로모페닐 이소티오시아네이트의 유량속도(Q1), 제2 원료(유기리튬)(n-BuLi, PhLi 및 s-BuLi로 이루어진 군으로부터 선택된 어느 하나)의 유량속도(Q2) 및 제3 원료(4-니트로페닐이소시아네이트)의 유량속도(Q3)를 합한 값이며, 각각의 비율(Q1 : Q2 : Q3)은 4 : 1 : 3으로 조절하였다. At this time, the flow rate (Q) is the flow rate (Q 1 ) of 2-bromophenyl isothiocyanate as the first raw material, and the second raw material (organolithium) (from the group consisting of n-BuLi, PhLi and s-BuLi It is the sum of the flow rate (Q 2 ) and the flow rate (Q 3 ) of the third raw material (4-nitrophenyl isocyanate), and each ratio (Q 1 : Q 2 : Q 3 ) is 4: It was adjusted to 1:3.
상기 반응부피(VR) 787, 237, 33 및 2 μL는 n-부틸리튬의 주입 위치를 조절함으로써 설정되고, 상세하게는 4개의 중간체 마이크로 혼합기(M1, M2, M3, M4)와 각각 직렬로 연결된 밸브(v1, v2, v3, v4)를 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 n-부틸리튬을 상기 4개의 중간체 마이크로 혼합기 중 어느 하나에 공급함으로써 반응부피를 조절하였다.The reaction volumes (V R ) of 787, 237, 33, and 2 μL were set by adjusting the injection position of n -butyllithium, specifically, in series with four intermediate micro mixers (M1, M2, M3, and M4), respectively. The reaction volume was controlled by supplying n -butyllithium to any one of the above four intermediate micromixers by independently opening or closing the connected valves (v1, v2, v3, v4).
또한, 초기 실험을 위한 반응 조건은 변수 범위 내에서 무작위로 선택되었으며 반응 결과는 인라인 FT-IR로 자동으로 분석되었다. 총 15회의 실험을 반복하여 유기리튬의 종류, 유량속도(Q), 반응부피(VR) 및 반응 온도(T)의 최적화 값을 도출하였다.In addition, the reaction conditions for the initial experiments were randomly selected within a range of parameters and the reaction results were automatically analyzed by inline FT-IR. A total of 15 experiments were repeated to derive optimized values for the type of organolithium, flow rate (Q), reaction volume ( VR ), and reaction temperature (T).
도 3a는 실시예 1의 자동화된 마이크로 조합화학 반응장치에 베이지안 최적화 알고리즘을 추가로 사용하여 제1 생산물의 높은 수율 확보를 위한 최적화 반응실험을 15번 수행하였을 때 결과를 나타낸 것이고, 도 3b는 상기 도 3a의 최적화 반응실험을 15번 수행하였을 때 수율을 정리하여 나타낸 것이다.Figure 3a shows the results when an optimization reaction experiment was performed 15 times to secure a high yield of the first product by additionally using a Bayesian optimization algorithm in the automated micro combinatorial chemical reactor of Example 1, and Figure 3b shows the result. The yield is summarized and shown when the optimization reaction experiment of FIG. 3a is performed 15 times.
도 3a 및 3b에 따르면, 제2 원료(유기리튬)로 페닐리튬(PhLi)을 사용하며, 유량속도(Q) 17 mL/min, 반응부피(VR) 2 μL 및 반응 온도(T) 19 ℃일 경우 1 시간 30 분 이내에 제1 생산물의 수율이 90 %에 도달하는 것을 확인할 수 있다.3a and 3b, phenyllithium (PhLi) is used as the second raw material (organolithium), the flow rate (Q) is 17 mL/min, the reaction volume ( VR ) is 2 µL, and the reaction temperature (T) is 19 °C In one case, it can be confirmed that the yield of the first product reaches 90% within 1 hour and 30 minutes.
시험예 2: 제1 생산물의 반응부피에 따른 제2 생산물 수율 확인Test Example 2: Confirmation of the second product yield according to the reaction volume of the first product
실시예 2의 자동화된 마이크로 조합화학 반응장치에서, 제1 생산물 반응부(400)와 제2 생산물 반응부(500)를 연결하는 튜브형 반응기는 GL Science에서 구입한 4 cm로 절단된 내부 지름이 250 μm인 스테인리스강(SUS304) 튜브 및 각각 70, 26 및 4 cm로 절단된 내부 지름이 1000 μm인 스테인리스강(SUS304) 튜브로 이루어진 군으로부터 선택된 1종 이상을 사용하였다.In the automated micro combinatorial chemical reactor of Example 2, the tubular reactor connecting the first product reaction unit 400 and the second product reaction unit 500 has an inner diameter of 250 purchased from GL Science and cut to 4 cm. At least one selected from the group consisting of μm stainless steel (SUS304) tubes and stainless steel (SUS304) tubes having an inner diameter of 1000 μm cut into 70, 26, and 4 cm, respectively, was used.
상세하게는, 상기 제1 생산물 반응부(400)와 상기 제2 생산물 반응부(500)를 연결하는 튜브형 반응기를 다양하게 사용하여 제1 생산물의 반응부피를 393, 785, 1,571 및 3,142 μL로 설정하였고, 이에 따른 상기 튜브형 반응기에서 상기 제1 생산물의 체류 시간 및 제2 생산물의 수율을 아래 표 1에 정리하여 나타내었다.In detail, the reaction volume of the first product is set to 393, 785, 1,571 and 3,142 μL by using various tubular reactors connecting the first product reaction unit 400 and the second product reaction unit 500. Accordingly, the residence time of the first product and the yield of the second product in the tubular reactor are summarized in Table 1 below.
제1 생산물 반응부피 (μL)First product reaction volume (μL) 제1 생산물 체류 시간 (s)First product residence time (s) 제2 생산물 수율 (%)Second product yield (%)
393393 2.22.2 8080
785785 4.54.5 8080
1,5711,571 9.09.0 8080
3,1423,142 18.018.0 8080
상기 표 1에 따르면, 제2 생산물의 수율은 아래 구조식 2로 표시되는 제1 생산물의 체류 시간 변화에 크게 영향을 받지 않는 것으로 나타나는데, 이는 상기 구조식 2로 표시되는 제1 생산물이 비교적 안정하기 때문이다.According to Table 1, the yield of the second product is not significantly affected by the change in residence time of the first product represented by Structural Formula 2 below, because the first product represented by Structural Formula 2 is relatively stable .
[구조식 2][Structural Formula 2]
Figure PCTKR2022012803-appb-img-000005
Figure PCTKR2022012803-appb-img-000005
상기 구조식 2에서, In Structural Formula 2,
R1은 상기 제3 원료를 phenyl- (2a), p-anisyl- (2b) 및 p-nitrophenyl- (2c) isocyanate 용액(용매: THF)으로 이루어진 군으로부터 선택된 어느 하나를 선택함에 따라 각각 수소원자, 메톡시기(-O-CH3), 또는 질산기(-NO2)이다.R 1 is a hydrogen atom as the third raw material is selected from the group consisting of phenyl- (2a), p -anisyl- (2b) and p -nitrophenyl- (2c) isocyanate solution (solvent: THF) , a methoxy group (-O-CH 3 ), or a nitric acid group (-NO 2 ).
상세하게는, 상기 제1 생산물의 체류 시간이 3초를 초과할 때부터 상기 구조식 2의 -SLi가 =S로 변화 또는 분해가 진행되나, 그 속도가 느려 최종적으로 제2 생산물의 수율은 변화하지 않는 것을 확인할 수 있다. Specifically, when the residence time of the first product exceeds 3 seconds, -SLi in Structural Formula 2 is changed or decomposed to =S, but the rate is slow, so the yield of the second product does not change. can confirm that it is not.
따라서, 상기 제2 생산물의 수율은 상기 제1 생산물의 체류 시간 변화에 크게 영향을 받지 않으므로 상기 제1 생산물의 반응부피는 393 μL로 고정하여 설정하였다. Therefore, since the yield of the second product was not greatly affected by the change in residence time of the first product, the reaction volume of the first product was fixed at 393 μL.
시험예 3: 제3 원료 및 제4 원료의 종류에 따른 9개의 생산물 제조Test Example 3: Preparation of 9 products according to the types of the third raw material and the fourth raw material
시험예 1에서 확인한 제2 원료(유기리튬)의 종류, 각각 원료의 유량속도(Q), 반응부피(VR) 및 반응 온도(T)의 최적화 값인 페닐리튬(PhLi), 17 mL/min, 2 μL 및 19 ℃로 실시예 2의 자동화된 마이크로 조합화학 합성장치의 조건을 설정하였다.The type of the second raw material (organolithium) confirmed in Test Example 1, phenyllithium (PhLi), which is the optimized value of the flow rate (Q ), reaction volume ( VR ), and reaction temperature (T) of each raw material, 17 mL/min, The conditions of the automated micro combinatorial chemical synthesizer of Example 2 were set to 2 μL and 19 ° C.
상세하게는, 제1 원료는 0.10 M 2-bromophenyl isothiocyanate in THF로 준비되었으며, 제1 원료의 유량속도는 17/2 mL/min(Q1 = Q/2 mL/min)로 설정하였다. 제2 원료는 0.42 M phenyl lithium in hexane or Et2O로 준비되었으며 제2 원료의 유량속도는 17/8 mL/min(Q2 = Q/8 mL/min)로 설정하였다. 제3 원료는 0.22 M 농도의 용액(용매 THF)으로 준비되었으며 유량속도는 17/4 mL/min(Q3 = Q/4 mL/min)로 설정하였다. 제4 원료는 1.2 M 농도의 용액(용매 THF)으로 준비되었으며 유량속도는 17/8 mL/min(Q4 = Q/8 mL/min)로 설정하였다. In detail, the first raw material was prepared with 0.10 M 2-bromophenyl isothiocyanate in THF, and the flow rate of the first raw material was set to 17/2 mL/min (Q 1 = Q/2 mL/min). The second raw material was prepared with 0.42 M phenyl lithium in hexane or Et 2 O, and the flow rate of the second raw material was set to 17/8 mL/min (Q 2 = Q/8 mL/min). The third raw material was prepared as a solution (solvent THF) with a concentration of 0.22 M and the flow rate was set to 17/4 mL/min (Q 3 = Q/4 mL/min). The fourth raw material was prepared as a solution (solvent THF) with a concentration of 1.2 M and the flow rate was set to 17/8 mL/min (Q 4 = Q/8 mL/min).
실시예 2의 자동화된 마이크로 조합화학 합성장치를 사용할 경우, 제1 원료, 제2 원료, 3개의 제3 원료(2a, 2b, 2c) 및 3개의 제4 원료(3a, 3b, 3c)의 조합에 따라 9 종류(4a 내지 4i)의 생산물이 제조되었으며, 이때 각각 사용한 제3 원료 및 제4 원료와 그 결과를 아래 표 2에 정리하여 나타내었다.In the case of using the automated micro combinatorial chemical synthesizer of Example 2, a combination of a first raw material, a second raw material, three third raw materials 2a, 2b, and 2c, and three fourth raw materials 3a, 3b, and 3c According to this, nine types of products (4a to 4i) were produced, and at this time, the third raw material and the fourth raw material used respectively and the results are summarized in Table 2 below.
생산물product 제3 원료3rd raw material 제4 원료4th raw material
구분 division 화학식chemical formula
4a4a
Figure PCTKR2022012803-appb-img-000006
Figure PCTKR2022012803-appb-img-000006
Phenyl isocyanatePhenyl isocyanate Benzyl bromideBenzyl bromide
4b4b
Figure PCTKR2022012803-appb-img-000007
Figure PCTKR2022012803-appb-img-000007
Phenyl isocyanatePhenyl isocyanate 4-chlorobenezyl bromide4-chlorobenzyl bromide
4c4c
Figure PCTKR2022012803-appb-img-000008
Figure PCTKR2022012803-appb-img-000008
Phenyl isocyanatePhenyl isocyanate 4-(trifluoromethoxy)benzyl bromide4-(trifluoromethoxy)benzyl bromide
4d4d
Figure PCTKR2022012803-appb-img-000009
Figure PCTKR2022012803-appb-img-000009
4-methoxyphenyl isocyanate4-methoxyphenyl isocyanate Benzyl bromideBenzyl bromide
4e4e
Figure PCTKR2022012803-appb-img-000010
Figure PCTKR2022012803-appb-img-000010
4-methoxyphenyl isocyanate4-methoxyphenyl isocyanate 4-chlorobenezyl bromide4-chlorobenzyl bromide
4f4f
Figure PCTKR2022012803-appb-img-000011
Figure PCTKR2022012803-appb-img-000011
4-methoxyphenyl isocyanate4-methoxyphenyl isocyanate 4-(trifluoromethoxy)benzyl bromide4-(trifluoromethoxy)benzyl bromide
4g4g
Figure PCTKR2022012803-appb-img-000012
Figure PCTKR2022012803-appb-img-000012
4-nitrophenyl isocyanate4-nitrophenyl isocyanate Benzyl bromideBenzyl bromide
4h4h
Figure PCTKR2022012803-appb-img-000013
Figure PCTKR2022012803-appb-img-000013
4-nitrophenyl isocyanate4-nitrophenyl isocyanate 4-chlorobenezyl bromide4-chlorobenzyl bromide
4i4i
Figure PCTKR2022012803-appb-img-000014
Figure PCTKR2022012803-appb-img-000014
4-nitrophenyl isocyanate4-nitrophenyl isocyanate 4-(trifluoromethoxy)benzyl bromide4-(trifluoromethoxy)benzyl bromide
시험예 3-1: 생산물 합성 확인Test Example 3-1: Confirmation of Product Synthesis
실시예 2의 자동화된 마이크로 조합화학 합성장치를 사용하여 제조된 9 종류의 생산물은 각각 헥산(hexane)으로 재결정하여 추출 및 정제하였다. 9종의 생산물을 각각 1H NMR 및 13C NMR 분석하여 각각 목표한 화합물이 합성된 것을 확인하였으며, 그 중 상기 표 2의 4e 화합물, 4f 화합물, 4h 화합물 및 4i 화합물의 결과를 도 4 내지 11에 나타내었다.The 9 types of products prepared using the automated micro-combination chemical synthesizer of Example 2 were extracted and purified by recrystallization with hexane, respectively. 1 H NMR and 13 C NMR analysis of the nine products, respectively, confirmed that the target compounds were synthesized. shown in
상세하게는, 도 4는 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4e 화합물의 1H NMR 결과를 나타낸 것이고, 도 5는 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4e 화합물의 13C NMR 결과를 나타낸 것이다.In detail, FIG. 4 shows the 1 H NMR results of the 4e compound prepared using the automated micro combinatorial reactor of Example 2, and FIG. It shows the 13 C NMR result of the 4e compound prepared by
도 4 및 도 5에 따르면, 상기 4e 화합물의 1H NMR 값 및 13C NMR 값은 아래와 같이 나타났으며 목표한 생산물 중 하나인 2-((4-chlorobenzyl)thio)-3-(4-methoxyphenyl)quinazolin-4(3H)-one 화합물이 잘 합성된 것을 확인할 수 있다.4 and 5, the 1 H NMR and 13 C NMR values of the 4e compound were shown below, and one of the targeted products, 2-((4-chlorobenzyl)thio)-3-(4-methoxyphenyl ) It can be confirmed that the quinazolin-4(3H)-one compound was well synthesized.
1H NMR (500 MHz, CDCl3) δ 8.24 (dd, J = 4.5 Hz, 1H), 7.75 (td, J = 8.4 Hz, 1H), 7.65 (d, J = 4.0 Hz, 1H), 7.41 (td, J = 8.0 Hz, 1H), 7.34-7.24 (m, 4H), 7.20 (dt, J = 7.6 Hz, 2H), 7.01 (dt, J = 7.5 Hz, 2H), 4.36 (s, 2H), 3.86 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3) δ 162.2, 160.7, 157.4, 147.8, 135.5, 134.8, 133.4, 130.8, 130.4, 128.8, 128.2, 127.5, 126.3, 126.0 120.1, 115.1, 55.6 36.4 ppm; HRMS (EI) (m/z) cald. for C22H17ClN2O2S+ [M]+: 408.0699; found: 408.0697. 1H NMR (500 MHz, CDCl 3 ) δ 8.24 (dd, J = 4.5 Hz, 1H), 7.75 (td, J = 8.4 Hz, 1H), 7.65 (d, J = 4.0 Hz, 1H), 7.41 (td , J = 8.0 Hz, 1H), 7.34–7.24 (m, 4H), 7.20 (dt, J = 7.6 Hz, 2H), 7.01 (dt, J = 7.5 Hz, 2H), 4.36 (s, 2H), 3.86 (s, 3H) ppm; 13 C NMR (125 MHz, CDCl 3 ) δ 162.2, 160.7, 157.4, 147.8, 135.5, 134.8, 133.4, 130.8, 130.4, 128.8, 128.2, 127.5, 126.3, 126.0, 125.1, 125.1 ppm; HRMS (EI) (m/z) cald. for C 22 H 17 ClN 2 O 2 S + [M] + : 408.0699; found: 408.0697.
도 6은 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4f 화합물의 1H NMR 결과를 나타낸 것이고, 도 7은 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4f 화합물의 13C NMR 결과를 나타낸 것이다.6 shows the 1 H NMR results of the 4f compound prepared using the automated micro combinatorial reactor of Example 2, and FIG. 7 shows the 4f compound prepared using the automated micro combinatorial reactor of Example 2. It shows the 13 C NMR result of the compound.
도 6 및 도 7에 따르면, 상기 4f 화합물의 1H NMR 값 및 13C NMR 값은 아래와 같이 나타났으며 목표한 생산물 중 하나인 3-(4-methoxyphenyl)-2-((4-trifluoromethoxy)benzyl)thio)quinazolin-4(3H)-one 화합물이 잘 합성된 것을 확인할 수 있다.6 and 7, the 1 H NMR and 13 C NMR values of the 4f compound were shown as follows, and one of the targeted products, 3-(4-methoxyphenyl)-2-((4-trifluoromethoxy)benzyl It can be confirmed that )thio)quinazolin-4(3H)-one compound was well synthesized.
1H NMR (500 MHz, CDCl3) δ 8.25 (dd, J = 4.6 Hz, 1H), 7.75 (td, J = 8.5 Hz, 1H), 7.65 (d, J = 4.4 Hz, 1H), 7.43-7.00 (m, 9H), 4.39 (s, 2H), 3.86 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3) δ 162.2, 160.8, 157.4, 148.6, 147.8, 135.7, 134.8, 130.9, 130.4, 128.9, 128.2, 127.5, 126.3, 126.1, 121.1, 120.1, 115.1, 55.6, 36.3 ppm; HRMS (EI) (m/z) cald. for C23H17F3N2O3S+ [M]+: 458.0912; found: 458.0914. 1H NMR (500 MHz, CDCl 3 ) δ 8.25 (dd, J = 4.6 Hz, 1H), 7.75 (td, J = 8.5 Hz, 1H), 7.65 (d, J = 4.4 Hz, 1H), 7.43-7.00 (m, 9H), 4.39 (s, 2H), 3.86 (s, 3H) ppm; 13 C NMR (125 MHz, CDCL 3 ) Δ 162.2, 160.8, 157.4, 148.6, 147.8, 134.8, 130.9, 130.4, 128.9, 128.2, 127.5, 126.3, 126.1, 121.1, 120.1, 115.1, 55.6, 36.3 ppm; HRMS (EI) (m/z) cald. for C 23 H 17 F 3 N 2 O 3 S + [M] + : 458.0912; found: 458.0914.
도 8은 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4h 화합물의 1H NMR 결과를 나타낸 것이고, 도 9는 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4h 화합물의 13C NMR 결과를 나타낸 것이다.8 shows the 1 H NMR results of the 4h compound prepared using the automated micro combinatorial reactor of Example 2, and FIG. 9 shows the 4h compound prepared using the automated micro combinatorial reactor of Example 2. It shows the 13 C NMR result of the compound.
도 8 및 도 9에 따르면, 상기 4h 화합물의 1H NMR 값 및 13C NMR 값은 아래와 같이 나타났으며 목표한 생산물 중 하나인 2-((4-chlorobenzyl)thio)-3-(4-nitrophenyl)quinazolin-4(3H)-one 화합물이 잘 합성된 것을 확인할 수 있다.8 and 9, the 1 H NMR and 13 C NMR values of the 4h compound were shown below, and one of the targeted products, 2-((4-chlorobenzyl)thio)-3-(4-nitrophenyl ) It can be confirmed that the quinazolin-4(3H)-one compound was well synthesized.
1H NMR (500 MHz, CDCl3) δ 8.38 (dt, J = 7.2 Hz, 2H), 8.23 (dd, J = 4.7 Hz, 1H), 7.80 (td, J = 8.5 Hz, 1H), 7.68 (d, J = 4.0 Hz, 1H), 7.51 (dt, J = 7.2 Hz, 2H), 7.45 (td, J = 8.1 Hz, 1H), 7.33-7.25 (m, 4H), 4.40 (s, 2H) ppm; 13C NMR (125 MHz, CDCl3) δ 161.5, 155.1, 148.7, 147.6, 141.4, 135.4, 134.8, 133.7, 130.8 (2C), 128.9, 127.5, 126.6, 126.5, 125.1, 119.8, 36.4 ppm; HRMS (EI) (m/z) cald. for C21H14ClN3O3S+ [M]+: 423.0444; found: 423.0448. 1 H NMR (500 MHz, CDCl 3 ) δ 8.38 (dt, J = 7.2 Hz, 2H), 8.23 (dd, J = 4.7 Hz, 1H), 7.80 (td, J = 8.5 Hz, 1H), 7.68 (d , J = 4.0 Hz, 1H), 7.51 (dt, J = 7.2 Hz, 2H), 7.45 (td, J = 8.1 Hz, 1H), 7.33–7.25 (m, 4H), 4.40 (s, 2H) ppm; 13 C NMR (125 MHz, CDCl 3 ) δ 161.5, 155.1, 148.7, 147.6, 141.4, 135.4, 134.8, 133.7, 130.8 (2C), 128.9, 127.5, 126.6, 126.5, 125.1, 119.48 ppm; HRMS (EI) (m/z) cald. for C 21 H 14 ClN 3 O 3 S + [M] + : 423.0444; found: 423.0448.
도 10은 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4i 화합물의 1H NMR 결과를 나타낸 것이고, 도 11은 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 4i 화합물의 13C NMR 결과를 나타낸 것이다.10 shows the 1 H NMR results of the 4i compound prepared using the automated micro combinatorial reactor of Example 2, and FIG. 11 shows the 4i prepared using the automated micro combinatorial reactor of Example 2. It shows the 13 C NMR result of the compound.
도 10 및 도 11에 따르면, 상기 4i 화합물의 1H NMR 값 및 13C NMR 값은 아래와 같이 나타났으며 목표한 생산물 중 하나인 3-(4-nitrophenyl)-2-((4-trifluoromethoxy)benzyl)thio)quinazolin-4(3H)-one 화합물이 잘 합성된 것을 확인할 수 있다.10 and 11, the 1 H NMR and 13 C NMR values of the 4i compound were shown as follows, and one of the targeted products, 3-(4-nitrophenyl)-2-((4-trifluoromethoxy)benzyl It can be confirmed that )thio)quinazolin-4(3H)-one compound was well synthesized.
1H NMR (500 MHz, CDCl3) δ 8.39 (dt, J = 7.2 Hz, 2H), 8.24 (dd, J = 4.6 Hz, 1H), 7.80 (td, J = 8.5 Hz, 1H), 7.69 (dd, J = 4.4 Hz, 1H), 7.52 (dt, J = 7.2 Hz, 2H), 7.46 (td, J = 8.2 Hz, 1H), 7.41 (dt, J = 7.1 Hz, 2H), 7.14 (d, J = 4.0 Hz, 2H), 4.43 (s, 2H) ppm; 13C NMR (125 MHz, CDCl3) δ 161.5, 155.0, 148.8, 148.7, 147.6, 141.4, 135.4, 135.1, 130.9 (2C), 127.5, 126.6, 126.5, 125.1, 121.6, 121.2, 119.8, 36.3 ppm; HRMS (EI) (m/z) cald. for C22H14F3N3O4S+ [M]+: 473.0657; found: 473.0655. 1 H NMR (500 MHz, CDCl 3 ) δ 8.39 (dt, J = 7.2 Hz, 2H), 8.24 (dd, J = 4.6 Hz, 1H), 7.80 (td, J = 8.5 Hz, 1H), 7.69 (dd , J = 4.4 Hz, 1H), 7.52 (dt, J = 7.2 Hz, 2H), 7.46 (td, J = 8.2 Hz, 1H), 7.41 (dt, J = 7.1 Hz, 2H), 7.14 (d, J = 4.0 Hz, 2H), 4.43 (s, 2H) ppm; 13 C NMR (125 MHz, CDCl 3 ) δ 161.5, 155.0, 148.8, 148.7, 147.6, 141.4, 135.4, 135.1, 130.9 (2C), 127.5, 126.6, 126.5, 125.1, 121.6, 121.6, 121.6, ppm; HRMS (EI) (m/z) cald. for C 22 H 14 F 3 N 3 O 4 S + [M] + : 473.0657; found: 473.0655.
시험예 3-2: 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 9 종류의 생산물 수율 Experimental Example 3-2: Yield of 9 types of products prepared using an automated micro combinatorial chemical reactor
아래 표 3에 실시예 2의 자동화된 마이크로 조합화학 반응장치를 사용하여 제조된 9 종류의 생산물 수율을 각각 정리하여 나타내었다.Table 3 below summarizes the yields of 9 types of products prepared using the automated micro combinatorial chemical reactor of Example 2, respectively.
구분division 생산물 수율 (%)Product yield (%)
4a4a 8181
4b4b 9898
4c4c 9090
4d4d 9393
4e4e 7979
4f4f 6565
4g4g 9696
4h4h 8686
4i4i 7777
상세하게는, 상기 수율은 결정화 및 컬럼크로마토 그래피를 통해 분리된 생성물의 수율 값(isolated yield)이다.Specifically, the yield is an isolated yield of a product separated through crystallization and column chromatography.
상기 표 3에 따르면, 실시예 1의 자동화된 마이크로 조합화학 반응장치는 제1 원료 및 제2 원료 주입으로부터 작동시간 20 분 이내에 9 종류의 생산물을 사람의 개입 없이 높은 수율(65 내지 98 %)로 제조하는 것을 확인할 수 있다.According to Table 3, the automated micro combinatorial chemical reactor of Example 1 produces 9 types of products in high yield (65 to 98%) without human intervention within 20 minutes of operating time from the injection of the first and second raw materials. production can be verified.
또한, Autocollector에 의해 자동으로 수집된 개별 생산물은 간단한 재결정 과정을 통해 쉽게 분리되어 우수한 수율(65 내지 98 %)을 나타내는 것을 확인할 수 있다.In addition, it can be seen that the individual products automatically collected by the autocollector are easily separated through a simple recrystallization process and exhibit excellent yields (65 to 98%).
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. The scope of the present invention is indicated by the following claims rather than the detailed description above, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be interpreted as being included in the scope of the present invention. do.
[부호의 설명][Description of code]
10: 자동화된 마이크로 조합화학 반응장치10: Automated Micro Combination Chemical Reactor
100: 원료 공급부100: raw material supply unit
200: 중간체 반응부200: intermediate reaction unit
300: 중간체 반응 조절부300: intermediate reaction controller
400: 제1 생산물 반응부400: first product reaction unit
500: 제2 생산물 반응부 500: second product reaction unit
p1: 제1 원료 유량속도 조절기p1: first raw material flow rate controller
p2, p3, p4: 제2 원료 유량속도 조절기p2, p3, p4: second raw material flow rate controller
hp1: 제3 원료 유량속도 조절기hp1: 3rd raw material flow rate regulator
hp2: 제4 원료 유량속도 조절기hp2: 4th raw material flow rate regulator
M1, M2, M3, M4: 중간체 마이크로 혼합기M1, M2, M3, M4: intermediate micromixers
M5: 제1 생산물 마이크로 혼합기M5: first product micromixer
M6: 제2 생산물 마이크로 혼합기M6: second product micromixer
v1, v2, v3, v4: 중간체 반응조절 밸브v1, v2, v3, v4: intermediate reaction control valve
v5, v6, v7: 제2 원료공급 밸브v5, v6, v7: 2nd raw material supply valve
v8, v9, v10: 제3 원료공급 밸브v8, v9, v10: 3rd raw material supply valve
v11, v12, v13: 제4 원료공급 밸브v11, v12, v13: 4th raw material supply valve
본 발명의 자동화된 마이크로 조합화학 반응장치 및 그를 이용한 최적화 조합화학 합성방법은 최적의 합성 조건(높은 수율)을 빠른 시간 내에 찾을 수 있고, 상기 최적의 합성 조건에서 빠른 속도로 다양한 화합물을 제조할 수 있다.The automated micro combinatorial chemical reactor and the optimized combinatorial chemical synthesis method using the same of the present invention can quickly find optimal synthesis conditions (high yield), and can rapidly produce various compounds under the optimal synthetic conditions. there is.
또한, 본 발명의 자동화된 마이크로 조합화학 반응장치 및 그를 이용한 최적화 조합화학 합성방법은 복수 종류의 생산물을 빠르게 생산하면서도 각각 높은 수율을 갖는 효과가 있다.In addition, the automated micro combinatorial chemical reactor and the optimized combinatorial chemical synthesis method using the same of the present invention have the effect of having high yields while rapidly producing a plurality of types of products.

Claims (25)

  1. 단수개 또는 복수개의 제1 원료, 단수개 또는 복수개의 제2 원료 및 단수개 또는 복수개의 제3 원료를 포함하는 원료를 각각 공급하고, 상기 원료의 유량 속도를 각각 조절하는 복수개의 유량속도 조절기를 포함하는 원료 공급부;A plurality of flow rate controllers for supplying raw materials including a single or plural first raw material, a single or plural second raw material, and a single or plural third raw material, respectively, and controlling the flow rate of the raw material, respectively A raw material supply unit comprising;
    상기 원료 공급부로부터 공급받은 상기 제1 원료와 상기 제2 원료를 혼합하여 제1 혼합물을 생성하는 복수개의 중간체 마이크로 혼합기 및 상기 제1 혼합물을 반응시켜 중간체를 생성하는 복수개의 튜브형 중간체 반응기를 포함하는 중간체 반응부;An intermediate comprising a plurality of intermediate micro-mixers generating a first mixture by mixing the first raw material and the second raw material supplied from the raw material supply unit and a plurality of tubular intermediate reactors generating an intermediate by reacting the first mixture reaction part;
    상기 튜브형 중간체 반응기의 길이 및 공급되는 상기 제2 원료의 종류 중 1종 이상을 조절하는 중간체 반응조절 밸브부재를 포함하는 중간체 반응 조절부; 및An intermediate reaction control unit including an intermediate reaction control valve member for controlling at least one of the length of the tubular intermediate reactor and the type of the second raw material to be supplied; and
    상기 중간체 반응부로부터 공급받은 상기 중간체와 상기 원료 공급부로부터 공급받은 상기 제3 원료를 혼합하여 제2 혼합물을 생성하는 제1 생산물 마이크로 혼합기를 포함하고, 제1 생산물을 제조하는 제1 생산물 반응부;를A first product reaction unit comprising a first product micromixer mixing the intermediate supplied from the intermediate reaction unit and the third raw material supplied from the raw material supply unit to generate a second mixture, and producing a first product; cast
    포함하는 자동화된 마이크로 조합화학 반응장치.An automated micro combinatorial chemical reactor comprising:
  2. 제1항에 있어서,According to claim 1,
    상기 유량속도 조절기로 조절된 제1 원료 및 상기 제2 원료의 유량속도와, 상기 중간체 반응조절 밸브부재에 의해 조절된 상기 튜브형 중간체 반응기의 반응부피에 의해 상기 제1 혼합물의 반응 시간을 제어하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.Controlling the reaction time of the first mixture by the flow rate of the first raw material and the second raw material controlled by the flow rate controller and the reaction volume of the tubular intermediate reactor controlled by the intermediate reaction control valve member Automated micro combinatorial chemical reactor characterized by.
  3. 제1항에 있어서,According to claim 1,
    복수개의 상기 중간체 마이크로 혼합기가 제1 중간체 마이크로 혼합기, 제2 중간체 마이크로 혼합기, …, 제i 중간체 마이크로 혼합기, …, 및 제n 중간체 마이크로 혼합기(n은 자연수, i는 자연수, 1≤i≤n)를 포함하고, The plurality of intermediate micro-mixers include a first intermediate micro-mixer, a second intermediate micro-mixer, ... , ith intermediate micromixer, . . . , And an nth intermediate micromixer (n is a natural number, i is a natural number, 1≤i≤n),
    복수개의 상기 튜브형 중간체 반응기가 제1 튜브형 중간체 반응기, 제2 튜브형 중간체 반응기, …, 제i 튜브형 중간체 반응기, …, 및 제n 튜브형 중간체 반응기 (n은 자연수, i는 자연수, 1≤i≤n)를 포함하고, The plurality of tubular intermediate reactors are a first tubular intermediate reactor, a second tubular intermediate reactor, ... , the ith tubular intermediate reactor, ... , and an nth tubular intermediate reactor (n is a natural number, i is a natural number, 1≤i≤n),
    상기 n개의 중간체 마이크로 혼합기와 상기 n개의 튜브형 중간체 반응기는 순서대로 교대로 직렬로 연결되는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.The n intermediate micromixers and the n tubular intermediate reactors are automated micro combinatorial chemical reactors, characterized in that connected in series alternately in order.
  4. 제3항에 있어서,According to claim 3,
    상기 제2 원료를 공급하는 상기 제i 중간체 마이크로 혼합기를 임의로 선택함에 의해 튜브형 중간체 반응기의 반응부피가 조절되는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.An automated micro combinatorial chemical reactor, characterized in that the reaction volume of the tubular intermediate reactor is controlled by arbitrarily selecting the i-th intermediate micro mixer for supplying the second raw material.
  5. 제3항에 있어서,According to claim 3,
    복수개의 상기 제2 원료 중 어느 하나가 상기 제i 중간체 마이크로 혼합기로 공급되고, Any one of the plurality of second raw materials is supplied to the i-th intermediate micro-mixer,
    공급된 상기 제2 원료 중 어느 하나가 상기 제i 중간체 마이크로 혼합기에서 상기 제1 원료와 혼합되어 상기 제1 혼합물을 형성하고,Any one of the supplied second raw materials is mixed with the first raw material in the i-th intermediate micro mixer to form the first mixture;
    상기 제1 혼합물이 상기 반응부피를 통과하며 반응하여 상기 중간체를 생성하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.An automated micro combinatorial chemical reactor, characterized in that the first mixture passes through the reaction volume and reacts to generate the intermediate.
  6. 제5항에 있어서,According to claim 5,
    상기 반응부피가 제i 튜브형 중간체 반응기의 부피, …, 및 제n 튜브형 중간체 반응기의 부피를 모두 포함하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.The reaction volume is the volume of the ith tubular intermediate reactor, . . . , and the volume of the n-th tubular intermediate reactor.
  7. 제1항에 있어서,According to claim 1,
    상기 유량속도 조절기가 단수개 또는 복수개의 상기 제1 원료, 단수개 또는 복수개의 상기 제2 원료 및 단수개 또는 복수개의 상기 제3 원료의 유량속도를 각각 조절하는 단수개 또는 복수개의 제1 원료 유량속도 조절기, 단수개 또는 복수개의 제2 원료 유량속도 조절기 및 단수개 또는 복수개의 제3 원료 유량속도 조절기를 포함하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.The flow rate controller controls the flow rate of the singular or plural number of the first raw material, the singular or plural number of the second raw material, and the singular or plural number of the third raw material, respectively. An automated micro combinatorial chemical reactor comprising a speed controller, a single or plurality of second raw material flow rate regulators and a single or plurality of third raw material flow rate regulators.
  8. 제7항에 있어서,According to claim 7,
    상기 중간체 반응조절 밸브부재가 제1 중간체 반응조절 밸브, …, 제i 중간체 반응조절 밸브, …, 및 제n 중간체 반응조절 밸브(n은 자연수, i는 자연수, 1≤i≤n)를 포함하고,The intermediate reaction control valve member is a first intermediate reaction control valve, ... , ith intermediate reaction control valve, ... , And an nth intermediate reaction control valve (n is a natural number, i is a natural number, 1≤i≤n),
    상기 n개의 중간체 반응조절 밸브가 서로 병렬로 연결되고,The n intermediate reaction control valves are connected in parallel to each other,
    상기 n개의 중간체 반응조절 밸브가 각각 순서대로 상기 제1 중간체 마이크로 혼합기, …, 제i 중간체 마이크로 혼합기, …, 및 제n 중간체 마이크로 혼합기와 직렬로 연결되고, The n intermediate reaction control valves are sequentially connected to the first intermediate micromixer, ... , ith intermediate micromixer, . . . , and connected in series with the nth intermediate micromixer,
    상기 n개의 중간체 반응조절 밸브가 각각 상기 제2 원료 유량속도 조절기와 직렬로 연결되고,The n intermediate reaction control valves are each connected in series with the second raw material flow rate controller,
    상기 n개의 중간체 반응조절 밸브가 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 상기 제2 원료를 상기 n개의 중간체 마이크로 혼합기에 각각 공급하거나 차단하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.An automated micro combinatorial chemical reactor characterized in that the n intermediate reaction control valves independently open or close to supply or block the second raw material to the n intermediate micro mixers, respectively. .
  9. 제7항에 있어서,According to claim 7,
    상기 원료 공급부가 제2 원료공급 밸브부재를 추가로 포함하고,The raw material supply unit further comprises a second raw material supply valve member,
    상기 제2 원료가 제2-1 원료, …, 제2-j 원료, …, 및 제2-m 원료(m은 자연수, j는 자연수, 1≤j≤m)를 각각 포함하고,The second raw material is the 2-1 raw material, . . . , 2-j raw material, . . . , and the 2-m raw material (m is a natural number, j is a natural number, 1≤j≤m), respectively,
    상기 m개의 제2 원료는 서로 다르고,The m second raw materials are different from each other,
    상기 제2 원료 유량속도 조절기가 상기 m개의 제2 원료의 유량속도를 각각 조절하는 제2-1 원료 유량속도 조절기, …, 제2-j 원료 유량속도 조절기, …, 및 제2-m 원료 유량속도 조절기(m은 자연수, j는 자연수, 1≤j≤m)를 포함하고,A 2-1 raw material flow rate controller for controlling the flow rates of the m second raw materials, respectively, by the second raw material flow rate controller, . . . , 2-j raw material flow rate controller, . . . , and a 2-m raw material flow rate controller (m is a natural number, j is a natural number, 1≤j≤m),
    상기 제2 원료공급 밸브부재가 제2-1 원료공급 밸브, …, 제2-j 원료공급 밸브, …, 및 제2-m 원료공급 밸브(j는 자연수, m은 자연수, 1≤j≤m)를 포함하고,The second raw material supply valve member is a 2-1 raw material supply valve, . . . , 2-j raw material supply valve, . . . , and a 2-m raw material supply valve (j is a natural number, m is a natural number, 1≤j≤m),
    상기 m개의 제2 원료공급 밸브가 각각 순서대로 제2-1 원료 유량속도 조절기, …, 제2-j 원료 유량속도 조절기, …, 및 제2-m 원료 유량속도 조절기와 직렬로 연결되고,The m number of second raw material supply valves are sequentially configured as a 2-1 raw material flow rate controller, . . . , 2-j raw material flow rate controller, . . . , And connected in series with the 2-m raw material flow rate controller,
    상기 m개의 제2 원료공급 밸브가 서로 병렬로 연결되고,The m second raw material supply valves are connected in parallel to each other,
    상기 m개의 제2 원료공급 밸브가 각각 상기 중간체 반응부와 직렬로 연결되고,The m second raw material supply valves are each connected in series with the intermediate reaction unit,
    상기 m개의 제2 원료공급 밸브를 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 상기 m개의 제2 원료 중 어느 하나를 중간체 마이크로 혼합기에 각각 공급하거나 차단하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.Automated micro combination, characterized in that for supplying or blocking any one of the m second raw materials to the intermediate micro mixer, respectively, by independently opening or closing the m second raw material supply valves. chemical reactor.
  10. 제7항에 있어서,According to claim 7,
    상기 원료 공급부가 제3 원료공급 밸브부재를 추가로 포함하고,The raw material supply unit further comprises a third raw material supply valve member,
    상기 제3 원료가 제3-1 원료, …, 제3-k 원료, …, 및 제3-p 원료(p는 자연수, k는 자연수, 1≤k≤p)를 각각 포함하고,The third raw material is the 3-1 raw material, . . . , 3-k raw material, . . . , and a 3-p raw material (p is a natural number, k is a natural number, 1≤k≤p), respectively,
    상기 p개의 제3 원료는 서로 다르고,The p third raw materials are different from each other,
    상기 제3 원료공급 밸브부재가 제3-1 원료공급 밸브, …, 제3-k 원료공급 밸브, …, 및 제3-p 원료공급 밸브(k는 자연수, p은 자연수, 1≤k≤p)를 포함하고,The third raw material supply valve member is a 3-1 raw material supply valve, . . . , 3-k raw material supply valve, . . . , and a 3-p raw material supply valve (k is a natural number, p is a natural number, 1≤k≤p),
    상기 p개의 제3 원료공급 밸브가 서로 병렬로 연결되고,The p third raw material supply valves are connected in parallel to each other,
    상기 p개의 제3 원료공급 밸브가 각각 상기 제3 원료 유량속도 조절기와 직렬로 연결되고,The p number of third raw material supply valves are connected in series with the third raw material flow rate controller, respectively;
    상기 제3 원료 유량속도 조절기가 각각 상기 제1 생산물 반응부와 직렬로 연결되고,The third raw material flow rate controller is connected in series with the first product reaction unit, respectively,
    상기 p개의 제3 원료공급 밸브를 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 상기 p개의 제3 원료 중 어느 하나를 제1 생산물 반응부에 각각 공급하거나 차단하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.By opening or closing the p third raw material supply valves independently, respectively, supplying or blocking any one of the p third raw materials to the first product reaction unit, characterized in that Micro Combination Chemical Reactor.
  11. 제7항에 있어서,According to claim 7,
    상기 원료가 단수개 또는 복수개의 제4 원료를 추가로 포함하고,The raw material further includes a single or a plurality of fourth raw materials,
    상기 원료 공급부가 상기 제4 원료를 공급하고 상기 제4 원료의 유량속도를 조절하는 제4 원료 유량속도 조절기, 및 제4 원료공급 밸브부재를 추가로 포함하고,The raw material supply unit further comprises a fourth raw material flow rate regulator supplying the fourth raw material and adjusting a flow rate of the fourth raw material, and a fourth raw material supply valve member,
    상기 자동화된 마이크로 조합화학 반응장치가 제2 생산물 반응부를 추가로 포함하고,The automated micro combinatorial chemical reactor further includes a second product reaction unit,
    상기 제2 생산물 반응부가 상기 제1 생산물 반응부로부터 공급받은 상기 제1 생산물과 상기 원료 공급부로부터 공급받은 상기 제4 원료를 혼합하여 제3 혼합물을 생성하는 제2 생산물 마이크로 혼합기를 포함하고, 제2 생산물을 제조하는 것이고,The second product reaction unit includes a second product micromixer configured to generate a third mixture by mixing the first product supplied from the first product reaction unit and the fourth raw material supplied from the raw material supply unit, to produce products,
    상기 제4 원료가 제4-1 원료, …, 제4-h 원료, …, 및 제4-q 원료(q는 자연수, h는 자연수, 1≤h≤q)를 각각 포함하고,The fourth raw material is the 4-1 raw material, . . . , 4-h raw material, ... , and the 4-q raw material (q is a natural number, h is a natural number, 1≤h≤q), respectively,
    상기 q개의 제4 원료는 서로 다르고,The q fourth raw materials are different from each other,
    상기 제4 원료공급 밸브부재가 제4-1 원료공급 밸브, …, 제4-h 원료공급 밸브, …, 및 제4-q 원료공급 밸브(h는 자연수, q은 자연수, 1≤h≤q)를 포함하고,The fourth raw material supply valve member is a 4-1 raw material supply valve, . . . , 4-h raw material supply valve, . . . , and a 4-q raw material supply valve (h is a natural number, q is a natural number, 1≤h≤q),
    상기 q개의 제4 원료공급 밸브가 서로 병렬로 연결되고,The q number of fourth raw material supply valves are connected in parallel to each other,
    상기 q개의 제4 원료공급 밸브가 각각 상기 제4 원료 유량속도 조절기와 직렬로 연결되고,The q number of fourth raw material supply valves are connected in series with the fourth raw material flow rate controller, respectively;
    상기 제4 원료 유량속도 조절기가 각각 상기 제2 생산물 반응부와 직렬로 연결되고,The fourth raw material flow rate controller is connected in series with the second product reaction unit, respectively,
    상기 q개의 제4 원료공급 밸브를 각각 독립적으로 열거나(open) 또는 닫음(close)으로써 상기 q개의 제4 원료 중 어느 하나를 제2 생산물 반응부에 각각 공급하거나 차단하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.By independently opening or closing the q fourth raw material supply valves, respectively, supplying or blocking any one of the q fourth raw materials to the second product reaction unit, characterized in that Micro Combination Chemical Reactor.
  12. 제1항에 있어서,According to claim 1,
    상기 중간체 반응 조절 밸브부재가 솔레노이드 밸브를 포함하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치. An automated micro combinatorial chemical reactor, characterized in that the intermediate reaction control valve member comprises a solenoid valve.
  13. 제1항에 있어서,According to claim 1,
    상기 중간체의 수명이 1 밀리초(ms) 내지 100 초(s)인 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.An automated micro combinatorial chemical reactor, characterized in that the lifetime of the intermediate is 1 millisecond (ms) to 100 seconds (s).
  14. 제1항에 있어서,According to claim 1,
    상기 중간체 마이크로 혼합기가 T자형 중간체 마이크로 혼합기인 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.An automated micro combinatorial chemical reactor, characterized in that the intermediate micro-mixer is a T-shaped intermediate micro-mixer.
  15. 제1항에 있어서,According to claim 1,
    상기 마이크로 조합화학 반응장치가 상기 중간체 반응부 및 상기 제1 생산물 반응부의 온도를 조절하는 온도 조절부;를 추가로 포함하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.The automated micro combinatorial chemical reaction apparatus further comprises a temperature control unit for controlling the temperature of the intermediate reaction unit and the first product reaction unit.
  16. 제15항에 있어서,According to claim 15,
    상기 자동화된 마이크로 조합화학 반응장치가The automated micro combinatorial chemical reactor
    상기 원료 공급부, 상기 중간체 반응부, 상기 중간체 반응 조절부, 상기 제1 생산물 반응부 및 상기 온도 조절부를 제어하는 인공 지능부;를 추가로 포함하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.An automated micro combinatorial chemical reactor further comprising: an artificial intelligence unit controlling the raw material supply unit, the intermediate reaction unit, the intermediate reaction control unit, the first product reaction unit, and the temperature control unit.
  17. 제16항에 있어서,According to claim 16,
    상기 인공지능부가 베이지안 최적화 알고리즘을 사용하여 상기 중간체 반응부의 반응 부피, 상기 원료의 유량속도, 상기 중간체 반응부의 반응온도 및 상기 제1 생산물 반응부의 반응온도의 최적화 값을 도출하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.The artificial intelligence unit uses a Bayesian optimization algorithm to derive an optimized value of the reaction volume of the intermediate reaction unit, the flow rate of the raw material, the reaction temperature of the intermediate reaction unit, and the reaction temperature of the first product reaction unit. Micro Combination Chemical Reactor.
  18. 제1항에 있어서,According to claim 1,
    상기 제2 원료가 n-부틸리튬, sec-부틸리튬, n-헥실리튬, n-옥틸리튬, tert-옥틸리튬, n-데실리튬, 페닐리튬, 1-나프틸리튬, 4-부틸페닐리튬, p-톨릴리튬, 4-페닐부틸리튬, 사이클로헥실리튬, 4-부틸사이클로헥실리튬 및 4-사이클로헥실부틸리튬으로 이루어진 군으로부터 선택된 1종 이상의 유기리튬 화합물을 포함하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.The second raw material is n -butyllithium, sec -butyllithium, n -hexyllithium, n -octyllithium, tert -octyllithium, n -decyllithium, phenyllithium, 1-naphthyllithium, 4-butylphenyllithium, p -tolyllithium, 4-phenylbutyllithium, cyclohexyllithium, 4-butylcyclohexyllithium and 4-cyclohexylbutyllithium, characterized in that it comprises at least one organolithium compound selected from the group consisting of automated micro-assembly. chemical reactor.
  19. 제1항에 있어서, According to claim 1,
    상기 자동화된 마이크로 조합화학 반응장치가 상기 제1 생산물 반응부 및 상기 제2 생산물 반응부로 이루어진 군으로부터 선택된 어느 하나에서 생성된 생산물을 분석하기 위한 분석기를 포함하는 분석부;를 추가로 포함하는 것을 특징으로 하는 자동화된 마이크로 조합화학 반응장치.The automated micro combinatorial chemical reactor further comprises an analysis unit including an analyzer for analyzing a product generated from any one selected from the group consisting of the first product reaction unit and the second product reaction unit. Automated micro combinatorial chemical reactor.
  20. 원료 공급부, 중간체 반응부, 중간체 반응 조절부 및 제1 생산물 반응부를 포함하는 자동화된 마이크로 조합화학 반응장치를 사용하는 최적화 조합화학 합성방법이고,An optimized combinatorial chemical synthesis method using an automated micro combinatorial chemical reactor including a raw material supply unit, an intermediate reaction unit, an intermediate reaction control unit, and a first product reaction unit,
    (a) 상기 원료 공급부의 복수개의 유량속도 조절기를 각각 사용하여 제1 원료, 제2 원료 및 제3 원료를 포함하는 복수개의 원료를 유량 속도를 각각 조절하여 공급하는 단계;(a) supplying a plurality of raw materials including a first raw material, a second raw material, and a third raw material by respectively adjusting the flow rate using a plurality of flow rate controllers of the raw material supply unit;
    (b) 상기 원료 공급부로부터 공급받은 상기 제1 원료와 상기 제2 원료를 상기 중간체 반응부의 복수개의 중간체 마이크로 혼합기 중 어느 하나에서 혼합하여 제1 혼합물을 생성하고, 복수개의 상기 튜브형 중간체 반응기 중 1종 이상에서 상기 제1 혼합물을 반응시켜 중간체를 생성하는 단계; 및 (b) mixing the first raw material and the second raw material supplied from the raw material supply unit in any one of a plurality of intermediate micro-mixers of the intermediate reaction unit to produce a first mixture, and one of a plurality of the tubular intermediate reactors Generating an intermediate by reacting the first mixture in the above; and
    (c) 상기 중간체 반응부로부터 공급받은 상기 중간체와 상기 원료 공급부로부터 공급받은 상기 제3 원료를 상기 제1 생산물 반응부의 제1 생산물 마이크로 혼합기에서 혼합하여 제2 혼합물을 생성하고 제1 생산물을 제조하는 단계;를 포함하고, (c) mixing the intermediate supplied from the intermediate reaction unit and the third raw material supplied from the raw material supply unit in the first product micro mixer of the first product reaction unit to produce a second mixture and to prepare a first product Step; including,
    상기 중간체 반응 조절부의 밸브부재가 상기 튜브형 중간체 반응기의 길이를 조절하는 것인 최적화 조합화학 합성방법.Optimized combinatorial chemical synthesis method wherein the valve member of the intermediate reaction control unit controls the length of the tubular intermediate reactor.
  21. 제20항에 있어서,According to claim 20,
    상기 원료가 단수개 또는 복수개의 제4 원료를 추가로 포함하고,The raw material further includes a single or a plurality of fourth raw materials,
    상기 원료 공급부가 상기 제4 원료를 공급하고 상기 제4 원료의 유량속도를 조절하는 제4 원료 유량속도 조절기, 및 제4 원료공급 밸브부재를 추가로 포함하고,The raw material supply unit further comprises a fourth raw material flow rate regulator supplying the fourth raw material and adjusting a flow rate of the fourth raw material, and a fourth raw material supply valve member,
    상기 자동화된 마이크로 조합화학 반응장치가 제2 생산물 반응부를 추가로 포함하는 것을 특징으로 하는 최적화 조합화학 합성방법.Optimized combinatorial chemical synthesis method, characterized in that the automated micro combinatorial chemical reactor further comprises a second product reaction unit.
  22. 제21항에 있어서,According to claim 21,
    상기 최적화 조합화학 합성방법이 상기 단계 (c) 이후에,The optimized combinatorial chemical synthesis method is after the step (c),
    (d) 상기 제1 생산물 반응부로부터 공급받은 상기 제1 생산물과 상기 원료 공급부로부터 공급받은 상기 제4 원료를 상기 제2 생산물 반응부의 제2 생산물 마이크로 혼합기에서 혼합하여 제3 혼합물을 생성하고 제2 생산물을 제조하는 단계;를 추가로 포함하는 것을 특징으로 하는 최적화 조합화학 합성방법.(d) mixing the first product supplied from the first product reaction unit and the fourth raw material supplied from the raw material supply unit in a second product micro mixer of the second product reaction unit to generate a third mixture; Optimized combinatorial chemical synthesis method, characterized in that it further comprises the step of preparing a product.
  23. 제20항에 있어서,According to claim 20,
    상기 최적화 조합화학 합성방법이 상기 유량속도 조절기로 조절된 상기 제1 원료 및 상기 제2 원료의 유량속도와, 상기 밸브부재에 의해 조절된 상기 튜브형 중간체 반응기의 반응부피에 의해 상기 제1 혼합물의 반응 시간을 제어하는 것을 특징으로 하는 최적화 조합화학 합성방법.The optimized combinatorial chemical synthesis method reacts the first mixture by the flow rate of the first raw material and the second raw material controlled by the flow rate controller and the reaction volume of the tubular intermediate reactor controlled by the valve member. An optimized combinatorial chemical synthesis method characterized by controlling time.
  24. 제20항에 있어서,According to claim 20,
    상기 자동화된 마이크로 조합화학 반응장치가 상기 중간체 반응부 및 상기 제1 생산물 반응부의 온도를 조절하는 온도 조절부; 및a temperature control unit for controlling the temperatures of the intermediate reaction unit and the first product reaction unit in the automated micro combinatorial chemical reaction unit; and
    상기 원료 공급부, 상기 중간체 반응부, 상기 중간체 반응 조절부, 상기 제1 생산물 반응부 및 상기 온도 조절부를 제어하는 인공 지능부;를 추가로 포함하는 것을 특징으로 하는 최적화 조합화학 합성방법. The optimized combination chemical synthesis method further comprising: an artificial intelligence unit controlling the raw material supply unit, the intermediate reaction unit, the intermediate reaction control unit, the first product reaction unit, and the temperature control unit.
  25. 제24항에 있어서,According to claim 24,
    상기 인공지능부가 베이지안 최적화 알고리즘을 사용하여 상기 중간체 반응부의 반응 부피, 상기 원료의 유량속도, 상기 중간체 반응부의 반응온도 및 상기 제1 생산물 반응부의 반응온도의 최적화 값을 도출하는 것을 특징으로 하는 최적화 조합화학 합성방법.Optimization combination, characterized in that the artificial intelligence unit derives an optimized value of the reaction volume of the intermediate reaction unit, the flow rate of the raw material, the reaction temperature of the intermediate reaction unit and the reaction temperature of the first product reaction unit using a Bayesian optimization algorithm chemical synthesis method.
PCT/KR2022/012803 2021-10-08 2022-08-26 Automized micro combinatorial chemical reaction system and optimized combinatorial chemical synthesis method using same WO2023058903A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210133739 2021-10-08
KR10-2021-0133739 2021-10-08
KR10-2022-0064123 2022-05-25
KR1020220064123A KR20230051049A (en) 2021-10-08 2022-05-25 Automated micro combinatorial reaction apparatus, and optimized combinatorial chemistry synthesis method using same

Publications (1)

Publication Number Publication Date
WO2023058903A1 true WO2023058903A1 (en) 2023-04-13

Family

ID=85804454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012803 WO2023058903A1 (en) 2021-10-08 2022-08-26 Automized micro combinatorial chemical reaction system and optimized combinatorial chemical synthesis method using same

Country Status (1)

Country Link
WO (1) WO2023058903A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668473A (en) * 1983-04-25 1987-05-26 The Babcock & Wilcox Company Control system for ethylene polymerization reactor
KR100803090B1 (en) * 2006-02-27 2008-02-18 주식회사 엘지화학 Reactor system for catalyst screening
KR20090125147A (en) * 2007-03-27 2009-12-03 로디아 오퍼레이션스 Process for producing polyamide
JP2011115754A (en) * 2009-12-07 2011-06-16 Hitachi Plant Technologies Ltd Chemical apparatus
KR20200048624A (en) * 2018-10-30 2020-05-08 한국생산기술연구원 Continuous type apparatus for preparing biodiesel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668473A (en) * 1983-04-25 1987-05-26 The Babcock & Wilcox Company Control system for ethylene polymerization reactor
KR100803090B1 (en) * 2006-02-27 2008-02-18 주식회사 엘지화학 Reactor system for catalyst screening
KR20090125147A (en) * 2007-03-27 2009-12-03 로디아 오퍼레이션스 Process for producing polyamide
JP2011115754A (en) * 2009-12-07 2011-06-16 Hitachi Plant Technologies Ltd Chemical apparatus
KR20200048624A (en) * 2018-10-30 2020-05-08 한국생산기술연구원 Continuous type apparatus for preparing biodiesel

Similar Documents

Publication Publication Date Title
WO2023058903A1 (en) Automized micro combinatorial chemical reaction system and optimized combinatorial chemical synthesis method using same
CN1003445B (en) The preparation method of thiazolidine diketone derivative
Bogdan et al. A high-throughput synthesis of 1, 2, 4-oxadiazole and 1, 2, 4-triazole libraries in a continuous flow reactor
WO2013119034A1 (en) An apparatus for continuous separation of valine and a method for continuous separation of valine using the same
WO2016032284A1 (en) Preparation method for rod-shaped molybdenum oxide and preparation method for molybdenum oxide composite
KR20230051049A (en) Automated micro combinatorial reaction apparatus, and optimized combinatorial chemistry synthesis method using same
WO2019107884A1 (en) Catalyst system for oxidative dehydrogenation reaction, reactor for butadiene production including same, and method for preparing 1,3-butadiene
Hyatt et al. Alkynes and azides: Not just for click reactions
WO2017126847A1 (en) Method for preparing 3-((2s,5s)-4-methylene-5-(3-oxopropyl)tetrahydrofurane-2-yl) propanol derivative, and intermediate therefor
WO2023068629A1 (en) Group 3 metal precursor, preparation method therefor, and method for manufacturing thin film by using same
Alcázar et al. Reproducibility across microwave instruments: first example of genuine parallel scale up of compounds under microwave irradiation
WO2022092429A1 (en) Method for producing organic sulfur compound
WO2016108623A1 (en) Novel method for preparing thienopyrimidine compound and intermediates used therein
WO2022158766A1 (en) High-purity hydrogen hexacyanocobaltate compound and method for preparing same
Wlodarczyk et al. On the Knorr Synthesis of 6-Bromo-4-methylquinolin-2 (1H)-one
WO2014112688A1 (en) Catalytic manufacturing method for amine having no substituent group on the nitrogen, and use for the amine produced
WO2023277590A1 (en) Method for preparing alkyl-d-alaninate, alkyl-d-alaninate, alkyl-d-alaninate derivative, and pharmaceutical or agricultural product including same
CN101522679A (en) Fluorinated catharanthine derivatives, their preparation and their utilisation as vinca dimeric alkaloid precursors
WO2016035945A1 (en) Core-shell nanoparticle, method for manufacturing same and method for producing hydrogen peroxide using same
WO2021075686A1 (en) Process for hydrogenation of phthalate compound
WO2023090858A1 (en) Method for preparing isoxazole derivative, and intermediate thereof
ITOH et al. Vicarious nucleophilic substitution of pyridines via their dicyanomethylide derivatives
WO2021054606A1 (en) Method for hydrogenating phthalate compound
WO2016052930A1 (en) Method for preparing high-purity (r)-9-[2-(phosphonomethoxy)propyl]adenine
WO2022114446A1 (en) Multi-wave generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE