WO2023058739A1 - Flavor inhalation instrument or aerosol generation device - Google Patents

Flavor inhalation instrument or aerosol generation device Download PDF

Info

Publication number
WO2023058739A1
WO2023058739A1 PCT/JP2022/037546 JP2022037546W WO2023058739A1 WO 2023058739 A1 WO2023058739 A1 WO 2023058739A1 JP 2022037546 W JP2022037546 W JP 2022037546W WO 2023058739 A1 WO2023058739 A1 WO 2023058739A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
axis
data
flavor
sensor
Prior art date
Application number
PCT/JP2022/037546
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 白石
歩 後藤
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Publication of WO2023058739A1 publication Critical patent/WO2023058739A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors

Definitions

  • flavor inhalers or aerosol generators (hereinafter referred to as "flavor inhalers, etc.”). More particularly, the present application relates to flavor inhalers and the like that are controlled based on the movement of the flavor inhalers and the like.
  • the flavor sucking device is a device for sucking flavor, and includes, but is not limited to, electronic cigarettes, heat-not-burn cigarettes, and conventional cigarettes.
  • An "aerosol generator” is a device for inhaling the generated aerosol, and includes, but is not limited to, electronic cigarettes, heat-not-burn cigarettes, and medical nebulizers. Flavor inhalers and the like also include so-called RRP (Reduced-Risk Products).
  • flavor suction devices equipped with motion sensors have been developed in order to detect dropping of the flavor suction device or to detect a specific motion of the flavor suction device by the user.
  • the use of motion sensors in flavor suction devices can turn on/off specific functions such as detecting the fall of the flavor suction device or detecting a specific preset action of the user to unlock the flavor suction device. stay off. It is desired to provide users with various values of the flavor suction device by controlling the functions of the flavor suction device based on the motion data obtained by the motion sensor.
  • the present invention has been made in view of the above, and one of its tasks is to provide a flavor suction device or the like that is controlled based on the movement of the flavor suction device or the like.
  • a device being a flavor inhaler or an aerosol generator, comprising: a vibrator; a sensor configured to detect movement of said device; and an input representing said detected movement
  • a device comprising: a converter configured to convert data into vibration data for vibrating the vibrator; and a controller configured to vibrate the vibrator based on the vibration data.
  • the input data may include data representing acceleration or angular velocity of the sensed movement.
  • the conversion unit may be further configured to use a representative value included in the input data.
  • using the representative value included in the input data can include converting the representative value into the vibration intensity of the vibrator.
  • using the representative value included in the input data can include converting the representative value into a vibration pattern of the vibrator.
  • the conversion unit divides the input data into a plurality of data representing the motion detected in each time period of a plurality of time periods, and a representative data included in each divided data. It may be further configured to convert the values into vibration strengths of the oscillator at different times.
  • the senor may be further configured to sense motion of the device about at least a first axis and a second axis, wherein the input data is sensing motion about the first axis and the second axis. at least first input data and second input data respectively representing said motions made.
  • the conversion unit converts the first input data into a vibration intensity of the vibrator, converts the second input data into a vibration pattern of the vibrator, or converts the second input data into a vibration pattern of the vibrator. may be further configured to select one of a plurality of predetermined vibration patterns as the vibration pattern of the vibrator based on the above.
  • the vibration pattern may be specified by at least one of vibration time, vibration pause time, and vibration intensity correction coefficient.
  • the controller may be further configured to vibrate the vibrator based on the vibration data when the device is being sucked.
  • control unit may be further configured to vibrate the vibrator based on the vibration data such that the strength of the suction is proportional to the vibration strength of the vibrator.
  • control unit records a suction time, which is a length of time during which the suction is performed, and vibrates the vibrator based on the vibration data according to the suction time. It may be further configured to vary the thickness.
  • a method of controlling a device which is a flavor inhaler or an aerosol generator with a vibrator, comprising the steps of detecting movement of said device; into vibration data for vibrating the vibrator; and vibrating the vibrator based on the vibration data.
  • a processor of a device which may be a flavored inhaler or an aerosol generator with a vibrator, is provided with the steps of detecting movement of said device and input data representing said detected movement, said A program is provided for executing a step of converting into vibration data for vibrating a vibrator, and a step of vibrating the vibrator based on the vibration data.
  • a device which is a flavor inhaler or an aerosol generator, comprising a sensor configured to detect movement of said device and input data representing said detected movement, said A device comprising: a converter configured to convert into function data for controlling a function of a device; and a controller configured to control the function of the device based on the function data.
  • the conversion unit may be further configured to convert continuous values included in the input data into continuous values or discrete values included in the functional data.
  • the function of the device includes one or more of a function of heating to generate flavor, a function of emitting sound, a function of emitting light, and a function of displaying a predetermined display. be able to.
  • the input data may include data representing acceleration or angular velocity of the sensed movement.
  • the conversion unit may be further configured to use a representative value included in the input data.
  • using a representative value included in the input data may be further configured to convert the representative value into a strength associated with the function of the device.
  • using representative values included in the input data may be further configured to transform the representative values into a pattern associated with the function of the device.
  • the conversion unit divides the input data into a plurality of data representing the motion detected in each time period of a plurality of time periods, and a representative data included in each divided data. It may be further configured to convert values into intensities associated with the function of the device at different times.
  • the senor may be further configured to sense motion of the device about at least a first axis and a second axis, wherein the input data is sensing motion about the first axis and the second axis. at least first input data and second input data respectively representing said motions made.
  • the conversion unit converts the first input data into an intensity related to the function of the device and converts the second input data into a pattern related to the function of the device, or and selecting one of a plurality of predetermined patterns as a pattern related to the function of the device based on the second input data.
  • the pattern associated with the function of the device is identified by at least one of the time the function is active, the time the function is inactive, and an intensity correction factor associated with the function. can be anything.
  • a device that is an embodiment may be configured such that heating is performed to generate a flavor, and the input data is obtained when the heating is not performed.
  • a method of controlling a device comprising: detecting movement of said device; A control method is provided that includes converting into functional data for controlling a function, and controlling said function of said device based on said functional data.
  • a processor of a device which may be a flavored inhaler or an aerosol generator, receives the steps of sensing movement of said device and providing input data representative of said sensed movement to control the functions of said device.
  • a program is provided that causes the steps of converting into functional data for performing and controlling the functionality of the device based on the functional data.
  • a device which is a flavor inhaler or an aerosol generator, comprising: an oscillator; an inertial sensor; A device comprising: a storage section storing vibration data for vibrating a vibrator; and a control section configured to read out the vibration data from the storage section and vibrate the vibrator based on the vibration data.
  • the vibration data may include values related to vibration intensity or vibration time.
  • the storage unit may store the inertia data.
  • the device may further comprise a converter configured to read the inertia data from the storage and convert the inertia data to the vibration data.
  • the inertial sensor may be an angular velocity sensor, and the inertial data may include data representing angular velocity.
  • the inertial sensor may be an angular velocity sensor, and the inertial data may include data representing angular velocity.
  • the conversion unit converts data representing the angular velocity into vibration data including a predetermined minimum vibration intensity or a predetermined minimum vibration time. and converting the data representing the angular velocity into vibration data including a predetermined maximum vibration intensity or a predetermined maximum vibration time when the angular velocity is equal to or greater than a predetermined maximum value.
  • the inertial sensor may be an angular velocity sensor, and the inertial data may include data representing angular velocity.
  • the conversion unit may be configured to convert data representing an angular velocity of 10 dps or more among the data representing the angular velocity into the vibration data.
  • the angular velocity sensor may have a sampling rate of 1 Hz or more and 1 kHz or less.
  • the device may further include a communication unit configured to communicate the inertial data and/or the vibration data with the outside.
  • Another object of the present invention is to provide an external device that cooperates with the above-described flavor inhalers and the like.
  • a communication unit configured to receive input data from said device, which is a flavor inhaler or an aerosol generator, representing movement of said device sensed by sensors in said device; a conversion unit configured to convert the input data into vibration data for vibrating a vibrator in the device or function data for controlling a function of the device;
  • An apparatus is provided, further configured to transmit vibration data or said functional data to said device.
  • the input data may include data representing acceleration or angular velocity of the detected movement.
  • the conversion unit may be further configured to use a representative value included in the input data.
  • using the representative value included in the input data may include converting the representative value into vibration intensity of the oscillator or intensity related to the function of the device.
  • using the representative value included in the input data may include converting the representative value into a vibration pattern of the vibrator or a pattern related to the function of the device.
  • the conversion unit divides the input data into a plurality of data representing the motion detected in each time period of a plurality of time periods, and a representative data included in each divided data. It may further be arranged to convert values into vibration intensity of the oscillator at different times or intensity associated with the function of the device.
  • the senor may be configured to sense movement of the device about at least a first axis and a second axis.
  • the input data may include at least first input data and second input data representing the sensed movement about the first axis and the second axis, respectively.
  • the conversion unit converts the first input data into the vibration intensity of the oscillator or the intensity related to the function of the device, and converts the second input data into the vibration pattern of the oscillator or the device. or one of a plurality of vibration patterns predetermined as the vibration pattern of the vibrator based on the second input data, or a pattern related to the function of the device in advance It may be further configured to select one of a plurality of defined patterns.
  • the vibration pattern may be specified by at least one of vibration time, vibration pause time, and vibration intensity correction coefficient.
  • the pattern for the function of the device may be specified by at least one of the time the function is active, the time the function is inactive, and a correction factor for the intensity of the function. good.
  • the apparatus may further comprise a charging section configured to charge a rechargeable power source within the device.
  • a method of controlling a device configured to communicate with a device, be it a flavor inhaler or an aerosol generator, wherein movement of said device sensed by a sensor within said device is represented.
  • receiving input data from the device converting the input data into vibration data for vibrating a vibrator in the device or function data for controlling a function of the device; transmitting data or said functional data to said device.
  • a device configured to communicate with a device, which may be a flavored inhaler or an aerosol generator, is provided with input data representative of movements of said device sensed by sensors in said device, said receiving from a device; converting the input data into vibration data for vibrating a vibrator in the device or functional data for controlling a function of the device; and the vibration data or the functional data. to the device.
  • a device which may be a flavored inhaler or an aerosol generator
  • a device being a flavor inhaler or an aerosol generator, comprising: a vibrator; a sensor configured to detect movement of said device; and an input representing said detected movement Data is transmitted to an external device, and vibration data for vibrating the vibrator or functional data for controlling the function of the device, which is obtained by converting the input data, is received from the external device. and a controller configured to vibrate the vibrator based on the vibration data or control the function of the device based on the function data.
  • control unit further vibrates the vibrator based on the vibration data or controls the function of the device based on the function data when the suction of the device is performed. may be configured.
  • control unit vibrates the vibrator based on the vibration data such that the strength of the suction is proportional to the vibration strength of the vibrator, or the function data and such that the strength of the suction is proportional to the strength associated with the function of the device.
  • control unit records a suction time, which is a length of time during which the suction is performed, and vibrates the vibrator based on the vibration data according to the suction time.
  • the device may be further configured to vary the length of time that the function of the device functions based on the performance data or the function data.
  • a method of operating a device comprising: detecting movement of said device; sending the data to an external device; and transmitting the vibration data for vibrating the vibrator or the function data for controlling the function of the device obtained by converting the input data to the external device. and vibrating the transducer based on the vibration data or controlling the function of the device based on the function data.
  • a device which is a flavor inhaler or an aerosol generator equipped with a vibrator, detects movement of the device, and transmits input data representing the detected movement to an external device. a step of transmitting, and a step of receiving, from the external device, vibration data for vibrating the vibrator or function data for controlling the function of the device, which is obtained by converting the input data; and vibrating the vibrator based on the vibration data or controlling the function of the device based on the function data.
  • a device that is a flavored inhaler or an aerosol generator, comprising at least one sensory stimulus element configured to provide sensory stimulation to a user, and and a controller configured to operate the at least one sensory stimulation element when the sensor acquires input data representative of the sensed movement.
  • the at least one element may include at least one of a vibrator, a light emitting element and an acoustic element.
  • the input data may include data representing acceleration or angular velocity of the detected movement.
  • the senor may be further configured to obtain the input data when the device is not generating an aerosol by heating.
  • the device may comprise two or more sensory stimulation elements configured to provide sensory stimulation to a user.
  • the controller may be configured to further activate a sensory stimulation element of the two or more sensory stimulation elements that is different from the at least one sensory stimulation element while the sensor is activated.
  • the device may further comprise a converter configured to convert the input data into sensory stimulation data for functioning the at least one sensory stimulation element.
  • the conversion unit may be further configured to use a representative value included in the input data.
  • using the representative value included in the input data may include converting the representative value into intensity related to sensory stimulation of the at least one sensory stimulation element.
  • using the representative value included in the input data may include converting the representative value into a pattern related to sensory stimulation of the at least one sensory stimulation element.
  • the conversion unit divides the input data into a plurality of data representing the motion detected in each time period of a plurality of time periods, and a representative data included in each divided data. It may be further configured to convert the values into intensities associated with sensory stimulation of the at least one sensory stimulation element at different times.
  • the senor may be further configured to sense movement of the device about at least a first axis and a second axis.
  • the input data may include at least first input data and second input data representing the sensed movement about the first axis and the second axis, respectively.
  • the conversion unit converts the first input data into intensity related to sensory stimulation of the at least one sensory stimulation element, and converts the second input data into sensory stimulation of the at least one sensory stimulation element. or select one of a plurality of patterns related to sensory stimulation predetermined as patterns related to sensory stimulation of the at least one sensory stimulation element based on the second input data. may be configured.
  • the pattern of sensory stimulation is specified by at least one of a time period during which the sensory stimulation element is active, a time period during which the sensory stimulation element is inactive, and a correction factor for the intensity of the sensory stimulation. It may be
  • a method of controlling a device comprising detecting movement of said device and obtaining input data representing said detected movement. activating at least one sensory stimulation element configured to provide sensory stimulation to a user.
  • a device which may be a flavor inhaler or an aerosol generator, detecting movement of said device; and activating at least one sensory stimulation element configured to provide sensory stimulation.
  • Yet another object of the present invention is to provide a configuration of a flavor suction device or the like that can more accurately detect movement of the flavor suction device or the like.
  • a device which is a flavor inhaler or an aerosol generator, comprises a housing, a heating element for heating the flavor source or the aerosol source, and an inertial sensor for detecting changes in angular velocity or acceleration. wherein the inertial sensor is arranged in the housing at a position that does not come into contact with the heating unit.
  • one of the three mutually orthogonal coordinate axes of the inertial sensor may be arranged substantially parallel to any one of the three mutually orthogonal coordinate axes of the housing.
  • the housing has a substantially rectangular parallelepiped shape with a thickness having a substantially rectangular surface, and the three coordinate axes in the housing each have a longitudinal direction of the substantially rectangular shape as a Z axis, and the When the lateral direction of the substantially rectangular shape is the Y axis and the direction orthogonal to the Z axis and the Y axis is the X axis, the X axis, Y axis, and Z axis of the inertial sensor are respectively aligned with the housing.
  • the housing and the inertial sensor may be arranged so as to be substantially parallel to the X-axis, the Y-axis, and the Z-axis in .
  • the housing has a substantially cylindrical shape and has a button or a light-emitting element on the surface of the housing, and the three coordinate axes in the housing are respectively longitudinal directions of the substantially cylindrical shape.
  • the direction perpendicular to the button or light-emitting element is the Y-axis
  • the direction orthogonal to the Z-axis and the Y-axis is the X-axis
  • Z-axis of the housing may be substantially parallel to the X-axis, the Y-axis, and the Z-axis of the housing.
  • a microcontroller may be further provided, and the inertial sensor may be attached to a substrate on which the microcontroller is attached.
  • a microcontroller may be further provided, and the inertial sensor may be attached to a substrate different from the substrate on which the microcontroller is attached.
  • At least part of the surface of the inertial sensor opposite to the surface in contact with the substrate to which the inertial sensor is attached may be covered with a heat insulating material.
  • the device comprises a battery
  • the inertial sensor is compared to the battery to provide more power to the user than the battery when the user inhales a substance produced by the flavor inhaler or the aerosol generator.
  • the inertial sensor may be an angular velocity sensor.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically the structural example, such as the flavor suction instrument by embodiment of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically the structural example, such as the flavor suction instrument by embodiment of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically the simplified structural example, such as the flavor inhaler by embodiment of this invention.
  • 4 is a graph plotting values contained in exemplary input data; 4 is a graph plotting values contained in exemplary input data; It is the figure which schematized the vibration intensity. It is a table showing a plurality of predetermined vibration patterns.
  • FIG. 4 is a flow chart of an exemplary process for vibrating a vibrator based on vibration data; 4 is a flow chart of an exemplary process for vibrating a vibrator based on vibration data; 4 is a flow chart of an exemplary process for vibrating a vibrator based on vibration data; 10 is a graph plotting changes in pressure sensed by a pressure sensor; FIG. 4 is a schematic diagram showing an exemplary vibration mode of a vibrator; FIG. 4 is a schematic diagram showing an exemplary vibration mode of a vibrator; FIG. 4 is a schematic diagram showing an exemplary vibration mode of a vibrator; FIG.
  • FIG. 4 is a schematic diagram showing an exemplary vibration mode of a vibrator
  • 1 is a flow chart of a control method for a flavor inhaler or the like according to an embodiment of the present invention
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically the simplified structural example, such as the flavor inhaler by embodiment of this invention.
  • 4 is a flowchart of exemplary processing for controlling a functional subject based on functional data; 4 is a flowchart of exemplary processing for controlling a functional subject based on functional data; 4 is a flowchart of exemplary processing for controlling a functional subject based on functional data; 1 is a flow chart of a control method for a flavor inhaler or the like according to an embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically the simplified structural example of the flavor inhaler etc. and external device by embodiment of this invention.
  • FIG. 4 is a sequence diagram showing operations of the flavor inhaler and the like and the external device according to the embodiment of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically the simplified structural example, such as the flavor inhaler by embodiment of this invention.
  • 1 is a flow chart of a control method for a flavor inhaler or the like according to an embodiment of the present invention; It is a flowchart which shows an example of operation
  • FIG. 4 is a diagram showing an example of a state in which a user holds the flavor inhaler or the like according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to
  • FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to the embodiment of the present invention; It is a figure showing an example of hardware constitutions, such as a flavor inhaler by an embodiment of the present invention. It is a figure showing an example of hardware constitutions, such as a flavor inhaler by an embodiment of the present invention.
  • a flavor inhaler or the like according to a first embodiment of the present invention is a device that produces a substance to be inhaled by a user.
  • the substance generated by the flavor inhaler or the like is an aerosol.
  • the substance produced by the flavor inhaler or the like may be a gas other than an aerosol.
  • FIG. 1A is a schematic diagram schematically showing a first configuration example of a flavor inhaler or the like.
  • a flavor inhaler or the like 100A according to this configuration example includes a power supply unit 110, a cartridge 120, and a flavor imparting cartridge .
  • the power supply unit 110 includes a power supply section 111A, a sensor section 112A, a notification section 113A, a storage section 114A, a communication section 115A, and a control section 116A.
  • the cartridge 120 includes a heating section 121A, a liquid guide section 122, and a liquid storage section 123.
  • Flavoring cartridge 130 includes flavor source 131 and mouthpiece 124 .
  • An air flow path 180 is formed in the cartridge 120 and the flavor imparting cartridge 130 .
  • the cartridge 120 and the flavor imparting cartridge 130 are examples of "refills" to be described later.
  • at least a portion of one or both of the refills 120 and 130 is colored according to the type of refill.
  • the color according to the type is not limited to the refill, and may be any component attached to the flavor suction device 100A, such as the flavor suction device.
  • the power supply unit 111A accumulates power. Then, the power supply unit 111A supplies electric power to each component of 100A, such as the flavor inhaler, under the control of the control unit 116A.
  • the power supply unit 111A may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery.
  • the sensor unit 112A acquires various kinds of information about the flavor suction device 100A.
  • the sensor unit 112A may include a pressure sensor such as a microphone condenser, a flow rate sensor, a temperature sensor, or the like, and acquires a value associated with suction by the user. Further, the sensor unit 112A may include an input device such as a button or switch that receives input of information from the user. Additionally, the sensor portion may include a sensor configured to detect movement of a flavor suction device or the like.
  • the notification unit 113A notifies the user of information.
  • 113 A of notification parts in this embodiment contain the display which displays a message.
  • the notification unit 113A includes, for example, a light-emitting device or light-emitting element that emits light, a display device that displays an image, a sound output device or acoustic element that outputs sound, or a vibrator configured to provide sensory stimulation to the user.
  • a vibration device or the like may be included.
  • the storage unit 114A stores various information for the operation of the flavor suction device 100A.
  • the storage unit 114A is configured by, for example, a non-volatile storage medium such as flash memory.
  • Storage unit 114A may include a volatile memory that provides a work area for control by control unit 116A.
  • the communication unit 115A can include a communication interface (including a communication module) conforming to a predetermined LPWA wireless communication standard or a wireless communication standard with similar restrictions. As such a communication standard, Sigfox, LoRA-WAN, etc. can be adopted.
  • the communication unit 115A may be a communication interface capable of performing communication conforming to any wired or wireless communication standard. Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like, for example, can be adopted as such a communication standard.
  • the control unit 116A functions as an arithmetic processing device and a control device, and controls the general operations within the flavor inhaler 100A according to various programs.
  • the control unit 116A is realized by electronic circuits such as a CPU (Central Processing Unit) and a microprocessor. Note that the control unit 116A is A conversion unit 117A, which will be described in detail later, can be included.
  • the liquid storage unit 123 stores an aerosol source.
  • An aerosol is generated by atomizing the aerosol source.
  • Aerosol sources are, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water.
  • the aerosol source may contain tobacco-derived or non-tobacco-derived flavoring ingredients. If the flavored inhaler or the like 100A is a medical inhaler such as a nebulizer, the aerosol source may contain a drug.
  • the liquid guide section 122 guides the aerosol source, which is the liquid stored in the liquid storage section 123, from the liquid storage section 123 and holds it.
  • the liquid guiding part 122 is a wick formed by twisting a fibrous material such as glass fiber or a porous material such as porous ceramic. In that case, the aerosol source stored in liquid reservoir 123 is guided by the capillary effect of the wick.
  • the heating unit 121A heats the aerosol source to atomize the aerosol source and generate an aerosol.
  • the heating section 121A is configured as a coil and wound around the liquid guiding section 122.
  • the heating part 121A When the heating part 121A generates heat, the aerosol source held in the liquid guide part 122 is heated and atomized to generate an aerosol.
  • the heating unit 121A generates heat when supplied with power from the power supply unit 111A.
  • power may be supplied when the sensor unit 112A detects one or both of the fact that the user has started sucking and the fact that predetermined information has been input. Then, the power supply may be stopped when the sensor unit 112A detects one or both of the fact that the user has finished sucking and the fact that the predetermined information has been input.
  • the flavor source 131 is a component for imparting flavor components to the aerosol.
  • the flavor source 131 may contain tobacco-derived or non-tobacco-derived flavor components.
  • the air flow path 180 is a flow path of air sucked by the user.
  • the air flow path 180 has a tubular structure having an air inlet hole 181 as an air entrance into the air flow path 180 and an air outflow hole 182 as an air outlet from the air flow path 180 at both ends.
  • the liquid guide portion 122 is arranged on the upstream side (closer to the air inlet hole 181), and the flavor source 131 is arranged on the downstream side (closer to the air outlet hole 182).
  • the air that flows in through the air inflow hole 181 as the user inhales is mixed with the aerosol generated by the heating unit 121A, passes through the flavor source 131, and is transported to the air outflow hole 182 as indicated by the arrow 190.
  • the mixed fluid of the aerosol and air passes through the flavor source 131, the flavor component contained in the flavor source 131 is imparted to the aerosol.
  • the mouthpiece 124 is a member held by the user when inhaling.
  • An air outlet hole 182 is arranged in the mouthpiece 124 . The user can take the mixed fluid of aerosol and air into the oral cavity by holding the mouthpiece 124 and sucking.
  • flavor suction device 100A An example configuration of the flavor suction device 100A has been described above.
  • the structure of 100A such as a flavor suction instrument, is not limited to the above, and can take various structures illustrated below.
  • the flavor suction device 100A may not include the flavoring cartridge 130.
  • the cartridge 120 is provided with a mouthpiece 124 .
  • the flavor suction device 100A may include multiple types of aerosol sources. Further types of aerosols may be generated by mixing multiple types of aerosols generated from multiple types of aerosol sources and causing chemical reactions in the air flow path 180 .
  • the means for atomizing the aerosol source is not limited to heating by the heating unit 121A.
  • the means of atomizing the aerosol source may be vibrational atomization or induction heating.
  • FIG. 1B is a schematic diagram schematically showing a second configuration example of the flavor inhaler or the like.
  • the flavor inhaler or the like 100B according to this configuration example includes a power supply unit 111B, a sensor unit 112B, a notification unit 113B, a storage unit 114B, a communication unit 115B, a control unit 116B, a heating unit 121B, and a holding unit 140. , and the heat insulating portion 144 .
  • Each of the power supply unit 111B, the sensor unit 112B, the notification unit 113B, the storage unit 114B, the communication unit 115B, and the control unit 116B is substantially the corresponding component included in the flavor inhaler 100A according to the first configuration example. is identical to
  • the holding part 140 has an internal space 141 and holds the stick-shaped base material 150 while accommodating a part of the stick-shaped base material 150 in the internal space 141 .
  • the stick-type base material 150 is also an example of a “refill”.
  • the holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 .
  • the holding portion 140 is a tubular body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 .
  • the holding part 140 also has a function of defining a flow path for air supplied to the stick-shaped substrate 150 .
  • An air inlet hole which is an inlet of air to such a channel, is arranged, for example, in the bottom portion 143 .
  • the air outflow hole which is the exit of air from such a channel, is the opening 142 .
  • the stick-type base material 150 includes a base material portion 151 and a mouthpiece portion 152 .
  • Substrate portion 151 includes an aerosol source.
  • the aerosol source is not limited to liquid, and may be solid.
  • the heating section 121B has the same configuration as the heating section 121A according to the first configuration example. However, in the example shown in FIG. 1B, the heating portion 121B is configured in a film shape and arranged so as to cover the outer periphery of the holding portion 140. As shown in FIG. Then, when the heating part 121B generates heat, the base material part 151 of the stick-shaped base material 150 is heated from the outer periphery, and an aerosol is generated.
  • the heat insulation part 144 prevents heat transfer from the heating part 121B to other components.
  • the heat insulating part 144 is made of a vacuum heat insulating material, an airgel heat insulating material, or the like.
  • a configuration example of the flavor suction device 100B has been described above.
  • the configuration of the flavor inhaler or the like 100B is not limited to the above, and various configurations exemplified below can be employed.
  • the heating part 121B may be configured in a blade shape and arranged to protrude from the bottom part 143 of the holding part 140 into the internal space 141 .
  • the blade-shaped heating part 121B is inserted into the base material part 151 of the stick-shaped base material 150 and heats the base material part 151 of the stick-shaped base material 150 from the inside.
  • the heating part 121B may be arranged so as to cover the bottom part 143 of the holding part 140 .
  • the heating part 121B is a combination of two or more of the first heating part covering the outer periphery of the holding part 140, the blade-shaped second heating part, and the third heating part covering the bottom part 143 of the holding part 140. may be configured as
  • the holding part 140 may include an opening/closing mechanism such as a hinge that opens/closes a portion of the outer shell that forms the internal space 141 .
  • the holding part 140 may hold the stick-shaped base material 150 inserted into the internal space 141 by opening and closing the outer shell.
  • the heating part 121B may be provided at the holding part 140 at the holding part 140 and heat the stick-shaped base material 150 while pressing it.
  • the means for atomizing the aerosol source is not limited to heating by the heating unit 121B.
  • the means of atomizing the aerosol source may be induction heating.
  • the flavor inhaler or the like 100B may further include a heating portion 121A, a liquid guiding portion 122, a liquid storing portion 123, and an air flow path 180 according to the first configuration example.
  • the hole 182 may also serve as an air inflow hole to the internal space 141 .
  • the mixed fluid of the aerosol and air generated by the heating unit 121A flows into the internal space 141, is further mixed with the aerosol generated by the heating unit 121B, and reaches the oral cavity of the user.
  • FIG. 2 is a schematic representation of a simplified configuration example in which only components particularly related to one embodiment of the present invention are extracted from the above-described flavor suction device 100A or 100B. It is a diagram. Accordingly, 200 indicates a flavor inhaler or the like 100A or 100B.
  • the vibrator 210 indicates the above-described oscillator included in the notification unit 113A or 113B. Note that the vibrator 210 may be considered separate from the notification unit 113A or 113B. In the following description, it is assumed that the vibration of the vibrator 210 is controlled by PWM, and that the vibration intensity is proportional to the PWM duty ratio. However, it will be appreciated that the oscillation of transducer 210 may be controlled in other ways.
  • This sensor denotes the above-described sensor configured to detect movement of the flavor inhaler or the like 200 included in the sensor section 112A or 112B.
  • This sensor may be an inertial sensor (motion sensor) such as an acceleration sensor or an angular velocity sensor (gyro sensor).
  • the sampling rate of the angular velocity sensor may be 1 Hz or more and 1 kHz or less.
  • Inertial data acquired by the inertial sensor may be stored in storage unit 114A or 114B.
  • the conversion unit 230 indicates the conversion unit 117A or 117B described above included in the control unit 116A or 116B. Note that the conversion unit 230 may be considered separate from the control unit 116A or 116B.
  • the conversion unit 230 is configured to convert data representing the movement detected by the sensor 220 into data for vibrating the vibrator 210 .
  • the former data can be regarded as an input for outputting the latter data or for vibrating the vibrator 210, and hence hereinafter referred to as "input data”.
  • the latter data is data for vibrating the vibrator 210, so it is hereinafter referred to as "vibration data".
  • the conversion unit 117A or 117B may read the inertia data from the storage unit 114A or 114B as input data.
  • the vibration data may be stored in storage unit 114A or 114B.
  • control unit 240 indicates the control unit 116A or 116B. Note that the control unit 240 may be considered to be the control unit 116A or 116B with the conversion unit 230 removed.
  • the control unit 240 is configured to vibrate the vibrator 210 based on the vibration data. At that time, the control unit 240 may read the vibration data from the storage unit 114A or 114B.
  • the sensor 220 is configured to repeatedly detect movement of the flavor inhaler or the like 200 .
  • the period at which the sensor 220 detects the movement of the flavor inhaler or the like 200 may be constant or variable. Since the sensor 220 may be an inertial sensor such as an acceleration sensor or an angular velocity sensor as described above, the input data representing the movement of the flavor suction device 200 is the value of the acceleration or angular velocity of the movement of the flavor suction device 200. , the time at which the value was detected or an index attached to the value.
  • the input data may be configured such that the lower indexed values are values of acceleration or angular velocity of movement of the flavor inhaler, etc. 200 sensed more recently. It should be appreciated that the index may be omitted and not included in the input data. Further, the sensor 220 may be configured to detect only movements with acceleration or angular velocity values greater than or equal to a predetermined threshold.
  • the sensor 220 has multiple axes defined, generally three axes that are orthogonal to each other. Accordingly, the input data may include data representing movement of the flavor inhaler, etc. 200 about each of the plurality of axes sensed by the sensor 220 .
  • the data representing the movement of the flavor suction device 200 or the like with respect to each axis will be referred to as "partial input data".
  • the partial input data may include acceleration or angular velocity values of movement of the flavor inhaler, etc. 200 about one axis.
  • the motion about an axis is a motion defined with an axis as a reference, such as a motion along an axis or a motion rotating around an axis.
  • the acceleration or angular velocity values of motion about an axis may be acceleration values along the axis or angular velocity values rotating about the axis.
  • FIG. 3 is a graph 300 plotting values contained in exemplary input data.
  • the vertical axis of the graph 300 corresponds to acceleration or angular velocity values, and the horizontal axis corresponds to time or index as described above.
  • Each of 310A-310C shows a plot of values contained in each partial input data.
  • the input data can include only data representing the movement of the flavor suction device 200, etc., about a specific axis among the multiple axes.
  • a particular axis for example, the axis for which the maximum acceleration or angular velocity value is sensed by sensor 220 within a predetermined time period may be selected.
  • such a particular axis may be selected as the axis that has the greatest sum of absolute values of acceleration or angular velocity sensed by sensor 220 within a predetermined time period.
  • the input data can include data representing a composite of motions of the flavor suction device 200 or the like about a plurality of axes. Such synthesis may be done, for example, by summing the acceleration or angular velocity values of movement of the flavor inhaler, etc. 200 sensed by the sensor 220 at the same time or timing for each of the multiple axes.
  • the input data can include data representing the movement of the flavor suction device 200 or the like that has undergone predetermined processing.
  • the input data may include the values of the acceleration or angular velocity of the movement of the flavor suction device 200 after taking a moving average and smoothing.
  • the input data includes values of acceleration or angular velocity of movement of the flavor suction device 200, etc., detected by the sensor 220 at different times or timings. Therefore, the input data may be partitioned into a plurality of data each representing the detected motion in each of the plurality of time periods, each including a value of acceleration or angular velocity of the motion in each time period. can be done.
  • Each of 320A-320C in FIG. 3 indicates a time period corresponding to each segmented data. The length of the time period corresponding to each segmented data may be constant or may be different.
  • Vibration data may include values representing multiple vibration intensities, each corresponding to vibration of the vibrator 210 at a different time or timing. can.
  • a value D[] can be obtained by the following formula.
  • D[i] Dmin +( Dmax - Dmin )*(A[i] -Amin )/( Amax - Amin ) (1)
  • D min is the minimum value defined for the vibration intensity
  • D max is the maximum value defined for the vibration intensity
  • a min is the minimum value defined for the input data
  • a max is the input data
  • A[i] is the i-th value included in the input data
  • D[i] is the i-th value representing the vibration intensity.
  • A[i] may be the i-th value included in one partial input data among the plurality of partial input data.
  • the i-th value of the synthesized data (for example, the total value of the i-th values included in each partial input data) may be used.
  • the minimum and maximum values defined for the input data may be the minimum and maximum values that the input data may contain, respectively.
  • D min , D max , A min and A max can be arbitrarily set as parameters.
  • the conversion unit 230 using the formula (1) can be considered to be configured to convert A[], which is a continuous value included in the input data, to D[], which is a continuous value included in the vibration data. be understood.
  • the conversion unit 230 converts the input data to vibration data including the predetermined minimum vibration intensity (D min ). can be converted to When the input data is equal to or greater than a predetermined maximum value (A[i] ⁇ A max ), the conversion unit 230 converts the input data into vibration data including a predetermined maximum vibration intensity (D max ). You may
  • a max and A min may be set in various ways.
  • a max and A min may be initially set in the flavor inhaler or the like 200 .
  • a max and A min may be automatically set by the control unit 240 or the like based on the movement of the flavor inhaler or the like 200 associated with the use of the flavor inhaler or the like 200 by the user.
  • the flavor inhaler or the like 200 may have Amax and Amin setting modes. In this case, the user is instructed from the flavor suction device 200 or an external device communicating with the flavor suction device 200 to intentionally shake the flavor suction device 200 strongly and weakly, or The controller 240 may set A max and A min based on the movement of the flavor inhaler 200 or the like at that time.
  • the detected movement of the flavor suction device 200 can be directly converted into vibration of the vibrator 210, as will be described later.
  • vibration data for each vibrator may be converted using different partial input data.
  • the converter 230 can be further configured to use representative values contained in the input data. Using the representative value included in the input data may be converting the representative value included in the input data into the vibration intensity or vibration pattern of the vibrator 210 .
  • the representative value included in the input data is the value of motion acceleration or angular velocity included in the input data (each partial input data among multiple partial input data when the input data represents motion about multiple axes). may be the maximum value, the extreme value (for example, the maximum value), the average value, the median value, the predetermined number or the middle value included in the data (hereinafter referred to as "maximum value etc.”). Also, the representative value may be obtained for each piece of data divided as described above. Therefore, a plurality of representative values can be obtained from the input data.
  • FIG. 4 is a graph 400 plotting values contained in exemplary input data (which may be considered partial input data).
  • the vertical axis of the graph 400 corresponds to acceleration or angular velocity values, and the horizontal axis corresponds to time or index as described above.
  • 410 indicates a predetermined threshold
  • 420A to 420C indicate portions of the exemplary data that are equal to or greater than the predetermined threshold 410.
  • FIG. The data of such portions 420A-420C of the exemplary data can be respectively partitioned data, and the maximum values 430A-430C in each of the portions 420A-420C are respectively referred to as partitioned data (420A-420C). 420C). Note that when extrema are obtained by such an approach, the number of extrema obtained will vary depending on what value the predetermined threshold 410 is set to.
  • the maximum values, etc. may be sorted in descending order, and a predetermined number of maximum values, etc., may be used as the representative value.
  • Vibration data can include a value representing a reference vibration intensity (hereinafter referred to as “reference vibration intensity”) when vibrating the vibrator 210 .
  • a rep is a representative value of the input data (one partial input data out of multiple partial input data when the input data represents motion about multiple axes), and D ref represents the reference vibration intensity. value.
  • a rep can be obtained from A[ ], which is the continuous value included in the input data. It will be appreciated that the vibration data can be considered to be configured to convert to discrete values, D ref .
  • the conversion unit 230 converts the input data to the vibration including the predetermined minimum vibration intensity (D min ). can be converted to data.
  • the conversion unit 230 transforms the input data into vibration data including a predetermined maximum vibration intensity (D max ). may be converted.
  • a max and A min may be set in various ways.
  • the vibration data can include values representing a plurality of reference vibration intensities, and such values D ref [ ] can be obtained by the following equation.
  • Dref [j] Dmin +( Dmax - Dmin )*( Arep [j] -Amin )/( Amax - Amin ) (3)
  • a rep [j] is the j-th representative value of the input data (one partial input data of multiple partial input data if the input data represents motion about multiple axes)
  • D ref [j] is a value representing the j-th reference vibration intensity. Note that A rep [j] can be obtained from A[ ], which is a continuous value included in the input data. ] to D ref [j], the discrete values that the vibration data contains.
  • the conversion unit 230 converts the input data to the predetermined minimum vibration intensity (D min ). may be converted to vibration data including If the representative value of the input data is equal to or greater than a predetermined maximum value (A rep [j] ⁇ A max ), the conversion unit 230 converts the input data to a predetermined maximum vibration intensity (D max ). It may be converted into vibration data.
  • the vibration data can include values representing the vibration pattern when vibrating the vibrator 210 .
  • the vibration pattern may be specified by at least one of a vibration time, a vibration pause time, and a vibration intensity correction factor, which will be described later. , an index described later for selecting one vibration pattern. It should be understood that the vibration pattern may be specified by other parameters in addition to or instead of the vibration time, vibration pause time, and vibration intensity correction factor. For example, the vibration pattern described later with respect to the index is also specified by the vibration intensity or the reference vibration intensity.
  • the control section 240 can vibrate the vibrator 210 in a manner that repeats a period of vibration and a period of rest of the vibration. Therefore, as described above, the value representing the vibration pattern may include one or both of the vibration time, which is the length of the period of vibration, and the vibration rest time, which is the length of the period of resting the vibration. can.
  • the vibration time T[] can be obtained by the following formula.
  • T[k] T min + (T max ⁇ T min ) ⁇ (A rep [k] ⁇ A min )/(A max ⁇ A min ) (4)
  • T min is the specified minimum length of the vibration time
  • T max is the specified maximum length of the vibration time
  • a rep [k] is the input data (the When representing motion about an axis, it is the k-th representative value of one partial input data among a plurality of partial input data)
  • C[k] is the k-th vibration intensity correction coefficient.
  • T min and T max can be arbitrarily set as parameters.
  • a rep [k] can be obtained from A[ ], which is the continuous value included in the input data. ] to T[k], the discrete values that the vibration data contains.
  • the conversion unit 230 converts the input data to vibration including the predetermined minimum vibration time (T min ). can be converted to data.
  • the conversion unit 230 transforms the input data into vibration data including a predetermined maximum vibration time (T max ). may be converted.
  • a max and A min may be set in various ways.
  • the vibration pause time Z[] can be obtained by the following formula.
  • Z[k] T0 -T[k] (5)
  • T 0 is the length of one cycle consisting of one vibrating period and one vibrating rest period.
  • T0 can be arbitrarily set as a parameter.
  • T[k] can be obtained from A[], which is a continuous value included in the input data. It will be appreciated that A[ ], which is a continuous value, can be viewed as being configured to transform Z[k], which is a discrete value comprising vibration data.
  • the vibration pause time Z[] may be a fixed value.
  • the control section 240 can derive one or more vibration strengths from one reference vibration strength. Therefore, as described above, the value representing the vibration pattern can include a vibration intensity correction factor for deriving the vibration intensity.
  • C0 can be arbitrarily set as a parameter.
  • a rep [k] can be obtained from A[ ], which is a continuous value included in the input data
  • the conversion unit 230 using Equation (6) also uses A[ ], which is a continuous value included in the input data. ] to C[k], the discrete values that the vibration data contains.
  • any method can be used to derive the vibration intensity, and the value of the derived vibration intensity can be obtained, for example, by multiplying the value of the reference vibration intensity by the vibration intensity correction coefficient.
  • D ref [k] may be used instead of D ref .
  • FIG. 5 is a schematic diagram of one reference vibration strength and three derived vibration strengths.
  • 510A shows a block that schematically represents one reference vibration intensity.
  • 510B, 510C, and 510D are three vibration strengths derived by multiplying the value of the reference vibration strength 510A by predetermined vibration strength correction factors C[1], C[2], and C[3], respectively. shows a schematic block.
  • the heights of blocks 510A-510D correspond to vibration intensity values.
  • the value representing the vibration pattern may be the vibration time, the vibration pause time, and the vibration intensity correction coefficient associated with each representative value.
  • the value representing the vibration pattern is an index value for selecting one of a plurality of predetermined vibration patterns. There may be.
  • the value of such an index may be equal to the number of representative values included in the input data (one partial input data of multiple partial input data if the input data represents motion about multiple axes).
  • the value of such an index is determined by comparing a representative value included in the input data (one partial input data out of multiple partial input data if the input data represents motion about multiple axes) with a threshold.
  • i max is the number of predetermined vibration patterns (maximum value of the index)
  • 1 is set when the representative value is less than a predetermined first threshold, and less than a predetermined first threshold or more and a second threshold.
  • i max -1 if it is equal to or greater than the predetermined (i max ⁇ 2)th threshold and less than the predetermined (i max ⁇ 1)th threshold, and the predetermined (i max ⁇ 1) If i_max is equal to or greater than the threshold, i_max may be used as the value of the index.
  • the conversion unit 230 using such a method also uses A[], which is the continuous value included in the input data.
  • A[] which is the continuous value included in the input data.
  • Each of such a plurality of vibration patterns may be specified by one or more of vibration time, vibration pause time and vibration intensity correction coefficient, vibration intensity, or reference vibration intensity.
  • the index may uniquely determine one or more of the vibration time, vibration pause time, vibration intensity correction coefficient, vibration intensity, and reference vibration intensity.
  • FIGS. 6A and 6B each represent a table representing a plurality of predetermined vibration patterns when the number of predetermined vibration patterns (maximum index value) is five.
  • the first vibration pattern is specified by one vibration intensity correction factor of 1
  • the second vibration pattern is specified by two vibration intensity correction factors of 0.5 and 1
  • the third vibration pattern is specified by specified by three vibration intensity correction factors of 0.3, 0.5 and 1
  • the fourth vibration pattern is specified by four vibration intensity correction factors of 0.3, 0.5, 0.7 and 1
  • the fifth vibration pattern is specified by five vibration intensity correction factors of 0.2, 0.4, 0.6, 0.8 and 1.
  • the first vibration pattern in FIG. 6B is identified by one vibration intensity value of 80
  • the second vibration pattern is identified by two vibration intensity values of 40 and 80
  • the third vibration pattern is 24, 48. and 80
  • a fourth vibration pattern is specified by four vibration intensity values of 24, 40, 56 and 80
  • a fifth vibration pattern is 16, 32, 48, 64. and 80.
  • the conversion unit 230 can obtain the value representing the vibration intensity and the value representing the vibration pattern based on different partial input data. That is, the conversion unit 230 converts one of the plurality of partial input data (hereinafter referred to as “first input data”) into the vibration intensity of the vibrator 210, and converts another of the plurality of partial input data. One (hereinafter referred to as “second input data”) may be converted into a vibration pattern. Furthermore, one of the second input data and another partial input data different from the first input data and the second input data (hereinafter referred to as "third input data”) may be converted into a vibration pattern.
  • first input data one of the plurality of partial input data
  • second input data One
  • third input data one of the second input data and another partial input data different from the first input data and the second input data
  • the vibration duration specifying the vibration pattern may be determined from the second input data, and the vibration intensity correction coefficient specifying the vibration pattern may be determined from the third input data.
  • one of a plurality of predetermined vibration patterns can be selected as the vibration pattern of the vibrator 210 based on the second input data.
  • the vibration data for each vibrator is generated using one or more of the first input data, the second input data and the third input data. may be converted.
  • the conversion unit 230 may be configured not to use values included in the input data that are less than a predetermined threshold value or not included in a predetermined range for generating vibration data. For example, if the sensor 220 is an angular velocity sensor and the input data includes data representing angular velocities, the conversion unit 230 may convert data representing angular velocities of 10 dps or more into vibration data. Alternatively, the conversion unit 230 may be configured to generate vibration data by assuming that a value included in the input data that is less than a predetermined threshold value or not included in a predetermined range is a predetermined value.
  • the converter 230 may be configured to generate input data based on the output from the sensor 220 to generate vibration data.
  • Conversion unit 230 may be configured to store input data in storage unit 114A or 114B and convert the stored input data into vibration data.
  • the conversion unit 230 may be configured to store the generated vibration data in the storage unit 114A or 114B.
  • the control unit 240 may be configured to use stored vibration data generated in the past.
  • the vibration data may be editable in the flavor inhaler, etc. 200 or by an external device thereof.
  • the conversion unit 230 may be configured to be able to select a method of converting input data into vibration data.
  • the control unit 240 may be configured to vibrate the vibrator 210 based on vibration data converted by a different method, and to be able to confirm the mode of vibration.
  • the communication unit 115A or 115B may be configured to communicate inertial data and/or vibration data with the outside.
  • FIG. 7 is a flowchart of an exemplary process 700 executed by the controller 240 to vibrate the vibrator 210 based on vibration data.
  • step 710 indicates a step of determining whether the user has started inhaling in the flavor inhaling instrument 200 or the like. Any method can be used to determine whether or not the suction has started.
  • the controller 240 may determine that the suction has started when the pressure intensity P, which will be described later, becomes less than a predetermined threshold value. If it is determined that aspiration has begun, processing proceeds to step 720;
  • the 730 indicates a step of vibrating the vibrator 210 for a predetermined time with the obtained vibration intensity.
  • the predetermined time will be described later.
  • step 740 indicates a step of determining whether or not the user has finished inhaling in the flavor inhaling instrument 200 or the like. Any method can be used to determine whether or not the suction has ended.
  • the above-described pressure sensor can be used for determination.
  • the controller 240 may determine that the suction has ended when the strength P of the pressure described above is equal to or greater than a predetermined threshold. If it is determined that aspiration is over, the process ends; otherwise, the process proceeds to step 750 .
  • the control unit 240 can determine that the vibration intensity values D[ ] can still be obtained from the vibration data. If it is determined that the vibration intensity value D[ ] can still be obtained from the vibration data, the process returns to step 720; otherwise, the process ends.
  • the vibrator 210 can be vibrated based on the vibration data while the flavor suction device 200 is sucking. Further, according to the exemplary process 700 , the detected movement of the flavor inhaler or the like 200 can be directly converted into vibration of the vibrator 210 .
  • the predetermined time in step 730 may be, for example, equal to the length of the cycle in which the sensor 220 detects the movement of the flavor suction device 200 or the like. In this case, the detected movement of the flavor inhaler 200 and the vibration of the vibrator 210 can be temporally synchronized.
  • the predetermined time in step 730 may be changed according to the suction time, which is the length of time during which the flavor suction device 200 is sucking.
  • the predetermined time in step 730 is set so that the length of time from when step 720 is first executed until a No determination is made in step 750 is equal to the suction time so that it is shorter than the suction time.
  • it may be set to be longer than the suction time. In this case, the length of time during which the vibrator 210 vibrates is compressed or expanded depending on the suction time.
  • the control unit 240 can record the length of time that the user has been sucking in the flavor inhaler or the like 200 in the past, and the length of such time (or the average length of such time) statistical values such as values) can be used as the aspiration time.
  • the length of time during which the user has been sucking the flavor suction device 200 in the past is the length of the period from when the above-described pressure P becomes less than the predetermined threshold until it becomes equal to or greater than the predetermined threshold. It's okay.
  • the vibration intensity value D[] included in the vibration data acquired in step 720 may be optional.
  • the value D[] of the vibration intensity included in the vibration data may be obtained by thinning out at predetermined intervals. For example, when the vibration intensity value D[] included in the vibration data is acquired by thinning out every two values, the vibration intensity values acquired until a No determination is made in step 750 are D[1], D[2 ], D[4], D[5], D[7], . not.).
  • the thinning interval may be set arbitrarily, and may be set according to the suction time or suction intensity. Also, the thinning interval may be variable. For example, the thinning interval may be changed according to the suction strength.
  • the thinning interval is every other interval; if the suction strength is equal to or greater than the second threshold and less than the first threshold, the thinning interval is every two; If it is less than n, the thinning interval may be set to every n.
  • the threshold interval can be linear or arbitrary.
  • the thinning interval according to the suction strength may be set by measuring the suction strength a predetermined number of times during one suction, or by measuring the suction strength in real time during one suction. It may be done by
  • FIG. 8A is a flowchart of exemplary processing 800A for vibrating vibrator 210 based on vibration data, executed by control unit 240 .
  • Step 810A shows a step of determining whether the user has started inhaling in the flavor inhaling instrument 200 or the like. Step 810A may be similar to step 710; If it is determined that aspiration has begun, processing proceeds to step 820A, otherwise processing returns to step 810A.
  • FIG. 820A indicates a step of determining the vibration intensity and the vibration time when vibrating the vibrator 210.
  • FIG. A method for determining the vibration intensity and the vibration time will be described later.
  • 840A shows the step of determining the vibration rest time. A method for determining the vibration pause time will be described later.
  • 850A shows the step of waiting for the determined vibration rest time.
  • Step 860A indicates a step of determining whether the user has finished inhaling the flavor in the flavor inhaling instrument 200 or the like. Step 860 may be similar to step 740 . If it is determined that the suction is over, the process ends, otherwise the process returns to step 820A.
  • step 820A one of the one or more reference vibration intensities whose value is included in the vibration data is sequentially and cyclically determined as the vibration intensity. can be selected.
  • one of the one or more vibration intensities derived based on one or more vibration intensity correction coefficients specified by the value of the reference vibration intensity and the vibration pattern included in the vibration data is sequentially selected. and cyclically can be selected as the vibration intensity to be determined.
  • one or more vibration intensities derived based on one or more vibration intensity correction coefficients of the vibration pattern selected by the value of the reference vibration intensity included in the vibration data and the index included in the vibration data. can be selected sequentially and cyclically as the vibration intensity to be determined.
  • one of the one or more vibration intensities of the vibration pattern selected by the index contained in the vibration data can be sequentially and cyclically selected as the determined vibration strength.
  • step 820A the vibration strength determined based on the vibration data as described above, and the vibration strength corrected according to the suction strength, can be used as the vibration strength finally determined.
  • FIG. 9 is a graph 900 plotting changes in pressure sensed by a pressure sensor.
  • the vertical axis of graph 900 corresponds to the value of sensed pressure and the horizontal axis corresponds to time.
  • 910 indicates the value of pressure before suction is applied, i.e. atmospheric pressure.
  • the vibration intensity value D determined finally determined in step 820A can be obtained by the following equation.
  • Ddetermined Ddata *P/ Pstn (9)
  • D data is a vibration strength value determined based on the vibration data as described above
  • P stn is a reference suction strength.
  • P stn may be the assumed maximum suction strength P max
  • P max may be experimentally obtained by any method such as sucking as strongly as possible with a flavor suction device or the like.
  • P stn may be the assumed normal strength of suction, and such strength values may be literature values.
  • P stn may be automatically set by the control unit 240 or the like based on the suction of the flavor suction device or the like 200 by the user.
  • the flavor inhaler, etc. 200 may have a P stn setting mode.
  • the user is instructed to suck the flavor suction device or the like 200 from the flavor suction device or the like 200 or from an external device communicating with the flavor suction device or the like 200, and based on the suction strength at that time,
  • the control unit 240 may set P stn . According to the vibration intensity value D determined in this way, the control unit 240 vibrates the vibrator 210 based on the vibration data so that the suction strength and the vibration strength of the vibrator 210 are proportional. It will be configured to allow
  • a predetermined length of time may be determined as the vibration time.
  • the vibration time included in the vibration data may be used as the determined vibration time.
  • a predetermined length of time may be determined as the vibration rest time.
  • the vibration rest time included in the vibration data may be used as the determined vibration rest time.
  • step 840A may determine the vibration pause time according to the strength of the suction.
  • the determination of the vibration pause time may be made together with the determination of the vibration time and the vibration intensity in step 820A.
  • the vibration intensity, vibration time, and vibration pause time may be determined in advance from vibration data including the reference vibration intensity and the vibration pattern and stored.
  • the control unit 240 reads one or more different stored vibration intensities, vibration times, and vibration pause times, and reads out one or more different vibration intensities and vibrations.
  • the vibrator can be vibrated according to the time and the vibration pause time.
  • FIG. 8B is a flowchart of another exemplary process 800B for vibrating the vibrator 210 based on vibration data, which is executed by the control unit 240.
  • FIG. 8B is a flowchart of another exemplary process 800B for vibrating the vibrator 210 based on vibration data, which is executed by the control unit 240.
  • Step 810B shows a step of determining whether the user has started inhaling in the flavor inhaling instrument 200 or the like. Step 810B may be similar to step 710; If it is determined that aspiration has started, processing proceeds to step 820B, otherwise processing returns to step 810B.
  • the 820B indicates a step of acquiring the values of the vibration intensity, vibration time, and vibration pause time for vibrating the vibrator 210 from the storage unit 114A or 114B.
  • the acquired vibration intensity, vibration time and vibration rest time are each selected from one or more different vibration intensities, vibration times and vibration rest times previously determined by the method described above and stored in the storage unit 114A or 114B. can be one.
  • 840B shows a step of waiting for the acquired vibration rest time.
  • Step 850B indicates a step of determining whether the user has finished inhaling in the flavor inhaling instrument 200 or the like. Step 850B may be similar to step 740; If it is determined that aspiration has ended, the process ends; otherwise, the process proceeds to step 860B.
  • step 860B shows the step of determining whether values for vibration intensity, vibration time and vibration rest time can still be obtained.
  • step 860B if there is one or more different vibration intensities, vibration times, and vibration rest times stored in storage unit 114A or 114B that have not yet been acquired, the vibration intensities, vibration times, and vibration rest times have not yet been acquired. It can be determined that the value can be obtained. If it is determined that the vibration intensity, vibration time and vibration dwell time values can still be obtained, the process returns to step 820B, otherwise the process ends.
  • FIG. 1000 is a schematic diagram representing an exemplary vibration behavior 1000 of the vibrator 210 when determined and the vibration pause time is determined in step 840 as a function of the strength of the suction.
  • 1000A is a graph showing temporal changes in the vibration mode of the vibrator 210 .
  • the vertical axis of graph 1000A corresponds to vibration intensity, and the horizontal axis corresponds to time. Accordingly, 1010A indicates each period during which the vibrator 210 vibrates, and 1020A indicates each period during which the vibrator 210 does not vibrate.
  • One vibrating period 1010A and one non-vibrating period 1020A to the right thereof correspond to one execution of steps 820-850 of example process 800.
  • FIG. It will be appreciated that in graph 1000, vibrations of three different vibration intensities appear repeatedly in sequence.
  • the 1000B is a graph showing changes in the suction strength of the flavor suction device 200, etc.
  • the vertical axis of the graph 1000B corresponds to suction strength
  • the horizontal axis corresponds to time.
  • the horizontal axis of graph 1000A and the horizontal axis of 1000B are common.
  • the length of the non-vibrating period 1020A changes according to the strength of the suction. It will be appreciated that the length of is shortened.
  • FIG. 11 is a schematic diagram illustrating an exemplary vibration mode 1100 of the vibrator 210 when the vibration pause time is determined according to the suction strength in step 840.
  • FIG. 11 is a schematic diagram illustrating an exemplary vibration mode 1100 of the vibrator 210 when the vibration pause time is determined according to the suction strength in step 840.
  • 1100A is a graph showing temporal changes in the vibration mode of the vibrator 210.
  • FIG. The vertical axis of graph 1100A corresponds to vibration intensity, and the horizontal axis corresponds to time. Therefore, 1110A indicates each period during which the vibrator 210 vibrates, and 1120A indicates each period during which the vibrator 210 does not vibrate.
  • One vibrating period 1110A and one non-vibrating period 1120A to the right thereof correspond to one execution of steps 820-850 of example process 800.
  • 1100B is a graph showing changes in the suction strength of the flavor suction device 200, etc.
  • the vertical axis of the graph 1100B corresponds to suction strength
  • the horizontal axis corresponds to time. Note that the horizontal axis of graph 1100A and the horizontal axis of 1100B are common.
  • the length of the non-vibrating period 1120A changes according to the strength of the suction. It will be appreciated that the length of is shortened.
  • FIG. 12 is a schematic diagram representing an embodiment 1200A;
  • 1202A is a graph representing temporal changes in the vibration mode of the vibrator 210 .
  • the vertical axis of graph 1202A corresponds to vibration intensity, and the horizontal axis corresponds to time. Accordingly, 1210A indicates each period during which the vibrator 210 vibrates, and 1220A indicates each period during which the vibrator 210 does not vibrate.
  • One vibrating period 1210A and one non-vibrating period 1220A to its right correspond to one execution of steps 820A to 850A of exemplary process 800A.
  • 1204A is a graph showing changes in the strength of suction of the flavor suction device 200 and the like.
  • the vertical axis of graph 1204A corresponds to suction strength, and the horizontal axis corresponds to time. Note that the horizontal axis of graph 1202A and the horizontal axis of 1204A are common.
  • the graph 1200A shows vibration strength proportional to the strength of suction. Also, as is clear from graphs 1202A and 1204A, the length of non-vibrating period 1220A changes according to the strength of suction. More specifically, the stronger the strength of suction, the less vibration there is. It will be appreciated that period 1220A is shortened in length.
  • FIG. 1200B is a schematic diagram 1200B representing an exemplary vibration behavior of the vibrator 210 when corrected according to the strength of the suction and the vibration pause time is determined according to the strength of suction in step 840A.
  • 1202B is a graph representing temporal changes in the vibration mode of the vibrator 210 .
  • the vertical axis of graph 1202B corresponds to vibration intensity, and the horizontal axis corresponds to time. Therefore, 1210B indicates each period during which the vibrator 210 vibrates, and 1220B indicates each period during which the vibrator 210 does not vibrate.
  • One vibrating period 1210B and one non-vibrating period 1220B to its right correspond to one execution of steps 820A to 850A of exemplary process 800A.
  • 1204B is a graph showing changes in the strength of suction of the flavor suction device 200 and the like.
  • the vertical axis of graph 1204B corresponds to suction strength, and the horizontal axis corresponds to time. Note that the horizontal axis of graph 1202B and the horizontal axis of 1204B are common.
  • the graph 1200B shows vibration strength proportional to the strength of suction. Also, as is clear from the graphs 1202B and 1204B, the length of the non-vibrating period 1220B changes according to the strength of the suction. It will be appreciated that period 1220B is shortened in length.
  • step 1310 indicates a step of detecting movement of the flavor suction device 200 or the like.
  • This step may be performed by a sensor 220 included in the flavor inhaler or the like 200 .
  • this step may be considered to be executed by the processor included in the flavor inhaler or the like 200 using the sensor 220 .
  • the step of detecting the movement of the flavor suction device 200 may be performed after a predetermined operation (such as pressing a button) on the flavor suction device 200 by the user, or may be performed at various other timings. .
  • 1320 indicates a step of converting input data representing the detected movement of the flavor suction device 200 into vibration data for vibrating the vibrator 210 included in the flavor suction device 200 .
  • This step may be executed by the conversion unit 230 included in the flavor inhaler or the like 200 .
  • this step may be considered to be executed by the processor included in the flavor inhaler or the like 200 as the conversion unit 230 .
  • step 1330 indicates a step of vibrating the vibrator 210 based on the vibration data obtained in step 1320 .
  • This step may be executed by the control unit 240 included in the flavor inhaler or the like 200, and may include the exemplary process 700 or 800 described above. Note that this step may be considered to be executed by the processor included in the flavor inhaler or the like 200 as the controller 240 .
  • the step of vibrating the vibrator 210 based on the vibration data may be executed while the user is sucking the flavor suction device or the like 200, or when the user performs a predetermined operation (such as pressing a button) on the flavor suction device or the like 200. It may be executed in response, or at various other timings.
  • the control unit 240 may automatically vibrate the vibrator 210 based on the vibration data so that the user can check the vibration data.
  • control method 1300 may be executed by the processor of the flavor inhaler or the like 200 as a program.
  • the power supply section 111A or 111B of the flavor inhaler 200 may include a rechargeable battery.
  • the battery may be charged by a charging device electrically connected to the flavor suction device 200 or the like.
  • the charging device may include at least one of the vibrator, sensor, conversion unit, control unit, and the like similar to the constituent elements shown in FIG.
  • the flavor inhaler or the like 200 is connected to a charging device such as those described above, at least some of the steps of the control method 1300 may be performed by components within the charging device.
  • the flavor inhaler or the like when the user moves the flavor inhaler or the like, various vibration data are generated. Based on the generated vibration data, the flavor inhaler or the like can be vibrated in various manners. Therefore, the user can inhale the flavor inhaler or the like while feeling vibrations in a wide variety of manners, including those that the user cannot expect. Therefore, user experience can be improved.
  • the flavor inhaler or the like according to the first embodiment is configured to vibrate the vibrator based on vibration data converted from input data.
  • the flavor inhaler or the like according to the second embodiment of the present invention is configured to control a predetermined function of the flavor inhaler or the like based on the vibration data converted from the input data. be. Therefore, the flavor inhaling instrument or the like according to the second embodiment of the present invention may be the same as the flavor inhaling instrument or the like according to the first embodiment of the present invention, except that the vibrator is not required.
  • FIG. 14 is a schematic diagram schematically showing a simplified configuration example in which only components particularly related to the present embodiment are extracted from the above-described flavor suction device 100A or 100B. . Accordingly, 1400 indicates the flavor inhaler or the like 100A or 100B.
  • This functional entity is, for example, the heating unit 121A or 121B, the light emitting device or light emitting element that emits light included in the notification unit 113A or 113B, the display device that displays the image included in the notification unit 113A or 113B, or the notification unit 113A or 113B. It is a sound output device or an acoustic element that outputs a sound containing, but is not limited to these.
  • the functional strength of the light-emitting device or light-emitting element may control one or both of the intensity of light emission and the color of light emission (different colors can be assigned according to the functional strength).
  • the functional strength of a sound output device or sound device controls at least one of sound intensity, pitch, and type of sound (different sounds can be assigned according to the functional strength). It can be.
  • the functional strength of the display device includes at least one of display hue, display brightness, display saturation, and displayed information (including images. Different information is displayed depending on the functional strength). It may be controlled.
  • the functional strength of the heating unit 121A or 121B is determined by the temperature of the heating unit 121A or 121B, the current flowing through the heating unit 121A or 121B, the voltage applied to the heating unit 121A or 121B, and the power supplied to the heating unit 121A or 121B. may control one or more of
  • 1420 indicates the same as sensor 220 .
  • control part 1440 is similar to the control part 240 except that it controls the functional subject 1410 based on the function data instead of vibrating the vibrator based on the vibration data.
  • FIG. 15 is a flow chart of an exemplary process 1500 executed by the controller 1440 for controlling the functional entity 1410 based on functional data.
  • step 1510 indicates a step of determining whether the function of the functional subject 1410 should be executed in the flavor inhaler or the like 1400 .
  • This determination may be arbitrary, depending on the entity of functional entity 1410 . For example, this determination may be whether a button or switch included in sensor unit 112A or 112B has been pressed. Alternatively, if the functional subject 1410 is the heating unit 121A or 121B, this determination may be, for example, determination of whether suction has started. If so, processing continues at step 1520 , otherwise processing returns to step 1510 .
  • 1520 indicates a step of sequentially acquiring the value of the function intensity (corresponding to D[] for the vibration intensity) included in the function data.
  • 1530 indicates a step of controlling the functional entity 1410 with the functional strength whose value is obtained for a predetermined period of time.
  • step 1540 indicates a step of determining whether the execution of the function of the functional entity 1410 should be terminated in the flavor inhaler 1400 or the like. This determination may be arbitrary, depending on the entity of functional entity 1410 . For example, this determination may be determination of whether a button or switch included in the sensor unit 112A or 112B has been pressed again. Alternatively, if the function subject 1410 is the heating unit 121A or 121B, this determination may be, for example, determination of whether the suction has ended. If it is determined that execution of the function should end, processing ends, otherwise processing proceeds to step 1550 .
  • step 1550 shows the step of determining whether the functional strength value can still be obtained from the functional data. If all the functional strength values have not yet been obtained from the functional data, the control unit 1440 can determine that the functional strength values can still be obtained from the functional data. If it is determined that the functional strength value can still be obtained from the functional data, the process returns to step 1520, otherwise the process ends.
  • the detected movement of the flavor suction device 1400 can be directly reflected in the control of the functional subject 1410.
  • FIG. 16A is a flow chart of exemplary process 1600A executed by control unit 1440 for controlling function agent 1410 based on function data.
  • Step 1610A shows the step of determining whether the function of the functional entity 1410 should be executed in the flavor inhaler 1400 or the like. Step 1610A may be similar to step 1510; If it is determined that the function should be performed, processing proceeds to step 1620A, otherwise processing returns to step 1610A.
  • FIG. 1620A shows the step of determining the functional intensity and functional time for controlling the functional entity 1410.
  • 1630A shows the step of controlling the function subject 1410 with the determined function time and the determined function strength.
  • 1640A shows the step of determining the downtime.
  • 1650A shows the step of waiting for the determined downtime.
  • Step 1660A shows the step of determining whether the execution of the function of the functional entity 1410 should be terminated in the flavor inhaler 1400 or the like. Step 1660A may be similar to step 1540. If it is determined that execution of the function should end, processing ends, otherwise processing returns to step 1620A.
  • the functional intensity, the functional duration, and the functional pause duration may be determined and stored in advance from functional data including the reference functional intensity and the functional pattern.
  • the control unit 240 reads out the stored one or more different functional strengths, the functional time and the functional pause time, and reads out the one or more different functional strengths.
  • the function time and the function pause time can control the function entity 1410 .
  • FIG. 16B is a flowchart of an exemplary process 1600B for controlling the functional entity 1410 based on functional data, which is executed by the control unit 1440.
  • FIG. 16B is a flowchart of an exemplary process 1600B for controlling the functional entity 1410 based on functional data, which is executed by the control unit 1440.
  • Step 1610B shows a step of determining whether the function of the functional entity 1410 should be executed in the flavor inhaler or the like 1400 . Step 1610B may be similar to step 1510 . If so, processing continues at step 1620B, otherwise processing returns to step 1610B.
  • the 1620B indicates a step of acquiring the values of the function intensity, function time and function pause time for controlling the function subject 1410 from the storage unit 114A or 114B.
  • the acquired functional strength, functional time and functional downtime are each one of one or more different functional strengths, functional time and functional downtime pre-determined and stored in the storage unit 114A or 114B by the method as described above. can be one.
  • 1630B shows the step of controlling the function subject 1410 with the obtained function time and the obtained function intensity.
  • 1640B shows the step of waiting for the acquired downtime.
  • Step 1650B shows a step of determining whether the execution of the function of the functional entity 1410 should be terminated in the flavor inhaler 1400 or the like. Step 1650B may be similar to step 1540. If it is determined that execution of the function should end, processing proceeds to step 1660B, otherwise processing returns to step 1620B.
  • step 1660B shows the step of determining whether values for functional intensity, functional time and functional pause time can still be obtained.
  • step 1660B if there is one or more different functional strengths, functional durations, and functional pause durations stored in storage unit 114A or 114B that have not yet been acquired, the functional strength, functional duration, and functional pause duration are It can be determined that the value can be obtained. If it is determined that values for functional strength, functional time, and inactive time can still be obtained, processing returns to step 1620B, otherwise processing ends.
  • 1710 indicates a step of detecting the movement of the flavor suction device 1400 or the like. This step may be performed by a sensor 1420 included in the flavor inhaler or the like 1400 . It should be noted that this step may be considered to be executed by the processor included in the flavor inhaler or the like 1400 using the sensor 1420 . For safety, this step is preferably performed when the heating unit 121A or 121B is not functioning.
  • 1720 indicates the step of converting input data representing the detected movement of the flavor suction device or the like 1400 into functional data for controlling the functional subject 1410 included in the flavor suction device or the like 1400 .
  • This step may be performed by the conversion unit 1430 included in the flavor inhaler or the like 1400 . Note that this step may be considered to be executed by the processor included in the flavor inhaler 1400 as the conversion unit 1430 .
  • FIG. 1730 indicates the step of controlling the functional entity 1410 based on the functional data obtained in step 1420.
  • FIG. This step may be executed by the control unit 1440 included in the flavor inhaler or the like 1400, and may include the exemplary process 1500 or 1600 described above. Note that this step may be considered to be executed by the processor included in the flavor inhaler 1400 as the controller 1440 .
  • the step of controlling the function entity 1410 based on the functional data may be executed while the user is sucking the flavor suction device or the like 1400, or may be executed in response to a predetermined operation (such as pressing a button) on the flavor suction device or the like 1400 by the user. It may be executed in response, or at various other timings.
  • the control unit 1440 may automatically control the functional subject 1410 based on the functional data so that the user can check the functional data.
  • control method 1700 may be executed by the processor of the flavor suction device 1400 or the like.
  • the power source section 111A or 111B of the flavor suction device 1400 may include a rechargeable battery.
  • the battery may be charged by a charging device electrically connected to the flavor suction device 1400 or the like.
  • the charging device may include, in addition to the charging unit, at least one of the same functional entity as the components shown in FIG. 14, a sensor, a conversion unit, a control unit, and the like.
  • a flavor inhaler or the like 1400 is connected to a charging device such as those described above, at least some of the steps of the control method 1400 may be performed by components within the charging device.
  • a component such as a flavor inhaler
  • a component can be caused to function in a wide variety of ways based on the generated functional data. Therefore, the user can inhale the flavor inhaler or the like while feeling stimulation in a wide variety of ways, including those that the user cannot expect. Therefore, user experience can be improved.
  • FIG. 18 is a schematic diagram schematically showing a simplified configuration example by extracting only constituent elements particularly related to the third embodiment of the present invention. be.
  • FIG. 18 shows a flavor inhaling instrument 1800 and an external device 1810 according to this embodiment.
  • the flavor inhaler or the like 1800 includes a vibrator 1802 , a functional entity 1803 , a sensor 1804 , a control section 1806 and a communication section 1808 .
  • the flavor inhaler or the like 1800 may include both the vibrator 1802 and the functional subject 1803, or may include only one of them.
  • the flavor suction device or the like 1800 may be the flavor suction device or the like 100A or 100B, or may be another flavor suction device or the like including the configuration shown in FIG.
  • the vibrator 1802 may have the same configuration, function, etc. as the vibrator 210 described with reference to FIG.
  • the functional entity 1803 may have the same configuration, functions, etc. as the functional entity 1410 described in relation to the second embodiment.
  • Sensor 1804 may have a configuration, function, etc. similar to sensor 220 described in connection with FIG. 2 or sensor 1420 described in connection with the second embodiment.
  • a sensor 1804 detects movement of the flavor inhaler or the like 1800 .
  • Input data representing the movement may be stored in a storage unit (not shown) of the flavor inhaler or the like 1800 .
  • the communication unit 1808 can include a communication interface (including a communication module) conforming to a predetermined LPWA wireless communication standard or a wireless communication standard with similar restrictions. As such a communication standard, Sigfox, LoRA-WAN, etc. can be adopted.
  • the communication unit 1808 may be a communication interface capable of performing communication conforming to any wired or wireless communication standard. Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like, for example, can be adopted as such a communication standard.
  • the flavor inhaler or the like 1800 can communicate with an external device 1810 via a communication unit 1808 .
  • the communication unit 1808 transmits input data representing movement of the flavor inhaler or the like 1800 detected by the sensor 1804 to the external device 1810 .
  • the communication unit 1808 also receives, from the external device 1810, vibration data for vibrating the vibrator 1802 or functional data for controlling the functional subject 1803, which is obtained by converting input data in the external device 1810. .
  • the control unit 1806 may be considered to be the control unit 116A or 116B with the conversion unit 230 or the conversion unit 1430 removed.
  • the controller 1806 is configured to vibrate the transducer 1802 or control the functional subject 1803 based on vibration data received from the external device 1810 .
  • the external device 1810 includes a conversion unit 1812 and a communication unit 1814.
  • the external device 1810 includes a controller 1816 that is configured to control components within the external device 1810 such as the conversion portion 1812 and the communication portion 1814 .
  • the external device 1810 is a personal computer (PC), a server, a mobile phone (including a smart phone), a tablet computer, a personal digital assistant, a wearable computer, and a device configured to be able to communicate with the flavor inhaler or the like 1800.
  • PC personal computer
  • server a mobile phone (including a smart phone), a tablet computer, a personal digital assistant, a wearable computer, and a device configured to be able to communicate with the flavor inhaler or the like 1800.
  • the external device 1810 may be a device for charging the flavor inhaler or the like 1800 and may have a charging portion configured to charge a rechargeable battery within the flavor inhaler or the like 1800 .
  • the communication unit 1814 may have the same functions as the communication unit 1808.
  • the external device 1810 can communicate with the flavor inhaler or the like 1800 via the communication unit 1814 .
  • the communication unit 1814 receives input data representing movement of the flavor suction device, etc. 1800 detected by the sensor 1804 from the flavor suction device, etc. 1800 .
  • the conversion unit 1812 may have the same function as the conversion unit 230 or the conversion unit 1430.
  • the conversion unit 1812 is configured to convert the input data received by the communication unit 1814 into vibration data for vibrating the vibrator 1802 or functional data for controlling the functional entity 1803 .
  • the input data and vibration data or function data may be stored in a storage unit (not shown) within the external device 1810 .
  • Input data and vibration data or function data may be editable by external device 1810 .
  • the communication unit 1814 transmits the vibration data or the function data to the flavor inhaler or the like 1800 .
  • the communication portion 1814 may also transmit vibration data or functional data to various devices other than the flavor inhaler 1800 and the like, which are capable of communicating with the external device 1810 .
  • the user of the external device 1810 transmits favorite vibration data or function data stored in the storage unit of the external device 1810 to a friend's smartphone or the like, thereby sharing the vibration data or function data with the friend. can do.
  • the sensor 1804 and input data are similar to the sensor 220 described in Sections 1-4 or the sensor 1420 and input data described in connection with the second embodiment, respectively, so detailed descriptions are omitted here. .
  • the conversion unit 1812 is similar to the conversion unit 230 described in section 1-5 or the conversion unit 1430 described in relation to the second embodiment, except that it is arranged in the external device 1810 .
  • the vibration data generated by the converter 1812 is similar to the vibration data described in Sections 1-5.
  • the functional data generated by the conversion unit 1812 is similar to the functional data described in relation to the second embodiment. Therefore, detailed descriptions of the conversion unit 1812, vibration data, and function data are omitted here.
  • the control unit 1806 is the same as the control unit 240 described in section 1-6 or the control unit 1440 described in relation to the second embodiment, so detailed description thereof will be omitted here.
  • FIG. 19 is a sequence diagram showing operations of the flavor sucking instrument 1800 and external device 1810 according to the present embodiment.
  • Step 1910 the flavor suction device 1800 detects movement of the flavor suction device 1800 .
  • Step 1910 may be performed by the sensor 1804 or may be performed by the controller 1806 via the sensor 1804, for example.
  • Step 1912 the flavor inhaler or the like 1800 transmits input data representing the detected movement to the external device 1810 .
  • Step 1912 may be executed by the communication unit 1808 or may be executed by the control unit 1806 via the communication unit 1808, for example.
  • Step 1914 the external device 1810 receives input data from the flavor inhaler or the like 1800 .
  • Step 1914 may be executed by the communication unit 1814 or may be executed by the control unit 1816 via the communication unit 1814, for example.
  • step 1916 the external device 1810 converts the input data into vibration data for vibrating the vibrator 1802 in the flavor suction device or the like 1800 or function data for controlling the functional entity 1803 in the flavor suction device or the like 1800. do.
  • Step 1916 may be executed by the conversion unit 1812 , or may be executed by the control unit 1816 via the conversion unit 1812 , for example.
  • Step 1918 the external device 1810 transmits vibration data or functional data to the flavor suction device 1800 or the like.
  • Step 1918 may be executed by the communication unit 1814 or may be executed by the control unit 1816 via the communication unit 1814, for example.
  • Step 1920 the flavor inhaler or the like 1800 receives vibration data or functional data from the external device 1810 .
  • Step 1920 may be executed by the communication unit 1808 or may be executed by the control unit 1806 via the communication unit 1808, for example.
  • the flavor inhaler or the like 1800 vibrates the vibrator 1802 based on the vibration data, or controls the function subject 1803 based on the function data. Step 1922 may be performed by controller 1806 .
  • a program stored in a storage unit or the like of the flavor suction device 1800 may cause the flavor suction device 1800 to execute steps 1910, 1912, 1920 and 1922.
  • a program stored in the storage unit or the like of the external device 1810 may cause the external device 1810 to execute steps 1914, 1916 and 1918.
  • At least part of the work performed in the flavor suction device or the like in the first or second embodiment (for example, conversion from input data to vibration data or function data) conversion) is performed in the external device. Therefore, it is possible to simplify the configuration of the flavor inhaler and the like.
  • various created vibration data or function data can be stored and managed in an external device.
  • the flavor suction device or the like of the present invention may include input data representing the detected movement of the flavor suction device or the like. may be configured to activate at least one sensory stimulation element that provides sensory stimulation to a user when the sensor is acquiring the
  • “sensory stimulation data” includes vibration data in the first embodiment or functional data in the second embodiment
  • “sensory stimulation intensity” is the vibration intensity in the first embodiment or the second embodiment.
  • “sensory stimulation pattern” includes the vibration pattern in the first embodiment or the functional pattern in the second embodiment
  • “sensory stimulation time” is the vibration time in the first embodiment or the second embodiment
  • “sensory stimulation pause time” includes the vibration pause time in the first embodiment or the function pause time in the second embodiment
  • “sensory stimulation intensity correction factor” is the vibration intensity correction factor in the first embodiment Alternatively, it includes the functional strength correction coefficient in the second embodiment.
  • the contents and derivation methods of the sensory stimulation data, sensory stimulation intensity, sensory stimulation pattern, sensory stimulation time, sensory stimulation pause time, and sensory stimulation intensity correction coefficient in the fourth embodiment are the same as the vibration data, vibration intensity, and vibration in the first embodiment.
  • Contents and derivation method of pattern, vibration time, vibration pause time, and vibration intensity correction coefficient, or contents and derivation of function data, function intensity, function pattern, function time, function pause time, and function intensity correction coefficient in the second embodiment It may be the same as the method.
  • FIG. 20 is a schematic diagram schematically showing a simplified configuration example in which only components particularly related to the present embodiment are extracted from the above-described flavor suction device 100A or 100B. . Accordingly, 2000 indicates a flavor inhaler or the like 100A or 100B.
  • the flavor inhaler or the like 2000 includes at least one element 2010 (hereinafter also referred to as “sensory stimulation element 2010”) configured to give sensory stimulation to the user, a sensor 2020, a conversion section 2030, and a control section 2040. Prepare.
  • the sensory stimulation element 2010 is one of the vibrator 210 or the functional entity 1410 described above that can provide sensory stimulation. Therefore, the sensory stimulation element 2010 is, for example, the vibrator 210, the light emitting device or light emitting element that emits light included in the notification unit 113A or 113B, the display device that displays the image included in the notification unit 113A or 113B, or the notification unit 113A. Alternatively, it includes, but is not limited to, a sound output device or an acoustic element that outputs the sound included in 113B.
  • the sensor 2020 is the sensor 220 or 1420 described above.
  • the sensor 2020 is configured to detect movement of the flavor suction device, etc. 2000 .
  • Sensor 2020 operates as described in the embodiments above.
  • the sensor 2020 may be configured to acquire input data when the flavor inhaler or the like 2000 is not generating flavors or aerosols by heating.
  • the input data may include data representing the acceleration or angular velocity of the sensed motion.
  • the control unit 2040 is the control unit 240 or 1440 described above. Controller 2040 is configured to cause sensory stimulation element 2010 to function when sensor 2020 is acquiring input data representing the sensed movement.
  • the control unit 2040 operates as described in each of the above embodiments.
  • Sensory stimulation element 2010 may comprise two or more sensory stimulation elements configured to provide sensory stimulation to a user. In that case, the control unit 2040 may be configured to further function a sensory stimulation element different from the at least one sensory stimulation element described above among the two or more sensory stimulation elements while the sensor 2020 is operating. good.
  • the conversion unit 2030 is the conversion unit 230 or 1430 described above.
  • the conversion unit 2030 is configured to convert input data into sensory stimulation data for functioning the sensory stimulation element 2010 .
  • the conversion unit 2030 may be configured to convert the value of the input data as it is into the sensory stimulation intensity.
  • the movement of the flavor inhaler or the like 2000 detected by the sensor 2020 can be directly given to the user in real time.
  • the input data may also be data representing a combination of motions of the flavor inhaler 200 or the like about a plurality of axes.
  • Such a composite may be, for example, the sum of values sensed by sensor 2020 at the same time or timing for each axis of multiple axes.
  • the conversion unit 2030 may be configured to use representative values included in the input data. As described with respect to the first and second embodiments, using the representative value included in the input data converts the representative value into the sensory stimulation intensity (intensity related to sensory stimulation) of the sensory stimulation element 2010. may include In addition, as described with regard to the first and second embodiments, using the representative value included in the input data allows the representative value to correspond to the sensory stimulation pattern (pattern related to sensory stimulation) of the sensory stimulation element 2010. It may include converting.
  • the transformation unit 2030 partitions the input data into a plurality of data each representing the detected motion in each of the plurality of time periods.
  • the conversion section 2030 may be configured to convert representative values included in each of the divided data into sensory stimulation intensities of the sensory stimulus elements 2010 at different timings.
  • the sensor 2020 may be configured to detect movement of the flavor inhaler or the like 2000 about at least the first and second axes.
  • the input data may include at least first input data and second input data representing sensed motion about the first axis and the second axis, respectively.
  • the conversion unit 2030 converts the first input data into the sensory stimulation intensity of the sensory stimulation element 2010 and the second input data into the sensory stimulation intensity of the sensory stimulation element 2010 .
  • it may be configured to select one of a plurality of predetermined sensory stimulation patterns as the sensory stimulation pattern of the sensory stimulation element 2010 based on the second input data.
  • the sensory stimulation pattern includes a sensory stimulation time (time during which the sensory stimulation element functions), a sensory stimulation pause time (time during which the sensory stimulation element is paused), At least one of sensory stimulus intensity correction coefficient (correction coefficient of intensity related to sensory stimulus) may be included.
  • FIG. 21 is a flow chart of a control method 2100 of the flavor inhaler 2000 .
  • the control method 2100 may be started in response to activation of the input mode of the flavor inhaler or the like 2000 .
  • the user presses a button provided on the flavor suction device 2000, the user shakes the flavor suction device 2000 a predetermined number of times (for example, shakes the flavor suction device 2000 three times within a predetermined period of time), and the flavor suction device 2000
  • the input mode of the flavor inhaler or the like 2000 may be activated in response to receiving a mode change instruction from an external device such as a communicating smartphone. Activation and termination of the input mode may be notified to the user by operating a vibrator, acoustic element, light emitting element, or the like provided in the flavor inhaler or the like 2000 .
  • the flavor inhaler or the like 2000 may be configured not to execute the control method 2100 while power is supplied to the heating unit 121A or 121B.
  • the flavor inhaler, etc. 2000 may be configured not to perform the control method 2100 while the stick-shaped substrate 150 is inserted into the flavor inhaler, etc. 100B.
  • the sensor 2020 detects movement of the flavor inhaler 2000 or the like.
  • Step 2110 may be executed by sensor 2020 or may be executed by controller 2040 via sensor 2020 .
  • the control unit 2040 causes the sensory stimulation element 2010 to function while acquiring input data representing the detected movement.
  • the control unit 2040 controls the lighting mode (color, blinking cycle, etc.) of the light-emitting element during power supply to the heating unit 121A or 121B. , the light-emitting element may be lit.
  • how the sensory stimulation elements 2010 function when the movement of the flavor inhaling instrument or the like 2000 is detected is how the sensory stimulation elements 2010 function when the movement of the flavor inhaling instrument or the like 2000 is not detected.
  • the sensory stimulation element 2010 may differ from For example, if the sensory stimulation element 2010 includes a vibrator or an acoustic element in addition to the light emitting element, the light emitting element may be constantly illuminated during the input mode, while the movement of the flavor inhaler, etc. 2000 may be controlled during the input mode.
  • the transducer or acoustic element may also function only when detected.
  • the length of the period during which the input data is acquired in process 2100 may be predetermined.
  • the length of the period during which the input data is acquired may be selected from a plurality of preset candidates.
  • the length of the period during which the input data is acquired may be set by the user operating a button on the flavor inhaler 2000 or by sending an instruction from an external device.
  • the period during which the input data is acquired may be 1-20 seconds, preferably 3-10 seconds.
  • a program stored in a storage unit or the like of the flavor suction device 2000 may cause the flavor suction device 2000 to execute the control method 2100 .
  • FIG. 22 is a flowchart showing an example of operations performed by the control unit 2040 of the flavor inhaler 2000.
  • FIG. 22 is a flowchart showing an example of operations performed by the control unit 2040 of the flavor inhaler 2000.
  • the control unit 2040 determines whether the sensor 2020 is currently acquiring input data representing the detected movement. If sensor 2020 is not currently acquiring input data representing the detected movement (No in step 2210), processing returns to step 2210 before. If sensor 2020 is currently acquiring input data representing detected motion (Yes in step 2210 ), processing proceeds to step 2220 .
  • Step 2220 the control unit 2040 acquires the sensory stimulation intensity value included in the sensory stimulation data of the sensory stimulation element 2010 .
  • Step 2220 is similar to step 720 in FIG. 7 or step 1520 in FIG. 15, so detailed description is omitted here.
  • control unit 2040 causes the sensory stimulation element 2010 to function for a predetermined sensory stimulation time and with the acquired sensory stimulation intensity. Since step 2230 is similar to step 730 or step 1530, detailed description is omitted here.
  • step 2240 the control unit 2040 determines whether the sensor 2020 has finished operating. If sensor 2020 has been activated (Yes in step 2240), the process ends. If sensor 2020 has not finished operating (No at step 2240 ), the process returns to before step 2220 .
  • a program stored in the storage unit or the like of the flavor suction device 2000 may cause the flavor suction device 2000 to execute the processing 2200 .
  • the sensory stimulation element when the flavor inhaling instrument or the like is not being inhaled, the sensory stimulation element is activated while the user is performing an action such as shaking the flavor inhaling instrument or the like, thereby providing the user with sensory stimulation.
  • an action such as shaking the flavor inhaling instrument or the like
  • FIG. 23 is a flow chart showing an example of operations performed by the control unit 2040 of the flavor inhaler 2000.
  • FIG. 23 is a flow chart showing an example of operations performed by the control unit 2040 of the flavor inhaler 2000.
  • step 2310 is the same as the processing of step 2210.
  • the control unit 2040 determines the sensory stimulation intensity and the sensory stimulation time for causing the sensory stimulation element 2010 to function.
  • Step 2320 is similar to step 820 in FIG. 8 or step 1620 in FIG. 16, so detailed description is omitted here.
  • control unit 2040 causes the sensory stimulation element 2010 to function with the determined sensory stimulation time and the determined sensory stimulation intensity. Since step 2330 is similar to step 830 or step 1630, detailed description is omitted here.
  • step 2340 the control unit 2040 determines the sensory stimulation pause time of the sensory stimulation element 2010 . Since step 2340 is similar to step 840 or step 1640, detailed description is omitted here.
  • step 2350 the control unit 2040 causes the sensory stimulation element 2010 to wait for the determined sensory stimulation pause time. Since step 2350 is similar to step 850 or step 1650, detailed description is omitted here.
  • step 2360 the control unit 2040 determines whether the sensor 2020 has finished operating. If sensor 2020 has been activated (Yes in step 2360), the process ends. If sensor 2020 has not finished actuating (No at step 2360 ), processing returns to before step 2320 .
  • a program stored in the storage unit or the like of the flavor suction device 2000 may cause the flavor suction device 2000 to execute the processing 2300 .
  • the sensory stimulation element when the flavor suction device or the like is not being sucked, the sensory stimulation element is activated while the user is doing an action such as shaking the flavor suction device or the like, thereby providing the user with sensory stimulation.
  • the sensory stimulation element can give This allows the user to perceive that the flavor inhaler or the like is acquiring the input data based on the user's motion.
  • a sensory stimulation element such as a flavor inhaler
  • a sensory stimulation element can be caused to function in a wide variety of ways based on the sensory stimulation data generated while the user is moving the flavor inhaler or the like. Therefore, the user perceives that the movement of the flavor inhaler or the like is detected by the sensor, that input data representing the movement is generated, and that sensory stimulation data is generated based on the input data. can do.
  • the user can feel stimulation in a wide variety of ways, including those that the user cannot anticipate. Therefore, user experience can be improved.
  • FIG. 24 is a diagram showing an example of the hardware configuration of the flavor suction device 100 (100A, 100B), and in particular, a diagram showing an example of the positional relationship between the housing 2400 of the flavor suction device 100 and the sensor 2420. is.
  • the housing 2400 of the flavor inhaler or the like 100 has a thick, substantially rectangular parallelepiped shape having two substantially parallel and substantially rectangular paired surfaces 2401 and 2402 .
  • the three coordinate axes of the three-dimensional coordinate system (right-handed coordinate system) in housing 2400, the X-axis, Y-axis, and Z-axis, are indicated by solid lines, and the three-dimensional coordinate system (right-handed coordinate system) in sensor 2420 ), the three coordinate axes, the X′-axis, Y′-axis and Z′-axis, are indicated by dashed lines.
  • the user can hold the housing 2400 around the X-axis as a flavor inhaler or the like.
  • the vertical movement of the user's wrist is detected
  • the Z-axis is the axis for detecting the internal and external movement of the user's wrist
  • the Y-axis is the twisting movement of the user's wrist. can correspond to the axes that detect the .
  • twisting of the wrist means an action of rotating the hand (wrist) about the direction from the user's elbow to the wrist.
  • up and down of the wrist refers to the action of rotating the wrist around the axis perpendicular to the palm (or the action of moving the arm with the elbow as the axis of rotation, with the little finger at the bottom and the index finger at the top).
  • inside/outside (movement) of the wrist means the action of bending the wrist inward or extending it outward about a direction substantially perpendicular to the direction from the user's elbow to the wrist and parallel to the palm of the user ( hereinafter the same).
  • the case 2400 and the sensor 2420 are described as a right-handed coordinate system as the three-dimensional coordinate system, but the present invention is not limited to this. It may be a left-handed coordinate system, or they may be different.
  • the three coordinate axes of the housing 2400 are the Z-axis in the longitudinal direction of the substantially rectangular surface of the housing 2400, the Y-axis in the lateral direction of the substantially rectangular surface, and the Z-axis and the Y-axis (the direction perpendicular to the plane of the substantially rectangular shape and the thickness direction of the substantially rectangular parallelepiped) is defined as the X-axis.
  • the three coordinate axes X-axis, Y-axis, and Z-axis in the housing 2400 are substantially parallel to the three coordinate axes X'-axis, Y'-axis, and Z'-axis in the sensor 2420.
  • a housing 2400 and a sensor 2420 are arranged.
  • the vibration (data) detected by the sensor 2420 is directly transferred to the housing 2400.
  • This is preferable because it becomes vibration (data) and the processing for vibration detection is simplified.
  • the vibration data detected by the sensor 2420 is combined with the data indicating the difference caused by the positional relationship to calculate the direction and strength of the vibration of the housing 2400. It is possible to
  • any one of the three coordinate axes X'-axis, Y'-axis, and Z'-axis in the sensor 2420 may correspond to the three coordinate axes X in the housing 2400. It may be arranged substantially parallel to either the axis, the Y axis, or the Z axis. Even in this case, the coordinate axes of the housing 2400 and the coordinate axes of the sensor 2420, which are arranged substantially parallel, do not require complicated calculations for the vibration data detected by the sensor 2420. The processing for 100 oscillations can be reduced.
  • sensor 2420 is included in the sensor section 112A in FIG. 1A or 112B in FIG. 1B, and the sensor 2420 in FIG. 24 may be considered as the sensor section 112A or the sensor section 112B.
  • Examples of sensor 2420 may include sensor 220, sensor 1420, and sensor 1804 described above.
  • 26 to 30 are diagrams showing an arrangement example of the sensor 2420 in the flavor inhaler 100 or the like.
  • 26 to 28 illustrate the flavor suction device 100B of FIG. 1B as an example
  • FIGS. 29 and 30 describe the flavor suction device 100A of FIG. 1A as an example.
  • the stick-type base material 150 of the flavor suction device 100B, the battery 111B (corresponding to the power supply unit 111B in FIG. 1B, the same applies hereinafter), the sensor 2420 (sensor unit 112B), the microcontroller 116B (control unit in FIG. 1B) 116B, and so on) is shown. Note that the sensor 2420 (112B) is arranged at a position where it does not come into contact with the heating unit that heats the stick-shaped substrate 150 in the housing of the flavor inhaler or the like 100B (the same applies to FIGS. 27 to 30 described later). .
  • the sensor 2420 (112B) and the microcontroller 116B are arranged on the same printed circuit board 2630.
  • FIGS. 27 and 28 the sensor 2420 (112B) and the microcontroller 116B are arranged on different printed circuit boards 2630, respectively. Specifically, a first printed circuit board 2630a and a second printed circuit board 2630b are connected to each other by a flexible circuit board 2640, a microcontroller 116B is disposed on the first printed circuit board 2630a, and a sensor 2420 ( 112B) are arranged on the second printed circuit board 2630b.
  • the senor 2420 (112B) can be arranged at various positions of the flavor suction device 100B. However, as shown in FIGS. 26 and 27, the sensor 2420 (112B) is located closer to the user than the battery 111B when the user inhales a substance produced by the flavor inhaler 100B, such as a flavor inhaler, compared to the battery 111B. 142), a specific motion of the flavor inhaler or the like 100B by the user is likely to be detected.
  • the flavor inhaler 100B is a device for a user to inhale substances such as aerosols generated by the flavor inhaler 100B. It is assumed that the flavor inhaler or the like 100B will be held so that the mold substrate 150 can be easily held in the mouth. That is, it is assumed that the opening 142 is held upward during suction. At this time, the position of the user's wrist (or elbow) is below the position of the opening 142 . When the user shakes the flavor suction device 100B, the closer the sensor 2420 (112B) is to the opening 142, the farther it is from the user's wrist (or elbow). Applied vibrations are easier to detect.
  • the battery 111B is the heaviest among the components of the flavor suction device 100B. (or the center of gravity of the battery 111B). Therefore, since the sensor 2420 (112B) is arranged at a position closer to the opening 142 than the battery 111B (or the center of gravity of the battery 111B), the user can grip the vicinity of the battery 111B and shake the flavor inhaler or the like 100B. When vibration is applied to the flavor inhaling instrument 100B by an operation, it can be expected that the vibration will be detected more easily. In other words, the sensor 2420 (112B) is arranged at a position closer to the opening 142 than the center of gravity of the flavor suction device 100B. You can also say The position of the sensor 2420 (112B) described above in the flavor inhaler or the like 100B is the same in FIG. 28 described later.
  • the housing of the flavor inhaler 100B is a thick, substantially rectangular parallelepiped having two substantially parallel and substantially rectangular surfaces.
  • the X'-axis, Y'-axis, and Z'-axis of the sensor 2420 (112B) are substantially parallel to the X-axis, Y-axis, and Z-axis of the housing of the flavor suction device 100B, respectively.
  • 100B such as a suction instrument, and the sensor 2420 (112B) may be arranged.
  • FIGS. 26 and 27, as well as FIG. 28, which will be described later, show the flavor suction when viewed from a direction facing one substantially rectangular surface (corresponding to the surface 2401 or surface 2402 of FIG. 24) of the flavor suction instrument or the like 100B. It is a figure which illustrates an internal structure of 100B, such as a tool.
  • the sensor 2420 (112B) and the microcontroller 116B are arranged on different printed circuit boards 2630, as in the example of FIG. That is, microcontroller 116B is located on a first printed circuit board 2630a and sensor 2420 (112B) is located on a second printed circuit board 2630b.
  • the first printed circuit board 2630a and the microcontroller 116B are perpendicular to the substantially rectangular plane (YZ plane in FIG. 24) of the casing of the flavor suction device 100B and 24 are oriented parallel to the XZ plane.
  • the second printed circuit board 2630b and the sensor 2420 (112B) are perpendicular to the substantially rectangular surface (YZ plane in FIG.
  • the sensor 2420 (112B) and the microcontroller 116B are arranged on different printed circuit boards 2630a and 2630b, respectively, the sensor 2420 (112B) is Compared to the battery 111B, when the user inhales a substance generated by the flavor inhaler 100B, the battery 111B is closer to the user (closer to the opening 142 or the stick-shaped base material 150). , the position of sensor 2420 (112B) can be determined without affecting the position or size of battery 111B.
  • the sensor 2420 (112B) arranged on the second printed circuit board 2630b at least one surface of the sensor 2420 (112B) opposite to the surface in contact with the second printed circuit board 2630b to which the sensor 2420 (112B) is attached.
  • the part may be covered with insulation 2650 .
  • the stick-shaped base material 150 is heated by a heating unit (not shown) to generate an aerosol.
  • At least part of the surface of is covered with heat insulating material 2650, so that sensor 2420 (112B) can be protected from heat generated by the heating unit. This makes it possible to reduce failures and malfunctions of the sensor 2420 (112B).
  • FIG. 29 the cartridge 120 and the flavor imparting cartridge 130 of the flavor suction device 100A (simplified and integrated in FIG. 29.
  • the battery 111A the power supply unit in FIG. 1
  • a sensor 112A the same applies hereinafter
  • a microcontroller 116A the microcontroller 116A
  • Sensor 112A and microcontroller 116A are located on the same printed circuit board 2930.
  • FIG. On the other hand, in FIG.
  • sensor 112A and microcontroller 116A are each located on a different printed circuit board 2930.
  • the housing of the flavor suction device 100A may have a thick, substantially rectangular parallelepiped shape having two substantially parallel substantially rectangular surfaces.
  • FIG. 31 is a diagram showing an example of such a substantially rectangular parallelepiped shape in which a housing 3100 and a sensor 3120 are arranged in the same positional relationship as in FIG. 29 in the flavor inhaler 100A.
  • sensor 3120 corresponds to sensor 2420 (1112A) in FIG.
  • the housing 3100 of the flavor inhaler or the like 100A has a thick, substantially rectangular parallelepiped shape having two substantially parallel and substantially rectangular paired surfaces 3101 and 3102, but the housing
  • the length of the two substantially rectangular surfaces 3101 and 3102 of 3100 in the longitudinal direction is several times longer than the length of the surfaces 3101 and 3102 in the lateral direction, and the shape as a whole is elongated.
  • the three coordinate axes of the three-dimensional coordinate system (right-handed coordinate system) in housing 3100, the X-axis, the Y-axis, and the Z-axis, are indicated by solid lines, and the three-dimensional coordinate system (right-handed coordinate system) in sensor 3120 ), the three coordinate axes, the X′-axis, Y′-axis and Z′-axis, are indicated by dashed lines.
  • the user touches the two surfaces 3101 and 3102 with a thumb and a finger other than the thumb, such as the index finger, and moves the thickness of the housing 3100 (in the X-axis direction).
  • the X-axis of the housing 3100 is the axis for detecting the twisting movement of the user's wrist when the user grips the flavor suction instrument 100A
  • the Z-axis is the axis for detecting the movement of the user's wrist.
  • An axis that detects inward and outward movement of a user's wrist may correspond to an axis that detects up and down movement of the user's wrist.
  • the case 3100 and the sensor 3120 are described as a right-handed coordinate system as a three-dimensional coordinate system, but the present invention is not limited to this. It may be a left-handed coordinate system, or they may be different.
  • the first printed circuit board 2930a and the microcontroller 116A are oriented substantially parallel to the substantially rectangular surface (YZ plane in FIG. 24) of the housing of the flavor suction device 100A. is.
  • the second printed circuit board 2930b and the sensor 112A are perpendicular to the substantially rectangular surface (YZ plane in FIG. 24) of the housing of the flavor suction device 100A and parallel to the XY plane in FIG. placed in the direction.
  • the first printed circuit board 2930a and the microcontroller 116A are also perpendicular to the substantially rectangular surface (YZ plane in FIG.
  • each element can be a flavor suction device. Since the area occupied by the substantially rectangular surface of 100A is reduced, the overall size of 100A, such as the flavor inhaler, can be reduced.
  • each element occupies the substantially rectangular surface of the flavor suction device 100A. Since the area is reduced, it is possible to reduce the overall size of the flavor inhaler 100A.
  • the sensor 112A is more sensitive to the battery 111A than the battery 111A when the user inhales the substance generated by the flavor inhaler 100A. If it is placed at a position closer to the user (a position closer to the mouthpiece 124) than the user's specific movement (motion) of the flavor inhaler 100A or the like is likely to be detected.
  • FIG. 32 is a diagram showing an example of a front view of a case where the flavor inhaler or the like 100A has an elongated substantially cylindrical shape.
  • the flavor inhaler or the like 100A has a substantially cylindrical housing 3200 and has a button 3205 on the side thereof for user operation.
  • the surface of the button 3205 is substantially flat
  • the linear direction orthogonal to this surface is the Y-axis of the housing 3200
  • the longitudinal direction of the elongated substantially cylindrical housing 3200 is the Z-axis.
  • the X-axis direction is the lateral direction of the housing 3200 (the diameter direction of the bottom surface of the substantially cylindrical (substantially columnar) shape).
  • the three coordinate axes of the three-dimensional coordinate system (right-handed coordinate system) in the sensor 3220, the X'-axis, the Y'-axis, and the Z'-axis, are as indicated by broken lines in FIG.
  • the sensor 3220 may be arranged substantially parallel to the X-axis, Y-axis, and Z-axis of the housing 3200 .
  • the vibration (data) detected by the sensor 3220 is directly transferred to the housing 3200.
  • This is preferable because it becomes vibration (data) and the processing for vibration detection is simplified.
  • the configuration is not limited to such a configuration, and the directions of the three coordinate axes in the housing 3200 and the directions of the three coordinate axes in the sensor 3220 may not match.
  • the housing 3200 around the X-axis can be manipulated by the user.
  • the axis for detecting the vertical movement of the user's wrist when the suction device or the like 100 is gripped the Z axis for detecting the internal and external movement of the user's wrist, and the Y axis for the user's wrist.
  • Each axis can correspond to an axis for detecting a twist movement (however, this is just an example, and it may be determined as appropriate to which movement of the user's wrist each axis corresponds to. In FIGS. 24 and 31, as well).
  • the flavor suction device 100A does not have the button 3205, and the side surface 3201 of the substantially cylindrical housing 3200 is provided with a logo or LED, that portion is assumed to be flat.
  • three axes of the housing 3200 may be set in the same manner as in FIG.
  • the “substantially cylindrical shape” means that the housing 3200 as a whole may have a substantially cylindrical shape, and does not have to be strictly cylindrical.
  • the senor 2420 may be an inertial sensor (motion sensor) such as an acceleration sensor or an angular velocity sensor (gyro sensor).
  • the axes detected by the acceleration sensor and the angular velocity sensor may be any one of 1 to 3 axes.
  • the detection range of the angular velocity sensor is not limited to a specific range, but is preferably ⁇ 100 to ⁇ 5000 dps, more preferably ⁇ 300 to ⁇ 2000 dps.

Abstract

Provided is a configuration for a flavor inhalation instrument or the like, with which it is possible to detect the motion of the flavor inhalation instrument or the like more accurately. A flavor inhalation instrument 100 or the like comprises: a housing 2400; a heating unit that heats a flavor source or an aerosol source; and an inertia sensor 2420 that detects a change in angular velocity or acceleration. The inertia sensor 2420 is disposed inside the housing 2400 at a location out of contact with the heating unit.

Description

香味吸引器具又はエアロゾル生成装置Flavor inhaler or aerosol generator
 本出願は、香味吸引器具又はエアロゾル生成装置(以下、「香味吸引器具等」という。)に関する。より詳細には、本出願は、香味吸引器具等の動きに基づき制御される当該香味吸引器具等に関する。 This application relates to flavor inhalers or aerosol generators (hereinafter referred to as "flavor inhalers, etc."). More particularly, the present application relates to flavor inhalers and the like that are controlled based on the movement of the flavor inhalers and the like.
 なお、香味吸引器具は香味を吸引するための器具のことであり、限定するわけではないが、例えば、電子たばこや加熱式たばこ、従来のたばこを含む。また、「エアロゾル生成装置」は、生成されたエアロゾルを吸引するための装置のことであり、限定するわけではないが、例えば、電子たばこや加熱式たばこ、医療用のネブライザーを含む。また、香味吸引器具等は、いわゆるRRP(Reduced-Risk Products)を含む。 It should be noted that the flavor sucking device is a device for sucking flavor, and includes, but is not limited to, electronic cigarettes, heat-not-burn cigarettes, and conventional cigarettes. An "aerosol generator" is a device for inhaling the generated aerosol, and includes, but is not limited to, electronic cigarettes, heat-not-burn cigarettes, and medical nebulizers. Flavor inhalers and the like also include so-called RRP (Reduced-Risk Products).
 加熱式たばこ等の香味吸引器具は、シガレットと異なり、電子機器を搭載することが多く、近年多機能化が進んでいる。多機能化に伴い、香味吸引器具の落下を検知するためや、ユーザによる香味吸引器具の特定の動き(モーション)を検知するために、モーションセンサが搭載された香味吸引器具が開発されている。 Unlike cigarettes, flavor inhalers such as heated cigarettes are often equipped with electronic devices, and in recent years have become more multi-functional. Along with the multi-functionalization, flavor suction devices equipped with motion sensors have been developed in order to detect dropping of the flavor suction device or to detect a specific motion of the flavor suction device by the user.
特開2021-58212号公報Japanese Patent Application Laid-Open No. 2021-58212 特表2017-509339号公報Japanese Patent Publication No. 2017-509339 国際公開第2020/008028号明細書WO2020/008028 国際公開第2020/234053号明細書WO2020/234053
 しかしながら、香味吸引器具におけるモーションセンサの利用は、香味吸引器具の落下の検知や、プリセットされたユーザの特定の動作を検出することで、香味吸引器具のロックを解除するといった特定の機能のオン/オフに留まる。モーションセンサにより得られたモーションデータに基づき香味吸引器具の機能を制御することで、香味吸引器具の多様な価値をユーザに提供することが求められている。 However, the use of motion sensors in flavor suction devices can turn on/off specific functions such as detecting the fall of the flavor suction device or detecting a specific preset action of the user to unlock the flavor suction device. stay off. It is desired to provide users with various values of the flavor suction device by controlling the functions of the flavor suction device based on the motion data obtained by the motion sensor.
 本発明は以上に鑑みてなされたものであり、その課題の1つは、香味吸引器具等の動きに基づき制御される当該香味吸引器具等を提供することである。 The present invention has been made in view of the above, and one of its tasks is to provide a flavor suction device or the like that is controlled based on the movement of the flavor suction device or the like.
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイスであって、振動子と、前記デバイスの動きを検知するように構成されたセンサと、検知された前記動きを表す入力データを、前記振動子を振動させるための振動データへ変換するように構成された変換部と、前記振動データに基づいて前記振動子を振動させるように構成された制御部とを備えたデバイスが提供される。 According to an embodiment of the present invention, a device, being a flavor inhaler or an aerosol generator, comprising: a vibrator; a sensor configured to detect movement of said device; and an input representing said detected movement A device comprising: a converter configured to convert data into vibration data for vibrating the vibrator; and a controller configured to vibrate the vibrator based on the vibration data. provided.
 一実施形態において、前記入力データは、検知された前記動きの加速度または角速度を表すデータを含むことができる。 In one embodiment, the input data may include data representing acceleration or angular velocity of the sensed movement.
 一実施形態において、前記変換部は、前記入力データに含まれる代表値を用いるように更に構成されていてよい。 In one embodiment, the conversion unit may be further configured to use a representative value included in the input data.
 一実施形態において、前記入力データに含まれる代表値を用いることは、前記代表値を、前記振動子の振動強度に変換することを含むことができる。 In one embodiment, using the representative value included in the input data can include converting the representative value into the vibration intensity of the vibrator.
 一実施形態において、前記入力データに含まれる代表値を用いることは、前記代表値を、前記振動子の振動パターンに変換することを含むことができる。 In one embodiment, using the representative value included in the input data can include converting the representative value into a vibration pattern of the vibrator.
 一実施形態において、前記変換部は、前記入力データを、複数の時間期間のうちの各時間期間における検知された前記動きをそれぞれ表す複数のデータに区分し、区分された各データに含まれる代表値を、異なるタイミングにおける前記振動子の振動強度に変換するように更に構成されていてよい。 In one embodiment, the conversion unit divides the input data into a plurality of data representing the motion detected in each time period of a plurality of time periods, and a representative data included in each divided data. It may be further configured to convert the values into vibration strengths of the oscillator at different times.
 一実施形態において、前記センサは、少なくとも第1軸および第2軸に関する前記デバイスの動きを検知するように更に構成されていてよく、前記入力データは、前記第1軸および前記第2軸に関する検知された前記動きをそれぞれ表す第1入力データおよび第2入力データを少なくとも含むことができる。 In one embodiment, the sensor may be further configured to sense motion of the device about at least a first axis and a second axis, wherein the input data is sensing motion about the first axis and the second axis. at least first input data and second input data respectively representing said motions made.
 一実施形態において、前記変換部は、前記第1入力データを前記振動子の振動強度に変換し、前記第2入力データを前記振動子の振動パターンに変換するか、または、前記第2入力データに基づき前記振動子の振動パターンとして予め定められた複数の振動パターンの1つを選択するように更に構成されていてよい。 In one embodiment, the conversion unit converts the first input data into a vibration intensity of the vibrator, converts the second input data into a vibration pattern of the vibrator, or converts the second input data into a vibration pattern of the vibrator. may be further configured to select one of a plurality of predetermined vibration patterns as the vibration pattern of the vibrator based on the above.
 一実施形態において、前記振動パターンは、振動時間と、振動休止時間と、振動強度補正係数とのうち少なくとも1つによって特定されるものであってよい。 In one embodiment, the vibration pattern may be specified by at least one of vibration time, vibration pause time, and vibration intensity correction coefficient.
 一実施形態において、前記制御部は、前記デバイスの吸引が行われているときに、前記振動データに基づき前記振動子を振動させるように更に構成されていてよい。 In one embodiment, the controller may be further configured to vibrate the vibrator based on the vibration data when the device is being sucked.
 一実施形態において、前記制御部は、前記振動データに基づき、且つ、前記吸引の強度と前記振動子の振動強度とが比例するように、前記振動子を振動させるように更に構成されていてよい。 In one embodiment, the control unit may be further configured to vibrate the vibrator based on the vibration data such that the strength of the suction is proportional to the vibration strength of the vibrator. .
 一実施形態において、前記制御部は、前記吸引が行われていた時間の長さである吸引時間を記録し、前記吸引時間に応じて、前記振動データに基づき前記振動子を振動させる時間の長さを変化させるように更に構成されていてよい。 In one embodiment, the control unit records a suction time, which is a length of time during which the suction is performed, and vibrates the vibrator based on the vibration data according to the suction time. It may be further configured to vary the thickness.
 本発明の実施形態によれば、振動子を備えた香味吸引器具又はエアロゾル生成装置であるデバイスの制御方法であって、前記デバイスの動きを検知するステップと、検知された前記動きを表す入力データを、前記振動子を振動させるための振動データへ変換するステップと、前記振動データに基づいて前記振動子を振動させるステップと含む制御方法が提供される。 According to an embodiment of the present invention, there is provided a method of controlling a device, which is a flavor inhaler or an aerosol generator with a vibrator, comprising the steps of detecting movement of said device; into vibration data for vibrating the vibrator; and vibrating the vibrator based on the vibration data.
 本発明の実施形態によれば、振動子を備えた香味吸引器具又はエアロゾル生成装置であるデバイスのプロセッサに、前記デバイスの動きを検知するステップと、検知された前記動きを表す入力データを、前記振動子を振動させるための振動データへ変換するステップと、前記振動データに基づいて前記振動子を振動させるステップとを実行させるプログラムが提供される。 According to an embodiment of the present invention, a processor of a device, which may be a flavored inhaler or an aerosol generator with a vibrator, is provided with the steps of detecting movement of said device and input data representing said detected movement, said A program is provided for executing a step of converting into vibration data for vibrating a vibrator, and a step of vibrating the vibrator based on the vibration data.
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイスであって、前記デバイスの動きを検知するように構成されたセンサと、検知された前記動きを表す入力データを、前記デバイスの機能を制御するための機能データへ変換するように構成された変換部と、前記機能データに基づいて前記デバイスの前記機能を制御するように構成された制御部とを備えたデバイスが提供される。 According to an embodiment of the present invention, a device, which is a flavor inhaler or an aerosol generator, comprising a sensor configured to detect movement of said device and input data representing said detected movement, said A device comprising: a converter configured to convert into function data for controlling a function of a device; and a controller configured to control the function of the device based on the function data. be done.
 一実施形態において、前記変換部は、前記入力データが含む連続値を前記機能データが含む連続値または離散値に変換するように更に構成されていてよい。 In one embodiment, the conversion unit may be further configured to convert continuous values included in the input data into continuous values or discrete values included in the functional data.
 一実施形態において、前記デバイスの前記機能は、香味を生成するために加熱を行う機能と、音を発する機能と、光を発する機能と、所定の表示を行う機能とのうちの1以上を含むことができる。 In one embodiment, the function of the device includes one or more of a function of heating to generate flavor, a function of emitting sound, a function of emitting light, and a function of displaying a predetermined display. be able to.
 一実施形態において、前記入力データは、検知された前記動きの加速度または角速度を表すデータを含むことができる。 In one embodiment, the input data may include data representing acceleration or angular velocity of the sensed movement.
 一実施形態において、前記変換部は、前記入力データに含まれる代表値を用いるように更に構成されていてよい。 In one embodiment, the conversion unit may be further configured to use a representative value included in the input data.
 一実施形態において、前記入力データに含まれる代表値を用いることは、前記代表値を、前記デバイスの前記機能に係る強度に変換するように更に構成されていてよい。 In one embodiment, using a representative value included in the input data may be further configured to convert the representative value into a strength associated with the function of the device.
 一実施形態において、前記入力データに含まれる代表値を用いることは、前記代表値を、前記デバイスの前記機能に係るパターンに変換するように更に構成されていてよい。 In one embodiment, using representative values included in the input data may be further configured to transform the representative values into a pattern associated with the function of the device.
 一実施形態において、前記変換部は、前記入力データを、複数の時間期間のうちの各時間期間における検知された前記動きをそれぞれ表す複数のデータに区分し、区分された各データに含まれる代表値を、異なるタイミングにおける前記デバイスの前記機能に係る強度に変換するように更に構成されていてよい。 In one embodiment, the conversion unit divides the input data into a plurality of data representing the motion detected in each time period of a plurality of time periods, and a representative data included in each divided data. It may be further configured to convert values into intensities associated with the function of the device at different times.
 一実施形態において、前記センサは、少なくとも第1軸および第2軸に関する前記デバイスの動きを検知するように更に構成されていてよく、前記入力データは、前記第1軸及び前記第2軸に関する検知された前記動きをそれぞれ表す第1入力データおよび第2入力データを少なくとも含むことができる。 In one embodiment, the sensor may be further configured to sense motion of the device about at least a first axis and a second axis, wherein the input data is sensing motion about the first axis and the second axis. at least first input data and second input data respectively representing said motions made.
 一実施形態において、前記変換部は、前記第1入力データを、前記デバイスの前記機能に係る強度に変換し、前記第2入力データを、前記デバイスの前記機能に係るパターンに変換するか、または、前記第2入力データに基づき、前記デバイスの前記機能に係るパターンとして、予め定められた複数のパターンのうちの1つを選択するように更に構成されていてよい。 In one embodiment, the conversion unit converts the first input data into an intensity related to the function of the device and converts the second input data into a pattern related to the function of the device, or and selecting one of a plurality of predetermined patterns as a pattern related to the function of the device based on the second input data.
 一実施形態において、前記デバイスの前記機能に係る前記パターンは、当該機能が機能する時間と、当該機能が休止する時間と、当該機能に係る強度の補正係数とのうち少なくとも1つによって特定されるものであってよい。 In one embodiment, the pattern associated with the function of the device is identified by at least one of the time the function is active, the time the function is inactive, and an intensity correction factor associated with the function. can be anything.
 一実施形態であるデバイスは、香味を生成するために加熱を行い、前記加熱が行われていないときに前記入力データは取得されるように構成されていてよい。 A device that is an embodiment may be configured such that heating is performed to generate a flavor, and the input data is obtained when the heating is not performed.
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイスの制御方法であって、前記デバイスの動きを検知するステップと、検知された前記動きを表す入力データを、前記デバイスの機能を制御するための機能データへ変換するステップと、前記機能データに基づいて前記デバイスの前記機能を制御するステップとを含む制御方法が提供される。 According to an embodiment of the present invention, there is provided a method of controlling a device, which may be a flavor inhaler or an aerosol generator, comprising: detecting movement of said device; A control method is provided that includes converting into functional data for controlling a function, and controlling said function of said device based on said functional data.
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイスのプロセッサに、前記デバイスの動きを検知するステップと、検知された前記動きを表す入力データを、前記デバイスの機能を制御するための機能データへ変換するステップと、前記機能データに基づいて前記デバイスの前記機能を制御するステップとを実行させるプログラムが提供される。 According to an embodiment of the present invention, a processor of a device, which may be a flavored inhaler or an aerosol generator, receives the steps of sensing movement of said device and providing input data representative of said sensed movement to control the functions of said device. A program is provided that causes the steps of converting into functional data for performing and controlling the functionality of the device based on the functional data.
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイスであって、振動子と、慣性センサと、前記慣性センサにより取得された慣性データを変換することにより生成された、前記振動子を振動させるための振動データを記憶する記憶部と、前記記憶部から前記振動データを読み出し、該振動データに基づいて前記振動子を振動させるように構成された制御部とを備えるデバイスが提供される。 According to an embodiment of the present invention, a device, which is a flavor inhaler or an aerosol generator, comprising: an oscillator; an inertial sensor; A device comprising: a storage section storing vibration data for vibrating a vibrator; and a control section configured to read out the vibration data from the storage section and vibrate the vibrator based on the vibration data. provided.
 一実施形態において、前記振動データは、振動強度又は振動時間に関する値を含んでもよい。 In one embodiment, the vibration data may include values related to vibration intensity or vibration time.
 一実施形態において、前記記憶部は前記慣性データを記憶してもよい。前記デバイスは、前記記憶部から前記慣性データを読み出し、該慣性データを前記振動データに変換するように構成された変換部をさらに備えてもよい。 In one embodiment, the storage unit may store the inertia data. The device may further comprise a converter configured to read the inertia data from the storage and convert the inertia data to the vibration data.
 一実施形態において、前記慣性センサは角速度センサであってもよく、前記慣性データは角速度を表すデータを含んでもよい。 In one embodiment, the inertial sensor may be an angular velocity sensor, and the inertial data may include data representing angular velocity.
 一実施形態において、前記慣性センサは角速度センサであってもよく、前記慣性データは角速度を表すデータを含んでもよい。前記変換部は、前記角速度が予め定められた最小値以下である場合、前記角速度を表すデータを、予め定められた最小の振動強度又は予め定められた最小の振動時間を含む振動データに変換し、前記角速度が予め定められた最大値以上である場合、前記角速度を表すデータを、予め定められた最大の振動強度又は予め定められた最大の振動時間を含む振動データに変換するように構成されてもよい。 In one embodiment, the inertial sensor may be an angular velocity sensor, and the inertial data may include data representing angular velocity. When the angular velocity is equal to or less than a predetermined minimum value, the conversion unit converts data representing the angular velocity into vibration data including a predetermined minimum vibration intensity or a predetermined minimum vibration time. and converting the data representing the angular velocity into vibration data including a predetermined maximum vibration intensity or a predetermined maximum vibration time when the angular velocity is equal to or greater than a predetermined maximum value. may
 一実施形態において、前記慣性センサは角速度センサであってもよく、前記慣性データは角速度を表すデータを含んでもよい。前記変換部は、前記角速度を表すデータのうち角速度が10dps以上であるデータを前記振動データに変換するように構成されてもよい。 In one embodiment, the inertial sensor may be an angular velocity sensor, and the inertial data may include data representing angular velocity. The conversion unit may be configured to convert data representing an angular velocity of 10 dps or more among the data representing the angular velocity into the vibration data.
 一実施形態において、前記角速度センサのサンプリングレートは1Hz以上1kHz以下であってもよい。 In one embodiment, the angular velocity sensor may have a sampling rate of 1 Hz or more and 1 kHz or less.
 一実施形態において、前記デバイスは、前記慣性データ及び/又は前記振動データを外部と通信するように構成された通信部をさらに備えてもよい。 In one embodiment, the device may further include a communication unit configured to communicate the inertial data and/or the vibration data with the outside.
 本発明の別の課題は、上記のような香味吸引器具等と協働する外部装置を提供することである。 Another object of the present invention is to provide an external device that cooperates with the above-described flavor inhalers and the like.
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイス内のセンサによって検知された前記デバイスの動きを表す入力データを、前記デバイスから受信するように構成された通信部と、前記入力データを、前記デバイス内の振動子を振動させるための振動データ又は前記デバイスの機能を制御するための機能データへ変換するように構成された変換部とを備え、前記通信部は、前記振動データ又は前記機能データを前記デバイスへ送信するように更に構成される、装置が提供される。 According to an embodiment of the present invention, a communication unit configured to receive input data from said device, which is a flavor inhaler or an aerosol generator, representing movement of said device sensed by sensors in said device; a conversion unit configured to convert the input data into vibration data for vibrating a vibrator in the device or function data for controlling a function of the device; An apparatus is provided, further configured to transmit vibration data or said functional data to said device.
 一実施形態において、前記入力データは、検知された前記動きの加速度又は角速度を表すデータを含んでもよい。 In one embodiment, the input data may include data representing acceleration or angular velocity of the detected movement.
 一実施形態において、前記変換部は、前記入力データに含まれる代表値を用いるように更に構成されてもよい。 In one embodiment, the conversion unit may be further configured to use a representative value included in the input data.
 一実施形態において、前記入力データに含まれる代表値を用いることは、前記代表値を、前記振動子の振動強度又は前記デバイスの前記機能に係る強度に変換することを含んでもよい。 In one embodiment, using the representative value included in the input data may include converting the representative value into vibration intensity of the oscillator or intensity related to the function of the device.
 一実施形態において、前記入力データに含まれる代表値を用いることは、前記代表値を、前記振動子の振動パターン又は前記デバイスの前記機能に係るパターンに変換することを含んでもよい。 In one embodiment, using the representative value included in the input data may include converting the representative value into a vibration pattern of the vibrator or a pattern related to the function of the device.
 一実施形態において、前記変換部は、前記入力データを、複数の時間期間のうちの各時間期間における検知された前記動きをそれぞれ表す複数のデータに区分し、区分された各データに含まれる代表値を、異なるタイミングにおける前記振動子の振動強度又は前記デバイスの前記機能に係る強度に変換するように更に構成されてもよい。 In one embodiment, the conversion unit divides the input data into a plurality of data representing the motion detected in each time period of a plurality of time periods, and a representative data included in each divided data. It may further be arranged to convert values into vibration intensity of the oscillator at different times or intensity associated with the function of the device.
 一実施形態において、前記センサは、少なくとも第1軸および第2軸に関する前記デバイスの動きを検知するように構成されてもよい。前記入力データは、前記第1軸および前記第2軸に関する検知された前記動きをそれぞれ表す第1入力データおよび第2入力データを少なくとも含んでもよい。 In one embodiment, the sensor may be configured to sense movement of the device about at least a first axis and a second axis. The input data may include at least first input data and second input data representing the sensed movement about the first axis and the second axis, respectively.
 一実施形態において、前記変換部は、前記第1入力データを前記振動子の振動強度又は前記デバイスの前記機能に係る強度に変換し、前記第2入力データを前記振動子の振動パターンもしくは前記デバイスの前記機能に係るパターンに変換するか、又は、前記第2入力データに基づき、前記振動子の振動パターンとして予め定められた複数の振動パターンの1つもしくは前記デバイスの前記機能に係るパターンとして予め定められた複数のパターンの1つを選択するように更に構成されてもよい。 In one embodiment, the conversion unit converts the first input data into the vibration intensity of the oscillator or the intensity related to the function of the device, and converts the second input data into the vibration pattern of the oscillator or the device. or one of a plurality of vibration patterns predetermined as the vibration pattern of the vibrator based on the second input data, or a pattern related to the function of the device in advance It may be further configured to select one of a plurality of defined patterns.
 一実施形態において、前記振動パターンは、振動時間と、振動休止時間と、振動強度補正係数とのうち少なくとも1つによって特定されるものであってもよい。前記デバイスの前記機能に係る前記パターンは、当該機能が機能する時間と、当該機能が休止する時間と、当該機能に係る強度の補正係数とのうち少なくとも1つによって特定されるものであってもよい。 In one embodiment, the vibration pattern may be specified by at least one of vibration time, vibration pause time, and vibration intensity correction coefficient. The pattern for the function of the device may be specified by at least one of the time the function is active, the time the function is inactive, and a correction factor for the intensity of the function. good.
 一実施形態において、前記装置は、前記デバイス内の充電可能な電源を充電するように構成された充電部を更に備えてもよい。 In one embodiment, the apparatus may further comprise a charging section configured to charge a rechargeable power source within the device.
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイスと通信するように構成された装置の制御方法であって、前記デバイス内のセンサによって検知された前記デバイスの動きを表す入力データを、前記デバイスから受信するステップと、前記入力データを、前記デバイス内の振動子を振動させるための振動データ又は前記デバイスの機能を制御するための機能データへ変換するステップと、前記振動データ又は前記機能データを前記デバイスへ送信するステップとを含む方法が提供される。 According to an embodiment of the present invention, a method of controlling a device configured to communicate with a device, be it a flavor inhaler or an aerosol generator, wherein movement of said device sensed by a sensor within said device is represented. receiving input data from the device; converting the input data into vibration data for vibrating a vibrator in the device or function data for controlling a function of the device; transmitting data or said functional data to said device.
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイスと通信するように構成された装置に、前記デバイス内のセンサによって検知された前記デバイスの動きを表す入力データを、前記デバイスから受信するステップと、前記入力データを、前記デバイス内の振動子を振動させるための振動データ又は前記デバイスの機能を制御するための機能データへ変換するステップと、前記振動データ又は前記機能データを前記デバイスへ送信するステップとを実行させるプログラムが提供される。 According to an embodiment of the present invention, a device configured to communicate with a device, which may be a flavored inhaler or an aerosol generator, is provided with input data representative of movements of said device sensed by sensors in said device, said receiving from a device; converting the input data into vibration data for vibrating a vibrator in the device or functional data for controlling a function of the device; and the vibration data or the functional data. to the device.
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイスであって、振動子と、前記デバイスの動きを検知するように構成されたセンサと、検知された前記動きを表す入力データを、外部装置に送信し、前記入力データを変換することにより得られた、前記振動子を振動させるための振動データ又は前記デバイスの機能を制御するための機能データを、前記外部装置から受信するように構成された通信部と、前記振動データに基づいて前記振動子を振動させ又は前記機能データに基づいて前記デバイスの前記機能を制御するように構成された制御部とを備えるデバイスが提供される。 According to an embodiment of the present invention, a device, being a flavor inhaler or an aerosol generator, comprising: a vibrator; a sensor configured to detect movement of said device; and an input representing said detected movement Data is transmitted to an external device, and vibration data for vibrating the vibrator or functional data for controlling the function of the device, which is obtained by converting the input data, is received from the external device. and a controller configured to vibrate the vibrator based on the vibration data or control the function of the device based on the function data. be done.
 一実施形態において、前記制御部は、前記デバイスの吸引が行われているときに、前記振動データに基づき前記振動子を振動させ又は前記機能データに基づき前記デバイスの前記機能を制御するように更に構成されてもよい。 In one embodiment, the control unit further vibrates the vibrator based on the vibration data or controls the function of the device based on the function data when the suction of the device is performed. may be configured.
 一実施形態において、前記制御部は、前記振動データに基づき、且つ、前記吸引の強度と前記振動子の振動強度とが比例するように、前記振動子を振動させるか、又は、前記機能データに基づき、且つ、前記吸引の強度と前記デバイスの前記機能に係る強度とが比例するように、前記デバイスの前記機能を制御するように更に構成されてもよい。 In one embodiment, the control unit vibrates the vibrator based on the vibration data such that the strength of the suction is proportional to the vibration strength of the vibrator, or the function data and such that the strength of the suction is proportional to the strength associated with the function of the device.
 一実施形態において、前記制御部は、前記吸引が行われていた時間の長さである吸引時間を記録し、前記吸引時間に応じて、前記振動データに基づき前記振動子を振動させる時間の長さ又は前記機能データに基づき前記デバイスの前記機能が機能する時間の長さを変化させるように更に構成されてもよい。 In one embodiment, the control unit records a suction time, which is a length of time during which the suction is performed, and vibrates the vibrator based on the vibration data according to the suction time. The device may be further configured to vary the length of time that the function of the device functions based on the performance data or the function data.
 本発明の実施形態によれば、振動子を備えた香味吸引器具又はエアロゾル生成装置であるデバイスを動作させる方法であって、前記デバイスの動きを検知するステップと、検知された前記動きを表す入力データを、外部装置に送信するステップと、前記入力データを変換することにより得られた、前記振動子を振動させるための振動データ又は前記デバイスの機能を制御するための機能データを、前記外部装置から受信するステップと、前記振動データに基づいて前記振動子を振動させ又は前記機能データに基づいて前記デバイスの前記機能を制御するステップとを含む方法が提供される。 According to an embodiment of the present invention, a method of operating a device, which is a flavored inhaler or an aerosol generator with a vibrator, comprising: detecting movement of said device; sending the data to an external device; and transmitting the vibration data for vibrating the vibrator or the function data for controlling the function of the device obtained by converting the input data to the external device. and vibrating the transducer based on the vibration data or controlling the function of the device based on the function data.
 本発明の実施形態によれば、振動子を備えた香味吸引器具又はエアロゾル生成装置であるデバイスに、前記デバイスの動きを検知するステップと、検知された前記動きを表す入力データを、外部装置に送信するステップと、前記入力データを変換することにより得られた、前記振動子を振動させるための振動データ又は前記デバイスの機能を制御するための機能データを、前記外部装置から受信するステップと、前記振動データに基づいて前記振動子を振動させ又は前記機能データに基づいて前記デバイスの前記機能を制御するステップとを実行させるプログラムが提供される。 According to an embodiment of the present invention, a device, which is a flavor inhaler or an aerosol generator equipped with a vibrator, detects movement of the device, and transmits input data representing the detected movement to an external device. a step of transmitting, and a step of receiving, from the external device, vibration data for vibrating the vibrator or function data for controlling the function of the device, which is obtained by converting the input data; and vibrating the vibrator based on the vibration data or controlling the function of the device based on the function data.
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイスであって、ユーザに感覚刺激を与えるように構成された少なくとも1つの感覚刺激素子と、前記デバイスの動きを検知するように構成されたセンサと、検知された前記動きを表す入力データを前記センサが取得しているときに、前記少なくとも1つの感覚刺激素子を機能させるように構成された制御部とを備えるデバイスが提供される。 According to an embodiment of the present invention, a device that is a flavored inhaler or an aerosol generator, comprising at least one sensory stimulus element configured to provide sensory stimulation to a user, and and a controller configured to operate the at least one sensory stimulation element when the sensor acquires input data representative of the sensed movement. be done.
 一実施形態において、前記少なくとも1つの素子は、振動子、発光素子及び音響素子のうちの少なくとも1つを含んでもよい。 In one embodiment, the at least one element may include at least one of a vibrator, a light emitting element and an acoustic element.
 一実施形態において、前記入力データは、検知された前記動きの加速度又は角速度を表すデータを含んでもよい。 In one embodiment, the input data may include data representing acceleration or angular velocity of the detected movement.
 一実施形態において、前記センサは、前記デバイスにおいて加熱によるエアロゾルの生成が行われていないときに、前記入力データを取得するように更に構成されてもよい。 In one embodiment, the sensor may be further configured to obtain the input data when the device is not generating an aerosol by heating.
 一実施形態において、前記デバイスは、ユーザに感覚刺激を与えるように構成された2つ以上の感覚刺激素子を備えてもよい。前記制御部は、前記センサが作動している間、前記2つ以上の感覚刺激素子のうち前記少なくとも1つの感覚刺激素子とは異なる感覚刺激素子を更に機能させるように構成されてもよい。 In one embodiment, the device may comprise two or more sensory stimulation elements configured to provide sensory stimulation to a user. The controller may be configured to further activate a sensory stimulation element of the two or more sensory stimulation elements that is different from the at least one sensory stimulation element while the sensor is activated.
 一実施形態において、前記デバイスは、前記入力データを、前記少なくとも1つの感覚刺激素子を機能させるための感覚刺激データへ変換するように構成された変換部をさらに備えてもよい。 In one embodiment, the device may further comprise a converter configured to convert the input data into sensory stimulation data for functioning the at least one sensory stimulation element.
 一実施形態において、前記変換部は、前記入力データに含まれる代表値を用いるように更に構成されてもよい。 In one embodiment, the conversion unit may be further configured to use a representative value included in the input data.
 一実施形態において、前記入力データに含まれる代表値を用いることは、前記代表値を、前記少なくとも1つの感覚刺激素子の感覚刺激に係る強度に変換することを含んでもよい。 In one embodiment, using the representative value included in the input data may include converting the representative value into intensity related to sensory stimulation of the at least one sensory stimulation element.
 一実施形態において、前記入力データに含まれる代表値を用いることは、前記代表値を、前記少なくとも1つの感覚刺激素子の感覚刺激に係るパターンに変換することを含んでもよい。 In one embodiment, using the representative value included in the input data may include converting the representative value into a pattern related to sensory stimulation of the at least one sensory stimulation element.
 一実施形態において、前記変換部は、前記入力データを、複数の時間期間のうちの各時間期間における検知された前記動きをそれぞれ表す複数のデータに区分し、区分された各データに含まれる代表値を、異なるタイミングにおける前記少なくとも1つの感覚刺激素子の感覚刺激に係る強度に変換するように更に構成されてもよい。 In one embodiment, the conversion unit divides the input data into a plurality of data representing the motion detected in each time period of a plurality of time periods, and a representative data included in each divided data. It may be further configured to convert the values into intensities associated with sensory stimulation of the at least one sensory stimulation element at different times.
 一実施形態において、前記センサは、少なくとも第1軸および第2軸に関する前記デバイスの動きを検知するように更に構成されてもよい。前記入力データは、前記第1軸および前記第2軸に関する検知された前記動きをそれぞれ表す第1入力データおよび第2入力データを少なくとも含んでもよい。 In one embodiment, the sensor may be further configured to sense movement of the device about at least a first axis and a second axis. The input data may include at least first input data and second input data representing the sensed movement about the first axis and the second axis, respectively.
 一実施形態において、前記変換部は、前記第1入力データを前記少なくとも1つの感覚刺激素子の感覚刺激に係る強度に変換し、前記第2入力データを前記少なくとも1つの感覚刺激素子の感覚刺激に係るパターンに変換するか、又は、前記第2入力データに基づき前記少なくとも1つの感覚刺激素子の感覚刺激に係るパターンとして予め定められた複数の感覚刺激に係るパターンの1つを選択するように更に構成されてもよい。 In one embodiment, the conversion unit converts the first input data into intensity related to sensory stimulation of the at least one sensory stimulation element, and converts the second input data into sensory stimulation of the at least one sensory stimulation element. or select one of a plurality of patterns related to sensory stimulation predetermined as patterns related to sensory stimulation of the at least one sensory stimulation element based on the second input data. may be configured.
 一実施形態において、前記感覚刺激に係るパターンは、前記感覚刺激素子が機能する時間と、前記感覚刺激素子が休止する時間と、前記感覚刺激に係る強度の補正係数とのうち少なくとも1つによって特定されるものであってもよい。 In one embodiment, the pattern of sensory stimulation is specified by at least one of a time period during which the sensory stimulation element is active, a time period during which the sensory stimulation element is inactive, and a correction factor for the intensity of the sensory stimulation. It may be
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイスの制御方法であって、前記デバイスの動きを検知するステップと、検知された前記動きを表す入力データを取得しているときに、ユーザに感覚刺激を与えるように構成された少なくとも1つの感覚刺激素子を機能させるステップとを含む方法が提供される。 According to an embodiment of the present invention, there is provided a method of controlling a device, which may be a flavor inhaler or an aerosol generator, comprising detecting movement of said device and obtaining input data representing said detected movement. activating at least one sensory stimulation element configured to provide sensory stimulation to a user.
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイスに、前記デバイスの動きを検知するステップと、検知された前記動きを表す入力データを取得しているときに、ユーザに感覚刺激を与えるように構成された少なくとも1つの感覚刺激素子を機能させるステップとを実行させるプログラムが提供される。 According to an embodiment of the present invention, in a device, which may be a flavor inhaler or an aerosol generator, detecting movement of said device; and activating at least one sensory stimulation element configured to provide sensory stimulation.
 本発明のさらに別の課題は、香味吸引器具等の動きをより的確に検出可能な香味吸引器具等の構成を提供することである。 Yet another object of the present invention is to provide a configuration of a flavor suction device or the like that can more accurately detect movement of the flavor suction device or the like.
 本発明の実施形態によれば、香味吸引器具又はエアロゾル生成装置であるデバイスであって、筐体と、香味源又はエアロゾル源を加熱する加熱部と、角速度または加速度の変化を検出する慣性センサとを備え、前記慣性センサは前記筐体中において、前記加熱部と接触しない位置に配置されている、デバイスが提供される。 According to an embodiment of the present invention, a device, which is a flavor inhaler or an aerosol generator, comprises a housing, a heating element for heating the flavor source or the aerosol source, and an inertial sensor for detecting changes in angular velocity or acceleration. wherein the inertial sensor is arranged in the housing at a position that does not come into contact with the heating unit.
 一実施形態において、前記慣性センサにおける互いに直交する3つの座標軸のうちのいずれか1軸は、前記筐体における互いに直交する3つの座標軸のいずれかに略平行に配置されていてもよい。 In one embodiment, one of the three mutually orthogonal coordinate axes of the inertial sensor may be arranged substantially parallel to any one of the three mutually orthogonal coordinate axes of the housing.
 一実施形態において、前記筐体は、略長方形状の面を有する厚みのある略直方体形状であり、前記筐体における前記3つの座標軸は、それぞれ前記略長方形状の長手方向をZ軸とし、前記略長方形状の短手方向をY軸とし、前記Z軸と前記Y軸とに直交する方向をX軸とした場合に、前記慣性センサにおけるX軸、Y軸、Z軸が、それぞれ前記筐体における前記X軸、前記Y軸、前記Z軸に略平行となるよう前記筐体と前記慣性センサとが配置されていてもよい。 In one embodiment, the housing has a substantially rectangular parallelepiped shape with a thickness having a substantially rectangular surface, and the three coordinate axes in the housing each have a longitudinal direction of the substantially rectangular shape as a Z axis, and the When the lateral direction of the substantially rectangular shape is the Y axis and the direction orthogonal to the Z axis and the Y axis is the X axis, the X axis, Y axis, and Z axis of the inertial sensor are respectively aligned with the housing. The housing and the inertial sensor may be arranged so as to be substantially parallel to the X-axis, the Y-axis, and the Z-axis in .
 一実施形態において、前記筐体は、略円筒形状であり、前記筐体の表面にボタンまたは発光素子を有しており、前記筐体における前記3つの座標軸は、それぞれ前記略円筒形状の長手方向をZ軸とし、前記ボタンまたは発光素子に対して垂直な方向をY軸とし、前記Z軸と前記Y軸とに直交する方向をX軸とした場合に、前記慣性センサにおけるX軸、Y軸、Z軸が、それぞれ前記筐体における前記X軸、前記Y軸、前記Z軸に略平行となるよう前記筐体と前記慣性センサとが配置されていてもよい。 In one embodiment, the housing has a substantially cylindrical shape and has a button or a light-emitting element on the surface of the housing, and the three coordinate axes in the housing are respectively longitudinal directions of the substantially cylindrical shape. is the Z-axis, the direction perpendicular to the button or light-emitting element is the Y-axis, and the direction orthogonal to the Z-axis and the Y-axis is the X-axis, the X-axis and Y-axis of the inertial sensor , Z-axis of the housing may be substantially parallel to the X-axis, the Y-axis, and the Z-axis of the housing.
 一実施形態において、マイクロコントローラをさらに備え、前記慣性センサは、前記マイクロコントローラが取り付けられた基板に取り付けられていてもよい。 In one embodiment, a microcontroller may be further provided, and the inertial sensor may be attached to a substrate on which the microcontroller is attached.
 一実施形態において、マイクロコントローラをさらに備え、前記慣性センサは、前記マイクロコントローラが取り付けられた基板と異なる基板に取り付けられていてもよい。 In one embodiment, a microcontroller may be further provided, and the inertial sensor may be attached to a substrate different from the substrate on which the microcontroller is attached.
 一実施形態において、前記慣性センサにおいて、前記慣性センサが取り付けられた基板と接している面とは反対側の面の少なくとも一部は、断熱材で覆われていてもよい。 In one embodiment, at least part of the surface of the inertial sensor opposite to the surface in contact with the substrate to which the inertial sensor is attached may be covered with a heat insulating material.
 一実施形態において、前記デバイスはバッテリを有し、前記慣性センサは前記バッテリと比較して、前記香味吸引器具又は前記エアロゾル生成装置が生成する物質をユーザが吸引する際に前記バッテリよりも当該ユーザに近くなる位置に配置されていてもよい。 In one embodiment, the device comprises a battery, and the inertial sensor is compared to the battery to provide more power to the user than the battery when the user inhales a substance produced by the flavor inhaler or the aerosol generator. may be arranged at a position close to .
 一実施形態において、前記慣性センサは角速度センサであってもよい。 In one embodiment, the inertial sensor may be an angular velocity sensor.
本発明の実施形態による香味吸引器具等の構成例を模式的に示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically the structural example, such as the flavor suction instrument by embodiment of this invention. 本発明の実施形態による香味吸引器具等の構成例を模式的に示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically the structural example, such as the flavor suction instrument by embodiment of this invention. 本発明の実施形態による香味吸引器具等の簡略化した構成例を模式的に表す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically the simplified structural example, such as the flavor inhaler by embodiment of this invention. 例示の入力データに含まれる値をプロットしたグラフである。4 is a graph plotting values contained in exemplary input data; 例示の入力データに含まれる値をプロットしたグラフである。4 is a graph plotting values contained in exemplary input data; 振動強度を模式化した図である。It is the figure which schematized the vibration intensity. あらかじめ定められた複数の振動パターンを表すテーブルである。It is a table showing a plurality of predetermined vibration patterns. あらかじめ定められた複数の振動パターンを表すテーブルである。It is a table showing a plurality of predetermined vibration patterns. 振動データに基づき振動子を振動させるための例示処理のフローチャートである。4 is a flow chart of an exemplary process for vibrating a vibrator based on vibration data; 振動データに基づき振動子を振動させるための例示処理のフローチャートである。4 is a flow chart of an exemplary process for vibrating a vibrator based on vibration data; 振動データに基づき振動子を振動させるための例示処理のフローチャートである。4 is a flow chart of an exemplary process for vibrating a vibrator based on vibration data; 圧力センサにより検知された圧力の変化をプロットしたグラフである。10 is a graph plotting changes in pressure sensed by a pressure sensor; 振動子の例示の振動態様を表す模式図である。FIG. 4 is a schematic diagram showing an exemplary vibration mode of a vibrator; 振動子の例示の振動態様を表す模式図である。FIG. 4 is a schematic diagram showing an exemplary vibration mode of a vibrator; 振動子の例示の振動態様を表す模式図である。FIG. 4 is a schematic diagram showing an exemplary vibration mode of a vibrator; 振動子の例示の振動態様を表す模式図である。FIG. 4 is a schematic diagram showing an exemplary vibration mode of a vibrator; 本発明の実施形態による香味吸引器具等の制御方法のフローチャートである。1 is a flow chart of a control method for a flavor inhaler or the like according to an embodiment of the present invention; 本発明の実施形態による香味吸引器具等の簡略化した構成例を模式的に表す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically the simplified structural example, such as the flavor inhaler by embodiment of this invention. 機能データに基づき機能主体を制御するための例示処理のフローチャートである。4 is a flowchart of exemplary processing for controlling a functional subject based on functional data; 機能データに基づき機能主体を制御するための例示処理のフローチャートである。4 is a flowchart of exemplary processing for controlling a functional subject based on functional data; 機能データに基づき機能主体を制御するための例示処理のフローチャートである。4 is a flowchart of exemplary processing for controlling a functional subject based on functional data; 本発明の実施形態による香味吸引器具等の制御方法のフローチャートである。1 is a flow chart of a control method for a flavor inhaler or the like according to an embodiment of the present invention; 本発明の実施形態による香味吸引器具等及び外部装置の簡略化した構成例を模式的に表す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically the simplified structural example of the flavor inhaler etc. and external device by embodiment of this invention. 本発明の実施形態による香味吸引器具等及び外部装置の動作を示すシーケンス図である。FIG. 4 is a sequence diagram showing operations of the flavor inhaler and the like and the external device according to the embodiment of the present invention; 本発明の実施形態による香味吸引器具等の簡略化した構成例を模式的に表す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically the simplified structural example, such as the flavor inhaler by embodiment of this invention. 本発明の実施形態による香味吸引器具等の制御方法のフローチャートである。1 is a flow chart of a control method for a flavor inhaler or the like according to an embodiment of the present invention; 本発明の実施形態による香味吸引器具等の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation|movement, such as a flavor inhaler by embodiment of this invention. 本発明の実施形態による香味吸引器具等の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation|movement, such as a flavor inhaler by embodiment of this invention. 本発明の実施形態による香味吸引器具等のハードウェア構成の一例を示す図である。It is a figure showing an example of hardware constitutions, such as a flavor inhaler by an embodiment of the present invention. 本発明の実施形態による香味吸引器具等をユーザが把持した状態の一例を示す図である。FIG. 4 is a diagram showing an example of a state in which a user holds the flavor inhaler or the like according to the embodiment of the present invention; 本発明の実施形態による香味吸引器具等におけるセンサの配置例を示す図である。FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to the embodiment of the present invention; 本発明の実施形態による香味吸引器具等におけるセンサの配置例を示す図である。FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to the embodiment of the present invention; 本発明の実施形態による香味吸引器具等におけるセンサの配置例を示す図である。FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to the embodiment of the present invention; 本発明の実施形態による香味吸引器具等におけるセンサの配置例を示す図である。FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to the embodiment of the present invention; 本発明の実施形態による香味吸引器具等におけるセンサの配置例を示す図である。FIG. 4 is a diagram showing an arrangement example of sensors in the flavor inhaler or the like according to the embodiment of the present invention; 本発明の実施形態による香味吸引器具等のハードウェア構成の一例を示す図である。It is a figure showing an example of hardware constitutions, such as a flavor inhaler by an embodiment of the present invention. 本発明の実施形態による香味吸引器具等のハードウェア構成の一例を示す図である。It is a figure showing an example of hardware constitutions, such as a flavor inhaler by an embodiment of the present invention.
1 本発明の第1実施形態
 本発明の第1実施形態に係る香味吸引器具等は、ユーザにより吸引される物質を生成する装置である。以下では、香味吸引器具等により生成される物質が、エアロゾルであるものとして説明する。他に、香味吸引器具等により生成される物質は、エアロゾルではない気体であってもよい。
1 First Embodiment of the Present Invention A flavor inhaler or the like according to a first embodiment of the present invention is a device that produces a substance to be inhaled by a user. In the following description, it is assumed that the substance generated by the flavor inhaler or the like is an aerosol. Alternatively, the substance produced by the flavor inhaler or the like may be a gas other than an aerosol.
1-1 第1の構成例
 図1Aは、香味吸引器具等の第1の構成例を模式的に示す模式図である。図1Aに示すように、本構成例に係る香味吸引器具等100Aは、電源ユニット110、カートリッジ120、及び香味付与カートリッジ130を含む。電源ユニット110は、電源部111A、センサ部112A、通知部113A、記憶部114A、通信部115A、及び制御部116Aを含む。カートリッジ120は、加熱部121A、液誘導部122、及び液貯蔵部123を含む。香味付与カートリッジ130は、香味源131、及びマウスピース124を含む。カートリッジ120及び香味付与カートリッジ130には、空気流路180が形成される。
1-1 First Configuration Example FIG. 1A is a schematic diagram schematically showing a first configuration example of a flavor inhaler or the like. As shown in FIG. 1A, a flavor inhaler or the like 100A according to this configuration example includes a power supply unit 110, a cartridge 120, and a flavor imparting cartridge . The power supply unit 110 includes a power supply section 111A, a sensor section 112A, a notification section 113A, a storage section 114A, a communication section 115A, and a control section 116A. The cartridge 120 includes a heating section 121A, a liquid guide section 122, and a liquid storage section 123. As shown in FIG. Flavoring cartridge 130 includes flavor source 131 and mouthpiece 124 . An air flow path 180 is formed in the cartridge 120 and the flavor imparting cartridge 130 .
 なお、カートリッジ120及び香味付与カートリッジ130は、後述する「リフィル」の例である。本実施形態において、リフィル120及び130の一方又は双方の少なくとも一部には、当該リフィルの種類に応じた色が付されている。また、種類に応じた色が付されるのはリフィルに限定されず、香味吸引器具等100Aに装着される任意の構成要素であってよい。 The cartridge 120 and the flavor imparting cartridge 130 are examples of "refills" to be described later. In this embodiment, at least a portion of one or both of the refills 120 and 130 is colored according to the type of refill. Moreover, the color according to the type is not limited to the refill, and may be any component attached to the flavor suction device 100A, such as the flavor suction device.
 電源部111Aは、電力を蓄積する。そして、電源部111Aは、制御部116Aによる制御に基づいて、香味吸引器具等100Aの各構成要素に電力を供給する。電源部111Aは、例えば、リチウムイオン二次電池等の充電式バッテリにより構成され得る。 The power supply unit 111A accumulates power. Then, the power supply unit 111A supplies electric power to each component of 100A, such as the flavor inhaler, under the control of the control unit 116A. The power supply unit 111A may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery.
 センサ部112Aは、香味吸引器具等100Aに関する各種情報を取得する。センサ部112Aは、マイクロホンコンデンサ等の圧力センサ、流量センサ又は温度センサ等を含んでいてもよく、ユーザによる吸引に伴う値を取得する。また、センサ部112Aは、ボタン又はスイッチ等の、ユーザからの情報の入力を受け付ける入力装置を含んでいてよい。更に、センサ部は、香味吸引器具等の動きを検知するように構成されたセンサを含むことができる。 The sensor unit 112A acquires various kinds of information about the flavor suction device 100A. The sensor unit 112A may include a pressure sensor such as a microphone condenser, a flow rate sensor, a temperature sensor, or the like, and acquires a value associated with suction by the user. Further, the sensor unit 112A may include an input device such as a button or switch that receives input of information from the user. Additionally, the sensor portion may include a sensor configured to detect movement of a flavor suction device or the like.
 通知部113Aは、情報をユーザに通知する。本実施形態における通知部113Aは、メッセージを表示する表示装置を含む。通知部113Aは、例えば、ユーザに感覚刺激を与えるように構成された、発光する発光装置もしくは発光素子、画像を表示する表示装置、音を出力する音出力装置もしくは音響素子、又は振動子を含む振動装置等を含んでいてもよい。 The notification unit 113A notifies the user of information. 113 A of notification parts in this embodiment contain the display which displays a message. The notification unit 113A includes, for example, a light-emitting device or light-emitting element that emits light, a display device that displays an image, a sound output device or acoustic element that outputs sound, or a vibrator configured to provide sensory stimulation to the user. A vibration device or the like may be included.
 記憶部114Aは、香味吸引器具等100Aの動作のための各種情報を記憶する。記憶部114Aは、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。記憶部114Aは、制御部116Aによる制御のための作業領域を提供する揮発性メモリを含んでいてもよい。 The storage unit 114A stores various information for the operation of the flavor suction device 100A. The storage unit 114A is configured by, for example, a non-volatile storage medium such as flash memory. Storage unit 114A may include a volatile memory that provides a work area for control by control unit 116A.
 通信部115Aは、所定のLPWA無線通信規格又は同様の制限を有する無線通信規格に準拠した通信インターフェース(通信モジュールを含む。)を含むことができる。かかる通信規格としては、SigfoxやLoRA-WAN等が採用され得る。通信部115Aは、有線又は無線の任意の通信規格に準拠した通信を行うことが可能な通信インターフェースであってもよい。かかる通信規格としては、例えば、Wi-Fi(登録商標)、又はBluetooth(登録商標)等が採用され得る。 The communication unit 115A can include a communication interface (including a communication module) conforming to a predetermined LPWA wireless communication standard or a wireless communication standard with similar restrictions. As such a communication standard, Sigfox, LoRA-WAN, etc. can be adopted. The communication unit 115A may be a communication interface capable of performing communication conforming to any wired or wireless communication standard. Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like, for example, can be adopted as such a communication standard.
 制御部116Aは、演算処理装置及び制御装置として機能し、各種プログラムに従って香味吸引器具等100A内の動作全般を制御する。制御部116Aは、例えばCPU(Central Processing Unit)、及びマイクロプロセッサ等の電子回路によって実現される。なお、制御部116Aは。後で詳述する変換部117Aを含むことができる。 The control unit 116A functions as an arithmetic processing device and a control device, and controls the general operations within the flavor inhaler 100A according to various programs. The control unit 116A is realized by electronic circuits such as a CPU (Central Processing Unit) and a microprocessor. Note that the control unit 116A is A conversion unit 117A, which will be described in detail later, can be included.
 液貯蔵部123は、エアロゾル源を貯蔵する。エアロゾル源が霧化されることで、エアロゾルが生成される。エアロゾル源は、例えば、グリセリン及びプロピレングリコール等の多価アルコール、並びに水等の液体である。エアロゾル源は、たばこ由来又は非たばこ由来の香味成分を含んでいてもよい。香味吸引器具等100Aがネブライザー等の医療用吸入器である場合、エアロゾル源は、薬剤を含んでもよい。 The liquid storage unit 123 stores an aerosol source. An aerosol is generated by atomizing the aerosol source. Aerosol sources are, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water. The aerosol source may contain tobacco-derived or non-tobacco-derived flavoring ingredients. If the flavored inhaler or the like 100A is a medical inhaler such as a nebulizer, the aerosol source may contain a drug.
 液誘導部122は、液貯蔵部123に貯蔵された液体であるエアロゾル源を、液貯蔵部123から誘導し、保持する。液誘導部122は、例えば、ガラス繊維等の繊維素材又は多孔質状のセラミック等の多孔質状素材を撚って形成されるウィックである。その場合、液貯蔵部123に貯蔵されたエアロゾル源は、ウィックの毛細管効果により誘導される。 The liquid guide section 122 guides the aerosol source, which is the liquid stored in the liquid storage section 123, from the liquid storage section 123 and holds it. The liquid guiding part 122 is a wick formed by twisting a fibrous material such as glass fiber or a porous material such as porous ceramic. In that case, the aerosol source stored in liquid reservoir 123 is guided by the capillary effect of the wick.
 加熱部121Aは、エアロゾル源を加熱することで、エアロゾル源を霧化してエアロゾルを生成する。図1Aに示した例では、加熱部121Aは、コイルとして構成され、液誘導部122に巻き付けられる。加熱部121Aが発熱すると、液誘導部122に保持されたエアロゾル源が加熱されて霧化され、エアロゾルが生成される。加熱部121Aは、電源部111Aから給電されると発熱する。一例として、ユーザが吸引を開始したこと、及び、所定の情報が入力されたことの一方又は双方が、センサ部112Aにより検出された場合に、給電されてもよい。そして、ユーザが吸引を終了したこと、及び、所定の情報が入力されたことの一方又は双方が、センサ部112Aにより検出された場合に、給電が停止されてもよい。 The heating unit 121A heats the aerosol source to atomize the aerosol source and generate an aerosol. In the example shown in FIG. 1A, the heating section 121A is configured as a coil and wound around the liquid guiding section 122. In the example shown in FIG. When the heating part 121A generates heat, the aerosol source held in the liquid guide part 122 is heated and atomized to generate an aerosol. The heating unit 121A generates heat when supplied with power from the power supply unit 111A. As an example, power may be supplied when the sensor unit 112A detects one or both of the fact that the user has started sucking and the fact that predetermined information has been input. Then, the power supply may be stopped when the sensor unit 112A detects one or both of the fact that the user has finished sucking and the fact that the predetermined information has been input.
 香味源131は、エアロゾルに香味成分を付与するための構成要素である。香味源131は、たばこ由来又は非たばこ由来の香味成分を含んでいてもよい。 The flavor source 131 is a component for imparting flavor components to the aerosol. The flavor source 131 may contain tobacco-derived or non-tobacco-derived flavor components.
 空気流路180は、ユーザに吸引される空気の流路である。空気流路180は、空気流路180内への空気の入り口である空気流入孔181と、空気流路180からの空気の出口である空気流出孔182と、を両端とする管状構造を有する。空気流路180の途中には、上流側(空気流入孔181に近い側)に液誘導部122が配置され、下流側(空気流出孔182に近い側)に香味源131が配置される。ユーザによる吸引に伴い空気流入孔181から流入した空気は、加熱部121Aにより生成されたエアロゾルと混合され、矢印190に示すように、香味源131を通過して空気流出孔182へ輸送される。エアロゾルと空気との混合流体が香味源131を通過する際には、香味源131に含まれる香味成分がエアロゾルに付与される。 The air flow path 180 is a flow path of air sucked by the user. The air flow path 180 has a tubular structure having an air inlet hole 181 as an air entrance into the air flow path 180 and an air outflow hole 182 as an air outlet from the air flow path 180 at both ends. In the middle of the air flow path 180, the liquid guide portion 122 is arranged on the upstream side (closer to the air inlet hole 181), and the flavor source 131 is arranged on the downstream side (closer to the air outlet hole 182). The air that flows in through the air inflow hole 181 as the user inhales is mixed with the aerosol generated by the heating unit 121A, passes through the flavor source 131, and is transported to the air outflow hole 182 as indicated by the arrow 190. When the mixed fluid of the aerosol and air passes through the flavor source 131, the flavor component contained in the flavor source 131 is imparted to the aerosol.
 マウスピース124は、吸引の際にユーザに咥えられる部材である。マウスピース124には、空気流出孔182が配置される。ユーザは、マウスピース124を咥えて吸引することで、エアロゾルと空気との混合流体を口腔内へ取り込むことができる。 The mouthpiece 124 is a member held by the user when inhaling. An air outlet hole 182 is arranged in the mouthpiece 124 . The user can take the mixed fluid of aerosol and air into the oral cavity by holding the mouthpiece 124 and sucking.
 以上、香味吸引器具等100Aの構成例を説明した。もちろん香味吸引器具等100Aの構成は上記に限定されず、以下に例示する多様な構成をとり得る。 An example configuration of the flavor suction device 100A has been described above. Of course, the structure of 100A, such as a flavor suction instrument, is not limited to the above, and can take various structures illustrated below.
 一例として、香味吸引器具等100Aは、香味付与カートリッジ130を含んでいなくてもよい。その場合、カートリッジ120にマウスピース124が設けられる。 As an example, the flavor suction device 100A may not include the flavoring cartridge 130. In that case, the cartridge 120 is provided with a mouthpiece 124 .
 他の一例として、香味吸引器具等100Aは、複数種類のエアロゾル源を含んでいてもよい。複数種類のエアロゾル源から生成された複数種類のエアロゾルが空気流路180内で混合され化学反応を起こすことで、さらに他の種類のエアロゾルが生成されてもよい。 As another example, the flavor suction device 100A may include multiple types of aerosol sources. Further types of aerosols may be generated by mixing multiple types of aerosols generated from multiple types of aerosol sources and causing chemical reactions in the air flow path 180 .
 また、エアロゾル源を霧化する手段は、加熱部121Aによる加熱に限定されない。例えば、エアロゾル源を霧化する手段は、振動霧化、又は誘導加熱であってもよい。 Also, the means for atomizing the aerosol source is not limited to heating by the heating unit 121A. For example, the means of atomizing the aerosol source may be vibrational atomization or induction heating.
1-2 第2の構成例
 図1Bは、香味吸引器具等の第2の構成例を模式的に示す模式図である。図1Bに示すように、本構成例に係る香味吸引器具等100Bは、電源部111B、センサ部112B、通知部113B、記憶部114B、通信部115B、制御部116B、加熱部121B、保持部140、及び断熱部144を含む。
1-2 Second Configuration Example FIG. 1B is a schematic diagram schematically showing a second configuration example of the flavor inhaler or the like. As shown in FIG. 1B, the flavor inhaler or the like 100B according to this configuration example includes a power supply unit 111B, a sensor unit 112B, a notification unit 113B, a storage unit 114B, a communication unit 115B, a control unit 116B, a heating unit 121B, and a holding unit 140. , and the heat insulating portion 144 .
 電源部111B、センサ部112B、通知部113B、記憶部114B、通信部115B、及び制御部116Bの各々は、第1の構成例に係る香味吸引器具等100Aに含まれる対応する構成要素と実質的に同一である。 Each of the power supply unit 111B, the sensor unit 112B, the notification unit 113B, the storage unit 114B, the communication unit 115B, and the control unit 116B is substantially the corresponding component included in the flavor inhaler 100A according to the first configuration example. is identical to
 保持部140は、内部空間141を有し、内部空間141にスティック型基材150の一部を収容しながらスティック型基材150を保持する。なお、スティック型基材150も、「リフィル」の一例である。保持部140は、内部空間141を外部に連通する開口142を有し、開口142から内部空間141に挿入されたスティック型基材150を保持する。例えば、保持部140は、開口142及び底部143を底面とする筒状体であり、柱状の内部空間141を画定する。保持部140は、スティック型基材150へ供給される空気の流路を画定する機能も有する。かかる流路への空気の入り口である空気流入孔は、例えば底部143に配置される。他方、かかる流路からの空気の出口である空気流出孔は、開口142である。 The holding part 140 has an internal space 141 and holds the stick-shaped base material 150 while accommodating a part of the stick-shaped base material 150 in the internal space 141 . Note that the stick-type base material 150 is also an example of a “refill”. The holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 . For example, the holding portion 140 is a tubular body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 . The holding part 140 also has a function of defining a flow path for air supplied to the stick-shaped substrate 150 . An air inlet hole, which is an inlet of air to such a channel, is arranged, for example, in the bottom portion 143 . On the other hand, the air outflow hole, which is the exit of air from such a channel, is the opening 142 .
 スティック型基材150は、基材部151、及び吸口部152を含む。基材部151は、エアロゾル源を含む。なお、本構成例において、エアロゾル源は液体に限られるものではなく、固体であってもよい。スティック型基材150が保持部140に保持された状態において、基材部151の少なくとも一部は内部空間141に収容され、吸口部152の少なくとも一部は開口142から突出する。そして、開口142から突出した吸口部152をユーザが咥えて吸引すると、図示しない空気流入孔から内部空間141に空気が流入し、基材部151から発生するエアロゾルと共にユーザの口内に到達する。 The stick-type base material 150 includes a base material portion 151 and a mouthpiece portion 152 . Substrate portion 151 includes an aerosol source. In addition, in this configuration example, the aerosol source is not limited to liquid, and may be solid. When the stick-shaped base material 150 is held by the holding part 140 , at least part of the base material part 151 is accommodated in the internal space 141 and at least part of the mouthpiece part 152 protrudes from the opening 142 . When the user sucks the mouthpiece 152 protruding from the opening 142, air flows into the internal space 141 from an air inlet hole (not shown) and reaches the user's mouth together with the aerosol generated from the base member 151.
 加熱部121Bは、第1の構成例に係る加熱部121Aと同様の構成を有する。ただし、図1Bに示した例では、加熱部121Bは、フィルム状に構成され、保持部140の外周を覆うように配置される。そして、加熱部121Bが発熱すると、スティック型基材150の基材部151が外周から加熱され、エアロゾルが生成される。 The heating section 121B has the same configuration as the heating section 121A according to the first configuration example. However, in the example shown in FIG. 1B, the heating portion 121B is configured in a film shape and arranged so as to cover the outer periphery of the holding portion 140. As shown in FIG. Then, when the heating part 121B generates heat, the base material part 151 of the stick-shaped base material 150 is heated from the outer periphery, and an aerosol is generated.
 断熱部144は、加熱部121Bから他の構成要素への伝熱を防止する。例えば、断熱部144は、真空断熱材、又はエアロゲル断熱材等により構成される。 The heat insulation part 144 prevents heat transfer from the heating part 121B to other components. For example, the heat insulating part 144 is made of a vacuum heat insulating material, an airgel heat insulating material, or the like.
 以上、香味吸引器具等100Bの構成例を説明した。もちろん香味吸引器具等100Bの構成は上記に限定されず、以下に例示する多様な構成をとり得る。 A configuration example of the flavor suction device 100B has been described above. Of course, the configuration of the flavor inhaler or the like 100B is not limited to the above, and various configurations exemplified below can be employed.
 一例として、加熱部121Bは、ブレード状に構成され、保持部140の底部143から内部空間141に突出するように配置されてもよい。その場合、ブレード状の加熱部121Bは、スティック型基材150の基材部151に挿入され、スティック型基材150の基材部151を内部から加熱する。他の一例として、加熱部121Bは、保持部140の底部143を覆うように配置されてもよい。また、加熱部121Bは、保持部140の外周を覆う第1の加熱部、ブレード状の第2の加熱部、及び保持部140の底部143を覆う第3の加熱部のうち、2以上の組み合わせとして構成されてもよい。 As an example, the heating part 121B may be configured in a blade shape and arranged to protrude from the bottom part 143 of the holding part 140 into the internal space 141 . In this case, the blade-shaped heating part 121B is inserted into the base material part 151 of the stick-shaped base material 150 and heats the base material part 151 of the stick-shaped base material 150 from the inside. As another example, the heating part 121B may be arranged so as to cover the bottom part 143 of the holding part 140 . Further, the heating part 121B is a combination of two or more of the first heating part covering the outer periphery of the holding part 140, the blade-shaped second heating part, and the third heating part covering the bottom part 143 of the holding part 140. may be configured as
 他の一例として、保持部140は、内部空間141を形成する外殻の一部を開閉する、ヒンジ等の開閉機構を含んでいてもよい。そして、保持部140は、外殻を開閉することで、内部空間141に挿入されたスティック型基材150を挟持してもよい。その場合、加熱部121Bは、保持部140における当該挟持箇所に設けられ、スティック型基材150を押圧しながら加熱してもよい。 As another example, the holding part 140 may include an opening/closing mechanism such as a hinge that opens/closes a portion of the outer shell that forms the internal space 141 . The holding part 140 may hold the stick-shaped base material 150 inserted into the internal space 141 by opening and closing the outer shell. In that case, the heating part 121B may be provided at the holding part 140 at the holding part 140 and heat the stick-shaped base material 150 while pressing it.
 また、エアロゾル源を霧化する手段は、加熱部121Bによる加熱に限定されない。例えば、エアロゾル源を霧化する手段は、誘導加熱であってもよい。 Also, the means for atomizing the aerosol source is not limited to heating by the heating unit 121B. For example, the means of atomizing the aerosol source may be induction heating.
 また、香味吸引器具等100Bは、第1の構成例に係る加熱部121A、液誘導部122、液貯蔵部123、及び空気流路180をさらに含んでいてもよく、空気流路180の空気流出孔182が内部空間141への空気流入孔を兼ねていてもよい。この場合、加熱部121Aにより生成されたエアロゾルと空気との混合流体は、内部空間141に流入して加熱部121Bにより生成されたエアロゾルとさらに混合され、ユーザの口腔内に到達する。 In addition, the flavor inhaler or the like 100B may further include a heating portion 121A, a liquid guiding portion 122, a liquid storing portion 123, and an air flow path 180 according to the first configuration example. The hole 182 may also serve as an air inflow hole to the internal space 141 . In this case, the mixed fluid of the aerosol and air generated by the heating unit 121A flows into the internal space 141, is further mixed with the aerosol generated by the heating unit 121B, and reaches the oral cavity of the user.
1-3 簡略化した構成例
 図2は、上述した香味吸引器具等100A又は100Bから、本発明の一実施形態に特に関係する構成要素のみを抽出し簡略化した構成例を模式的に表す模式図である。従って、200は、香味吸引器具等100A又は100Bを示している。
1-3 Simplified Configuration Example FIG. 2 is a schematic representation of a simplified configuration example in which only components particularly related to one embodiment of the present invention are extracted from the above-described flavor suction device 100A or 100B. It is a diagram. Accordingly, 200 indicates a flavor inhaler or the like 100A or 100B.
 210は、通知部113A又は113Bに含まれる上述した振動子を示している。なお、振動子210は、通知部113A又は113Bとは別個のものと考えてもよい。以下の説明では、振動子210の振動はPWMにより制御されており、その振動強度がPWMのデューティ比に比例するように構成されているものと仮定している。しかしながら、振動子210の振動は別の手法により制御されてよいことは理解されよう。 210 indicates the above-described oscillator included in the notification unit 113A or 113B. Note that the vibrator 210 may be considered separate from the notification unit 113A or 113B. In the following description, it is assumed that the vibration of the vibrator 210 is controlled by PWM, and that the vibration intensity is proportional to the PWM duty ratio. However, it will be appreciated that the oscillation of transducer 210 may be controlled in other ways.
 220は、センサ部112A又は112Bに含まれる、香味吸引器具等200の動きを検知するように構成された上述したセンサを示している。このセンサは、加速度センサや角速度センサ(ジャイロセンサ)等の慣性センサ(モーションセンサ)であってよい。角速度センサのサンプリングレートは1Hz以上1kHz以下であってもよい。慣性センサにより取得された慣性データは、記憶部114A又は114Bに記憶されてもよい。 220 denotes the above-described sensor configured to detect movement of the flavor inhaler or the like 200 included in the sensor section 112A or 112B. This sensor may be an inertial sensor (motion sensor) such as an acceleration sensor or an angular velocity sensor (gyro sensor). The sampling rate of the angular velocity sensor may be 1 Hz or more and 1 kHz or less. Inertial data acquired by the inertial sensor may be stored in storage unit 114A or 114B.
 230は、制御部116A又は116Bに含まれる上述した変換部117A又は117Bを示している。なお、変換部230は、制御部116A又は116Bとは別個のものと考えてもよい。変換部230は、センサ220によって検知された動きを表すデータを、振動子210を振動させるためのデータに変換するように構成されている。ここで、前者のデータは、後者のデータを出力するため又は振動子210を振動させるための入力とみなせるため、以下、「入力データ」という。また、後者のデータは、振動子210を振動させるためのデータであるため、以下、「振動データ」という。変換部117A又は117Bは、記憶部114A又は114Bから慣性データを入力データとして読み出してもよい。振動データは、記憶部114A又は114Bに記憶されてもよい。 230 indicates the conversion unit 117A or 117B described above included in the control unit 116A or 116B. Note that the conversion unit 230 may be considered separate from the control unit 116A or 116B. The conversion unit 230 is configured to convert data representing the movement detected by the sensor 220 into data for vibrating the vibrator 210 . Here, the former data can be regarded as an input for outputting the latter data or for vibrating the vibrator 210, and hence hereinafter referred to as "input data". Further, the latter data is data for vibrating the vibrator 210, so it is hereinafter referred to as "vibration data". The conversion unit 117A or 117B may read the inertia data from the storage unit 114A or 114B as input data. The vibration data may be stored in storage unit 114A or 114B.
 240は、制御部116A又は116Bを示している。なお、制御部240は、制御部116A又は116Bから変換部230を除いたものと考えてもよい。制御部240は、振動データに基づいて振動子210を振動させるように構成されている。その際、制御部240は、記憶部114A又は114Bから振動データを読み出してもよい。 240 indicates the control unit 116A or 116B. Note that the control unit 240 may be considered to be the control unit 116A or 116B with the conversion unit 230 removed. The control unit 240 is configured to vibrate the vibrator 210 based on the vibration data. At that time, the control unit 240 may read the vibration data from the storage unit 114A or 114B.
1-4 センサ220及び入力データについて
 センサ220は、繰り返し、香味吸引器具等200の動きを検知するように構成されている。センサ220が香味吸引器具等200の動きを検知する周期は、一定であっても可変であってもよい。センサ220は、上述したように加速度センサや角速度センサ等の慣性センサであってよいため、香味吸引器具等200の動きを表す入力データは、香味吸引器具等200の動きの加速度又は角速度の値と、当該値を検知した時刻又は当該値に付されたインデックスとの複数の組を含むことができる。入力データは、より小さいインデックスが付された値は、より過去に検知された香味吸引器具等200の動きの加速度又は角速度の値であるように構成することができる。なお、インデックスは省略されてもよく、入力データには含まれなくてもよいことを理解されたい。また、センサ220は、加速度又は角速度の値が所定の閾値以上の動きのみを検知するように構成されていてよい。
1-4 Sensor 220 and Input Data The sensor 220 is configured to repeatedly detect movement of the flavor inhaler or the like 200 . The period at which the sensor 220 detects the movement of the flavor inhaler or the like 200 may be constant or variable. Since the sensor 220 may be an inertial sensor such as an acceleration sensor or an angular velocity sensor as described above, the input data representing the movement of the flavor suction device 200 is the value of the acceleration or angular velocity of the movement of the flavor suction device 200. , the time at which the value was detected or an index attached to the value. The input data may be configured such that the lower indexed values are values of acceleration or angular velocity of movement of the flavor inhaler, etc. 200 sensed more recently. It should be appreciated that the index may be omitted and not included in the input data. Further, the sensor 220 may be configured to detect only movements with acceleration or angular velocity values greater than or equal to a predetermined threshold.
 センサ220には、複数の軸、一般的には互いに直交する3つの軸が定義されている。従って、入力データは、センサ220によって検知された、複数の軸のうちの各軸に関する、香味吸引器具等200の動きを表すデータを含むことができる。以下、香味吸引器具等200の各軸に関する動きを表すデータを「部分入力データ」という。部分入力データは、香味吸引器具等200の1つの軸に関する動きの加速度又は角速度の値を含むことができる。なお、軸に関する動きとは、軸に沿った動きや軸を中心として回転する動き等の軸を基準として定められる動きのことである。従って、軸に関する動きの加速度又は角速度の値は、当該軸に沿った方向の加速度の値又は当該軸を中心として回転する方向の角速度の値であってよい。図3は、例示の入力データに含まれる値をプロットしたグラフ300である。グラフ300の縦軸は加速度又は角速度の値に対応し、横軸は上述した時刻又はインデックスに対応する。310A~310Cの各々は、各部分入力データに含まれる値のプロットを示している。 The sensor 220 has multiple axes defined, generally three axes that are orthogonal to each other. Accordingly, the input data may include data representing movement of the flavor inhaler, etc. 200 about each of the plurality of axes sensed by the sensor 220 . Hereinafter, the data representing the movement of the flavor suction device 200 or the like with respect to each axis will be referred to as "partial input data". The partial input data may include acceleration or angular velocity values of movement of the flavor inhaler, etc. 200 about one axis. Note that the motion about an axis is a motion defined with an axis as a reference, such as a motion along an axis or a motion rotating around an axis. Accordingly, the acceleration or angular velocity values of motion about an axis may be acceleration values along the axis or angular velocity values rotating about the axis. FIG. 3 is a graph 300 plotting values contained in exemplary input data. The vertical axis of the graph 300 corresponds to acceleration or angular velocity values, and the horizontal axis corresponds to time or index as described above. Each of 310A-310C shows a plot of values contained in each partial input data.
 入力データは、香味吸引器具等200の、複数の軸のうちの特定の軸に関する動きを表すデータのみを含むことができる。そのような特定の軸として、例えば、所定の時間期間内にセンサ220によって最大の加速度又は角速度の値が検知された軸を選択してよい。あるいは、そのような特定の軸として、所定の時間期間内にセンサ220によって検知された加速度又は角速度の値の絶対値の合計が最大である軸を選択してよい。 The input data can include only data representing the movement of the flavor suction device 200, etc., about a specific axis among the multiple axes. As such a particular axis, for example, the axis for which the maximum acceleration or angular velocity value is sensed by sensor 220 within a predetermined time period may be selected. Alternatively, such a particular axis may be selected as the axis that has the greatest sum of absolute values of acceleration or angular velocity sensed by sensor 220 within a predetermined time period.
 入力データは、香味吸引器具等200の複数の軸に関する動きを合成したものを表すデータを含むことができる。このような合成は、例えば、複数の軸の各軸に関する、同じ時刻又はタイミングにおいてセンサ220によって検知された香味吸引器具等200の動きの加速度又は角速度の値を合計することによってなされてよい。 The input data can include data representing a composite of motions of the flavor suction device 200 or the like about a plurality of axes. Such synthesis may be done, for example, by summing the acceleration or angular velocity values of movement of the flavor inhaler, etc. 200 sensed by the sensor 220 at the same time or timing for each of the multiple axes.
 入力データは、香味吸引器具等200の動きを表すデータに所定の処理を行ったものを含むことができる。例えば、入力データは、香味吸引器具等200の動きの加速度又は角速度の値の移動平均をとりスムージングした後の値を含むことができる。 The input data can include data representing the movement of the flavor suction device 200 or the like that has undergone predetermined processing. For example, the input data may include the values of the acceleration or angular velocity of the movement of the flavor suction device 200 after taking a moving average and smoothing.
 入力データは、異なる時刻又はタイミングにおいてセンサ220に検知された、香味吸引器具等200の動きの加速度又は角速度の値を含む。従って、入力データは、複数の時間期間のうちの各時間期間における検知された動きをそれぞれ表す複数のデータ(各々が、各時間期間における動きの加速度又は角速度の値を含む。)に区分することができる。図3の320A~320Cの各々は、区分された各データに対応する時間期間を示している。なお、区分された各データに対応する時間期間の長さは、一定であってもよいし、異なっていてもよい。 The input data includes values of acceleration or angular velocity of movement of the flavor suction device 200, etc., detected by the sensor 220 at different times or timings. Therefore, the input data may be partitioned into a plurality of data each representing the detected motion in each of the plurality of time periods, each including a value of acceleration or angular velocity of the motion in each time period. can be done. Each of 320A-320C in FIG. 3 indicates a time period corresponding to each segmented data. The length of the time period corresponding to each segmented data may be constant or may be different.
1-5 変換部230及び振動データについて
1-5-1 単純変換アプローチ
 振動データは、各々が振動子210の異なる時刻又はタイミングでの振動に対応する、複数の振動強度を表す値を含むことができる。そのような値D[]は、以下の式により求めることができる。
  D[i]=Dmin+(Dmax-Dmin)×(A[i]-Amin)/(Amax-Amin) (1)
ここで、Dminは振動強度に関して定められた最小値であり、Dmaxは振動強度に関して定められた最大値であり、Aminは入力データに関して定められた最小値であり、Amaxは入力データに関して定められた最大値であり、A[i]は、入力データに含まれるi番目の値であり、D[i]は振動強度を表すi番目の値である。iは上述したインデックスに等しいものと考えてもよい。また、入力データが複数の軸に関する動きを表す場合、A[i]は、複数の部分入力データのうち1つの部分入力データに含まれるi番目の値としてもよいし、複数の部分入力データを合成したもののi番目の値(例えば、各部分入力データに含まれるi番目の値の合計値)としてもよい。なお、入力データに関して定められた最小値及び最大値は、それぞれ、入力データが含み得る最小値及び最大値であってよい。また、Dmin、Dmax、Amin及びAmaxは、パラメータとして任意に設定することができる。なお、式(1)を用いる変換部230は、入力データが含む連続値であるA[]を、振動データが含む連続値であるD[]に変換するように構成されているとみなせることが理解されよう。
1-5 Conversion Unit 230 and Vibration Data 1-5-1 Simple Conversion Approach Vibration data may include values representing multiple vibration intensities, each corresponding to vibration of the vibrator 210 at a different time or timing. can. Such a value D[] can be obtained by the following formula.
D[i]= Dmin +( Dmax - Dmin )*(A[i] -Amin )/( Amax - Amin ) (1)
where D min is the minimum value defined for the vibration intensity, D max is the maximum value defined for the vibration intensity, A min is the minimum value defined for the input data, and A max is the input data A[i] is the i-th value included in the input data, and D[i] is the i-th value representing the vibration intensity. i may be considered equal to the index described above. Further, when the input data represents motion about a plurality of axes, A[i] may be the i-th value included in one partial input data among the plurality of partial input data. The i-th value of the synthesized data (for example, the total value of the i-th values included in each partial input data) may be used. Note that the minimum and maximum values defined for the input data may be the minimum and maximum values that the input data may contain, respectively. Also, D min , D max , A min and A max can be arbitrarily set as parameters. Note that the conversion unit 230 using the formula (1) can be considered to be configured to convert A[], which is a continuous value included in the input data, to D[], which is a continuous value included in the vibration data. be understood.
 また、入力データが予め定められた最小値以下である(A[i]≦Amin)場合、変換部230は、入力データを、予め定められた最小の振動強度(Dmin)を含む振動データに変換してもよい。入力データが予め定められた最大値以上である(A[i]≧Amax)場合、変換部230は、入力データを、予め定められた最大の振動強度(Dmax)を含む振動データに変換してもよい。 Further, when the input data is equal to or less than the predetermined minimum value (A[i]≦A min ), the conversion unit 230 converts the input data to vibration data including the predetermined minimum vibration intensity (D min ). can be converted to When the input data is equal to or greater than a predetermined maximum value (A[i]≧A max ), the conversion unit 230 converts the input data into vibration data including a predetermined maximum vibration intensity (D max ). You may
 Amax及びAminは、様々な方法で設定されてもよい。例えば、Amax及びAminは、香味吸引器具等200において初めから設定されていてもよい。あるいは、Amax及びAminは、ユーザによる香味吸引器具等200の使用に伴う香味吸引器具等200の動きに基づいて制御部240等によって自動的に設定されてもよい。あるいは、香味吸引器等200はAmax及びAminの設定モードを有していてもよい。この場合、香味吸引器具等200から又は香味吸引器具等200と通信する外部装置からユーザに対して、香味吸引器具等200を意図的に強く及び弱く振るように指示し、または所定時間香味吸引器具等200を振るように指示し、そのときの香味吸引器具等200の動きに基づいて、制御部240が、Amax及びAminを設定してもよい。 A max and A min may be set in various ways. For example, A max and A min may be initially set in the flavor inhaler or the like 200 . Alternatively, A max and A min may be automatically set by the control unit 240 or the like based on the movement of the flavor inhaler or the like 200 associated with the use of the flavor inhaler or the like 200 by the user. Alternatively, the flavor inhaler or the like 200 may have Amax and Amin setting modes. In this case, the user is instructed from the flavor suction device 200 or an external device communicating with the flavor suction device 200 to intentionally shake the flavor suction device 200 strongly and weakly, or The controller 240 may set A max and A min based on the movement of the flavor inhaler 200 or the like at that time.
 このような振動データによれば、後述するように香味吸引器具等200の検知された動きを、直接、振動子210の振動に変換することができる。 According to such vibration data, the detected movement of the flavor suction device 200 can be directly converted into vibration of the vibrator 210, as will be described later.
また、香味吸引器等200が複数の振動子を有する場合、それぞれの振動子に対する振動データは、異なる部分入力データを用いて変換されてもよい。 Further, when the flavor inhaler or the like 200 has a plurality of vibrators, vibration data for each vibrator may be converted using different partial input data.
1-5-2 ボックスアプローチ
 変換部230は、入力データに含まれる代表値を用いるように更に構成することができる。入力データに含まれる代表値を用いることは、入力データに含まれる代表値を、振動子210の振動強度又は振動パターンに変換することであってよい。
1-5-2 Box Approach The converter 230 can be further configured to use representative values contained in the input data. Using the representative value included in the input data may be converting the representative value included in the input data into the vibration intensity or vibration pattern of the vibrator 210 .
 入力データに含まれる代表値は、入力データ(入力データが複数の軸に関する動きを表す場合、複数の部分入力データのうちの各部分入力データ)に含まれる、動きの加速度又は角速度の値のうちの最大値や極値(例えば、極大値)、平均値、中央値、当該データに含まれる所定番目又は真ん中の値等(以下、「最大値等」という。)であってよい。また、代表値は、上述した区分された各データについて求めてもよい。従って、入力データからは複数の代表値が求められ得る。 The representative value included in the input data is the value of motion acceleration or angular velocity included in the input data (each partial input data among multiple partial input data when the input data represents motion about multiple axes). may be the maximum value, the extreme value (for example, the maximum value), the average value, the median value, the predetermined number or the middle value included in the data (hereinafter referred to as "maximum value etc."). Also, the representative value may be obtained for each piece of data divided as described above. Therefore, a plurality of representative values can be obtained from the input data.
 なお、極値は、以下に述べるような手法によって得られるものであってもよい。図4は、例示の入力データ(部分入力データとみなしてもよい。)に含まれる値をプロットしたグラフ400である。グラフ400の縦軸は加速度又は角速度の値に対応し、横軸は上述した時刻又はインデックスに対応する。410は所定の閾値を示しており、420A~420Cは、例示のデータのうち、所定の閾値410以上である部分を示している。例示のデータのうちのこのような部分420A~420Cのデータをそれぞれ区分されたデータとすることができ、部分420A~420Cのそれぞれにおける最大値430A~430Cを、それぞれ、区分されたデータ(420A~420C)についての極値とすることができる。このような手法によって極値を得る場合には、得られる極値の数が所定の閾値410をどのような値に設定するかに応じて変化することに留意されたい。 It should be noted that the extreme value may be obtained by the method described below. FIG. 4 is a graph 400 plotting values contained in exemplary input data (which may be considered partial input data). The vertical axis of the graph 400 corresponds to acceleration or angular velocity values, and the horizontal axis corresponds to time or index as described above. 410 indicates a predetermined threshold, and 420A to 420C indicate portions of the exemplary data that are equal to or greater than the predetermined threshold 410. FIG. The data of such portions 420A-420C of the exemplary data can be respectively partitioned data, and the maximum values 430A-430C in each of the portions 420A-420C are respectively referred to as partitioned data (420A-420C). 420C). Note that when extrema are obtained by such an approach, the number of extrema obtained will vary depending on what value the predetermined threshold 410 is set to.
 なお、最大値等が複数存在する場合、当該最大値等を大きい順にソートし、上位所定の数の最大値等を代表値として用いてもよい。 If there are multiple maximum values, etc., the maximum values, etc. may be sorted in descending order, and a predetermined number of maximum values, etc., may be used as the representative value.
1-5-2-1 振動強度
 振動データは、振動子210を振動させる際の基準となる振動強度(以下、「基準振動強度」という。)を表す値を含むことができる。そのような値Drefは、以下の式により求めることができる。
  Dref=Dmin+(Dmax-Dmin)×(Arep-Amin)/(Amax-Amin) (2)
ここで、Arepは、入力データ(入力データが複数の軸に関する動きを表す場合、複数の部分入力データのうちの1つの部分入力データ)の代表値であり、Drefは基準振動強度を表す値である。なお、Arepは入力データが含む連続値であるA[]から求めることができるものであるから、式(2)を用いる変換部230は、入力データが含む連続値であるA[]を、振動データが含む離散値であるDrefに変換するように構成されているとみなせることが理解されよう。
1-5-2-1 Vibration Intensity Vibration data can include a value representing a reference vibration intensity (hereinafter referred to as “reference vibration intensity”) when vibrating the vibrator 210 . Such a value D ref can be obtained by the following formula.
Dref = Dmin +( Dmax - Dmin )*( Arep - Amin )/( Amax - Amin ) (2)
Here, A rep is a representative value of the input data (one partial input data out of multiple partial input data when the input data represents motion about multiple axes), and D ref represents the reference vibration intensity. value. Note that A rep can be obtained from A[ ], which is the continuous value included in the input data. It will be appreciated that the vibration data can be considered to be configured to convert to discrete values, D ref .
 また、入力データの代表値が予め定められた最小値以下である(Arep≦Amin)場合、変換部230は、入力データを、予め定められた最小の振動強度(Dmin)を含む振動データに変換してもよい。入力データの代表値が予め定められた最大値以上である(Arep≧Amax)場合、変換部230は、入力データを、予め定められた最大の振動強度(Dmax)を含む振動データに変換してもよい。上述のように、Amax及びAminは、様々な方法で設定されてもよい。 In addition, when the representative value of the input data is equal to or less than the predetermined minimum value (A rep ≤ A min ), the conversion unit 230 converts the input data to the vibration including the predetermined minimum vibration intensity (D min ). can be converted to data. When the representative value of the input data is equal to or greater than a predetermined maximum value (A rep ≧A max ), the conversion unit 230 transforms the input data into vibration data including a predetermined maximum vibration intensity (D max ). may be converted. As noted above, A max and A min may be set in various ways.
 また、振動データは、複数の基準振動強度を表す値を含むことができ、そのような値Dref[]は、以下の式により求めることができる。
  Dref[j]=Dmin+(Dmax-Dmin)×(Arep[j]-Amin)/(Amax-Amin) (3)
ここで、Arep[j]は、入力データ(入力データが複数の軸に関する動きを表す場合、複数の部分入力データのうちの1つの部分入力データ)のj番目の代表値であり、Dref[j]はj番目の基準振動強度を表す値である。なお、Arep[j]は入力データが含む連続値であるA[]から求めることができるものであるから、式(3)を用いる変換部230も、入力データが含む連続値であるA[]を、振動データが含む離散値であるDref[j]に変換するように構成されているとみなせることが理解されよう。
Also, the vibration data can include values representing a plurality of reference vibration intensities, and such values D ref [ ] can be obtained by the following equation.
Dref [j]= Dmin +( Dmax - Dmin )*( Arep [j] -Amin )/( Amax - Amin ) (3)
where A rep [j] is the j-th representative value of the input data (one partial input data of multiple partial input data if the input data represents motion about multiple axes), and D ref [j] is a value representing the j-th reference vibration intensity. Note that A rep [j] can be obtained from A[ ], which is a continuous value included in the input data. ] to D ref [j], the discrete values that the vibration data contains.
 また、入力データの代表値が予め定められた最小値以下である(Arep[j]≦Amin)場合、変換部230は、入力データを、予め定められた最小の振動強度(Dmin)を含む振動データに変換してもよい。入力データの代表値が予め定められた最大値以上である(Arep[j]≧Amax)場合、変換部230は、入力データを、予め定められた最大の振動強度(Dmax)を含む振動データに変換してもよい。 Further, when the representative value of the input data is equal to or less than the predetermined minimum value (A rep [j]≦A min ), the conversion unit 230 converts the input data to the predetermined minimum vibration intensity (D min ). may be converted to vibration data including If the representative value of the input data is equal to or greater than a predetermined maximum value (A rep [j]≧A max ), the conversion unit 230 converts the input data to a predetermined maximum vibration intensity (D max ). It may be converted into vibration data.
1-5-2-2 振動パターン
 振動データは、振動子210を振動させる際の振動パターンを表す値を含むことができる。振動パターンは後述の振動時間、振動休止時間、振動強度補正係数のうちの少なくとも1つによって特定されてよく、振動データが含む振動パターンを表す値は、振動時間、振動休止時間、振動強度補正係数、1つの振動パターンを選択するための後述のインデックス、のうち、少なくとも1つであることができる。なお、振動パターンは、振動時間、振動休止時間、振動強度補正係数に加えて又は代えて、その他のパラメータによって特定されるものであってよいことは理解されたい。例えば、インデックスに関し後述する振動パターンは、振動強度又は基準振動強度によっても特定されるものである。
1-5-2-2 Vibration Pattern The vibration data can include values representing the vibration pattern when vibrating the vibrator 210 . The vibration pattern may be specified by at least one of a vibration time, a vibration pause time, and a vibration intensity correction factor, which will be described later. , an index described later for selecting one vibration pattern. It should be understood that the vibration pattern may be specified by other parameters in addition to or instead of the vibration time, vibration pause time, and vibration intensity correction factor. For example, the vibration pattern described later with respect to the index is also specified by the vibration intensity or the reference vibration intensity.
1-5-2-2-1 振動時間及び振動休止時間
 制御部240は、振動する期間と振動を休止する期間とを繰り返す態様により振動子210を振動させることができる。そのため、上述したように、振動パターンを表す値は、振動する期間の長さである振動時間と、振動を休止する期間の長さである振動休止時間とのうちの一方又は双方を含むことができる。
1-5-2-2-1 Vibration Time and Vibration Rest Time The control section 240 can vibrate the vibrator 210 in a manner that repeats a period of vibration and a period of rest of the vibration. Therefore, as described above, the value representing the vibration pattern may include one or both of the vibration time, which is the length of the period of vibration, and the vibration rest time, which is the length of the period of resting the vibration. can.
 振動時間T[]は、以下の式により求めることができる。
  T[k]=Tmin+(Tmax-Tmin)×(Arep[k]-Amin)/(Amax-Amin) (4)
ここで、Tminは振動時間に関して定められた最小の長さであり、Tmaxは振動時間に関して定められた最大の長さであり、Arep[k]は、入力データ(入力データが複数の軸に関する動きを表す場合、複数の部分入力データのうちの1つの部分入力データ)のk番目の代表値であり、C[k]はk番目の振動強度補正係数である。なお、Tmin及びTmaxは、パラメータとして任意に設定することができる。なお、Arep[k]は入力データが含む連続値であるA[]から求めることができるものであるから、式(4)を用いる変換部230も、入力データが含む連続値であるA[]を、振動データが含む離散値であるT[k]に変換するように構成されているとみなせることが理解されよう。
The vibration time T[] can be obtained by the following formula.
T[k]=T min + (T max −T min )×(A rep [k]−A min )/(A max −A min ) (4)
where T min is the specified minimum length of the vibration time, T max is the specified maximum length of the vibration time, and A rep [k] is the input data (the When representing motion about an axis, it is the k-th representative value of one partial input data among a plurality of partial input data), and C[k] is the k-th vibration intensity correction coefficient. Note that T min and T max can be arbitrarily set as parameters. Note that A rep [k] can be obtained from A[ ], which is the continuous value included in the input data. ] to T[k], the discrete values that the vibration data contains.
 また、入力データの代表値が予め定められた最小値以下である(Arep≦Amin)場合、変換部230は、入力データを、予め定められた最小の振動時間(Tmin)を含む振動データに変換してもよい。入力データの代表値が予め定められた最大値以上である(Arep≧Amax)場合、変換部230は、入力データを、予め定められた最大の振動時間(Tmax)を含む振動データに変換してもよい。上述のように、Amax及びAminは、様々な方法で設定されてもよい。 In addition, when the representative value of the input data is equal to or less than the predetermined minimum value (A rep ≤ A min ), the conversion unit 230 converts the input data to vibration including the predetermined minimum vibration time (T min ). can be converted to data. When the representative value of the input data is equal to or greater than a predetermined maximum value (A rep ≧A max ), the conversion unit 230 transforms the input data into vibration data including a predetermined maximum vibration time (T max ). may be converted. As noted above, A max and A min may be set in various ways.
 振動休止時間Z[]は、以下の式により求めることができる。
  Z[k]=T-T[k] (5)
ここで、Tは、1つの振動する期間と1つの振動を休止する期間とから構成される1周期の長さである。なお、Tは、パラメータとして任意に設定することができる。また、T[k]は上述したように入力データが含む連続値であるA[]から結局のところ求めることができるものであるから、式(5)を用いる変換部230も、入力データが含む連続値であるA[]を、振動データが含む離散値であるZ[k]に変換するように構成されているとみなせることが理解されよう。
 また、振動休止時間Z[]は、固定値としてもよい。
The vibration pause time Z[] can be obtained by the following formula.
Z[k]= T0 -T[k] (5)
Here, T 0 is the length of one cycle consisting of one vibrating period and one vibrating rest period. Note that T0 can be arbitrarily set as a parameter. In addition, as described above, T[k] can be obtained from A[], which is a continuous value included in the input data. It will be appreciated that A[ ], which is a continuous value, can be viewed as being configured to transform Z[k], which is a discrete value comprising vibration data.
Also, the vibration pause time Z[] may be a fixed value.
1-5-2-2-2 振動強度補正係数
 制御部240は、1つの基準振動強度から1以上の振動強度を導出することができる。そのため、上述したように、振動パターンを表す値は、振動強度を導出するための振動強度補正係数を含むことができる。振動強度補正係数C[]は、以下の式により求めることができる。
  C[k]=C×(Arep[k]-Amin)/(Amax-Amin) (6)
ここで、Cは所定の補正係数であり、Arep[k]は、入力データ(入力データが複数の軸に関する動きを表す場合、複数の部分入力データのうちの1つの部分入力データ)のk番目の代表値であり、C[k]はk番目の振動強度補正係数である。その他の変数は式(1)と同一である。なお、Cは、パラメータとして任意に設定することができる。また、Arep[k]は入力データが含む連続値であるA[]から求めることができるものであるから、式(6)を用いる変換部230も、入力データが含む連続値であるA[]を、振動データが含む離散値であるC[k]に変換するように構成されているとみなせることが理解されよう。
1-5-2-2-2 Vibration Strength Correction Coefficient The control section 240 can derive one or more vibration strengths from one reference vibration strength. Therefore, as described above, the value representing the vibration pattern can include a vibration intensity correction factor for deriving the vibration intensity. The vibration intensity correction coefficient C[] can be obtained by the following formula.
C[k]=C 0 ×(A rep [k]−A min )/(A max −A min ) (6)
where C 0 is a predetermined correction factor and A rep [k] is the input data (one partial input data of multiple partial input data if the input data represents motion about multiple axes). It is the k-th representative value, and C[k] is the k-th vibration intensity correction coefficient. Other variables are the same as in equation (1). Note that C0 can be arbitrarily set as a parameter. Further, since A rep [k] can be obtained from A[ ], which is a continuous value included in the input data, the conversion unit 230 using Equation (6) also uses A[ ], which is a continuous value included in the input data. ] to C[k], the discrete values that the vibration data contains.
 なお、振動強度の導出手法は任意であり、導出される振動強度の値は、例えば、振動強度補正係数を基準振動強度の値に乗算することにより求めることができる。あるいは、導出される振動強度の値Ddev[]は、例えば、以下の式により求めることができる。
  Ddev[k]=Dmin+(Dref-Dmin)×C[k] (7)
ここで、Ddev[k]はk番目の導出される振動強度の値である。
 また、Drefの代わりに、Dref[k]を用いてもよい。
Any method can be used to derive the vibration intensity, and the value of the derived vibration intensity can be obtained, for example, by multiplying the value of the reference vibration intensity by the vibration intensity correction coefficient. Alternatively, the derived value D dev [] of the vibration intensity can be obtained by, for example, the following equation.
D dev [k]=D min +(D ref −D min )×C[k] (7)
where D dev [k] is the k-th derived vibration intensity value.
Also, D ref [k] may be used instead of D ref .
 図5は、1つの基準振動強度と、導出された3つの振動強度を模式化した図である。510Aは1つの基準振動強度を模式化したブロックを示している。510B、510C、及び510Dは、それぞれ、基準振動強度510Aの値に所定の振動強度補正係数C[1]、C[2]、及びC[3]を乗算することにより導出された3つの振動強度を模式化したブロックを示している。この図においてC[1]=1、C[2]=1.2、及びC[3]=0.5であり、ブロック510A~510Dの高さは振動強度の値に対応する。 FIG. 5 is a schematic diagram of one reference vibration strength and three derived vibration strengths. 510A shows a block that schematically represents one reference vibration intensity. 510B, 510C, and 510D are three vibration strengths derived by multiplying the value of the reference vibration strength 510A by predetermined vibration strength correction factors C[1], C[2], and C[3], respectively. shows a schematic block. In this figure, C[1]=1, C[2]=1.2, and C[3]=0.5, and the heights of blocks 510A-510D correspond to vibration intensity values.
 振動パターンを表す値は、各代表値に紐づいた、振動時間、振動休止時間、振動強度補正係数であってもよい。k番目の代表値により表現される振動パターンPT[k]は、例えば、以下のように表現することができる。
  PT[k]=(T[],Z[],C[])
例えば、振動時間、振動休止時間、振動強度補正係数の全てが、それぞれ、同じ代表値により求められる場合、
  PT[k]=(T[k],Z[k],C[k])
となる。
 この場合、代表値毎に、振動のパターンが存在する。また、振動時間、振動休止時間、振動強度補正係数のうち、1つまたは複数を固定値としてもよい。
The value representing the vibration pattern may be the vibration time, the vibration pause time, and the vibration intensity correction coefficient associated with each representative value. The vibration pattern PT[k] expressed by the k-th representative value can be expressed as follows, for example.
PT[k]=(T[], Z[], C[])
For example, if all of the vibration time, vibration rest time, and vibration intensity correction coefficient are obtained from the same representative value,
PT[k]=(T[k], Z[k], C[k])
becomes.
In this case, there is a vibration pattern for each representative value. Also, one or more of the vibration time, vibration pause time, and vibration intensity correction coefficient may be set to fixed values.
1-5-2-2-3 1つの振動パターンを選択するためのインデックス
 あるいは、振動パターンを表す値は、あらかじめ定められた複数の振動パターンのうちの1つを選択するためのインデックスの値であってもよい。このようなインデックスの値は、入力データ(入力データが複数の軸に関する動きを表す場合、複数の部分入力データのうちの1つの部分入力データ)が含む代表値の数に等しくてよい。あるいは、このようなインデックスの値は、入力データ(入力データが複数の軸に関する動きを表す場合、複数の部分入力データのうちの1つの部分入力データ)が含む代表値と閾値との比較により決定されてよい。例えば、あらかじめ定められた振動パターンの数(インデックスの最大値)をimaxとおくと、当該代表値が所定の第1閾値未満の場合には1を、所定の第1閾値以上第2閾値未満である場合には2を、…、所定の第(imax-2)閾値以上所定の第(imax-1)閾値未満である場合にはimax-1を、所定の第(imax-1)閾値以上である場合にはimaxを、インデックスの値としてよい。なお、代表値の数は入力データが含む連続値であるA[]から求めることができるものであるから、このような手法を用いる変換部230も、入力データが含む連続値であるA[]を、振動データが含む離散値であるインデックスの値に変換するように構成されているとみなせることが理解されよう。
1-5-2-2-3 Index for selecting one vibration pattern Alternatively, the value representing the vibration pattern is an index value for selecting one of a plurality of predetermined vibration patterns. There may be. The value of such an index may be equal to the number of representative values included in the input data (one partial input data of multiple partial input data if the input data represents motion about multiple axes). Alternatively, the value of such an index is determined by comparing a representative value included in the input data (one partial input data out of multiple partial input data if the input data represents motion about multiple axes) with a threshold. may be For example, if i max is the number of predetermined vibration patterns (maximum value of the index), 1 is set when the representative value is less than a predetermined first threshold, and less than a predetermined first threshold or more and a second threshold. , . . . , i max -1 if it is equal to or greater than the predetermined (i max −2)th threshold and less than the predetermined (i max −1)th threshold, and the predetermined (i max − 1) If i_max is equal to or greater than the threshold, i_max may be used as the value of the index. Since the number of representative values can be obtained from A[ ], which is the continuous value included in the input data, the conversion unit 230 using such a method also uses A[], which is the continuous value included in the input data. can be considered to be configured to transform the values of the indices, which are the discrete values contained in the vibration data.
 このような複数の振動パターンの各々は、振動時間、振動休止時間及び振動強度補正係数、振動強度又は基準振動強度のうちの1以上によって特定されるものであってよい。換言すれば、インデックスにより、振動に係る振動時間、振動休止時間及び振動強度補正係数、振動強度又は基準振動強度のうちの1以上が一意に定められてよい。 Each of such a plurality of vibration patterns may be specified by one or more of vibration time, vibration pause time and vibration intensity correction coefficient, vibration intensity, or reference vibration intensity. In other words, the index may uniquely determine one or more of the vibration time, vibration pause time, vibration intensity correction coefficient, vibration intensity, and reference vibration intensity.
 図6A及び図6Bは、それぞれ、あらかじめ定められた振動パターンの数(インデックスの最大値)が5である場合のあらかじめ定められた複数の振動パターンを表すテーブルを表している。 FIGS. 6A and 6B each represent a table representing a plurality of predetermined vibration patterns when the number of predetermined vibration patterns (maximum index value) is five.
 図6Aにおいて、1番目の振動パターンは1という1つの振動強度補正係数によって特定され、2番目の振動パターンは0.5及び1という2つの振動強度補正係数によって特定され、3番目の振動パターンは0.3、0.5及び1という3つの振動強度補正係数によって特定され、4番目の振動パターンは0.3、0.5、0.7及び1という4つの振動強度補正係数によって特定され、5番目の振動パターンは0.2、0.4、0.6、0.8及び1という5つの振動強度補正係数によって特定される。 In FIG. 6A, the first vibration pattern is specified by one vibration intensity correction factor of 1, the second vibration pattern is specified by two vibration intensity correction factors of 0.5 and 1, and the third vibration pattern is specified by specified by three vibration intensity correction factors of 0.3, 0.5 and 1, the fourth vibration pattern is specified by four vibration intensity correction factors of 0.3, 0.5, 0.7 and 1; The fifth vibration pattern is specified by five vibration intensity correction factors of 0.2, 0.4, 0.6, 0.8 and 1.
 図6Bにおける1番目の振動パターンは80という1つの振動強度の値によって特定され、2番目の振動パターンは40及び80という2つの振動強度の値によって特定され、3番目の振動パターンは24、48及び80という3つの振動強度の値によって特定され、4番目の振動パターンは24、40、56及び80という4つの振動強度の値によって特定され、5番目の振動パターンは16、32、48、64及び80という5つの振動強度の値によって特定される。 The first vibration pattern in FIG. 6B is identified by one vibration intensity value of 80, the second vibration pattern is identified by two vibration intensity values of 40 and 80, and the third vibration pattern is 24, 48. and 80, a fourth vibration pattern is specified by four vibration intensity values of 24, 40, 56 and 80, and a fifth vibration pattern is 16, 32, 48, 64. and 80.
1-5-2-3 その他
 変換部230は、異なる部分入力データに基づき、上述した振動強度を表す値及び振動パターンを表す値を求めることができる。即ち、変換部230は、複数の部分入力データのうちの1つ(以下、「第1入力データ」という。)を振動子210の振動強度に変換し、複数の部分入力データのうちの別の1つ(以下、「第2入力データ」という。)を振動パターンに変換してもよい。さらに、第2入力データと、第1入力データ及び第2入力データと異なる別の部分入力データのうち1つ(以下、「第3入力データ」という。)を振動パターンに変換してもよい。即ち、例えば、振動パターンを特定する振動時間は第2入力データから決定し、当該振動パターンを特定する振動強度補正係数は第3入力データから決定してよい。又は、第2入力データに基づき振動子210の振動パターンとして予め定められた複数の振動パターンのうちの1つを選択することができる。
1-5-2-3 Others The conversion unit 230 can obtain the value representing the vibration intensity and the value representing the vibration pattern based on different partial input data. That is, the conversion unit 230 converts one of the plurality of partial input data (hereinafter referred to as “first input data”) into the vibration intensity of the vibrator 210, and converts another of the plurality of partial input data. One (hereinafter referred to as "second input data") may be converted into a vibration pattern. Furthermore, one of the second input data and another partial input data different from the first input data and the second input data (hereinafter referred to as "third input data") may be converted into a vibration pattern. That is, for example, the vibration duration specifying the vibration pattern may be determined from the second input data, and the vibration intensity correction coefficient specifying the vibration pattern may be determined from the third input data. Alternatively, one of a plurality of predetermined vibration patterns can be selected as the vibration pattern of the vibrator 210 based on the second input data.
 香味吸引器等200が複数の振動子を有する場合、それぞれの振動子に対する振動データは、第1入力データ、第2入力データ及び第3入力データのうち、いずれかまたは複数の入力データを用いて変換されてもよい。 When the flavor inhaler or the like 200 has a plurality of vibrators, the vibration data for each vibrator is generated using one or more of the first input data, the second input data and the third input data. may be converted.
 変換部230は、入力データに含まれる所定の閾値未満又は所定の範囲に含まれない値は、振動データの生成に使用しないように構成されていてよい。例えば、センサ220が角速度センサであり、入力データが角速度を表すデータを含む場合、変換部230は、角速度を表すデータのうち角速度が10dps以上であるデータを振動データに変換してもよい。あるいは、変換部230は、入力データに含まれる所定の閾値未満又は所定の範囲に含まれない値は所定の値であるものとして、振動データを生成するように構成されていてよい。 The conversion unit 230 may be configured not to use values included in the input data that are less than a predetermined threshold value or not included in a predetermined range for generating vibration data. For example, if the sensor 220 is an angular velocity sensor and the input data includes data representing angular velocities, the conversion unit 230 may convert data representing angular velocities of 10 dps or more into vibration data. Alternatively, the conversion unit 230 may be configured to generate vibration data by assuming that a value included in the input data that is less than a predetermined threshold value or not included in a predetermined range is a predetermined value.
 変換部230は、振動データを生成するために、センサ220からの出力に基づき入力データを生成するように構成されていてよい。変換部230は、入力データを記憶部114A又は114Bに記憶し、記憶された入力データを振動データに変換するように構成されていてよい。 The converter 230 may be configured to generate input data based on the output from the sensor 220 to generate vibration data. Conversion unit 230 may be configured to store input data in storage unit 114A or 114B and convert the stored input data into vibration data.
 変換部230は、生成した振動データを記憶部114A又は114Bに記憶するように構成されていてよい。なお、制御部240は、記憶された過去に生成された振動データを用いるように構成されていてよい。また、振動データは、香味吸引器具等200において又はその外部機器により編集可能であってよい。 The conversion unit 230 may be configured to store the generated vibration data in the storage unit 114A or 114B. Note that the control unit 240 may be configured to use stored vibration data generated in the past. Also, the vibration data may be editable in the flavor inhaler, etc. 200 or by an external device thereof.
 変換部230は、入力データの振動データへの変換手法を選択可能なように構成されていてよい。なお、制御部240は、異なる手法で変換された振動データに基づき振動子210を振動させ、振動態様を確認可能なように構成されていてよい。 The conversion unit 230 may be configured to be able to select a method of converting input data into vibration data. Note that the control unit 240 may be configured to vibrate the vibrator 210 based on vibration data converted by a different method, and to be able to confirm the mode of vibration.
 通信部115A又は115Bは、慣性データ及び/又は振動データを外部と通信するように構成されてもよい。 The communication unit 115A or 115B may be configured to communicate inertial data and/or vibration data with the outside.
1-6 制御部240について
 以下、制御部240が、振動データに基づき振動子210を振動させる手法について説明する。
1-6 Concerning Control Unit 240 Hereinafter, a method for causing the control unit 240 to vibrate the vibrator 210 based on vibration data will be described.
1-6-1 単純変換アプローチ
 図7は、制御部240が実行する、振動データに基づき振動子210を振動させるための例示処理700のフローチャートである。
1-6-1 Simple Transformation Approach FIG. 7 is a flowchart of an exemplary process 700 executed by the controller 240 to vibrate the vibrator 210 based on vibration data.
 710は、香味吸引器具等200において、ユーザによる吸引が始まったかを判定するステップを示している。吸引が始まったかの判定手法は任意であるが、例えば、香味吸引器具等200が含む、吸引による圧力変化を検知するように構成された圧力センサを用いて判定することができる。特に、後述する圧力の強さPが所定の閾値未満となったときに、制御部240は吸引が始まったと判定してよい。吸引が始まったと判定した場合、処理はステップ720に進み、そうでない場合、処理はステップ710に戻る。 710 indicates a step of determining whether the user has started inhaling in the flavor inhaling instrument 200 or the like. Any method can be used to determine whether or not the suction has started. In particular, the controller 240 may determine that the suction has started when the pressure intensity P, which will be described later, becomes less than a predetermined threshold value. If it is determined that aspiration has begun, processing proceeds to step 720;
 720は、振動データに含まれる振動強度の値D[]を順番に取得するステップを示している。  720 indicates a step of sequentially acquiring the vibration intensity values D[] included in the vibration data.
 730は、所定時間、値を取得した振動強度で振動子210を振動させるステップを示している。所定時間については後述する。  730 indicates a step of vibrating the vibrator 210 for a predetermined time with the obtained vibration intensity. The predetermined time will be described later.
 740は、香味吸引器具等200において、ユーザによる吸引が終わったかを判定するステップを示している。吸引が終わったかの判定手法は任意であるが、例えば、上述し圧力センサを用いて判定することができる。特に、上述した圧力の強さPが所定の閾値以上となったときに、制御部240は吸引が終わったと判定してよい。吸引が終わったと判定した場合、処理は終了し、そうでない場合、処理はステップ750に進む。 740 indicates a step of determining whether or not the user has finished inhaling in the flavor inhaling instrument 200 or the like. Any method can be used to determine whether or not the suction has ended. For example, the above-described pressure sensor can be used for determination. In particular, the controller 240 may determine that the suction has ended when the strength P of the pressure described above is equal to or greater than a predetermined threshold. If it is determined that aspiration is over, the process ends; otherwise, the process proceeds to step 750 .
 750は、振動データからまだ振動強度の値D[]を取得できるかを判定するステップを示している。制御部240は、振動データからまだ全ての振動強度の値D[]を取得していない場合、振動データからまだ振動強度の値D[]を取得できると判定することができる。振動データからまだ振動強度の値D[]を取得できると判定した場合、処理はステップ720に戻り、そうでない場合、処理は終了する。  750 indicates a step of determining whether the vibration intensity value D[] can still be obtained from the vibration data. If all the vibration intensity values D[ ] have not yet been obtained from the vibration data, the control unit 240 can determine that the vibration intensity values D[ ] can still be obtained from the vibration data. If it is determined that the vibration intensity value D[ ] can still be obtained from the vibration data, the process returns to step 720; otherwise, the process ends.
 例示処理700によれば、香味吸引器具等200の吸引が行われているときに、振動データに基づき振動子210を振動させることができる。また、例示処理700によれば、香味吸引器具等200の検知された動きを、直接、振動子210の振動に変換することができる。 According to the exemplary process 700, the vibrator 210 can be vibrated based on the vibration data while the flavor suction device 200 is sucking. Further, according to the exemplary process 700 , the detected movement of the flavor inhaler or the like 200 can be directly converted into vibration of the vibrator 210 .
 ステップ730における所定時間は、例えば、センサ220が香味吸引器具等200の動きを検知する周期の長さと等しくてよい。この場合、香味吸引器具等200の検知された動きと、振動子210の振動とを時間的に同期することができる。 The predetermined time in step 730 may be, for example, equal to the length of the cycle in which the sensor 220 detects the movement of the flavor suction device 200 or the like. In this case, the detected movement of the flavor inhaler 200 and the vibration of the vibrator 210 can be temporally synchronized.
 あるいは、ステップ730における所定時間は、香味吸引器具等200において吸引が行われていた時間の長さである吸引時間に応じて変化させてよい。例えば、ステップ730における所定時間は、最初にステップ720が実行されてからステップ750でNo判定となるまでの時間の長さが、上記吸引時間より小さくなるように、上記吸引時間と等しくなるように、又は、上記吸引時間より大きくなるように、設定されてよい。この場合、吸引時間に応じて、振動子210が振動している時間の長さが圧縮又は伸長されることになる。制御部240は、香味吸引器具等200におけるユーザによる過去の吸引が行われていた時間の長さを記録することができ、そのような時間の長さ(又はそのような時間の長さの平均値等の統計値)を上記吸引時間として用いることができる。なお、香味吸引器具等200におけるユーザによる過去も吸引が行われていた時間の長さは、上述した圧力Pが所定の閾値未満となってから所定の閾値以上となるまでの期間の長さであってよい。 Alternatively, the predetermined time in step 730 may be changed according to the suction time, which is the length of time during which the flavor suction device 200 is sucking. For example, the predetermined time in step 730 is set so that the length of time from when step 720 is first executed until a No determination is made in step 750 is equal to the suction time so that it is shorter than the suction time. Alternatively, it may be set to be longer than the suction time. In this case, the length of time during which the vibrator 210 vibrates is compressed or expanded depending on the suction time. The control unit 240 can record the length of time that the user has been sucking in the flavor inhaler or the like 200 in the past, and the length of such time (or the average length of such time) statistical values such as values) can be used as the aspiration time. The length of time during which the user has been sucking the flavor suction device 200 in the past is the length of the period from when the above-described pressure P becomes less than the predetermined threshold until it becomes equal to or greater than the predetermined threshold. It's okay.
 あるいは、ステップ720において取得される振動データに含まれる振動強度の値D[]は、選択的であってもよい。この場合、振動データに含まれる振動強度の値D[]を所定間隔ごとに間引いて取得してもよい。例えば、振動データに含まれる振動強度の値D[]を2つおきに間引いて取得する場合、ステップ750でNo判定となるまでに取得される振動強度の値はD[1]、D[2]、D[4]、D[5]、D[7]、・・・となる(換言すれば、2つおきの振動強度の値D[3]、D[6]、・・・は取得されない。)。間引く間隔は、任意に設定されてもよく、吸引時間または吸引強度に応じて設定されてもよい。また、間引く間隔は可変でもよい。例えば、吸引強度に応じて間引く間隔が変更されてもよい。吸引強度が第1閾値以上の場合は間引く間隔が1つおき、吸引強度が第2閾値以上第1閾値未満の場合は間引く間隔が2つおき、・・・第n閾値以上第n-1閾値未満の場合は間引く間隔がnつおき、と設定してもよい。閾値の間隔は線形であっても任意であってもよい。吸引強度に応じた間引く間隔の設定は、1回の吸引中に所定回数の吸引強度の測定が行われることによりなされてもよいし、1回の吸引中にリアルタイムに吸引強度の測定が行われることによりなされてもよい。 Alternatively, the vibration intensity value D[] included in the vibration data acquired in step 720 may be optional. In this case, the value D[] of the vibration intensity included in the vibration data may be obtained by thinning out at predetermined intervals. For example, when the vibration intensity value D[] included in the vibration data is acquired by thinning out every two values, the vibration intensity values acquired until a No determination is made in step 750 are D[1], D[2 ], D[4], D[5], D[7], . not.). The thinning interval may be set arbitrarily, and may be set according to the suction time or suction intensity. Also, the thinning interval may be variable. For example, the thinning interval may be changed according to the suction strength. If the suction strength is equal to or greater than the first threshold, the thinning interval is every other interval; if the suction strength is equal to or greater than the second threshold and less than the first threshold, the thinning interval is every two; If it is less than n, the thinning interval may be set to every n. The threshold interval can be linear or arbitrary. The thinning interval according to the suction strength may be set by measuring the suction strength a predetermined number of times during one suction, or by measuring the suction strength in real time during one suction. It may be done by
1-6-2 ボックスアプローチその1
 図8Aは、制御部240が実行する、振動データに基づき振動子210を振動させるための例示処理800Aのフローチャートである。
1-6-2 Box approach 1
FIG. 8A is a flowchart of exemplary processing 800A for vibrating vibrator 210 based on vibration data, executed by control unit 240 .
 810Aは、香味吸引器具等200において、ユーザによる吸引が始まったかを判定するステップを示している。ステップ810Aは、ステップ710と同様のものであってよい。吸引が始まったと判定した場合、処理はステップ820Aに進み、そうでない場合、処理はステップ810Aに戻る。 810A shows a step of determining whether the user has started inhaling in the flavor inhaling instrument 200 or the like. Step 810A may be similar to step 710; If it is determined that aspiration has begun, processing proceeds to step 820A, otherwise processing returns to step 810A.
 820Aは、振動子210を振動させる際の振動強度及び振動時間を決定するステップを示している。振動強度及び振動時間を決定する手法については後述する。 820A indicates a step of determining the vibration intensity and the vibration time when vibrating the vibrator 210. FIG. A method for determining the vibration intensity and the vibration time will be described later.
 830Aは、決定された振動時間、決定された振動強度で振動子210を振動させるステップを示している。 830A indicates a step of vibrating the vibrator 210 with the determined vibration time and the determined vibration intensity.
 840Aは、振動休止時間を決定するステップを示している。振動休止時間の決定手法については後述する。  840A shows the step of determining the vibration rest time. A method for determining the vibration pause time will be described later.
 850Aは、決定された振動休止時間待機するステップを示している。  850A shows the step of waiting for the determined vibration rest time.
 860Aは、香味吸引器具等200において、ユーザによる吸引が終わったかを判定するステップを示している。ステップ860は、ステップ740と同様のものであってよい。吸引が終わったと判定した場合、処理は終了し、そうでない場合、処理はステップ820Aに戻る。 860A indicates a step of determining whether the user has finished inhaling the flavor in the flavor inhaling instrument 200 or the like. Step 860 may be similar to step 740 . If it is determined that the suction is over, the process ends, otherwise the process returns to step 820A.
1-6-2-1 振動強度の決定について
 ステップ820Aにおいては、振動データに値が含まれる1以上の基準振動強度のうちの1つを、順番に且つ循環的に、決定される振動強度として選択することができる。
1-6-2-1 Determination of Vibration Intensity In step 820A, one of the one or more reference vibration intensities whose value is included in the vibration data is sequentially and cyclically determined as the vibration intensity. can be selected.
 あるいは、ステップ820Aにおいては、振動データに含まれる基準振動強度の値及び振動パターンにより特定される1以上の振動強度補正係数に基づき導出された1以上の振動強度のうちの1つを、順番に且つ循環的に、決定される振動強度として選択することができる。 Alternatively, in step 820A, one of the one or more vibration intensities derived based on one or more vibration intensity correction coefficients specified by the value of the reference vibration intensity and the vibration pattern included in the vibration data is sequentially selected. and cyclically can be selected as the vibration intensity to be determined.
 あるいは、ステップ820Aにおいては、振動データに含まれる基準振動強度の値、及び、振動データに含まれるインデックスにより選択される振動パターンの1以上の振動強度補正係数に基づき導出された1以上の振動強度のうちの1つを、順番に且つ循環的に、決定される振動強度として選択することができる。 Alternatively, in step 820A, one or more vibration intensities derived based on one or more vibration intensity correction coefficients of the vibration pattern selected by the value of the reference vibration intensity included in the vibration data and the index included in the vibration data. can be selected sequentially and cyclically as the vibration intensity to be determined.
 あるいは、ステップ820Aにおいては、振動データに含まれるインデックスにより選択される振動パターンの1以上の振動強度のうちの1つを、順番に且つ循環的に、決定される振動強度として選択することができる。 Alternatively, in step 820A, one of the one or more vibration intensities of the vibration pattern selected by the index contained in the vibration data can be sequentially and cyclically selected as the determined vibration strength. .
 あるいは、ステップ820Aにおいては、上述したような振動データに基づき決定される振動強度に、吸引の強さに応じて補正した振動強度を、最終的に決定される振動強度とすることができる。 Alternatively, in step 820A, the vibration strength determined based on the vibration data as described above, and the vibration strength corrected according to the suction strength, can be used as the vibration strength finally determined.
 図9は圧力センサにより検知された圧力の変化をプロットしたグラフ900である。グラフ900の縦軸は検知された圧力の値に対応し、横軸は時間に対応する。910は、吸引が行われる前の圧力の値即ち大気圧を示している。吸引の強さPは、以下の式により求めることができる。
  P=p-p (8)
ここで、pは吸引が行われる前の圧力の値即ち大気圧の値であり、pは、対応するステップを実行したときに検知された圧力の値である。
FIG. 9 is a graph 900 plotting changes in pressure sensed by a pressure sensor. The vertical axis of graph 900 corresponds to the value of sensed pressure and the horizontal axis corresponds to time. 910 indicates the value of pressure before suction is applied, i.e. atmospheric pressure. The suction strength P can be obtained by the following formula.
P=p 0 −p (8)
where p 0 is the value of the pressure before aspiration is performed, ie the value of the atmospheric pressure, and p is the value of the pressure sensed when the corresponding step is performed.
 ステップ820Aにおいて最終的に決定される振動強度の値Ddeterminedは、以下の式により求めることができる。
  Ddetermined=Ddata×P/Pstn (9)
ここで、Ddataは上述したような振動データに基づき決定される振動強度の値であり、Pstnは基準となる吸引の強さである。なお、Pstnは想定される最大の吸引の強さPmaxであってよく、Pmaxは、可能な限り強く香味吸引器具等を吸引する等の任意の手法により、実験的に求めてよい。また、Pstnは想定される通常の吸引の強さであってよく、このような強さの値は文献値であってよい。また、Pstnはユーザによる香味吸引器具等200の吸引に基づいて制御部240等によって自動的に設定されてもよい。あるいは、香味吸引器等200はPstnの設定モードを有していてもよい。この場合、香味吸引器具等200から又は香味吸引器具等200と通信する外部装置からユーザに対して、香味吸引器具等200を吸引するように指示し、 そのときの吸引の強さに基づいて、制御部240が、Pstnを設定してもよい。このように求められた振動強度の値Ddeterminedによれば、制御部240は、振動データに基づき、且つ、吸引の強度と振動子210の振動強度とが比例するように、振動子210を振動させるように構成されることになる。
The vibration intensity value D determined finally determined in step 820A can be obtained by the following equation.
Ddetermined = Ddata *P/ Pstn (9)
Here, D data is a vibration strength value determined based on the vibration data as described above, and P stn is a reference suction strength. Note that P stn may be the assumed maximum suction strength P max , and P max may be experimentally obtained by any method such as sucking as strongly as possible with a flavor suction device or the like. Also, P stn may be the assumed normal strength of suction, and such strength values may be literature values. Also, P stn may be automatically set by the control unit 240 or the like based on the suction of the flavor suction device or the like 200 by the user. Alternatively, the flavor inhaler, etc. 200 may have a P stn setting mode. In this case, the user is instructed to suck the flavor suction device or the like 200 from the flavor suction device or the like 200 or from an external device communicating with the flavor suction device or the like 200, and based on the suction strength at that time, The control unit 240 may set P stn . According to the vibration intensity value D determined determined in this way, the control unit 240 vibrates the vibrator 210 based on the vibration data so that the suction strength and the vibration strength of the vibrator 210 are proportional. It will be configured to allow
1-6-2-2 振動時間の決定について
 ステップ820Aにおいては、所定の時間の長さを振動時間として決定してよい。
1-6-2-2 Determination of Vibration Time In step 820A, a predetermined length of time may be determined as the vibration time.
 あるいは、ステップ820Aにおいては、振動データに含まれる振動時間を決定される振動時間としてよい。 Alternatively, in step 820A, the vibration time included in the vibration data may be used as the determined vibration time.
1-6-2-3 振動休止時間の決定について
 ステップ840Aにおいては、所定の時間の長さを振動休止時間として決定してよい。
1-6-2-3 Regarding Determination of Vibration Rest Time In step 840A, a predetermined length of time may be determined as the vibration rest time.
 あるいは、ステップ840Aにおいては、振動データに含まれる振動休止時間を決定される振動休止時間としてよい。 Alternatively, in step 840A, the vibration rest time included in the vibration data may be used as the determined vibration rest time.
 あるいは、ステップ840Aにおいては、吸引の強さに応じて振動休止時間を決定してよい。そのような振動休止時間Zは、以下のように求めることができる。
  Z=Zmax-(Zmax-Zmin)×P/Pmax (10)
ここで、Zminは所定の振動休止時間の最小値であり、Zmaxは所定の振動休止時間の最大値である。
Alternatively, step 840A may determine the vibration pause time according to the strength of the suction. Such a vibration pause time Z can be obtained as follows.
Z=Z max −(Z max −Z min )×P/P max (10)
where Z min is the minimum predetermined vibration rest time and Z max is the maximum predetermined vibration rest time.
 なお、振動休止時間の決定は、ステップ820Aにおいて振動時間及び振動強度の決定とともになされてもよい。 It should be noted that the determination of the vibration pause time may be made together with the determination of the vibration time and the vibration intensity in step 820A.
1-6-3 ボックスアプローチその2
 また、振動強度、振動時間、振動休止時間は、基準振動強度及び振動パターンを含む振動データから、予め決定され記憶されていてもよい。この場合、吸引を検知されると、制御部240は、記憶された1つ以上の異なる、振動強度、振動時間、振動休止時間を読み出し、読みだされた1つ以上の異なる、振動強度、振動時間、振動休止時間により、振動子を振動させることができる。 
1-6-3 Box approach 2
Further, the vibration intensity, vibration time, and vibration pause time may be determined in advance from vibration data including the reference vibration intensity and the vibration pattern and stored. In this case, when suction is detected, the control unit 240 reads one or more different stored vibration intensities, vibration times, and vibration pause times, and reads out one or more different vibration intensities and vibrations. The vibrator can be vibrated according to the time and the vibration pause time.
 図8Bは、制御部240が実行する、振動データに基づき振動子210を振動させるための別の例示処理800Bのフローチャートである。 FIG. 8B is a flowchart of another exemplary process 800B for vibrating the vibrator 210 based on vibration data, which is executed by the control unit 240. FIG.
 810Bは、香味吸引器具等200において、ユーザによる吸引が始まったかを判定するステップを示している。ステップ810Bは、ステップ710と同様のものであってよい。吸引が始まったと判定した場合、処理はステップ820Bに進み、そうでない場合、処理はステップ810Bに戻る。 810B shows a step of determining whether the user has started inhaling in the flavor inhaling instrument 200 or the like. Step 810B may be similar to step 710; If it is determined that aspiration has started, processing proceeds to step 820B, otherwise processing returns to step 810B.
 820Bは、振動子210を振動させるための振動強度、振動時間及び振動休止時間の値を記憶部114A又は114Bから取得するステップを示している。取得される振動強度、振動時間及び振動休止時間は、上述したような手法により予め決定され記憶部114A又は114Bに記憶された1つ以上の異なる振動強度、振動時間及び振動休止時間のうちのそれぞれ1つであってよい。 820B indicates a step of acquiring the values of the vibration intensity, vibration time, and vibration pause time for vibrating the vibrator 210 from the storage unit 114A or 114B. The acquired vibration intensity, vibration time and vibration rest time are each selected from one or more different vibration intensities, vibration times and vibration rest times previously determined by the method described above and stored in the storage unit 114A or 114B. can be one.
 830Bは、取得された振動時間、取得された振動強度で振動子210を振動させるステップを示している。 830B indicates a step of vibrating the vibrator 210 with the obtained vibration time and the obtained vibration intensity.
 840Bは、取得された振動休止時間待機するステップを示している。  840B shows a step of waiting for the acquired vibration rest time.
 850Bは、香味吸引器具等200において、ユーザによる吸引が終わったかを判定するステップを示している。ステップ850Bは、ステップ740と同様のものであってよい。吸引が終わったと判定した場合、処理は終了し、そうでない場合、処理はステップ860Bに進む。 850B indicates a step of determining whether the user has finished inhaling in the flavor inhaling instrument 200 or the like. Step 850B may be similar to step 740; If it is determined that aspiration has ended, the process ends; otherwise, the process proceeds to step 860B.
 860Bは、まだ振動強度、振動時間及び振動休止時間の値を取得できるかを判定するステップを示している。ステップ860Bにおいては、記憶部114A又は114Bに記憶された1つ以上の異なる振動強度、振動時間及び振動休止時間において未だ取得されていないものがある場合、まだ振動強度、振動時間及び振動休止時間の値を取得できると判定することができる。まだ振動強度、振動時間及び振動休止時間の値を取得できると判定した場合、処理はステップ820Bに戻り、そうでない場合、処理は終了する。 860B shows the step of determining whether values for vibration intensity, vibration time and vibration rest time can still be obtained. In step 860B, if there is one or more different vibration intensities, vibration times, and vibration rest times stored in storage unit 114A or 114B that have not yet been acquired, the vibration intensities, vibration times, and vibration rest times have not yet been acquired. It can be determined that the value can be obtained. If it is determined that the vibration intensity, vibration time and vibration dwell time values can still be obtained, the process returns to step 820B, otherwise the process ends.
1-6-4 振動子210の振動態様の具体例
1-6-4-1 振動強度数3且つ圧力に基づく振動休止時間
 図10は、ステップ820において3つの振動強度が順番に且つ循環的に決定され、且つ、ステップ840において吸引の強さに応じて振動休止時間が決定される場合の、振動子210の例示の振動態様1000を表す模式図である。
1-6-4 Specific Examples of Vibration Aspects of Vibrator 210 1-6-4-1 Vibration Rest Time Based on 3 Vibration Intensities and Pressure FIG. 1000 is a schematic diagram representing an exemplary vibration behavior 1000 of the vibrator 210 when determined and the vibration pause time is determined in step 840 as a function of the strength of the suction.
 1000Aは、振動子210の振動態様の時間的変化を表すグラフである。グラフ1000Aの縦軸は振動強度に対応し、横軸は時間に対応する。従って、1010Aは振動子210が振動している各期間を示し、1020Aは振動子210が振動していない各期間を示している。1つの振動している期間1010Aと、その右隣の1つの振動していない期間1020Aとが、例示処理800のステップ820~850の実行1回に相当する。グラフ1000においては、3つの異なる振動強度の振動が順に繰り返し現れていることが理解されよう。 1000A is a graph showing temporal changes in the vibration mode of the vibrator 210 . The vertical axis of graph 1000A corresponds to vibration intensity, and the horizontal axis corresponds to time. Accordingly, 1010A indicates each period during which the vibrator 210 vibrates, and 1020A indicates each period during which the vibrator 210 does not vibrate. One vibrating period 1010A and one non-vibrating period 1020A to the right thereof correspond to one execution of steps 820-850 of example process 800. FIG. It will be appreciated that in graph 1000, vibrations of three different vibration intensities appear repeatedly in sequence.
 1000Bは、香味吸引器具等200の吸引の強さの変化を表すグラフである。グラフ1000Bの縦軸は吸引の強さに対応し、横軸は時間に対応する。なお、グラフ1000Aの横軸と1000Bの横軸とは共通である。 1000B is a graph showing changes in the suction strength of the flavor suction device 200, etc. The vertical axis of the graph 1000B corresponds to suction strength, and the horizontal axis corresponds to time. The horizontal axis of graph 1000A and the horizontal axis of 1000B are common.
 グラフ1000A及び1000Bから明らかなように、吸引の強さに応じて振動していない期間1020Aの長さが変化している、より詳細には、吸引の強さが強いほど振動していない期間1020Aの長さが短くなっていることが理解されよう。 As is clear from the graphs 1000A and 1000B, the length of the non-vibrating period 1020A changes according to the strength of the suction. It will be appreciated that the length of is shortened.
1-6-4-2 振動強度数1且つ圧力に基づく振動休止時間
 図11は、ステップ820において1つの振動強度が順番に且つ循環的に決定される、即ち1つの振動強度が決定され続け、且つ、ステップ840において吸引の強さに応じて振動休止時間が決定される場合の、振動子210の例示の振動態様1100を表す模式図である。
1-6-4-2 Vibration Dwell Time Based on Vibration Intensity Number 1 and Pressure FIG. 11 is a schematic diagram illustrating an exemplary vibration mode 1100 of the vibrator 210 when the vibration pause time is determined according to the suction strength in step 840. FIG.
 1100Aは、振動子210の振動態様の時間的変化を表すグラフである。グラフ1100Aの縦軸は振動強度に対応し、横軸は時間に対応する。従って、1110Aは振動子210が振動している各期間を示し、1120Aは振動子210が振動していない各期間を示している。1つの振動している期間1110Aと、その右隣の1つの振動していない期間1120Aとが、例示処理800のステップ820~850の実行1回に相当する。グラフ1100においては、1つの振動強度の振動のみが繰り返し現れていることが理解されよう。 1100A is a graph showing temporal changes in the vibration mode of the vibrator 210. FIG. The vertical axis of graph 1100A corresponds to vibration intensity, and the horizontal axis corresponds to time. Therefore, 1110A indicates each period during which the vibrator 210 vibrates, and 1120A indicates each period during which the vibrator 210 does not vibrate. One vibrating period 1110A and one non-vibrating period 1120A to the right thereof correspond to one execution of steps 820-850 of example process 800. FIG. It will be appreciated that in graph 1100 only vibrations of one vibration intensity appear repeatedly.
 1100Bは、香味吸引器具等200の吸引の強さの変化を表すグラフである。グラフ1100Bの縦軸は吸引の強さに対応し、横軸は時間に対応する。なお、グラフ1100Aの横軸と1100Bの横軸とは共通である。 1100B is a graph showing changes in the suction strength of the flavor suction device 200, etc. The vertical axis of the graph 1100B corresponds to suction strength, and the horizontal axis corresponds to time. Note that the horizontal axis of graph 1100A and the horizontal axis of 1100B are common.
 グラフ1100A及び1100Bから明らかなように、吸引の強さに応じて振動していない期間1120Aの長さが変化している、より詳細には、吸引の強さが強いほど振動していない期間1120Aの長さが短くなっていることが理解されよう。 As is clear from the graphs 1100A and 1100B, the length of the non-vibrating period 1120A changes according to the strength of the suction. It will be appreciated that the length of is shortened.
1-6-4-3 振動強度数1且つ圧力に基づく振動強度及び振動休止時間
 図12Aは、ステップ820Aにおいて1つの振動強度が順番に且つ循環的に決定される、即ち1つの振動強度が決定され続け、且つ、ステップ820Aにおいて振動強度が吸引の強さに応じて補正され、且つ、ステップ840Aにおいて吸引の強さに応じて振動休止時間が決定される場合の、振動子210の例示の振動態様1200Aを表す模式図である。
1-6-4-3 Vibration Intensity Number 1 and Pressure Based Vibration Intensity and Vibration Pause Time FIG. and the vibration intensity is corrected according to the strength of suction in step 820A, and the vibration pause time is determined according to the strength of suction in step 840A. FIG. 12 is a schematic diagram representing an embodiment 1200A;
 1202Aは、振動子210の振動態様の時間的変化を表すグラフである。グラフ1202Aの縦軸は振動強度に対応し、横軸は時間に対応する。従って、1210Aは振動子210が振動している各期間を示し、1220Aは振動子210が振動していない各期間を示している。1つの振動している期間1210Aと、その右隣の1つの振動していない期間1220Aとが、例示処理800Aのステップ820A~850Aの実行1回に相当する。 1202A is a graph representing temporal changes in the vibration mode of the vibrator 210 . The vertical axis of graph 1202A corresponds to vibration intensity, and the horizontal axis corresponds to time. Accordingly, 1210A indicates each period during which the vibrator 210 vibrates, and 1220A indicates each period during which the vibrator 210 does not vibrate. One vibrating period 1210A and one non-vibrating period 1220A to its right correspond to one execution of steps 820A to 850A of exemplary process 800A.
 1204Aは、香味吸引器具等200の吸引の強さの変化を表すグラフである。グラフ1204Aの縦軸は吸引の強さに対応し、横軸は時間に対応する。なお、グラフ1202Aの横軸と1204Aの横軸とは共通である。 1204A is a graph showing changes in the strength of suction of the flavor suction device 200 and the like. The vertical axis of graph 1204A corresponds to suction strength, and the horizontal axis corresponds to time. Note that the horizontal axis of graph 1202A and the horizontal axis of 1204A are common.
 グラフ1200Aにおいては、吸引の強さに比例した振動強度が現れていることが理解されよう。また、グラフ1202A及び1204Aから明らかなように、吸引の強さに応じて振動していない期間1220Aの長さが変化している、より詳細には、吸引の強さが強いほど振動していない期間1220Aの長さが短くなっていることが理解されよう。 It will be understood that the graph 1200A shows vibration strength proportional to the strength of suction. Also, as is clear from graphs 1202A and 1204A, the length of non-vibrating period 1220A changes according to the strength of suction. More specifically, the stronger the strength of suction, the less vibration there is. It will be appreciated that period 1220A is shortened in length.
1-6-4-4 振動強度数3且つ圧力に基づく振動強度及び振動休止時間
 図12Bは、ステップ820Aにおいて3つの振動強度が順番に且つ循環的に決定され、且つステップ820Aにおいて振動強度が吸引の強さに応じて補正され、且つステップ840Aにおいて吸引の強さに応じて振動休止時間が決定される場合の振動子210の例示の振動態様を表す模式図1200Bである。
1-6-4-4 Vibration Intensity Number 3 and Pressure Based Vibration Intensity and Vibration Pause Time FIG. 1200B is a schematic diagram 1200B representing an exemplary vibration behavior of the vibrator 210 when corrected according to the strength of the suction and the vibration pause time is determined according to the strength of suction in step 840A.
 1202Bは、振動子210の振動態様の時間的変化を表すグラフである。グラフ1202Bの縦軸は振動強度に対応し、横軸は時間に対応する。従って、1210Bは振動子210が振動している各期間を示し、1220Bは振動子210が振動していない各期間を示している。1つの振動している期間1210Bと、その右隣の1つの振動していない期間1220Bとが、例示処理800Aのステップ820A~850Aの実行1回に相当する。 1202B is a graph representing temporal changes in the vibration mode of the vibrator 210 . The vertical axis of graph 1202B corresponds to vibration intensity, and the horizontal axis corresponds to time. Therefore, 1210B indicates each period during which the vibrator 210 vibrates, and 1220B indicates each period during which the vibrator 210 does not vibrate. One vibrating period 1210B and one non-vibrating period 1220B to its right correspond to one execution of steps 820A to 850A of exemplary process 800A.
 1204Bは、香味吸引器具等200の吸引の強さの変化を表すグラフである。グラフ1204Bの縦軸は吸引の強さに対応し、横軸は時間に対応する。なお、グラフ1202Bの横軸と1204Bの横軸とは共通である。 1204B is a graph showing changes in the strength of suction of the flavor suction device 200 and the like. The vertical axis of graph 1204B corresponds to suction strength, and the horizontal axis corresponds to time. Note that the horizontal axis of graph 1202B and the horizontal axis of 1204B are common.
 グラフ1200Bにおいては、吸引の強さに比例した振動強度が現れていることが理解されよう。また、グラフ1202B及び1204Bから明らかなように、吸引の強さに応じて振動していない期間1220Bの長さが変化している、より詳細には、吸引の強さが強いほど振動していない期間1220Bの長さが短くなっていることが理解されよう。 It will be understood that the graph 1200B shows vibration strength proportional to the strength of suction. Also, as is clear from the graphs 1202B and 1204B, the length of the non-vibrating period 1220B changes according to the strength of the suction. It will be appreciated that period 1220B is shortened in length.
1-7 香味吸引器具等200の全体的な制御の流れ
 図13は、香味吸引器具等200の制御方法1300のフローチャートである。
1-7 Overall Control Flow of Flavor Inhaler 200 FIG.
 1310は、香味吸引器具等200の動きを検知するステップを示している。このステップは、香味吸引器具等200に含まれるセンサ220が実行するものであってよい。なお、このステップは、香味吸引器具等200に含まれるプロセッサがセンサ220を用いて実行するものと考えてもよい。香味吸引器具等200の動きを検知するステップは、ユーザによる香味吸引器具等200に対する所定の操作(ボタンの押下など)の後に実行されてもよいし、その他の様々なタイミングで実行されてもよい。 1310 indicates a step of detecting movement of the flavor suction device 200 or the like. This step may be performed by a sensor 220 included in the flavor inhaler or the like 200 . Note that this step may be considered to be executed by the processor included in the flavor inhaler or the like 200 using the sensor 220 . The step of detecting the movement of the flavor suction device 200 may be performed after a predetermined operation (such as pressing a button) on the flavor suction device 200 by the user, or may be performed at various other timings. .
 1320は、香味吸引器具等200の検知された動きを表す入力データを、香味吸引器具等200に含まれる振動子210を振動させるための振動データに変換するステップを示している。このステップは、香味吸引器具等200に含まれる変換部230が実行するものであってよい。なお、このステップは、香味吸引器具等200に含まれるプロセッサが変換部230として実行するものと考えてもよい。 1320 indicates a step of converting input data representing the detected movement of the flavor suction device 200 into vibration data for vibrating the vibrator 210 included in the flavor suction device 200 . This step may be executed by the conversion unit 230 included in the flavor inhaler or the like 200 . Note that this step may be considered to be executed by the processor included in the flavor inhaler or the like 200 as the conversion unit 230 .
 1330は、ステップ1320において得られた振動データに基づいて、振動子210を振動させるステップを示している。このステップは、香味吸引器具等200に含まれる制御部240が実行するものであってよく、上述した例示処理700又は800を含むものであってよい。なお、このステップは、香味吸引器具等200に含まれるプロセッサが制御部240として実行するものと考えてもよい。振動データに基づいて振動子210を振動させるステップは、ユーザによる香味吸引器具等200の吸引中に実行されてもよいし、ユーザによる香味吸引器具等200に対する所定の操作(ボタンの押下など)に応答して実行されてもよいし、その他の様々なタイミングで実行されてもよい。また、制御部240は、振動データを作成した後、ユーザが当該振動データを確認することができるように、当該振動データに基づいて振動子210を自動的に振動させてもよい。 1330 indicates a step of vibrating the vibrator 210 based on the vibration data obtained in step 1320 . This step may be executed by the control unit 240 included in the flavor inhaler or the like 200, and may include the exemplary process 700 or 800 described above. Note that this step may be considered to be executed by the processor included in the flavor inhaler or the like 200 as the controller 240 . The step of vibrating the vibrator 210 based on the vibration data may be executed while the user is sucking the flavor suction device or the like 200, or when the user performs a predetermined operation (such as pressing a button) on the flavor suction device or the like 200. It may be executed in response, or at various other timings. After creating the vibration data, the control unit 240 may automatically vibrate the vibrator 210 based on the vibration data so that the user can check the vibration data.
 なお、制御方法1300は、プログラムが香味吸引器具等200のプロセッサに実行させてよいことは言うまでもない。 It goes without saying that the control method 1300 may be executed by the processor of the flavor inhaler or the like 200 as a program.
 香味吸引器具等200の電源部111A又は111Bは、充電可能なバッテリを含んでもよい。その場合、当該バッテリは、香味吸引器具等200と電気的に接続される充電装置により充電されてもよい。当該充電装置は、充電部のほか、図2に示された構成要素と同様の振動子、センサ、変換部、制御部等のうち少なくとも1つを備えてもよい。香味吸引器具等200が上記のような充電装置に接続されているとき、制御方法1300のステップの少なくとも一部は、充電装置内の構成要素によって実行されてもよい。 The power supply section 111A or 111B of the flavor inhaler 200 may include a rechargeable battery. In that case, the battery may be charged by a charging device electrically connected to the flavor suction device 200 or the like. In addition to the charging unit, the charging device may include at least one of the vibrator, sensor, conversion unit, control unit, and the like similar to the constituent elements shown in FIG. When the flavor inhaler or the like 200 is connected to a charging device such as those described above, at least some of the steps of the control method 1300 may be performed by components within the charging device.
 本発明の第1実施形態によれば、ユーザが香味吸引器具等を動かすと、多種多様な振動データが生成される。生成された振動データに基づいて、香味吸引器具等を多種多様な態様で振動させることができる。そのため、ユーザは、ユーザが予想し得ない態様を含む多種多様な態様の振動を感じながら香味吸引器具等を吸引することができる。したがって、ユーザエクスペリエンスを向上させることができる。 According to the first embodiment of the present invention, when the user moves the flavor inhaler or the like, various vibration data are generated. Based on the generated vibration data, the flavor inhaler or the like can be vibrated in various manners. Therefore, the user can inhale the flavor inhaler or the like while feeling vibrations in a wide variety of manners, including those that the user cannot expect. Therefore, user experience can be improved.
2 本発明の第2実施形態
 第1実施形態に係る香味吸引器具等は、入力データから変換された振動データに基づき、振動子を振動させるように構成されていた。一方、本発明の第2実施形態に係る香味吸引器具等は、入力データから変換された振動データに相当するものに基づき、香味吸引器具等が備える所定の機能を制御するよう構成されたものである。従って、本発明の第2実施形態に係る香味吸引器具等は、振動子を備える必要がないことを除き、本発明の第1実施形態に係る香味吸引器具等と同一のものであってよい。
2 Second Embodiment of the Present Invention The flavor inhaler or the like according to the first embodiment is configured to vibrate the vibrator based on vibration data converted from input data. On the other hand, the flavor inhaler or the like according to the second embodiment of the present invention is configured to control a predetermined function of the flavor inhaler or the like based on the vibration data converted from the input data. be. Therefore, the flavor inhaling instrument or the like according to the second embodiment of the present invention may be the same as the flavor inhaling instrument or the like according to the first embodiment of the present invention, except that the vibrator is not required.
 以下、第2実施形態に係る香味吸引器具等について説明する。なお、以下の説明では、振動データに相当するものを「機能データ」といい、「振動強度」に相当するものを「機能強度」といい、振動パターンに相当するものを「機能パターン」、振動時間に相当するものを「機能時間」といい、振動休止時間に相当するものを「機能休止時間」といい、振動強度補正係数に相当するものを「機能強度補正係数」という。従って、機能データ、機能強度、機能パターン、機能時間、機能休止時間及び機能強度補正係数の内容及び導出手法は、振動データ、振動強度、振動パターン、振動時間、振動休止時間及び振動強度補正係数とそれぞれ同一であってよい。 The flavor inhaler and the like according to the second embodiment will be described below. In the following explanation, what corresponds to vibration data is called "function data", what corresponds to "vibration strength" is called "function strength", what corresponds to vibration patterns is called "function pattern", and "vibration data" is called "function data". What corresponds to time is called "function time", what corresponds to vibration pause time is called "function pause time", and what corresponds to vibration strength correction coefficient is called "function strength correction coefficient". Therefore, the content and derivation method of the function data, function strength, function pattern, function time, function pause time, and function strength correction coefficient shall be the vibration data, vibration strength, vibration pattern, vibration time, vibration rest time, and vibration strength correction coefficient. They may be the same.
2-1 簡略化した構成例
 図14は、上述した香味吸引器具等100A又は100Bから、本実施形態に特に関係する構成要素のみを抽出し簡略化した構成例を模式的に表す模式図である。従って、1400は、香味吸引器具等100A又は100Bを示している。
2-1 Simplified Configuration Example FIG. 14 is a schematic diagram schematically showing a simplified configuration example in which only components particularly related to the present embodiment are extracted from the above-described flavor suction device 100A or 100B. . Accordingly, 1400 indicates the flavor inhaler or the like 100A or 100B.
 1410は、本実施形態において制御される機能主体を示している。この機能主体は、例えば、加熱部121Aもしくは121B、通知部113Aもしくは113Bが含む発光する発光装置もしくは発光素子、通知部113Aもしくは113Bが含む画像を表示する表示装置、又は、通知部113Aもしくは113Bが含む音を出力する音出力装置もしくは音響素子であるが、これらに限定されるわけではない。  1410 indicates the functional entity controlled in this embodiment. This functional entity is, for example, the heating unit 121A or 121B, the light emitting device or light emitting element that emits light included in the notification unit 113A or 113B, the display device that displays the image included in the notification unit 113A or 113B, or the notification unit 113A or 113B. It is a sound output device or an acoustic element that outputs a sound containing, but is not limited to these.
 なお、発光装置又は発光素子についての機能強度は、発光の強度及び発光の色(機能強度に応じて異なる色を割り当てることができる。)の一方又は双方を制御するものであってよい。音出力装置又は音響装置についての機能強度は、音の強さ、音の高低及び音の種類(機能強度に応じて異なる音を割り当てることができる。)のうちの少なくとも1つを制御するものであってよい。表示装置についての機能強度は、表示の色相、表示の明度、表示の彩度及び表示される情報(画像を含む。機能強度に応じて異なる情報が表示される。)のうちの少なくとも1つを制御するものであってよい。加熱部121A又は121Bについての機能強度は、加熱部121A又は121Bの温度、加熱部121A又は121Bに流れる電流、加熱部121A又は121Bに印加される電圧及び加熱部121A又は121B供給される電力のうちの1以上を制御するものであってよい。 It should be noted that the functional strength of the light-emitting device or light-emitting element may control one or both of the intensity of light emission and the color of light emission (different colors can be assigned according to the functional strength). The functional strength of a sound output device or sound device controls at least one of sound intensity, pitch, and type of sound (different sounds can be assigned according to the functional strength). It can be. The functional strength of the display device includes at least one of display hue, display brightness, display saturation, and displayed information (including images. Different information is displayed depending on the functional strength). It may be controlled. The functional strength of the heating unit 121A or 121B is determined by the temperature of the heating unit 121A or 121B, the current flowing through the heating unit 121A or 121B, the voltage applied to the heating unit 121A or 121B, and the power supplied to the heating unit 121A or 121B. may control one or more of
 1420は、センサ220と同様のものを示している。 1420 indicates the same as sensor 220 .
 1430は、変換部230と同様のものを示している。 1430 indicates the same as the conversion unit 230 .
 1440は、振動データに基づき振動子を振動させるのではなく機能データに基づき機能主体1410を制御するものであることを除き、制御部240と同様のものを示している。  1440 is similar to the control part 240 except that it controls the functional subject 1410 based on the function data instead of vibrating the vibrator based on the vibration data.
2-2 単純変換アプローチ
 図15は、制御部1440が実行する、機能データに基づき機能主体1410を制御するための例示処理1500のフローチャートである。
2-2 Simple Transformation Approach FIG. 15 is a flow chart of an exemplary process 1500 executed by the controller 1440 for controlling the functional entity 1410 based on functional data.
 1510は、香味吸引器具等1400において、機能主体1410の機能を実行すべきかを判定するステップを示している。この判定は機能主体1410の実体によって異なる任意のものであってよい。例えば、この判定は、センサ部112A又は112Bが含むボタンまたはスイッチが押下されたかの判定であってよい。あるいは、この判定は、機能主体1410が加熱部121A又は121Bなのであれば、例えば、吸引が始まったかの判定であってよい。機能を実行すべきと判定した場合、処理はステップ1520に進み、そうでない場合、処理はステップ1510に戻る。 1510 indicates a step of determining whether the function of the functional subject 1410 should be executed in the flavor inhaler or the like 1400 . This determination may be arbitrary, depending on the entity of functional entity 1410 . For example, this determination may be whether a button or switch included in sensor unit 112A or 112B has been pressed. Alternatively, if the functional subject 1410 is the heating unit 121A or 121B, this determination may be, for example, determination of whether suction has started. If so, processing continues at step 1520 , otherwise processing returns to step 1510 .
 1520は、機能データに含まれる機能強度の値(振動強度についてのD[]に相当するもの。)を順番に取得するステップを示している。  1520 indicates a step of sequentially acquiring the value of the function intensity (corresponding to D[] for the vibration intensity) included in the function data.
 1530は、所定時間、値を取得した機能強度で機能主体1410を制御するステップを示している。  1530 indicates a step of controlling the functional entity 1410 with the functional strength whose value is obtained for a predetermined period of time.
 1540は、香味吸引器具等1400において、機能主体1410の機能の実行を終了すべきかを判定するステップを示している。この判定は機能主体1410の実体によって異なる任意のものであってよい。例えば、この判定は、センサ部112A又は112Bが含むボタンまたはスイッチが再度押下されたかの判定であってよい。あるいは、この判定は、機能主体1410が加熱部121A又は121Bなのであれば、例えば、吸引が終わったかの判定であってよい。機能の実行を終了すべきと判定した場合、処理は終了し、そうでない場合、処理はステップ1550に進む。 1540 indicates a step of determining whether the execution of the function of the functional entity 1410 should be terminated in the flavor inhaler 1400 or the like. This determination may be arbitrary, depending on the entity of functional entity 1410 . For example, this determination may be determination of whether a button or switch included in the sensor unit 112A or 112B has been pressed again. Alternatively, if the function subject 1410 is the heating unit 121A or 121B, this determination may be, for example, determination of whether the suction has ended. If it is determined that execution of the function should end, processing ends, otherwise processing proceeds to step 1550 .
 1550は、機能データからまだ機能強度の値を取得できるかを判定するステップを示している。制御部1440は、機能データからまだ全ての機能強度の値を取得していない場合、機能データからまだ機能強度の値を取得できると判定することができる。機能データからまだ機能強度の値を取得できると判定した場合、処理はステップ1520に戻り、そうでない場合、処理は終了する。  1550 shows the step of determining whether the functional strength value can still be obtained from the functional data. If all the functional strength values have not yet been obtained from the functional data, the control unit 1440 can determine that the functional strength values can still be obtained from the functional data. If it is determined that the functional strength value can still be obtained from the functional data, the process returns to step 1520, otherwise the process ends.
 例示処理1500によれば、香味吸引器具等1400の検知された動きを、直接、機能主体1410の制御に反映させることができる。 According to the example processing 1500, the detected movement of the flavor suction device 1400 can be directly reflected in the control of the functional subject 1410.
2-3 ボックスアプローチ(その1)
 図16Aは、制御部1440が実行する、機能データに基づき機能主体1410を制御するための例示処理1600Aのフローチャートである。
2-3 Box approach (Part 1)
FIG. 16A is a flow chart of exemplary process 1600A executed by control unit 1440 for controlling function agent 1410 based on function data.
 1610Aは、香味吸引器具等1400において、機能主体1410の機能を実行すべきかを判定するステップを示している。ステップ1610Aは、ステップ1510と同様のものであってよい。機能を実行すべきと判定した場合、処理はステップ1620Aに進み、そうでない場合、処理はステップ1610Aに戻る。 1610A shows the step of determining whether the function of the functional entity 1410 should be executed in the flavor inhaler 1400 or the like. Step 1610A may be similar to step 1510; If it is determined that the function should be performed, processing proceeds to step 1620A, otherwise processing returns to step 1610A.
 1620Aは、機能主体1410を制御するための機能強度及び機能時間を決定するステップを示している。 1620A shows the step of determining the functional intensity and functional time for controlling the functional entity 1410. FIG.
 1630Aは、決定された機能時間、決定された機能強度で機能主体1410を制御するステップを示している。 1630A shows the step of controlling the function subject 1410 with the determined function time and the determined function strength.
 1640Aは、機能休止時間を決定するステップを示している。 1640A shows the step of determining the downtime.
 1650Aは、決定された機能休止時間待機するステップを示している。 1650A shows the step of waiting for the determined downtime.
 1660Aは、香味吸引器具等1400において、機能主体1410の機能の実行を終了すべきかを判定するステップを示している。ステップ1660Aは、ステップ1540と同様のものであってよい。機能の実行を終了すべきと判定した場合、処理は終了し、そうでない場合、処理はステップ1620Aに戻る。 1660A shows the step of determining whether the execution of the function of the functional entity 1410 should be terminated in the flavor inhaler 1400 or the like. Step 1660A may be similar to step 1540. If it is determined that execution of the function should end, processing ends, otherwise processing returns to step 1620A.
2-4 ボックスアプローチ(その2)
 また、機能強度、機能時間及び機能休止時間は、基準機能強度及び機能パターンを含む機能データから予め決定され記憶されていてもよい。この場合、機能を実行すべきと判定されると、制御部240は、記憶された1つ以上の異なる機能強度、機能時間及び機能休止時間を読み出し、読みだされた1つ以上の異なる機能強度、機能時間及び機能休止時間により機能主体1410を制御することができる。
2-4 Box approach (Part 2)
Moreover, the functional intensity, the functional duration, and the functional pause duration may be determined and stored in advance from functional data including the reference functional intensity and the functional pattern. In this case, when it is determined that the function should be executed, the control unit 240 reads out the stored one or more different functional strengths, the functional time and the functional pause time, and reads out the one or more different functional strengths. , the function time and the function pause time can control the function entity 1410 .
 図16Bは、制御部1440が実行する、機能データに基づき機能主体1410を制御するための例示処理1600Bのフローチャートである。 FIG. 16B is a flowchart of an exemplary process 1600B for controlling the functional entity 1410 based on functional data, which is executed by the control unit 1440. FIG.
 1610Bは、香味吸引器具等1400において、機能主体1410の機能を実行すべきかを判定するステップを示している。ステップ1610Bは、ステップ1510と同様のものであってよい。機能を実行すべきと判定した場合、処理はステップ1620Bに進み、そうでない場合、処理はステップ1610Bに戻る。 1610B shows a step of determining whether the function of the functional entity 1410 should be executed in the flavor inhaler or the like 1400 . Step 1610B may be similar to step 1510 . If so, processing continues at step 1620B, otherwise processing returns to step 1610B.
 1620Bは、機能主体1410を制御するための機能強度、機能時間及び機能休止時間の値を記憶部114A又は114Bから取得するステップを示している。取得される機能強度、機能時間及び機能休止時間は、上述したような手法により予め決定され記憶部114A又は114Bに記憶された1つ以上の異なる機能強度、機能時間及び機能休止時間のうちのそれぞれ1つであってよい。 1620B indicates a step of acquiring the values of the function intensity, function time and function pause time for controlling the function subject 1410 from the storage unit 114A or 114B. The acquired functional strength, functional time and functional downtime are each one of one or more different functional strengths, functional time and functional downtime pre-determined and stored in the storage unit 114A or 114B by the method as described above. can be one.
 1630Bは、取得された機能時間、取得された機能強度で機能主体1410を制御するステップを示している。 1630B shows the step of controlling the function subject 1410 with the obtained function time and the obtained function intensity.
 1640Bは、取得された機能休止時間待機するステップを示している。 1640B shows the step of waiting for the acquired downtime.
 1650Bは、香味吸引器具等1400において、機能主体1410の機能の実行を終了すべきかを判定するステップを示している。ステップ1650Bは、ステップ1540と同様のものであってよい。機能の実行を終了すべきと判定した場合、処理はステップ1660Bに進み、そうでない場合、処理はステップ1620Bに戻る。 1650B shows a step of determining whether the execution of the function of the functional entity 1410 should be terminated in the flavor inhaler 1400 or the like. Step 1650B may be similar to step 1540. If it is determined that execution of the function should end, processing proceeds to step 1660B, otherwise processing returns to step 1620B.
 1660Bは、まだ機能強度、機能時間及び機能休止時間の値を取得できるかを判定するステップを示している。ステップ1660Bにおいては、記憶部114A又は114Bに記憶された1つ以上の異なる機能強度、機能時間及び機能休止時間において未だ取得されていないものがある場合、まだ機能強度、機能時間及び機能休止時間の値を取得できると判定することができる。まだ機能強度、機能時間及び機能休止時間の値を取得できると判定した場合、処理はステップ1620Bに戻り、そうでない場合、処理は終了する。 1660B shows the step of determining whether values for functional intensity, functional time and functional pause time can still be obtained. In step 1660B, if there is one or more different functional strengths, functional durations, and functional pause durations stored in storage unit 114A or 114B that have not yet been acquired, the functional strength, functional duration, and functional pause duration are It can be determined that the value can be obtained. If it is determined that values for functional strength, functional time, and inactive time can still be obtained, processing returns to step 1620B, otherwise processing ends.
2-5 香味吸引器具等1400の全体的な制御の流れ
 図17は、香味吸引器具等1400の制御方法1700のフローチャートである。
2-5 Overall Control Flow of Flavor Inhaler 1400 FIG.
 1710は、香味吸引器具等1400の動きを検知するステップを示している。このステップは、香味吸引器具等1400に含まれるセンサ1420が実行するものであってよい。なお、このステップは、香味吸引器具等1400に含まれるプロセッサがセンサ1420を用いて実行するものと考えてもよい。なお、このステップは、安全のために加熱部121Aもしくは121Bが機能していないときに行われることが好ましい。 1710 indicates a step of detecting the movement of the flavor suction device 1400 or the like. This step may be performed by a sensor 1420 included in the flavor inhaler or the like 1400 . It should be noted that this step may be considered to be executed by the processor included in the flavor inhaler or the like 1400 using the sensor 1420 . For safety, this step is preferably performed when the heating unit 121A or 121B is not functioning.
 1720は、香味吸引器具等1400の検知された動きを表す入力データを、香味吸引器具等1400に含まれる機能主体1410を制御するための機能データに変換するステップを示している。このステップは、香味吸引器具等1400に含まれる変換部1430が実行するものであってよい。なお、このステップは、香味吸引器具等1400に含まれるプロセッサが変換部1430として実行するものと考えてもよい。 1720 indicates the step of converting input data representing the detected movement of the flavor suction device or the like 1400 into functional data for controlling the functional subject 1410 included in the flavor suction device or the like 1400 . This step may be performed by the conversion unit 1430 included in the flavor inhaler or the like 1400 . Note that this step may be considered to be executed by the processor included in the flavor inhaler 1400 as the conversion unit 1430 .
 1730は、ステップ1420において得られた機能データに基づいて、機能主体1410を制御するステップを示している。このステップは、香味吸引器具等1400に含まれる制御部1440が実行するものであってよく、上述した例示処理1500又は1600を含むものであってよい。なお、このステップは、香味吸引器具等1400に含まれるプロセッサが制御部1440として実行するものと考えてもよい。機能データに基づいて機能主体1410を制御するステップは、ユーザによる香味吸引器具等1400の吸引中に実行されてもよいし、ユーザによる香味吸引器具等1400に対する所定の操作(ボタンの押下など)に応答して実行されてもよいし、その他の様々なタイミングで実行されてもよい。また、制御部1440は、機能データを作成した後、ユーザが当該機能データを確認することができるように、当該機能データに基づいて機能主体1410を自動的に制御してもよい。 1730 indicates the step of controlling the functional entity 1410 based on the functional data obtained in step 1420. FIG. This step may be executed by the control unit 1440 included in the flavor inhaler or the like 1400, and may include the exemplary process 1500 or 1600 described above. Note that this step may be considered to be executed by the processor included in the flavor inhaler 1400 as the controller 1440 . The step of controlling the function entity 1410 based on the functional data may be executed while the user is sucking the flavor suction device or the like 1400, or may be executed in response to a predetermined operation (such as pressing a button) on the flavor suction device or the like 1400 by the user. It may be executed in response, or at various other timings. Also, after creating the functional data, the control unit 1440 may automatically control the functional subject 1410 based on the functional data so that the user can check the functional data.
 なお、制御方法1700は、プログラムが香味吸引器具等1400のプロセッサに実行させてよいことは言うまでもない。 It goes without saying that the control method 1700 may be executed by the processor of the flavor suction device 1400 or the like.
 香味吸引器具等1400の電源部111A又は111Bは、充電可能なバッテリを含んでもよい。その場合、当該バッテリは、香味吸引器具等1400と電気的に接続される充電装置により充電されてもよい。当該充電装置は、充電部のほか、図14に示された構成要素と同様の機能主体、センサ、変換部、制御部等のうち少なくとも1つを備えてもよい。香味吸引器具等1400が上記のような充電装置に接続されているとき、制御方法1400のステップの少なくとも一部は、充電装置内の構成要素によって実行されてもよい。 The power source section 111A or 111B of the flavor suction device 1400 may include a rechargeable battery. In that case, the battery may be charged by a charging device electrically connected to the flavor suction device 1400 or the like. The charging device may include, in addition to the charging unit, at least one of the same functional entity as the components shown in FIG. 14, a sensor, a conversion unit, a control unit, and the like. When a flavor inhaler or the like 1400 is connected to a charging device such as those described above, at least some of the steps of the control method 1400 may be performed by components within the charging device.
 本発明の第2実施形態によれば、ユーザが香味吸引器具等を動かすと、多種多様な機能データが生成される。生成された機能データに基づいて、香味吸引器具等の構成要素を多種多様な態様で機能させることができる。そのため、ユーザは、ユーザが予想し得ない態様を含む多種多様な態様の刺激を感じながら香味吸引器具等を吸引することができる。したがって、ユーザエクスペリエンスを向上させることができる。 According to the second embodiment of the present invention, when the user moves the flavor inhaler or the like, various functional data are generated. A component, such as a flavor inhaler, can be caused to function in a wide variety of ways based on the generated functional data. Therefore, the user can inhale the flavor inhaler or the like while feeling stimulation in a wide variety of ways, including those that the user cannot expect. Therefore, user experience can be improved.
3 本発明の第3実施形態
3-1 簡略化した構成例
 図18は、本発明の第3実施形態に特に関係する構成要素のみを抽出し簡略化した構成例を模式的に表す模式図である。
3 Third Embodiment of the Present Invention 3-1 Simplified Configuration Example FIG. 18 is a schematic diagram schematically showing a simplified configuration example by extracting only constituent elements particularly related to the third embodiment of the present invention. be.
 図18には、本実施形態による香味吸引器具等1800及び外部装置1810が示されている。香味吸引器具等1800は、振動子1802、機能主体1803、センサ1804、制御部1806及び通信部1808を含む。香味吸引器具等1800は、振動子1802と機能主体1803の両方を含んでもよいし、いずれか一方のみを含んでもよい。香味吸引器具等1800は、香味吸引器具等100A又は100Bであってもよいし、図18に示す構成を含む他の香味吸引器具等であってもよい。 FIG. 18 shows a flavor inhaling instrument 1800 and an external device 1810 according to this embodiment. The flavor inhaler or the like 1800 includes a vibrator 1802 , a functional entity 1803 , a sensor 1804 , a control section 1806 and a communication section 1808 . The flavor inhaler or the like 1800 may include both the vibrator 1802 and the functional subject 1803, or may include only one of them. The flavor suction device or the like 1800 may be the flavor suction device or the like 100A or 100B, or may be another flavor suction device or the like including the configuration shown in FIG.
 振動子1802は、図2に関連して説明された振動子210と同様の構成、機能等を有してもよい。機能主体1803は、第2実施形態に関連して説明された機能主体1410と同様の構成、機能等を有してもよい。センサ1804は、図2に関連して説明されたセンサ220又は第2実施形態に関連して説明されたセンサ1420と同様の構成、機能等を有してもよい。センサ1804は、香味吸引器具等1800の動きを検知する。当該動きを表す入力データは、香味吸引器具等1800の記憶部(図示しない)に格納されてもよい。 The vibrator 1802 may have the same configuration, function, etc. as the vibrator 210 described with reference to FIG. The functional entity 1803 may have the same configuration, functions, etc. as the functional entity 1410 described in relation to the second embodiment. Sensor 1804 may have a configuration, function, etc. similar to sensor 220 described in connection with FIG. 2 or sensor 1420 described in connection with the second embodiment. A sensor 1804 detects movement of the flavor inhaler or the like 1800 . Input data representing the movement may be stored in a storage unit (not shown) of the flavor inhaler or the like 1800 .
 通信部1808は、所定のLPWA無線通信規格又は同様の制限を有する無線通信規格に準拠した通信インターフェース(通信モジュールを含む。)を含むことができる。かかる通信規格としては、SigfoxやLoRA-WAN等が採用され得る。通信部1808は、有線又は無線の任意の通信規格に準拠した通信を行うことが可能な通信インターフェースであってもよい。かかる通信規格としては、例えば、Wi-Fi(登録商標)、又はBluetooth(登録商標)等が採用され得る。香味吸引器等1800は、通信部1808を介して、外部装置1810と通信することができる。例えば、通信部1808は、センサ1804によって検知された、香味吸引器具等1800の動きを表す入力データを、外部装置1810へ送信する。通信部1808はまた、外部装置1810において入力データを変換することにより得られた、振動子1802を振動させるための振動データ又は機能主体1803を制御するための機能データを、外部装置1810から受信する。 The communication unit 1808 can include a communication interface (including a communication module) conforming to a predetermined LPWA wireless communication standard or a wireless communication standard with similar restrictions. As such a communication standard, Sigfox, LoRA-WAN, etc. can be adopted. The communication unit 1808 may be a communication interface capable of performing communication conforming to any wired or wireless communication standard. Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like, for example, can be adopted as such a communication standard. The flavor inhaler or the like 1800 can communicate with an external device 1810 via a communication unit 1808 . For example, the communication unit 1808 transmits input data representing movement of the flavor inhaler or the like 1800 detected by the sensor 1804 to the external device 1810 . The communication unit 1808 also receives, from the external device 1810, vibration data for vibrating the vibrator 1802 or functional data for controlling the functional subject 1803, which is obtained by converting input data in the external device 1810. .
 制御部1806は、制御部116A又は116Bから変換部230又は変換部1430を除いたものと考えてもよい。制御部1806は、外部装置1810から受信された振動データに基づいて振動子1802を振動させ又は機能主体1803を制御するように構成される。 The control unit 1806 may be considered to be the control unit 116A or 116B with the conversion unit 230 or the conversion unit 1430 removed. The controller 1806 is configured to vibrate the transducer 1802 or control the functional subject 1803 based on vibration data received from the external device 1810 .
 外部装置1810は、変換部1812及び通信部1814を含む。外部装置1810は、変換部1812及び通信部1814などの外部装置1810内の構成要素を制御するように構成された制御部1816を含む。 The external device 1810 includes a conversion unit 1812 and a communication unit 1814. The external device 1810 includes a controller 1816 that is configured to control components within the external device 1810 such as the conversion portion 1812 and the communication portion 1814 .
 外部装置1810は、香味吸引器具等1800と通信することができるように構成された、パーソナルコンピューター(PC)、サーバー、(スマートフォンを含む)携帯電話、タブレット型コンピューター、パーソナルデジタルアシスタント、ウェアラブルコンピューター、及び他の様々なデバイスであってもよい。外部装置1810は、香味吸引器具等1800を充電するための装置であってもよく、香味吸引器具等1800内の充電可能なバッテリを充電するように構成された充電部を有してもよい。 The external device 1810 is a personal computer (PC), a server, a mobile phone (including a smart phone), a tablet computer, a personal digital assistant, a wearable computer, and a device configured to be able to communicate with the flavor inhaler or the like 1800. Various other devices are also possible. The external device 1810 may be a device for charging the flavor inhaler or the like 1800 and may have a charging portion configured to charge a rechargeable battery within the flavor inhaler or the like 1800 .
 通信部1814は、通信部1808と同様の機能を有してもよい。外部装置1810は、通信部1814を介して、香味吸引器具等1800と通信することができる。例えば、通信部1814は、センサ1804によって検知された、香味吸引器具等1800の動きを表す入力データを、香味吸引器具等1800から受信する。 The communication unit 1814 may have the same functions as the communication unit 1808. The external device 1810 can communicate with the flavor inhaler or the like 1800 via the communication unit 1814 . For example, the communication unit 1814 receives input data representing movement of the flavor suction device, etc. 1800 detected by the sensor 1804 from the flavor suction device, etc. 1800 .
 変換部1812は、変換部230又は変換部1430と同様の機能を有してもよい。変換部1812は、通信部1814によって受信された入力データを、振動子1802を振動させるための振動データ又は機能主体1803を制御するための機能データに変換するように構成される。入力データ及び振動データ又は機能データは、外部装置1810内の記憶部(図示しない)に格納されてもよい。入力データ及び振動データ又は機能データは、外部装置1810により編集可能であってもよい。通信部1814は、振動データ又は機能データを香味吸引器具等1800へ送信する。通信部1814はまた、振動データ又は機能データを、香味吸引器具等1800とは異なる、外部装置1810と通信することができる様々なデバイスへ送信してもよい。例えば、外部装置1810のユーザは、外部装置1810の記憶部に記憶されているお気に入りの振動データ又は機能データを友人のスマートフォン等に対して送信することにより、当該振動データ又は機能データを友人とシェアすることができる。 The conversion unit 1812 may have the same function as the conversion unit 230 or the conversion unit 1430. The conversion unit 1812 is configured to convert the input data received by the communication unit 1814 into vibration data for vibrating the vibrator 1802 or functional data for controlling the functional entity 1803 . The input data and vibration data or function data may be stored in a storage unit (not shown) within the external device 1810 . Input data and vibration data or function data may be editable by external device 1810 . The communication unit 1814 transmits the vibration data or the function data to the flavor inhaler or the like 1800 . The communication portion 1814 may also transmit vibration data or functional data to various devices other than the flavor inhaler 1800 and the like, which are capable of communicating with the external device 1810 . For example, the user of the external device 1810 transmits favorite vibration data or function data stored in the storage unit of the external device 1810 to a friend's smartphone or the like, thereby sharing the vibration data or function data with the friend. can do.
 センサ1804及び入力データは、それぞれ、1-4節で説明されたセンサ220又は第2実施形態に関連して説明されたセンサ1420及び入力データと同様であるので、ここでは詳細な説明を省略する。 The sensor 1804 and input data are similar to the sensor 220 described in Sections 1-4 or the sensor 1420 and input data described in connection with the second embodiment, respectively, so detailed descriptions are omitted here. .
 変換部1812は、外部装置1810内に配置されていることを除いて、1-5節で説明された変換部230又は第2実施形態に関連して説明された変換部1430と同様である。変換部1812によって生成される振動データは、1-5節で説明された振動データと同様である。変換部1812によって生成される機能データは、第2実施形態に関連して説明された機能データと同様である。したがって、ここでは、変換部1812、振動データ及び機能データの詳細な説明を省略する。 The conversion unit 1812 is similar to the conversion unit 230 described in section 1-5 or the conversion unit 1430 described in relation to the second embodiment, except that it is arranged in the external device 1810 . The vibration data generated by the converter 1812 is similar to the vibration data described in Sections 1-5. The functional data generated by the conversion unit 1812 is similar to the functional data described in relation to the second embodiment. Therefore, detailed descriptions of the conversion unit 1812, vibration data, and function data are omitted here.
 制御部1806は、1-6節で説明された制御部240又は第2実施形態に関連して説明された制御部1440と同様であるので、ここでは詳細な説明を省略する。 The control unit 1806 is the same as the control unit 240 described in section 1-6 or the control unit 1440 described in relation to the second embodiment, so detailed description thereof will be omitted here.
3-2 香味吸引器具等1800及び外部装置1810の制御方法
 図19は、本実施形態の香味吸引器具等1800及び外部装置1810の動作を示すシーケンス図である。
3-2 Control Method of Flavor Sucking Instrument 1800 and External Device 1810 FIG. 19 is a sequence diagram showing operations of the flavor sucking instrument 1800 and external device 1810 according to the present embodiment.
 ステップ1910において、香味吸引器具等1800は、香味吸引器具等1800の動きを検知する。ステップ1910は、例えば、センサ1804により実行されてもよいし、センサ1804を介して制御部1806により実行されてもよい。 At step 1910 , the flavor suction device 1800 detects movement of the flavor suction device 1800 . Step 1910 may be performed by the sensor 1804 or may be performed by the controller 1806 via the sensor 1804, for example.
 ステップ1912において、香味吸引器具等1800は、検知された動きを表す入力データを外部装置1810に送信する。ステップ1912は、例えば、通信部1808により実行されてもよいし、通信部1808を介して制御部1806により実行されてもよい。 At step 1912 , the flavor inhaler or the like 1800 transmits input data representing the detected movement to the external device 1810 . Step 1912 may be executed by the communication unit 1808 or may be executed by the control unit 1806 via the communication unit 1808, for example.
 ステップ1914において、外部装置1810は、入力データを香味吸引器具等1800から受信する。ステップ1914は、例えば、通信部1814により実行されてもよいし、通信部1814を介して制御部1816により実行されてもよい。 At step 1914 , the external device 1810 receives input data from the flavor inhaler or the like 1800 . Step 1914 may be executed by the communication unit 1814 or may be executed by the control unit 1816 via the communication unit 1814, for example.
 ステップ1916において、外部装置1810は、入力データを、香味吸引器具等1800内の振動子1802を振動させるための振動データ又は香味吸引器具等1800内の機能主体1803を制御するための機能データへ変換する。ステップ1916は、例えば、変換部1812により実行されてもよいし、変換部1812を介して制御部1816により実行されてもよい。 In step 1916, the external device 1810 converts the input data into vibration data for vibrating the vibrator 1802 in the flavor suction device or the like 1800 or function data for controlling the functional entity 1803 in the flavor suction device or the like 1800. do. Step 1916 may be executed by the conversion unit 1812 , or may be executed by the control unit 1816 via the conversion unit 1812 , for example.
 ステップ1918において、外部装置1810は、振動データ又は機能データを香味吸引器具等1800へ送信する。ステップ1918は、例えば、通信部1814により実行されてもよいし、通信部1814を介して制御部1816により実行されてもよい。 At step 1918, the external device 1810 transmits vibration data or functional data to the flavor suction device 1800 or the like. Step 1918 may be executed by the communication unit 1814 or may be executed by the control unit 1816 via the communication unit 1814, for example.
 ステップ1920において、香味吸引器具等1800は、振動データ又は機能データを外部装置1810から受信する。ステップ1920は、例えば、通信部1808により実行されてもよいし、通信部1808を介して制御部1806により実行されてもよい。 At step 1920 , the flavor inhaler or the like 1800 receives vibration data or functional data from the external device 1810 . Step 1920 may be executed by the communication unit 1808 or may be executed by the control unit 1806 via the communication unit 1808, for example.
 ステップ1922において、香味吸引器具等1800は、振動データに基づいて振動子1802を振動させるか、又は、機能データに基づいて機能主体1803を制御する。ステップ1922は、制御部1806によって実行されてもよい。 At step 1922, the flavor inhaler or the like 1800 vibrates the vibrator 1802 based on the vibration data, or controls the function subject 1803 based on the function data. Step 1922 may be performed by controller 1806 .
 香味吸引器具等1800の記憶部等に格納されたプログラムが、香味吸引器具等1800に、ステップ1910、1912、1920及び1922を実行させてもよい。 A program stored in a storage unit or the like of the flavor suction device 1800 may cause the flavor suction device 1800 to execute steps 1910, 1912, 1920 and 1922.
 外部装置1810の記憶部等に格納されたプログラムが、外部装置1810に、ステップ1914、1916及び1918を実行させてもよい。 A program stored in the storage unit or the like of the external device 1810 may cause the external device 1810 to execute steps 1914, 1916 and 1918.
 本発明の第3実施形態によれば、第1実施形態又は第2実施形態において香味吸引器具等において実行される作業のうち少なくとも一部の作業(例えば、入力データから振動データ又は機能データへの変換)が、外部装置において実行される。従って、香味吸引器具等の構成を簡略化することができる。また、作成した様々な振動データ又は機能データを外部装置において記憶し、管理することができる。 According to the third embodiment of the present invention, at least part of the work performed in the flavor suction device or the like in the first or second embodiment (for example, conversion from input data to vibration data or function data) conversion) is performed in the external device. Therefore, it is possible to simplify the configuration of the flavor inhaler and the like. In addition, various created vibration data or function data can be stored and managed in an external device.
4 本発明の第4実施形態
 上述の各実施形態とは別に、又は、上述の各実施形態に加えて、本発明の香味吸引器具等は、香味吸引器具等の検知された動きを表す入力データをセンサが取得しているときに、ユーザに感覚刺激を与える少なくとも1つの感覚刺激素子を機能させるように構成されてもよい。
4 Fourth Embodiment of the Present Invention Apart from or in addition to the above-described embodiments, the flavor suction device or the like of the present invention may include input data representing the detected movement of the flavor suction device or the like. may be configured to activate at least one sensory stimulation element that provides sensory stimulation to a user when the sensor is acquiring the
 第4実施形態に関する以下の説明において、「感覚刺激データ」は第1実施形態における振動データ又は第2実施形態における機能データを含み、「感覚刺激強度」は第1実施形態における振動強度又は第2実施形態における機能強度を含み、「感覚刺激パターン」は第1実施形態における振動パターン又は第2実施形態における機能パターンを含み、「感覚刺激時間」は第1実施形態における振動時間又は第2実施形態における機能時間を含み、「感覚刺激休止時間」は第1実施形態における振動休止時間又は第2実施形態における機能休止時間を含み、「感覚刺激強度補正係数」は第1実施形態における振動強度補正係数又は第2実施形態における機能強度補正係数を含む。第4実施形態における感覚刺激データ、感覚刺激強度、感覚刺激パターン、感覚刺激時間、感覚刺激休止時間及び感覚刺激強度補正係数の内容及び導出手法は、第1実施形態における振動データ、振動強度、振動パターン、振動時間、振動休止時間及び振動強度補正係数の内容及び導出手法、又は、第2実施形態における機能データ、機能強度、機能パターン、機能時間、機能休止時間及び機能強度補正係数の内容及び導出手法と同様であってよい。 In the following description of the fourth embodiment, "sensory stimulation data" includes vibration data in the first embodiment or functional data in the second embodiment, and "sensory stimulation intensity" is the vibration intensity in the first embodiment or the second embodiment. Including the functional intensity in the embodiment, "sensory stimulation pattern" includes the vibration pattern in the first embodiment or the functional pattern in the second embodiment, and "sensory stimulation time" is the vibration time in the first embodiment or the second embodiment , "sensory stimulation pause time" includes the vibration pause time in the first embodiment or the function pause time in the second embodiment, and "sensory stimulation intensity correction factor" is the vibration intensity correction factor in the first embodiment Alternatively, it includes the functional strength correction coefficient in the second embodiment. The contents and derivation methods of the sensory stimulation data, sensory stimulation intensity, sensory stimulation pattern, sensory stimulation time, sensory stimulation pause time, and sensory stimulation intensity correction coefficient in the fourth embodiment are the same as the vibration data, vibration intensity, and vibration in the first embodiment. Contents and derivation method of pattern, vibration time, vibration pause time, and vibration intensity correction coefficient, or contents and derivation of function data, function intensity, function pattern, function time, function pause time, and function intensity correction coefficient in the second embodiment It may be the same as the method.
4-1 簡略化した構成例
 図20は、上述した香味吸引器具等100A又は100Bから、本実施形態に特に関係する構成要素のみを抽出し簡略化した構成例を模式的に表す模式図である。従って、2000は、香味吸引器具等100A又は100Bを示している。
4-1 Simplified Configuration Example FIG. 20 is a schematic diagram schematically showing a simplified configuration example in which only components particularly related to the present embodiment are extracted from the above-described flavor suction device 100A or 100B. . Accordingly, 2000 indicates a flavor inhaler or the like 100A or 100B.
 香味吸引器具等2000は、ユーザに感覚刺激を与えるように構成された少なくとも1つの素子2010(以下「感覚刺激素子2010」ともいう。)と、センサ2020と、変換部2030と、制御部2040とを備える。 The flavor inhaler or the like 2000 includes at least one element 2010 (hereinafter also referred to as “sensory stimulation element 2010”) configured to give sensory stimulation to the user, a sensor 2020, a conversion section 2030, and a control section 2040. Prepare.
 感覚刺激素子2010は、上述した振動子210又は機能主体1410のうち感覚刺激を与えうるものである。したがって、感覚刺激素子2010は、例えば、振動子210、通知部113Aもしくは113Bに含まれる発光する発光装置もしくは発光素子、通知部113Aもしくは113Bに含まれる画像を表示する表示装置、又は、通知部113Aもしくは113Bに含まれる音を出力する音出力装置もしくは音響素子を含むが、これらに限定されない。 The sensory stimulation element 2010 is one of the vibrator 210 or the functional entity 1410 described above that can provide sensory stimulation. Therefore, the sensory stimulation element 2010 is, for example, the vibrator 210, the light emitting device or light emitting element that emits light included in the notification unit 113A or 113B, the display device that displays the image included in the notification unit 113A or 113B, or the notification unit 113A. Alternatively, it includes, but is not limited to, a sound output device or an acoustic element that outputs the sound included in 113B.
 センサ2020は、上述したセンサ220又は1420である。センサ2020は、香味吸引器具等2000の動きを検知するように構成される。センサ2020は、上述の各実施形態において説明されたように動作する。さらに、センサ2020は、香味吸引器具等2000において加熱による香味又はエアロゾルの生成が行われていないときに、入力データを取得するように構成されてもよい。上述の各実施形態と同様に、入力データは、検知された動きの加速度又は角速度を表すデータを含んでもよい。 The sensor 2020 is the sensor 220 or 1420 described above. The sensor 2020 is configured to detect movement of the flavor suction device, etc. 2000 . Sensor 2020 operates as described in the embodiments above. Further, the sensor 2020 may be configured to acquire input data when the flavor inhaler or the like 2000 is not generating flavors or aerosols by heating. As with the embodiments described above, the input data may include data representing the acceleration or angular velocity of the sensed motion.
 制御部2040は、上述した制御部240又は1440である。制御部2040は、検知された動きを表す入力データをセンサ2020が取得しているときに、感覚刺激素子2010を機能させるように構成される。制御部2040は、上述の各実施形態において説明されたように動作する。感覚刺激素子2010は、ユーザに感覚刺激を与えるように構成された2つ以上の感覚刺激素子を備えてもよい。その場合、制御部2040は、センサ2020が作動している間、2つ以上の感覚刺激素子のうち上述した少なくとも1つの感覚刺激素子とは異なる感覚刺激素子を更に機能させるように構成されてもよい。 The control unit 2040 is the control unit 240 or 1440 described above. Controller 2040 is configured to cause sensory stimulation element 2010 to function when sensor 2020 is acquiring input data representing the sensed movement. The control unit 2040 operates as described in each of the above embodiments. Sensory stimulation element 2010 may comprise two or more sensory stimulation elements configured to provide sensory stimulation to a user. In that case, the control unit 2040 may be configured to further function a sensory stimulation element different from the at least one sensory stimulation element described above among the two or more sensory stimulation elements while the sensor 2020 is operating. good.
 変換部2030は、上述した変換部230又は1430である。変換部2030は、入力データを、感覚刺激素子2010を機能させるための感覚刺激データへ変換するように構成される。 The conversion unit 2030 is the conversion unit 230 or 1430 described above. The conversion unit 2030 is configured to convert input data into sensory stimulation data for functioning the sensory stimulation element 2010 .
 第1実施形態及び第2実施形態に関して説明されたように、変換部2030は、入力データの値をそのまま感覚刺激強度に変換するよう構成されてもよい。この場合、センサ2020により検知された香味吸引器具等2000の動きをリアルタイムで直接的にユーザに与えることができる。また、入力データは、香味吸引器具等200の複数の軸に関する動きを合成したものを表すデータであってもよい。このような合成は、例えば、複数の軸の各軸に関する、同じ時刻又はタイミングにおいてセンサ2020によって検知された値の和であってもよい。 As described with respect to the first and second embodiments, the conversion unit 2030 may be configured to convert the value of the input data as it is into the sensory stimulation intensity. In this case, the movement of the flavor inhaler or the like 2000 detected by the sensor 2020 can be directly given to the user in real time. The input data may also be data representing a combination of motions of the flavor inhaler 200 or the like about a plurality of axes. Such a composite may be, for example, the sum of values sensed by sensor 2020 at the same time or timing for each axis of multiple axes.
 第1実施形態及び第2実施形態に関して説明されたように、変換部2030は、入力データに含まれる代表値を用いるように構成されてもよい。第1実施形態及び第2実施形態に関して説明されたように、入力データに含まれる代表値を用いることは、代表値を、感覚刺激素子2010の感覚刺激強度(感覚刺激に係る強度)に変換することを含んでもよい。また、第1実施形態及び第2実施形態に関して説明されたように、入力データに含まれる代表値を用いることは、代表値を、感覚刺激素子2010の感覚刺激パターン(感覚刺激に係るパターン)に変換することを含んでもよい。 As described with respect to the first and second embodiments, the conversion unit 2030 may be configured to use representative values included in the input data. As described with respect to the first and second embodiments, using the representative value included in the input data converts the representative value into the sensory stimulation intensity (intensity related to sensory stimulation) of the sensory stimulation element 2010. may include In addition, as described with regard to the first and second embodiments, using the representative value included in the input data allows the representative value to correspond to the sensory stimulation pattern (pattern related to sensory stimulation) of the sensory stimulation element 2010. It may include converting.
 第1実施形態及び第2実施形態に関して説明されたように、変換部2030は、入力データを、複数の時間期間のうちの各時間期間における検知された動きをそれぞれ表す複数のデータに区分するように構成されてもよい。加えて、変換部2030は、区分された各データに含まれる代表値を、異なるタイミングにおける感覚刺激素子2010の感覚刺激強度に変換するように構成されてもよい。 As described with respect to the first and second embodiments, the transformation unit 2030 partitions the input data into a plurality of data each representing the detected motion in each of the plurality of time periods. may be configured to In addition, the conversion section 2030 may be configured to convert representative values included in each of the divided data into sensory stimulation intensities of the sensory stimulus elements 2010 at different timings.
 第1実施形態及び第2実施形態に関して説明されたように、センサ2020は、少なくとも第1軸及び第2軸に関する香味吸引器具等2000の動きを検知するように構成されてもよい。入力データは、第1軸及び第2軸に関する検知された動きをそれぞれ表す第1入力データ及び第2入力データを少なくとも含んでもよい。 As described with respect to the first and second embodiments, the sensor 2020 may be configured to detect movement of the flavor inhaler or the like 2000 about at least the first and second axes. The input data may include at least first input data and second input data representing sensed motion about the first axis and the second axis, respectively.
 第1実施形態及び第2実施形態に関して説明されたように、変換部2030は、第1入力データを感覚刺激素子2010の感覚刺激強度に変換し、第2入力データを感覚刺激素子2010の感覚刺激パターンに変換するか、又は、第2入力データに基づき感覚刺激素子2010の感覚刺激パターンとして予め定められた複数の感覚刺激パターンのうちの1つを選択するように構成されてもよい。 As described with respect to the first and second embodiments, the conversion unit 2030 converts the first input data into the sensory stimulation intensity of the sensory stimulation element 2010 and the second input data into the sensory stimulation intensity of the sensory stimulation element 2010 . Alternatively, it may be configured to select one of a plurality of predetermined sensory stimulation patterns as the sensory stimulation pattern of the sensory stimulation element 2010 based on the second input data.
 第1実施形態及び第2実施形態に関して説明されたように、感覚刺激パターンは、感覚刺激時間(感覚刺激素子が機能する時間)と、感覚刺激休止時間(感覚刺激素子が休止する時間)と、感覚刺激強度補正係数(感覚刺激に係る強度の補正係数)とのうち少なくとも1つを含んでもよい。 As described with respect to the first and second embodiments, the sensory stimulation pattern includes a sensory stimulation time (time during which the sensory stimulation element functions), a sensory stimulation pause time (time during which the sensory stimulation element is paused), At least one of sensory stimulus intensity correction coefficient (correction coefficient of intensity related to sensory stimulus) may be included.
4-2 香味吸引器具等2000の制御方法
 図21は、香味吸引器具等2000の制御方法2100のフローチャートである。
4-2 Control Method of Flavor Inhaler 2000 FIG. 21 is a flow chart of a control method 2100 of the flavor inhaler 2000 .
 制御方法2100は、香味吸引器具等2000の入力モードが起動されたことに応答して開始されてもよい。例えば、ユーザが香味吸引器具等2000に備えられたボタンを押下すること、ユーザが香味吸引器具等2000を所定回数振ること(例えば、所定時間内に3回振ること)、香味吸引器具等2000と通信するスマートフォンなどの外部装置からモード変更の指示を受信したことなどに応答して、香味吸引器具等2000の入力モードが起動されてもよい。入力モードの起動及び終了は、香味吸引器具等2000に備えられた振動子、音響素子、発光素子などを機能させることによってユーザに通知されてもよい。 The control method 2100 may be started in response to activation of the input mode of the flavor inhaler or the like 2000 . For example, the user presses a button provided on the flavor suction device 2000, the user shakes the flavor suction device 2000 a predetermined number of times (for example, shakes the flavor suction device 2000 three times within a predetermined period of time), and the flavor suction device 2000 The input mode of the flavor inhaler or the like 2000 may be activated in response to receiving a mode change instruction from an external device such as a communicating smartphone. Activation and termination of the input mode may be notified to the user by operating a vibrator, acoustic element, light emitting element, or the like provided in the flavor inhaler or the like 2000 .
 香味吸引器具等2000は、加熱部121A又は121Bへの給電中、制御方法2100を実行しないように構成されてもよい。香味吸引器具等2000は、スティック型基材150が香味吸引器具等100Bに挿入されている間、制御方法2100を実行しないように構成されてもよい。 The flavor inhaler or the like 2000 may be configured not to execute the control method 2100 while power is supplied to the heating unit 121A or 121B. The flavor inhaler, etc. 2000 may be configured not to perform the control method 2100 while the stick-shaped substrate 150 is inserted into the flavor inhaler, etc. 100B.
 ステップ2110において、センサ2020は、香味吸引器具等2000の動きを検知する。ステップ2110は、センサ2020によって実行されてもよいし、センサ2020を介して制御部2040によって実行されてもよい。 At step 2110, the sensor 2020 detects movement of the flavor inhaler 2000 or the like. Step 2110 may be executed by sensor 2020 or may be executed by controller 2040 via sensor 2020 .
 ステップ2120において、制御部2040は、検知された動きを表す入力データを取得しているときに、感覚刺激素子2010を機能させる。一例において、感覚刺激素子2010が発光素子を含む場合、ステップ2120において、制御部2040は、加熱部121A又は121Bへの給電中の当該発光素子の点灯態様とは異なる態様(色、点滅周期など)で、当該発光素子を点灯させてもよい。入力モード中、香味吸引器具等2000の動きが検知されているときの感覚刺激素子2010の機能の仕方は、香味吸引器具等2000の動きが検知されていないときの感覚刺激素子2010の機能の仕方とは異なってもよい。例えば、感覚刺激素子2010が発光素子に加えて振動子又は音響素子を含む場合、入力モード中、発光素子は常に点灯されていてもよく、他方、入力モード中、香味吸引器具等2000の動きが検知されたときだけ、振動子又は音響素子がさらに機能してもよい。 At step 2120, the control unit 2040 causes the sensory stimulation element 2010 to function while acquiring input data representing the detected movement. In one example, if the sensory stimulation element 2010 includes a light-emitting element, in step 2120, the control unit 2040 controls the lighting mode (color, blinking cycle, etc.) of the light-emitting element during power supply to the heating unit 121A or 121B. , the light-emitting element may be lit. During the input mode, how the sensory stimulation elements 2010 function when the movement of the flavor inhaling instrument or the like 2000 is detected is how the sensory stimulation elements 2010 function when the movement of the flavor inhaling instrument or the like 2000 is not detected. may differ from For example, if the sensory stimulation element 2010 includes a vibrator or an acoustic element in addition to the light emitting element, the light emitting element may be constantly illuminated during the input mode, while the movement of the flavor inhaler, etc. 2000 may be controlled during the input mode. The transducer or acoustic element may also function only when detected.
 処理2100において入力データが取得される期間の長さは、予め定められていてもよい。入力データが取得される期間の長さは、予め設定された複数の候補から選択されてもよい。入力データが取得される期間の長さは、ユーザによる香味吸引器具等2000のボタンの操作、外部装置からの指示の送信などによって設定されてもよい。入力データが取得される期間は、1~20秒間であってもよく、好ましくは3~10秒間であってもよい。 The length of the period during which the input data is acquired in process 2100 may be predetermined. The length of the period during which the input data is acquired may be selected from a plurality of preset candidates. The length of the period during which the input data is acquired may be set by the user operating a button on the flavor inhaler 2000 or by sending an instruction from an external device. The period during which the input data is acquired may be 1-20 seconds, preferably 3-10 seconds.
 香味吸引器具等2000の記憶部等に格納されたプログラムが、香味吸引器具等2000に、制御方法2100を実行させてもよい。 A program stored in a storage unit or the like of the flavor suction device 2000 may cause the flavor suction device 2000 to execute the control method 2100 .
 図22は、香味吸引器具等2000の制御部2040によって実行される動作の一例を示すフローチャートである。 FIG. 22 is a flowchart showing an example of operations performed by the control unit 2040 of the flavor inhaler 2000. FIG.
 ステップ2210において、制御部2040は、現在、検知された動きを表す入力データをセンサ2020が取得しているかどうかを判定する。現在、検知された動きを表す入力データをセンサ2020が取得していない場合(ステップ2210のNo)、処理はステップ2210の前に戻る。現在、検知された動きを表す入力データをセンサ2020が取得している場合(ステップ2210のYes)、処理はステップ2220に進む。 At step 2210, the control unit 2040 determines whether the sensor 2020 is currently acquiring input data representing the detected movement. If sensor 2020 is not currently acquiring input data representing the detected movement (No in step 2210), processing returns to step 2210 before. If sensor 2020 is currently acquiring input data representing detected motion (Yes in step 2210 ), processing proceeds to step 2220 .
 ステップ2220において、制御部2040は、感覚刺激素子2010の感覚刺激データに含まれる感覚刺激強度の値を取得する。ステップ2220は、図7のステップ720又は図15のステップ1520と同様であるので、ここでは詳細な説明を省略する。 At step 2220 , the control unit 2040 acquires the sensory stimulation intensity value included in the sensory stimulation data of the sensory stimulation element 2010 . Step 2220 is similar to step 720 in FIG. 7 or step 1520 in FIG. 15, so detailed description is omitted here.
 ステップ2230において、制御部2040は、所定の感覚刺激時間、値を取得した感覚刺激強度で、感覚刺激素子2010を機能させる。ステップ2230は、ステップ730又はステップ1530と同様であるので、ここでは詳細な説明を省略する。 At step 2230, the control unit 2040 causes the sensory stimulation element 2010 to function for a predetermined sensory stimulation time and with the acquired sensory stimulation intensity. Since step 2230 is similar to step 730 or step 1530, detailed description is omitted here.
 ステップ2240において、制御部2040は、センサ2020の作動が終わったかどうかを判定する。センサ2020の作動が終わった場合(ステップ2240のYes)、処理は終了する。センサ2020の作動が終わっていない場合(ステップ2240のNo)、処理はステップ2220の前に戻る。 At step 2240, the control unit 2040 determines whether the sensor 2020 has finished operating. If sensor 2020 has been activated (Yes in step 2240), the process ends. If sensor 2020 has not finished operating (No at step 2240 ), the process returns to before step 2220 .
 香味吸引器具等2000の記憶部等に格納されたプログラムが、香味吸引器具等2000に、処理2200を実行させてもよい。 A program stored in the storage unit or the like of the flavor suction device 2000 may cause the flavor suction device 2000 to execute the processing 2200 .
 処理2200によれば、香味吸引器具等の吸引が行われていない場合に、ユーザが香味吸引器具等を振るなどの動作をしている間、感覚刺激素子を機能させることにより、ユーザに感覚刺激を与えることができる。それにより、ユーザの動作に基づいて香味吸引器具等が入力データを取得していることを、ユーザに知覚させることができる。 According to the processing 2200, when the flavor inhaling instrument or the like is not being inhaled, the sensory stimulation element is activated while the user is performing an action such as shaking the flavor inhaling instrument or the like, thereby providing the user with sensory stimulation. can give This allows the user to perceive that the flavor inhaler or the like is acquiring the input data based on the user's motion.
 図23は、香味吸引器具等2000の制御部2040によって実行される動作の一例を示すフローチャートである。 FIG. 23 is a flow chart showing an example of operations performed by the control unit 2040 of the flavor inhaler 2000. FIG.
 ステップ2310の処理はステップ2210の処理と同様である。 The processing of step 2310 is the same as the processing of step 2210.
 ステップ2320において、制御部2040は、感覚刺激素子2010を機能させる際の感覚刺激強度及び感覚刺激時間を決定する。ステップ2320は、図8のステップ820又は図16のステップ1620と同様であるので、ここでは詳細な説明を省略する。 At step 2320, the control unit 2040 determines the sensory stimulation intensity and the sensory stimulation time for causing the sensory stimulation element 2010 to function. Step 2320 is similar to step 820 in FIG. 8 or step 1620 in FIG. 16, so detailed description is omitted here.
 ステップ2330において、制御部2040は、決定された感覚刺激時間、決定された感覚刺激強度で、感覚刺激素子2010を機能させる。ステップ2330は、ステップ830又はステップ1630と同様であるので、ここでは詳細な説明を省略する。 At step 2330, the control unit 2040 causes the sensory stimulation element 2010 to function with the determined sensory stimulation time and the determined sensory stimulation intensity. Since step 2330 is similar to step 830 or step 1630, detailed description is omitted here.
 ステップ2340において、制御部2040は、感覚刺激素子2010の感覚刺激休止時間を決定する。ステップ2340は、ステップ840又はステップ1640と同様であるので、ここでは詳細な説明を省略する。 At step 2340 , the control unit 2040 determines the sensory stimulation pause time of the sensory stimulation element 2010 . Since step 2340 is similar to step 840 or step 1640, detailed description is omitted here.
 ステップ2350において、制御部2040は、感覚刺激素子2010を、決定された感覚刺激休止時間待機させる。ステップ2350は、ステップ850又はステップ1650と同様であるので、ここでは詳細な説明を省略する。 At step 2350, the control unit 2040 causes the sensory stimulation element 2010 to wait for the determined sensory stimulation pause time. Since step 2350 is similar to step 850 or step 1650, detailed description is omitted here.
 ステップ2360において、制御部2040は、センサ2020の作動が終わったかどうかを判定する。センサ2020の作動が終わった場合(ステップ2360のYes)、処理は終了する。センサ2020の作動がまだ終わっていない場合(ステップ2360のNo)、処理はステップ2320の前に戻る。 At step 2360, the control unit 2040 determines whether the sensor 2020 has finished operating. If sensor 2020 has been activated (Yes in step 2360), the process ends. If sensor 2020 has not finished actuating (No at step 2360 ), processing returns to before step 2320 .
 香味吸引器具等2000の記憶部等に格納されたプログラムが、香味吸引器具等2000に、処理2300を実行させてもよい。 A program stored in the storage unit or the like of the flavor suction device 2000 may cause the flavor suction device 2000 to execute the processing 2300 .
 処理2300によれば、香味吸引器具等の吸引が行われていない場合に、ユーザが香味吸引器具等を振るなどの動作をしている間、感覚刺激素子を機能させることにより、ユーザに感覚刺激を与えることができる。それにより、ユーザの動作に基づいて香味吸引器具等が入力データを取得していることを、ユーザに知覚させることができる。 According to the process 2300, when the flavor suction device or the like is not being sucked, the sensory stimulation element is activated while the user is doing an action such as shaking the flavor suction device or the like, thereby providing the user with sensory stimulation. can give This allows the user to perceive that the flavor inhaler or the like is acquiring the input data based on the user's motion.
 本発明の第4実施形態によれば、ユーザが香味吸引器具等を動かすと、多種多様な感覚刺激データが生成される。ユーザが香味吸引器具等を動かしている間、生成された感覚刺激データに基づいて、香味吸引器具等の感覚刺激素子を多種多様な態様で機能させることができる。そのため、ユーザは、香味吸引器具等の動きがセンサによって検知されていること、当該動きを表す入力データが生成されていること、入力データに基づいて感覚刺激データが生成されていることなどを知覚することができる。また、ユーザは、香味吸引器具等を吸引していないときでも、ユーザが予想し得ない態様を含む多種多様な態様の刺激を感じることができる。したがって、ユーザエクスペリエンスを向上させることができる。 According to the fourth embodiment of the present invention, when the user moves the flavor inhaler or the like, various sensory stimulation data are generated. A sensory stimulation element, such as a flavor inhaler, can be caused to function in a wide variety of ways based on the sensory stimulation data generated while the user is moving the flavor inhaler or the like. Therefore, the user perceives that the movement of the flavor inhaler or the like is detected by the sensor, that input data representing the movement is generated, and that sensory stimulation data is generated based on the input data. can do. In addition, even when the user is not inhaling the flavor inhaler or the like, the user can feel stimulation in a wide variety of ways, including those that the user cannot anticipate. Therefore, user experience can be improved.
5 本発明の第5実施形態
 以下、上述した各実施形態に係る香味吸引器具等のハードウェア構成例について説明する。図24は、香味吸引器具等100(100A、100B)のハードウェア構成の一例を示す図であって、特に、香味吸引器具等100の筐体2400とセンサ2420との位置関係の一例を示す図である。
5 Fifth Embodiment of the Present Invention An example of the hardware configuration of the flavor inhaler and the like according to each of the above-described embodiments will be described below. FIG. 24 is a diagram showing an example of the hardware configuration of the flavor suction device 100 (100A, 100B), and in particular, a diagram showing an example of the positional relationship between the housing 2400 of the flavor suction device 100 and the sensor 2420. is.
 本例においては、香味吸引器具等100の筐体2400は、略平行であって一対の略長方形状の2つの面2401、2402を有する厚みのある略直方体形状である。また、図24において、筐体2400における三次元座標系(右手座標系)の3つの座標軸であるX軸、Y軸、Z軸は実線で示され、センサ2420における三次元座標系(右手座標系)の3つの座標軸であるX’軸、Y’軸、Z’軸は破線で示されている。例えば、図24に示されている香味吸引器具等100を、図25に示されるように、ユーザが、親指と、人差し指などの親指以外の指とによって、それぞれ、筐体2400の略直方体形状の厚み部分を構成する略平行の2つの面2411、2412に触れながら筐体2400を(Y軸方向に)挟み込むようにして把持すると仮定すると、筐体2400のX軸周りはユーザが香味吸引器具等100を把持した際の当該ユーザの手首の上下の動きを検出する軸に、Z軸周りは当該ユーザの手首の内外の動きを検出する軸に、Y軸周りは当該ユーザの手首のひねりの動きを検出する軸に、それぞれ対応しうる。ここで、「手首のひねり」とは、ユーザの肘から手首に向かう方向を軸として手(手首)を回転させる動作を意味する。また、「手首の上下」とは、手のひらに垂直な方向を軸として手首を回転させる動作(または、手を小指が下で人差し指が上の状態にし、肘を回転軸として、腕ごと動かす動作)を意味する。また、「手首の内外(の動き)」とは、ユーザの肘から手首に向かう方向に略垂直かつ手のひらに平行な方向を軸として手首を内側に折り曲げたり外側に延ばしたりする動作を意味する(以下、同様)。なお、本例においては筐体2400及びセンサ2420における三次元座標系は右手座標系として説明するが、これに限定されない。左手座標系であってもよいし、それぞれ異なっていてもよい。 In this example, the housing 2400 of the flavor inhaler or the like 100 has a thick, substantially rectangular parallelepiped shape having two substantially parallel and substantially rectangular paired surfaces 2401 and 2402 . In FIG. 24, the three coordinate axes of the three-dimensional coordinate system (right-handed coordinate system) in housing 2400, the X-axis, Y-axis, and Z-axis, are indicated by solid lines, and the three-dimensional coordinate system (right-handed coordinate system) in sensor 2420 ), the three coordinate axes, the X′-axis, Y′-axis and Z′-axis, are indicated by dashed lines. For example, the flavor inhaler 100 shown in FIG. 24 is held by the user with a thumb and a finger other than the thumb, such as the index finger, as shown in FIG. Assuming that the housing 2400 is sandwiched (in the Y-axis direction) while touching the two substantially parallel surfaces 2411 and 2412 that constitute the thickness portion, the user can hold the housing 2400 around the X-axis as a flavor inhaler or the like. 100, the vertical movement of the user's wrist is detected, the Z-axis is the axis for detecting the internal and external movement of the user's wrist, and the Y-axis is the twisting movement of the user's wrist. can correspond to the axes that detect the . Here, "twisting of the wrist" means an action of rotating the hand (wrist) about the direction from the user's elbow to the wrist. In addition, "up and down of the wrist" refers to the action of rotating the wrist around the axis perpendicular to the palm (or the action of moving the arm with the elbow as the axis of rotation, with the little finger at the bottom and the index finger at the top). means In addition, "inside/outside (movement) of the wrist" means the action of bending the wrist inward or extending it outward about a direction substantially perpendicular to the direction from the user's elbow to the wrist and parallel to the palm of the user ( hereinafter the same). In this example, the case 2400 and the sensor 2420 are described as a right-handed coordinate system as the three-dimensional coordinate system, but the present invention is not limited to this. It may be a left-handed coordinate system, or they may be different.
 本例においては、筐体2400における3つの座標軸は、それぞれ、筐体2400の略長方形状の面の長手方向をZ軸とし、略長方形状の面の短手方向をY軸とし、当該Z軸と当該Y軸とに直交する方向(略長方形状の面に垂直な方向であって、略直方体形状の厚み方向)をX軸としている。そして、図24においては、筐体2400における3つの座標軸X軸、Y軸、及びZ軸はそれぞれ、センサ2420における3つの座標軸X’軸、Y’軸、及びZ’軸と略平行となるよう筐体2400とセンサ2420とが配置されている。このように、筐体2400における3つの座標軸の向きと、センサ2420における3つの座標軸の向きとが合致している場合には、センサ2420で検出された振動(データ)は、そのまま筐体2400の振動(データ)となり、振動検出のための処理が簡略化されるため好ましい。ただし、このような構成に限定されるものではなく、筐体2400における3つの座標軸の向きと、センサ2420における3つの座標軸の向きとが合致していない場合には、筐体2400とセンサ2420とにおける3つの座標軸どうしの位置関係は予め分かっているため、センサ2420で検出された振動データに当該位置関係から生じる差分を示すデータを加味して、筐体2400の振動の向きや強さを算出することが可能である。 In this example, the three coordinate axes of the housing 2400 are the Z-axis in the longitudinal direction of the substantially rectangular surface of the housing 2400, the Y-axis in the lateral direction of the substantially rectangular surface, and the Z-axis and the Y-axis (the direction perpendicular to the plane of the substantially rectangular shape and the thickness direction of the substantially rectangular parallelepiped) is defined as the X-axis. In FIG. 24, the three coordinate axes X-axis, Y-axis, and Z-axis in the housing 2400 are substantially parallel to the three coordinate axes X'-axis, Y'-axis, and Z'-axis in the sensor 2420. A housing 2400 and a sensor 2420 are arranged. In this way, when the directions of the three coordinate axes in the housing 2400 and the directions of the three coordinate axes in the sensor 2420 match, the vibration (data) detected by the sensor 2420 is directly transferred to the housing 2400. This is preferable because it becomes vibration (data) and the processing for vibration detection is simplified. However, it is not limited to such a configuration. Since the positional relationship between the three coordinate axes is known in advance, the vibration data detected by the sensor 2420 is combined with the data indicating the difference caused by the positional relationship to calculate the direction and strength of the vibration of the housing 2400. It is possible to
 また、図24の例はあくまで一例であって、例えば、センサ2420における3つの座標軸X’軸、Y’軸、及びZ’軸のうちのいずれか1軸が、筐体2400における3つの座標軸X軸、Y軸、Z軸のいずれかに略平行に配置されていてもよい。この場合であっても、略平行に配置されている筐体2400の座標軸とセンサ2420の座標軸については、センサ2420で検出された振動データについて複雑な計算を行う必要がないため、香味吸引器具等100の振動に関する処理が軽減されうる。 24 is just an example, for example, any one of the three coordinate axes X'-axis, Y'-axis, and Z'-axis in the sensor 2420 may correspond to the three coordinate axes X in the housing 2400. It may be arranged substantially parallel to either the axis, the Y axis, or the Z axis. Even in this case, the coordinate axes of the housing 2400 and the coordinate axes of the sensor 2420, which are arranged substantially parallel, do not require complicated calculations for the vibration data detected by the sensor 2420. The processing for 100 oscillations can be reduced.
 なお、センサ2420は、図1Aのセンサ部112A又は図1Bの112Bに含まれるものであり、図24におけるセンサ2420は、センサ部112A又はセンサ部112Bとして考えてもよい。センサ2420の例は、上述したセンサ220、センサ1420及びセンサ1804を含み得る。 Note that the sensor 2420 is included in the sensor section 112A in FIG. 1A or 112B in FIG. 1B, and the sensor 2420 in FIG. 24 may be considered as the sensor section 112A or the sensor section 112B. Examples of sensor 2420 may include sensor 220, sensor 1420, and sensor 1804 described above.
 図24の上記説明において「略~」の記載は、厳密に合致していなくても構わないとの趣旨である(以下、同様)。例えば「略平行」「略垂直」とは、平行または垂直の位置からの多少のずれは許容する趣旨である。当該ずれは、例えば10°程度であれば差し支えない。 In the above description of FIG. 24, the description of "approximately" means that it does not have to match strictly (the same applies hereinafter). For example, "substantially parallel" and "substantially perpendicular" mean that some deviation from the parallel or perpendicular position is allowed. The deviation may be, for example, about 10°.
 次に、香味吸引器具等100におけるセンサ2420の配置例について説明する。図26~図30は、香味吸引器具等100におけるセンサ2420の配置例を示す図である。図26~図28は、一例として図1Bの香味吸引器具等100Bについて説明し、図29及び図30は、一例として図1Aの香味吸引器具等100Aについて説明する。 Next, an arrangement example of the sensor 2420 in the flavor inhaler 100 will be described. 26 to 30 are diagrams showing an arrangement example of the sensor 2420 in the flavor inhaler 100 or the like. 26 to 28 illustrate the flavor suction device 100B of FIG. 1B as an example, and FIGS. 29 and 30 describe the flavor suction device 100A of FIG. 1A as an example.
 図26においては、香味吸引器具等100Bのスティック型基材150、バッテリ111B(図1Bの電源部111Bに該当、以下同様)、センサ2420(センサ部112B)、マイクロコントローラ116B(図1Bの制御部116Bに該当、以下同様)が示されている。なお、センサ2420(112B)は、香味吸引器具等100Bの筐体中においてスティック型基材150を加熱する加熱部と接触しない位置に配置されている(後述する図27~図30においても同様)。 In FIG. 26, the stick-type base material 150 of the flavor suction device 100B, the battery 111B (corresponding to the power supply unit 111B in FIG. 1B, the same applies hereinafter), the sensor 2420 (sensor unit 112B), the microcontroller 116B (control unit in FIG. 1B) 116B, and so on) is shown. Note that the sensor 2420 (112B) is arranged at a position where it does not come into contact with the heating unit that heats the stick-shaped substrate 150 in the housing of the flavor inhaler or the like 100B (the same applies to FIGS. 27 to 30 described later). .
 また、図26においては、センサ2420(112B)とマイクロコントローラ116Bとは、同一のプリント基板2630上に配置されている。一方、図27及び図28においては、センサ2420(112B)とマイクロコントローラ116Bとは、異なるプリント基板2630上にそれぞれ配置されている。具体的には、第1のプリント基板2630aと第2のプリント基板2630bとがフレキシブル基板2640によって互いに接続されており、マイクロコントローラ116Bは第1のプリント基板2630a上に配置されており、センサ2420(112B)は第2のプリント基板2630b上に配置されている。 Also, in FIG. 26, the sensor 2420 (112B) and the microcontroller 116B are arranged on the same printed circuit board 2630. FIG. On the other hand, in FIGS. 27 and 28, the sensor 2420 (112B) and the microcontroller 116B are arranged on different printed circuit boards 2630, respectively. Specifically, a first printed circuit board 2630a and a second printed circuit board 2630b are connected to each other by a flexible circuit board 2640, a microcontroller 116B is disposed on the first printed circuit board 2630a, and a sensor 2420 ( 112B) are arranged on the second printed circuit board 2630b.
 ここで、センサ2420(112B)は香味吸引器具等100Bの様々な位置に配置することが可能である。しかしながら、図26及び図27のようにセンサ2420(112B)はバッテリ111Bと比較して、香味吸引器具等100Bが生成する物質をユーザが吸引する際にバッテリ111Bよりもユーザに近くなる位置(開口142により近い位置)に配置されていると、ユーザによる香味吸引器具等100Bの特定の動き(モーション)が検出されやすいと思われる。 Here, the sensor 2420 (112B) can be arranged at various positions of the flavor suction device 100B. However, as shown in FIGS. 26 and 27, the sensor 2420 (112B) is located closer to the user than the battery 111B when the user inhales a substance produced by the flavor inhaler 100B, such as a flavor inhaler, compared to the battery 111B. 142), a specific motion of the flavor inhaler or the like 100B by the user is likely to be detected.
 まず、香味吸引器具等100Bは、香味吸引器具等100Bによって生成されるエアロゾル等の物質をユーザが吸引するための器具であるため、通常ユーザは、吸引しやすいように開口142に差し込まれたスティック型基材150を口で咥えやすいように香味吸引器具等100Bを把持するであろうことが想定される。すなわち、吸引時に開口142が上になるように把持すると想定される。この時、ユーザの手首(又は肘)の位置は開口142の位置よりも下方になる。そして、ユーザが香味吸引器具等100Bを振る場合等には、センサ2420(112B)は開口142に近いほどユーザの手首(又は肘)からは遠くなるため、遠心力によって、香味吸引器具等100Bに与えられた振動が検出されやすくなる。 First, the flavor inhaler 100B is a device for a user to inhale substances such as aerosols generated by the flavor inhaler 100B. It is assumed that the flavor inhaler or the like 100B will be held so that the mold substrate 150 can be easily held in the mouth. That is, it is assumed that the opening 142 is held upward during suction. At this time, the position of the user's wrist (or elbow) is below the position of the opening 142 . When the user shakes the flavor suction device 100B, the closer the sensor 2420 (112B) is to the opening 142, the farther it is from the user's wrist (or elbow). Applied vibrations are easier to detect.
 さらに、一般的に香味吸引器具等100Bの各部品等の中でバッテリ111Bの部分が一番重くなることが想定され、ユーザが安定的に香味吸引器具等100Bを把持するためには、バッテリ111B(又はバッテリ111Bの重心)付近を把持する可能性が高い。よって、センサ2420(112B)がバッテリ111B(又はバッテリ111Bの重心)よりも開口142により近い位置に配置されていることにより、ユーザがバッテリ111B付近を把持して香味吸引器具等100Bを振る等の動作によって香味吸引器具等100Bに振動を与えた場合に、当該振動がより検出されやすくなることが期待できる。また、言い換えれば、センサ2420(112B)が香味吸引器具等100Bの重心よりも開口142により近い位置に配置されていることによって、ユーザが香味吸引器具等100Bに与える振動がより検出されやすくなる、と言うこともできる。以上説明したセンサ2420(112B)の香味吸引器具等100Bにおける位置については、後述する図28においても同様である。 Furthermore, it is generally assumed that the battery 111B is the heaviest among the components of the flavor suction device 100B. (or the center of gravity of the battery 111B). Therefore, since the sensor 2420 (112B) is arranged at a position closer to the opening 142 than the battery 111B (or the center of gravity of the battery 111B), the user can grip the vicinity of the battery 111B and shake the flavor inhaler or the like 100B. When vibration is applied to the flavor inhaling instrument 100B by an operation, it can be expected that the vibration will be detected more easily. In other words, the sensor 2420 (112B) is arranged at a position closer to the opening 142 than the center of gravity of the flavor suction device 100B. You can also say The position of the sensor 2420 (112B) described above in the flavor inhaler or the like 100B is the same in FIG. 28 described later.
 なお、図26及び図27の例においては、図24と同様に、香味吸引器具等100Bの筐体は略平行であって一対の略長方形状の2つの面を有する厚みのある略直方体形状であって、センサ2420(112B)におけるX’軸、Y’軸、及びZ’軸が、それぞれ香味吸引器具等100Bの筐体におけるX軸、Y軸、及びZ軸に略平行となるように香味吸引器具等100Bとセンサ2420(112B)とが配置されていてもよい。この場合、図26及び図27、並びに後述する図28は、香味吸引器具等100Bの略長方形状の一方の面(図24の面2401又は面2402に対応)に正対する方向から見た香味吸引器具等100Bの内部の構成を例示する図となる。 In the examples of FIGS. 26 and 27, similarly to FIG. 24, the housing of the flavor inhaler 100B is a thick, substantially rectangular parallelepiped having two substantially parallel and substantially rectangular surfaces. There, the X'-axis, Y'-axis, and Z'-axis of the sensor 2420 (112B) are substantially parallel to the X-axis, Y-axis, and Z-axis of the housing of the flavor suction device 100B, respectively. 100B, such as a suction instrument, and the sensor 2420 (112B) may be arranged. In this case, FIGS. 26 and 27, as well as FIG. 28, which will be described later, show the flavor suction when viewed from a direction facing one substantially rectangular surface (corresponding to the surface 2401 or surface 2402 of FIG. 24) of the flavor suction instrument or the like 100B. It is a figure which illustrates an internal structure of 100B, such as a tool.
 また、図28に示される例においては、図27の例と同様に、センサ2420(112B)とマイクロコントローラ116Bとは、異なるプリント基板2630上にそれぞれ配置されている。すなわち、マイクロコントローラ116Bは第1のプリント基板2630a上に配置されており、センサ2420(112B)は第2のプリント基板2630b上に配置されている。また、図28の例においては、第1のプリント基板2630a及びマイクロコントローラ116Bは、香味吸引器具等100Bの筐体の略長方形状の面(図24のYZ平面)に対して垂直、かつ、図24のXZ平面に平行となる向きに配置されている。また、第2のプリント基板2630b及びセンサ2420(112B)は、香味吸引器具等100Bの筐体の略長方形状の面(図24のYZ平面)に対して垂直、かつ、図24のXY平面に平行となる向きに配置されている。このように、マイクロコントローラ116B及び/又はセンサ2420(112B)が香味吸引器具等100Bの筐体の略長方形状の面に対して垂直となるような向きに配置されることにより、各要素が香味吸引器具等100Bの略長方形状の面において占める面積が小さくなるため、香味吸引器具等100B全体のサイズを小さくすることが可能である。また、図27及び図28のように、センサ2420(112B)とマイクロコントローラ116Bとが、それぞれ異なるプリント基板2630a、2630b上に配置されている場合には、上述したようにセンサ2420(112B)をバッテリ111Bと比較して、香味吸引器具等100Bが生成する物質をユーザが吸引する際にバッテリ111Bよりもユーザに近くなる位置(開口142又はスティック型基材150により近い位置)に配置する際に、バッテリ111Bの位置や大きさに影響を与えることなくセンサ2420(112B)の位置を決定することができるという利点を有する。 Also, in the example shown in FIG. 28, the sensor 2420 (112B) and the microcontroller 116B are arranged on different printed circuit boards 2630, as in the example of FIG. That is, microcontroller 116B is located on a first printed circuit board 2630a and sensor 2420 (112B) is located on a second printed circuit board 2630b. In the example of FIG. 28, the first printed circuit board 2630a and the microcontroller 116B are perpendicular to the substantially rectangular plane (YZ plane in FIG. 24) of the casing of the flavor suction device 100B and 24 are oriented parallel to the XZ plane. In addition, the second printed circuit board 2630b and the sensor 2420 (112B) are perpendicular to the substantially rectangular surface (YZ plane in FIG. 24) of the housing of the flavor inhaler 100B and on the XY plane in FIG. arranged in a parallel direction. In this way, by arranging the microcontroller 116B and/or the sensor 2420 (112B) in a direction perpendicular to the substantially rectangular surface of the housing of the flavor suction device 100B, Since the area occupied by the suction device or the like 100B in the substantially rectangular plane is reduced, the overall size of the flavor suction device or the like 100B can be reduced. 27 and 28, when the sensor 2420 (112B) and the microcontroller 116B are arranged on different printed circuit boards 2630a and 2630b, respectively, the sensor 2420 (112B) is Compared to the battery 111B, when the user inhales a substance generated by the flavor inhaler 100B, the battery 111B is closer to the user (closer to the opening 142 or the stick-shaped base material 150). , the position of sensor 2420 (112B) can be determined without affecting the position or size of battery 111B.
 また、第2のプリント基板2630b上に配置された、センサ2420(112B)において、センサ2420(112B)が取り付けられた第2のプリント基板2630bと接している面とは反対側の面の少なくとも一部は、断熱材2650で覆われていてもよい。香味吸引器具等100Bではスティック型基材150が、図示されない加熱部によって加熱されることによってエアロゾルが発生するが、センサ2420(112B)の第2のプリント基板2630bと接している面とは反対側の面の少なくとも一部が断熱材2650によって覆われることで、センサ2420(112B)を加熱部により発生する熱から守ることができる。これにより、センサ2420(112B)の故障や誤作動を低減することが可能となる。 In addition, in the sensor 2420 (112B) arranged on the second printed circuit board 2630b, at least one surface of the sensor 2420 (112B) opposite to the surface in contact with the second printed circuit board 2630b to which the sensor 2420 (112B) is attached. The part may be covered with insulation 2650 . In the flavor inhaler 100B, the stick-shaped base material 150 is heated by a heating unit (not shown) to generate an aerosol. At least part of the surface of is covered with heat insulating material 2650, so that sensor 2420 (112B) can be protected from heat generated by the heating unit. This makes it possible to reduce failures and malfunctions of the sensor 2420 (112B).
 次に、図29及び図30を用いて香味吸引器具等100におけるセンサ2420の別の配置例を説明する。図29においては、香味吸引器具等100Aのカートリッジ120及び香味付与カートリッジ130(図29においては簡略化して一体的に表されている。図30においても同様。)、バッテリ111A(図1の電源部111Aに該当、以下同様)、センサ(センサ部)112A、マイクロコントローラ116A(図1の制御部116Aに該当、以下同様)が示されている。センサ112Aとマイクロコントローラ116Aとは、同一のプリント基板2930上に配置されている。一方、図30においては、センサ112Aとマイクロコントローラ116Aとは、異なるプリント基板2930上にそれぞれ配置されている。より具体的には、第1のプリント基板2930aと第2のプリント基板2930bとがフレキシブル基板2940によって互いに接続されており、マイクロコントローラ116Aは第1のプリント基板2930a上に配置されており、センサ112Aは第2のプリント基板2930b上に配置されている。 Next, another arrangement example of the sensor 2420 in the flavor inhaler 100 will be described with reference to FIGS. 29 and 30. FIG. In FIG. 29, the cartridge 120 and the flavor imparting cartridge 130 of the flavor suction device 100A (simplified and integrated in FIG. 29. The same applies to FIG. 30.), the battery 111A (the power supply unit in FIG. 1) 111A, the same applies hereinafter), a sensor (sensor unit) 112A, and a microcontroller 116A (corresponds to the control unit 116A in FIG. 1, the same applies hereinafter). Sensor 112A and microcontroller 116A are located on the same printed circuit board 2930. FIG. On the other hand, in FIG. 30, sensor 112A and microcontroller 116A are each located on a different printed circuit board 2930. FIG. More specifically, first printed circuit board 2930a and second printed circuit board 2930b are connected together by flexible board 2940, microcontroller 116A is located on first printed circuit board 2930a, and sensor 112A is located on first printed circuit board 2930a. are arranged on the second printed circuit board 2930b.
 なお、図29及び図30の例においても、図24と同様に、香味吸引器具等100Aの筐体は略平行な略長方形状の2つの面を有する厚みのある略直方体形状であってもよい。図31はそのような略直方体形状の一例として、筐体3100とセンサ3120とが、香味吸引器具等100Aにおいて図29と同様の位置関係で配置された場合の構成を示す図である。ここで、センサ3120は図29のセンサ2420(1112A)に対応する。図31に示される例において、香味吸引器具等100Aの筐体3100は、略平行であって一対の略長方形状の2つの面3101、3102を有する厚みのある略直方体形状であるが、筐体3100の略長方形状の2つの面3101、3102の長手方向の長さが、面3101、3102の短手方向の長さよりも数倍長く、全体として細長い形状となっている。また、図31において、筐体3100における三次元座標系(右手座標系)の3つの座標軸であるX軸、Y軸、Z軸は実線で示され、センサ3120における三次元座標系(右手座標系)の3つの座標軸であるX’軸、Y’軸、Z’軸は破線で示されている。例えば、図31に示されている香味吸引器具等100Aをユーザが、親指と人差し指などの親指以外の指とによってそれぞれ2つの面3101、3102に触れながら筐体3100の厚み部分を(X軸方向に)挟み込むようにして把持すると仮定すると、筐体3100のX軸周りはユーザが香味吸引器具等100Aを把持した際の当該ユーザの手首のひねりの動きを検出する軸に、Z軸周りは当該ユーザの手首の内外の動きを検出する軸に、Y軸周りは当該ユーザの手首の上下の動きを検出する軸に、それぞれ対応しうる。なお、本例においては筐体3100及びセンサ3120における三次元座標系は右手座標系として説明するが、これに限定されない。左手座標系であってもよいし、それぞれ異なっていてもよい。 In the examples of FIGS. 29 and 30, similarly to FIG. 24, the housing of the flavor suction device 100A may have a thick, substantially rectangular parallelepiped shape having two substantially parallel substantially rectangular surfaces. . FIG. 31 is a diagram showing an example of such a substantially rectangular parallelepiped shape in which a housing 3100 and a sensor 3120 are arranged in the same positional relationship as in FIG. 29 in the flavor inhaler 100A. Here, sensor 3120 corresponds to sensor 2420 (1112A) in FIG. In the example shown in FIG. 31, the housing 3100 of the flavor inhaler or the like 100A has a thick, substantially rectangular parallelepiped shape having two substantially parallel and substantially rectangular paired surfaces 3101 and 3102, but the housing The length of the two substantially rectangular surfaces 3101 and 3102 of 3100 in the longitudinal direction is several times longer than the length of the surfaces 3101 and 3102 in the lateral direction, and the shape as a whole is elongated. 31, the three coordinate axes of the three-dimensional coordinate system (right-handed coordinate system) in housing 3100, the X-axis, the Y-axis, and the Z-axis, are indicated by solid lines, and the three-dimensional coordinate system (right-handed coordinate system) in sensor 3120 ), the three coordinate axes, the X′-axis, Y′-axis and Z′-axis, are indicated by dashed lines. For example, using the flavor inhaler 100A shown in FIG. 31, the user touches the two surfaces 3101 and 3102 with a thumb and a finger other than the thumb, such as the index finger, and moves the thickness of the housing 3100 (in the X-axis direction). 2) Assuming that the housing 3100 is gripped in a sandwiched manner, the X-axis of the housing 3100 is the axis for detecting the twisting movement of the user's wrist when the user grips the flavor suction instrument 100A, and the Z-axis is the axis for detecting the movement of the user's wrist. An axis that detects inward and outward movement of a user's wrist may correspond to an axis that detects up and down movement of the user's wrist. In this example, the case 3100 and the sensor 3120 are described as a right-handed coordinate system as a three-dimensional coordinate system, but the present invention is not limited to this. It may be a left-handed coordinate system, or they may be different.
 また、図30の例においては、第1のプリント基板2930a及びマイクロコントローラ116Aは、香味吸引器具等100Aの筐体の略長方形状の面(図24のYZ平面)に対して略平行となる向きである。また、第2のプリント基板2930b及びセンサ112Aは、香味吸引器具等100Aの筐体の略長方形状の面(図24のYZ平面)に対して垂直、かつ、図24のXY平面に平行となる向きに配置されている。ただし、図28の例のように、第1のプリント基板2930a及びマイクロコントローラ116Aも、香味吸引器具等100Aの筐体の略長方形状の面(図24のYZ平面)に対して垂直、かつ、図24のXZ平面に平行となる向きに配置されていてもよい。このように、マイクロコントローラ116A及び/又はセンサ112Aが香味吸引器具等100Bの筐体の略長方形状の面に対して垂直となるような向きに配置されることにより、各要素が香味吸引器具等100Aの略長方形状の面において占める面積が小さくなるため、香味吸引器具等100A全体のサイズを小さくすることが可能である。また、マイクロコントローラ116A及び/又はセンサ112Aが香味吸引器具等100Aの長手方向に垂直(XY平面に平行)に配置されることでも、各要素が香味吸引器具等100Aの略長方形状の面において占める面積が小さくなるため、香味吸引器具等100A全体のサイズを小さくすることが可能である。 In the example of FIG. 30, the first printed circuit board 2930a and the microcontroller 116A are oriented substantially parallel to the substantially rectangular surface (YZ plane in FIG. 24) of the housing of the flavor suction device 100A. is. In addition, the second printed circuit board 2930b and the sensor 112A are perpendicular to the substantially rectangular surface (YZ plane in FIG. 24) of the housing of the flavor suction device 100A and parallel to the XY plane in FIG. placed in the direction. However, as in the example of FIG. 28, the first printed circuit board 2930a and the microcontroller 116A are also perpendicular to the substantially rectangular surface (YZ plane in FIG. 24) of the housing of the flavor inhaler 100A, and It may be arranged in a direction parallel to the XZ plane in FIG. In this way, by arranging the microcontroller 116A and/or the sensor 112A so as to be perpendicular to the substantially rectangular surface of the housing of the flavor suction device 100B, each element can be a flavor suction device. Since the area occupied by the substantially rectangular surface of 100A is reduced, the overall size of 100A, such as the flavor inhaler, can be reduced. Also, by arranging the microcontroller 116A and/or the sensor 112A perpendicularly (parallel to the XY plane) to the longitudinal direction of the flavor suction device 100A, each element occupies the substantially rectangular surface of the flavor suction device 100A. Since the area is reduced, it is possible to reduce the overall size of the flavor inhaler 100A.
 また、図29及び図30においても、図26~図28にて説明したように、センサ112Aはバッテリ111Aと比較して、香味吸引器具等100Aが生成する物質をユーザが吸引する際にバッテリ111Aよりもユーザに近くなる位置(マウスピース124に近い位置)に配置されていると、ユーザによる香味吸引器具等100Aの特定の動き(モーション)が検出されやすいと思われる。 Also, in FIGS. 29 and 30, as described with reference to FIGS. 26 and 28, the sensor 112A is more sensitive to the battery 111A than the battery 111A when the user inhales the substance generated by the flavor inhaler 100A. If it is placed at a position closer to the user (a position closer to the mouthpiece 124) than the user's specific movement (motion) of the flavor inhaler 100A or the like is likely to be detected.
 また、図1Aの香味吸引器具等100Aは、全体として略円筒形状であってもよい。図32は、香味吸引器具等100Aが細長い略円筒形状である場合の正面図の一例を示す図である。図32の例においては、香味吸引器具等100Aは略円筒形状の筐体3200を有し、ユーザの操作のためのボタン3205を側面に備えている。ここで、例えば、ボタン3205の表面が略平面であるとして、この面に直交する直線方向を筐体3200のY軸とし、細長い略円筒形状の筐体3200の長手方向をZ軸とすると、右手座標系において、X軸方向は筐体3200の短手方向(略円筒(略円柱)形状の底面の直径方向)となる。また、この時、センサ3220における三次元座標系(右手座標系)の3つの座標軸であるX’軸、Y’軸、Z’軸は、図32において破線で示されているように、それぞれ、筐体3200のX軸、Y軸、Z軸に略平行となるようにセンサ3220が配置されていてもよい。このように、筐体3200における3つの座標軸の向きと、センサ3220における3つの座標軸の向きとが合致している場合には、センサ3220で検出された振動(データ)は、そのまま筐体3200の振動(データ)となり、振動検出のための処理がより簡略化されるため好ましい。ただし、このような構成に限定されるものではなく、筐体3200における3つの座標軸の向きと、センサ3220における3つの座標軸の向きとが合致していなくてもよい。 In addition, the flavor inhaler or the like 100A in FIG. 1A may have a substantially cylindrical shape as a whole. FIG. 32 is a diagram showing an example of a front view of a case where the flavor inhaler or the like 100A has an elongated substantially cylindrical shape. In the example of FIG. 32, the flavor inhaler or the like 100A has a substantially cylindrical housing 3200 and has a button 3205 on the side thereof for user operation. Here, for example, assuming that the surface of the button 3205 is substantially flat, the linear direction orthogonal to this surface is the Y-axis of the housing 3200, and the longitudinal direction of the elongated substantially cylindrical housing 3200 is the Z-axis. In the coordinate system, the X-axis direction is the lateral direction of the housing 3200 (the diameter direction of the bottom surface of the substantially cylindrical (substantially columnar) shape). Also, at this time, the three coordinate axes of the three-dimensional coordinate system (right-handed coordinate system) in the sensor 3220, the X'-axis, the Y'-axis, and the Z'-axis, are as indicated by broken lines in FIG. The sensor 3220 may be arranged substantially parallel to the X-axis, Y-axis, and Z-axis of the housing 3200 . In this way, when the directions of the three coordinate axes of the housing 3200 and the directions of the three coordinate axes of the sensor 3220 match, the vibration (data) detected by the sensor 3220 is directly transferred to the housing 3200. This is preferable because it becomes vibration (data) and the processing for vibration detection is simplified. However, the configuration is not limited to such a configuration, and the directions of the three coordinate axes in the housing 3200 and the directions of the three coordinate axes in the sensor 3220 may not match.
 また、図32においてユーザがボタン3205を親指で操作できるように親指をボタン3205に触れるようにして筐体3200を挟んで把持することを前提とすると、筐体3200のX軸周りはユーザが香味吸引器具等100を把持した際の当該ユーザの手首の上下の動きを検出する軸に、Z軸周りは当該ユーザの手首の内外の動きを検出する軸に、Y軸周りは当該ユーザの手首のひねりの動きを検出する軸に、それぞれ対応しうる(ただし、これは一例であって、各軸をユーザの手首のいずれの動作に対応させるかは適宜決定すればよい。図24、図31においても同様)。また、香味吸引器具等100Aがボタン3205を有していない場合には、略円筒形状の筐体3200の側面3201にロゴやLEDが備えられている場合には、その部分を平面と仮定して、図32と同様に筐体3200の3軸を設定してもよい。なお、「略円筒形状」とは、筐体3200の全体としてほぼ円筒形状であればよく、厳密に円筒形状でなくてもよいという意味である。 Also, in FIG. 32, assuming that the user grips the housing 3200 with the thumb in contact with the button 3205 so that the user can operate the button 3205 with the thumb, the housing 3200 around the X-axis can be manipulated by the user. The axis for detecting the vertical movement of the user's wrist when the suction device or the like 100 is gripped, the Z axis for detecting the internal and external movement of the user's wrist, and the Y axis for the user's wrist. Each axis can correspond to an axis for detecting a twist movement (however, this is just an example, and it may be determined as appropriate to which movement of the user's wrist each axis corresponds to. In FIGS. 24 and 31, as well). In addition, when the flavor suction device 100A does not have the button 3205, and the side surface 3201 of the substantially cylindrical housing 3200 is provided with a logo or LED, that portion is assumed to be flat. , three axes of the housing 3200 may be set in the same manner as in FIG. Note that the “substantially cylindrical shape” means that the housing 3200 as a whole may have a substantially cylindrical shape, and does not have to be strictly cylindrical.
 なお、上述した各例において、センサ2420は、加速度センサや角速度センサ(ジャイロセンサ)等の慣性センサ(モーションセンサ)であってもよい。また、加速度センサ及び角速度センサが検出する軸は、1~3軸のいずれでもよい。また、角速度センサの検出範囲は特定の範囲に限定されないが、好ましくは±100~±5000dps、より好ましくは±300~±2000dpsである。 In each example described above, the sensor 2420 may be an inertial sensor (motion sensor) such as an acceleration sensor or an angular velocity sensor (gyro sensor). Further, the axes detected by the acceleration sensor and the angular velocity sensor may be any one of 1 to 3 axes. Also, the detection range of the angular velocity sensor is not limited to a specific range, but is preferably ±100 to ±5000 dps, more preferably ±300 to ±2000 dps.
 ここまで、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。 Although the embodiments of the present invention have been described so far, it goes without saying that the present invention is not limited to the above-described embodiments, and may be implemented in various forms within the scope of its technical ideas.
 また、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらすすべての実施形態をも含む。さらに、本発明の範囲は、各請求項により画される発明の特徴の組み合わせに限定されるものではなく、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。 In addition, the scope of the present invention is not limited to the illustrated and described exemplary embodiments, but includes all embodiments that achieve effects equivalent to those intended by the present invention. Furthermore, the scope of the invention is not limited to the combination of inventive features defined by each claim, but may be defined by any desired combination of the particular features of each of the disclosed features. .
 100A、100B、200、1400、1800、2000…香味吸引器具等
 110…電源ユニット
 111A、111B…電源部
 112A、112B…センサ部
 113A、113B…通知部
 114A、114B…記憶部
 115A、115B、1808、1814…通信部
 116A、116B、240、1440、1806、1816、2040…制御部
 117A、117B、230、1430、1812、2030…変換部
 120…カートリッジ
 121A、121B…加熱部
 122…液誘導部
 123…液貯蔵部
 124…マウスピース
 130…香味付与カートリッジ
 131…香味源
 140…保持部
 141…内部空間
 142…開口
 143…底部
 144…断熱部
 150…スティック型基材
 151…基材部
 152…吸口部
 180…空気流路
 181…空気流入孔
 182…空気流出孔
 210、1802…振動子
 220、1420、1804、2020、2420、3120、3220…センサ
 1410、1803…機能主体
 1810…外部装置
 2010…感覚刺激素子
 2400、3100、3200…筐体
 2630、2630a、2630b、2930、2930a、2930b…プリント基板
 2640、2940…フレキシブル基板
 2650…断熱材
 3205…ボタン
 
100A, 100B, 200, 1400, 1800, 2000... Flavor inhaler, etc. 110... Power supply unit 111A, 111B... Power supply unit 112A, 112B... Sensor unit 113A, 113B... Notification unit 114A, 114B... Storage unit 115A, 115B, 1808, 1814... communication section 116A, 116B, 240, 1440, 1806, 1816, 2040... control section 117A, 117B, 230, 1430, 1812, 2030... conversion section 120... cartridge 121A, 121B... heating section 122... liquid guide section 123... Liquid storage part 124 Mouthpiece 130 Flavor imparting cartridge 131 Flavor source 140 Holding part 141 Internal space 142 Opening 143 Bottom 144 Heat insulating part 150 Stick-shaped base material 151 Base material part 152 Mouthpiece part 180 Air flow path 181 Air inflow hole 182 Air outflow hole 210, 1802 Vibrator 220, 1420, 1804, 2020, 2420, 3120, 3220 Sensor 1410, 1803 Main function 1810 External device 2010 Sensory stimulation element 2400, 3100, 3200... Housing 2630, 2630a, 2630b, 2930, 2930a, 2930b... Printed circuit board 2640, 2940... Flexible board 2650... Heat insulating material 3205... Button

Claims (9)

  1. 香味吸引器具又はエアロゾル生成装置であるデバイスであって、
     筐体と、
     香味源又はエアロゾル源を加熱する加熱部と、
     角速度または加速度の変化を検出する慣性センサと
    を備え、
     前記慣性センサは前記筐体中において、前記加熱部と接触しない位置に配置されている、デバイス。
    A device that is a flavor inhaler or an aerosol generator,
    a housing;
    a heating unit that heats the flavor source or the aerosol source;
    an inertial sensor that detects changes in angular velocity or acceleration,
    The device according to claim 1, wherein the inertial sensor is arranged in the housing at a position that does not come into contact with the heating unit.
  2. 請求項1に記載のデバイスであって、
     前記慣性センサにおける互いに直交する3つの座標軸のうちのいずれか1軸は、前記筐体における互いに直交する3つの座標軸のいずれかに略平行に配置されている、デバイス。
    2. The device of claim 1, comprising:
    The device, wherein any one of three mutually orthogonal coordinate axes in the inertial sensor is arranged substantially parallel to any one of three mutually orthogonal coordinate axes in the housing.
  3. 請求項2に記載のデバイスであって、
     前記筐体は、略長方形状の面を有する厚みのある略直方体形状であり、
     前記筐体における前記3つの座標軸は、それぞれ前記略長方形状の長手方向をZ軸とし、前記略長方形状の短手方向をY軸とし、前記Z軸と前記Y軸とに直交する方向をX軸とした場合に、前記慣性センサにおけるX軸、Y軸、Z軸が、それぞれ前記筐体における前記X軸、前記Y軸、前記Z軸に略平行となるよう前記筐体と前記慣性センサとが配置されている、デバイス。
    3. The device of claim 2, wherein
    The housing has a thick, substantially cuboid shape with a substantially rectangular surface,
    The three coordinate axes in the housing are respectively defined by the longitudinal direction of the substantially rectangular shape as the Z axis, the lateral direction of the substantially rectangular shape as the Y axis, and the direction perpendicular to the Z axis and the Y axis as the X axis. The housing and the inertial sensor are arranged such that the X-axis, the Y-axis, and the Z-axis of the inertial sensor are substantially parallel to the X-axis, the Y-axis, and the Z-axis of the housing, respectively. is located on the device.
  4. 請求項2に記載のデバイスであって、
     前記筐体は、略円筒形状であり、前記筐体の表面にボタンまたは発光素子を有しており、前記筐体における前記3つの座標軸は、それぞれ前記略円筒形状の長手方向をZ軸とし、前記ボタンまたは発光素子に対して垂直な方向をY軸とし、前記Z軸と前記Y軸とに直交する方向をX軸とした場合に、前記慣性センサにおけるX軸、Y軸、Z軸が、それぞれ前記筐体における前記X軸、前記Y軸、前記Z軸に略平行となるよう前記筐体と前記慣性センサとが配置されている、デバイス。
    3. The device of claim 2, wherein
    The housing has a substantially cylindrical shape, and has a button or a light-emitting element on the surface of the housing, and the three coordinate axes in the housing have the Z axis in the longitudinal direction of the substantially cylindrical shape, When the direction perpendicular to the button or light-emitting element is the Y-axis, and the direction orthogonal to the Z-axis and the Y-axis is the X-axis, the X-axis, Y-axis, and Z-axis of the inertial sensor are: A device, wherein the housing and the inertial sensor are arranged so as to be substantially parallel to the X-axis, the Y-axis, and the Z-axis of the housing, respectively.
  5. 請求項1から4の何れか一項に記載のデバイスであって、
     マイクロコントローラをさらに備え、
     前記慣性センサは、前記マイクロコントローラが取り付けられた基板に取り付けられている、デバイス。
    5. A device according to any one of claims 1 to 4,
    further equipped with a microcontroller,
    The device, wherein the inertial sensor is attached to a substrate on which the microcontroller is attached.
  6. 請求項1から4の何れか一項に記載のデバイスであって、
     マイクロコントローラをさらに備え、
     前記慣性センサは、前記マイクロコントローラが取り付けられた基板と異なる基板に取り付けられている、デバイス。
    5. A device according to any one of claims 1 to 4,
    further equipped with a microcontroller,
    The device, wherein the inertial sensor is mounted on a substrate different from the substrate on which the microcontroller is mounted.
  7. 請求項4から6の何れか一項に記載のデバイスであって、
     前記慣性センサにおいて、前記慣性センサが取り付けられた基板と接している面とは反対側の面の少なくとも一部は、断熱材で覆われている、デバイス。
    A device according to any one of claims 4 to 6,
    A device according to claim 1, wherein at least part of a surface of the inertial sensor opposite to a surface in contact with a substrate to which the inertial sensor is attached is covered with a heat insulating material.
  8. 請求項1から7の何れか一項に記載のデバイスであって、
     前記デバイスはバッテリを有し、
     前記慣性センサは前記バッテリと比較して、前記香味吸引器具又は前記エアロゾル生成装置が生成する物質をユーザが吸引する際に前記バッテリよりも当該ユーザに近くなる位置に配置されている、デバイス。
    A device according to any one of claims 1 to 7,
    the device has a battery;
    The device, wherein the inertial sensor is positioned closer to the user than the battery when the user inhales a substance produced by the flavor inhaler or the aerosol generator compared to the battery.
  9. 請求項1から7の何れか一項に記載のデバイスであって、
     前記慣性センサは角速度センサである、デバイス。
    A device according to any one of claims 1 to 7,
    The device, wherein the inertial sensor is an angular rate sensor.
PCT/JP2022/037546 2021-10-08 2022-10-07 Flavor inhalation instrument or aerosol generation device WO2023058739A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021166337 2021-10-08
JP2021-166337 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023058739A1 true WO2023058739A1 (en) 2023-04-13

Family

ID=85804348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037546 WO2023058739A1 (en) 2021-10-08 2022-10-07 Flavor inhalation instrument or aerosol generation device

Country Status (1)

Country Link
WO (1) WO2023058739A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042504A (en) * 2001-07-30 2003-02-13 Daikin Ind Ltd Air conditioner
JP2010213908A (en) * 2009-03-17 2010-09-30 Omron Healthcare Co Ltd Electric toothbrush
US20150122252A1 (en) * 2013-11-01 2015-05-07 Kevin FRIJA Hand-held personal vaporizer
JP2017509339A (en) 2014-03-13 2017-04-06 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Aerosol delivery device and related method and computer program product for controlling an aerosol delivery device based on input characteristics
WO2017187846A1 (en) * 2016-04-27 2017-11-02 川崎重工業株式会社 Bearing temperature detection device for railway vehicle bogies
WO2018025380A1 (en) * 2016-08-04 2018-02-08 日本たばこ産業株式会社 Flavor inhaler
JP2019187428A (en) * 2012-10-19 2019-10-31 ニコベンチャーズ ホールディングス リミテッド Electronic inhalation device
WO2020008028A1 (en) 2018-07-06 2020-01-09 Philip Morris Products S.A. Aerosol-generating device with adaptable haptic feedback
JP2020511989A (en) * 2017-03-29 2020-04-23 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Aerosol delivery device with improved nebulizer
WO2020213450A1 (en) * 2019-04-19 2020-10-22 株式会社村田製作所 Battery pack, non-combustion-type inhaler, electronic equipment, electric tool and unmanned aerial vehicle
WO2020234053A1 (en) 2019-05-17 2020-11-26 Philip Morris Products S.A. An aerosol-generating system and haptic output element for an aerosol-generating system
JP2021058212A (en) 2014-12-09 2021-04-15 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Gesture recognition user interface for aerosol delivery device
KR20210101048A (en) * 2020-02-07 2021-08-18 주식회사 케이티앤지 Aerosol generating device and operation method thereof
WO2021199159A1 (en) * 2020-03-30 2021-10-07 日本たばこ産業株式会社 Control device, control method, and program

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042504A (en) * 2001-07-30 2003-02-13 Daikin Ind Ltd Air conditioner
JP2010213908A (en) * 2009-03-17 2010-09-30 Omron Healthcare Co Ltd Electric toothbrush
JP2019187428A (en) * 2012-10-19 2019-10-31 ニコベンチャーズ ホールディングス リミテッド Electronic inhalation device
US20150122252A1 (en) * 2013-11-01 2015-05-07 Kevin FRIJA Hand-held personal vaporizer
JP2017509339A (en) 2014-03-13 2017-04-06 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Aerosol delivery device and related method and computer program product for controlling an aerosol delivery device based on input characteristics
JP2021058212A (en) 2014-12-09 2021-04-15 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Gesture recognition user interface for aerosol delivery device
WO2017187846A1 (en) * 2016-04-27 2017-11-02 川崎重工業株式会社 Bearing temperature detection device for railway vehicle bogies
WO2018025380A1 (en) * 2016-08-04 2018-02-08 日本たばこ産業株式会社 Flavor inhaler
JP2020511989A (en) * 2017-03-29 2020-04-23 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Aerosol delivery device with improved nebulizer
WO2020008028A1 (en) 2018-07-06 2020-01-09 Philip Morris Products S.A. Aerosol-generating device with adaptable haptic feedback
WO2020213450A1 (en) * 2019-04-19 2020-10-22 株式会社村田製作所 Battery pack, non-combustion-type inhaler, electronic equipment, electric tool and unmanned aerial vehicle
WO2020234053A1 (en) 2019-05-17 2020-11-26 Philip Morris Products S.A. An aerosol-generating system and haptic output element for an aerosol-generating system
KR20210101048A (en) * 2020-02-07 2021-08-18 주식회사 케이티앤지 Aerosol generating device and operation method thereof
WO2021199159A1 (en) * 2020-03-30 2021-10-07 日本たばこ産業株式会社 Control device, control method, and program

Similar Documents

Publication Publication Date Title
US10945914B1 (en) Accessory for adult toy, and system and method for providing adult entertainment implementing adult toy
JP6668480B2 (en) Flavor inhaler
JP2019515704A (en) Electronic steam supply system
JP7296009B2 (en) Control device, control method, and program
WO2023058739A1 (en) Flavor inhalation instrument or aerosol generation device
WO2023058743A1 (en) Flavor inhaler or aerosol generation device
WO2023058740A1 (en) Flavor inhalation instrument or aerosol generation device, and control method and program therefor
WO2023058738A1 (en) Flavor inhaler or aerosol generation device, device communicating therewith, and control method and program for same
WO2023058744A1 (en) Fragrance inhaler or aerosol generating device, control method thereof, and program thereof
WO2023058741A1 (en) Fragrance inhaler or aerosol generating device, control method thereof, and program thereof
JP2019017418A5 (en)
CN109663348A (en) A kind of operation handle
WO2021059380A1 (en) Battery unit, information processing method, and program
JP7369294B2 (en) Suction device, control method, and program
JP7256880B2 (en) Cartridge and aerosol generator containing same
EP4331408A1 (en) Power unit for inhaler
JP7312269B2 (en) Cartridge and aerosol generator containing same
KR102536916B1 (en) Method for controlling aerosol generate apparatus by an external device and aerosol generating system
JPS6338468A (en) Inhalator
JP7179158B2 (en) Information processing device, information processing method, and program
WO2022219677A1 (en) Information processing device and information processing method
KR20240053664A (en) Flavor inhalation device or aerosol generating device, control method thereof and program thereof
WO2023079588A1 (en) Flavor inhaler or aerosol generating device, and control method therefor and program therefor
WO2022219676A1 (en) Information processing device and information processing method
JP7358626B2 (en) Information processing device, information processing method, and information processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878606

Country of ref document: EP

Kind code of ref document: A1