WO2023058539A1 - Volatile fatty acid detection sensor, volatile fatty acid detection device, and method for manufacturing volatile fatty acid detection sensor - Google Patents

Volatile fatty acid detection sensor, volatile fatty acid detection device, and method for manufacturing volatile fatty acid detection sensor Download PDF

Info

Publication number
WO2023058539A1
WO2023058539A1 PCT/JP2022/036344 JP2022036344W WO2023058539A1 WO 2023058539 A1 WO2023058539 A1 WO 2023058539A1 JP 2022036344 W JP2022036344 W JP 2022036344W WO 2023058539 A1 WO2023058539 A1 WO 2023058539A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
electrode
volatile fatty
crystal oscillator
detection sensor
Prior art date
Application number
PCT/JP2022/036344
Other languages
French (fr)
Japanese (ja)
Inventor
泉 一ノ瀬
仁 川喜多
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2023552833A priority Critical patent/JPWO2023058539A1/ja
Publication of WO2023058539A1 publication Critical patent/WO2023058539A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a volatile fatty acid detection sensor, a volatile fatty acid detection device, and a method for manufacturing a volatile fatty acid detection sensor.
  • VFA Volatile fatty acids
  • propionic acid propionic acid
  • butyric acid and acetic acid are substances that greatly affect the productivity and quality improvement of dairy farming such as cattle.
  • methane gas which contributes to global warming, but this amount can be greatly reduced by controlling VFA in the cow rumen (rumen).
  • rumen cow rumen
  • (Configuration 1) a crystal oscillator, a first electrode formed on a first main surface of the crystal oscillator, and a second electrode formed on a second main surface of the crystal oscillator, At least one surface of the first electrode and the second electrode has a film imprinted with a substance that changes the amount of water adsorbed from the gas phase depending on the amount of volatile organic acid in the gas phase. and a volatile fatty acid detection sensor, wherein the volatile fatty acid is detected by a change in the frequency of the crystal oscillator.
  • a crystal oscillator micro comprising a crystal oscillator, a first electrode formed on a first main surface of the crystal oscillator, and a second electrode formed on a second main surface of the crystal oscillator.
  • QCM balance
  • a volatile fatty acid detection sensor wherein a titania porous film containing an alkoxide group is formed on the surface of at least one or more of the first electrode and the second electrode.
  • Composition 3 The volatile fatty acid detection sensor according to Structure 2, wherein the titania porous body is coated with an acid.
  • composition 4 Having at least two QCMs, The volatile fatty acid of configuration 3, wherein the acid deposited on one or more porous titania bodies of said QCM is different from the acid deposited on at least one porous titania body of the remainder of said QCM. detection sensor.
  • composition 5 The volatile fatty acid detection sensor according to configuration 3 or 4, wherein the acid is selected from the group consisting of propionic acid, butyric acid and acetic acid.
  • composition 6 Having a capsule that is permeable to and permeable to gases of volatile fatty acids and that is water-repellent is disposed on at least a portion of the surface that is in contact with the outside world; A volatile fatty acid detection device, wherein the volatile fatty acid detection sensor according to any one of configurations 1 to 5 is arranged inside the capsule.
  • Composition 7 The volatile fatty acid detection device according to configuration 6, wherein a frequency measuring device for measuring the frequency of the crystal oscillator is arranged inside the capsule.
  • Composition 8) The volatile fatty acid detection device according to configuration 7, wherein a transmitter for wirelessly transmitting frequency information obtained by the frequency measuring device to the outside of the capsule is arranged inside the capsule.
  • composition 9 A method for producing a volatile fatty acid detection sensor according to configuration 2, Forming the porous titania film by imprinting the surface of at least one or more of the first electrode and the second electrode using at least Ti(O-nBu) 4 and acid, volatile A method for manufacturing a fatty acid detection sensor.
  • Configuration 10 A crystal oscillator micro, comprising a crystal oscillator, a first electrode formed on a first main surface of the crystal oscillator, and a second electrode formed on a second main surface of the crystal oscillator.
  • a method for producing a volatile fatty acid detection sensor comprising: treating the dried surface with a solution containing ammonia or an amine compound. (Composition 11) 11. The method of manufacturing a volatile fatty acid detection sensor according to configuration 10, wherein said acid is selected from the group consisting of propionic acid, butyric acid and acetic acid.
  • ADVANTAGE OF THE INVENTION it becomes possible to provide the small sensor, apparatus, and its manufacturing method which detect VFA with high sensitivity. Further, according to the present invention, it is possible to provide a small-sized device capable of detecting VFA in the liquid part of bovine rumen with high sensitivity.
  • FIG. 2 is a schematic configuration diagram for explaining the configuration of the sensor of the present invention; (a) Configuration example in which an imprint film is arranged on the surface of one electrode, (b) Configuration example in which an imprint film is arranged on the surfaces of both electrodes.
  • FIG. 4 is a flow chart diagram showing the manufacturing process of the sensor of the present invention.
  • 1 is a schematic configuration diagram for explaining the configuration of an apparatus according to the present invention;
  • FIG. FIG. 2 is a characteristic diagram showing the relationship between the number of imprinting processes and the resonance frequency of a crystal oscillator in fabricating the sensor of Example 1; 4 is an SEM observation image of the imprinted film (water-adsorbing material) of the sensor of Example 1.
  • FIG. 1 is a schematic configuration diagram for explaining the configuration of an apparatus according to the present invention
  • FIG. FIG. 2 is a characteristic diagram showing the relationship between the number of imprinting processes and the resonance frequency of a crystal oscillator in fabricating the sensor of Example 1
  • 4 is an SEM observation
  • FIG. 6 is a measurement diagram obtained by obtaining the film thickness of an imprint film based on the SEM observation image of FIG. 5 ; (a) when observed at a magnification of 100,000; (b) when observed at a magnification of 60,000.
  • FIG. 3 is an explanatory diagram illustrating the procedure of an experiment for evaluating the VFA detection sensitivity of the sensor of Example 1; FIG.
  • FIG. 4 is a characteristic diagram showing changes in vibration frequency (resonance frequency) with respect to elapsed time when the sensor of Example 1 is moved from the atmosphere to a box containing pure water.
  • FIG. 4 is a characteristic diagram showing the amount of change in frequency when detecting propionic acid, butyric acid, and acetic acid using a sensor having, as an imprinted film, a titania porous film coated with different acids. (a) when the adherent is propionic acid, (b) when the adherent is butyric acid, and (c) when the adherent is acetic acid.
  • Embodiment 1 describes a VFA detection sensor of the present invention.
  • a VFA detection sensor 101 of the present invention has a crystal oscillator 11, a first electrode 12, a second electrode 13, and an imprint film 14 made of a water-adsorbing substance.
  • the imprint film (water-adsorbing material) 14 is arranged on the surface of the electrode (that is, in contact with the electrode), but may be arranged on either one of the first electrode 12 and the second electrode 13, It may be arranged in both.
  • a sensor 101 shown in FIG. 1A is a configuration example for the former case, and a sensor 102 shown in FIG. 1B is a configuration example for the latter case.
  • the sensor 102 in which the imprinted film 14 is arranged on both electrodes can secure a large area where a substance can be adsorbed on the imprinted film 14, and thus has a feature of easily increasing detection sensitivity.
  • the sensor 101 in which the membrane 14 is arranged on one electrode is characterized by high efficiency and low cost when only the electrode on which the imprinted membrane 14 is arranged contacts the gas phase during use.
  • the imprint film 14 may be formed on the entire surface of the electrode (that is, on the entire portion that can contact the outside air), or may be formed on a part of the surface of the electrode (that is, on the portion that can contact the outside air). part).
  • the water adsorption substance 14 constituting the imprint film is a substance whose amount of water adsorbed from the gas phase changes depending on the amount of VFA in the gas phase, and the use of this substance is a feature of the present invention.
  • a sensor with a normal QCM structure uses not the water-adsorbing substance 14 but a substance that adsorbs the target substance or its thin film (sensitive film).
  • QCM is a device that detects the adhesion amount of a specific substance using the principle that when some substance adheres to the vibrating body surface of a crystal unit, the resonance frequency changes according to the weight of the adhered substance. , for example, is disclosed in Patent Document 1.
  • the inventor attempted to use a substance that changes the amount of water adsorbed depending on the presence of VFA in the gas phase as an adsorption aid. Since there is a large amount of water in the atmosphere, by utilizing the change in the properties of this adsorption aid, it is possible, in principle, to prevent or suppress the attraction of a large amount of water with a small amount of VFA. , the amount of change in weight can be increased, and high detection sensitivity can be obtained.
  • the polarity of the surface in contact with the outside air that is, the degree of hydrophilicity of the surface in contact with the outside air. can.
  • water-adsorbing substance 14 water adsorption in an environment where there is no VFA in the gas phase can be achieved.
  • the water-adsorbing material 14 is a porous body in order to increase the amount of adsorbed water and improve the detection sensitivity. If the water-adsorbing substance 14 is a porous body, the surface area per volume becomes large, and a large amount of water can be adsorbed.
  • propionic acid, butyric acid, acetic acid and the like can be mentioned as the acid of the adherend.
  • Ti(O-nBu) 4 titanium (IV) n-butoxide
  • Ti(O-nBu) 4 an acid such as propionic acid, a small amount of water and an organic solvent are coated on a metal electrode such as gold or silver.
  • a method of imprinting (coating) using a solution containing (such as a mixed solvent of toluene and ethanol) can be mentioned. Details will be described in the manufacturing method section.
  • the porous titania film (organic titania film) thus formed has molecular-level porosity, which is different from a film (inorganic titania film) formed of titania (TiO 2 ) containing no alkoxide group. and suitable for use as the imprint film 14 .
  • This molecular level porosity is described in the Examples section.
  • the imprint film 14 has different sensitivities to the types of VFAs to be detected, depending on the type of acid coated on Ti(O-nBu) 4 . Therefore, VFA can be separated by appropriately selecting the acid to be added when the imprint film 14 is produced. This is explained with reference to examples in the examples.
  • a sensor having at least two or more QCMs is constructed, and the acid coated on one or more titania porous bodies of the QCMs is applied to at least one titania porous body of the rest of the QCMs.
  • VFA type identification and VFA quantitative assessment can be performed using a single sensor.
  • the water-adsorbing substance 14 is a swelling rubber whose portion exposed to the outside air is hydrophobic.
  • the portion exposed to the outside air means the gas adsorption surface, and includes not only the surface forming the so-called outer shape but also the surface of the pores of the porous body through which the outside air enters.
  • the term "swellable rubber” means rubber that has the property of swelling, and includes both those that are in a swollen state and those that are not in a swollen state when the sensors 101 and 102 are used. shall be included.
  • the swellable rubber examples include acrylonitrile-butadiene rubber (NBR), which is in a swollen state when the sensors 101 and 102 are used, and in which dodecane is adhered to portions exposed to the outside air.
  • NBR acrylonitrile-butadiene rubber
  • the surfaces of the gaps (voids) formed by the swelling are usually hydrophobic, but when they come into contact with VFA in the gas phase, they become hydrophilic, drawing in environmental water and increasing their weight. NBR having such properties is suitable for use as the water adsorption material 14 .
  • the thickness of the imprint film 14 is not particularly limited, but a thin film is preferable in terms of detection speed, and for example, 10 nm or more and 1 ⁇ m or less can be mentioned.
  • the size of the imprint film 14 is also not particularly limited, but the larger the size, the larger the area where the substance can be adsorbed, so it is preferable from the viewpoint of detection sensitivity. Considering the balance with miniaturization of the sensor, the size (width) of the first electrode 12 and the second electrode 13 is preferable.
  • the density (ratio of the space to the external volume) is preferably as high as possible on the premise that the strength is maintained so as not to cause defects such as chipping. 5 g/cm 3 or more and 2.0 g/cm 3 or less can be mentioned.
  • the crystal oscillator 11 is not particularly limited, but an AT-cut crystal oscillator can be preferably used.
  • AT-cut means that the cut-out angle is in a specific direction with respect to the quartz crystal axis. It is characterized by excellent stability.
  • the first electrode 12 and the second electrode 13 are not particularly limited as long as they can apply an alternating voltage to the crystal oscillator 11.
  • gold Au
  • silver Ag
  • platinum Pt
  • copper Cu
  • Al aluminum
  • Ti titanium
  • Cr chromium
  • Ni nickel
  • their alloys their metallic compounds
  • metallic compounds such as Al—Si, doped silicon (Si ) and doped polysilicon (PolySi).
  • the electrode does not have to be made of a single material, and the electrode has a base of Ni or Cr to increase adhesion to the crystal, and an outermost surface of Au or Ag to prevent oxidation. desirable.
  • the first electrode 12 and the second electrode 13 preferably have a high resonance Q value of the crystal oscillator 11, can follow the movement of the crystal oscillator 11, and have nanogram (ng) sensitivity.
  • the thicknesses of the first electrode 12 and the second electrode 13 are not particularly limited, but are preferably thin films in order to improve the Q value, for example, 10 nm to 150 nm.
  • sensors 101 and 102 By applying an alternating voltage to the first electrode 12 and the second electrode 13 of the sensors 101 and 102 and measuring the change in the frequency of the crystal oscillator 11, specifically the change in the resonance frequency, It is also possible to detect the VFA with high sensitivity and determine its amount. As explained above, sensors 101 and 102 provide sensors with high VFA detection sensitivity while being compact.
  • the crystal resonator 11, the first electrode 12, and the second electrode 13 may be those used in a normal QCM.
  • the surface of the electrode to be modified may be immersed in a mercaptoethanol solution in which mercaptoethanol is dissolved at a predetermined concentration using ethanol as a solvent.
  • the temperature for modification may be room temperature (20° C. or more and 25° C. or less), and the modification time is preferably 1 hour or more and 12 hours or less. Sufficient modification of the target surface can be achieved within this time range. If it is shorter than this time, the modification will be insufficient, and if it is longer, time will be wasted, leading to a decrease in production efficiency.
  • This modification is necessary when the outermost surface of the first electrode 12 and the second electrode 13 is Au, and can be omitted when the outermost surface is Ag.
  • at least the modified surface is immersed in a Ti(O-nBu) 4 solution composed of Ti(O-nBu) 4 and an acid, a small amount of water, and an organic solvent such as toluene or ethanol (step S13).
  • the temperature for immersion may be room temperature.
  • the immersion time is preferably 1 minute or more and 5 minutes or less. Sufficient Ti(O-nBu) 4 deposition can be performed on the target surface within this time range.
  • the immersed surface was sequentially immersed in toluene (step S14), immersed in water-saturated toluene (step S15), and immersed in toluene (step S16). conduct.
  • the temperature for immersion may be room temperature (20° C. or more and 25° C. or less), and each immersion time is preferably 30 seconds or more and 2 minutes or less. Imprinting with few defects and unevenness can be performed within this time range.
  • drying is performed (step S17), and one course of imprint processing is completed.
  • the drying method include nitrogen gas drying, dry air drying, vacuum drying, and heat drying at a temperature of 100° C. or less in a dry air environment.
  • step S18 the number of cools n is compared with a predetermined number of times X (step S18), and if n is less than X (n ⁇ X), it is determined that the n+1th process (step S19) is necessary. Then, the processes from step S13 to step S17 are performed again.
  • n is X or more (n ⁇ X)
  • treatment with a solution containing an amine compound such as TMED (tetramethylethylenediamine) diluent (immersion in the solution) step S20
  • a series of imprint processes are completed (step S21), and the sensor 101 is manufactured.
  • a solution containing ammonia may be used to remove the carboxylic acid instead of the amine compound such as TMED.
  • the sensor 101 obtained in this manner is compact and has high VFA detection sensitivity. Note that when the first electrode 12 and the second electrode 13 are electrodes having the same outermost surface and similar imprint films are formed on the surfaces of the electrodes 12 and 13, the sensor 102 is manufactured.
  • Embodiment 2 a VFA detection apparatus suitable for detecting and quantifying VFA in a solution environment such as a liquid portion of bovine rumen in which VFA is dissolved will be described.
  • the VFA detection device 103 of the present invention includes a sensor 102 (see FIG. 1(b)) in which imprint films 14 are formed on the surfaces of both electrodes described in Embodiment 1 inside a capsule 56. )), receives the output from sensor 102 via signal line 57, measures the frequency of the crystal oscillator, processes the data, and transmits the data via signal line 58 to transmitter 54, which transmits the data wirelessly.
  • a sending frequency measuring device 53 is arranged.
  • a filter 55 that is permeable to the VFA gas but blocks the liquid is arranged.
  • the material of the capsule 56 is not particularly limited, but it is preferable to use a material that does not corrode and break in the digestive tract such as inside the rumen of a cow, and examples thereof include polyethylene terephthalate, vinyl chloride, and high-strength glass.
  • the interior of capsule 56 is desirably coated with a hydrophobic coating to prevent water vapor from condensing.
  • the cow can be swallowed as a capsule tablet.
  • a porous material having super water repellency and permeable gas or a super water repellent non-woven fabric made of fibers can be used as the material of the filter 55.
  • the filter 55 includes, for example, a gas-permeable ultrafiltration membrane in which both sides of a porous PTFE (polytetrafluoroethylene) ultrafiltration membrane are sandwiched between superhydrophobic PET (polyethylene terephthalate) nonwoven fabrics.
  • a water-repellent multilayer film or the like can be preferably used.
  • the sensor 102, the frequency measuring device 53, and the wireless transmitter 54 housed therein can be miniaturized. Gas can be drawn into the interior of capsule 56 through filter 55 for desired detection and measurement.
  • the device 103 can monitor the state of the liquid portion of the bovine rumen in real time.
  • the sensor 102 having the imprinted film 14 provided on the surface of both electrodes is used as the VFA detection sensor.
  • the sensor 101 (FIG. 1A) having the imprinted film 14 disposed on the sensor 101 may be arranged so that the side on which the imprinted film 14 is disposed faces the direction in which the filter 55 is disposed.
  • Example 1 In Example 1, the sensor 102 (see FIG. 1B) described in Embodiment 1 was manufactured and its VFA detection characteristics were examined.
  • the present invention is of course not limited to such a particular form, and the scope of the present invention is defined by the appended claims.
  • a crystal resonator 11 having electrodes (first electrode 12 and second electrode 13) on both main surfaces was prepared (step S11 in FIG. 2).
  • the crystal oscillator 11 a 9 MHz AT-cut QCM (manufactured by Piezo Parts Co., Ltd.) was used, and its size was 8.7 mm in diameter and 0.17 mm in thickness.
  • Both the first electrode 12 and the second electrode 13 are formed by vapor deposition and have a thickness of 0.1 ⁇ m.
  • Gold (Au) or silver (Ag) was used as the electrode material. The procedure for fabricating the sensor when the electrode material is gold will be described below.
  • the electrode material was silver, the sensor was fabricated under the same conditions as for gold electrodes, except that the modification of the electrode surface with mercaptoethanol (step S12) described in the next paragraph was omitted.
  • the first electrode 12 and the second electrode 13 of the crystal oscillator 11 were immersed in the mercaptoethanol solution for 12 hours at room temperature (step S12).
  • the mercaptoethanol solution is obtained by dissolving 10 mM mercaptoethanol using ethanol as a solvent. After that, it was immersed and washed with ethanol three times, washed with water for 1 minute, and then dried with nitrogen gas.
  • a Ti(O-nBu) 4 solution for forming an organic titania film as the imprint film 14 was prepared. This solution was prepared by first preparing solution #1 shown below, adding a small amount of water thereto to prepare solution #2, and further diluting it 20 times with toluene.
  • Solution #1 was a solution of 3.4 g of Ti(O-nBu) 4 having a molecular weight (Mw) of 340 dissolved in 100 mL of a toluene-ethanol solvent of 2 parts toluene and 1 part ethanol (thus Ti(O-nBu ) 4 is 100 mM) and 0.25 g of an acid (propionic acid with Mw of 74, butyric acid with Mw of 88, or acetic acid with Mw of 60) dissolved in 100 mL of toluene-ethanol solvent in a ratio of 2 parts toluene to 1 part ethanol.
  • Mw molecular weight
  • the resulting solutions were made by mixing for 2 hours.
  • Solution #2 was prepared by adding several drops of water to Solution #1 while rotating the stirrer at high speed, adding a total of 0.495 g of water.
  • a 20-fold dilution of toluene was prepared by mixing 200 ⁇ L of solution #2 and 4 mL of toluene.
  • step S20 the QCM was immersed in an aqueous TMED solution prepared by dissolving 50 ⁇ L of TMED in 5 mL of water at room temperature for 30 minutes (step S20), immersed in an aqueous 0.0001 M HCl solution for several minutes, washed with water by immersion, washed with methanol, and A sensor 102 in which an organic titania film was imprinted on the surfaces of the first electrode 12 and the second electrode 13 was produced through a drying process using nitrogen gas (step S21).
  • FIG. 4 shows the relationship between the number of times of imprint processing and the change in resonance frequency of the crystal oscillator. Here, the results are shown when gold is used as the electrode material and propionic acid is used as the acid in preparing the above solution #1.
  • the resonance frequency increases almost monotonously except for the abnormal point at which the number of treatments is 5, and it can be seen that the formation of the organic titania film monotonically progresses with the number of imprint treatments.
  • the increase in resonance frequency after 16 treatments is 2277 Hz, which corresponds to the thickness of the organic titania film of 60 nm.
  • FIG. 5 shows an SEM (Scanning Electron Microscope) photograph of the vicinity of the electrodes of the fabricated sensor 102 .
  • SEM Sccanning Electron Microscope
  • 5A and 5B are cross-sectional images of the imprint film 14 on the silver electrode observed at magnifications of 100,000 and 60,000, respectively. It can be seen that the imprint film 14 made of the water-adsorbing substance has a rough surface, and the formed organic titania film is porous.
  • FIGS. 5(a) and 5(b) show the film thickness of the imprint film 14 obtained based on the SEM observation images of FIGS. 5(a) and 5(b).
  • the film thickness of the formed organic titania film was about 70 nm, although there was some variation depending on the measurement location.
  • the resonance frequency of the (initial) crystal oscillator (when the electrode material is silver) before forming the imprint film 14 is 9005394 Hz, and after forming the imprint film 14 it is 9002654 Hz. rice field.
  • after leaving the fabricated sensor in the atmosphere for a certain period of time in an environment of about 20° C.
  • the frequency was 9002763 Hz
  • the decrease in resonance frequency (frequency) from the initial value was 2631 Hz.
  • the film thickness d angstroms
  • the density of the imprint film 14 is estimated to be 1.04 g/cm 3 from equation (1).
  • the decrease in vibration frequency due to water absorption was measured by moving alternately between the atmosphere and a box containing pure water.
  • the average frequency is 386 Hz
  • the porosity obtained from this by 386 ⁇ 1.04/2631 is 0.153. Therefore, it is estimated that 15.3% of the imprinted film (water-adsorbing substance) 14 produced in the sensor of Example 1 is void.
  • the atomic composition ratio of the imprint film 14 was examined using XPS (X-ray Photoelectron Spectroscopy).
  • the XPS used here is SigmaProbe (manufactured by Thermo Fisher Scientific).
  • SigmaProbe manufactured by Thermo Fisher Scientific.
  • the case of a sensor fabricated using silver as the electrode material and acetic acid as the acid in the preparation of the above solution #1 will be described.
  • one of the four propoxides of Ti(O-nBu) 4 used to fabricate the imprinted film 14 remained in the imprinted film 14, and 0.5 molecule of acetic acid used to fabricate the imprinted film 14 remained in the imprinted film 14.
  • the extent means remaining within the imprint film 14 . Therefore, the obtained imprint film 14 is an organic titania film containing alkoxide groups, and is considered to have molecular-level porosity, which is difficult with inorganic TiO 2 films.
  • the VFA detection sensitivity of the sensor 102 is measured by moving the sensor 102 into a box containing pure water, a box containing an aqueous solution of VFA, and the air, and measuring changes in vibration frequency (resonance frequency). It was evaluated by Here, the capacity of the box is 200 mL, the amount of pure water stored therein is 100 mL, and the amount of VFA aqueous solution is about 100 mL.
  • FIG. 8 shows an example in which the sensor 102 waiting in the atmosphere was moved to a box (closed space) containing pure water and the change in vibration frequency was measured.
  • a frequency change (decrease) of about 500 Hz was observed due to the adsorption of water by the imprint film. Also, it can be seen that this change has responsiveness that settles down in about 40 seconds.
  • the senor 102 of the present embodiment can detect VFA with high sensitivity, and the sensitivity to the type of VFA varies depending on the type of acid added when producing the imprint film, and VFA can be separated. shown.
  • the concentration of the aqueous solution of VFA used in the test such as an aqueous solution of propionic acid
  • VFA aqueous solution concentration C L unit: mM
  • C V unit: %
  • P partial pressure
  • VFA contained in the aqueous solution at a concentration in the low range used in the test in this example exists in the gas phase in a constant closed space at a relative concentration and partial pressure that correlates with the concentration in the aqueous solution. Therefore, it can be said that the sensor manufactured in this example has achieved high-sensitivity detection of VFA.
  • a small sensor, device, and manufacturing method for detecting VFA with high sensitivity are provided.
  • the device can also be encapsulated in the bovine ruminal fluid, allowing on-site, real-time measurements.
  • VFA is a substance that greatly affects the productivity and quality improvement of dairy farming such as cattle, and is also greatly related to the emission of methane gas through the digestion of food by cattle. It is a substance. Therefore, if VFA is measured with high accuracy and the results are fed back, the productivity and quality of dairy farming can be greatly improved, and it is believed that this will greatly contribute to the prevention of global warming.
  • the sensor and device of the present invention that detect VFA with high sensitivity lead to quantitative evaluation of the activity of anaerobic bacteria. ), environmental management of paddy fields and lakes, and various other cases where VFA is generated by microbial decomposition.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

The present invention provides a small sensor for detecting volatile fatty acids with high sensitivity. A volatile fatty acid detection sensor according to one embodiment of the present invention includes a quartz vibrator, a first electrode formed on a first main surface of the quartz resonator, and a second electrode formed on a second main surface of the quartz vibrator. A substance, which adsorbs a different amount of water from a gas phase according to the amount of volatile organic acid in the gas phase, is implanted in at least one surface of the first electrode and the second electrode, and volatile fatty acids are detected by changes in the frequency of the quartz vibrator.

Description

揮発性脂肪酸検出センサー、揮発性脂肪酸検出装置、および揮発性脂肪酸検出センサーの製造方法Volatile fatty acid detection sensor, volatile fatty acid detection device, and method for manufacturing volatile fatty acid detection sensor
 本発明は、揮発性脂肪酸検出センサー、揮発性脂肪酸検出装置、および揮発性脂肪酸検出センサーの製造方法に関する。 The present invention relates to a volatile fatty acid detection sensor, a volatile fatty acid detection device, and a method for manufacturing a volatile fatty acid detection sensor.
 プロピオン酸、酪酸および酢酸などの揮発性脂肪酸(VFA:Volatile Fatty Acid)は、牛などの酪農の生産性、品質向上に大いに影響を与える物質である。また、牛は食べ物を消化する際に地球温暖化を促してしまうメタンガスを大量に排出するが、この排出量は牛ルーメン(第1胃)でのVFAの制御によって大幅に抑えることができるとの報告がある。
 このような背景から、VFA、特に牛ルーメンの液状部から揮発したVFAを検知し、また、定量的に測定する方法およびそのための装置が求められている。
Volatile fatty acids (VFA) such as propionic acid, butyric acid and acetic acid are substances that greatly affect the productivity and quality improvement of dairy farming such as cattle. In addition, when cows digest their food, they emit a large amount of methane gas, which contributes to global warming, but this amount can be greatly reduced by controlling VFA in the cow rumen (rumen). I have a report.
Against this background, there is a demand for a method and apparatus for detecting and quantitatively measuring VFA, particularly VFA volatilized from the liquid portion of bovine rumen.
 従来は、VFAを吸着材に吸着させて、VFAが吸着したことによる吸着材の重量変化や赤外線の吸収スペクトル変化をモニターしてVFAを検知、測定する方法が試みられていた。
 しかし、この方法では感度が低く、装置も比較的大きいという問題があった。なお、感度としては、牛ルーメン液状部での液体中濃度として25mM(ミリモル)が要求されている。
Conventionally, an attempt has been made to detect and measure VFA by adsorbing VFA on an adsorbent and monitoring the change in the weight of the adsorbent and the change in infrared absorption spectrum due to the adsorption of VFA.
However, this method has the problem that the sensitivity is low and the apparatus is relatively large. As for the sensitivity, a liquid concentration of 25 mM (millimol) in the liquid part of the bovine rumen is required.
特開2012-13620号公報Japanese Unexamined Patent Application Publication No. 2012-13620
 本発明の課題は、VFAを高感度に検出する小型のセンサー、装置およびその製造方法を提供することである。
 また、本発明の課題は、牛ルーメン液状部でVFAを高感度に検出できる小型の装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a small sensor, an apparatus, and a manufacturing method thereof that detect VFA with high sensitivity.
Another object of the present invention is to provide a compact device capable of detecting VFA in the liquid part of bovine rumen with high sensitivity.
 本発明の構成を以下に示す。
(構成1)
 水晶振動子と、前記水晶振動子の第1主表面上に形成された第1の電極と、前記水晶振動子の第2主表面上に形成された第2の電極とを有し、
 前記第1の電極および前記第2の電極の少なくとも1つの表面に、気相中の揮発性有機酸の量によって気相から吸着される水の量が変化する物質がインプリントされた膜を有し、前記水晶振動子の振動数変化により揮発性脂肪酸が検出される、揮発性脂肪酸検出センサー。
(構成2)
 水晶振動子と、前記水晶振動子の第1主表面上に形成された第1の電極と、前記水晶振動子の第2主表面上に形成された第2の電極とを有する水晶振動子マイクロバランス(QCM)からなり、
 前記第1の電極および前記第2の電極の少なくとも1つ以上の表面に、アルコキシド基を含むチタニア多孔体の膜が形成されている、揮発性脂肪酸検出センサー。
(構成3)
 前記チタニア多孔体に酸が被着されている、構成2記載の揮発性脂肪酸検出センサー。
(構成4)
 前記QCMを少なくとも2つ以上有し、
 前記QCMの1つ以上のチタニア多孔体に被着されている酸は、前記QCMの残りのうちの少なくとも1つのチタニア多孔体に被着されている酸とは異なる、構成3記載の揮発性脂肪酸検出センサー。
(構成5)
 前記酸は、プロピオン酸、酪酸および酢酸よりなる群から選ばれる、構成3または4記載の揮発性脂肪酸検出センサー。
(構成6)
 揮発性脂肪酸のガスに対して透過性でありを透過し、かつ撥水性のフィルターが、外界と接する表面の少なくとも一部に配置されたカプセルを有し、
 前記カプセルの内部に構成1から5の何れか一に記載の揮発性脂肪酸検出センサーが配置された、揮発性脂肪酸検出装置。
(構成7)
 前記カプセルの内部に前記水晶振動子の振動数を測定する振動数測定装置が配置された、構成6記載の揮発性脂肪酸検出装置。
(構成8)
 前記カプセルの内部に前記振動数測定装置で得られた振動数の情報を前記カプセルの外部に無線で送信する送信装置が配置された、構成7記載の揮発性脂肪酸検出装置。
(構成9)
 構成2記載の揮発性脂肪酸検出センサーの製造方法であって、
 前記第1の電極および前記第2の電極の少なくとも1つ以上の表面を少なくともTi(O-nBu)と酸を用いてインプリント処理することによって前記チタニア多孔体の膜を形成する、揮発性脂肪酸検出センサーの製造方法。
(構成10)
 水晶振動子と、前記水晶振動子の第1主表面上に形成された第1の電極と、前記水晶振動子の第2主表面上に形成された第2の電極とを有する水晶振動子マイクロバランス(QCM)を準備することと、
 前記第1の電極および前記第2の電極の少なくとも1つ以上の表面をメルカプトエタノールで修飾することと、
 少なくとも前記修飾を行った表面を、Ti(O-nBu)および酸、水、トルエン、エタノールからなるTi(O-nBu)溶液に浸漬することと、
 前記Ti(O-nBu)溶液による浸漬の後、前記浸漬を行った表面に対してトルエン、水飽和トルエンおよびトルエンによる浸漬を順次行うことと、
 前記順次の浸漬を行った表面に対して乾燥を行うことと、
 前記乾燥を行った表面を、アンモニアまたはアミン化合物を含む溶液で処理をすることと、を有する揮発性脂肪酸検出センサーの製造方法。
(構成11)
 前記酸は、プロピオン酸、酪酸および酢酸よりなる群から選ばれる、構成10記載の揮発性脂肪酸検出センサーの製造方法。
The configuration of the present invention is shown below.
(Configuration 1)
a crystal oscillator, a first electrode formed on a first main surface of the crystal oscillator, and a second electrode formed on a second main surface of the crystal oscillator,
At least one surface of the first electrode and the second electrode has a film imprinted with a substance that changes the amount of water adsorbed from the gas phase depending on the amount of volatile organic acid in the gas phase. and a volatile fatty acid detection sensor, wherein the volatile fatty acid is detected by a change in the frequency of the crystal oscillator.
(Configuration 2)
A crystal oscillator micro, comprising a crystal oscillator, a first electrode formed on a first main surface of the crystal oscillator, and a second electrode formed on a second main surface of the crystal oscillator. consists of balance (QCM),
A volatile fatty acid detection sensor, wherein a titania porous film containing an alkoxide group is formed on the surface of at least one or more of the first electrode and the second electrode.
(Composition 3)
The volatile fatty acid detection sensor according to Structure 2, wherein the titania porous body is coated with an acid.
(Composition 4)
Having at least two QCMs,
The volatile fatty acid of configuration 3, wherein the acid deposited on one or more porous titania bodies of said QCM is different from the acid deposited on at least one porous titania body of the remainder of said QCM. detection sensor.
(Composition 5)
The volatile fatty acid detection sensor according to configuration 3 or 4, wherein the acid is selected from the group consisting of propionic acid, butyric acid and acetic acid.
(Composition 6)
Having a capsule that is permeable to and permeable to gases of volatile fatty acids and that is water-repellent is disposed on at least a portion of the surface that is in contact with the outside world;
A volatile fatty acid detection device, wherein the volatile fatty acid detection sensor according to any one of configurations 1 to 5 is arranged inside the capsule.
(Composition 7)
The volatile fatty acid detection device according to configuration 6, wherein a frequency measuring device for measuring the frequency of the crystal oscillator is arranged inside the capsule.
(Composition 8)
The volatile fatty acid detection device according to configuration 7, wherein a transmitter for wirelessly transmitting frequency information obtained by the frequency measuring device to the outside of the capsule is arranged inside the capsule.
(Composition 9)
A method for producing a volatile fatty acid detection sensor according to configuration 2,
Forming the porous titania film by imprinting the surface of at least one or more of the first electrode and the second electrode using at least Ti(O-nBu) 4 and acid, volatile A method for manufacturing a fatty acid detection sensor.
(Configuration 10)
A crystal oscillator micro, comprising a crystal oscillator, a first electrode formed on a first main surface of the crystal oscillator, and a second electrode formed on a second main surface of the crystal oscillator. preparing a balance (QCM);
modifying the surface of at least one or more of the first electrode and the second electrode with mercaptoethanol;
immersing at least the modified surface in a Ti(O-nBu) 4 solution consisting of Ti(O-nBu) 4 and acid, water, toluene and ethanol;
After the immersion in the Ti(O-nBu) 4 solution, the immersed surface is sequentially immersed in toluene, water-saturated toluene, and toluene;
drying the sequentially dipped surface;
A method for producing a volatile fatty acid detection sensor, comprising: treating the dried surface with a solution containing ammonia or an amine compound.
(Composition 11)
11. The method of manufacturing a volatile fatty acid detection sensor according to configuration 10, wherein said acid is selected from the group consisting of propionic acid, butyric acid and acetic acid.
 本発明によれば、VFAを高感度に検出する小型のセンサー、装置およびその製造方法を提供することが可能になる。
 また、本発明によれば、牛ルーメン液状部でVFAを高感度に検出できる小型の装置を提供することが可能になる。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the small sensor, apparatus, and its manufacturing method which detect VFA with high sensitivity.
Further, according to the present invention, it is possible to provide a small-sized device capable of detecting VFA in the liquid part of bovine rumen with high sensitivity.
本発明のセンサーの構成を説明する構成概要図である。(a)一方の電極の表面にインプリント膜が配置された構成例、(b)両方の電極の表面にインプリント膜が配置された構成例。FIG. 2 is a schematic configuration diagram for explaining the configuration of the sensor of the present invention; (a) Configuration example in which an imprint film is arranged on the surface of one electrode, (b) Configuration example in which an imprint film is arranged on the surfaces of both electrodes. 本発明のセンサーの製造工程を示すフローチャート図である。FIG. 4 is a flow chart diagram showing the manufacturing process of the sensor of the present invention. 本発明の装置の構成を説明する構成概要図である。1 is a schematic configuration diagram for explaining the configuration of an apparatus according to the present invention; FIG. 実施例1のセンサーの作製におけるインプリント処理回数と水晶振動子の共振周波数の関係を示す特性図である。FIG. 2 is a characteristic diagram showing the relationship between the number of imprinting processes and the resonance frequency of a crystal oscillator in fabricating the sensor of Example 1; 実施例1のセンサーのインプリント膜(水吸着物質)のSEM観察像である。(a)銀電極上のインプリント膜の断面像(倍率:10万倍)、(b)銀電極上のインプリント膜の断面像(倍率:6万倍)。4 is an SEM observation image of the imprinted film (water-adsorbing material) of the sensor of Example 1. FIG. (a) Cross-sectional image of the imprinted film on the silver electrode (magnification: 100,000 times), (b) Cross-sectional image of the imprinted film on the silver electrode (magnification: 60,000 times). 図5のSEM観察像を基にインプリント膜の膜厚を求めた測定図である。(a)倍率10万倍で観察した場合、(b)倍率6万倍で観察した場合。FIG. 6 is a measurement diagram obtained by obtaining the film thickness of an imprint film based on the SEM observation image of FIG. 5 ; (a) when observed at a magnification of 100,000; (b) when observed at a magnification of 60,000. 実施例1のセンサーのVFA検出感度を評価する実験の手順を説明する説明図である。FIG. 3 is an explanatory diagram illustrating the procedure of an experiment for evaluating the VFA detection sensitivity of the sensor of Example 1; 実施例1のセンサーを大気中から純水が入ったボックスに移動させたときの、経過時間に対する振動数(共振周波数)の変化を示す特性図である。FIG. 4 is a characteristic diagram showing changes in vibration frequency (resonance frequency) with respect to elapsed time when the sensor of Example 1 is moved from the atmosphere to a box containing pure water. 異なる酸が被着されたチタニア多孔体の膜をインプリント膜として有するセンサーを用いて、プロピオン酸、酪酸および酢酸の検出を行った際の振動数変化量を示す特性図である。(a)被着物がプロピオン酸の場合、(b)被着物が酪酸の場合、(c)被着物が酢酸の場合。FIG. 4 is a characteristic diagram showing the amount of change in frequency when detecting propionic acid, butyric acid, and acetic acid using a sensor having, as an imprinted film, a titania porous film coated with different acids. (a) when the adherent is propionic acid, (b) when the adherent is butyric acid, and (c) when the adherent is acetic acid.
(実施の形態1)
 実施の形態1では、本発明のVFA検出センサーについて説明する。
(Embodiment 1)
Embodiment 1 describes a VFA detection sensor of the present invention.
<構造>
 本発明のVFA検出センサー101は、図1(a)に示すように、水晶振動子11、第1の電極12、第2の電極13、および水吸着物質からなるインプリント膜14を有する。インプリント膜(水吸着物質)14は、電極の表面に(すなわち電極に接して)配置されるが、第1の電極12および第2の電極13の何れか一方に配置されていてもよく、その両方に配置されていてもよい。図1(a)に示すセンサー101は、前者の場合の構成例であり、図1(b)に示すセンサー102は、後者の場合の構成例である。インプリント膜14が両方の電極に配置されているセンサー102は、インプリント膜14に対して物質が吸着できる面積を広く確保することができるため、検出感度を高めやすいという特徴があり、インプリント膜14が一方の電極に配置されているセンサー101は、使用時にインプリント膜14が配置された電極のみが気相に触れる場合に効率が良く、また低コスト化しやすいといった特徴がある。また、センサー101,102において、インプリント膜14は、電極の表面全体に(すなわち外気と接触可能な部分の全体に)形成されていてもよく、電極の表面の一部分に(すなわち外気と接触可能な部分の一部に)形成されていてもよい。
 インプリント膜を構成する水吸着物質14は、気相中のVFAの量によって気相から吸着される水の量が変化する物質であり、これを用いたことが本発明の特徴になっている。
 一方、通常のQCM構造のセンサーは、水吸着物質14ではなく、対象とする物質を吸着する物質やその薄膜(感応膜)を用いている。ここで、QCMは、水晶振動子の振動体表面に何らかの物質が付着すると、その付着物の重さに応じて共振周波数が変化する原理を利用して特定物質の付着量を検出するデバイスであり、例えば特許文献1に開示がある。
<Structure>
A VFA detection sensor 101 of the present invention, as shown in FIG. 1(a), has a crystal oscillator 11, a first electrode 12, a second electrode 13, and an imprint film 14 made of a water-adsorbing substance. The imprint film (water-adsorbing material) 14 is arranged on the surface of the electrode (that is, in contact with the electrode), but may be arranged on either one of the first electrode 12 and the second electrode 13, It may be arranged in both. A sensor 101 shown in FIG. 1A is a configuration example for the former case, and a sensor 102 shown in FIG. 1B is a configuration example for the latter case. The sensor 102 in which the imprinted film 14 is arranged on both electrodes can secure a large area where a substance can be adsorbed on the imprinted film 14, and thus has a feature of easily increasing detection sensitivity. The sensor 101 in which the membrane 14 is arranged on one electrode is characterized by high efficiency and low cost when only the electrode on which the imprinted membrane 14 is arranged contacts the gas phase during use. Moreover, in the sensors 101 and 102, the imprint film 14 may be formed on the entire surface of the electrode (that is, on the entire portion that can contact the outside air), or may be formed on a part of the surface of the electrode (that is, on the portion that can contact the outside air). part).
The water adsorption substance 14 constituting the imprint film is a substance whose amount of water adsorbed from the gas phase changes depending on the amount of VFA in the gas phase, and the use of this substance is a feature of the present invention. .
On the other hand, a sensor with a normal QCM structure uses not the water-adsorbing substance 14 but a substance that adsorbs the target substance or its thin film (sensitive film). Here, QCM is a device that detects the adhesion amount of a specific substance using the principle that when some substance adheres to the vibrating body surface of a crystal unit, the resonance frequency changes according to the weight of the adhered substance. , for example, is disclosed in Patent Document 1.
 発明者は、VFAを従来型のVFA吸着物質を用いたQCMで高感度に検出しようとすると、極微量の重量変化をモニターする必要が生じ、装置の大型化やコストアップ、ノイズの抑制等による複雑化を避けるのは困難になることを知見した。 When the inventor tries to detect VFA with high sensitivity by QCM using a conventional VFA adsorbent, it becomes necessary to monitor a very small amount of weight change. We have found that it becomes difficult to avoid complications.
 そこで、発明者は、VFAを直接吸着する物質を用いるのではなく、気相中のVFAの存在によって水の吸着量が変わる物質を吸着助剤として用いることを試みた。水は雰囲気中に大量にあるため、この吸着助剤の性質の変化を利用することで、梃の原理的に、少量のVFAにより多量の水を引き込むことを阻害、あるいはその阻害を抑制できるので、重量変化量を大きくすることができ、高い検出感度を得ることが可能になる。 Therefore, instead of using a substance that directly adsorbs VFA, the inventor attempted to use a substance that changes the amount of water adsorbed depending on the presence of VFA in the gas phase as an adsorption aid. Since there is a large amount of water in the atmosphere, by utilizing the change in the properties of this adsorption aid, it is possible, in principle, to prevent or suppress the attraction of a large amount of water with a small amount of VFA. , the amount of change in weight can be increased, and high detection sensitivity can be obtained.
 具体的に、気相中の水を水吸着物質14に引き込むメカニズムとしては、外気と接触する表面の極性を利用する、すなわち外気と接触する表面の親水性の度合いを利用することを挙げることができる。その上で、気相中のVFAの存在により、表面が疎水化する、あるいは疎水性から親水性に変化する物質を水吸着物質14として用いると、気相中にVFAがない環境での水吸着物質14による水の吸着量と、気相中のVFAを少量吸着することによりその表面の極性が変化したときの水吸着物質14による水の吸着量は大きく変化する。
 ここで、水の吸着量を大きくして検出感度を高めるために、水吸着物質14は多孔体であることが好ましい。水吸着物質14が多孔体であると、体積当たりの表面積が広くなって、多くの水を吸着することが可能になる。
Specifically, as a mechanism for drawing water in the gas phase into the water-adsorbing material 14, it is possible to use the polarity of the surface in contact with the outside air, that is, the degree of hydrophilicity of the surface in contact with the outside air. can. In addition, if a substance whose surface becomes hydrophobic or changes from hydrophobic to hydrophilic due to the presence of VFA in the gas phase is used as the water-adsorbing substance 14, water adsorption in an environment where there is no VFA in the gas phase can be achieved. The adsorption amount of water by the substance 14 and the adsorption amount of water by the water adsorption substance 14 when the polarity of the surface is changed by adsorbing a small amount of VFA in the gas phase change greatly.
Here, it is preferable that the water-adsorbing material 14 is a porous body in order to increase the amount of adsorbed water and improve the detection sensitivity. If the water-adsorbing substance 14 is a porous body, the surface area per volume becomes large, and a large amount of water can be adsorbed.
 発明者は、アルコキシド基を含むチタニア多孔体が水をよく吸着する一方で、気相中のVFAの量と水の吸着量の変化との間に良好な相関性があることを見出した。さらに、このチタニア多孔体に酸が被着されていると、気相中のVFAの量と水吸着量の変化との間の相関性が高まること(チタニア多孔体への水吸着がより阻害されること)、およびチタニア多孔体に被着した酸(被着物である酸)の種類によりVFAの種類に対する感度が変えられることを見出した。ここで、上記被着物の酸としては、プロピオン酸、酪酸、酢酸など挙げることができる。
 このチタニア多孔体の具体例としては、Ti(O-nBu)(チタン(IV)n-ブトキシド)が挙げられる。また、このチタニア多孔体を電極の表面に膜状に配置する方法としては、金や銀などの金属電極上に、Ti(O-nBu)、プロピオン酸等の酸および少量の水と有機溶媒(トルエンとエタノールの混合溶媒など)を含む溶液を用いてインプリント(コーティング)する方法を挙げることができる。詳細は、製造方法の項で述べる。このようにして形成されるチタニア多孔体の膜(有機チタニア膜)は、アルコキシド基を含まないチタニア(TiO)で形成された膜(無機のチタニア膜)とは異なる、分子レベルの多孔性を有し、インプリント膜14として用いるのに好適である。この分子レベルの多孔性については、実施例の項で説明する。
The inventors found that a porous titania material containing alkoxide groups adsorbs water well, and that there is a good correlation between the amount of VFA in the gas phase and the change in the amount of water adsorbed. Furthermore, when the titania porous body is coated with acid, the correlation between the amount of VFA in the gas phase and the change in the amount of water adsorption is enhanced (water adsorption to the titania porous body is further inhibited. ) and that the sensitivity to the type of VFA varies depending on the type of acid adhered to the titania porous material (acid that is the adherent). Here, propionic acid, butyric acid, acetic acid and the like can be mentioned as the acid of the adherend.
A specific example of this titania porous body is Ti(O-nBu) 4 (titanium (IV) n-butoxide). In addition, as a method of arranging this titania porous body in the form of a film on the surface of an electrode, Ti(O-nBu) 4 , an acid such as propionic acid, a small amount of water and an organic solvent are coated on a metal electrode such as gold or silver. A method of imprinting (coating) using a solution containing (such as a mixed solvent of toluene and ethanol) can be mentioned. Details will be described in the manufacturing method section. The porous titania film (organic titania film) thus formed has molecular-level porosity, which is different from a film (inorganic titania film) formed of titania (TiO 2 ) containing no alkoxide group. and suitable for use as the imprint film 14 . This molecular level porosity is described in the Examples section.
 ここで、Ti(O-nBu)に被着されている酸の種類によって、検出すべきVFAの種類に対する感度が異なるインプリント膜14となる。このため、インプリント膜14を作製する際に添加する酸を適切に選択することによって、VFAの分別を行うことができる。このことは、実施例にて実例を引用して説明する。
 また、この性質を使って、QCMを少なくとも2つ以上有するセンサーを構成し、QCMの1つ以上のチタニア多孔体に被着されている酸を、QCMの残りのうちの少なくとも1つのチタニア多孔体に被着されている酸とは異なるようにすると、VFAの種類の特定と、VFAの定量評価とを、単一のセンサーを用いて行うことができる。
Here, the imprint film 14 has different sensitivities to the types of VFAs to be detected, depending on the type of acid coated on Ti(O-nBu) 4 . Therefore, VFA can be separated by appropriately selecting the acid to be added when the imprint film 14 is produced. This is explained with reference to examples in the examples.
In addition, using this property, a sensor having at least two or more QCMs is constructed, and the acid coated on one or more titania porous bodies of the QCMs is applied to at least one titania porous body of the rest of the QCMs. VFA type identification and VFA quantitative assessment can be performed using a single sensor.
 また、水吸着物質14の別の例としては、外気が触れる部分が疎水性である膨潤性ゴムを挙げることができる。ここで、外気が触れる部分とは、ガス吸着表面のことであって、いわゆる外形を形作っている表面のみならず、外気が侵入する多孔体の孔の面も含む部分である。また、この文脈において「膨潤性ゴム」とは、膨潤する性質を有するゴムを意味し、センサー101,102の使用時において膨潤した状態であるもの、および、膨潤していない状態であるものの両方を包含するものとする。
 この膨潤性ゴムとしては、例えば、センサー101,102の使用時において膨潤した状態であり、外気が触れる部分にドデカンが被着しているアクリロニトリル・ブタジエンゴム(NBR)を挙げることができる。このNBRにおいては、その膨潤によって形成される隙間(空孔)の表面は、通常は疎水性であるが、気相中のVFAに触れると親水化して環境の水を引き込み、重量が増加する。このような性質を有するNBRは、水吸着物質14として用いるのに好適である。
Another example of the water-adsorbing substance 14 is a swelling rubber whose portion exposed to the outside air is hydrophobic. Here, the portion exposed to the outside air means the gas adsorption surface, and includes not only the surface forming the so-called outer shape but also the surface of the pores of the porous body through which the outside air enters. In this context, the term "swellable rubber" means rubber that has the property of swelling, and includes both those that are in a swollen state and those that are not in a swollen state when the sensors 101 and 102 are used. shall be included.
Examples of the swellable rubber include acrylonitrile-butadiene rubber (NBR), which is in a swollen state when the sensors 101 and 102 are used, and in which dodecane is adhered to portions exposed to the outside air. In this NBR, the surfaces of the gaps (voids) formed by the swelling are usually hydrophobic, but when they come into contact with VFA in the gas phase, they become hydrophilic, drawing in environmental water and increasing their weight. NBR having such properties is suitable for use as the water adsorption material 14 .
 インプリント膜14の厚さは、特に限定はないが、薄膜であることが検出速度の面で好ましく、例えば10nm以上1μm以下を挙げることができる。インプリント膜14の大きさも特に限定はないが、広い方が物質が吸着できる面積が大きくなるので、検出感度の観点から好ましい。センサーの小型化とのバランスを鑑みると、第1の電極12や第2の電極13と同程度の大きさ(広さ)が好ましい。 The thickness of the imprint film 14 is not particularly limited, but a thin film is preferable in terms of detection speed, and for example, 10 nm or more and 1 μm or less can be mentioned. The size of the imprint film 14 is also not particularly limited, but the larger the size, the larger the area where the substance can be adsorbed, so it is preferable from the viewpoint of detection sensitivity. Considering the balance with miniaturization of the sensor, the size (width) of the first electrode 12 and the second electrode 13 is preferable.
 水吸着物質14が多孔体である場合の密度(外形体積に対する空間比率)は、欠け等の不良が発生しない強度が保たれることを前提として、高いほど好ましいが、実用的には、0.5g/cm以上2.0g/cm以下を挙げることができる。 When the water-adsorbing substance 14 is porous, the density (ratio of the space to the external volume) is preferably as high as possible on the premise that the strength is maintained so as not to cause defects such as chipping. 5 g/cm 3 or more and 2.0 g/cm 3 or less can be mentioned.
 水晶振動子11としては、特に限定はないが、ATカット型の水晶振動子を好んで用いることができる。ここで、ATカットとは、切り出し角度が水晶結晶軸に対して特定の方位であることを意味し、ATカット型の水晶振動子は、室温付近で温度係数の変化が極小になるため、温度安定性に優れるという特徴をもつ。
 第1の電極12および第2の電極13は、水晶振動子11に交流の電圧を印加可能なものであれば特に限定はないが、例えば金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、タングステン(W)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、それらの合金、Al-Siなどのそれらの金属化合物、ドープドシリコン(Si)、ドープドポリシリコン(PolySi)を挙げることができる。ここで、電極は、単一の物質である必要はなく、水晶との接着性を上げるために、NiやCrの下地があり、酸化を防止するためにAuやAgの最表面をもつものが望ましい。
 第1の電極12および第2の電極13は、水晶振動子11の共振のQ値が高く、水晶振動子11の動きに追従でき、ナノグラム(ng)の感度があるものが好ましい。第1の電極12および第2の電極13の厚さは、特に限定はないが、Q値向上のため薄膜であることが好ましく、例えば10nm以上150nm以下を挙げることができる。
The crystal oscillator 11 is not particularly limited, but an AT-cut crystal oscillator can be preferably used. Here, AT-cut means that the cut-out angle is in a specific direction with respect to the quartz crystal axis. It is characterized by excellent stability.
The first electrode 12 and the second electrode 13 are not particularly limited as long as they can apply an alternating voltage to the crystal oscillator 11. For example, gold (Au), silver (Ag), and platinum (Pt). , copper (Cu), tungsten (W), aluminum (Al), titanium (Ti), chromium (Cr), nickel (Ni), their alloys, their metallic compounds such as Al—Si, doped silicon (Si ) and doped polysilicon (PolySi). Here, the electrode does not have to be made of a single material, and the electrode has a base of Ni or Cr to increase adhesion to the crystal, and an outermost surface of Au or Ag to prevent oxidation. desirable.
The first electrode 12 and the second electrode 13 preferably have a high resonance Q value of the crystal oscillator 11, can follow the movement of the crystal oscillator 11, and have nanogram (ng) sensitivity. The thicknesses of the first electrode 12 and the second electrode 13 are not particularly limited, but are preferably thin films in order to improve the Q value, for example, 10 nm to 150 nm.
 センサー101,102の第1の電極12および第2の電極13に交流の電圧を印加し、水晶振動子11の振動数変化、具体的には共振周波数の変化を測定することにより、気相中のVFAを高い感度で検出し、その量を求めることも可能となる。
 上記で説明したように、センサー101,102により、小型でありながら、高いVFA検出感度をもつセンサーが提供される。
By applying an alternating voltage to the first electrode 12 and the second electrode 13 of the sensors 101 and 102 and measuring the change in the frequency of the crystal oscillator 11, specifically the change in the resonance frequency, It is also possible to detect the VFA with high sensitivity and determine its amount.
As explained above, sensors 101 and 102 provide sensors with high VFA detection sensitivity while being compact.
<製造方法>
 センサー101の製造方法を図2を参照しながら説明する。
 最初に、水晶振動子11と、水晶振動子11の第1主表面上に形成された第1の電極12と、水晶振動子11の第2主表面上に形成された第2の電極13とを有する水晶振動子マイクロバランス(QCM)を準備する(工程S11)。ここで、水晶振動子11、第1の電極12、および第2の電極13は、通常のQCMで用いられるものを使用してよい。
<Manufacturing method>
A method of manufacturing the sensor 101 will now be described with reference to FIG.
First, a crystal oscillator 11, a first electrode 12 formed on a first main surface of the crystal oscillator 11, and a second electrode 13 formed on a second main surface of the crystal oscillator 11. A crystal oscillator microbalance (QCM) having is prepared (step S11). Here, the crystal resonator 11, the first electrode 12, and the second electrode 13 may be those used in a normal QCM.
 次に、第1の電極12および第2の電極13の少なくとも1つ以上の表面をメルカプトエタノールで修飾する(工程S12)。具体的には、例えば、エタノールを溶媒にして所定の濃度でメルカプトエタノールを溶解させたメルカプトエタノール溶液に、修飾を施す電極の表面を浸漬させればよい。修飾するときの温度は室温(20℃以上25℃以下)でよく、修飾時間は1時間以上12時間以下が好ましい。この時間範囲で目的の表面に対して十分な修飾を行うことができる。この時間より短い場合は修飾が不十分となり、長い場合は時間を浪費して生産効率の低下に繋がる。なお、この修飾は、第1の電極12および第2の電極13の最表面がAuの場合に必要であり、最表面がAgの場合は省略することができる。
 その後、少なくとも上記修飾を行った表面を、Ti(O-nBu)および酸と少量の水、トルエンやエタノールなどの有機溶媒からなるTi(O-nBu)溶液に浸漬する(工程S13)。浸漬するときの温度は室温でよい。浸漬時間は1分以上5分以下が好ましい。この時間範囲で目的の表面に対して十分なTi(O-nBu)の堆積を行うことができる。この時間より短い場合はTi(O-nBu)の堆積が不十分となり、長い場合は時間を浪費して生産効率の低下に繋がる。
 Ti(O-nBu)溶液による浸漬の後、当該浸漬を行った表面に対してトルエンによる浸漬(工程S14)、水飽和トルエンによる浸漬(工程S15)、およびトルエンによる浸漬(工程S16)を順次行う。ここで、浸漬するときの温度は室温(20℃以上25℃以下)でよく、各浸漬時間は30秒以上2分以下が好ましい。この時間範囲で欠陥やムラの少ないインプリントを行うことができる。
 しかる後、乾燥を行って(工程S17)、1クールのインプリント処理を終える。ここで、乾燥方法としては、窒素ガス乾燥、ドライエア乾燥、真空乾燥、ドライエア環境での温度100℃以下の加熱乾燥を挙げることができる。
Next, at least one or more surfaces of the first electrode 12 and the second electrode 13 are modified with mercaptoethanol (step S12). Specifically, for example, the surface of the electrode to be modified may be immersed in a mercaptoethanol solution in which mercaptoethanol is dissolved at a predetermined concentration using ethanol as a solvent. The temperature for modification may be room temperature (20° C. or more and 25° C. or less), and the modification time is preferably 1 hour or more and 12 hours or less. Sufficient modification of the target surface can be achieved within this time range. If it is shorter than this time, the modification will be insufficient, and if it is longer, time will be wasted, leading to a decrease in production efficiency. This modification is necessary when the outermost surface of the first electrode 12 and the second electrode 13 is Au, and can be omitted when the outermost surface is Ag.
Thereafter, at least the modified surface is immersed in a Ti(O-nBu) 4 solution composed of Ti(O-nBu) 4 and an acid, a small amount of water, and an organic solvent such as toluene or ethanol (step S13). The temperature for immersion may be room temperature. The immersion time is preferably 1 minute or more and 5 minutes or less. Sufficient Ti(O-nBu) 4 deposition can be performed on the target surface within this time range. If the time is shorter than this, deposition of Ti(O-nBu) 4 will be insufficient, and if it is longer, time will be wasted, leading to a decrease in production efficiency.
After immersion in the Ti(O-nBu) 4 solution, the immersed surface was sequentially immersed in toluene (step S14), immersed in water-saturated toluene (step S15), and immersed in toluene (step S16). conduct. Here, the temperature for immersion may be room temperature (20° C. or more and 25° C. or less), and each immersion time is preferably 30 seconds or more and 2 minutes or less. Imprinting with few defects and unevenness can be performed within this time range.
After that, drying is performed (step S17), and one course of imprint processing is completed. Here, examples of the drying method include nitrogen gas drying, dry air drying, vacuum drying, and heat drying at a temperature of 100° C. or less in a dry air environment.
 次に、このクールの回数nと予め定めた回数Xとを比較し(工程S18)、nがX未満の(n<Xである)場合は、n+1回目の処理(工程S19)が必要と判断し、工程S13から工程S17までの処理を再度行う。nがX以上の(n≧Xである)場合は、TMED(テトラメチルエチレンジアミン)希釈液などのアミン化合物を含む溶液で処理(当該溶液に浸漬)して(工程S20)カルボン酸を除去し、一連のインプリント処理を完了(工程S21)し、センサー101が製造される。なお、TMEDなどのアミン化合物に代えて、アンモニアを含む溶液(希薄なアンモニア溶液)を用いて処理してカルボン酸を除去してもよい。
 このようにして得られるセンサー101は、小型でありながらVFA検出感度の高いものになる。
 なお、第1の電極12および第2の電極13が同じ最表面をもつ電極であり、電極12および電極13の表面に同様なインプリント膜を形成させた場合は、センサー102が製造される。
Next, the number of cools n is compared with a predetermined number of times X (step S18), and if n is less than X (n<X), it is determined that the n+1th process (step S19) is necessary. Then, the processes from step S13 to step S17 are performed again. When n is X or more (n≧X), treatment with a solution containing an amine compound such as TMED (tetramethylethylenediamine) diluent (immersion in the solution) (step S20) to remove carboxylic acid, A series of imprint processes are completed (step S21), and the sensor 101 is manufactured. A solution containing ammonia (dilute ammonia solution) may be used to remove the carboxylic acid instead of the amine compound such as TMED.
The sensor 101 obtained in this manner is compact and has high VFA detection sensitivity.
Note that when the first electrode 12 and the second electrode 13 are electrodes having the same outermost surface and similar imprint films are formed on the surfaces of the electrodes 12 and 13, the sensor 102 is manufactured.
(実施の形態2)
 実施の形態2では、特に牛ルーメン液状部などVFAが溶け込んだ溶液環境でのVFAの検知とその定量に適したVFA検出装置について説明する。
(Embodiment 2)
In Embodiment 2, a VFA detection apparatus suitable for detecting and quantifying VFA in a solution environment such as a liquid portion of bovine rumen in which VFA is dissolved will be described.
 本発明のVFA検出装置103は、図3に示すように、カプセル56の内部に、実施の形態1で説明した両方の電極の表面にインプリント膜14が形成されたセンサー102(図1(b)参照)、センサー102からの出力を信号線57を介して受け取り、水晶振動子の振動数を測定してそのデータを処理し、無線で送信する送信装置54へ信号線58を介してデータを送る振動数測定装置53が配置されている。また、カプセル56の表面、より具体的には、カプセル56において外界(カプセルの外部の環境)と接する表面の少なくとも一部に、VFAガスは透過するが、液体はブロックするフィルター55が配置されている。
 カプセル56の素材は特に限定はないが、牛ルーメン内等の消化器で腐食し破壊されない材料とすることが好ましく、例えばポリエチレンテレフタレート、塩化ビニル、高強度ガラスなどを挙げることができる。また、カプセル56の内部は、水蒸気が凝縮しないように、疎水性コーティングが施されていることが望ましい。VFA検出装置の筐体をカプセルとすることで、牛にカプセル錠として飲み込ませることができる。
 ここで、フィルター55の材料としては、超撥水性を有し、ガスを透過する多孔性材料あるいは繊維である超撥水不織布などを用いることができる。ここで、不織布の強度を保ち、耐久性を向上させるため、不織布に網状の金属を被着しておくことが好ましい。より具体的には、フィルター55には、例えば、多孔性のPTFE(ポリテトラフルオロエチレン)製の限外濾過膜の両面を超撥水性を有するPET(ポリエチレンテレフタレート)不織布で挟み込んだガス透過性超撥水多層膜などを好んで用いることができる。
As shown in FIG. 3, the VFA detection device 103 of the present invention includes a sensor 102 (see FIG. 1(b)) in which imprint films 14 are formed on the surfaces of both electrodes described in Embodiment 1 inside a capsule 56. )), receives the output from sensor 102 via signal line 57, measures the frequency of the crystal oscillator, processes the data, and transmits the data via signal line 58 to transmitter 54, which transmits the data wirelessly. A sending frequency measuring device 53 is arranged. In addition, on the surface of the capsule 56, more specifically, on at least part of the surface of the capsule 56 in contact with the outside world (environment outside the capsule), a filter 55 that is permeable to the VFA gas but blocks the liquid is arranged. there is
The material of the capsule 56 is not particularly limited, but it is preferable to use a material that does not corrode and break in the digestive tract such as inside the rumen of a cow, and examples thereof include polyethylene terephthalate, vinyl chloride, and high-strength glass. In addition, the interior of capsule 56 is desirably coated with a hydrophobic coating to prevent water vapor from condensing. By using a capsule as the housing of the VFA detection device, the cow can be swallowed as a capsule tablet.
Here, as the material of the filter 55, a porous material having super water repellency and permeable gas or a super water repellent non-woven fabric made of fibers can be used. Here, in order to maintain the strength of the nonwoven fabric and improve its durability, it is preferable to cover the nonwoven fabric with a net-like metal. More specifically, the filter 55 includes, for example, a gas-permeable ultrafiltration membrane in which both sides of a porous PTFE (polytetrafluoroethylene) ultrafiltration membrane are sandwiched between superhydrophobic PET (polyethylene terephthalate) nonwoven fabrics. A water-repellent multilayer film or the like can be preferably used.
 装置103の構成によれば、その内部に収められるセンサー102、振動数測定装置53および無線送信装置54を小型化でき、カプセル56の素材を適切に選択することで、胃液中でも腐食することなくVFAガスをフィルター55を介してカプセル56の内部に引き込んで所要の検知、測定を行うことができる。また、送信装置54から送信される、振動数測定装置53で測定された結果を無線等で外部で受け取ることができるので、装置103は、牛ルーメン液状部の状態をリアルタイムでモニターすることができる有用な装置である。なお、図3に示す装置103では、VFA検出センサーとして、インプリント膜14が両方の電極の表面に設けられているセンサー102を用いているが、別の態様として、例えば、一方の電極の表面にインプリント膜14が配置されたセンサー101(図1(a))を用いて、インプリント膜14が配置されている側がフィルター55が配置されている方向に向くように配置してもよい。 According to the configuration of the device 103, the sensor 102, the frequency measuring device 53, and the wireless transmitter 54 housed therein can be miniaturized. Gas can be drawn into the interior of capsule 56 through filter 55 for desired detection and measurement. In addition, since the result of measurement by the frequency measuring device 53, which is transmitted from the transmitting device 54, can be externally received wirelessly or the like, the device 103 can monitor the state of the liquid portion of the bovine rumen in real time. A useful device. In the apparatus 103 shown in FIG. 3, the sensor 102 having the imprinted film 14 provided on the surface of both electrodes is used as the VFA detection sensor. The sensor 101 (FIG. 1A) having the imprinted film 14 disposed on the sensor 101 may be arranged so that the side on which the imprinted film 14 is disposed faces the direction in which the filter 55 is disposed.
(実施例1)
 実施例1では、実施の形態1で説明したセンサー102(図1(b)参照)を作製し、そのVFA検出特性を調べた。
 但し、当然ながら、本発明はこのような特定の形式に限定されるものではなく、本発明の技術的範囲は特許請求の範囲により規定されるものであることに注意されたい。
(Example 1)
In Example 1, the sensor 102 (see FIG. 1B) described in Embodiment 1 was manufactured and its VFA detection characteristics were examined.
However, it should be noted that the present invention is of course not limited to such a particular form, and the scope of the present invention is defined by the appended claims.
<センサーの作製>
 最初に、両方の主表面に電極(第1の電極12と第2の電極13)をもつ水晶振動子11を準備した(図2の工程S11)。ここで、水晶振動子11としては、9MHzのATカットQCM(ピエゾパーツ株式会社製)を用い、その大きさは直径8.7mm、厚さ0.17mmとした。第1の電極12と第2の電極13は共に蒸着法によって形成したもので、その厚さは0.1μmである。電極材料としては金(Au)または銀(Ag)を用いた。以下では、電極材料が金である場合のセンサーの作製手順について説明する。電極材料が銀である場合には、次の段落で説明するメルカプトエタノールによる電極表面の修飾(工程S12)を省略したことを除いて、金電極の場合と同様の条件でセンサーを作製した。
<Production of sensor>
First, a crystal resonator 11 having electrodes (first electrode 12 and second electrode 13) on both main surfaces was prepared (step S11 in FIG. 2). Here, as the crystal oscillator 11, a 9 MHz AT-cut QCM (manufactured by Piezo Parts Co., Ltd.) was used, and its size was 8.7 mm in diameter and 0.17 mm in thickness. Both the first electrode 12 and the second electrode 13 are formed by vapor deposition and have a thickness of 0.1 μm. Gold (Au) or silver (Ag) was used as the electrode material. The procedure for fabricating the sensor when the electrode material is gold will be described below. When the electrode material was silver, the sensor was fabricated under the same conditions as for gold electrodes, except that the modification of the electrode surface with mercaptoethanol (step S12) described in the next paragraph was omitted.
 水晶振動子11の第1の電極12および第2の電極13をメルカプトエタノール溶液に12時間室温環境で浸漬させた(工程S12)。ここで、メルカプトエタノール溶液はエタノールを溶媒にして10mMのメルカプトエタノールを溶解させたものである。
 その後、3回エタノールを用いて浸漬洗浄し、1分間水洗を行った後、窒素ガスを用いて乾燥させた。
The first electrode 12 and the second electrode 13 of the crystal oscillator 11 were immersed in the mercaptoethanol solution for 12 hours at room temperature (step S12). Here, the mercaptoethanol solution is obtained by dissolving 10 mM mercaptoethanol using ethanol as a solvent.
After that, it was immersed and washed with ethanol three times, washed with water for 1 minute, and then dried with nitrogen gas.
 一方で、インプリント膜14としての有機チタニア膜を形成するためのTi(O-nBu)溶液を準備した。
 この溶液は、先ず以下に示す溶液#1を作製し、そこに少量の水を添加した溶液#2を作製し、さらにトルエンで20倍に希釈して作製した。
 溶液#1は、分子量(Mw)が340のTi(O-nBu) 3.4gをトルエン2に対しエタノール1の割合としたトルエン-エタノール溶媒100mLに溶解させた溶液(したがってTi(O-nBu)は100mM)と、酸(Mwが74のプロピオン酸、Mwが88の酪酸、またはMwが60の酢酸)0.25gをトルエン2に対しエタノール1の割合としたトルエン-エタノール溶媒100mLに溶解させた溶液(したがってプロピオン酸の場合は33.8mM、酪酸の場合は28.4mM、酢酸の場合は41.7mM)を2時間混合して作製した。
 溶液#2は、溶液#1にスターラーを高速回転させた状態で数滴ずつ水を滴下し、合計0.495gの水を添加して作製した。
 トルエン20倍希釈液は、200μLの溶液#2とトルエン4mLを混合して作製した。
On the other hand, a Ti(O-nBu) 4 solution for forming an organic titania film as the imprint film 14 was prepared.
This solution was prepared by first preparing solution #1 shown below, adding a small amount of water thereto to prepare solution #2, and further diluting it 20 times with toluene.
Solution #1 was a solution of 3.4 g of Ti(O-nBu) 4 having a molecular weight (Mw) of 340 dissolved in 100 mL of a toluene-ethanol solvent of 2 parts toluene and 1 part ethanol (thus Ti(O-nBu ) 4 is 100 mM) and 0.25 g of an acid (propionic acid with Mw of 74, butyric acid with Mw of 88, or acetic acid with Mw of 60) dissolved in 100 mL of toluene-ethanol solvent in a ratio of 2 parts toluene to 1 part ethanol. The resulting solutions (thus 33.8 mM for propionic acid, 28.4 mM for butyric acid, and 41.7 mM for acetic acid) were made by mixing for 2 hours.
Solution #2 was prepared by adding several drops of water to Solution #1 while rotating the stirrer at high speed, adding a total of 0.495 g of water.
A 20-fold dilution of toluene was prepared by mixing 200 μL of solution # 2 and 4 mL of toluene.
 次に、メルカプトエタノールで電極表面を修飾したQCMを、上記作製のTi(O-nBu)溶液(Ti(O-nBu)入り20倍希釈溶液)に室温環境で3分間浸漬した(工程S13)。さらに、このQCMを、溶液をトルエンに置換してトルエンに数秒間浸漬し(工程S14)、溶液を水飽和トルエンに置換して水飽和トルエンに3分間浸漬し(工程S15)、溶液を再度トルエンに置換してトルエンに数秒間浸漬した(工程S16)。その後窒素ガスを用いて乾燥(工程S17)させた。本実施例では、これら工程S13から工程S17の一連のインプリント処理の回数として予め16回(X=16)を設定し、n=16となるまで、すなわちこのインプリント処理を16回繰り返した。 Next, the QCM whose electrode surface was modified with mercaptoethanol was immersed in the prepared Ti(O-nBu) 4 solution (20-fold diluted solution containing Ti(O-nBu) 4 ) for 3 minutes at room temperature (step S13 ). Furthermore, this QCM is immersed in toluene for several seconds after replacing the solution with toluene (step S14), replacing the solution with water-saturated toluene and immersed in water-saturated toluene for 3 minutes (step S15), and the solution is replaced with toluene again. and immersed in toluene for several seconds (step S16). After that, it was dried using nitrogen gas (step S17). In this example, the number of imprint processes from step S13 to step S17 was set to 16 times (X=16) in advance, and this imprint process was repeated 16 times until n=16.
 その後、QCMを、水5mLにTMEDを50μL溶解させたTMED水溶液に室温環境で30分浸漬し(工程S20)、0.0001MのHCl水溶液に数分浸漬させ、浸漬による水洗浄、メタノール洗浄、および窒素ガスによる乾燥工程を経て、有機チタニア膜が第1の電極12および第2の電極13の表面にインプリントされたセンサー102を作製した(工程S21)。
 上記インプリント処理の回数と水晶振動子の共振周波数変化の関係を図4に示す。ここでは、電極材料として金を用い、上記溶液#1の作製時の酸としてプロピオン酸を用いた場合の結果を示す。処理回数5回の異常点を除いてほぼ単調に共振周波数が増加しており、有機チタニア膜の形成がインプリント処理回数と共に単調に進んでいることがわかる。なお、16回処理後の共振周波数の増加は2277Hzであるが、これは有機チタニア膜の厚さ60nmに相当する。
After that, the QCM was immersed in an aqueous TMED solution prepared by dissolving 50 μL of TMED in 5 mL of water at room temperature for 30 minutes (step S20), immersed in an aqueous 0.0001 M HCl solution for several minutes, washed with water by immersion, washed with methanol, and A sensor 102 in which an organic titania film was imprinted on the surfaces of the first electrode 12 and the second electrode 13 was produced through a drying process using nitrogen gas (step S21).
FIG. 4 shows the relationship between the number of times of imprint processing and the change in resonance frequency of the crystal oscillator. Here, the results are shown when gold is used as the electrode material and propionic acid is used as the acid in preparing the above solution #1. The resonance frequency increases almost monotonously except for the abnormal point at which the number of treatments is 5, and it can be seen that the formation of the organic titania film monotonically progresses with the number of imprint treatments. The increase in resonance frequency after 16 treatments is 2277 Hz, which corresponds to the thickness of the organic titania film of 60 nm.
<センサーの特性評価>
 作製したセンサー102の電極近傍のSEM(Scanning Electron Microscope)写真を図5に示す。ここでは、電極材料として銀を用い、上記溶液#1の作製時の酸としてプロピオン酸を用いた場合の観察像を示す。図5(a)、(b)は、それぞれ、倍率10万倍、6万倍で観察した、銀電極上のインプリント膜14の断面像である。水吸着物質からなるインプリント膜14は表面が荒れており、形成された有機チタニア膜が多孔質状であることがわかる。
<Evaluation of sensor characteristics>
FIG. 5 shows an SEM (Scanning Electron Microscope) photograph of the vicinity of the electrodes of the fabricated sensor 102 . Here, an observed image is shown when silver is used as the electrode material and propionic acid is used as the acid in preparing the above solution #1. 5A and 5B are cross-sectional images of the imprint film 14 on the silver electrode observed at magnifications of 100,000 and 60,000, respectively. It can be seen that the imprint film 14 made of the water-adsorbing substance has a rough surface, and the formed organic titania film is porous.
 図5(a)、(b)のSEM観察像を基に、インプリント膜14の膜厚を求めた結果を図6(a)、(b)に示す。計測場所によって若干のばらつきはあるものの、形成された有機チタニア膜の膜厚は約70nmであった。
 一方、インプリント膜14を形成する前の状態の(初期の)水晶振動子(電極材料が銀である場合)の共振周波数は9005394Hzであり、インプリント膜14を形成した後のそれは9002654Hzであった。また、作製したセンサーを一定時間大気中に(約20℃~25℃の環境下で)放置してインプリント膜14に過剰に被着しているプロピオン酸を脱着させた後のそれは9002763Hzで、初期値からの共振周波数(振動数)の減少は2631Hzであった。
 膜厚d(オングストローム)、振動数Fおよび密度ρ(g/cm)には下記の関係がある。
  2d=-ΔF/1.82ρ        ・・・(1)
 式(1)からインプリント膜14の密度は1.04g/cmと見積もられる。
 このセンサーを用いて、後述する図7に示すように大気中と純水が入ったボックスとの間を交互に移動させて測定した、水の吸収による振動数の減少は、20回の試験の平均として386Hzであり、ここから空隙率を386×1.04/2631により求めると0.153となる。したがって、実施例1のセンサーにおいて作製されたインプリント膜(水吸着物質)14は、15.3%が空隙になっていると見積もられる。
6(a) and 6(b) show the film thickness of the imprint film 14 obtained based on the SEM observation images of FIGS. 5(a) and 5(b). The film thickness of the formed organic titania film was about 70 nm, although there was some variation depending on the measurement location.
On the other hand, the resonance frequency of the (initial) crystal oscillator (when the electrode material is silver) before forming the imprint film 14 is 9005394 Hz, and after forming the imprint film 14 it is 9002654 Hz. rice field. In addition, after leaving the fabricated sensor in the atmosphere for a certain period of time (in an environment of about 20° C. to 25° C.) to desorb propionic acid excessively adhered to the imprint film 14, the frequency was 9002763 Hz, The decrease in resonance frequency (frequency) from the initial value was 2631 Hz.
The film thickness d (angstroms), the frequency F and the density ρ (g/cm 3 ) have the following relationship.
2d=-ΔF/1.82ρ (1)
The density of the imprint film 14 is estimated to be 1.04 g/cm 3 from equation (1).
Using this sensor, as shown in FIG. 7, which will be described later, the decrease in vibration frequency due to water absorption was measured by moving alternately between the atmosphere and a box containing pure water. The average frequency is 386 Hz, and the porosity obtained from this by 386×1.04/2631 is 0.153. Therefore, it is estimated that 15.3% of the imprinted film (water-adsorbing substance) 14 produced in the sensor of Example 1 is void.
 インプリント膜14の原子組成比をXPS(X-ray Photoelectron Spectroscopy)を用いて調べた。ここで、使用したXPSはSigmaProbe(サーモフィッシャーサイエンティフィック社製)である。ここでは、電極材料として銀を用い、上記溶液#1の作製時の酸として酢酸を用いて作製したセンサーの場合について説明する。
 その結果、Tiの原子組成を1.00とした場合、ブトキシ基の一つの酸素に結合した炭素(CH-O中のCH)の組成比が0.98、酸素に結合した上記炭素を除くブトキシ基のCHとCHの組成比が3.08、酢酸におけるメチル基の炭素(CH)の組成比が0.46、酢酸におけるカルボキシル基の炭素(O-C=O)の組成比が0.46として得られた。
 この結果は、インプリント膜14作製時に用いたTi(O-nBu)の4つのプロポキシドの一つはインプリント膜14内に残り、インプリント膜14作製時に用いた酢酸も0.5分子程度はインプリント膜14内に残っていることを意味する。
 したがって、得られたインプリント膜14は、アルコキシド基を含む有機のチタニア膜であり、無機のTiO膜では困難な、分子レベルの多孔性を有していると考えられる。
The atomic composition ratio of the imprint film 14 was examined using XPS (X-ray Photoelectron Spectroscopy). The XPS used here is SigmaProbe (manufactured by Thermo Fisher Scientific). Here, the case of a sensor fabricated using silver as the electrode material and acetic acid as the acid in the preparation of the above solution #1 will be described.
As a result, when the atomic composition of Ti is 1.00, the composition ratio of carbon bonded to one oxygen of the butoxy group (CH 2 in CH 2 —O) is 0.98, and the carbon bonded to oxygen is The composition ratio of CH 2 and CH 3 of butoxy groups excluding butoxy groups is 3.08, the composition ratio of methyl group carbon (CH 3 ) in acetic acid is 0.46, and the composition of carboxyl group carbon (OC=O) in acetic acid A ratio of 0.46 was obtained.
As a result, one of the four propoxides of Ti(O-nBu) 4 used to fabricate the imprinted film 14 remained in the imprinted film 14, and 0.5 molecule of acetic acid used to fabricate the imprinted film 14 remained in the imprinted film 14. The extent means remaining within the imprint film 14 .
Therefore, the obtained imprint film 14 is an organic titania film containing alkoxide groups, and is considered to have molecular-level porosity, which is difficult with inorganic TiO 2 films.
 センサー102のVFA検出感度は、図7に示すように、純水が入ったボックス、VFA水溶液が入ったボックス、および大気中にセンサー102を移動させて振動数(共振周波数)の変化を測定することで評価した。ここで、ボックスの容量は200mLであり、そこに貯められている純水の量は100mL、VFA水溶液の量は約100mLである。 As shown in FIG. 7, the VFA detection sensitivity of the sensor 102 is measured by moving the sensor 102 into a box containing pure water, a box containing an aqueous solution of VFA, and the air, and measuring changes in vibration frequency (resonance frequency). It was evaluated by Here, the capacity of the box is 200 mL, the amount of pure water stored therein is 100 mL, and the amount of VFA aqueous solution is about 100 mL.
 大気中に待機させたセンサー102を純水が入ったボックス(閉空間)に移動させて振動数の変化を測定した例を図8に示す。インプリント膜が水を吸着したことにより、約500Hzの振動数変化(減少)が観測されている。また、この変化は約40秒で落ち着く応答性を有していることがわかる。 FIG. 8 shows an example in which the sensor 102 waiting in the atmosphere was moved to a box (closed space) containing pure water and the change in vibration frequency was measured. A frequency change (decrease) of about 500 Hz was observed due to the adsorption of water by the imprint film. Also, it can be seen that this change has responsiveness that settles down in about 40 seconds.
 インプリント膜作製時に添加する酸として、各々25mMのプロピオン酸、酪酸および酢酸を用い、各々の酸が被着されたチタニア多孔体の膜をインプリント膜として有するセンサーを用いて、プロピオン酸、酪酸および酢酸の検出を行った結果を図9に示す。
 ここで、各VFA水溶液中のプロピオン酸は27mM、酪酸は22mMおよび酢酸は35mMであり、大気中から純水が入ったボックス(純水がある環境)に移動させたときの振動数変化(R(Hz))と、大気中から各VFA水溶液が入ったボックス(VFAがある環境)に移動させたときの振動数変化(R(Hz))を測定し、これらの振動数変化の差(R-R)を計算して振動数変化量(Hz)を求めた。この変化量の値が+の場合は、インプリント膜に対するVFAの吸着により、そこへの水の共吸着を阻害していることを意味する。
25 mM of propionic acid, butyric acid, and acetic acid were used as the acids to be added during the production of the imprinted film. and acetic acid are shown in FIG.
Here, propionic acid is 27 mM, butyric acid is 22 mM, and acetic acid is 35 mM in each VFA aqueous solution, and the frequency change (R 1 (Hz)) and the frequency change (R 2 (Hz)) when moving from the air to a box containing each VFA aqueous solution (environment with VFA), and the difference between these frequency changes (R 1 -R 2 ) was calculated to determine the amount of change in frequency (Hz). When the value of this variation is +, it means that adsorption of VFA to the imprint film inhibits co-adsorption of water thereto.
 図9(a)の結果から、プロピオン酸が被着されている有機チタニア膜の場合は、いずれのVFAがある環境でも、純水がある環境での振動数変化との差が見られ、VFAの吸着が水の共吸着を阻害していること、およびその共吸着の阻害は酪酸に対して特に大きいことがわかる。また、VFAの種類によって振動数変化量の値が異なっていることから、27mMのプロピオン酸、22mMの酪酸および35mMの酢酸が検出できていることもわかる。
 図9(b)の結果から、酪酸が被着されている有機チタニア膜の場合は、VFAがある環境で、インプリント膜に対するVFAの吸着により、そこへの水の共吸着が阻害されるのが明らかで、特に酢酸がある環境での振動数変化量の値が大きいことから、酢酸がある環境では水の共吸着が少なくなる、すなわち酢酸に対して高い検出感度をもつことがわかる。
 図9(c)の結果から、酢酸が被着されている有機チタニア膜の場合は、酢酸がある環境の方が、純水がある環境よりも振動数変化が大きく、特異的にインプリント膜に対する吸着量が大きいこと(その結果、振動数変化量の値がマイナスであること)がわかる。また、プロピオン酸がある環境では、水の共吸着量が目立って減少しており、高い感度でプロピオン酸を検出できることがわかる。
 以上から、本実施例のセンサー102で、VFAを高感度に検出できること、およびインプリント膜を作製する際に添加する酸の種類によって、VFAの種類に対する感度が異なり、VFAの分別を行えることが示された。
From the results of FIG. 9( a ), in the case of the organic titania film coated with propionic acid, in the environment with any VFA, a difference in frequency change from the environment with pure water was observed. adsorption inhibited the co-adsorption of water, and the inhibition of the co-adsorption was particularly large for butyric acid. In addition, since the value of the amount of change in frequency differs depending on the type of VFA, it can be seen that 27 mM propionic acid, 22 mM butyric acid, and 35 mM acetic acid can be detected.
From the results of FIG. 9(b), in the case of the organic titania film coated with butyric acid, the co-adsorption of water to the imprint film is inhibited by the adsorption of VFA to the imprint film in the presence of VFA. Especially in the presence of acetic acid, the value of the frequency change is large, indicating that the co-adsorption of water is reduced in the presence of acetic acid, that is, the detection sensitivity for acetic acid is high.
From the results of FIG. 9(c), in the case of the organic titania film coated with acetic acid, the environment with acetic acid has a larger frequency change than the environment with pure water, and the imprint film specifically (As a result, the value of the amount of change in frequency is negative). In addition, in an environment with propionic acid, the co-adsorption amount of water is remarkably reduced, indicating that propionic acid can be detected with high sensitivity.
From the above, the sensor 102 of the present embodiment can detect VFA with high sensitivity, and the sensitivity to the type of VFA varies depending on the type of acid added when producing the imprint film, and VFA can be separated. shown.
 なお、ここではプロピオン酸水溶液等、試験に用いたVFA水溶液の濃度で評価したが、VFAの濃度が25mMというような低い範囲では、ガス中のVFAの相対濃度Cとその分圧Pは、ラウールの法則を用いて換算することができる。VFA水溶液濃度C(単位はmM)、相対濃度C(単位は%)および25℃での分圧P(単位はPa)の関係は、プロピオン酸を例にして示すと下記式(2)、(3)のようになる。ここで、「相対」とは水(水蒸気)に対する比を表す。
    P=5.6×10-2         ・・・(2)
    C=1.8×10-5        ・・・(3)
 つまり、本実施例での試験に用いたような低い範囲の濃度で水溶液中に含まれるVFAは、一定の閉空間中の気相において、水溶液中の濃度と相関する相対濃度および分圧で存在すると考えることができるため、本実施例で作製したセンサーによって、VFAの高感度検出が実現できたと言える。
Here, the concentration of the aqueous solution of VFA used in the test, such as an aqueous solution of propionic acid, was used for evaluation . It can be converted using Raoult's law. The relationship between the VFA aqueous solution concentration C L (unit: mM), the relative concentration C V (unit: %), and the partial pressure P (unit: Pa) at 25° C. is represented by the following formula (2) using propionic acid as an example: , (3). Here, "relative" represents a ratio to water (water vapor).
P=5.6×10 −2 C L (2)
C V =1.8×10 −5 C L (3)
In other words, VFA contained in the aqueous solution at a concentration in the low range used in the test in this example exists in the gas phase in a constant closed space at a relative concentration and partial pressure that correlates with the concentration in the aqueous solution. Therefore, it can be said that the sensor manufactured in this example has achieved high-sensitivity detection of VFA.
 本発明によれば、VFAを高感度に検出する小型のセンサー、装置およびその製造方法が提供される。また、その装置は、牛ルーメン液状部中にカプセル状にして置くことができ、オンサイト、リアルタイムでの測定も可能である。 According to the present invention, a small sensor, device, and manufacturing method for detecting VFA with high sensitivity are provided. The device can also be encapsulated in the bovine ruminal fluid, allowing on-site, real-time measurements.
 VFAは、背景技術の項で述べたように、牛などの酪農の生産性、品質向上に大いに影響を与える物質であり、また牛による食べ物の消化を介してたメタンガスの排出にも大いに関係がある物質である。したがって、VFAを高精度に測定し、その結果をフィードバックすれば、酪農の生産性、品質は大いに改善され、地球温暖化抑止にも大いに寄与すると考えられる。
 また、VFAを高感度に検出する本発明のセンサーや装置は、嫌気性細菌の活性を定量的に評価することに繋がり、飼料生産における品質管理、メタン発酵槽のモニタリング、最終処分場(ランドフィル)のオペレーション管理、水田や湖水の環境管理など、微生物分解でVFAを発生する様々なケースでの幅広い活用も期待できる。
As described in the background art section, VFA is a substance that greatly affects the productivity and quality improvement of dairy farming such as cattle, and is also greatly related to the emission of methane gas through the digestion of food by cattle. It is a substance. Therefore, if VFA is measured with high accuracy and the results are fed back, the productivity and quality of dairy farming can be greatly improved, and it is believed that this will greatly contribute to the prevention of global warming.
In addition, the sensor and device of the present invention that detect VFA with high sensitivity lead to quantitative evaluation of the activity of anaerobic bacteria. ), environmental management of paddy fields and lakes, and various other cases where VFA is generated by microbial decomposition.
11:水晶振動子
12:第1の電極
13:第2の電極
14:インプリント膜(水吸着物質、有機チタニア膜)
53:振動数測定装置
54:無線送信装置
55:フィルター(超撥水不織布)
56:カプセル
57:信号線
58:信号線
101:VFA検出センサー
102:VFA検出センサー
103:VFA検出装置
11: crystal oscillator 12: first electrode 13: second electrode 14: imprint film (water adsorption substance, organic titania film)
53: Frequency measuring device 54: Wireless transmitter 55: Filter (super water-repellent nonwoven fabric)
56: Capsule 57: Signal line 58: Signal line 101: VFA detection sensor 102: VFA detection sensor 103: VFA detection device

Claims (11)

  1.  水晶振動子と、前記水晶振動子の第1主表面上に形成された第1の電極と、前記水晶振動子の第2主表面上に形成された第2の電極とを有し、
     前記第1の電極および前記第2の電極の少なくとも1つの表面に、気相中の揮発性有機酸の量によって気相から吸着される水の量が変化する物質がインプリントされた膜を有し、前記水晶振動子の振動数変化により揮発性脂肪酸が検出される、揮発性脂肪酸検出センサー。
    a crystal oscillator, a first electrode formed on a first main surface of the crystal oscillator, and a second electrode formed on a second main surface of the crystal oscillator,
    At least one surface of the first electrode and the second electrode has a film imprinted with a substance that changes the amount of water adsorbed from the gas phase depending on the amount of volatile organic acid in the gas phase. and a volatile fatty acid detection sensor, wherein the volatile fatty acid is detected by a change in the frequency of the crystal oscillator.
  2.  水晶振動子と、前記水晶振動子の第1主表面上に形成された第1の電極と、前記水晶振動子の第2主表面上に形成された第2の電極とを有する水晶振動子マイクロバランス(QCM)からなり、
     前記第1の電極および前記第2の電極の少なくとも1つ以上の表面に、アルコキシド基を含むチタニア多孔体の膜が形成されている、揮発性脂肪酸検出センサー。
    A crystal oscillator micro, comprising a crystal oscillator, a first electrode formed on a first main surface of the crystal oscillator, and a second electrode formed on a second main surface of the crystal oscillator. consists of balance (QCM),
    A volatile fatty acid detection sensor, wherein a titania porous film containing an alkoxide group is formed on the surface of at least one or more of the first electrode and the second electrode.
  3.  前記チタニア多孔体に酸が被着されている、請求項2記載の揮発性脂肪酸検出センサー。 The volatile fatty acid detection sensor according to claim 2, wherein the titania porous body is coated with acid.
  4.  前記QCMを少なくとも2つ以上有し、
     前記QCMの1つ以上のチタニア多孔体に被着されている酸は、前記QCMの残りのうちの少なくとも1つのチタニア多孔体に被着されている酸とは異なる、請求項3記載の揮発性脂肪酸検出センサー。
    Having at least two QCMs,
    4. The volatile of claim 3, wherein the acid deposited on one or more porous titania bodies of said QCM is different from the acid deposited on at least one porous titania body of the remainder of said QCM. Fatty acid detection sensor.
  5.  前記酸は、プロピオン酸、酪酸および酢酸よりなる群から選ばれる、請求項3または4記載の揮発性脂肪酸検出センサー。 The volatile fatty acid detection sensor according to claim 3 or 4, wherein said acid is selected from the group consisting of propionic acid, butyric acid and acetic acid.
  6.  揮発性脂肪酸のガスに対して透過性であり、かつ撥水性のフィルターが、外界と接する表面の少なくとも一部に配置されたカプセルを有し、
     前記カプセルの内部に請求項1から5の何れか一に記載の揮発性脂肪酸検出センサーが配置された、揮発性脂肪酸検出装置。
    a volatile fatty acid gas-permeable and water-repellent filter having a capsule disposed on at least a portion of the surface in contact with the environment;
    A volatile fatty acid detection device, wherein the volatile fatty acid detection sensor according to any one of claims 1 to 5 is arranged inside the capsule.
  7.  前記カプセルの内部に前記水晶振動子の振動数を測定する振動数測定装置が配置された、請求項6記載の揮発性脂肪酸検出装置。 The volatile fatty acid detection device according to claim 6, wherein a frequency measuring device for measuring the frequency of the crystal oscillator is arranged inside the capsule.
  8.  前記カプセルの内部に前記振動数測定装置で得られた振動数の情報を前記カプセルの外部に無線で送信する送信装置が配置された、請求項7記載の揮発性脂肪酸検出装置。 The volatile fatty acid detection device according to claim 7, wherein a transmitter for wirelessly transmitting information on the frequency obtained by the frequency measuring device to the outside of the capsule is arranged inside the capsule.
  9.  請求項2記載の揮発性脂肪酸検出センサーの製造方法であって、
     前記第1の電極および前記第2の電極の少なくとも1つ以上の表面を少なくともTi(O-nBu)と酸を用いてインプリント処理することによって前記チタニア多孔体の膜を形成する、揮発性脂肪酸検出センサーの製造方法。
    A method for manufacturing a volatile fatty acid detection sensor according to claim 2,
    Forming the porous titania film by imprinting the surface of at least one or more of the first electrode and the second electrode using at least Ti(O-nBu) 4 and acid, volatile A method for manufacturing a fatty acid detection sensor.
  10.  水晶振動子と、前記水晶振動子の第1主表面上に形成された第1の電極と、前記水晶振動子の第2主表面上に形成された第2の電極とを有する水晶振動子マイクロバランス(QCM)を準備することと、
     前記第1の電極および前記第2の電極の少なくとも1つ以上の表面をメルカプトエタノールで修飾することと、
     少なくとも前記修飾を行った表面を、Ti(O-nBu)および酸、水、トルエン、エタノールからなるTi(O-nBu)溶液に浸漬することと、
     前記Ti(O-nBu)溶液による浸漬の後、前記浸漬を行った表面に対してトルエン、水飽和トルエンおよびトルエンによる浸漬を順次行うことと、
     前記順次の浸漬を行った表面に対して乾燥を行うことと、
     前記乾燥を行った表面を、アンモニアまたはアミン化合物を含む溶液で処理をすることと、を有する揮発性脂肪酸検出センサーの製造方法。
    A crystal oscillator micro, comprising a crystal oscillator, a first electrode formed on a first main surface of the crystal oscillator, and a second electrode formed on a second main surface of the crystal oscillator. preparing a balance (QCM);
    modifying the surface of at least one or more of the first electrode and the second electrode with mercaptoethanol;
    immersing at least the modified surface in a Ti(O-nBu) 4 solution consisting of Ti(O-nBu) 4 and acid, water, toluene and ethanol;
    After the immersion in the Ti(O-nBu) 4 solution, the immersed surface is sequentially immersed in toluene, water-saturated toluene, and toluene;
    drying the sequentially dipped surface;
    A method for producing a volatile fatty acid detection sensor, comprising: treating the dried surface with a solution containing ammonia or an amine compound.
  11.  前記酸は、プロピオン酸、酪酸および酢酸よりなる群から選ばれる、請求項10記載の揮発性脂肪酸検出センサーの製造方法。 The method for producing a volatile fatty acid detection sensor according to claim 10, wherein said acid is selected from the group consisting of propionic acid, butyric acid and acetic acid.
PCT/JP2022/036344 2021-10-05 2022-09-29 Volatile fatty acid detection sensor, volatile fatty acid detection device, and method for manufacturing volatile fatty acid detection sensor WO2023058539A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023552833A JPWO2023058539A1 (en) 2021-10-05 2022-09-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021163780 2021-10-05
JP2021-163780 2021-10-05

Publications (1)

Publication Number Publication Date
WO2023058539A1 true WO2023058539A1 (en) 2023-04-13

Family

ID=85803426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036344 WO2023058539A1 (en) 2021-10-05 2022-09-29 Volatile fatty acid detection sensor, volatile fatty acid detection device, and method for manufacturing volatile fatty acid detection sensor

Country Status (2)

Country Link
JP (1) JPWO2023058539A1 (en)
WO (1) WO2023058539A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114192A1 (en) * 2006-03-29 2007-10-11 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Gas detector and process for manufacturing the same
WO2009113314A1 (en) * 2008-03-13 2009-09-17 国立大学法人 信州大学 Gas molecule-adsorbable material, sensor element, sensor, and method for production of sensor element
JP2011511263A (en) * 2007-11-29 2011-04-07 レセプターズ エルエルシー Sensors using combinatorial artificial receptors
JP2011080983A (en) * 2009-09-09 2011-04-21 National Institute Of Advanced Industrial Science & Technology Gas sensor using porous organic/inorganic hybrid film, and method of manufacturing the same
WO2016121155A1 (en) * 2015-01-27 2016-08-04 国立研究開発法人物質・材料研究機構 Sensor having porous material or particulate material as receptor layer
JP2021138866A (en) * 2020-03-06 2021-09-16 日鉄ケミカル&マテリアル株式会社 Resin film for sensor, sensor having the same, and resin composition for film formation of sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114192A1 (en) * 2006-03-29 2007-10-11 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Gas detector and process for manufacturing the same
JP2011511263A (en) * 2007-11-29 2011-04-07 レセプターズ エルエルシー Sensors using combinatorial artificial receptors
WO2009113314A1 (en) * 2008-03-13 2009-09-17 国立大学法人 信州大学 Gas molecule-adsorbable material, sensor element, sensor, and method for production of sensor element
JP2011080983A (en) * 2009-09-09 2011-04-21 National Institute Of Advanced Industrial Science & Technology Gas sensor using porous organic/inorganic hybrid film, and method of manufacturing the same
WO2016121155A1 (en) * 2015-01-27 2016-08-04 国立研究開発法人物質・材料研究機構 Sensor having porous material or particulate material as receptor layer
JP2021138866A (en) * 2020-03-06 2021-09-16 日鉄ケミカル&マテリアル株式会社 Resin film for sensor, sensor having the same, and resin composition for film formation of sensor

Also Published As

Publication number Publication date
JPWO2023058539A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
Xu et al. Piezoresistive microcantilevers for humidity sensing
US6946197B2 (en) Semiconductor and device nanotechnology and methods for their manufacture
Huang et al. Sequential detection of Salmonella typhimurium and Bacillus anthracis spores using magnetoelastic biosensors
Wan et al. Direct immobilisation of antibodies on a bioinspired architecture as a sensing platform
US20210181144A1 (en) Gas multisensor and device for analyzing a multi-component gas mixture
US10830738B2 (en) Ultrasensitive high Q-factor AT-cut-quartz crystal microbalance femtogram mass sensor
Soares et al. A simple architecture with self-assembled monolayers to build immunosensors for detecting the pancreatic cancer biomarker CA19-9
Zhang et al. ITO thin films coated quartz crystal microbalance as gas sensor for NO detection
Fu et al. Detection of Bacillus anthracis spores using phage-immobilized magnetostrictive milli/micro cantilevers
McCorkle et al. Ethanol vapor detection in aqueous environments using micro-capacitors and dielectric polymers
A. Karim et al. Zinc oxide nanorods-based immuno-field-effect transistor for human serum albumin detection
Huang et al. The effect of annealing and gold deposition on the performance of magnetoelastic biosensors
JP2014513551A (en) Novel method and apparatus for whole cell bacterial bio-capacitor chip for detecting cellular stress induced by toxic chemicals
TW201035550A (en) Label-free sensor
EP0193154A2 (en) Potential-causing element for immunosensor
Nakata et al. Chemisorption of proteins and their thiol derivatives onto gold surfaces: characterization based on electrochemical nonlinearity
WO2023058539A1 (en) Volatile fatty acid detection sensor, volatile fatty acid detection device, and method for manufacturing volatile fatty acid detection sensor
Lee et al. Layer-by-layer self-assembled single-walled carbon nanotubes based ion-sensitive conductometric glucose biosensors
Si et al. Improvement of piezoelectric crystal sensor for the detection of organic vapors using nanocrystalline TiO2 films
CN107525833B (en) Amyloid β -protein sensor based on porous gate electrode and preparation method thereof
Zeng et al. Wireless magnetoelastic physical, chemical, and biological sensors
KR101618337B1 (en) a method for fabricating a sensor and a sensor fabricated thereby
Zuzuarregui et al. Novel fully-integrated biosensor for endotoxin detection via polymyxin B immobilization onto gold electrodes
Mirmohseni et al. Application of a quartz crystal nanobalance to the molecularly imprinted recognition of phenylalanine in solution
WO2023058540A1 (en) Detection member for volatile fatty acid detection sensor, method for manufacturing same, and volatile fatty acid detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552833

Country of ref document: JP