WO2023058704A1 - Method for producing thin film formed from dense single layer film of nanosheet and usage of thin film - Google Patents

Method for producing thin film formed from dense single layer film of nanosheet and usage of thin film Download PDF

Info

Publication number
WO2023058704A1
WO2023058704A1 PCT/JP2022/037373 JP2022037373W WO2023058704A1 WO 2023058704 A1 WO2023058704 A1 WO 2023058704A1 JP 2022037373 W JP2022037373 W JP 2022037373W WO 2023058704 A1 WO2023058704 A1 WO 2023058704A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
oxide
nanosheets
film
nanosheet
Prior art date
Application number
PCT/JP2022/037373
Other languages
French (fr)
Japanese (ja)
Inventor
実 長田
越 施
亮 小林
瑛祐 山本
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Publication of WO2023058704A1 publication Critical patent/WO2023058704A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides

Definitions

  • the present invention relates to a method for producing a thin film consisting of a dense monolayer film of nanosheets, and uses of the thin film.
  • Non-Patent Document 1 discloses the Langmuir-Blodgett (LB) method.
  • LB Langmuir-Blodgett
  • this technique After the nanosheet colloidal dispersion is spread in a trough, surface pressure is applied to adsorb the nanosheets to the air-liquid interface, and then the nanosheets are transferred to the substrate to obtain an arrayed nanosheet monolayer film.
  • this technique has problems such as a long film-forming time, a need for a special apparatus, a complicated film-forming operation, and a small area of a substrate on which a film can be formed.
  • Non-Patent Document 2 discloses a spin coating method. In this technique, a small amount of an organic solvent sol in which nanosheets are dispersed in an organic solvent is dropped onto a substrate and spin-coated to obtain a densely-packed monolayer film of nanosheets.
  • this technique has problems such as the need for pretreatment of the solution and the need for precise setting of conditions.
  • Non-Patent Documents 1 and 2 require a large amount of solution consumption, and as a result, 95% or more of the solution is discarded.
  • the purpose of the present invention is to newly provide a method for producing a thin film consisting of a dense monolayer film of nanosheets.
  • the inventors of the present invention have devoted themselves to research in order to achieve the above objectives.
  • the inventors (1) A colloidal aqueous solution in which nanosheets from which a layered compound is exfoliated is dispersed is developed in pure water, and then (2) forming a densely aligned film of the nanosheets at the air/water interface, and then (3) transferring the densely aligned film of the nanosheets to a substrate, Developed to manufacture thin films.
  • the present inventors have found that this nanosheet densely-arranged film can solve the problems remaining in conventional nanosheet thin film manufacturing methods.
  • the present invention relates to the following method for producing a thin film composed of a dense monolayer film of nanosheets and uses of the thin film.
  • Section 1 A method for producing a thin film, (1) A process of developing a colloidal aqueous solution in which nanosheets are dispersed on the water surface, (2) forming a dense monolayer film of the nanosheets at the gas-liquid interface; and (3) transferring the dense monolayer film of the nanosheets to a substrate, forming a thin film consisting of a dense monolayer film of said nanosheets; Thin film manufacturing method.
  • the nanosheet is a nanosheet in which a layered compound is delaminated, 2.
  • Compounds constituting the layered compound include titanium oxide, perovskite oxide, manganese oxide, cobalt oxide, silicon oxide, tungsten oxide, niobium oxide, tantalum oxide, titanium/niobium oxide, titanium/tantalum oxide, and molybdenum oxide. , ruthenium oxide, graphene, graphite oxide, hexagonal boron nitride, mica, transition metal chalcogenite, and at least one compound selected from the group consisting of transition metal carbide, 3. A method for producing a thin film according to item 2 above.
  • the colloidal aqueous solution is an alcohol-containing colloidal aqueous solution, 4.
  • Item 5 By repeating the steps (1) to (3), forming a stack of dense monolayer films of the nanosheets; 5. A method for producing a thin film according to any one of Items 1 to 4.
  • Item 6 In at least one step of steps (1) to (3), (4) a step of irradiating the nanosheet with ultraviolet rays to remove organic substances between single layers of the nanosheet; 6.
  • Item 7 An optical thin film comprising a thin film produced by the method for producing a thin film according to any one of Items 1 to 6.
  • Item 8 A dielectric thin film comprising a thin film produced by the method for producing a thin film according to any one of Items 1 to 6.
  • Item 9 A conductive thin film comprising a thin film produced by the method for producing a thin film according to any one of Items 1 to 6.
  • Item 10 A thin film having a release agent content of 100 ppmwt or less, produced by the method for producing a thin film according to any one of Items 1 to 6 above.
  • Item 11 a thin film, Consisting of a dense monolayer film of nanosheets,
  • the nanosheets include titanium oxide, perovskite oxide, manganese oxide, cobalt oxide, silicon oxide, tungsten oxide, niobium oxide, tantalum oxide, titanium/niobium oxide, titanium/tantalum oxide, molybdenum oxide, ruthenium oxide, and graphene. , graphite oxide, hexagonal boron nitride, mica, transition metal chalcogenite, and transition metal carbide.
  • the method for producing a thin film composed of a dense monolayer film of nanosheets of the present invention (the method for producing a thin film of the present invention)
  • a film is formed on a colloidal aqueous solution in which nanosheets are suspended, and transferred to a substrate to form a thin film.
  • the thin film manufacturing method of the present invention can shorten the nanosheet manufacturing time compared to conventional manufacturing methods such as dip coating and spin coating, and the manufactured nanosheet thin film has a denser structure.
  • the nanosheet (TiO 2 , RuO 2 , etc.) thin film (the thin film of the present invention) produced by the thin film production method of the present invention has a dense and large-area coating structure.
  • the present invention can newly provide a method for producing a thin film consisting of a dense monolayer film of nanosheets.
  • FIG. 1 shows an example of a method for producing a thin film of the present invention.
  • FIG. 2 presents an illustration of the monolayer coverage of the thin films of the present invention.
  • FIG. 3 shows examples of thin films (single-layer films and multilayer films) of the present invention.
  • FIG. 4 shows an application example of the thin film manufacturing method of the present invention.
  • FIG. 5 shows an example (Example 1) of the method for producing a thin film of the present invention.
  • FIG. 6 shows an example of the method for producing a thin film of the present invention (Example 2).
  • FIG. 7 shows an example (Example 3) of the method for producing a thin film of the present invention.
  • FIG. 8 shows an example (Example 4) of the method for producing a thin film of the present invention.
  • FIG. 1 shows an example of a method for producing a thin film of the present invention.
  • FIG. 2 presents an illustration of the monolayer coverage of the thin films of the present invention.
  • FIG. 3 shows examples of thin
  • FIG. 9 shows an example of the method for producing a thin film of the present invention (Example 5).
  • FIG. 10 shows an example of the method for producing a thin film of the present invention (Example 6).
  • FIG. 11 shows the superiority of the thin film manufacturing method of the present invention.
  • Method for producing thin films consisting of dense monolayer films of nanosheets comprises: (1) A process of developing a colloidal aqueous solution in which nanosheets are dispersed on the water surface, (2) forming a dense monolayer film of the nanosheets at the gas-liquid interface; and (3) transferring the dense monolayer film of the nanosheets to a substrate, It is characterized by forming a thin film composed of a dense monolayer film of the nanosheet.
  • the thin film manufacturing method of the present invention employs an interfacial transfer method in which a dense monolayer film of nanosheets is formed on the gas-liquid interface, and then the dense monolayer film of nanosheets is transferred to a substrate.
  • the thin film manufacturing method of the present invention includes, for example, (1) a colloidal aqueous solution (TiO 2 , RuO 2 , nanosheet ink such as GO) is developed (ink drop), then (2) step of forming a nanosheet densely arranged film at the air/water interface (formation of dense film), then (3) ) includes the step of transferring (substrate transfer) a nanosheet densely arranged film (Film) to a substrate (Substrate, metal, glass, PET, etc.).
  • a colloidal aqueous solution TiO 2 , RuO 2 , nanosheet ink such as GO
  • step of forming a nanosheet densely arranged film at the air/water interface formation of dense film
  • (3) includes the step of transferring (substrate transfer) a nanosheet densely arranged film (Film) to a substrate (Substrate, metal, glass, PET, etc.).
  • a dense monolayer film of nanosheets (Ti 0.87 O 2 etc.) can be produced in a large area in a short time (about 30 seconds) with a simple operation (low cost etc.).
  • a simple operation low cost etc.
  • I can do things.
  • an alcohol-added solution is used as the colloidal aqueous solution, so that a high-quality nanosheet monolayer film in which nanosheets are densely arranged can be produced by a simple operation in a short time. It can be manufactured.
  • the coverage rate of the nanosheets was about 80%, and the void portions (defective portions) of the nanosheets were about 20%.
  • the dense monolayer film of the nanosheets of the present invention is in a state in which the nanosheets are densely arranged without gaps.
  • the coverage ratio (single layer portion) of the dense monolayer film of the nanosheet is usually about 90% or more (area ratio).
  • the gap portion (defective portion) of the nanosheet is usually in the range of 0% or more and about 10% or less (area ratio).
  • the monolayer coverage of the nanosheets is preferably 90% or more, more preferably 95% or more, and still more preferably 97% or more in terms of area ratio. Yes, and particularly preferably 98% or more.
  • the area ratio of gaps (defective parts) in the nanosheet is preferably 10% or less, more preferably 5% or less, and still more preferably 2% or less.
  • the dense monolayer film coverage of the nanosheets of the present invention can be evaluated by atomic force microscopy, confocal laser scanning microscopy, or scanning electron microscopy.
  • Atomic force microscopy distinguishes between single-layered and multi-layered parts (overlapping single-layered parts, overlapping parts, bright parts) and defect parts (parts without nanosheets, dark parts). By evaluating the area ratio with other portions, it is possible to evaluate the single layer coverage.
  • the dense monolayer film of nanosheets is analyzed based on the contrast between the optical image and the secondary electron image.
  • the single layer coverage can be evaluated by distinguishing from the dark portion and evaluating the area ratio of the single layer portion and the other portions.
  • the thin film production method (interface integration method) of the present invention makes it possible to produce a dense monolayer film of nanosheets with a nanosheet coverage of 95% or more in a large area and at a high yield.
  • Step of developing a colloidal aqueous solution in which nanosheets are dispersed on a water surface The water surface is preferably a pure water surface.
  • the nanosheet is preferably a nanosheet in which a layered compound is delaminated.
  • a stripping agent such as tetrabutylammonium ion (TBA + ) is used for single layer stripping.
  • a stripping agent is used to strip the surfactant.
  • the compound constituting the layered compound is preferably titanium oxide, perovskite oxide, manganese oxide, cobalt oxide, silicon oxide, tungsten oxide, niobium oxide, tantalum oxide, titanium/niobium oxide, titanium/tantalum oxide, oxide At least one compound selected from the group consisting of molybdenum oxide, ruthenium oxide, graphene, graphite oxide, hexagonal boron nitride, mica, transition metal chalcogenite, and transition metal carbide.
  • the layered titanium oxide can preferably be synthesized by a solid-phase synthesis method.
  • Representative substances constituting layered compounds are preferably graphene, graphene oxide, oxides, hydroxides, hexagonal boron nitride, transition metal chalcogenites, transition metal carbides, and the like.
  • Nanosheets obtained by single-layer exfoliation of these layered compounds are sheet-like nanomaterials with high two-dimensional anisotropy of lateral size of several hundred nm to several tens of ⁇ m with respect to the thickness of several atoms. Nanosheets composed of these layered compounds reflect their chemical composition and structure, and have excellent electronic and ionic conductivity, semiconductor properties, insulating properties, high dielectric properties, ferroelectric properties, ferromagnetism, fluorescence properties, photocatalytic properties, etc. characterize.
  • Titanium oxide (Ti 0.87 O 2 ) nanosheets have a high refractive index and dielectric constant, and can be used for optical and dielectric applications.
  • Nanosheets of titanium oxide (Ti 1- ⁇ O 2 ) exhibit properties such as semiconducting properties and photocatalytic properties.
  • Perovskite (Ca 2 Nb 3 O 10 ) nanosheets have high dielectric constant (high dielectric) and insulating properties, and can be applied to dielectrics. Perovskite (Ca 2 Nb 3 O 10 ) nanosheets exhibit properties such as high heat resistance.
  • Ruthenium oxide (RuO 2 ) nanosheets have high conductivity (conductivity), can be applied to conductors, and function as excellent transparent conductive films.
  • Graphene oxide (GO) nanosheets have electrical insulation and high ionic conductivity, and can be applied to electrocatalysts.
  • Graphene oxide (GO) nanosheets exhibit properties such as semiconductivity.
  • Hexagonal boron nitride (h-BN) nanosheets have electrical insulation, high withstand voltage, and high thermal conductivity, and can be applied to insulating films and heat dissipation substrates.
  • Nanosheets of photochromic films exhibit photochromic properties.
  • MXenes Conductive two-dimensional (2D) carbide, nitride, and carbonitride nanosheets known as MXenes exhibit conductive properties.
  • the general structure of MXene is M n+1 X n T x .
  • M is an early transition metal (Ti, V, Nb, etc.).
  • X is C or N (or both).
  • the range of n is 1-4.
  • T x represents the surface termination (typically -O, -OH, and -F), with n+1 layers of M covering n layers of X in the [MX] n M arrangement.
  • Nanosheets composed of these layered compounds can be applied to inorganic nanosheets with various compositions and structures.
  • the method for producing a thin film of the present invention is an extremely versatile film-forming technique that allows nanosheets composed of these layered compounds to be formed on various substrates.
  • colloidal aqueous solution a colloidal aqueous solution (about 0.004% by mass) obtained by further diluting a colloidal aqueous solution containing about 0.4% by mass of a layered compound (layered titanium oxide, etc.) by 100 is preferably used.
  • the colloidal aqueous solution is preferably an alcohol-containing colloidal aqueous solution.
  • a dense nanosheet monolayer film can be easily manufactured by adding alcohol to the nanosheet colloidal solution.
  • the concentration difference due to alcohol evaporation is used, and the convection phenomenon is used.
  • the colloidal aqueous solution in which the nanosheets are dispersed is dropped (developed) on the water surface, the dropped colloidal aqueous solution spreads over the water surface.
  • the nanosheet since the nanosheet is charged, it interacts weakly with the water surface and is transported to the outside by convection.
  • alcohol evaporates quickly at the edge of the container. Arrange in a self-organizing manner.
  • the method for producing a thin film of the present invention by adding an alcohol (such as ethanol) to the colloidal aqueous solution, the surface tension of the colloidal aqueous solution is reduced, the evaporation rate of the dispersion medium in the colloidal aqueous solution added dropwise is increased, and the dispersion medium is It can promote the convection of the nanosheet inside.
  • an alcohol such as ethanol
  • the alcohol is preferably from methanol, ethanol, n-propyl alcohol (n-propanol), isopropyl alcohol (IPA), n-butyl alcohol (n-butanol), isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol. is the alcohol of choice. These alcohols are readily available and easy to handle.
  • one of these alcohols may be used alone, or two or more may be mixed (blended) and used.
  • ethanol reduces the surface tension of the colloidal aqueous solution, increases the evaporation rate of droplets, and affects the inside of droplets of nanosheets (dispersion medium It is particularly suitable from the viewpoint of promoting convection in the medium).
  • the amount of alcohol to be added is preferably 0.5% by mass or more and 10% by mass or less, more preferably 0.5% by mass or more and 5% by mass or less, and still more preferably , 0.5% by mass or more and 3% by mass or less.
  • a water-soluble organic solvent may be added to the colloid aqueous solution for film formation.
  • the water-soluble organic solvent is preferably an aprotic polar solvent selected from dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF) and formamide .
  • DMSO dimethylsulfoxide
  • NMP N-methyl-2-pyrrolidone
  • DMF N,N-dimethylformamide
  • aprotic polar solvent one of these aprotic polar solvents may be used alone, or two or more may be mixed (blended) and used.
  • these alcohols and aprotic polar solvents may be used alone, or two or more may be mixed (blended) and used.
  • the operation of developing the colloidal aqueous solution in which the nanosheets are dispersed on the water surface is performed, for example, by filling a Petra dish or the like with water (preferably ultrapure water) (about 100 mL), and then (ii) using a micropipette or the like. , by spreading a colloidal aqueous solution (about 12 ⁇ L) on the water surface.
  • water preferably ultrapure water
  • Step of forming a dense monolayer film of nanosheets at the gas-liquid interface The colloidal aqueous solution spread on the water surface forms a dense monolayer film of nanosheets at the gas-liquid interface.
  • a silicon (Si) substrate a quartz glass substrate, a Pt substrate, a SrTiO 3 :Nb substrate, a PET substrate, or the like is used as the substrate for film formation. .
  • the surface of the substrate is preferably subjected to a hydrophilic treatment by a cleaning treatment.
  • the surface of the substrate is wiped with acetone to remove organic substances on the surface of the substrate, and then the substrate is placed in a mixed solution of methanol and hydrochloric acid (for example, mixed at a volume ratio of 1:1). It is immersed (about 30 minutes), then washed with ultrapure water, then immersed in concentrated hydrochloric acid (about 30 minutes), and washed again with ultrapure water.
  • Si substrates, quartz glass substrates, etc. are preferably hydrophilized (hydrophilized substrates) by cleaning with acetone, a mixed solution of methanol and hydrochloric acid, ultrapure water, concentrated hydrochloric acid, etc. ) can be obtained.
  • the cleaning process is carried out by ultraviolet irradiation (about 15 to 30 minutes) in an ozone atmosphere.
  • Pt substrates, SrTiO 3 :Nb substrates, PET substrates, etc. can be satisfactorily hydrophilized (obtained hydrophilized substrates) by performing a cleaning treatment with UV irradiation in an ozone atmosphere. .
  • the operation of transferring the dense monolayer film of the nanosheet to the substrate is to scoop up the interfacial layer by inserting the colloidal aqueous solution developed on the surface of the water with tweezers or the like into the substrate from below the liquid surface.
  • a monolayer film of nanosheets is obtained.
  • the dense (dense) monolayer film of the nanosheet of the present invention depends on the properties of the colloidal solution of the nanosheet, the nanosheet is usually a sheet material with a thickness of about 1 nm and a lateral size of several ⁇ m.
  • the dense monolayer film of the nanosheets of the present invention represents a state in which the nanosheets are densely arranged without gaps (densely).
  • the defect-free dense monolayer film of nanosheets of the present invention can maximize the excellent functions of the nanosheets and is useful for the fabrication of devices.
  • the dense monolayer film of the nanosheets of the present invention is electrically charged, strongly bonded to the substrate due to electrostatic attraction, and exhibits excellent stability.
  • a dense monolayer film of nanosheets formed on glass or silicon exhibits high durability in tape peeling tests, pencil scratch tests, and the like.
  • the dense monolayer film of nanosheets of the present invention is difficult to peel off and exhibits excellent thin film durability.
  • steps (1) to (3) In the method for producing a thin film of the present invention, preferably, by repeating steps (1) to (3), a laminate of dense monolayer films (multilayers) of the nanosheets film) to produce a thin film.
  • a nanosheet monolayer film of a layered compound (titanium oxide (Ti 0.87 O 2 ), etc.) is obtained on a substrate (quartz glass substrate, Si substrate, etc.) through the steps (1) to (3).
  • the obtained nanosheet monolayer film on the substrate is heated (about 100° C. to 200° C. for about 15 minutes). This removes the release agent (tetrabutylammonium ion (TBA + )) remaining in the nanosheet monolayer film.
  • TAA + tetrabutylammonium ion
  • the nanosheet is preferably a nanosheet in which a layered compound is delaminated.
  • a release agent is used for single layer release.
  • a stripping agent is used to strip the surfactant.
  • At least one release agent selected from the group consisting of tetrabutylammonium ions (TBA + ) and tetramethylammonium ions (TMA + ) is used as the release agent.
  • the nanosheet monolayer film after heating is washed with pure water. This makes the aqueous colloidal solution more compatible.
  • steps (1) to (3) are started, using a micropipette or the like to develop the colloidal aqueous solution on the surface of water (preferably ultrapure water), and using tweezers or the like to move the substrate below the liquid surface. Insert from the side and scoop up the interfacial layer.
  • water preferably ultrapure water
  • nanosheet multilayer film a laminate of nanosheets (nanosheet multilayer film).
  • nanosheets can be reliably multi-layered layer by layer as n increases.
  • a dense monolayer film of nanosheets having a thickness of about 1 nm can usually be produced. (coating layer) can be formed.
  • a step of irradiating the nanosheet with ultraviolet rays to remove organic substances between single-layer films of the nanosheet In one step, further (4) A step of irradiating the nanosheets with ultraviolet rays to remove organic substances between single layers of the nanosheets.
  • Tetrabutylammonium (TBA) and tetramethylammonium (TMA) are used to synthesize the dense monolayer of nanosheets of the present invention. These TBA and TMA can be decomposed by irradiating ultraviolet rays after forming a dense monolayer film of nanosheets.
  • TBA and TMA remain as NH 4+ ions after decomposition, and infrared spectroscopy can be used to analyze the remaining NH 4+ ions.
  • the irradiation with ultraviolet rays is preferably carried out by irradiating ultraviolet rays for each layer when forming the laminate to remove organic substances (release agents such as TBA + , TMA + , etc.). Organic substances may be removed by irradiating ultraviolet rays after fabrication.
  • the release agent is at least one release agent selected from the group consisting of tetrabutylammonium ion (TBA + ) and tetramethylammonium ion (TMA + ).
  • the release agent is decomposed by irradiating the thin film (single layer film or laminated film) with ultraviolet rays.
  • the present invention includes a thin film having a release agent content (mass) of 100 ppmwt or less, produced by the method for producing a thin film of the present invention.
  • the present invention consists of a dense monolayer film of nanosheets,
  • the nanosheets include titanium oxide, perovskite oxide, manganese oxide, cobalt oxide, silicon oxide, tungsten oxide, niobium oxide, tantalum oxide, titanium/niobium oxide, titanium/tantalum oxide, molybdenum oxide, ruthenium oxide, and graphene. , graphite oxide, hexagonal boron nitride, mica, transition metal chalcogenite, and transition metal carbide. This includes thin films in which the content (mass) of the release agent is 100 ppmwt or less.
  • the content (mass) of the release agent is preferably 100 ppmwt or less.
  • the content of the release agent in the thin film of the present invention can be measured by analyzing it using infrared spectroscopy.
  • FIG. 3 Examples of monolayer and multilayer nanosheets
  • a thin film consisting of a dense monolayer of nanosheets of the present invention can be formed by stacking monolayers to form a multilayer (single layer A ⁇ A ⁇ A ⁇ multilayer). , it is possible to stack different single-layer films to form a multilayer film (single-layer film A ⁇ single-layer film B (hetero film) ⁇ A ⁇ B ⁇ superlattice hetero-multilayer film).
  • the film size is not particularly limited.
  • a large area of A4 size, consisting of a dense monolayer film of nanosheets A multilayer film (laminate) can be formed by stacking thin films or single-layer films.
  • a thin film composed of a dense monolayer film of nanosheets of the present invention is useful for two-dimensional ultra-thin microdevices, three-dimensional integration (multi-materialization), and the like.
  • two-dimensional materials graphene and inorganic nanosheets. Unlike bulk materials, two-dimensional materials exhibit excellent functions such as high electron mobility, flexibility, transparency, and high heat resistance.
  • the thin film composed of the dense monolayer film of nanosheets of the present invention it is possible to manufacture high-quality nanosheet thin films over a large area and realize new devices.
  • the nanosheets are arranged on the substrate without gaps to form a dense monolayer film.
  • a dense monolayer film that is, by repeating the operation of producing a monolayer film, a multi-layer film composed of a nanosheet dense monolayer film is obtained.
  • Membranes and superlattices can be constructed.
  • the entire substrate such as a Si substrate
  • nanosheets of a layered compound such as titanium oxide (Ti 0.87 O 2 )
  • the coverage of the nanosheets on the substrate is preferably about 95% for the single layer region, about 2% for overlap, and about 3% for gaps, and the nanosheets are densely arranged.
  • a uniform nanosheet monolayer film can be obtained over the entire large-area substrate.
  • the present invention includes optical thin films, dielectric thin films, and conductive thin films made of thin films (thin films consisting of nanosheet dense single-layer films) manufactured by the thin film manufacturing method of the present invention.
  • the present invention includes a thin film having a release agent content (mass) of 100 ppmwt or less, produced by the method for producing a thin film of the present invention.
  • the present invention consists of a dense monolayer film of nanosheets, Titanium oxide, perovskite oxide, manganese oxide, cobalt oxide, silicon oxide, tungsten oxide, niobium oxide, tantalum oxide, titanium/niobium oxide, titanium/tantalum oxide, molybdenum oxide, ruthenium oxide, graphene, graphite oxide, A nanosheet obtained by exfoliating at least one layered compound selected from the group consisting of hexagonal boron nitride, mica, transition metal chalcogenite, and transition metal carbide, This includes thin films in which the content (mass) of the release agent is 100 ppmwt or less.
  • the thin film of the present invention is a multilayer film and a superlattice composed of a dense monolayer film of nanosheets, and has excellent electronic and ionic conductivity, semiconducting properties, insulating properties, high dielectric properties, ferroelectric properties, ferromagnetism, and fluorescence properties. characteristics, such as photocatalytic properties.
  • Titanium oxide (Ti 0.87 O 2 ) nanosheets have a high refractive index and dielectric constant, and can be used for optical and dielectric applications.
  • Perovskite (Ca 2 Nb 3 O 10 ) nanosheets have high dielectric constant and insulating properties and can be applied to dielectrics.
  • Ruthenium oxide (RuO 2 ) nanosheets have high conductivity, can be applied to conductors, and function as excellent transparent conductive films.
  • Graphene oxide (GO) nanosheets have electrical insulation and high ionic conductivity, and can be applied to electrocatalysts.
  • Hexagonal boron nitride (h-BN) nanosheets have electrical insulation, high withstand voltage, and high thermal conductivity, and can be applied to insulating films and heat dissipation substrates.
  • the method for producing a thin film composed of a dense monolayer film of nanosheets of the present invention is a method for producing a high-quality densely arranged film of nanosheets over a large area, simply, in a short time, and with a small amount of solution. , is a process that can be used to form a film.
  • the method for producing a thin film of the present invention includes, for example, (1) spreading one drop of a nanosheet-dispersed colloidal aqueous solution on a water surface, (2) forming a monolayer film composed of nanosheets at a gas-liquid interface, and then (3) A thin film is manufactured by transferring a monolayer film composed of the nanosheet to a substrate.
  • the thin film manufacturing method of the present invention can solve the problems of the conventional technology, develop nanosheet devices, and further advance industrialization. INDUSTRIAL APPLICABILITY
  • the thin film manufacturing method of the present invention can significantly reduce the cost of thin film manufacturing, and is effective as an industrial thin film manufacturing method and nano-coating method.
  • FIG. 4 Thin film application example
  • the thin film manufacturing method of the present invention can be applied to (i) ceramics manufacturing technology and coating technology, (ii) high productivity and cost reduction, ( iii) It is possible to manufacture in small lots and on demand.
  • the thin film of the present invention is super fine ceramics with ultra-high quality, ultra-high reliability, and ultra-durability.
  • Perovskite insulating film (Ca 2 Nb 3 O 10 ): Achieves withstand voltage > 4 MV/cm, dielectric constant ⁇ r > 200, and heat resistance > 800°C. It is useful for insulating films, high withstand voltage substrates, material fields, and electric power fields.
  • Ti 0.87 O 2 Semiconductor film of titanium oxide (Ti 0.87 O 2 ): realizes a high refractive index n>2.7. It is useful for optical filters, photocatalyst films, and optical fields.
  • Magnetic film (Ti 0.8 Co 0.2 O 2 ): Electromagnetic field shield film, useful in the field of materials.
  • Conductive film of ruthenium oxide (RuO 2 ) achieves resistivity of 10 -4 ⁇ cm (equivalent to ITO) and transmittance of >98%. It is useful for transparent conductive films and glass fields.
  • Hexagonal boron nitride insulating film achieves a thermal conductivity of >40W/mK. It is useful for insulating films, high withstand voltage substrates, heat dissipation substrates, material fields, and electric power fields.
  • Capacitance film metal/dielectric multilayer film: RuO 2 /Ca 2 Nb 3 O 10 /RuO 2 multilayer capacitor application, useful in the electronic field.
  • Photochromic film (Cs 4 W 11 O 36 ) (light irradiation (UV, etc.): a film in which the molecular structure changes reversibly and the absorption spectrum changes accordingly (photochromism)). It is useful in the fields of smart windows, heat shield film materials, and automobiles.
  • Example 1 Fabrication of a thin film consisting of a dense monolayer of nanosheets (Fig. 11)
  • Example 1 (FIG. 5): Preparation of monolayer film Layered titanium oxide (K 0.8 Ti 1.73 Li 0.27 O 4 ) was used as a starting material to prepare titanium oxide (Ti 0.87 O 2 ) nanosheets. A monolayer film (nanosheet monolayer film) composed of titanium oxide nanosheets was produced.
  • a layered titanium oxide (K 0.8 Ti 1.73 Li 0.27 O 4 ) was synthesized by a solid phase synthesis method.
  • the pulverized and mixed raw material powder was placed in a platinum crucible and calcined at 900° C. for 1 hour in an electric furnace. After that, the calcined raw material powder was again pulverized and mixed in an alumina mortar for 30 minutes. Next, the pulverized and mixed raw material powder was placed in a platinum crucible and fired at 1,000° C. for 20 hours to obtain layered titanium oxide K 0.8 Ti 1.73 Li 0.27 O 4 .
  • the hydrogen ion exchanger was mixed with an aqueous tetrabutylammonium hydroxide solution whose concentration was adjusted so that the ratio of tetrabutylammonium ion (TBA + )/H + was 1, at a rate of 4 g/L.
  • a milky-white colloidal aqueous solution represented by the compositional formula Ti 0.87 O 2 , in which rectangular titanium oxide nanosheets with a thickness of about 1 nm and a lateral size of 5 ⁇ m to 10 ⁇ m are dispersed was prepared. .
  • the prepared Ti 0.87 O 2 nanosheets were used to prepare a coating solution for thin film production.
  • 10 ⁇ L of ethanol was added to 10 ⁇ L of colloidal aqueous solution in which Ti 0.87 O 2 nanosheets were dispersed in water to obtain a colloidal aqueous solution for membrane formation.
  • a silicon (Si) substrate (30mm ⁇ ) was used as the film-forming substrate.
  • the surface of the substrate was hydrophilized by washing. In the cleaning treatment, first, the surface of the substrate was wiped with acetone to remove organic matter on the surface of the substrate. Next, this substrate is immersed in a mixed solution of methanol and hydrochloric acid (mixed at a volume ratio of 1:1) for 30 minutes, washed with ultrapure water, then immersed in concentrated hydrochloric acid for 30 minutes, and Washed with ultrapure water.
  • a Petra dish (4 inches) was filled with 100 mL of ultrapure water (Milli-Q Element ultrapure water device manufactured by Nihon Millipore). Then, using a micropipette, 12 ⁇ L of colloidal aqueous solution was spread on the ultrapure water surface. After 5 seconds, the substrate was inserted from below the liquid surface with tweezers, and the interfacial layer was scooped up to obtain a monolayer film of nanosheets.
  • ultrapure water Micro-Q Element ultrapure water device manufactured by Nihon Millipore
  • the surface of the nanosheet monolayer film on the Si substrate (wafer) obtained in Example 1 was observed with a confocal laser microscope (CFLM) and an atomic force microscope (AFM).
  • CFLM confocal laser microscope
  • AFM atomic force microscope
  • OLS4000 manufactured by Olympus Corporation was used.
  • AFM observation an E-Sweep scanning probe microscope system manufactured by SII Nano Technology was used.
  • was used as the probe and observation was made in the tapping mode.
  • FIG. 5 the entire Si substrate was covered with Ti 0.87 O 2 nanosheets, and it was confirmed that the nanosheets overlapped with each other and a nanosheet monolayer film densely arranged without gaps was obtained. Image analysis was performed and the coverage was calculated. The single layer area was 95%, the overlap was 2%, and the gap was 3%, indicating that the nanosheets were densely arranged.
  • Example 2 (Fig. 6): Substrate study (single layer film)
  • a monolayer film composed of titanium oxide nanosheets (Ti 0.87 O 2 ) was produced in the same manner as in Example 1, except that the substrate was changed.
  • a Si substrate (30 mm ⁇ ), a quartz glass substrate (30 mm ⁇ ), a Pt substrate (30 mm ⁇ ), and a PET substrate (30 mm ⁇ ) were used as the film-forming substrates.
  • Example 2 For the Si substrate (wafer) and quartz glass substrate, the same substrate cleaning treatment as in Example 1 was performed to obtain a hydrophilic substrate.
  • Pt and PET substrates were cleaned by irradiating them with ultraviolet rays for 15 minutes in an ozone atmosphere.
  • Fig. 6 shows the observation results. According to FIG. 6, it was confirmed that the nanosheets overlapped with each other and a nanosheet monolayer film in which the nanosheets were densely arranged with no gaps was obtained on any of the substrates.
  • Example 3 (Fig. 7): Investigation of layered compound (monolayer film) In Example 3, monolayer films were produced in the same manner as in Example 1 for nanosheets of various layered compounds.
  • Perovskite (Ca 2 Nb 3 O 10 ) nanosheets applicable to dielectrics.
  • Ruthenium oxide (RuO 2 ) nanosheets applicable to conductors.
  • Graphene oxide (GO) nanosheets can be applied to ion-conducting membranes and electrode catalysts.
  • Insulating film (h-BN): Application to insulating films and heat dissipation substrates.
  • Fig. 7 According to FIG. 7, it was confirmed that the nanosheets of all layered compounds overlapped with each other, and nanosheet monolayer films were obtained in which the nanosheets were densely arranged without gaps.
  • Example 4 (Fig. 8): Examination of alcohol and aprotic polar solvent (single layer film)
  • a monolayer film composed of titanium oxide nanosheets (Ti 0.87 O 2 ) was produced in the same manner as in Example 1 using alcohol and an aprotic polar solvent.
  • IPA isopropyl alcohol
  • DMSO dimethyl sulfoxide
  • Example 5 (Fig. 9): Examination of repeated operation (multilayer film)
  • multilayer films composed of titanium oxide (Ti 0.87 O 2 ) nanosheets were produced on quartz glass substrates and Si substrates.
  • the nanosheet monolayer film obtained in Example 1 was heated. Heating was carried out at 200° C. for 15 minutes. This removed the TBA + remaining in the nanosheet monolayer film. Then, the nanosheet monolayer film after heating was washed with pure water. This made the colloidal aqueous solution more compatible. Thereafter, in the same manner as in Example 1, 12 ⁇ L of the colloidal aqueous solution prepared in Example 1 was spread on the ultrapure water surface using a micropipette. After 5 seconds, the substrate was inserted from below the liquid surface with tweezers and the interfacial layer was scooped up.
  • Example 6 (Fig. 10): Examination of film formation on large PET substrate (single layer film)
  • a monolayer film composed of titanium oxide nanosheets (Ti 0.87 O 2 ) was produced in the same manner as in Example 1, except that the substrate and film forming container were changed.
  • An A4-sized PET substrate was used as the film-forming substrate, and was subjected to UV irradiation for 15 minutes in an ozone atmosphere for cleaning.
  • a draining vat measuring 36 cm long, 25 cm wide, and 5 cm deep was used as the film-forming container, and was filled with 3000 mL of ultrapure water (Milli-Q Element, an ultrapure water device manufactured by Nihon Millipore Co., Ltd.). Then, using a pipette, 10 mL of colloidal aqueous solution was spread on the ultrapure water surface. After 5 seconds, the substrate was inserted from below the liquid surface and the interfacial layer was scooped up to obtain a monolayer film of nanosheets.
  • ultrapure water Milli-Q Element, an ultrapure water device manufactured by Nihon Millipore Co., Ltd.
  • Fig. 10 The results are shown in Fig. 10.
  • the resulting nanosheet monolayer film was observed by CFLM in the same manner as in Example 1, and a nanosheet monolayer film with overlapping nanosheets and densely arranged nanosheet monolayer films without gaps was obtained. Therefore, it was confirmed that it is possible to manufacture a nanosheet monolayer film even with a general-purpose container and a large substrate.
  • the thin film manufacturing method of the present invention is a Langmuir-Blodgett method that is a conventional nanosheet thin film manufacturing method. Compared to the (LB) method, spin coating method, etc., it is possible to form a high-quality densely aligned nanosheet film with a larger area, more easily, in a shorter time, and with a smaller amount of solution. It's a process.
  • Fig. 11 shows the superiority of the thin film manufacturing method of the present invention.
  • water can be used as the solvent
  • operability can be a simple pipette operation
  • the film formation time is, for example, It takes about 30 seconds
  • costs only a small amount of solution about 1/100 of the LB method.
  • the thin film produced by the method for producing a thin film of the present invention is subjected to film quality evaluation (coverage and defect density) using an atomic force microscope, a confocal laser microscope, a scanning electron microscope, etc., and the film quality (e.g. , titanium oxide) has a single layer coverage of 95% or more and defects of 2% or less in terms of area ratio, and is a high-quality dense film.
  • film quality evaluation coverage and defect density
  • the thin film production method of the present invention it is possible to produce a dense single layer film with a single layer coverage (coating ratio) of 95% or more and no defects.
  • the thin film production method of the present invention reduces materials and costs, is a low environmental load process, and can produce thin films industrially.
  • nanosheets are arranged in an orderly fashion on various substrate surfaces to form thin films, and high-quality nanosheet films can be produced on a large scale. It is possible to form a film with an area.
  • a thin film consisting of a dense monolayer film of nanosheets obtained by the production method of the present invention is composed of two-dimensional materials (nanosheets) such as graphene and inorganic nanosheets.
  • the thin film of the present invention exhibits high electron mobility, flexibility, transparency, high heat resistance, etc. due to its atomic-level thinness and two-dimensional nanostructure, and can be applied to next-generation electronic devices and energy fields. I can do things.
  • the thin film of the present invention has properties such as excellent electronic and ionic conductivity, semiconducting properties, insulating properties, high dielectric properties, ferroelectric properties, ferromagnetism, fluorescent properties, and photocatalytic properties possessed by nanosheets. It can be applied as an important member of the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)

Abstract

The purpose of the present invention is to newly provide a method for producing a thin film formed from a dense single layer film of a nanosheet. This thin film production method forms a thin film formed from a dense single layer film of a nanosheet.

Description

ナノシートの稠密単層膜から成る薄膜の製造方法、及び、その薄膜の用途Method for producing thin film composed of dense monolayer film of nanosheets, and use of the thin film
 本発明は、ナノシートの稠密単層膜から成る薄膜の製造方法、及び、その薄膜の用途に関する。 The present invention relates to a method for producing a thin film consisting of a dense monolayer film of nanosheets, and uses of the thin film.
 ナノシートの薄膜の製造方法として、例えば、非特許文献1は、Langmuir-Blodgett(LB)法を開示している。この技術は、ナノシートコロイド分散液をトラフに展開後、表面圧を印加し、気液界面にナノシートを吸着させ、それを基板に転写する事に依り、配列したナノシート単層膜を得る事である。この技術は、しかしながら、製膜時間が長い点、特殊な装置が必要である点、製膜操作が煩雑である点、製膜出来る基板の面積が小さい点等の課題を有する。 As a method for producing thin films of nanosheets, for example, Non-Patent Document 1 discloses the Langmuir-Blodgett (LB) method. In this technique, after the nanosheet colloidal dispersion is spread in a trough, surface pressure is applied to adsorb the nanosheets to the air-liquid interface, and then the nanosheets are transferred to the substrate to obtain an arrayed nanosheet monolayer film. . However, this technique has problems such as a long film-forming time, a need for a special apparatus, a complicated film-forming operation, and a small area of a substrate on which a film can be formed.
 ナノシートの薄膜の製造方法として、例えば、非特許文献2は、スピンコート法を開示している。この技術は、ナノシートが有機溶媒に分散された有機溶媒ゾルを、基板上に少量滴下し、スピンコートするという手順に依り、ナノシートの稠密配列単層膜を得る事である。この技術は、しかしながら、溶液の前処理が必要である点、精密な条件設定が必要である点等の課題を有する。 As a method for producing thin films of nanosheets, for example, Non-Patent Document 2 discloses a spin coating method. In this technique, a small amount of an organic solvent sol in which nanosheets are dispersed in an organic solvent is dropped onto a substrate and spin-coated to obtain a densely-packed monolayer film of nanosheets. However, this technique has problems such as the need for pretreatment of the solution and the need for precise setting of conditions.
 また、非特許文献1及び2の技術は、溶液の大量消費が必要であり、結果として、溶液の95%以上が廃棄される点という課題を有する。 In addition, the techniques of Non-Patent Documents 1 and 2 require a large amount of solution consumption, and as a result, 95% or more of the solution is discarded.
 本発明は、新たに、ナノシートの稠密単層膜から成る薄膜の製造方法を提供する事を目的とする。 The purpose of the present invention is to newly provide a method for producing a thin film consisting of a dense monolayer film of nanosheets.
 本発明者等は、上記した目的を達成すべく鋭意研究を重ねて来た。 The inventors of the present invention have devoted themselves to research in order to achieve the above objectives.
 本発明者等は、
 (1)純水に、層状化合物が単層剥離されたナノシートが分散されたコロイド水溶液を展開し、次いで、
 (2)空気/水界面に、前記ナノシートの稠密配列膜を形成し、次いで
 (3)基板に、前記ナノシートの稠密配列膜を転写する事に依り、
薄膜を製造する事を開発した。
The inventors
(1) A colloidal aqueous solution in which nanosheets from which a layered compound is exfoliated is dispersed is developed in pure water, and then
(2) forming a densely aligned film of the nanosheets at the air/water interface, and then (3) transferring the densely aligned film of the nanosheets to a substrate,
Developed to manufacture thin films.
 本発明者等は、このナノシートの稠密配列膜は、従来のナノシートの薄膜の製造方法に残された課題を解決出来る事を見出した。 The present inventors have found that this nanosheet densely-arranged film can solve the problems remaining in conventional nanosheet thin film manufacturing methods.
 即ち、本発明は、次のナノシートの稠密単層膜から成る薄膜の製造方法、及び、その薄膜の用途に関する。 That is, the present invention relates to the following method for producing a thin film composed of a dense monolayer film of nanosheets and uses of the thin film.
 項1.
 薄膜の製造方法であって、
 (1)水面に、ナノシートが分散されたコロイド水溶液を展開する工程、
 (2)気液界面に、前記ナノシートの稠密単層膜を形成する工程、及び
 (3)基板に、前記ナノシートの稠密単層膜を転写する工程
を含み、
 前記ナノシートの稠密単層膜から成る薄膜を形成する、
 薄膜の製造方法。
Section 1.
A method for producing a thin film,
(1) A process of developing a colloidal aqueous solution in which nanosheets are dispersed on the water surface,
(2) forming a dense monolayer film of the nanosheets at the gas-liquid interface; and (3) transferring the dense monolayer film of the nanosheets to a substrate,
forming a thin film consisting of a dense monolayer film of said nanosheets;
Thin film manufacturing method.
 項2.
 前記ナノシートは、層状化合物が単層剥離されたナノシートである、
前記項1に記載の薄膜の製造方法。
Section 2.
The nanosheet is a nanosheet in which a layered compound is delaminated,
2. A method for producing a thin film according to item 1 above.
 項3.
 前記層状化合物を構成する化合物は、酸化チタン、ペロブスカイト酸化物、酸化マンガン、酸化コバルト、酸化シリコン、酸化タングステン、酸化ニオブ、酸化タンタル、チタン・ニオブ酸化物、チタン・タンタル酸化物、酸化モリブデン酸化物、酸化ルテニウム、グラフェン、酸化グラファイト、六方晶窒化ホウ素、雲母、遷移金属カルコゲナイト、及び遷移金属カーバイドから成る群から選ばれる少なくとも1種の化合物である、
前記項2に記載の薄膜の製造方法。
Item 3.
Compounds constituting the layered compound include titanium oxide, perovskite oxide, manganese oxide, cobalt oxide, silicon oxide, tungsten oxide, niobium oxide, tantalum oxide, titanium/niobium oxide, titanium/tantalum oxide, and molybdenum oxide. , ruthenium oxide, graphene, graphite oxide, hexagonal boron nitride, mica, transition metal chalcogenite, and at least one compound selected from the group consisting of transition metal carbide,
3. A method for producing a thin film according to item 2 above.
 項4.
 前記コロイド水溶液は、アルコールを含むコロイド水溶液である、
前記項1~3の何れかに記載の薄膜の製造方法。
Section 4.
The colloidal aqueous solution is an alcohol-containing colloidal aqueous solution,
4. A method for producing a thin film according to any one of 1 to 3 above.
 項5.
 前記工程(1)~(3)を繰り返す事に依り、
 前記ナノシートの稠密単層膜の積層体を形成する、
前記項1~4の何れかに記載の薄膜の製造方法。
Item 5.
By repeating the steps (1) to (3),
forming a stack of dense monolayer films of the nanosheets;
5. A method for producing a thin film according to any one of Items 1 to 4.
 項6.
 前記工程(1)~(3)の少なくとも一つの工程において、更に、
 (4)前記ナノシートに対して、紫外線を照射し、ナノシートの単層膜間の有機物を除去する工程、
を含む、前記項1~5の何れかに記載の薄膜の製造方法。
Item 6.
In at least one step of steps (1) to (3),
(4) a step of irradiating the nanosheet with ultraviolet rays to remove organic substances between single layers of the nanosheet;
6. The method for producing a thin film according to any one of Items 1 to 5, comprising
 項7.
 前記項1~6の何れかに記載の薄膜の製造方法に依って製造された薄膜から成る光学薄膜。
Item 7.
An optical thin film comprising a thin film produced by the method for producing a thin film according to any one of Items 1 to 6.
 項8.
 前記項1~6の何れかに記載の薄膜の製造方法に依って製造された薄膜から成る誘電体薄膜。
Item 8.
A dielectric thin film comprising a thin film produced by the method for producing a thin film according to any one of Items 1 to 6.
 項9.
 前記項1~6の何れかに記載の薄膜の製造方法に依って製造された薄膜から成る伝導性薄膜。
Item 9.
A conductive thin film comprising a thin film produced by the method for producing a thin film according to any one of Items 1 to 6.
 項10.
 前記項1~6の何れかに記載の薄膜の製造方法に依って製造された、剥離剤の含有量が100ppmwt以下である薄膜。
Item 10.
A thin film having a release agent content of 100 ppmwt or less, produced by the method for producing a thin film according to any one of Items 1 to 6 above.
 項11.
 薄膜であって、
 ナノシートの稠密単層膜から成り、
 前記ナノシートは、酸化チタン、ペロブスカイト酸化物、酸化マンガン、酸化コバルト、酸化シリコン、酸化タングステン、酸化ニオブ、酸化タンタル、チタン・ニオブ酸化物、チタン・タンタル酸化物、酸化モリブデン酸化物、酸化ルテニウム、グラフェン、酸化グラファイト、六方晶窒化ホウ素、雲母、遷移金属カルコゲナイト、及び遷移金属カーバイドから成る群から選ばれる少なくとも1種の層状化合物が単層剥離されたナノシートであり、
 剥離剤の含有量が100ppmwt以下である、薄膜。
Item 11.
a thin film,
Consisting of a dense monolayer film of nanosheets,
The nanosheets include titanium oxide, perovskite oxide, manganese oxide, cobalt oxide, silicon oxide, tungsten oxide, niobium oxide, tantalum oxide, titanium/niobium oxide, titanium/tantalum oxide, molybdenum oxide, ruthenium oxide, and graphene. , graphite oxide, hexagonal boron nitride, mica, transition metal chalcogenite, and transition metal carbide.
A thin film having a release agent content of 100 ppmwt or less.
 本発明のナノシートの稠密単層膜から成る薄膜の製造方法(本発明の薄膜の製造方法)に依ると、ナノシートを浮かせたコロイド水溶液上で膜を形成し、基板に転写して、薄膜を作成する事が可能である。本発明の薄膜の製造方法は、従来のディップコート法、スピンコート法等の製造方法に比べて、ナノシートの製造時間をより短縮出来、製造されるナノシートの薄膜は、より緻密な構造を有する。本発明の薄膜の製造方法に依り製造されるナノシート(TiO2、RuO2等)の薄膜(本発明の薄膜)は、緻密且つ大面積で膜形成したコーティング構造を有する。 According to the method for producing a thin film composed of a dense monolayer film of nanosheets of the present invention (the method for producing a thin film of the present invention), a film is formed on a colloidal aqueous solution in which nanosheets are suspended, and transferred to a substrate to form a thin film. It is possible to The thin film manufacturing method of the present invention can shorten the nanosheet manufacturing time compared to conventional manufacturing methods such as dip coating and spin coating, and the manufactured nanosheet thin film has a denser structure. The nanosheet (TiO 2 , RuO 2 , etc.) thin film (the thin film of the present invention) produced by the thin film production method of the present invention has a dense and large-area coating structure.
 本発明は、新たに、ナノシートの稠密単層膜から成る薄膜の製造方法を提供する事が出来る。 The present invention can newly provide a method for producing a thin film consisting of a dense monolayer film of nanosheets.
図1は、本発明の薄膜の製造方法の例を表す。FIG. 1 shows an example of a method for producing a thin film of the present invention. 図2は、本発明の薄膜の単層被覆率の説明を表す。FIG. 2 presents an illustration of the monolayer coverage of the thin films of the present invention. 図3は、本発明の薄膜(単層膜及び多層膜)の例を表す。FIG. 3 shows examples of thin films (single-layer films and multilayer films) of the present invention. 図4は、本発明の薄膜の製造方法の応用例を表す。FIG. 4 shows an application example of the thin film manufacturing method of the present invention. 図5は、本発明の薄膜の製造方法の例(実施例1)を表す。FIG. 5 shows an example (Example 1) of the method for producing a thin film of the present invention. 図6は、本発明の薄膜の製造方法の例(実施例2)を表す。FIG. 6 shows an example of the method for producing a thin film of the present invention (Example 2). 図7は、本発明の薄膜の製造方法の例(実施例3)を表す。FIG. 7 shows an example (Example 3) of the method for producing a thin film of the present invention. 図8は、本発明の薄膜の製造方法の例(実施例4)を表す。FIG. 8 shows an example (Example 4) of the method for producing a thin film of the present invention. 図9は、本発明の薄膜の製造方法の例(実施例5)を表す。FIG. 9 shows an example of the method for producing a thin film of the present invention (Example 5). 図10は、本発明の薄膜の製造方法の例(実施例6)を表す。FIG. 10 shows an example of the method for producing a thin film of the present invention (Example 6). 図11は、本発明の薄膜の製造方法の優位性を表す。FIG. 11 shows the superiority of the thin film manufacturing method of the present invention.
 以下、本発明について詳細に説明する。 The present invention will be described in detail below.
 本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。 As used herein, "contain" is a concept that includes all of "comprise", "consist essentially of", and "consist of". Further, in this specification, when a numerical range is indicated by "A to B", it means A or more and B or less.
 [1]ナノシートの稠密単層膜から成る薄膜の製造方法(図1及び2)
 本発明のナノシートの稠密単層膜から成る薄膜の製造方法(本発明の薄膜の製造方法)は、
 (1)水面に、ナノシートが分散されたコロイド水溶液を展開する工程、
 (2)気液界面に、前記ナノシートの稠密単層膜を形成する工程、及び
 (3)基板に、前記ナノシートの稠密単層膜を転写する工程
を含み、
 前記ナノシートの稠密単層膜から成る薄膜を形成する事を特徴とする。
[1] Method for producing thin films consisting of dense monolayer films of nanosheets (Figs. 1 and 2)
The method for producing a thin film composed of a dense monolayer film of nanosheets of the present invention (the method for producing a thin film of the present invention) comprises:
(1) A process of developing a colloidal aqueous solution in which nanosheets are dispersed on the water surface,
(2) forming a dense monolayer film of the nanosheets at the gas-liquid interface; and (3) transferring the dense monolayer film of the nanosheets to a substrate,
It is characterized by forming a thin film composed of a dense monolayer film of the nanosheet.
 本発明の薄膜の製造方法は、気液界面に、ナノシートの稠密単層膜を形成し、次いで、基板に、そのナノシートの稠密単層膜を転写する界面転写法を採用する。 The thin film manufacturing method of the present invention employs an interfacial transfer method in which a dense monolayer film of nanosheets is formed on the gas-liquid interface, and then the dense monolayer film of nanosheets is transferred to a substrate.
 図1:ナノシートの製造方法の例
 本発明の薄膜の製造方法は、例えば、(1)純水に、ピペット等を用いて、層状化合物が単層剥離されたナノシートが分散されたコロイド水溶液(TiO2、RuO2、GO等のナノシートインク)を展開する(インク滴下)工程、次いで、(2)空気/水界面に、ナノシート稠密配列膜を形成する工程(緻密膜の形成)、次いで、(3)基板(Substrate、金属、ガラス、PET等)に、ナノシート稠密配列膜(Film)を転写(基板転写)する工程を含む。
Figure 1: Examples of nanosheet manufacturing methods The thin film manufacturing method of the present invention includes, for example, (1) a colloidal aqueous solution (TiO 2 , RuO 2 , nanosheet ink such as GO) is developed (ink drop), then (2) step of forming a nanosheet densely arranged film at the air/water interface (formation of dense film), then (3) ) includes the step of transferring (substrate transfer) a nanosheet densely arranged film (Film) to a substrate (Substrate, metal, glass, PET, etc.).
 本発明の薄膜の製造方法に依り、ナノシート(Ti0.87O2等)の稠密単層膜を、簡便な操作(低コスト等)で、短時間(30秒程度)に、大面積で、作製する事が出来る。本発明の薄膜の製造方法は、好ましくは、コロイド水溶液として、アルコールを添加した溶液を用いる事に依り、ナノシートが稠密に配列した、良質なナノシート単層膜を、簡便な操作で、短時間に作製する事が出来る。 According to the thin film manufacturing method of the present invention, a dense monolayer film of nanosheets (Ti 0.87 O 2 etc.) can be produced in a large area in a short time (about 30 seconds) with a simple operation (low cost etc.). I can do things. In the method for producing a thin film of the present invention, preferably, an alcohol-added solution is used as the colloidal aqueous solution, so that a high-quality nanosheet monolayer film in which nanosheets are densely arranged can be produced by a simple operation in a short time. It can be manufactured.
 ナノシートの稠密単層膜の稠密の定義(図2(A))
 本発明のナノシートの稠密単層膜(界面集積法)は、ナノシートの優れた機能を最大限に引き出し、デバイスの作製に有用である。
Definition of Dense in a Dense Monolayer of Nanosheets (Fig. 2(A))
The dense monolayer film of nanosheets of the present invention (interfacial integration method) maximizes the excellent functions of nanosheets and is useful for the fabrication of devices.
 従来、1cm2角の小さい基板であっても、被覆率80%以上のナノシート膜の製造は困難であった。従来のスピンコート法に依るナノシート膜の製造では、ナノシートの被覆率は80%程度あり、ナノシートの隙間部分(欠陥部分)は20%程度であった。 Conventionally, it was difficult to produce a nanosheet film with a coverage rate of 80% or more even on a small substrate of 1 cm 2 square. In the production of nanosheet films by the conventional spin coating method, the coverage rate of the nanosheets was about 80%, and the void portions (defective portions) of the nanosheets were about 20%.
 本発明のナノシートの稠密単層膜は、ナノシート同士が、隙間無く、稠密に配列した状態である。ナノシートの稠密単層膜の被覆率(単層部)は、通常、90%程度以上(面積比)である。ナノシートの隙間部分(欠陥部分)は、通常、0%以上、10%程度以下(面積比)の範囲である。 The dense monolayer film of the nanosheets of the present invention is in a state in which the nanosheets are densely arranged without gaps. The coverage ratio (single layer portion) of the dense monolayer film of the nanosheet is usually about 90% or more (area ratio). The gap portion (defective portion) of the nanosheet is usually in the range of 0% or more and about 10% or less (area ratio).
 本発明のナノシートの稠密単層膜では、ナノシートの単層被覆率は、面積比で、好ましくは、90%以上であり、より好ましくは、95%以上であり、更に好ましくは、97%以上であり、特に好ましくは、98%以上である。ナノシートの隙間部分(欠陥部分)は、面積比で、好ましくは、10%以下であり、より好ましくは、5%以下であり、更に好ましくは、2%以下である。 In the dense monolayer film of the nanosheets of the present invention, the monolayer coverage of the nanosheets is preferably 90% or more, more preferably 95% or more, and still more preferably 97% or more in terms of area ratio. Yes, and particularly preferably 98% or more. The area ratio of gaps (defective parts) in the nanosheet is preferably 10% or less, more preferably 5% or less, and still more preferably 2% or less.
 被覆率の数値限定(測定方法)(図2(B))
 本発明のナノシートの稠密単層膜の被覆率は、原子間力顕微鏡、共焦点レーザー顕微鏡、或は、走査型電子顕微鏡に依り、評価する事が可能である。
Numerical limitation of coverage (measurement method) (Fig. 2 (B))
The dense monolayer film coverage of the nanosheets of the present invention can be evaluated by atomic force microscopy, confocal laser scanning microscopy, or scanning electron microscopy.
 原子間力顕微鏡では、ナノシートの稠密単層膜を、原子レベルで、その凹凸を評価する事が可能である。原子間力顕微鏡では、単層部と複層部(単層が重なった部分、重複部、明るい部分)と欠陥部(ナノシートが載っていない部分、暗い部分)とを区別し、単層部とそれ以外の部分との面積比を評価する事に依り、単層被覆率の評価を可能とする。 With an atomic force microscope, it is possible to evaluate the unevenness of a dense monolayer film of nanosheets at the atomic level. Atomic force microscopy distinguishes between single-layered and multi-layered parts (overlapping single-layered parts, overlapping parts, bright parts) and defect parts (parts without nanosheets, dark parts). By evaluating the area ratio with other portions, it is possible to evaluate the single layer coverage.
 共焦点レーザー顕微鏡、或は、走査型電子顕微鏡では、ナノシートの稠密単層膜を、光学像と二次電子像のコントラストに基づき、単層部と複層部(重複部、明るい部分)と欠陥部(暗い部分)とを区別し、単層部とそれ以外の部分との面積比を評価する事に依り、単層被覆率の評価が可能とする。 With a confocal laser microscope or a scanning electron microscope, the dense monolayer film of nanosheets is analyzed based on the contrast between the optical image and the secondary electron image. The single layer coverage can be evaluated by distinguishing from the dark portion and evaluating the area ratio of the single layer portion and the other portions.
 本発明の薄膜の製造方法(界面集積法)は、ナノシートの被覆率が95%以上を達成する、ナノシートの稠密単層膜を、大面積で、且つ高い歩留まりで製造する事を可能とする。 The thin film production method (interface integration method) of the present invention makes it possible to produce a dense monolayer film of nanosheets with a nanosheet coverage of 95% or more in a large area and at a high yield.
 (1)水面に、ナノシートが分散されたコロイド水溶液を展開する工程
 前記水面は、好ましくは、純水の水面である。
(1) Step of developing a colloidal aqueous solution in which nanosheets are dispersed on a water surface The water surface is preferably a pure water surface.
 前記ナノシートは、好ましくは、層状化合物が単層剥離されたナノシートである。 The nanosheet is preferably a nanosheet in which a layered compound is delaminated.
 単層剥離には、テトラブチルアンモニウムイオン(TBA+)等の剥離剤を用いる。剥離剤を用いて、界面活性剤を剥離する。 A stripping agent such as tetrabutylammonium ion (TBA + ) is used for single layer stripping. A stripping agent is used to strip the surfactant.
 前記層状化合物を構成する化合物は、好ましくは、酸化チタン、ペロブスカイト酸化物、酸化マンガン、酸化コバルト、酸化シリコン、酸化タングステン、酸化ニオブ、酸化タンタル、チタン・ニオブ酸化物、チタン・タンタル酸化物、酸化モリブデン酸化物、酸化ルテニウム、グラフェン、酸化グラファイト、六方晶窒化ホウ素、雲母、遷移金属カルコゲナイト、及び遷移金属カーバイドから成る群から選ばれる少なくとも1種の化合物である。 The compound constituting the layered compound is preferably titanium oxide, perovskite oxide, manganese oxide, cobalt oxide, silicon oxide, tungsten oxide, niobium oxide, tantalum oxide, titanium/niobium oxide, titanium/tantalum oxide, oxide At least one compound selected from the group consisting of molybdenum oxide, ruthenium oxide, graphene, graphite oxide, hexagonal boron nitride, mica, transition metal chalcogenite, and transition metal carbide.
 層状チタン酸化物は、好ましくは、固相合成法に依り、合成する事が出来る。 The layered titanium oxide can preferably be synthesized by a solid-phase synthesis method.
 層状化合物を構成する代表的な物質は、好ましくは、グラフェン、酸化グラフェン、酸化物、水酸化物、六方晶窒化ホウ素、遷移金属カルコゲナイト、遷移金属カーバイド等である。これら層状化合物の単層剥離により得られるナノシートは、原子数個分の厚みに対して横サイズ数百nm~数十μmという高い二次元異方性を持つシート状ナノ物質である。これら層状化合物から構成されるナノシートは、化学組成、構造を反映し、優れた電子・イオン伝導性、半導体性、絶縁性、高誘電性、強誘電性、強磁性、蛍光特性、光触媒性等の特性を示す。 Representative substances constituting layered compounds are preferably graphene, graphene oxide, oxides, hydroxides, hexagonal boron nitride, transition metal chalcogenites, transition metal carbides, and the like. Nanosheets obtained by single-layer exfoliation of these layered compounds are sheet-like nanomaterials with high two-dimensional anisotropy of lateral size of several hundred nm to several tens of μm with respect to the thickness of several atoms. Nanosheets composed of these layered compounds reflect their chemical composition and structure, and have excellent electronic and ionic conductivity, semiconductor properties, insulating properties, high dielectric properties, ferroelectric properties, ferromagnetism, fluorescence properties, photocatalytic properties, etc. characterize.
 酸化チタン(Ti0.87O2)のナノシートは、高い屈折率、及び誘電率を有し、光学への応用、及び誘電体へ応用が可能である。酸化チタン(Ti1-δO2)のナノシートは、半導体性、光触媒性等の特性を示す。 Titanium oxide (Ti 0.87 O 2 ) nanosheets have a high refractive index and dielectric constant, and can be used for optical and dielectric applications. Nanosheets of titanium oxide (Ti 1-δ O 2 ) exhibit properties such as semiconducting properties and photocatalytic properties.
 ペロブスカイト(Ca2Nb3O10)のナノシートは、高い誘電率(高誘電性)、及び絶縁性を有し、誘電体への応用が可能である。ペロブスカイト(Ca2Nb3O10)のナノシートは、高耐熱性等の特性を示す。 Perovskite (Ca 2 Nb 3 O 10 ) nanosheets have high dielectric constant (high dielectric) and insulating properties, and can be applied to dielectrics. Perovskite (Ca 2 Nb 3 O 10 ) nanosheets exhibit properties such as high heat resistance.
 酸化ルテニウム(RuO2)のナノシートは、高い伝導度(伝導性)を有し、伝導体への応用が可能であり、優れた透明伝導膜として機能する。 Ruthenium oxide (RuO 2 ) nanosheets have high conductivity (conductivity), can be applied to conductors, and function as excellent transparent conductive films.
 酸化グラフェン(GO)のナノシートは、電気絶縁性、及び高いイオン伝導性を有し、電極触媒への応用が可能である。酸化グラフェン(GO)のナノシートは、半導体性等の特性を示す。  Graphene oxide (GO) nanosheets have electrical insulation and high ionic conductivity, and can be applied to electrocatalysts. Graphene oxide (GO) nanosheets exhibit properties such as semiconductivity.
 六方晶窒化ホウ素(h-BN)のナノシートは、電気絶縁性、高耐電圧、及び高い熱伝導率を有し、絶縁膜、放熱基板への応用が可能である。 Hexagonal boron nitride (h-BN) nanosheets have electrical insulation, high withstand voltage, and high thermal conductivity, and can be applied to insulating films and heat dissipation substrates.
 フォトクロミック膜(Cs4W11O36)のナノシートは、フォトクロミック性の特性を示す。 Nanosheets of photochromic films ( Cs4W11O36 ) exhibit photochromic properties.
 MXene(マキシン)として知られる導電性の2次元(2D)炭化物、窒化物、及び炭窒化物のナノシートは、伝導性の特性を示す。MXeneの一般的な構造は、Mn+1XnTxである。Mは、前周期遷移金属(Ti、V、Nb等)である。Xは、C、又はN(又はその両方)である。nの範囲は、1~4である。Txは表面の末端を表し(典型的なものは-O、-OH、及び-F)、n+1層のMがn層のXを[MX]nMの配置で被覆している。 Conductive two-dimensional (2D) carbide, nitride, and carbonitride nanosheets known as MXenes exhibit conductive properties. The general structure of MXene is M n+1 X n T x . M is an early transition metal (Ti, V, Nb, etc.). X is C or N (or both). The range of n is 1-4. T x represents the surface termination (typically -O, -OH, and -F), with n+1 layers of M covering n layers of X in the [MX] n M arrangement.
 これら層状化合物から構成されるナノシートは、様々な組成、構造の無機ナノシートに適用可能である。本発明の薄膜の製造方法は、これら層状化合物から構成されるナノシートを、様々な基板上に製膜する事が出来、極めて汎用性の高い製膜技術である。 Nanosheets composed of these layered compounds can be applied to inorganic nanosheets with various compositions and structures. The method for producing a thin film of the present invention is an extremely versatile film-forming technique that allows nanosheets composed of these layered compounds to be formed on various substrates.
 前記コロイド水溶液として、好ましくは、層状化合物(層状チタン酸化物等)の含有量が0.4質量%程度であるコロイド水溶液を、更に100希釈したコロイド水溶液(0.004質量%程度)を用いる。 As the colloidal aqueous solution, a colloidal aqueous solution (about 0.004% by mass) obtained by further diluting a colloidal aqueous solution containing about 0.4% by mass of a layered compound (layered titanium oxide, etc.) by 100 is preferably used.
 本発明の薄膜の製造方法では、前記コロイド水溶液は、好ましくは、アルコールを含むコロイド水溶液である。 In the thin film manufacturing method of the present invention, the colloidal aqueous solution is preferably an alcohol-containing colloidal aqueous solution.
 本発明の薄膜の製造方法では、ナノシートのコロイド溶液にアルコールを添加する事に依り、簡便に、稠密な、ナノシート単層膜を製造する事が出来る。 In the thin film manufacturing method of the present invention, a dense nanosheet monolayer film can be easily manufactured by adding alcohol to the nanosheet colloidal solution.
 本発明の薄膜の製造方法では、アルコール蒸発に依る濃度差を利用し、対流現象を利用する。水面に、ナノシートが分散されたコロイド水溶液を滴下(展開)すると、滴下したコロイド水溶液は水面を拡がる。この時、ナノシートは、電荷を帯びている為、水面と弱く相互作用しつつ、対流に由り外側に運ばれる。界面の観察では、コロイド水溶液の液滴が容器サイズに合致すると、容器の端部ではアルコールの蒸発スピードが速い為、そこからトランプが順番にパッキングする様に、容器の端部から中央に向けて自己組織的に配列する。 In the thin film manufacturing method of the present invention, the concentration difference due to alcohol evaporation is used, and the convection phenomenon is used. When the colloidal aqueous solution in which the nanosheets are dispersed is dropped (developed) on the water surface, the dropped colloidal aqueous solution spreads over the water surface. At this time, since the nanosheet is charged, it interacts weakly with the water surface and is transported to the outside by convection. In the observation of the interface, when the colloidal aqueous solution droplets match the size of the container, alcohol evaporates quickly at the edge of the container. Arrange in a self-organizing manner.
 本発明の薄膜の製造方法では、コロイド水溶液にアルコール(エタノール等)を添加する事に依り、コロイド水溶液の表面張力を低減させ、滴下したコロイド水溶液中の分散媒の蒸発速度を増大させ、分散媒中のナノシートの対流を促進させる事が出来る。 In the method for producing a thin film of the present invention, by adding an alcohol (such as ethanol) to the colloidal aqueous solution, the surface tension of the colloidal aqueous solution is reduced, the evaporation rate of the dispersion medium in the colloidal aqueous solution added dropwise is increased, and the dispersion medium is It can promote the convection of the nanosheet inside.
 製膜用コロイド水溶液に添加するアルコールは、特に制限は無い。 There are no particular restrictions on the alcohol added to the colloid aqueous solution for film formation.
 アルコールは、エタノール以外にも、水との親和性が良いという点で、好ましくは、炭素数が5以下の低級アルコールを用いる。 In addition to ethanol, it is preferable to use lower alcohols with 5 or less carbon atoms because they have good affinity with water.
 アルコールは、好ましくは、メタノール、エタノール、n-プロピルアルコール(n-プロパノール)、イソプロピルアルコール(IPA)、n-ブチルアルコール(n-ブタノール)、イソブチルアルコール、sec-ブチルアルコール、及びtert-ブチルアルコールから選択されるアルコールである。これらアルコールは、入手が容易であり、取り扱いが簡便である。 The alcohol is preferably from methanol, ethanol, n-propyl alcohol (n-propanol), isopropyl alcohol (IPA), n-butyl alcohol (n-butanol), isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol. is the alcohol of choice. These alcohols are readily available and easy to handle.
 アルコールは、これらのアルコールを1種単独で用いても良く、或は2種以上を混合(ブレンド)して用いても良い。 As for the alcohol, one of these alcohols may be used alone, or two or more may be mixed (blended) and used.
 アルコールの中でも、エタノールは、ナノシートの稠密単層膜から成る薄膜を形成する事において、コロイド水溶液の表面張力を低減させる点、液滴の蒸発速度を増大させる点、ナノシートの液滴内部(分散媒中)の対流を促進させる点等から、特に好適である。 Among alcohols, ethanol reduces the surface tension of the colloidal aqueous solution, increases the evaporation rate of droplets, and affects the inside of droplets of nanosheets (dispersion medium It is particularly suitable from the viewpoint of promoting convection in the medium).
 添加するアルコールの量は、コロイド水溶液全体の質量に対して、好ましくは、0.5質量%以上、10質量%以下であり、より好ましくは、0.5質量%以上、5質量%以下であり、更に好ましくは、0.5質量%以上3質量%以下である。 The amount of alcohol to be added is preferably 0.5% by mass or more and 10% by mass or less, more preferably 0.5% by mass or more and 5% by mass or less, and still more preferably , 0.5% by mass or more and 3% by mass or less.
 また、製膜用コロイド水溶液に、アルコール(好ましくは、低級アルコール)に加えて、或はアルコール以外にも、水溶性の有機溶媒を添加しても良い。 In addition to alcohol (preferably lower alcohol), or in addition to alcohol, a water-soluble organic solvent may be added to the colloid aqueous solution for film formation.
 水溶性の有機溶媒は、好ましくは、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、及びホルムアミドから選択される非プロトン性極性溶媒である。 The water-soluble organic solvent is preferably an aprotic polar solvent selected from dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF) and formamide .
 非プロトン性極性溶媒は、これらの非プロトン性極性溶媒を1種単独で用いても良く、或は2種以上を混合(ブレンド)して用いても良い。 As for the aprotic polar solvent, one of these aprotic polar solvents may be used alone, or two or more may be mixed (blended) and used.
 アルコール及び非プロトン性極性溶媒は、これらのアルコール及び非プロトン性極性溶媒を、1種単独で用いても良く、或は2種以上を混合(ブレンド)して用いても良い。 As for the alcohol and the aprotic polar solvent, these alcohols and aprotic polar solvents may be used alone, or two or more may be mixed (blended) and used.
 水面に、ナノシートが分散されたコロイド水溶液を展開する操作は、例えば、ペトラ皿等を、水(好ましくは、超純水)で満たし(100mL程度)、次いで、(ii)マイクロピペット等を用いて、水表面上に、コロイド水溶液(12μL程度)を展開する事に依り行う。 The operation of developing the colloidal aqueous solution in which the nanosheets are dispersed on the water surface is performed, for example, by filling a Petra dish or the like with water (preferably ultrapure water) (about 100 mL), and then (ii) using a micropipette or the like. , by spreading a colloidal aqueous solution (about 12 μL) on the water surface.
 (2)気液界面に、前記ナノシートの稠密単層膜を形成する工程
 水表面上に展開されたコロイド水溶液は、気液界面に、ナノシートの稠密単層膜を形成する。
(2) Step of forming a dense monolayer film of nanosheets at the gas-liquid interface The colloidal aqueous solution spread on the water surface forms a dense monolayer film of nanosheets at the gas-liquid interface.
 (3)基板に、前記ナノシートの稠密単層膜を転写する工程
 製膜用基板は、好ましくは、シリコン(Si)基板、石英ガラス基板、Pt基板、SrTiO3:Nb基板、PET基板等を用いる。
(3) Step of transferring the dense monolayer film of the nanosheet to the substrate Preferably, a silicon (Si) substrate, a quartz glass substrate, a Pt substrate, a SrTiO 3 :Nb substrate, a PET substrate, or the like is used as the substrate for film formation. .
 製膜用基板は、好ましくは、基板の表面を、洗浄処理に依り、親水化処理する。 For the film-forming substrate, the surface of the substrate is preferably subjected to a hydrophilic treatment by a cleaning treatment.
 洗浄処理は、先ず、アセトンで、基板の表面を拭き、基板の表面の有機物を除去し、次いで、この基板を、メタノールと塩酸との混合溶液(例えば、体積比で1:1で混合)に浸漬(30分程度)させ、次いで、超純水で洗浄し、次いで、濃塩酸に浸漬(30分程度)し、再度、超純水で洗浄する。Si基板、石英ガラス基板等は、好ましくは、アセトン、メタノールと塩酸との混合溶液、超純水、濃塩酸等を用いる洗浄処理を行う事に依り、良好に親水化処理する事(親水化基板を得る事)が出来る。 In the cleaning process, first, the surface of the substrate is wiped with acetone to remove organic substances on the surface of the substrate, and then the substrate is placed in a mixed solution of methanol and hydrochloric acid (for example, mixed at a volume ratio of 1:1). It is immersed (about 30 minutes), then washed with ultrapure water, then immersed in concentrated hydrochloric acid (about 30 minutes), and washed again with ultrapure water. Si substrates, quartz glass substrates, etc. are preferably hydrophilized (hydrophilized substrates) by cleaning with acetone, a mixed solution of methanol and hydrochloric acid, ultrapure water, concentrated hydrochloric acid, etc. ) can be obtained.
 洗浄処理は、オゾン雰囲気下で、紫外線照射(15分~30分程度)を行う。Pt基板、SrTiO3:Nb基板、PET基板等は、好ましくは、オゾン雰囲気下で、紫外線照射る洗浄処理を行う事に依り、良好に親水化処理する事(親水化基板を得る事)が出来る。 The cleaning process is carried out by ultraviolet irradiation (about 15 to 30 minutes) in an ozone atmosphere. Pt substrates, SrTiO 3 :Nb substrates, PET substrates, etc., can be satisfactorily hydrophilized (obtained hydrophilized substrates) by performing a cleaning treatment with UV irradiation in an ozone atmosphere. .
 基板に、前記ナノシートの稠密単層膜を転写する操作は、水表面上に、展開されたコロイド水溶液を、ピンセット等で、基板を液面の下側から挿入し、界面層を掬い上げる事に依り、ナノシートの単層膜を得る。 The operation of transferring the dense monolayer film of the nanosheet to the substrate is to scoop up the interfacial layer by inserting the colloidal aqueous solution developed on the surface of the water with tweezers or the like into the substrate from below the liquid surface. Thus, a monolayer film of nanosheets is obtained.
 本発明のナノシートの稠密(緻密)単層膜は、ナノシートのコロイド溶液の性状にも依るが、ナノシートは、通常、厚さ約1nmであり、横サイズ数μmのシート状物質である。 Although the dense (dense) monolayer film of the nanosheet of the present invention depends on the properties of the colloidal solution of the nanosheet, the nanosheet is usually a sheet material with a thickness of about 1 nm and a lateral size of several μm.
 本発明のナノシートの稠密単層膜は、このナノシート同士が隙間無く(密集して)、稠密に配列した状態を表す。この様に、本発明の欠陥の無いナノシートの稠密単層膜は、ナノシートの優れた機能を最大限に引き出す事が出来、デバイスの作製に有用である。 The dense monolayer film of the nanosheets of the present invention represents a state in which the nanosheets are densely arranged without gaps (densely). Thus, the defect-free dense monolayer film of nanosheets of the present invention can maximize the excellent functions of the nanosheets and is useful for the fabrication of devices.
 本発明のナノシートの稠密単層膜は、このナノシートは、電荷を帯びており、静電引力に依り、基板と強固に接合しており、優れた安定性を示す。ガラス、シリコン上に形成したナノシートの稠密単層膜は、テープによる剥離試験、鉛筆のひっかき試験等において、高い耐久性を示す。基板上において、本発明のナノシートの稠密単層膜は、剥がれ難く、優れた薄膜の耐久性を示す。 The dense monolayer film of the nanosheets of the present invention is electrically charged, strongly bonded to the substrate due to electrostatic attraction, and exhibits excellent stability. A dense monolayer film of nanosheets formed on glass or silicon exhibits high durability in tape peeling tests, pencil scratch tests, and the like. On a substrate, the dense monolayer film of nanosheets of the present invention is difficult to peel off and exhibits excellent thin film durability.
 工程(1)~(3)を繰り返す事
 本発明の薄膜の製造方法では、好ましくは、前記工程(1)~(3)を繰り返す事に依り、前記ナノシートの稠密単層膜の積層体(多層膜)を形成し、薄膜を製造する。
Repeating steps (1) to (3) In the method for producing a thin film of the present invention, preferably, by repeating steps (1) to (3), a laminate of dense monolayer films (multilayers) of the nanosheets film) to produce a thin film.
 先ず、前記工程(1)~(3)を経る事に依り、基板(石英ガラス基板、Si基板等)上に層状化合物(酸化チタン(Ti0.87O2)等)のナノシート単層膜を得る。 First, a nanosheet monolayer film of a layered compound (titanium oxide (Ti 0.87 O 2 ), etc.) is obtained on a substrate (quartz glass substrate, Si substrate, etc.) through the steps (1) to (3).
 次いで、得られた基板上のナノシート単層膜を加熱(100℃~200℃程度、15分程度)する。これに依り、ナノシート単層膜中に残留する剥離剤(テトラブチルアンモニウムイオン(TBA+))を除去する。 Next, the obtained nanosheet monolayer film on the substrate is heated (about 100° C. to 200° C. for about 15 minutes). This removes the release agent (tetrabutylammonium ion (TBA + )) remaining in the nanosheet monolayer film.
 ナノシートは、好ましくは、層状化合物が単層剥離されたナノシートである。単層剥離には、剥離剤を用いる。剥離剤を用いて、界面活性剤を剥離する。剥離剤は、テトラブチルアンモニウムイオン(TBA+)、及びテトラメチルアンモニウムイオン(TMA+)から成る群から選ばれる少なくとも1種の剥離剤を用いる。 The nanosheet is preferably a nanosheet in which a layered compound is delaminated. A release agent is used for single layer release. A stripping agent is used to strip the surfactant. At least one release agent selected from the group consisting of tetrabutylammonium ions (TBA + ) and tetramethylammonium ions (TMA + ) is used as the release agent.
 次いで、加熱後のナノシート単層膜を純水で洗浄する。これに依り、コロイド水溶液を馴染み易くする。 Next, the nanosheet monolayer film after heating is washed with pure water. This makes the aqueous colloidal solution more compatible.
 次いで、工程(1)~(3)を開始し、マイクロピペット等を用いて、水(好ましくは、超純水)表面上に、コロイド水溶液を展開し、ピンセット等で、基板を液面の下側から挿入、界面層を掬い上げる。 Next, steps (1) to (3) are started, using a micropipette or the like to develop the colloidal aqueous solution on the surface of water (preferably ultrapure water), and using tweezers or the like to move the substrate below the liquid surface. Insert from the side and scoop up the interfacial layer.
 これら操作を繰り返す事に依り、良好に、ナノシートから成る積層体(ナノシート多層膜)を得る事が出来る。例えば、Si基板上のTi0.87O2ナノシート単層膜(n=1とする、nはナノシートが稠密に配列した層数を示す)から出発し、Si基板上で、その製膜操作を、更に9回繰り返す事に依り、薄膜として、Ti0.87O2ナノシートからなる多層膜(全10層(n=10)のナノシート多層膜)を製造する事が出来る。 By repeating these operations, it is possible to satisfactorily obtain a laminate of nanosheets (nanosheet multilayer film). For example, starting from a Ti 0.87 O 2 nanosheet monolayer film on a Si substrate (n = 1, where n indicates the number of layers in which nanosheets are densely arranged), the film formation operation on the Si substrate is further By repeating the process 9 times, a multilayer film composed of Ti 0.87 O 2 nanosheets (a total of 10 layers (n=10) nanosheet multilayer film) can be produced as a thin film.
 本発明の薄膜の製造方法では、その製膜操作を、繰り返し操作を行う事に依り、nの増大に伴い、ナノシート一層ずつを、確実に多層化する事が出来る。本発明の薄膜の製造方法では、通常、厚み約1nmのナノシートの稠密単層膜を製膜する事が出来、製膜操作を繰り返す事に依り、膜厚を1nm単位で制御して、多層膜(コーティング層)を製膜する事が出来る。 In the thin film manufacturing method of the present invention, by repeating the film forming operation, nanosheets can be reliably multi-layered layer by layer as n increases. In the method for producing a thin film of the present invention, a dense monolayer film of nanosheets having a thickness of about 1 nm can usually be produced. (coating layer) can be formed.
 (4)前記ナノシートに対して、紫外線を照射し、ナノシートの単層膜間の有機物を除去する工程
 本発明の薄膜の製造方法では、好ましくは、前記工程(1)~(3)の少なくとも一つの工程において、更に、
 (4)前記ナノシートに対して、紫外線を照射し、ナノシートの単層膜間の有機物を除去する工程、を含む。
(4) A step of irradiating the nanosheet with ultraviolet rays to remove organic substances between single-layer films of the nanosheet. In one step, further
(4) A step of irradiating the nanosheets with ultraviolet rays to remove organic substances between single layers of the nanosheets.
 本発明のナノシートの稠密単層膜の合成には、テトラブチルアンモニウム(TBA)、及びテトラメチルアンモニウム(TMA)が利用される。これらTBA及びTMAは、ナノシートの稠密単層膜の成膜後、紫外線を照射する事に依り、分解する事が可能である。 Tetrabutylammonium (TBA) and tetramethylammonium (TMA) are used to synthesize the dense monolayer of nanosheets of the present invention. These TBA and TMA can be decomposed by irradiating ultraviolet rays after forming a dense monolayer film of nanosheets.
 TBA及びTMAは、分解後、NH4+イオンとして残存し、赤外分光を用いて、そのNH4+イオンの残存を分析する事が可能である。 TBA and TMA remain as NH 4+ ions after decomposition, and infrared spectroscopy can be used to analyze the remaining NH 4+ ions.
 前記紫外線の照射は、好ましくは、積層体を形成する際に、1層積層毎に紫外線を照射して、有機物(TBA+、TMA+等の剥離剤)を除去しても良く、積層膜を作製後に紫外線を照射して、有機物を除去しても良い。 The irradiation with ultraviolet rays is preferably carried out by irradiating ultraviolet rays for each layer when forming the laminate to remove organic substances (release agents such as TBA + , TMA + , etc.). Organic substances may be removed by irradiating ultraviolet rays after fabrication.
 剥離剤は、テトラブチルアンモニウムイオン(TBA+)、及びテトラメチルアンモニウムイオン(TMA+)から成る群から選ばれる少なくとも1種の剥離剤である。 The release agent is at least one release agent selected from the group consisting of tetrabutylammonium ion (TBA + ) and tetramethylammonium ion (TMA + ).
 本発明の薄膜の製造方法では、薄膜(単層膜、又は積層膜)に紫外線を照射する事に依り、剥離剤を分解する。 In the thin film manufacturing method of the present invention, the release agent is decomposed by irradiating the thin film (single layer film or laminated film) with ultraviolet rays.
 本発明は、本発明の薄膜の製造方法に依って製造された、剥離剤の含有量(質量)が100ppmwt以下である薄膜を包含する。 The present invention includes a thin film having a release agent content (mass) of 100 ppmwt or less, produced by the method for producing a thin film of the present invention.
 本発明は、ナノシートの稠密単層膜から成り、
 前記ナノシートは、酸化チタン、ペロブスカイト酸化物、酸化マンガン、酸化コバルト、酸化シリコン、酸化タングステン、酸化ニオブ、酸化タンタル、チタン・ニオブ酸化物、チタン・タンタル酸化物、酸化モリブデン酸化物、酸化ルテニウム、グラフェン、酸化グラファイト、六方晶窒化ホウ素、雲母、遷移金属カルコゲナイト、及び遷移金属カーバイドから成る群から選ばれる少なくとも1種の層状化合物が単層剥離されたナノシートであり、
 剥離剤の含有量(質量)が100ppmwt以下である、薄膜を包含する。
The present invention consists of a dense monolayer film of nanosheets,
The nanosheets include titanium oxide, perovskite oxide, manganese oxide, cobalt oxide, silicon oxide, tungsten oxide, niobium oxide, tantalum oxide, titanium/niobium oxide, titanium/tantalum oxide, molybdenum oxide, ruthenium oxide, and graphene. , graphite oxide, hexagonal boron nitride, mica, transition metal chalcogenite, and transition metal carbide.
This includes thin films in which the content (mass) of the release agent is 100 ppmwt or less.
 本発明の薄膜では、剥離剤の含有量(質量)は、好ましくは、100ppmwt以下である。 In the thin film of the present invention, the content (mass) of the release agent is preferably 100 ppmwt or less.
 本発明の薄膜中の剥離剤の含有量は、赤外分光を用いて分析する事に依り、測定する事が可能である。 The content of the release agent in the thin film of the present invention can be measured by analyzing it using infrared spectroscopy.
 図3:単層膜及び多層膜のナノシートの例
 本発明のナノシートの稠密単層膜から成る薄膜は、単層膜を重ねて多層膜にしたり(単層膜A→A→A→多層膜)、異なる単層膜を重ねて多層膜にしたり(単層膜A→単層膜B(ヘテロ膜)→A→B→超格子のヘテロ多層膜)する事が可能である。
Figure 3: Examples of monolayer and multilayer nanosheets A thin film consisting of a dense monolayer of nanosheets of the present invention can be formed by stacking monolayers to form a multilayer (single layer A → A → A → multilayer). , it is possible to stack different single-layer films to form a multilayer film (single-layer film A → single-layer film B (hetero film) → A → B → superlattice hetero-multilayer film).
 本発明のナノシートの稠密単層膜では、製膜サイズは、特に制限されない。本発明の薄膜の製造方法では、例えば、市販の台所用水切りパット(縦30cm×横30cmの大きさ)等を利用する事に依り、A4サイズの大面積の、ナノシートの稠密単層膜から成る薄膜、或はこの単層膜を重ねて多層膜(積層体)を製膜する事が出来る。 In the dense monolayer film of nanosheets of the present invention, the film size is not particularly limited. In the method for producing the thin film of the present invention, for example, by using a commercially available kitchen drain pad (size of 30 cm long x 30 cm wide), a large area of A4 size, consisting of a dense monolayer film of nanosheets A multilayer film (laminate) can be formed by stacking thin films or single-layer films.
 本発明のナノシートの稠密単層膜から成る薄膜は、二次元超薄膜の微小デバイス、三次元集積(マルチマテリアル化)等に有用である。 A thin film composed of a dense monolayer film of nanosheets of the present invention is useful for two-dimensional ultra-thin microdevices, three-dimensional integration (multi-materialization), and the like.
 二次元材料(グラフェン、及び無機ナノシート)を用いて、デバイス製造、及び応用を行う事が出来る。二次元材料は、バルクと異なり、高い電子移動度、柔軟性、透明性、高耐熱性等の優れた機能を発揮する。 It is possible to manufacture and apply devices using two-dimensional materials (graphene and inorganic nanosheets). Unlike bulk materials, two-dimensional materials exhibit excellent functions such as high electron mobility, flexibility, transparency, and high heat resistance.
 本発明のナノシートの稠密単層膜から成る薄膜を用いて、高品質のナノシートの薄膜を、大面積で製造し、新たなデバイスを実現する事が出来る。 Using the thin film composed of the dense monolayer film of nanosheets of the present invention, it is possible to manufacture high-quality nanosheet thin films over a large area and realize new devices.
 本発明の薄膜の製造方法では、ナノシートを、基板上で隙間なく配列させて、稠密単層膜を形成する。本発明の薄膜の製造方法では、更に、この稠密単層膜を形成する事を反復する事に依り、つまり、単層膜作製の操作を繰り返す事に依り、ナノシートの稠密単層膜から成る多層膜、及び超格子を構築する事が出来る。 In the thin film manufacturing method of the present invention, the nanosheets are arranged on the substrate without gaps to form a dense monolayer film. In the method for producing a thin film of the present invention, by repeating the formation of this dense monolayer film, that is, by repeating the operation of producing a monolayer film, a multi-layer film composed of a nanosheet dense monolayer film is obtained. Membranes and superlattices can be constructed.
 [2]ナノシートの稠密単層膜から成る薄膜
 本発明の薄膜の製造方法に依り、基板(Si基板等)全体が、層状化合物(酸化チタン(Ti0.87O2)等)のナノシートで被覆されており、ナノシート同士の重なり、及び、隙間無く稠密に配列したナノシート単層膜を得る事が出来る。基板上のナノシートの被覆率は、好ましくは、単層領域95%程度、重なり2%程度、隙間3%程度であり、ナノシートが稠密に配列している。
[2] Thin film composed of a dense monolayer film of nanosheets According to the thin film production method of the present invention, the entire substrate (such as a Si substrate) is coated with nanosheets of a layered compound (such as titanium oxide (Ti 0.87 O 2 )). It is possible to obtain a nanosheet monolayer film in which the nanosheets overlap each other and are densely arranged without gaps. The coverage of the nanosheets on the substrate is preferably about 95% for the single layer region, about 2% for overlap, and about 3% for gaps, and the nanosheets are densely arranged.
 本発明の薄膜の製造方法に依り、大面積の基板全体に亘って、均一なナノシート単層膜を得る事が出来る。 According to the thin film manufacturing method of the present invention, a uniform nanosheet monolayer film can be obtained over the entire large-area substrate.
 本発明は、前記本発明の薄膜の製造方法に依って製造された薄膜(ナノシートの稠密単層膜から成る薄膜)から成る、光学薄膜、誘電体薄膜、及び伝導性薄膜を包含する。 The present invention includes optical thin films, dielectric thin films, and conductive thin films made of thin films (thin films consisting of nanosheet dense single-layer films) manufactured by the thin film manufacturing method of the present invention.
 本発明は、前記本発明の薄膜の製造方法に依って製造された、剥離剤の含有量(質量)が100ppmwt以下である薄膜を包含する。 The present invention includes a thin film having a release agent content (mass) of 100 ppmwt or less, produced by the method for producing a thin film of the present invention.
 本発明は、ナノシートの稠密単層膜から成り、
 酸化チタン、ペロブスカイト酸化物、酸化マンガン、酸化コバルト、酸化シリコン、酸化タングステン、酸化ニオブ、酸化タンタル、チタン・ニオブ酸化物、チタン・タンタル酸化物、酸化モリブデン酸化物、酸化ルテニウム、グラフェン、酸化グラファイト、六方晶窒化ホウ素、雲母、遷移金属カルコゲナイト、及び遷移金属カーバイドから成る群から選ばれる少なくとも1種の層状化合物が単層剥離されたナノシートであり、
 剥離剤の含有量(質量)が100ppmwt以下である、薄膜を包含する。
The present invention consists of a dense monolayer film of nanosheets,
Titanium oxide, perovskite oxide, manganese oxide, cobalt oxide, silicon oxide, tungsten oxide, niobium oxide, tantalum oxide, titanium/niobium oxide, titanium/tantalum oxide, molybdenum oxide, ruthenium oxide, graphene, graphite oxide, A nanosheet obtained by exfoliating at least one layered compound selected from the group consisting of hexagonal boron nitride, mica, transition metal chalcogenite, and transition metal carbide,
This includes thin films in which the content (mass) of the release agent is 100 ppmwt or less.
 本発明の薄膜は、ナノシートの稠密単層膜から成る多層膜、及び超格子であり、より優れた電子・イオン伝導性、半導体性、絶縁性、高誘電性、強誘電性、強磁性、蛍光特性、光触媒性等の特性を示す。 The thin film of the present invention is a multilayer film and a superlattice composed of a dense monolayer film of nanosheets, and has excellent electronic and ionic conductivity, semiconducting properties, insulating properties, high dielectric properties, ferroelectric properties, ferromagnetism, and fluorescence properties. characteristics, such as photocatalytic properties.
 酸化チタン(Ti0.87O2)のナノシートは、高い屈折率、及び誘電率を有し、光学への応用、及び誘電体へ応用が可能である。 Titanium oxide (Ti 0.87 O 2 ) nanosheets have a high refractive index and dielectric constant, and can be used for optical and dielectric applications.
 ペロブスカイト(Ca2Nb3O10)のナノシートは、高い誘電率、及び絶縁性を有し、誘電体への応用が可能である。 Perovskite (Ca 2 Nb 3 O 10 ) nanosheets have high dielectric constant and insulating properties and can be applied to dielectrics.
 酸化ルテニウム(RuO2)のナノシートは、高い伝導度を有し、伝導体への応用が可能であり、優れた透明伝導膜として機能する。 Ruthenium oxide (RuO 2 ) nanosheets have high conductivity, can be applied to conductors, and function as excellent transparent conductive films.
 酸化グラフェン(GO)のナノシートは、電気絶縁性、及び高いイオン伝導性を有し、電極触媒への応用が可能である。  Graphene oxide (GO) nanosheets have electrical insulation and high ionic conductivity, and can be applied to electrocatalysts.
 六方晶窒化ホウ素(h-BN)のナノシートは、電気絶縁性、高耐電圧、及び高い熱伝導率を有し、絶縁膜、放熱基板への応用が可能である。 Hexagonal boron nitride (h-BN) nanosheets have electrical insulation, high withstand voltage, and high thermal conductivity, and can be applied to insulating films and heat dissipation substrates.
 [3]ナノシートの稠密単層膜から成る薄膜の製造方法の有用性(図4)
 従来のナノシートの薄膜の製造方法は、ディップコート法、ラングミュア・ブロジェット(LB)法、スピンコート法等を採用しており、複雑な操作や条件設定が必要である点、1層の製膜に時間を要する点等の課題を有する。
[3] Usefulness of a thin film manufacturing method consisting of a dense monolayer film of nanosheets (Fig. 4)
Conventional methods for manufacturing nanosheet thin films include the dip coating method, Langmuir-Blodgett (LB) method, and spin coating method. There are problems such as the point that it takes time to
 本発明のナノシートの稠密単層膜から成る薄膜の製造方法(本発明の薄膜の製造方法)は、ナノシートの高品質な稠密配列膜を、大面積で、簡便、短時間、及び少量の溶液で、製膜する事が出来るプロセスである。 The method for producing a thin film composed of a dense monolayer film of nanosheets of the present invention (the method for producing a thin film of the present invention) is a method for producing a high-quality densely arranged film of nanosheets over a large area, simply, in a short time, and with a small amount of solution. , is a process that can be used to form a film.
 本発明の薄膜の製造方法は、例として、(1)水面に、ナノシート分散コロイド水溶液を1滴展開し、次いで、(2)気液界面で、ナノシートからなる単層膜を形成し、次いで、(3)そのナノシートからなる単層膜を基板に転写する事に依り、薄膜を製造する。 The method for producing a thin film of the present invention includes, for example, (1) spreading one drop of a nanosheet-dispersed colloidal aqueous solution on a water surface, (2) forming a monolayer film composed of nanosheets at a gas-liquid interface, and then (3) A thin film is manufactured by transferring a monolayer film composed of the nanosheet to a substrate.
 本発明の薄膜の製造方法は、従来技術の課題を解決し、ナノシートのデバイスを開発し、更に、工業化を進める事が可能である。本発明の薄膜の製造方法は、薄膜製造に掛かるコストを大幅に削減する事が出来、工業的な薄膜作製法、及びナノコーティング法として有効である。 The thin film manufacturing method of the present invention can solve the problems of the conventional technology, develop nanosheet devices, and further advance industrialization. INDUSTRIAL APPLICABILITY The thin film manufacturing method of the present invention can significantly reduce the cost of thin film manufacturing, and is effective as an industrial thin film manufacturing method and nano-coating method.
 図4:薄膜の応用例
 本発明の薄膜の製造方法(界面転写法)は、(i)セラミックス製造技術、コーティング技術に応用したり、(ii)生産性が高く、コストを削減したり、(iii)小ロット、オンデマンドで製造したりする事が可能である。本発明の薄膜は、超高品質、超高信頼性、超耐久性を有するスーパーファインセラミックスである。
Figure 4: Thin film application example The thin film manufacturing method of the present invention (interfacial transfer method) can be applied to (i) ceramics manufacturing technology and coating technology, (ii) high productivity and cost reduction, ( iii) It is possible to manufacture in small lots and on demand. The thin film of the present invention is super fine ceramics with ultra-high quality, ultra-high reliability, and ultra-durability.
 ペロブスカイトの絶縁膜(Ca2Nb3O10):耐電圧>4MV/cm、誘電率εr>200、耐熱性>800℃を実現する。絶縁膜、高耐電圧基板、素材分野、電力分野に有用である。 Perovskite insulating film (Ca 2 Nb 3 O 10 ): Achieves withstand voltage > 4 MV/cm, dielectric constant εr > 200, and heat resistance > 800°C. It is useful for insulating films, high withstand voltage substrates, material fields, and electric power fields.
 酸化チタンの半導体膜(Ti0.87O2):高屈折率n>2.7を実現する。光学フィルタ、光触媒膜、光学分野に有用である。 Semiconductor film of titanium oxide (Ti 0.87 O 2 ): realizes a high refractive index n>2.7. It is useful for optical filters, photocatalyst films, and optical fields.
 磁性膜(Ti0.8Co0.2O2):電磁場シールド膜、素材分野に有用である。 Magnetic film (Ti 0.8 Co 0.2 O 2 ): Electromagnetic field shield film, useful in the field of materials.
 酸化ルテニウムの導電膜(RuO2):抵抗率10-4 Ωcm(ITOに相当)、透過率>98%を実現する。透明導電膜、ガラス分野に有用である。 Conductive film of ruthenium oxide (RuO 2 ): achieves resistivity of 10 -4 Ωcm (equivalent to ITO) and transmittance of >98%. It is useful for transparent conductive films and glass fields.
 六方晶窒化ホウ素の絶縁膜(h-BN):熱伝導率>40W/mKを実現する。絶縁膜、高耐電圧基板、放熱基板、素材分野、電力分野に有用である。 Hexagonal boron nitride insulating film (h-BN): achieves a thermal conductivity of >40W/mK. It is useful for insulating films, high withstand voltage substrates, heat dissipation substrates, material fields, and electric power fields.
 容量膜(金属・誘電体多層膜):RuO2/Ca2Nb3O10/RuO2の積層体キャパシタ応用、電子分野に有用である。 Capacitance film (metal/dielectric multilayer film): RuO 2 /Ca 2 Nb 3 O 10 /RuO 2 multilayer capacitor application, useful in the electronic field.
 フォトクロミック膜(Cs4W11O36)(光照射(UV等):可逆的に分子構造が変化し、それに伴って吸収スペクトルも変化する(フォトクロミズム)膜)。スマートウィンドウ、遮熱フィルム素材分野、自動車分野に有用である。 Photochromic film (Cs 4 W 11 O 36 ) (light irradiation (UV, etc.): a film in which the molecular structure changes reversibly and the absorption spectrum changes accordingly (photochromism)). It is useful in the fields of smart windows, heat shield film materials, and automobiles.
 以下、実施例に基づき、本発明の実施形態をより具体的に説明する。 Hereinafter, embodiments of the present invention will be described more specifically based on examples.
 但し、本発明は実施例の範囲に限定されるものではない。 However, the present invention is not limited to the scope of the examples.
 [1]ナノシートの稠密単層膜から成る薄膜の製造(図11)
 実施例1(図5):単層膜の製造
 出発原料として、層状チタン酸化物(K0.8Ti1.73Li0.27O4)を用い、酸化チタン(Ti0.87O2)ナノシートを作製し、次いで、この酸化チタンナノシートから成る単層膜(ナノシート単層膜)を製造した。
[1] Fabrication of a thin film consisting of a dense monolayer of nanosheets (Fig. 11)
Example 1 (FIG. 5): Preparation of monolayer film Layered titanium oxide (K 0.8 Ti 1.73 Li 0.27 O 4 ) was used as a starting material to prepare titanium oxide (Ti 0.87 O 2 ) nanosheets. A monolayer film (nanosheet monolayer film) composed of titanium oxide nanosheets was produced.
 層状チタン酸化物(K0.8Ti1.73Li0.27O4)は、固相合成法に依り、合成した。 A layered titanium oxide (K 0.8 Ti 1.73 Li 0.27 O 4 ) was synthesized by a solid phase synthesis method.
 TiO2(Rare Metallic社製、純度99.99%)、K2CO3(Rare Metallic社製、純度99.99%)、及びLi2CO3(Rare Metallic社製、純度99.99%)から成る原料粉末を、化学量論比TiO2:K2CO3:Li2CO3=1:0.23:0.078に基づいて秤量し、アルミナ乳鉢を用いて、60分間、粉砕及び混合した。次の焼成の際に、アルカリ金属炭酸塩であるK2CO3及びLi2CO3の一部が蒸発する為、モル比で5%過剰に加えた。 Raw material powders consisting of TiO 2 (Rare Metallic, 99.99% purity), K 2 CO 3 (Rare Metallic, 99.99% purity), and Li 2 CO 3 (Rare Metallic, 99.99% purity) were chemically Based on the stoichiometric ratio TiO 2 :K 2 CO 3 :Li 2 CO 3 =1:0.23:0.078, they were weighed, ground and mixed for 60 minutes using an alumina mortar. Since part of the alkali metal carbonates K 2 CO 3 and Li 2 CO 3 evaporates during the next firing, they were added in excess of 5% in terms of molar ratio.
 粉砕及び混合した原料粉末を、白金るつぼに入れ、900℃で、1時間、電気炉で仮焼成した。その後、仮焼成した原料粉末を、アルミナ乳鉢で、再度30分間、粉砕及び混合した。次いで、粉砕及び混合した原料粉末を、白金るつぼに入れ、1,000℃で、20時間、焼成し、層状チタン酸化物K0.8Ti1.73Li0.27O4を得た。 The pulverized and mixed raw material powder was placed in a platinum crucible and calcined at 900° C. for 1 hour in an electric furnace. After that, the calcined raw material powder was again pulverized and mixed in an alumina mortar for 30 minutes. Next, the pulverized and mixed raw material powder was placed in a platinum crucible and fired at 1,000° C. for 20 hours to obtain layered titanium oxide K 0.8 Ti 1.73 Li 0.27 O 4 .
 得られた層状チタン酸化物(0.2g)と塩酸水溶液(200mL)とを、ビーカ中で、撹拌し、72時間、酸処理を行ない、水素交換体(H1.07Ti1.73O4・H2O)を得た。 The obtained layered titanium oxide (0.2 g) and hydrochloric acid aqueous solution (200 mL) were stirred in a beaker and subjected to acid treatment for 72 hours to obtain a hydrogen exchanger (H 1.07 Ti 1.73 O 4 ·H 2 O). got
 次いで、水素イオン交換体を、テトラブチルアンモニウムイオン(TBA+)/H+の比が1に成る様に、濃度を調整した水酸化テトラブチルアンモニウム水溶液に、4g/Lの割合で混合し、室温にて、2週間、反応させて、組成式Ti0.87O2で表される、厚さ約1nm、横サイズ5μm~10μmの長方形状の酸化チタンのナノシートが分散した乳白色状のコロイド水溶液を作製した。 Next, the hydrogen ion exchanger was mixed with an aqueous tetrabutylammonium hydroxide solution whose concentration was adjusted so that the ratio of tetrabutylammonium ion (TBA + )/H + was 1, at a rate of 4 g/L. A milky-white colloidal aqueous solution, represented by the compositional formula Ti 0.87 O 2 , in which rectangular titanium oxide nanosheets with a thickness of about 1 nm and a lateral size of 5 μm to 10 μm are dispersed was prepared. .
 次に、作製したTi0.87O2ナノシートを用いて薄膜製造用コーティング液を調製した。Ti0.87O2ナノシートが水に分散したコロイド水溶液10μLに、エタノール10μLを添加し、製膜用コロイド水溶液とした。 Next, the prepared Ti 0.87 O 2 nanosheets were used to prepare a coating solution for thin film production. 10 μL of ethanol was added to 10 μL of colloidal aqueous solution in which Ti 0.87 O 2 nanosheets were dispersed in water to obtain a colloidal aqueous solution for membrane formation.
 製膜用基板には、シリコン(Si)基板(30mmφ)を利用した。基板の表面を、洗浄処理に依り、親水化処理した。洗浄処理は、先ず、アセトンで、基板の表面を拭き、基板の表面の有機物を除去した。次いで、この基板を、メタノールと塩酸との混合溶液(体積比で1:1で混合)に30分浸漬させ、次いで、超純水で洗浄し、次いで、濃塩酸に30分浸漬し、再度、超純水で洗浄した。 A silicon (Si) substrate (30mmφ) was used as the film-forming substrate. The surface of the substrate was hydrophilized by washing. In the cleaning treatment, first, the surface of the substrate was wiped with acetone to remove organic matter on the surface of the substrate. Next, this substrate is immersed in a mixed solution of methanol and hydrochloric acid (mixed at a volume ratio of 1:1) for 30 minutes, washed with ultrapure water, then immersed in concentrated hydrochloric acid for 30 minutes, and Washed with ultrapure water.
 ペトラ皿(4インチ)を、超純水(日本ミリポア社製超純水装置Milli-Q Element)100mLで満たした。次いで、マイクロピペットを用いて、超純水表面上に、コロイド水溶液12μLを展開した。5秒後、ピンセットで、基板を液面の下側から挿入し、界面層を掬い上げる事に依り、ナノシートの単層膜を得た。 A Petra dish (4 inches) was filled with 100 mL of ultrapure water (Milli-Q Element ultrapure water device manufactured by Nihon Millipore). Then, using a micropipette, 12 μL of colloidal aqueous solution was spread on the ultrapure water surface. After 5 seconds, the substrate was inserted from below the liquid surface with tweezers, and the interfacial layer was scooped up to obtain a monolayer film of nanosheets.
 実施例1で得たSi基板(ウェハ)上のナノシート単層膜について、共焦点レーザー顕微鏡(CFLM)、及び原子間力顕微鏡(AFM)に依り表面観察を行った。CFLM観察は、オリンパス社製、OLS4000を用いた。AFM観察は、SII Nano Technology社製、E-Sweep走査型プローブ顕微鏡システムを用いた。プローブは、シリコンカンチレバー(バネ定数k=20Nm-1)を使用し、タッピングモードで観察した。 The surface of the nanosheet monolayer film on the Si substrate (wafer) obtained in Example 1 was observed with a confocal laser microscope (CFLM) and an atomic force microscope (AFM). For CFLM observation, OLS4000 manufactured by Olympus Corporation was used. For AFM observation, an E-Sweep scanning probe microscope system manufactured by SII Nano Technology was used. A silicon cantilever (spring constant k=20 Nm −1 ) was used as the probe, and observation was made in the tapping mode.
 観察結果を図5に示す。図5に依れば、Si基板全体がTi0.87O2ナノシートで被覆されており、ナノシート同士の重なり、及び、隙間無く稠密に配列したナノシート単層膜が得られた事が確認された。画像解析を行い、被覆率を算出した処、単層領域95%、重なり2%、隙間3%であり、ナノシートが稠密に配列している事が明らかと成った。 The observation results are shown in FIG. According to FIG. 5, the entire Si substrate was covered with Ti 0.87 O 2 nanosheets, and it was confirmed that the nanosheets overlapped with each other and a nanosheet monolayer film densely arranged without gaps was obtained. Image analysis was performed and the coverage was calculated. The single layer area was 95%, the overlap was 2%, and the gap was 3%, indicating that the nanosheets were densely arranged.
 以上依り、本発明の方法によれば、Ti0.87O2ナノシートについて、大面積の基板全体に亘って、短時間で均一なナノシート単層膜が得られる事が示された。 As described above, according to the method of the present invention, it was shown that a uniform nanosheet monolayer film can be obtained over the entire large-area substrate in a short time from Ti 0.87 O 2 nanosheets.
 実施例2(図6):基板の検討(単層膜)
 実施例2では、基板を変化させた以外は、実施例1と同様に、酸化チタンナノシート(Ti0.87O2)から成る単層膜を製造した。
Example 2 (Fig. 6): Substrate study (single layer film)
In Example 2, a monolayer film composed of titanium oxide nanosheets (Ti 0.87 O 2 ) was produced in the same manner as in Example 1, except that the substrate was changed.
 製膜用基板には、Si基板(30mmφ)、石英ガラス基板(30mmφ)、Pt基板(30mmφ)、PET基板(30mmφ)を利用した。 A Si substrate (30 mmφ), a quartz glass substrate (30 mmφ), a Pt substrate (30 mmφ), and a PET substrate (30 mmφ) were used as the film-forming substrates.
 Si基板(ウェハ)、石英ガラス基板については、実施例1と同様の基板洗浄処理を行い、これに依り親水化基板を得た。 For the Si substrate (wafer) and quartz glass substrate, the same substrate cleaning treatment as in Example 1 was performed to obtain a hydrophilic substrate.
 それ以外のPt基板、PET基板については、オゾン雰囲気下で、15分紫外線照射し、洗浄処理を行った。 Other Pt and PET substrates were cleaned by irradiating them with ultraviolet rays for 15 minutes in an ozone atmosphere.
 得られたナノシート単層膜について、実施例1と同様に、CFLM観察を測定し、基板の違いによる影響を検討した。 For the obtained nanosheet monolayer film, CFLM observation was measured in the same manner as in Example 1, and the influence of different substrates was examined.
 観察結果を図6に示す。図6に依れば、いずれの基板においても、ナノシート同士の重なり、及び、隙間無く稠密に配列したナノシート単層膜が得られた事が確認された。 Fig. 6 shows the observation results. According to FIG. 6, it was confirmed that the nanosheets overlapped with each other and a nanosheet monolayer film in which the nanosheets were densely arranged with no gaps was obtained on any of the substrates.
 実施例3(図7):層状化合物の検討(単層膜)
 実施例3では、種々の層状化合物のナノシートに対して、実施例1と同様に単層膜を製造した。
Example 3 (Fig. 7): Investigation of layered compound (monolayer film)
In Example 3, monolayer films were produced in the same manner as in Example 1 for nanosheets of various layered compounds.
 ペロブスカイト(Ca2Nb3O10)ナノシート:誘電体への応用が可能である。 Perovskite (Ca 2 Nb 3 O 10 ) nanosheets: applicable to dielectrics.
 酸化ルテニウム(RuO2)ナノシート:伝導体への応用が可能である。 Ruthenium oxide (RuO 2 ) nanosheets: applicable to conductors.
 酸化グラフェン(GO)ナノシート:イオン伝導膜、電極触媒への応用が可能である。 Graphene oxide (GO) nanosheets: can be applied to ion-conducting membranes and electrode catalysts.
 絶縁膜(h-BN):絶縁膜、放熱基板への応用。  Insulating film (h-BN): Application to insulating films and heat dissipation substrates.
 結果を図7に示す。図7に依れば、いずれの層状化合物のナノシートも、ナノシート同士の重なり、及び、隙間無く稠密に配列したナノシート単層膜が得られた事が確認された。 The results are shown in Fig. 7. According to FIG. 7, it was confirmed that the nanosheets of all layered compounds overlapped with each other, and nanosheet monolayer films were obtained in which the nanosheets were densely arranged without gaps.
 実施例4(図8):アルコール及び非プロトン性極性溶媒の検討(単層膜)
 実施例4では、アルコール及び非プロトン性極性溶媒を使用して、実施例1と同様に、酸化チタンナノシート(Ti0.87O2)から成る単層膜を製造した。
Example 4 (Fig. 8): Examination of alcohol and aprotic polar solvent (single layer film)
In Example 4, a monolayer film composed of titanium oxide nanosheets (Ti 0.87 O 2 ) was produced in the same manner as in Example 1 using alcohol and an aprotic polar solvent.
 作製したTi0.87O2ナノシートを用いて薄膜製造用コーティング液を調製した。 Using the prepared Ti 0.87 O 2 nanosheets, a coating solution for thin film fabrication was prepared.
 Ti0.87O2ナノシートが水に分散したコロイド水溶液10μLに、イソプロピルアルコール(IPA)10μLを添加し、製膜用コロイド水溶液とした。 10 μL of isopropyl alcohol (IPA) was added to 10 μL of colloidal aqueous solution in which Ti 0.87 O 2 nanosheets were dispersed in water to obtain a colloidal aqueous solution for film formation.
 Ti0.87O2ナノシートが水に分散したコロイド水溶液10μLに、ジメチルスルホキシド(DMSO)10μLを添加し、製膜用コロイド水溶液とした。 10 μL of dimethyl sulfoxide (DMSO) was added to 10 μL of colloidal aqueous solution in which Ti 0.87 O 2 nanosheets were dispersed in water to obtain a colloidal aqueous solution for membrane formation.
 Ti0.87O2ナノシートが水に分散したコロイド水溶液10μLに、N,N-ジメチルホルムアミド(DMF)10μLを添加し、製膜用コロイド水溶液とした。 10 μL of N,N-dimethylformamide (DMF) was added to 10 μL of colloidal aqueous solution in which Ti 0.87 O 2 nanosheets were dispersed in water to obtain a colloidal aqueous solution for membrane formation.
 結果を図8に示す。図8に依れば、いずれのアルコール及び非プロトン性極性溶媒を用いても、ナノシート同士の重なり、及び、隙間無く稠密に配列したナノシート単層膜が得られた事が確認された。 The results are shown in Fig. 8. According to FIG. 8, it was confirmed that nanosheets overlapped with each other and a nanosheet monolayer film densely arranged without gaps was obtained regardless of which alcohol and aprotic polar solvent were used.
 実施例5(図9):繰り返し操作の検討(多層膜)
 実施例5では、実施例1の実験条件を用い、石英ガラス基板及びSi基板上に、酸化チタン(Ti0.87O2)ナノシートから成る多層膜(ナノシート多層膜)を製造した。
Example 5 (Fig. 9): Examination of repeated operation (multilayer film)
In Example 5, using the experimental conditions of Example 1, multilayer films (nanosheet multilayer films) composed of titanium oxide (Ti 0.87 O 2 ) nanosheets were produced on quartz glass substrates and Si substrates.
 実施例1で得たSi基板上のTi0.87O2ナノシート単層膜(n=1とする、nはナノシートが稠密に配列した層数を示す)から出発し、実施例4では石英ガラス基板及びSi基板上で、実施例1の操作を9回繰り返した。 Starting from the Ti 0.87 O 2 nanosheet monolayer film (where n=1, where n indicates the number of layers in which the nanosheets are densely arranged) on the Si substrate obtained in Example 1, in Example 4, the quartz glass substrate and The operation of Example 1 was repeated nine times on the Si substrate.
 詳細には、先ず、実施例1で得たナノシート単層膜を加熱した。加熱を、200℃で15分間行った。これに依り、ナノシート単層膜中に残留するTBA+を除去した。次いで、加熱後のナノシート単層膜を純水で洗浄した。これに依り、コロイド水溶液を馴染み易くした。その後、実施例1と同様に、マイクロピペットを用いて、超純水表面上に、実施例1で調製したコロイド水溶液12μLを展開した。5秒後、ピンセットで、基板を液面の下側から挿入、界面層を掬い上げた。 Specifically, first, the nanosheet monolayer film obtained in Example 1 was heated. Heating was carried out at 200° C. for 15 minutes. This removed the TBA + remaining in the nanosheet monolayer film. Then, the nanosheet monolayer film after heating was washed with pure water. This made the colloidal aqueous solution more compatible. Thereafter, in the same manner as in Example 1, 12 μL of the colloidal aqueous solution prepared in Example 1 was spread on the ultrapure water surface using a micropipette. After 5 seconds, the substrate was inserted from below the liquid surface with tweezers and the interfacial layer was scooped up.
 前記の工程を9回繰り返し、薄膜として、Ti0.87O2ナノシートからなる多層膜(全10層(n=10)のナノシート多層膜)を製造した。尚、各工程で得られた薄膜について、吸収スペクトルを測定すると共に、吸光度を求めた。 The above steps were repeated 9 times to produce a multilayer film of Ti 0.87 O 2 nanosheets (a total of 10 nanosheet multilayer films (n=10)) as a thin film. For the thin film obtained in each step, the absorption spectrum was measured and the absorbance was obtained.
 結果を図9に示す。図9に依れば、nの増大に伴い、波長265nmにおける吸光度が線形に増大する事が分かった。この事は、本発明の方法に依れば、一層ずつ確実に多層化できる事を示している。 The results are shown in Fig. 9. According to FIG. 9, it was found that the absorbance at a wavelength of 265 nm increased linearly as n increased. This fact shows that according to the method of the present invention, multilayering can be reliably performed layer by layer.
 実施例6(図10):大型PET基板への製膜の検討(単層膜)
 実施例6では、基板、製膜容器を変化させた以外は、実施例1と同様に、酸化チタンナノシート(Ti0.87O2)から成る単層膜を製造した。
Example 6 (Fig. 10): Examination of film formation on large PET substrate (single layer film)
In Example 6, a monolayer film composed of titanium oxide nanosheets (Ti 0.87 O 2 ) was produced in the same manner as in Example 1, except that the substrate and film forming container were changed.
 製膜用基板には、A4サイズのPET基板を利用し、オゾン雰囲気下で、15分紫外線照射し、洗浄処理を行った。 An A4-sized PET substrate was used as the film-forming substrate, and was subjected to UV irradiation for 15 minutes in an ozone atmosphere for cleaning.
 製膜用容器には、縦36cm X 横25cm X 深さ5cmの水切りバットを利用し、超純水(日本ミリポア社製超純水装置Milli-Q Element)3000mLで満たした。次いで、ピペットを用いて、超純水表面上に、コロイド水溶液10mLを展開した。5秒後、基板を液面の下側から挿入し、界面層を掬い上げる事に依り、ナノシートの単層膜を得た。 A draining vat measuring 36 cm long, 25 cm wide, and 5 cm deep was used as the film-forming container, and was filled with 3000 mL of ultrapure water (Milli-Q Element, an ultrapure water device manufactured by Nihon Millipore Co., Ltd.). Then, using a pipette, 10 mL of colloidal aqueous solution was spread on the ultrapure water surface. After 5 seconds, the substrate was inserted from below the liquid surface and the interfacial layer was scooped up to obtain a monolayer film of nanosheets.
 結果を図10に示す。得られたナノシート単層膜について、実施例1と同様に、CFLM観察を測定した処、ナノシート同士の重なり、及び、隙間無く稠密に配列したナノシート単層膜が得られた。これ依り、汎用的な容器、大型基材においても、ナノシート単層膜の製造が可能となる事が確認された。 The results are shown in Fig. 10. The resulting nanosheet monolayer film was observed by CFLM in the same manner as in Example 1, and a nanosheet monolayer film with overlapping nanosheets and densely arranged nanosheet monolayer films without gaps was obtained. Therefore, it was confirmed that it is possible to manufacture a nanosheet monolayer film even with a general-purpose container and a large substrate.
 図11:本発明の薄膜の製造方法の優位性
 本発明の薄膜の製造方法(界面転写法)は、上記実施例で立証される通り、従来のナノシートの薄膜の製造方法であるラングミュア・ブロジェット(LB)法、スピンコート法等に比べて、ナノシートの高品質な稠密配列膜を、より大面積で、より簡便に、より短時間に、及びより少量の溶液で、製膜する事が出来るプロセスである。
Figure 11: Advantages of the thin film manufacturing method of the present invention As demonstrated in the above examples, the thin film manufacturing method of the present invention (interfacial transfer method) is a Langmuir-Blodgett method that is a conventional nanosheet thin film manufacturing method. Compared to the (LB) method, spin coating method, etc., it is possible to form a high-quality densely aligned nanosheet film with a larger area, more easily, in a shorter time, and with a smaller amount of solution. It's a process.
 本発明の薄膜の製造方法の優位性を図11に示す。本発明の薄膜の製造方法では、(i)溶媒は、水を用いる事が出来、(ii)操作性は、簡便なピペット操作で良く、(iii)製膜時間は、例えば1層作製するに際し30秒程度であり、(iv)コストは、少量の溶液(LB法の1/100程度)で済む。 Fig. 11 shows the superiority of the thin film manufacturing method of the present invention. In the method for producing a thin film of the present invention, (i) water can be used as the solvent, (ii) operability can be a simple pipette operation, and (iii) the film formation time is, for example, It takes about 30 seconds, and (iv) costs only a small amount of solution (about 1/100 of the LB method).
 本発明の薄膜の製造方法に依り作製する薄膜は、原子間力顕微鏡、共焦点レーザー顕微鏡、走査型電子顕微鏡等を用いて、膜質評価(被覆率、及び欠陥密度)を行うと、膜質(例えば、酸化チタン)では、面積比で、単層被覆率95%以上であり、欠陥2%以下であり、高品位緻密膜である。 The thin film produced by the method for producing a thin film of the present invention is subjected to film quality evaluation (coverage and defect density) using an atomic force microscope, a confocal laser microscope, a scanning electron microscope, etc., and the film quality (e.g. , titanium oxide) has a single layer coverage of 95% or more and defects of 2% or less in terms of area ratio, and is a high-quality dense film.
 本発明の薄膜の製造方法に依り、単層被覆率(被膜率)95%以上の、欠陥の無い稠密単層膜を製膜を実現する事が出来る。 According to the thin film production method of the present invention, it is possible to produce a dense single layer film with a single layer coverage (coating ratio) of 95% or more and no defects.
 本発明の薄膜の製造方法は、材料及びコストを削減し、低環境負荷のプロセスであり、工業的に薄膜を作製する事が出来る。 The thin film production method of the present invention reduces materials and costs, is a low environmental load process, and can produce thin films industrially.
 [2]ナノシートの稠密単層膜から成る薄膜の有用性
 本発明の製造方法に依れば、ナノシートを様々な基板表面に秩序正しく配列させて、薄膜を作製し、高品質なナノシート膜を大面積で製膜する事が出来る。
[2] Usefulness of a thin film composed of a dense monolayer film of nanosheets According to the production method of the present invention, nanosheets are arranged in an orderly fashion on various substrate surfaces to form thin films, and high-quality nanosheet films can be produced on a large scale. It is possible to form a film with an area.
 本発明の製造方法に依り得られるナノシートの稠密単層膜から成る薄膜(本発明の薄膜)は、グラフェン、無機ナノシート等の二次元材料(ナノシート)で構成される。本発明の薄膜は、原子レベルの薄さ及び二次元ナノ構造に起因した高い電子移動度、柔軟性、透明性、高耐熱性等を発揮し、次世代の電子デバイス、エネルギー分野での応用する事が出来る。本発明の薄膜は、ナノシートの有する優れた電子・イオン伝導性、半導体性、絶縁性、高誘電性、強誘電性、強磁性、蛍光特性、光触媒性等の特性を具備し、各種機能材料、デバイスの重要部材としての応用する事が出来る。 A thin film consisting of a dense monolayer film of nanosheets obtained by the production method of the present invention (the thin film of the present invention) is composed of two-dimensional materials (nanosheets) such as graphene and inorganic nanosheets. The thin film of the present invention exhibits high electron mobility, flexibility, transparency, high heat resistance, etc. due to its atomic-level thinness and two-dimensional nanostructure, and can be applied to next-generation electronic devices and energy fields. I can do things. The thin film of the present invention has properties such as excellent electronic and ionic conductivity, semiconducting properties, insulating properties, high dielectric properties, ferroelectric properties, ferromagnetism, fluorescent properties, and photocatalytic properties possessed by nanosheets. It can be applied as an important member of the device.

Claims (11)

  1.  薄膜の製造方法であって、
     (1)水面に、ナノシートが分散されたコロイド水溶液を展開する工程、
     (2)気液界面に、前記ナノシートの稠密単層膜を形成する工程、及び
     (3)基板に、前記ナノシートの稠密単層膜を転写する工程
    を含み、
     前記ナノシートの稠密単層膜から成る薄膜を形成する、
     薄膜の製造方法。
    A method for producing a thin film,
    (1) A process of developing a colloidal aqueous solution in which nanosheets are dispersed on the water surface,
    (2) forming a dense monolayer film of the nanosheets at the gas-liquid interface; and (3) transferring the dense monolayer film of the nanosheets to a substrate,
    forming a thin film consisting of a dense monolayer film of said nanosheets;
    Thin film manufacturing method.
  2.  前記ナノシートは、層状化合物が単層剥離されたナノシートである、
    請求項1に記載の薄膜の製造方法。
    The nanosheet is a nanosheet in which a layered compound is delaminated,
    A method for producing the thin film according to claim 1.
  3.  前記層状化合物を構成する化合物は、酸化チタン、ペロブスカイト酸化物、酸化マンガン、酸化コバルト、酸化シリコン、酸化タングステン、酸化ニオブ、酸化タンタル、チタン・ニオブ酸化物、チタン・タンタル酸化物、酸化モリブデン酸化物、酸化ルテニウム、グラフェン、酸化グラファイト、六方晶窒化ホウ素、雲母、遷移金属カルコゲナイト、及び遷移金属カーバイドから成る群から選ばれる少なくとも1種の化合物である、
    請求項2に記載の薄膜の製造方法。
    Compounds constituting the layered compound include titanium oxide, perovskite oxide, manganese oxide, cobalt oxide, silicon oxide, tungsten oxide, niobium oxide, tantalum oxide, titanium/niobium oxide, titanium/tantalum oxide, and molybdenum oxide. , ruthenium oxide, graphene, graphite oxide, hexagonal boron nitride, mica, transition metal chalcogenite, and at least one compound selected from the group consisting of transition metal carbide,
    3. A method for producing a thin film according to claim 2.
  4.  前記コロイド水溶液は、アルコールを含むコロイド水溶液である、
    請求項1~3の何れかに記載の薄膜の製造方法。
    The colloidal aqueous solution is an alcohol-containing colloidal aqueous solution,
    A method for producing a thin film according to any one of claims 1 to 3.
  5.  前記工程(1)~(3)を繰り返す事に依り、
     前記ナノシートの稠密単層膜の積層体を形成する、
    請求項1~4の何れかに記載の薄膜の製造方法。
    By repeating the steps (1) to (3),
    forming a stack of dense monolayer films of the nanosheets;
    A method for producing a thin film according to any one of claims 1 to 4.
  6.  前記工程(1)~(3)の少なくとも一つの工程において、更に、
     (4)前記ナノシートに対して、紫外線を照射し、ナノシートの単層膜間の有機物を除去する工程、
    を含む、請求項1~5の何れかに記載の薄膜の製造方法。
    In at least one step of steps (1) to (3),
    (4) a step of irradiating the nanosheet with ultraviolet rays to remove organic substances between single layers of the nanosheet;
    The method for producing a thin film according to any one of claims 1 to 5, comprising
  7.  請求項1~6の何れかに記載の薄膜の製造方法に依って製造された薄膜から成る光学薄膜。 An optical thin film made of a thin film manufactured by the thin film manufacturing method according to any one of claims 1 to 6.
  8.  請求項1~6の何れかに記載の薄膜の製造方法に依って製造された薄膜から成る誘電体薄膜。 A dielectric thin film comprising a thin film manufactured by the method for manufacturing a thin film according to any one of claims 1 to 6.
  9.  請求項1~6の何れかに記載の薄膜の製造方法に依って製造された薄膜から成る伝導性薄膜。 A conductive thin film comprising a thin film manufactured by the thin film manufacturing method according to any one of claims 1 to 6.
  10.  請求項1~6の何れかに記載の薄膜の製造方法に依って製造された、剥離剤の含有量が100ppmwt以下である薄膜。 A thin film having a release agent content of 100 ppmwt or less, manufactured by the thin film manufacturing method according to any one of claims 1 to 6.
  11.  薄膜であって、
     ナノシートの稠密単層膜から成り、
     前記ナノシートは、酸化チタン、ペロブスカイト酸化物、酸化マンガン、酸化コバルト、酸化シリコン、酸化タングステン、酸化ニオブ、酸化タンタル、チタン・ニオブ酸化物、チタン・タンタル酸化物、酸化モリブデン酸化物、酸化ルテニウム、グラフェン、酸化グラファイト、六方晶窒化ホウ素、雲母、遷移金属カルコゲナイト、及び遷移金属カーバイドから成る群から選ばれる少なくとも1種の層状化合物が単層剥離されたナノシートであり、
     剥離剤の含有量が100ppmwt以下である、
    薄膜。
    a thin film,
    Consisting of a dense monolayer film of nanosheets,
    The nanosheets include titanium oxide, perovskite oxide, manganese oxide, cobalt oxide, silicon oxide, tungsten oxide, niobium oxide, tantalum oxide, titanium/niobium oxide, titanium/tantalum oxide, molybdenum oxide, ruthenium oxide, and graphene. , graphite oxide, hexagonal boron nitride, mica, transition metal chalcogenite, and transition metal carbide.
    The release agent content is 100 ppmwt or less,
    Thin film.
PCT/JP2022/037373 2021-10-08 2022-10-06 Method for producing thin film formed from dense single layer film of nanosheet and usage of thin film WO2023058704A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021166185 2021-10-08
JP2021-166185 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023058704A1 true WO2023058704A1 (en) 2023-04-13

Family

ID=85804342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037373 WO2023058704A1 (en) 2021-10-08 2022-10-06 Method for producing thin film formed from dense single layer film of nanosheet and usage of thin film

Country Status (1)

Country Link
WO (1) WO2023058704A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292680A (en) * 2008-06-05 2009-12-17 National Institute For Materials Science Photocatalyst nanosheet, photocatalyst material, and their manufacturing methods
JP2017528395A (en) * 2014-06-12 2017-09-28 センター ナショナル デ ラ レシェルシェ サイエンティフィック(シーエヌアールエス)Centre National De La Recherche Scientifique(Cnrs) Aqueous and organic suspensions of exfoliated nanocarbon materials, their preparation and use
JP2021127521A (en) * 2020-02-12 2021-09-02 国立大学法人信州大学 Powder-based photoelectrode, translucent powder-based photoelectrode and their manufacturing methods, and photoelectrochemical cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292680A (en) * 2008-06-05 2009-12-17 National Institute For Materials Science Photocatalyst nanosheet, photocatalyst material, and their manufacturing methods
JP2017528395A (en) * 2014-06-12 2017-09-28 センター ナショナル デ ラ レシェルシェ サイエンティフィック(シーエヌアールエス)Centre National De La Recherche Scientifique(Cnrs) Aqueous and organic suspensions of exfoliated nanocarbon materials, their preparation and use
JP2021127521A (en) * 2020-02-12 2021-09-02 国立大学法人信州大学 Powder-based photoelectrode, translucent powder-based photoelectrode and their manufacturing methods, and photoelectrochemical cell

Similar Documents

Publication Publication Date Title
Wu et al. Thinnest nonvolatile memory based on monolayer h‐BN
KR101575667B1 (en) Dielectric film, dielectric element, and process for producing the dielectric element
Mitra et al. Template based growth of nanoscaled films: a brief review
WO2012157740A1 (en) High dielectric nanosheet laminate, high dielectric element and method for manufacturing high dielectric element
Ahmadipour et al. Effect of thickness on surface morphology, optical and humidity sensing properties of RF magnetron sputtered CCTO thin films
US20130048949A1 (en) Carbonaceous Nanomaterial-Based Thin-Film Transistors
JPWO2008078652A1 (en) Dielectric element and manufacturing method thereof
US9385332B2 (en) Organic-inorganic hybrid multilayer gate dielectrics for thin film transistors
Ma et al. Fabrication and dielectric property of ferroelectric PLZT films grown on metal foils
Daviðsdóttir et al. Investigation of DC magnetron-sputtered TiO2 coatings: Effect of coating thickness, structure, and morphology on photocatalytic activity
JP2013253009A (en) Method for producing thin film consisting of nanosheet monolayer film by spin coat method, and hyperhydrophilized material, substrate for oxide thin film and dielectric material obtained therefrom
Juvaid et al. Direct growth of wafer-scale, transparent, p-type reduced-graphene-oxide-like thin films by pulsed laser deposition
Adikary et al. Compositionally graded BaxSr1− xTiO3 thin films for tunable microwave applications
Lee et al. Synthesis of Sr2Nb3O10 nanosheets and their application for growth of thin film using an electrophoretic method
Zhang et al. Two-dimensional perovskite NdNb2O7 for high-performance UV photodetectors by a general exfoliation and assembly strategy
Bourgeois et al. Pulsed photoinitiated fabrication of inkjet printed titanium dioxide/reduced graphene oxide nanocomposite thin films
Chen et al. Flexible TiO2/Au thin films with greatly enhanced photocurrents for photoelectrochemical water splitting
Sagar et al. Ultra-thin anodized aluminium dielectric films: the effect of citric acid concentration and low-voltage electronic applications
Han et al. The thermal-to-electrical energy conversion in (Bi0. 5Na0. 5) 0.94 Ba0. 06TiO3/graphene oxide heterogeneous structures
Zhang et al. Flexible high-performance microcapacitors enabled by all-printed two-dimensional nanosheets
WO2023058704A1 (en) Method for producing thin film formed from dense single layer film of nanosheet and usage of thin film
Kim et al. Barium titanate-enhanced hexagonal boron nitride inks for printable high-performance dielectrics
Li et al. Solution-based fabrication of perovskite nanosheet films and their dielectric properties
Offiah et al. Effects of post-thermal treatments on morphological and optical properties of NiO/Ni (OH) 2 thin films synthesized by solution growth
Valiūnienė et al. Cadmium stannate films for immobilization of phospholipid bilayers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878572

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552933

Country of ref document: JP