WO2023058524A1 - Compound, resin, curable composition, cured product, and optical member - Google Patents

Compound, resin, curable composition, cured product, and optical member Download PDF

Info

Publication number
WO2023058524A1
WO2023058524A1 PCT/JP2022/036190 JP2022036190W WO2023058524A1 WO 2023058524 A1 WO2023058524 A1 WO 2023058524A1 JP 2022036190 W JP2022036190 W JP 2022036190W WO 2023058524 A1 WO2023058524 A1 WO 2023058524A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
integer
same
resin
Prior art date
Application number
PCT/JP2022/036190
Other languages
French (fr)
Japanese (ja)
Inventor
正幸 齋藤
一宏 小倉
Original Assignee
群栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022143464A external-priority patent/JP2023054758A/en
Application filed by 群栄化学工業株式会社 filed Critical 群栄化学工業株式会社
Publication of WO2023058524A1 publication Critical patent/WO2023058524A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/14Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with at least one hydroxy group on a condensed ring system containing two rings

Definitions

  • the present invention relates to compounds, resins, curable compositions, cured products and optical members.
  • This application is based on Japanese Patent Application No. 2021-163480 filed with the Japan Patent Office on October 4, 2021 and Japanese Patent Application No. 2022-143464 filed with the Japan Patent Office on September 9, 2022. , the contents of which are hereby incorporated by reference.
  • High refractive index resins are used in various optical members such as lenses and films for touch panels.
  • a resin using a monomer having a fluorene skeleton is known (for example, Patent Documents 1 and 2).
  • the purpose of the present invention is to provide a compound capable of exhibiting a high refractive index and its use.
  • R 1 is a hydrogen atom or an aryl group
  • R 2 is a divalent group containing at least two benzene rings
  • two R 2 may be the same or different
  • a and b are each independently an integer of 0 to 6
  • R 3 is an alkylene group, and when (a + b) is 2 or more, (a + b) R 3 may be the same or different
  • c and d are each independently an integer of 1 to 10
  • e is an integer from 0 to 5
  • f is an integer from 0 to 4
  • R 4 is a substituent, and when (e+f) is 2 or more, (e+f) R 4s may be the same or different.
  • R 1 is a hydrogen atom or an aryl group
  • R 2 is a divalent group containing at least two benzene rings
  • two R 2 may be the same or different
  • a and b are each independently an integer of 0 to 6
  • R 3 is an alkylene group, and when (a + b) is 2 or more, (a + b) R 3 may be the same or different
  • c and d are each independently an integer of 1 to 10
  • X is a monovalent group containing a polymerizable functional group or a reactive functional group, or a hydrogen atom
  • (c + d) X may be the same or different
  • at least one of (c + d) X is the monovalent group
  • e is an integer from 0 to 5
  • f is an integer from 0 to 4
  • R 4 is a substituent, and when (e+f) is 2 or more, (e+f) R 4s may be the same or different.
  • a compound capable of exhibiting a high refractive index and its use can be provided.
  • a compound according to one embodiment of the present invention (hereinafter also referred to as “compound (1)”) is represented by the following formula (1).
  • R 1 is a hydrogen atom or an aryl group.
  • R2 is a divalent group containing at least two benzene rings, and two R2s may be the same or different.
  • a and b are each independently an integer of 0 to 6;
  • R 3 is an alkylene group, and when (a+b) is 2 or more, (a+b) R 3 may be the same or different.
  • c and d are each independently an integer of 1-10.
  • e is an integer of 0-5 and f is an integer of 0-4.
  • R 4 is a substituent, and when (e+f) is 2 or more, (e+f) R 4s may be the same or different.
  • Examples of the aryl group for R 1 include a phenyl group. From the viewpoint of increasing the refractive index, R 1 is preferably a phenyl group. A hydrogen atom is preferable from the viewpoint of ease of reactivity in synthesizing compound (1).
  • R2 contains at least two benzene rings. Therefore, the refractive index is higher than when R 2 contains one benzene ring or when it does not contain a benzene ring.
  • R 2 examples include naphthylene group, phenanthrylene group, anthrylene group, 4,4′-biphenyl-diyl group, and 4,4′-diphenylether-diyl group.
  • a naphthylene group is preferable from the viewpoint of solubility in organic solvents.
  • the naphthylene group includes, for example, a 1,2-naphthylene group and a 1,6-naphthylene group.
  • a 1,2-naphthylene group is preferred from the standpoint of ease of production.
  • R 2 may have a substituent.
  • Substituents include, for example, a hydroxyl group, a cyano group, an acetyl group, and a halogen atom.
  • a and b are each independently an integer of 0 to 6; When a is 0, the terminal OH of HO- (R 3 O) a - bonds to R 2 to form a phenolic hydroxyl group. When a is an integer of 1 or more, it binds to R3 to form an alcoholic hydroxyl group. The same applies to the terminal OH of —(OR 3 ) b —OH.
  • a and b are 0.
  • the hydroxyl group becomes a phenolic hydroxyl group. Therefore, when compound (1) is used as a raw material to make polycarbonate, polyester, or other compounds, it tends to have excellent reactivity.
  • a and b are integers of 1 or more.
  • the hydroxyl group becomes an alcoholic hydroxyl group. Therefore, formation of a quinone structure caused by oxidation of the phenolic hydroxyl group is suppressed. As a result, it is possible to suppress discoloration such as yellowing due to aging and darkening of the discoloration in the resin or molded article using the compound (1).
  • a and b are preferably 1 from the viewpoint of heat resistance.
  • the number of carbon atoms in the alkylene group in R 3 can be, for example, 2-10.
  • the number of carbon atoms is preferably 2-4.
  • Alkylene groups may be linear or branched. Examples of the alkylene group include ethylene group, trimethylene group, propylene group, butane-1,2-diyl group and hexylene group.
  • c and d are each independently an integer of 1-10.
  • compound (1) is used as a raw material for polycarbonate or polyester, it is particularly preferred that c and d are 1.
  • the compound (1) can be used as it is as a curing agent for epoxy resins.
  • the compound (1) can also be included in the curable composition after substituting the hydroxyl group thereof with a group containing a polymerizable functional group or a reactive functional group.
  • c and d are each independently an integer of 1 to 4 because the crosslink density increases when the curable composition is cured, thereby increasing the mechanical strength and heat resistance of the cured product. is preferred.
  • e is an integer from 0 to 5. 0 is preferable from the viewpoint of ease of procurement of raw materials.
  • f is an integer from 0 to 4. 0 is preferable from the viewpoint of ease of procurement of raw materials.
  • substituents for R 4 include alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 12 carbon atoms, hydroxyl groups, cyano groups, acetyl groups and halogen atoms.
  • Step A A biphenyl compound represented by the following formula (1a), a hydroxy compound represented by the following formula (1b), and a hydroxy compound represented by the following formula (1c) are reacted to obtain the following formula (1- A step of obtaining a compound represented by 1) (hereinafter also referred to as “compound (1-1)”).
  • Step B A step of adding one or more oxyalkylene groups to the hydroxyl group of compound (1-1) obtained in step A.
  • Biphenyl compounds include, for example, 4-biphenylaldehyde, 4-bromo-4'-biphenylaldehyde, 4-benzoylbiphenyl, and 4-bromo-4'-benzoylbiphenyl.
  • the biphenyl compounds may be used singly or in combination of two or more.
  • 4-biphenylaldehyde is preferable from the viewpoint of ease of raw material procurement.
  • 4-bromo-4′-biphenylaldehyde is preferable in that having a bromine atom enables the resulting compound (1) to exhibit a higher refractive index.
  • hydroxy compounds examples include 1-naphthol, 2-naphthol, 1-hydroxyanthracene, 2-hydroxyanthracene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 4-hydroxybiphenyl and 2-hydroxybiphenyl. Hydroxy compounds may be used singly or in combination of two or more. Among these, 1-naphthol and 2-naphthol are preferred from the viewpoint of ease of raw material procurement.
  • Step A The molar ratio of the biphenyl compound and the hydroxy compound (biphenyl compound/hydroxy compound) in reacting the biphenyl compound and the hydroxy compound is preferably 0.001 to 0.85, more preferably 0.005 to 0.80.
  • the compound (1-1) in which two molecules of the hydroxy compound are added to one molecule of the biphenyl compound is produced as the main component.
  • a biphenyl compound and a hydroxy compound are typically reacted in the presence of an acid catalyst.
  • the use of an acid catalyst facilitates the reaction between the biphenyl compound and the hydroxy compound.
  • acid catalysts include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as oxalic acid, acetic acid, citric acid, tartaric acid, benzoic acid and paratoluenesulfonic acid; organic acids such as zinc acetate and zinc borate. Salt; Ion-exchange resins having sulfone groups and carboxylic acid groups are exemplified.
  • oxalic acid, hydrochloric acid, sulfuric acid, and p-toluenesulfonic acid are preferred in that the production of by-products due to side reactions is suppressed and at the same time, the catalyst can be easily removed by washing with water after the completion of the reaction. is preferred.
  • the acid catalyst may be used alone or in combination of two or more.
  • the amount of acid catalyst used can be, for example, 0.01 to 100 parts by mass with respect to 100 parts by mass of the biphenyl compound.
  • a co-catalyst When reacting the biphenyl compound and the hydroxy compound, a co-catalyst may be used, if necessary.
  • promoters include mercaptans such as methyl mercaptan, ethyl mercaptan, normal propyl mercaptan, isopropyl mercaptan, tertiary butyl mercaptan, stearyl mercaptan and dodecyl mercaptan.
  • the co-catalyst may be used singly or in combination of two or more.
  • the amount of co-catalyst used can be, for example, 0.005 to 3.00 parts by mass with respect to 100 parts by mass of the biphenyl compound.
  • Process A can be carried out in the same manner as in the production of ordinary novolak-type phenolic resins. For example, a reaction vessel is charged with a biphenyl compound, a hydroxy compound, an acid catalyst, a solvent, and, if necessary, a co-catalyst, and an arbitrary reaction temperature is maintained for an arbitrary reaction time to produce a product containing compound (1-1). can get.
  • the solvent examples include water such as ion-exchanged water; and organic solvents such as diethyl ether, cyclopentylmethyl ether, methanol, ethanol, benzene, toluene and xylene.
  • One solvent may be used alone, or two or more solvents may be used in combination.
  • the reaction temperature can be, for example, 10-150°C.
  • Reaction time can be, for example, 0.5 to 48 hours.
  • Step B At least one of a and b in the formula (1) is 1 or more by adding one or more oxyalkylene groups ((OR 3 ) a , (OR 3 ) b ) to the hydroxyl group of the compound (1-1).
  • a compound hereinafter also referred to as “compound (1-2)”.
  • the method of adding one or more oxyalkylene groups is not particularly limited. Various attachment methods can be used. For example, a method of reacting the compound (1-1) with an alkylene oxide such as ethylene oxide can be mentioned.
  • the compound (1) described above has the structure of the above formula (1), it can exhibit a high refractive index (for example, a refractive index of 0.62 to 0.78).
  • a refractive index for example, a refractive index of 0.62 to 0.78.
  • One way to increase the polarization of the entire molecule is to increase the number of free-moving conjugated ⁇ electrons.
  • 12 ⁇ electrons present in two benzene rings resonate over a wide range of the entire biphenyl site.
  • Compound (1) has two or more hydroxyl groups. Therefore, compound (1) can be used as a monomer component for resins such as polycarbonate resins and polyester resins that contain a polyhydric hydroxy compound as a monomer component.
  • resins such as polycarbonate resins and polyester resins that contain a polyhydric hydroxy compound as a monomer component.
  • a resin obtained from a monomer component containing the compound (1) can exhibit a high refractive index because it has structural units based on the compound (1).
  • a polycarbonate resin is an example of a resin containing a polyhydric hydroxy compound as a monomer component.
  • Examples of the polycarbonate resin obtained from the monomer component containing the compound (1) include polycarbonate resins having a structural unit represented by the following formula (a1) (hereinafter also referred to as "structural unit (a1)"). .
  • Structural unit (a1) is formed from compound (1) wherein c and d are 1 in formula (1) above.
  • the number of structural units (a1) that the polycarbonate resin has may be one, or two or more.
  • the polycarbonate resin may further have structural units other than the structural unit (a1).
  • Other structural units include, for example, structural units based on dihydroxy compounds other than compound (1) (hereinafter also referred to as “structural unit (a2)").
  • structural unit (a2) is represented by the following formula (a2).
  • R6 is a residue obtained by removing two hydroxyl groups from other dihydroxy compounds.
  • Other dihydroxy compounds are not particularly limited, and any of those known as monomer components for polycarbonate resins can be used.
  • dihydroxy compounds include, for example, aromatic dihydroxy compounds and aliphatic dihydroxy compounds.
  • aromatic dihydroxy compounds include phenol compounds such as hydroquinone and resorcin; bisphenol compounds such as bisphenol A, bisphenol F, bisphenol B, bisphenol AP, bisphenol C, bisphenol E, bisphenol S, bisphenol Z, bisphenol CDE and bisphenol fluorene. ; bisnaphtholfluorene, 4,4'-dihydroxybiphenyl.
  • Aliphatic dihydroxy compounds include, for example, ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.
  • the number of structural units (a2) that the polycarbonate resin has may be one, or two or more.
  • the polycarbonate resin can be produced by a known method for producing a polycarbonate resin, except that the compound (1) is used as at least part of the monomer component (dihydroxy compound).
  • polyester resin Another example of a resin containing a polyhydric hydroxy compound as a monomer component is a polyester resin.
  • the polyester resin obtained from the monomer component containing the compound (1) include polyester resins having a structural unit represented by the following formula (b1) (hereinafter also referred to as "structural unit (b1)"). .
  • R5 is a residue obtained by removing two carboxy groups from a dicarboxylic acid.
  • the dicarboxylic acid is not particularly limited, and those known as monomer components for polyester resins can be used.
  • Examples of dicarboxylic acids include terephthalic acid and 2,6-naphthalenedicarboxylic acid.
  • the structural unit (b1) is formed from the compound (1) in which c and d are 1 in the above formula (1) and a dicarboxylic acid.
  • the structural unit (b1) that the polyester resin has may be one type, or two or more types.
  • the polyester resin may further have structural units other than the structural unit (b1).
  • Other structural units include, for example, structural units represented by the following formula (b2) (hereinafter also referred to as “structural unit (b2)”).
  • R 6 is a residue obtained by removing two hydroxyl groups from another dihydroxy compound
  • R 7 is a residue obtained by removing two carboxy groups from a dicarboxylic acid.
  • Other dihydroxy compounds and dicarboxylic acids are the same as those mentioned above.
  • the structural unit (b2) possessed by the polyester resin may be of one type or two or more types.
  • the above polyester resin can be produced by a known polyester resin production method, except that the compound (1) is used as at least part of the monomer component (dihydroxy compound).
  • Compound (1) can also be used to produce a compound represented by the following formula (2) (hereinafter also referred to as “compound (2)").
  • R 1 is a hydrogen atom or an aryl group.
  • R2 is a divalent group containing at least two benzene rings, and two R2s may be the same or different.
  • a and b are each independently an integer of 0 to 6;
  • R 3 is an alkylene group, and when (a+b) is 2 or more, (a+b) R 3 may be the same or different.
  • c and d are each independently an integer of 1-10.
  • X is a monovalent group containing a polymerizable functional group or a reactive functional group, or a hydrogen atom, (c + d) X may be the same or different, and at least one of (c + d) X is the above monovalent group.
  • e is an integer of 0-5 and f is an integer of 0-4.
  • R 4 is a substituent, and when (e+f) is 2 or more, (e+f) R 4s may be the same or different.
  • R 1 , R 2 , a, b, R 3 , c, d, e, f, and R 4 are the same as described above.
  • the polymerizable functional group for X is not particularly limited as long as it is polymerizable.
  • a (meth)acryloyl group is mentioned.
  • a (meth)acryloyl group means an acryloyl group or a methacryloyl group.
  • Examples of reactive functional groups in X include epoxy groups, acid anhydride groups, and amino groups.
  • compound (2) is typically combined with a cross-linking agent having two or more functional groups capable of reacting with the reactive functional group of X.
  • Functional groups capable of reacting with epoxy groups include, for example, amino groups, acid anhydride groups, and hydroxyl groups.
  • Examples of functional groups capable of reacting with acid anhydride groups include amino groups and hydroxyl groups.
  • Functional groups that can react with amino groups include, for example, acid anhydride groups.
  • the number of polymerizable functional groups or reactive functional groups possessed by X may be one or two or more, but typically one.
  • the polymerizable functional group or reactive functional group may be directly bonded to the oxygen atom adjacent to X, or may be bonded via a linking group.
  • X includes, for example, a group represented by -X 2 -X 1 .
  • X 1 is a polymerizable functional group or a reactive functional group.
  • X2 is a single bond or a divalent linking group.
  • the divalent linking group for X 2 includes, for example, a divalent hydrocarbon group which may have a substituent, an etheric oxygen at the end of the divalent hydrocarbon group which may have a substituent
  • a group containing an atom and a group containing an etheric oxygen atom between carbon atoms of a divalent hydrocarbon group which may have a substituent are exemplified.
  • the divalent hydrocarbon group includes, for example, an alkylene group, a cycloalkylene group, an arylene group, and a group consisting of a combination of two or more thereof.
  • alkylene group include those similar to the alkylene group for R 3 .
  • substituents that the alkylene group may have include a hydroxyl group, a cyano group, and a halogen atom.
  • the number of carbon atoms in the cycloalkylene group can be, for example, 6-8.
  • substituents that the cycloalkylene group may have include an alkyl group, a hydroxyl group, a cyano group, and a halogen atom.
  • Arylene groups include, for example, phenylene groups, naphthylene groups, phenanthrylene groups, anthrylene groups, and 4,4'-biphenyl-diyl groups.
  • substituents that the arylene group may have include an alkyl group, a hydroxyl group, a cyano group, and a halogen atom.
  • X2 preferably has a hydroxyl group as a substituent. If X2 has a hydroxyl group, the cured product using the compound (2) tends to be more excellent in heat resistance and mechanical strength. This is probably because the presence of hydroxyl groups provides an intermolecular force due to hydrogen bonding, resulting in an increase in molecular cohesion. In addition, this hydrogen bond can contribute to the improvement of adhesion to inorganic or organic materials such as glass and polyester (for example, films and lenses).
  • Ph is a phenylene group.
  • Y 1 is a glycidyl group.
  • R is a hydrogen atom or a
  • Examples of the method for producing compound (2) include a method including the following step C.
  • Step C A step of adding X (a monovalent group containing a polymerizable functional group or a reactive functional group) to the hydroxyl group of compound (1).
  • Step C can be carried out using known methods, depending on the structure of X.
  • X is a glycidyl group
  • a method of reacting the hydroxyl group of compound (1) with epihalohydrin eg, epichlorohydrin
  • method 1 epihalohydrin
  • X is -[O-Ph-C(CH 3 ) 2 -Ph-O-CH 2 -CH(OH)-CH 2 ] n -O-Ph-C(CH 3 ) 2 -Ph-O-Y 1
  • a bisphenol A type epoxy compound instead of epihalohydrin, a bisphenol A type epoxy compound may be reacted.
  • Method 2 a method of reacting the hydroxyl group of compound (1) with (meth)acrylic acid, (meth)acrylic anhydride or (meth)acrylic acid halide (hereinafter referred to as "Method 2" Also described.).
  • X is a 2-(meth)acryloyloxy-2-hydroxyethyl group
  • the glycidyl group of the compound is added with (meth)acrylic acid, (meth) ) a method of reacting acrylic anhydride or (meth)acrylic acid halide (hereinafter also referred to as “Method 3”).
  • method 4 a method of reacting the hydroxyl group of compound (1) with trimellitic anhydride or trimellitic anhydride halide (hereinafter also referred to as "method 4") can be mentioned.
  • the molar ratio of epihalohydrin to the hydroxyl group of compound (1) is not particularly limited.
  • the molar ratio (hydroxyl group/epihalohydrin ratio) may be the same molar ratio as when producing bisphenol A type epoxy resin, which is the most common epoxy resin, from bisphenol A and epichlorohydrin.
  • the hydroxyl group/epichlorohydrin ratio is preferably 0.02 to 0.33, more preferably 0.10 to 0.20.
  • a compound in which hydroxyl groups are glycidyl-etherified is obtained as the main component.
  • the glycidyl-etherified epoxy group attached to the hydroxyl group may react with other hydroxyl groups to increase the molecular weight.
  • the compound (2) described above has a skeleton similar to that of the compound (1), it can exhibit a high refractive index.
  • Compound (2) also has one or more polymerizable functional groups or reactive functional groups. Therefore, the compound (2) can be polymerized by itself to form a polymer, or can be reacted with a curing agent (a cross-linking agent, a polymerization initiator, etc.) to form a cured product.
  • a curing agent a cross-linking agent, a polymerization initiator, etc.
  • a polymer or a cured product obtained using the compound (2) can express a high refractive index because it has a structural unit based on the compound (2).
  • compounds having an epoxy group as a polymerizable functional group or a reactive functional group can be used, for example, as constituents of curable compositions and epoxy adhesives.
  • the compound may be added with an epoxy curing agent (e.g., amines, acid anhydrides, phenolic resins), optionally curing accelerators such as triphenylphosphines and imidazoles, glass powder, glass beads, and other transparent polymer particles.
  • an epoxy-based adhesive by adding an inorganic or organic filler such as an antioxidant, an antioxidant, and other additives.
  • This epoxy adhesive can form an adhesive layer exhibiting a high refractive index.
  • the compound can be used as a curable composition by adding a cross-linking agent having two or more functional groups capable of reacting with an epoxy group and, if necessary, other additives.
  • compounds having a (meth)acryloyl group as a polymerizable functional group or a reactive functional group can be used, for example, as a constituent component of a curable composition.
  • a curable composition obtained by adding a polymerization initiator (photopolymerization initiator, thermal polymerization initiator, etc.) to the compound, and optionally a solvent, a coloring agent, an inorganic filler, an organic filler, an antioxidant, and other additives. can be cured by light or heat to obtain a cured product.
  • the resulting cured product contains a polymer having structural units based on compound (2). Also, it has a high refractive index. Therefore, the polymer is useful as an optical member.
  • optical members examples include microlenses for CMOS image sensors and index matching materials for touch panels. In addition to optical members, it can also be applied to liquid crystal, organic EL, electronic paper, filters, black matrix, and the like.
  • compounds having an acid anhydride group as a polymerizable functional group or a reactive functional group can be used, for example, as raw materials for polyimide.
  • a polyimide can be obtained by reacting the compound with a diamine component. The resulting polyimide exhibits heat resistance, transparency, and a high refractive index, and can be used for film substrates such as touch panels, flexible printed circuit boards, and the like.
  • diamine components include 1,3-phenylenediamine, 4,4′-diaminodiphenyl ether, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, diamine compounds, diethylene glycol bis(3-amino propyl) ether, 9,9′-bis(4-aminophenyl)fluorene.
  • ⁇ Measuring method ⁇ ⁇ NMR measurement> A 7.7% d-dimethylsulfoxide (DMSO) solution was prepared for the obtained compound, and 1 H-NMR and 13 C-NMR were measured. Tetramethylsilane was used as an internal standard. Equipment used: ECZ-500R manufactured by JEOL RESONANCE
  • Example 1 9.11 g (0.05 mol) of 4-biphenylaldehyde, 72.09 g (0.50 mol) of ⁇ -naphthol, and cyclopentylmethyl as a reaction solvent were placed in a 200 mL three-necked flask equipped with a stirrer, thermometer, and arene condenser. 72.09 g of ether was added and stirred. The temperature of the reaction solution was raised to 30° C. by heating, and 4-biphenylaldehyde and ⁇ -naphthol were dissolved in cyclopentylmethyl ether by continuing stirring.
  • the obtained white powder was analyzed by 1 H-NMR, 13 C-NMR, and FD-MS to obtain the desired product (1-di(2-hydroxy-3-naphthyl)methyl-4-phenylbenzene) represented by the following formula (11). It was confirmed that The physicochemical properties of the obtained white powder were as follows. GPC confirmed that the purity was 97.8%.
  • the filtrate in the suction filtration was transferred to a separating funnel and washed three times with 50.00 g of ion-exchanged water.
  • 58.66 g of cyclopentyl methyl ether was recovered by vacuum distillation at -0.0267 MPa while heating the eggplant-shaped flask with a hot water bath.
  • the recovery rate with respect to the total amount of cyclopentyl methyl ether used was 48.6%.
  • the recovery rate of cyclopentyl methyl ether can be further increased by increasing the cooling capacity of the condenser used during vacuum distillation.
  • the resulting white powder was analyzed by 1 H-NMR, 13 C-NMR, and FD-MS to identify the desired product (spiro[fluorene 9,9′-(2′,7′-dihydroxyxanthene)] represented by the following formula (12). ).
  • the physicochemical properties of the obtained white powder were as follows. Moreover, it was confirmed by GPC that the purity was 97.3%.
  • Table 1 shows the refractive index of the compounds obtained in Example 1 and Comparative Example 1, and the concentration and refractive index of the solution used for measuring the refractive index.
  • the compound of Example 1 had a higher refractive index than the compound of Comparative Example 1.
  • a compound capable of exhibiting a high refractive index and its use can be provided.

Abstract

The present invention provides: a compound which can exhibit a high refractive index; and an application of said compound. One embodiment of the present invention relates to a compound represented by formula (1). R1 is a hydrogen atom or an aryl group. R2 is a divalent group containing at least two benzene rings, and the two R2 moieties may be the same as, or different from, each other. a and b are each an integer between 0 and 6. R3 R3 is an alkylene group. In a case where the value of (a+b) is 2 or more, the (a+b) R3 moieties may be the same as, or different from, each other. c and d are each an integer between 1 and 10. e is an integer between 0 and 5. f is an integer between 0 and 4. R4 is a substituent group. In a case where the value of (e+f) is 2 or more, the (e+f) R4 moieties may be the same as, or different from, each other.

Description

化合物、樹脂、硬化性組成物、硬化物および光学部材Compounds, resins, curable compositions, cured products and optical members
 本発明は、化合物、樹脂、硬化性組成物、硬化物および光学部材に関する。
 本願は、2021年10月4日に日本国特許庁に出願された特願2021-163480号および2022年9月9日に日本国特許庁に出願された特願2022-143464号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to compounds, resins, curable compositions, cured products and optical members.
This application is based on Japanese Patent Application No. 2021-163480 filed with the Japan Patent Office on October 4, 2021 and Japanese Patent Application No. 2022-143464 filed with the Japan Patent Office on September 9, 2022. , the contents of which are hereby incorporated by reference.
 高屈折率樹脂は、例えば、レンズ、タッチパネル用フィルムのように各種の光学部材に用いられる。高屈折率樹脂としては、フルオレン骨格を有するモノマーを用いた樹脂が知られている(例えば、特許文献1、2)。 High refractive index resins are used in various optical members such as lenses and films for touch panels. As a high refractive index resin, a resin using a monomer having a fluorene skeleton is known (for example, Patent Documents 1 and 2).
特許第5513825号公報Japanese Patent No. 5513825 特許第6016303号公報Japanese Patent No. 6016303
 しかし、従来のフルオレン骨格を有するモノマーの屈折率は充分に満足できるものではない。近年の携帯機器等のデバイスの薄型化の進行に伴い、携帯機器等に用いられる光学部材にも薄型化が求められる。光学部材の薄型化の観点から、光学部材を形成する材料のさらなる高屈折率化が求められる。 However, the refractive index of conventional monomers having a fluorene skeleton is not fully satisfactory. 2. Description of the Related Art As devices such as portable equipment become thinner in recent years, optical members used in portable equipment and the like are also required to be thinner. From the viewpoint of thickness reduction of optical members, further increase in the refractive index of materials forming optical members is required.
 本発明は、高屈折率を発現できる化合物およびその用途の提供を目的とする。 The purpose of the present invention is to provide a compound capable of exhibiting a high refractive index and its use.
 本発明は以下の態様を有する。
 [1]下記式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000003
The present invention has the following aspects.
[1] A compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Rは、水素原子またはアリール基であり、
 Rは、少なくとも2個のベンゼン環を含む2価基であり、2個のRは同一でも異なっていてもよく、
 aおよびbは、それぞれ独立に0~6の整数であり、
 Rは、アルキレン基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
 cおよびdは、それぞれ独立に1~10の整数であり、
 eは0~5の整数であり、fは0~4の整数であり、
 Rは置換基であり、(e+f)が2以上である場合、(e+f)個のRは同一でも異なっていてもよい。
In formula (1), R 1 is a hydrogen atom or an aryl group,
R 2 is a divalent group containing at least two benzene rings, two R 2 may be the same or different,
a and b are each independently an integer of 0 to 6,
R 3 is an alkylene group, and when (a + b) is 2 or more, (a + b) R 3 may be the same or different,
c and d are each independently an integer of 1 to 10,
e is an integer from 0 to 5, f is an integer from 0 to 4,
R 4 is a substituent, and when (e+f) is 2 or more, (e+f) R 4s may be the same or different.
 [2]下記式(2)で表される化合物。
Figure JPOXMLDOC01-appb-C000004
[2] A compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
 式(2)中、Rは、水素原子またはアリール基であり、
 Rは、少なくとも2個のベンゼン環を含む2価基であり、2個のRは同一でも異なっていてもよく、
 aおよびbは、それぞれ独立に0~6の整数であり、
 Rは、アルキレン基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
 cおよびdは、それぞれ独立に1~10の整数であり、
 Xは、重合性官能基もしくは反応性官能基を含む1価基、または水素原子であり、(c+d)個のXは同一でも異なっていてもよく、(c+d)個のXのうち少なくとも1個は前記1価基であり、
 eは0~5の整数であり、fは0~4の整数であり、
 Rは置換基であり、(e+f)が2以上である場合、(e+f)個のRは同一でも異なっていてもよい。
In formula (2), R 1 is a hydrogen atom or an aryl group,
R 2 is a divalent group containing at least two benzene rings, two R 2 may be the same or different,
a and b are each independently an integer of 0 to 6,
R 3 is an alkylene group, and when (a + b) is 2 or more, (a + b) R 3 may be the same or different,
c and d are each independently an integer of 1 to 10,
X is a monovalent group containing a polymerizable functional group or a reactive functional group, or a hydrogen atom, (c + d) X may be the same or different, and at least one of (c + d) X is the monovalent group,
e is an integer from 0 to 5, f is an integer from 0 to 4,
R 4 is a substituent, and when (e+f) is 2 or more, (e+f) R 4s may be the same or different.
 [3]前記[1]の化合物に基づく構成単位を有する樹脂。
 [4]ポリカーボネート樹脂である前記[3]の樹脂。
 [5]ポリエステル樹脂である前記[3]の樹脂。
 [6]前記[2]の化合物を含む硬化性組成物。
 [7]前記[6]の硬化性組成物の硬化物。
 [8]前記[3]~[5]のいずれかの樹脂を含む光学部材。
 [9]前記[7]の硬化物を含む光学部材。
[3] A resin having a structural unit based on the compound of [1] above.
[4] The resin of [3], which is a polycarbonate resin.
[5] The resin of [3], which is a polyester resin.
[6] A curable composition containing the compound of [2] above.
[7] A cured product of the curable composition of [6] above.
[8] An optical member containing the resin according to any one of [3] to [5].
[9] An optical member containing the cured product of [7].
 本発明によれば、高屈折率を発現できる化合物およびその用途を提供できる。 According to the present invention, a compound capable of exhibiting a high refractive index and its use can be provided.
 本発明の一実施形態に係る化合物(以下、「化合物(1)」とも記す。)は、下記式(1)で表される。 A compound according to one embodiment of the present invention (hereinafter also referred to as "compound (1)") is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Rは、水素原子またはアリール基である。
 Rは、少なくとも2個のベンゼン環を含む2価基であり、2個のRは同一でも異なっていてもよい。
 aおよびbは、それぞれ独立に0~6の整数である。
 Rは、アルキレン基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよい。
 cおよびdは、それぞれ独立に1~10の整数である。
 eは0~5の整数であり、fは0~4の整数である。
 Rは置換基であり、(e+f)が2以上である場合、(e+f)個のRは同一でも異なっていてもよい。
In formula (1), R 1 is a hydrogen atom or an aryl group.
R2 is a divalent group containing at least two benzene rings, and two R2s may be the same or different.
a and b are each independently an integer of 0 to 6;
R 3 is an alkylene group, and when (a+b) is 2 or more, (a+b) R 3 may be the same or different.
c and d are each independently an integer of 1-10.
e is an integer of 0-5 and f is an integer of 0-4.
R 4 is a substituent, and when (e+f) is 2 or more, (e+f) R 4s may be the same or different.
 Rにおけるアリール基としては、例えば、フェニル基が挙げられる。
 Rとしては、高屈折率化の点からは、フェニル基が好ましい。化合物(1)を合成する際の反応性の容易さの点からは、水素原子が好ましい。
Examples of the aryl group for R 1 include a phenyl group.
From the viewpoint of increasing the refractive index, R 1 is preferably a phenyl group. A hydrogen atom is preferable from the viewpoint of ease of reactivity in synthesizing compound (1).
 Rは、少なくとも2個のベンゼン環を含む。このため、Rがベンゼン環を1個含む場合やベンゼン環を含まない場合に比べ、屈折率が高くなる。 R2 contains at least two benzene rings. Therefore, the refractive index is higher than when R 2 contains one benzene ring or when it does not contain a benzene ring.
 Rとしては、例えば、ナフチレン基、フェナントリレン基、アントリレン基、4,4’-ビフェニル-ジイル基、4,4’-ジフェニルエーテル-ジイル基が挙げられる。
 これらの中でも、有機溶媒に対する溶解性の点から、ナフチレン基が好ましい。ナフチレン基としては、例えば、1,2-ナフチレン基、1,6-ナフチレン基が挙げられる。これらの中でも、製造の容易性の点から、1,2-ナフチレン基が好ましい。
Examples of R 2 include naphthylene group, phenanthrylene group, anthrylene group, 4,4′-biphenyl-diyl group, and 4,4′-diphenylether-diyl group.
Among these, a naphthylene group is preferable from the viewpoint of solubility in organic solvents. The naphthylene group includes, for example, a 1,2-naphthylene group and a 1,6-naphthylene group. Among these, a 1,2-naphthylene group is preferred from the standpoint of ease of production.
 Rは、置換基を有していてもよい。置換基としては、例えば、水酸基、シアノ基、アセチル基、ハロゲン原子が挙げられる。 R 2 may have a substituent. Substituents include, for example, a hydroxyl group, a cyano group, an acetyl group, and a halogen atom.
 aおよびbは、それぞれ独立に0~6の整数である。
 HO-(RO)-の末端のOHは、aが0の場合は、Rに結合してフェノール性水酸基となる。aが1以上の整数の場合は、Rに結合してアルコール性水酸基となる。-(OR-OHの末端のOHも同様である。
a and b are each independently an integer of 0 to 6;
When a is 0, the terminal OH of HO- (R 3 O) a - bonds to R 2 to form a phenolic hydroxyl group. When a is an integer of 1 or more, it binds to R3 to form an alcoholic hydroxyl group. The same applies to the terminal OH of —(OR 3 ) b —OH.
 好ましい一態様において、aおよびbは0である。この場合、水酸基がフェノール性水酸基となる。そのため、化合物(1)を原料にポリカーボネートやポリエステル、その他化合物とする際、反応性に優れる傾向がある。 In a preferred embodiment, a and b are 0. In this case, the hydroxyl group becomes a phenolic hydroxyl group. Therefore, when compound (1) is used as a raw material to make polycarbonate, polyester, or other compounds, it tends to have excellent reactivity.
 他の好ましい一態様において、aおよびbは1以上の整数である。この場合、水酸基がアルコール性水酸基となる。そのため、フェノール性水酸基の酸化により生じるキノン構造の生成が抑制される。結果、化合物(1)を用いた樹脂や成形体において、経時変化による黄変等の変色や、それら変色が濃くなることを抑制できる。この態様においてaおよびbは、耐熱性の点から、1が好ましい。 In another preferred embodiment, a and b are integers of 1 or more. In this case, the hydroxyl group becomes an alcoholic hydroxyl group. Therefore, formation of a quinone structure caused by oxidation of the phenolic hydroxyl group is suppressed. As a result, it is possible to suppress discoloration such as yellowing due to aging and darkening of the discoloration in the resin or molded article using the compound (1). In this aspect, a and b are preferably 1 from the viewpoint of heat resistance.
 Rにおけるアルキレン基の炭素数は、例えば、2~10であり得る。該炭素数は2~4が好ましい。アルキレン基は、直鎖状でも分岐状でもよい。アルキレン基としては、例えば、エチレン基、トリメチレン基、プロピレン基、ブタン-1,2-ジイル基、ヘキシレン基が挙げられる。 The number of carbon atoms in the alkylene group in R 3 can be, for example, 2-10. The number of carbon atoms is preferably 2-4. Alkylene groups may be linear or branched. Examples of the alkylene group include ethylene group, trimethylene group, propylene group, butane-1,2-diyl group and hexylene group.
 cおよびdは、それぞれ独立に1~10の整数である。
 化合物(1)をポリカーボネートやポリエステルの原料として用いる場合には、cおよびdが1であることが特に好ましい。
c and d are each independently an integer of 1-10.
When compound (1) is used as a raw material for polycarbonate or polyester, it is particularly preferred that c and d are 1.
 化合物(1)は、そのままエポキシ樹脂の硬化剤に用いることができる。化合物(1)は、その水酸基を重合性官能基や反応性官能基を含む基に置換した後、硬化性組成物に含有させることもできる。この場合、硬化性組成物を硬化させた際に架橋密度が高くなることによりその硬化物の機械強度や耐熱性が高まることから、cおよびdは、それぞれ独立に1~4の整数であることが好ましい。 The compound (1) can be used as it is as a curing agent for epoxy resins. The compound (1) can also be included in the curable composition after substituting the hydroxyl group thereof with a group containing a polymerizable functional group or a reactive functional group. In this case, c and d are each independently an integer of 1 to 4 because the crosslink density increases when the curable composition is cured, thereby increasing the mechanical strength and heat resistance of the cured product. is preferred.
 eは0~5の整数である。原料の調達のしやすさの点から、0が好ましい。 e is an integer from 0 to 5. 0 is preferable from the viewpoint of ease of procurement of raw materials.
 fは0~4の整数である。原料の調達のしやすさの点から、0が好ましい。 f is an integer from 0 to 4. 0 is preferable from the viewpoint of ease of procurement of raw materials.
 Rにおける置換基としては、例えば、炭素数1~6のアルキル基、炭素数3~12のシクロアルキル基、水酸基、シアノ基、アセチル基、ハロゲン原子が挙げられる。 Examples of substituents for R 4 include alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 12 carbon atoms, hydroxyl groups, cyano groups, acetyl groups and halogen atoms.
<化合物(1)の製造方法>
 化合物(1)の製造方法としては、例えば、以下の工程Aを有する方法が挙げられる。
 工程A:下記式(1a)で表されるビフェニル化合物と、下記式(1b)で表されるヒドロキシ化合物と、下記式(1c)で表されるヒドロキシ化合物とを反応させて下記式(1-1)で表される化合物(以下、「化合物(1-1)」とも記す。)を得る工程。
<Method for producing compound (1)>
Examples of the method for producing compound (1) include a method including the following step A.
Step A: A biphenyl compound represented by the following formula (1a), a hydroxy compound represented by the following formula (1b), and a hydroxy compound represented by the following formula (1c) are reacted to obtain the following formula (1- A step of obtaining a compound represented by 1) (hereinafter also referred to as “compound (1-1)”).
 化合物(1)の製造においては、必要に応じて、工程Aの後、以下の工程Bをさらに行ってもよい。
 工程B:工程Aで得られた化合物(1-1)の水酸基に1以上のオキシアルキレン基を付加する工程。
In the production of compound (1), the following step B may be further performed after step A, if necessary.
Step B: A step of adding one or more oxyalkylene groups to the hydroxyl group of compound (1-1) obtained in step A.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(ビフェニル化合物)
 式(1a)中、R、e、f、Rはそれぞれ前記した内容と同じである。
 ビフェニル化合物としては、例えば、4-ビフェニルアルデヒド、4-ブロモ-4’-ビフェニルアルデヒド、4-ベンゾイルビフェニル、4-ブロモ-4’-ベンゾイルビフェニルが挙げられる。ビフェニル化合物は1種を単独で用いてもよく2種以上を併用してもよい。
 これらの中でも、原料の調達のしやすさの点では、4-ビフェニルアルデヒドが好ましい。臭素原子を有することで、生成する化合物(1)がより高屈折率を発現できる点では、4-ブロモ-4’-ビフェニルアルデヒドが好ましい。
(biphenyl compound)
In formula (1a), R 1 , e, f, and R 4 are the same as described above.
Biphenyl compounds include, for example, 4-biphenylaldehyde, 4-bromo-4'-biphenylaldehyde, 4-benzoylbiphenyl, and 4-bromo-4'-benzoylbiphenyl. The biphenyl compounds may be used singly or in combination of two or more.
Among these, 4-biphenylaldehyde is preferable from the viewpoint of ease of raw material procurement. 4-bromo-4′-biphenylaldehyde is preferable in that having a bromine atom enables the resulting compound (1) to exhibit a higher refractive index.
(ヒドロキシ化合物)
 式(1b)、(1c)中、R、cおよびdはそれぞれ前記したとおりである。
 式(1b)で表されるヒドロキシ化合物と式(1c)で表されるヒドロキシ化合物は、同じであってもよく、異なってもよい。以下、式(1b)で表されるヒドロキシ化合物と式(1c)で表されるヒドロキシ化合物を総称して単に「ヒドロキシ化合物」とも記す。
(hydroxy compound)
In formulas (1b) and (1c), R 2 , c and d are as described above.
The hydroxy compound represented by formula (1b) and the hydroxy compound represented by formula (1c) may be the same or different. Hereinafter, the hydroxy compound represented by the formula (1b) and the hydroxy compound represented by the formula (1c) are collectively referred to simply as "hydroxy compounds".
 ヒドロキシ化合物としては、例えば、1-ナフトール、2-ナフトール、1-ヒドロキシアントラセン、2-ヒドロキシアントラセン、1-ヒドロキシフェナントレン、2-ヒドロキシフェナントレン、4-ヒドロキシビフェニル、2-ヒドロキシビフェニル挙げられる。ヒドロキシ化合物は1種を単独で用いてもよく2種以上を併用してもよい。
 これらの中でも、原料の調達のしやすさの点から、1-ナフトール、2-ナフトールが好ましい。
Examples of hydroxy compounds include 1-naphthol, 2-naphthol, 1-hydroxyanthracene, 2-hydroxyanthracene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 4-hydroxybiphenyl and 2-hydroxybiphenyl. Hydroxy compounds may be used singly or in combination of two or more.
Among these, 1-naphthol and 2-naphthol are preferred from the viewpoint of ease of raw material procurement.
(工程A)
 ビフェニル化合物とヒドロキシ化合物とを反応させる際のビフェニル化合物とヒドロキシ化合物とのモル比(ビフェニル化合物/ヒドロキシ化合物)は、0.001~0.85が好ましく、0.005~0.80がより好ましい。
(Step A)
The molar ratio of the biphenyl compound and the hydroxy compound (biphenyl compound/hydroxy compound) in reacting the biphenyl compound and the hydroxy compound is preferably 0.001 to 0.85, more preferably 0.005 to 0.80.
 ビフェニル化合物/ヒドロキシ化合物のモル比が0.85以下であれば、1分子のビフェニル化合物に2分子のヒドロキシ化合物が付加した化合物(1-1)が主成分として生成される。 If the molar ratio of the biphenyl compound/hydroxy compound is 0.85 or less, the compound (1-1) in which two molecules of the hydroxy compound are added to one molecule of the biphenyl compound is produced as the main component.
 ビフェニル化合物/ヒドロキシ化合物のモル比が0.85を超えると、ビフェニル化合物とヒドロキシ化合物が交互に付加しやすくなり、結果として化合物(1-1)の収率が低くなるおそれがある。 If the molar ratio of the biphenyl compound/hydroxy compound exceeds 0.85, the biphenyl compound and the hydroxy compound are likely to be added alternately, and as a result, the yield of compound (1-1) may decrease.
 典型的には、酸触媒の存在下でビフェニル化合物とヒドロキシ化合物とを反応させる。酸触媒を用いることで、ビフェニル化合物とヒドロキシ化合物との反応が容易に進行する。 A biphenyl compound and a hydroxy compound are typically reacted in the presence of an acid catalyst. The use of an acid catalyst facilitates the reaction between the biphenyl compound and the hydroxy compound.
 酸触媒としては、例えば、塩酸、硫酸、リン酸等の無機酸;シュウ酸、酢酸、クエン酸、酒石酸、安息香酸、パラトルエンスルホン酸等の有機酸;酢酸亜鉛、ホウ酸亜鉛等の有機酸塩;スルホン基やカルボン酸基を有するイオン交換樹脂が挙げられる。これらの中でも、副反応による副生物の生成が抑制されると同時に、反応終了後、水洗処理などにより、容易に脱触媒を行うことができる点で、シュウ酸、塩酸、硫酸、パラトルエンスルホン酸が好ましい。酸触媒は1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of acid catalysts include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as oxalic acid, acetic acid, citric acid, tartaric acid, benzoic acid and paratoluenesulfonic acid; organic acids such as zinc acetate and zinc borate. Salt; Ion-exchange resins having sulfone groups and carboxylic acid groups are exemplified. Among these, oxalic acid, hydrochloric acid, sulfuric acid, and p-toluenesulfonic acid are preferred in that the production of by-products due to side reactions is suppressed and at the same time, the catalyst can be easily removed by washing with water after the completion of the reaction. is preferred. The acid catalyst may be used alone or in combination of two or more.
 酸触媒の使用量は、例えば、ビフェニル化合物100質量部に対して0.01~100質量部であり得る。 The amount of acid catalyst used can be, for example, 0.01 to 100 parts by mass with respect to 100 parts by mass of the biphenyl compound.
 ビフェニル化合物とヒドロキシ化合物とを反応させる際、必要に応じて、助触媒を用いてもよい。
 助触媒としては、例えば、メチルメルカプタン、エチルメルカプタン、ノルマルプロピルメルカプタン、イソプロピルメルカプタン、ターシャリーブチルメルカプタン、ステアリルメルカプタン、ドデシルメルカプタン等のメルカプタン類が挙げられる。助触媒は1種を単独で用いてもよく2種以上を併用してもよい。
When reacting the biphenyl compound and the hydroxy compound, a co-catalyst may be used, if necessary.
Examples of promoters include mercaptans such as methyl mercaptan, ethyl mercaptan, normal propyl mercaptan, isopropyl mercaptan, tertiary butyl mercaptan, stearyl mercaptan and dodecyl mercaptan. The co-catalyst may be used singly or in combination of two or more.
 助触媒の使用量は、例えば、ビフェニル化合物100質量部に対して0.005~3.00質量部であり得る。 The amount of co-catalyst used can be, for example, 0.005 to 3.00 parts by mass with respect to 100 parts by mass of the biphenyl compound.
 工程Aは、通常のノボラック型フェノール樹脂の製造方法と同様の方法で実施できる。
 例えば、反応容器にビフェニル化合物、ヒドロキシ化合物、酸触媒、溶媒、必要に応じて助触媒を仕込み、任意の反応温度を任意の反応時間保持することで、化合物(1-1)を含む生成物が得られる。
Process A can be carried out in the same manner as in the production of ordinary novolak-type phenolic resins.
For example, a reaction vessel is charged with a biphenyl compound, a hydroxy compound, an acid catalyst, a solvent, and, if necessary, a co-catalyst, and an arbitrary reaction temperature is maintained for an arbitrary reaction time to produce a product containing compound (1-1). can get.
 溶媒としては、例えば、イオン交換水等の水;ジエチルエーテル、シクロペンチルメチルエーテル、メタノール、エタノール、ベンゼン、トルエン、キシレン等の有機溶剤が挙げられる。溶媒は1種を単独で用いてもよく2種以上を併用してもよい。
 反応温度は、例えば、10~150℃であり得る。反応時間は、例えば、0.5~48時間であり得る。
Examples of the solvent include water such as ion-exchanged water; and organic solvents such as diethyl ether, cyclopentylmethyl ether, methanol, ethanol, benzene, toluene and xylene. One solvent may be used alone, or two or more solvents may be used in combination.
The reaction temperature can be, for example, 10-150°C. Reaction time can be, for example, 0.5 to 48 hours.
 反応終了後、必要に応じて、抽出、水洗、濃縮、再結晶等の処理を行ってもよい。 After the reaction is completed, extraction, washing with water, concentration, recrystallization, etc. may be performed as necessary.
(工程B)
 化合物(1-1)の水酸基に1以上のオキシアルキレン基((OR、(OR)を付加することで、前記式(1)中のaおよびbの少なくとも一方が1以上である化合物(以下、「化合物(1-2)」とも記す。)が得られる。
(Step B)
At least one of a and b in the formula (1) is 1 or more by adding one or more oxyalkylene groups ((OR 3 ) a , (OR 3 ) b ) to the hydroxyl group of the compound (1-1). A compound (hereinafter also referred to as “compound (1-2)”) is obtained.
 1以上のオキシアルキレン基の付加方法は特に限定されるものではない。種々の付加方法を用いることができる。例えば、化合物(1-1)と、エチレンオキサイド等のアルキレンオキサイドとを反応させる方法が挙げられる。 The method of adding one or more oxyalkylene groups is not particularly limited. Various attachment methods can be used. For example, a method of reacting the compound (1-1) with an alkylene oxide such as ethylene oxide can be mentioned.
<化合物(1)の用途>
 以上説明した化合物(1)は、上記式(1)の構造を有することから、高屈折率(例えば、0.62~0.78の屈折率)を発現できる。
 ここで、一般に、分子全体の分極が大きくなると、高屈折率を発現する傾向がある。分子全体の分極を大きくする手法の一つが、自由に動くことができる共役π電子を多くすることである。
 化合物(1)中のビフェニル部位においては、2個のベンゼン環内に存在する12個のπ電子がビフェニル部位全体の広範囲に共鳴している。このビフェニル部位にさらに、少なくとも2個のベンゼン環を含む2個のRが導入されることで、共役π電子の数が増大し、また、π電子が共鳴する範囲も広くなる。結果、分子全体がより分極しやすくなり、高屈折率を発現すると考えられる。
<Use of compound (1)>
Since the compound (1) described above has the structure of the above formula (1), it can exhibit a high refractive index (for example, a refractive index of 0.62 to 0.78).
Here, in general, when the polarization of the entire molecule becomes large, there is a tendency to develop a high refractive index. One way to increase the polarization of the entire molecule is to increase the number of free-moving conjugated π electrons.
In the biphenyl site in compound (1), 12 π electrons present in two benzene rings resonate over a wide range of the entire biphenyl site. By further introducing two R 2 containing at least two benzene rings into this biphenyl moiety, the number of conjugated π-electrons increases and the range in which the π-electrons resonate also widens. As a result, it is thought that the whole molecule becomes more easily polarized and exhibits a high refractive index.
 化合物(1)は、2個以上の水酸基を持つ。そのため化合物(1)は、ポリカーボネート樹脂、ポリエステル樹脂等の、多価ヒドロキシ化合物をモノマー成分とする樹脂のモノマー成分として使用できる。化合物(1)を含むモノマー成分から得られる樹脂は、化合物(1)に基づく構成単位を有することから、高屈折率を発現できる。 Compound (1) has two or more hydroxyl groups. Therefore, compound (1) can be used as a monomer component for resins such as polycarbonate resins and polyester resins that contain a polyhydric hydroxy compound as a monomer component. A resin obtained from a monomer component containing the compound (1) can exhibit a high refractive index because it has structural units based on the compound (1).
 多価ヒドロキシ化合物をモノマー成分とする樹脂の一例として、ポリカーボネート樹脂が挙げられる。
 化合物(1)を含むモノマー成分から得られるポリカーボネート樹脂としては、例えば、下記式(a1)で表される構成単位(以下、「構成単位(a1)」とも記す。)を有するポリカーボネート樹脂が挙げられる。
A polycarbonate resin is an example of a resin containing a polyhydric hydroxy compound as a monomer component.
Examples of the polycarbonate resin obtained from the monomer component containing the compound (1) include polycarbonate resins having a structural unit represented by the following formula (a1) (hereinafter also referred to as "structural unit (a1)"). .
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 構成単位(a1)は、前記式(1)中のcおよびdが1である化合物(1)から形成される。
 ポリカーボネート樹脂が有する構成単位(a1)は1種でもよく、2種以上でもよい。
Structural unit (a1) is formed from compound (1) wherein c and d are 1 in formula (1) above.
The number of structural units (a1) that the polycarbonate resin has may be one, or two or more.
 ポリカーボネート樹脂は、構成単位(a1)以外の他の構成単位をさらに有していてもよい。
 他の構成単位としては、例えば、化合物(1)以外の他のジヒドロキシ化合物に基づく構成単位(以下、「構成単位(a2)」とも記す。)が挙げられる。
 構成単位(a2)は、下記式(a2)で表される。
The polycarbonate resin may further have structural units other than the structural unit (a1).
Other structural units include, for example, structural units based on dihydroxy compounds other than compound (1) (hereinafter also referred to as "structural unit (a2)").
The structural unit (a2) is represented by the following formula (a2).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 Rは、他のジヒドロキシ化合物から2個の水酸基を除いた残基である。
 他のジヒドロキシ化合物としては、特に制限はなく、ポリカーボネート樹脂のモノマー成分として公知のものを任意に用いることができる。
R6 is a residue obtained by removing two hydroxyl groups from other dihydroxy compounds.
Other dihydroxy compounds are not particularly limited, and any of those known as monomer components for polycarbonate resins can be used.
 他のジヒドロキシ化合物としては、例えば、芳香族ジヒドロキシ化合物、脂肪族ジヒドロキシ化合物が挙げられる。
 芳香族ジヒドロキシ化合物としては、例えば、ヒドロキノン、レゾルシン等のフェノール化合物;ビスフェノールA、ビスフェノールF、ビスフェノールB、ビスフェノールAP、ビスフェノールC、ビスフェノールE、ビスフェノールS、ビスフェノールZ、ビスフェノールCDE、ビスフェノールフルオレン等のビスフェノール化合物;ビスナフトールフルオレン、4,4’-ジヒドロキシビフェニルが挙げられる。
 脂肪族ジヒドロキシ化合物としては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノールが挙げられる。
 ポリカーボネート樹脂が有する構成単位(a2)は1種でもよく、2種以上でもよい。
Other dihydroxy compounds include, for example, aromatic dihydroxy compounds and aliphatic dihydroxy compounds.
Examples of aromatic dihydroxy compounds include phenol compounds such as hydroquinone and resorcin; bisphenol compounds such as bisphenol A, bisphenol F, bisphenol B, bisphenol AP, bisphenol C, bisphenol E, bisphenol S, bisphenol Z, bisphenol CDE and bisphenol fluorene. ; bisnaphtholfluorene, 4,4'-dihydroxybiphenyl.
Aliphatic dihydroxy compounds include, for example, ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.
The number of structural units (a2) that the polycarbonate resin has may be one, or two or more.
 上記ポリカーボネート樹脂は、モノマー成分(ジヒドロキシ化合物)の少なくとも一部に化合物(1)を用いる以外は、公知のポリカーボネート樹脂の製造方法により製造できる。 The polycarbonate resin can be produced by a known method for producing a polycarbonate resin, except that the compound (1) is used as at least part of the monomer component (dihydroxy compound).
 多価ヒドロキシ化合物をモノマー成分とする樹脂の他の一例として、ポリエステル樹脂が挙げられる。
 化合物(1)を含むモノマー成分から得られるポリエステル樹脂としては、例えば、下記式(b1)で表される構成単位(以下、「構成単位(b1)」とも記す。)を有するポリエステル樹脂が挙げられる。
Another example of a resin containing a polyhydric hydroxy compound as a monomer component is a polyester resin.
Examples of the polyester resin obtained from the monomer component containing the compound (1) include polyester resins having a structural unit represented by the following formula (b1) (hereinafter also referred to as "structural unit (b1)"). .
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 Rは、ジカルボン酸から2個のカルボキシ基を除いた残基である。
 ジカルボン酸としては、特に制限はなく、ポリエステル樹脂のモノマー成分として公知のものを用いることができる。ジカルボン酸としては、例えば、テレフタル酸、2,6-ナフタレンジカルボン酸が挙げられる。
R5 is a residue obtained by removing two carboxy groups from a dicarboxylic acid.
The dicarboxylic acid is not particularly limited, and those known as monomer components for polyester resins can be used. Examples of dicarboxylic acids include terephthalic acid and 2,6-naphthalenedicarboxylic acid.
 構成単位(b1)は、前記式(1)中のcおよびdが1である化合物(1)およびジカルボン酸から形成される。
 ポリエステル樹脂が有する構成単位(b1)は1種でもよく、2種以上でもよい。
The structural unit (b1) is formed from the compound (1) in which c and d are 1 in the above formula (1) and a dicarboxylic acid.
The structural unit (b1) that the polyester resin has may be one type, or two or more types.
 ポリエステル樹脂は、構成単位(b1)以外の他の構成単位をさらに有していてもよい。
 他の構成単位としては、例えば、下記式(b2)で表される構成単位(以下、「構成単位(b2)」とも記す。)が挙げられる。
The polyester resin may further have structural units other than the structural unit (b1).
Other structural units include, for example, structural units represented by the following formula (b2) (hereinafter also referred to as “structural unit (b2)”).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 Rは、他のジヒドロキシ化合物から2個の水酸基を除いた残基であり、Rは、ジカルボン酸から2個のカルボキシ基を除いた残基である。
 他のジヒドロキシ化合物、ジカルボン酸はそれぞれ前記と同様のものが挙げられる。
 ポリエステル樹脂が有する構成単位(b2)は1種でもよく、2種以上でもよい。
R 6 is a residue obtained by removing two hydroxyl groups from another dihydroxy compound, and R 7 is a residue obtained by removing two carboxy groups from a dicarboxylic acid.
Other dihydroxy compounds and dicarboxylic acids are the same as those mentioned above.
The structural unit (b2) possessed by the polyester resin may be of one type or two or more types.
 上記ポリエステル樹脂は、モノマー成分(ジヒドロキシ化合物)の少なくとも一部に化合物(1)を用いる以外は、公知のポリエステル樹脂の製造方法により製造できる。 The above polyester resin can be produced by a known polyester resin production method, except that the compound (1) is used as at least part of the monomer component (dihydroxy compound).
 化合物(1)は、下記式(2)で表される化合物(以下、「化合物(2)」とも記す。)の製造に用いることもできる。 Compound (1) can also be used to produce a compound represented by the following formula (2) (hereinafter also referred to as "compound (2)").
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(2)中、Rは、水素原子またはアリール基である。
 Rは、少なくとも2個のベンゼン環を含む2価基であり、2個のRは同一でも異なっていてもよい。
 aおよびbは、それぞれ独立に0~6の整数である。
 Rは、アルキレン基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよい。
 cおよびdは、それぞれ独立に1~10の整数である。
 Xは、重合性官能基もしくは反応性官能基を含む1価基、または水素原子であり、(c+d)個のXは同一でも異なっていてもよく、(c+d)個のXのうち少なくとも1個は前記1価基である。
 eは0~5の整数であり、fは0~4の整数である。
 Rは置換基であり、(e+f)が2以上である場合、(e+f)個のRは同一でも異なっていてもよい。
In formula (2), R 1 is a hydrogen atom or an aryl group.
R2 is a divalent group containing at least two benzene rings, and two R2s may be the same or different.
a and b are each independently an integer of 0 to 6;
R 3 is an alkylene group, and when (a+b) is 2 or more, (a+b) R 3 may be the same or different.
c and d are each independently an integer of 1-10.
X is a monovalent group containing a polymerizable functional group or a reactive functional group, or a hydrogen atom, (c + d) X may be the same or different, and at least one of (c + d) X is the above monovalent group.
e is an integer of 0-5 and f is an integer of 0-4.
R 4 is a substituent, and when (e+f) is 2 or more, (e+f) R 4s may be the same or different.
 式(2)中、R、R、a、b、R、c、d、e、f、Rはそれぞれ前記した内容と同じある。
 Xにおける重合性官能基としては、重合可能なものであれば特に制限はない。例えば、(メタ)アクリロイル基が挙げられる。(メタ)アクリロイル基はアクリロイル基またはメタクリロイル基を意味する。
In formula (2), R 1 , R 2 , a, b, R 3 , c, d, e, f, and R 4 are the same as described above.
The polymerizable functional group for X is not particularly limited as long as it is polymerizable. For example, a (meth)acryloyl group is mentioned. A (meth)acryloyl group means an acryloyl group or a methacryloyl group.
 Xにおける反応性官能基としては、例えば、エポキシ基、酸無水物基、アミノ基が挙げられる。
 Xが反応性官能基を有する場合、化合物(2)は典型的には、Xの反応性官能基と反応し得る官能基を2以上有する架橋剤と組み合わされる。
 エポキシ基と反応し得る官能基としては、例えば、アミノ基、酸無水物基、水酸基が挙げられる。
 酸無水物基と反応し得る官能基としては、例えば、アミノ基、水酸基が挙げられる。
 アミノ基と反応し得る官能基としては、例えば、酸無水物基が挙げられる。
Examples of reactive functional groups in X include epoxy groups, acid anhydride groups, and amino groups.
When X has a reactive functional group, compound (2) is typically combined with a cross-linking agent having two or more functional groups capable of reacting with the reactive functional group of X.
Functional groups capable of reacting with epoxy groups include, for example, amino groups, acid anhydride groups, and hydroxyl groups.
Examples of functional groups capable of reacting with acid anhydride groups include amino groups and hydroxyl groups.
Functional groups that can react with amino groups include, for example, acid anhydride groups.
 Xが有する重合性官能基または反応性官能基は1個でも2個以上でもよいが、典型的には1個である。
 重合性官能基または反応性官能基は、Xに隣接する酸素原子に直接結合していてもよく、連結基を介して結合していてもよい。
The number of polymerizable functional groups or reactive functional groups possessed by X may be one or two or more, but typically one.
The polymerizable functional group or reactive functional group may be directly bonded to the oxygen atom adjacent to X, or may be bonded via a linking group.
 Xとしては、例えば、-X-Xで表される基が挙げられる。Xは、重合性官能基または反応性官能基である。Xは、単結合または2価の連結基である。
 Xにおける2価の連結基としては、例えば、置換基を有していてもよい2価の炭化水素基、置換基を有していてもよい2価の炭化水素基の末端にエーテル性酸素原子を含む基、置換基を有していてもよい2価の炭化水素基の炭素原子間にエーテル性酸素原子を含む基が挙げられる。
X includes, for example, a group represented by -X 2 -X 1 . X 1 is a polymerizable functional group or a reactive functional group. X2 is a single bond or a divalent linking group.
The divalent linking group for X 2 includes, for example, a divalent hydrocarbon group which may have a substituent, an etheric oxygen at the end of the divalent hydrocarbon group which may have a substituent A group containing an atom and a group containing an etheric oxygen atom between carbon atoms of a divalent hydrocarbon group which may have a substituent are exemplified.
 2価の炭化水素基としては、例えば、アルキレン基、シクロアルキレン基、アリーレン基およびそれらの2以上の組み合わせからなる基が挙げられる。
 アルキレン基としては、Rにおけるアルキレン基と同様のものが挙げられる。アルキレン基が有していてもよい置換基としては、例えば、水酸基、シアノ基、ハロゲン原子が挙げられる。
 シクロアルキレン基の炭素数は、例えば、6~8であり得る。シクロアルキレン基が有していてもよい置換基としては、例えば、アルキル基、水酸基、シアノ基、ハロゲン原子が挙げられる。
 アリーレン基としては、例えば、フェニレン基、ナフチレン基、フェナントリレン基、アントリレン基、4,4’-ビフェニル-ジイル基が挙げられる。アリーレン基が有していてもよい置換基としては、例えば、アルキル基、水酸基、シアノ基、ハロゲン原子が挙げられる。
The divalent hydrocarbon group includes, for example, an alkylene group, a cycloalkylene group, an arylene group, and a group consisting of a combination of two or more thereof.
Examples of the alkylene group include those similar to the alkylene group for R 3 . Examples of substituents that the alkylene group may have include a hydroxyl group, a cyano group, and a halogen atom.
The number of carbon atoms in the cycloalkylene group can be, for example, 6-8. Examples of substituents that the cycloalkylene group may have include an alkyl group, a hydroxyl group, a cyano group, and a halogen atom.
Arylene groups include, for example, phenylene groups, naphthylene groups, phenanthrylene groups, anthrylene groups, and 4,4'-biphenyl-diyl groups. Examples of substituents that the arylene group may have include an alkyl group, a hydroxyl group, a cyano group, and a halogen atom.
 Xとしては、置換基として水酸基を有するものが好ましい。Xが水酸基を有していれば、化合物(2)を用いた硬化物の耐熱性、機械強度がより優れる傾向がある。これは、水酸基が存在することで、水素結合による分子間力が得られる結果、分子の凝集力が高まるためと考えられる。また、この水素結合は、ガラスやポリエステル等の無機または有機物(例えば、フィルム、レンズ)に対する密着性向上にも寄与し得る。 X2 preferably has a hydroxyl group as a substituent. If X2 has a hydroxyl group, the cured product using the compound (2) tends to be more excellent in heat resistance and mechanical strength. This is probably because the presence of hydroxyl groups provides an intermolecular force due to hydrogen bonding, resulting in an increase in molecular cohesion. In addition, this hydrogen bond can contribute to the improvement of adhesion to inorganic or organic materials such as glass and polyester (for example, films and lenses).
 Xの具体例としては、例えば、グリシジル基、-[O-Ph-C(CH-Ph-O-CH-CH(OH)-CH-O-Ph-C(CH-Ph-O-Y、(メタ)アクリロイル基、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル基(-CH-C(OH)-CH-O-C(=O)-C(R)=CH)、-[O-Ph-C(CH-Ph-O-CH-CH(OH)-CH-O-C(=O)-C(R)=CH、トリメリット酸無水物基(下記式(X-1))、アミノ基が挙げられる。ここで、Phはフェニレン基である。Yはグリシジル基である。Rは水素原子またはメチル基である。 Specific examples of X include a glycidyl group, —[O—Ph—C(CH 3 ) 2 —Ph—O—CH 2 —CH(OH)—CH 2 ] n —O—Ph—C(CH 3 ) 2 -Ph-O-Y 1 , (meth)acryloyl group, 2-hydroxy-3-(meth)acryloyloxypropyl group (-CH 2 -C(OH)-CH 2 -O-C(=O)- C(R)=CH 2 ), -[O-Ph-C(CH 3 ) 2 -Ph-O-CH 2 -CH(OH)-CH 2 ] n -O-C(=O)-C(R )=CH 2 , a trimellitic anhydride group (the following formula (X-1)), and an amino group. Here, Ph is a phenylene group. Y 1 is a glycidyl group. R is a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 化合物(2)の製造方法としては、例えば、以下の工程Cを有する方法が挙げられる。
 工程C:化合物(1)の水酸基にX(重合性官能基または反応性官能基を含む1価基)を付加する工程。
Examples of the method for producing compound (2) include a method including the following step C.
Step C: A step of adding X (a monovalent group containing a polymerizable functional group or a reactive functional group) to the hydroxyl group of compound (1).
 工程Cは、Xの構造に応じて、公知の方法を用いて実施できる。
 例えば、Xがグリシジル基の場合、化合物(1)の水酸基にエピハロヒドリン(例えば、エピクロルヒドリン)を反応させる方法(以下、「方法1」とも記す。)が挙げられる。
Step C can be carried out using known methods, depending on the structure of X.
For example, when X is a glycidyl group, a method of reacting the hydroxyl group of compound (1) with epihalohydrin (eg, epichlorohydrin) (hereinafter also referred to as "method 1") can be used.
 Xが-[O-Ph-C(CH-Ph-O-CH-CH(OH)-CH-O-Ph-C(CH-Ph-O-Yの場合、方法1において、エピハロヒドリンの代わりに、ビスフェノールA型エポキシ化合物を反応させればよい。 X is -[O-Ph-C(CH 3 ) 2 -Ph-O-CH 2 -CH(OH)-CH 2 ] n -O-Ph-C(CH 3 ) 2 -Ph-O-Y 1 In this case, in Method 1, instead of epihalohydrin, a bisphenol A type epoxy compound may be reacted.
 Xが(メタ)アクリロイル基である場合、化合物(1)の水酸基に(メタ)アクリル酸、(メタ)アクリル酸無水物または(メタ)アクリル酸ハロゲン化物を反応させる方法(以下、「方法2」とも記す。)が挙げられる。 When X is a (meth)acryloyl group, a method of reacting the hydroxyl group of compound (1) with (meth)acrylic acid, (meth)acrylic anhydride or (meth)acrylic acid halide (hereinafter referred to as "Method 2" Also described.).
 Xが2-(メタ)アクリロイルオキシ-2-ヒドロキシエチル基である場合、上述の方法1によってXがグリシジル基である化合物を得た後、その化合物のグリシジル基に(メタ)アクリル酸、(メタ)アクリル酸無水物または(メタ)アクリル酸ハロゲン化物を反応させる方法(以下、「方法3」とも記す。)が挙げられる。 When X is a 2-(meth)acryloyloxy-2-hydroxyethyl group, after obtaining a compound in which X is a glycidyl group by the above method 1, the glycidyl group of the compound is added with (meth)acrylic acid, (meth) ) a method of reacting acrylic anhydride or (meth)acrylic acid halide (hereinafter also referred to as “Method 3”).
 Xが-[O-Ph-C(CH-Ph-O-CH-CH(OH)-CH-O-C(=O)-C(R)=CHの場合、方法3において、Xがグリシジル基である化合物を得る代わりに、Xが-[O-Ph-C(CH-Ph-O-CH-CH(OH)-CH-O-Ph-C(CH-Ph-O-Yである化合物を得ればよい。 When X is -[O-Ph-C(CH 3 ) 2 -Ph-O-CH 2 -CH(OH)-CH 2 ] n -O-C(=O)-C(R)=CH 2 , In method 3, instead of obtaining compounds where X is a glycidyl group, X is -[O-Ph-C(CH 3 ) 2 -Ph-O-CH 2 -CH(OH)-CH 2 ] n -O- A compound that is Ph--C(CH 3 ) 2 --Ph--O--Y 1 should be obtained.
 Xがトリメリット酸無水物基である場合、化合物(1)の水酸基に無水トリメリット酸または無水トリメリット酸ハライドを反応させる方法(以下、「方法4」とも記す。)が挙げられる。 When X is a trimellitic anhydride group, a method of reacting the hydroxyl group of compound (1) with trimellitic anhydride or trimellitic anhydride halide (hereinafter also referred to as "method 4") can be mentioned.
 方法1において、化合物(1)の水酸基に対するエピハロヒドリンのモル比(水酸基/エピハロヒドリン比)は、特に限定されるものではない。該モル比(水酸基/エピハロヒドリン比)は、最も一般的なエポキシ樹脂であるビスフェノールA型エポキシ樹脂を、ビスフェノールAとエピクロルヒドリンから製造する際と同様のモル比であってよい。 In method 1, the molar ratio of epihalohydrin to the hydroxyl group of compound (1) (hydroxyl group/epihalohydrin ratio) is not particularly limited. The molar ratio (hydroxyl group/epihalohydrin ratio) may be the same molar ratio as when producing bisphenol A type epoxy resin, which is the most common epoxy resin, from bisphenol A and epichlorohydrin.
 水酸基/エピクロルヒドリン比は、0.02~0.33が好ましく、0.10~0.20がより好ましい。
 化合物(1)の水酸基1モルに対して多量のエピクロルヒドリンを用いた場合(水酸基/エピクロルヒドリン比が小さい場合)には、水酸基がグリシジルエーテル化された化合物が主成分として得られる。このモル比を大きくするに従い、水酸基に付加したグリシジルエーテル化したエポキシ基が他の水酸基と反応し、高分子量化されるおそれがある。
The hydroxyl group/epichlorohydrin ratio is preferably 0.02 to 0.33, more preferably 0.10 to 0.20.
When a large amount of epichlorohydrin is used with respect to 1 mol of hydroxyl groups in compound (1) (when the hydroxyl group/epichlorohydrin ratio is small), a compound in which hydroxyl groups are glycidyl-etherified is obtained as the main component. As this molar ratio is increased, the glycidyl-etherified epoxy group attached to the hydroxyl group may react with other hydroxyl groups to increase the molecular weight.
 以上説明した化合物(2)は、化合物(1)と同様の骨格を有することから、高屈折率を発現できる。
 また、化合物(2)は、1個以上の重合性官能基または反応性官能基を持つ。そのため、化合物(2)によれば、単独で重合してポリマーとすること、また、硬化剤(架橋剤、重合開始剤等)と反応させて硬化物とすることができる。化合物(2)を用いて得られるポリマーや硬化物は、化合物(2)に基づく構成単位を有することから、高屈折率を発現できる。
Since the compound (2) described above has a skeleton similar to that of the compound (1), it can exhibit a high refractive index.
Compound (2) also has one or more polymerizable functional groups or reactive functional groups. Therefore, the compound (2) can be polymerized by itself to form a polymer, or can be reacted with a curing agent (a cross-linking agent, a polymerization initiator, etc.) to form a cured product. A polymer or a cured product obtained using the compound (2) can express a high refractive index because it has a structural unit based on the compound (2).
 化合物(2)のうち、重合性官能基または反応性官能基としてエポキシ基を有する化合物は、例えば、硬化性組成物やエポキシ系接着剤の構成成分として用いることができる。
 例えば、該化合物にエポキシ硬化剤(例えば、アミン類、酸無水物類、フェノール樹脂)、必要に応じてトリフェニルホスフィン類やイミダゾール類等の硬化促進剤、ガラス粉末、ガラスビーズ、その他透明ポリマー粒子等の無機または有機充填剤、酸化防止剤、その他の添加剤を加えることで、エポキシ系接着剤として使用することができる。このエポキシ系接着剤によれば、高屈折率を発現する接着層を形成できる。
 例えば、該化合物に、エポキシ基と反応し得る官能基を2以上有する架橋剤、必要に応じて他の添加剤を加えることで、硬化性組成物として使用することができる。
Among compounds (2), compounds having an epoxy group as a polymerizable functional group or a reactive functional group can be used, for example, as constituents of curable compositions and epoxy adhesives.
For example, the compound may be added with an epoxy curing agent (e.g., amines, acid anhydrides, phenolic resins), optionally curing accelerators such as triphenylphosphines and imidazoles, glass powder, glass beads, and other transparent polymer particles. It can be used as an epoxy-based adhesive by adding an inorganic or organic filler such as an antioxidant, an antioxidant, and other additives. This epoxy adhesive can form an adhesive layer exhibiting a high refractive index.
For example, the compound can be used as a curable composition by adding a cross-linking agent having two or more functional groups capable of reacting with an epoxy group and, if necessary, other additives.
 化合物(2)のうち、重合性官能基または反応性官能基として(メタ)アクリロイル基を有する化合物は、例えば、硬化性組成物の構成成分として用いることができる。該化合物に重合開始剤(光重合開始剤、熱重合開始剤等)、必要に応じて溶剤、着色剤、無機充填剤、有機充填剤、酸化防止剤、その他添加剤を加えた硬化性組成物は、光や熱により硬化させて硬化物とすることができる。
 得られる硬化物は、化合物(2)に基づく構成単位を有するポリマーを含む。また、高屈折率である。そのため、該ポリマーは、光学部材として有用である。
Among compounds (2), compounds having a (meth)acryloyl group as a polymerizable functional group or a reactive functional group can be used, for example, as a constituent component of a curable composition. A curable composition obtained by adding a polymerization initiator (photopolymerization initiator, thermal polymerization initiator, etc.) to the compound, and optionally a solvent, a coloring agent, an inorganic filler, an organic filler, an antioxidant, and other additives. can be cured by light or heat to obtain a cured product.
The resulting cured product contains a polymer having structural units based on compound (2). Also, it has a high refractive index. Therefore, the polymer is useful as an optical member.
 光学部材の例としては、CMOSイメージセンサー用マイクロレンズ、タッチパネル用インデックスマッチング材が挙げられる。光学部材の他、液晶や有機EL、電子ペーパー、フィルター、ブラックマトリックス等にも適用できる。 Examples of optical members include microlenses for CMOS image sensors and index matching materials for touch panels. In addition to optical members, it can also be applied to liquid crystal, organic EL, electronic paper, filters, black matrix, and the like.
 化合物(2)のうち、重合性官能基または反応性官能基として酸無水物基を有する化合物は、例えば、ポリイミドの原料として用いることができる。該化合物とジアミン成分とを反応させることで、ポリイミドとすることができる。得られるポリイミドは、耐熱性、透明性、高屈折率を発現し、タッチパネル等のフィルム基材やフレキシブルプリント基板等に用いることができる。 Among compounds (2), compounds having an acid anhydride group as a polymerizable functional group or a reactive functional group can be used, for example, as raw materials for polyimide. A polyimide can be obtained by reacting the compound with a diamine component. The resulting polyimide exhibits heat resistance, transparency, and a high refractive index, and can be used for film substrates such as touch panels, flexible printed circuit boards, and the like.
 ジアミン成分としては、例えば、1,3-フェニレンジアミン、4,4‘-ジアミノジフェニルエーテル、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ジアミン化合物、ジエチレングリコールビス(3-アミノプロピル)エーテル、9,9’-ビス(4-アミノフェニル)フルオレンが挙げられる。 Examples of diamine components include 1,3-phenylenediamine, 4,4′-diaminodiphenyl ether, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, diamine compounds, diethylene glycol bis(3-amino propyl) ether, 9,9′-bis(4-aminophenyl)fluorene.
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。以下において「%」は、特に言及がない場合は、「質量%」を示す。 The present invention will be specifically described below with reference to examples, but the present invention is not limited by the following description. In the following, "%" indicates "% by mass" unless otherwise specified.
〔測定方法〕
<NMR測定>
 得られた化合物について7.7%d-ジメチルスルホキシド(DMSO)溶液を調製し、H-NMR、13C-NMRを測定した。内部標準としてはテトラメチルシランを用いた。
 使用機器:JEOL RESONANCE社製 ECZ-500R
〔Measuring method〕
<NMR measurement>
A 7.7% d-dimethylsulfoxide (DMSO) solution was prepared for the obtained compound, and 1 H-NMR and 13 C-NMR were measured. Tetramethylsilane was used as an internal standard.
Equipment used: ECZ-500R manufactured by JEOL RESONANCE
<FD-MS(電界脱離質量分析)>
 得られた化合物について0.2%テトラヒドロフラン(THF)溶液を調製し、イオン源FD+、質量範囲60~1600の条件の下、FD-MSを測定した。
 使用機器:日本電子社製 JMS-T200GC
<FD-MS (field desorption mass spectrometry)>
A 0.2% tetrahydrofuran (THF) solution was prepared for the resulting compound, and FD-MS was measured under the conditions of an ion source FD+ and a mass range of 60-1600.
Equipment used: JMS-T200GC manufactured by JEOL Ltd.
<GPC>
 得られた化合物について1%THF溶液を調製し、GPC測定を行った。
 使用機器:東ソー社製のHLC8320GPC
 カラム:TSKgel G3000HXL+G2000HXL+G2000HXL
<GPC>
A 1% THF solution was prepared for the resulting compound and subjected to GPC measurement.
Equipment used: HLC8320GPC manufactured by Tosoh Corporation
Column: TSKgel G3000HXL+G2000HXL+G2000HXL
<屈折率>
 得られた化合物について3種の濃度のN-メチルピロリドン溶液を調製した。各溶液について屈折率計にて、26.5℃におけるD線(波長589nm)の屈折率を測定した。
 これら3種の濃度を横軸に、それぞれの屈折率を縦軸にプロットした。最小二乗法における近似曲線から、濃度100%における屈折率を算出し、その値を屈折率とした。
 使用機器:アタゴ社製 アッベ屈折率計DR-2M
<Refractive index>
Three concentrations of N-methylpyrrolidone solutions were prepared for the resulting compound. The refractive index of D line (wavelength 589 nm) at 26.5° C. was measured with a refractometer for each solution.
The concentrations of these three types are plotted on the horizontal axis and the respective refractive indices are plotted on the vertical axis. The refractive index at a concentration of 100% was calculated from the approximated curve of the least-squares method, and the calculated value was defined as the refractive index.
Equipment used: Atago Abbe refractometer DR-2M
〔実施例1〕
 撹拌機、温度計、アリーン冷却管を付けた200mL三つ口フラスコに4-ビフェニルアルデヒド9.11g(0.05モル)、β-ナフトール72.09g(0.50モル)、反応溶媒としてシクロペンチルメチルエーテル72.09gを配合し撹拌した。加温により反応溶液の温度を30℃とし、撹拌を続けることでシクロペンチルメチルエーテルに4-ビフェニルアルデヒドとβ-ナフトールを溶解させた。ここに35%塩酸0.78g(0.0075モル)を添加し、反応溶液を55℃まで昇温後、55℃を保った状態で3時間撹拌を続けた後、反応溶液を25℃まで冷却した。反応溶液中に析出した白色粉末をヌッチェと吸引びんを用いて吸引ろ過を行った。この際、ろ紙にはADVANTEC5Cを用いた。ヌッチェ上にて、ここで得た粉末をシクロペンチルメチルエーテル32.3gにて洗浄後、イオン交換水36.04gにて3回水洗した。減圧乾燥機中で乾燥することで白色粉末18.51g(理論収量に対する収率81.8%)を得た。
[Example 1]
9.11 g (0.05 mol) of 4-biphenylaldehyde, 72.09 g (0.50 mol) of β-naphthol, and cyclopentylmethyl as a reaction solvent were placed in a 200 mL three-necked flask equipped with a stirrer, thermometer, and arene condenser. 72.09 g of ether was added and stirred. The temperature of the reaction solution was raised to 30° C. by heating, and 4-biphenylaldehyde and β-naphthol were dissolved in cyclopentylmethyl ether by continuing stirring. 0.78 g (0.0075 mol) of 35% hydrochloric acid was added thereto, and after heating the reaction solution to 55°C, stirring was continued for 3 hours while maintaining the temperature at 55°C, and then the reaction solution was cooled to 25°C. bottom. A white powder precipitated in the reaction solution was subjected to suction filtration using a Nutsche and a suction bottle. At this time, ADVANTEC 5C was used as the filter paper. The powder obtained here was washed with 32.3 g of cyclopentyl methyl ether on a Nutsche, and then washed with 36.04 g of ion-exchanged water three times. Drying in a vacuum dryer gave 18.51 g of white powder (81.8% of theoretical yield).
 得られた白色粉末についてH-NMR、13C-NMR、FD-MSにより、下記式(11)に示す目的物(1-ジ(2-ヒドロキシ-3-ナフチル)メチル-4-フェニルベンゼン)であることを確認した。得られた白色粉末の理化学的性質は以下のとおりであった。GPCより、純度が97.8%であることを確認した。 The obtained white powder was analyzed by 1 H-NMR, 13 C-NMR, and FD-MS to obtain the desired product (1-di(2-hydroxy-3-naphthyl)methyl-4-phenylbenzene) represented by the following formula (11). It was confirmed that The physicochemical properties of the obtained white powder were as follows. GPC confirmed that the purity was 97.8%.
 マススペクトル:(m/z)452。
 H-NMR:(500MHz,DMSO-d):δ 7.13(s,1H),7.13(d,J=8.0Hz,2H),7.17-7.21(m,4H),7.24(ddd,J=8.6Hz,6.8Hz,1.5Hz,2H),7.30(tt,J=7.4Hz,1.4Hz,1H),7.42(t,J=7.8Hz,2H),7.49(d,J=8.7Hz,2H),7.62(dd,J=8.4Hz,1.2Hz,2H),7.71(d,J=8.8Hz,2H),7.74(dd,J=8.1Hz,1.4Hz,2H),8.22(d,J=8.7Hz,2H),9.85(s,2H)。
 13H-NMR:(500MHz,DMSO-d):δ 41.2,119.0,120.3,122.2,124.0,125.9 and 126.0(a pair of s),126.4,127.0,128.4,128.6 and 128.7(a pair of s),128.8 and 128.9(a pair of s),134.3,136.9,140.4,143.7,152.7。
Mass spectrum: (m/z) 452.
1 H-NMR: (500 MHz, DMSO-d 6 ): δ 7.13 (s, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.17-7.21 (m, 4H ), 7.24 (ddd, J = 8.6Hz, 6.8Hz, 1.5Hz, 2H), 7.30 (tt, J = 7.4Hz, 1.4Hz, 1H), 7.42 (t, J = 7.8Hz, 2H), 7.49 (d, J = 8.7Hz, 2H), 7.62 (dd, J = 8.4Hz, 1.2Hz, 2H), 7.71 (d, J = 8.8Hz, 2H), 7.74 (dd, J = 8.1Hz, 1.4Hz, 2H), 8.22 (d, J = 8.7Hz, 2H), 9.85 (s, 2H) .
13 H-NMR: (500 MHz, DMSO-d 6 ): δ 41.2, 119.0, 120.3, 122.2, 124.0, 125.9 and 126.0 (a pair of s), 126 .4, 127.0, 128.4, 128.6 and 128.7 (a pair of s), 128.8 and 128.9 (a pair of s), 134.3, 136.9, 140.4 , 143.7, 152.7.
 また吸引ろ過におけるろ液を分液ロートに移液し、イオン交換水50.00gにて3回水洗した。この水洗済みろ液をナス型フラスコに入れた後、ナス型フラスコを湯浴により加温しながら-0.0267MPaにて減圧蒸留を施すことによりシクロペンチルメチルエーテル58.66gを回収した。シクロペンチルメチルエーテル全使用量に対する回収率は48.6%であった。シクロペンチルメチルエーテルの回収率は、減圧蒸留時に使用する冷却管の冷却能を上げることで、さらに増量できる。 Also, the filtrate in the suction filtration was transferred to a separating funnel and washed three times with 50.00 g of ion-exchanged water. After the water-washed filtrate was put into an eggplant-shaped flask, 58.66 g of cyclopentyl methyl ether was recovered by vacuum distillation at -0.0267 MPa while heating the eggplant-shaped flask with a hot water bath. The recovery rate with respect to the total amount of cyclopentyl methyl ether used was 48.6%. The recovery rate of cyclopentyl methyl ether can be further increased by increasing the cooling capacity of the condenser used during vacuum distillation.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
〔比較例1〕
 撹拌機、温度計、アリーン冷却管を付した200mL三つ口フラスコに9-フルオレノン14.42g(0.08モル)、レゾルシン88.09g(0.80モル)、反応溶媒としてイオン交換水14.42gを入れ、撹拌を開始した。ここにドデシルメルカプタン7.45g(0.037モル)を入れ、昇温し、反応溶液が55℃となった時点で35%塩酸24.58g(0.24モル)を添加した。さらに昇温していくことで、内温116℃で還流が開始した。還流開始後4時間の時点でイオン交換水40.00gを注入した。さらにフラスコを冷却し、反応溶液の温度を25℃とした。この反応溶液を分析ロートに移し、シクロペンチルメチルエーテル144.2gにて2回抽出し、この2回のエーテル層を一括して分液ロートに移液した。このエーテル層をイオン交換水173.0gにて2回水洗し、水洗済みエーテル溶液を減圧蒸留によりエーテル除去を行うことでスラリー状物80.61gを得た。このスラリー状物にイソプロピルアルコール40.3gを加え、還流させることによりスラリーを溶解し、ここにイオン交換水40.3gを入れ、放冷した。冷却により析出した粉末をヌッチェと吸引びんを使用し、吸引ろ過(ろ紙:ADVANTEC5C)により分離し、淡黄色粉末状の粗成物52.37gを得た。この粗成物10.00gを再度イソプロピルアルコール22.00gに溶解し、一旦還流させた後、室温まで徐冷した。析出物を吸引ろ過(ろ紙:ADVANTEC5C)により単離し、ヌッチェ上でイオン交換水22.00gにて2回水洗した。減圧乾燥させることにより白色粉末状の精製物7.34gを得た。
[Comparative Example 1]
14.42 g (0.08 mol) of 9-fluorenone, 88.09 g (0.80 mol) of resorcin, and 14.0 g of ion-exchanged water as a reaction solvent were placed in a 200 mL three-necked flask equipped with a stirrer, a thermometer, and an arene condenser. 42 g was added and stirring was started. 7.45 g (0.037 mol) of dodecyl mercaptan was added thereto, and when the temperature of the reaction solution reached 55° C., 24.58 g (0.24 mol) of 35% hydrochloric acid was added. As the temperature was further increased, reflux started at an internal temperature of 116°C. 40.00 g of ion-exchanged water was injected 4 hours after the start of reflux. Further, the flask was cooled to bring the temperature of the reaction solution to 25°C. This reaction solution was transferred to an analysis funnel and extracted twice with 144.2 g of cyclopentyl methyl ether, and the two ether layers were collectively transferred to a separating funnel. This ether layer was washed twice with 173.0 g of ion-exchanged water, and the washed ether solution was distilled under reduced pressure to remove the ether, thereby obtaining 80.61 g of slurry. 40.3 g of isopropyl alcohol was added to this slurry and refluxed to dissolve the slurry. The powder precipitated by cooling was separated by suction filtration (filter paper: ADVANTEC 5C) using a Nutsche and a suction bottle to obtain 52.37 g of pale yellow powdery crude product. 10.00 g of this crude product was dissolved again in 22.00 g of isopropyl alcohol, refluxed once, and slowly cooled to room temperature. The precipitate was isolated by suction filtration (filter paper: ADVANTEC5C) and washed twice with 22.00 g of deionized water on a Nutsche. By drying under reduced pressure, 7.34 g of a white powdery purified product was obtained.
 得られた白色粉末についてH-NMR、13C-NMR、FD-MSにより、下記式(12)に示す目的物(スピロ[フルオレン9,9’-(2’,7’-ジヒドロキシキサンテン)])であることを確認した。なお、得られた白色粉末の理化学的性質は以下のとおりであった。また、GPCより、純度が97.3%であることを確認した。 The resulting white powder was analyzed by 1 H-NMR, 13 C-NMR, and FD-MS to identify the desired product (spiro[fluorene 9,9′-(2′,7′-dihydroxyxanthene)] represented by the following formula (12). ). The physicochemical properties of the obtained white powder were as follows. Moreover, it was confirmed by GPC that the purity was 97.3%.
 マススペクトル:(m/z)364。
 H-NMR:(500MHz,DMSO-d):δ 5.85(s,1H),6.13(dd,J=8.3Hz,2.4Hz,2H),6.30(d,J=2.5Hz,2H),6.49(d,J=8.3Hz,2H),7.05(d,J=8.1Hz,2H),7.30(tt,J=7.4Hz,1.4Hz,1H),7.41(t,J=7.7Hz,2H),7.51(d,J=8.3Hz,2H),7.61(dd,J=8.4Hz,1.2Hz,2H),8.90-9.30(a pair of br s, 4 H)。
 13H-NMR:(500MHz,DMSO-d):δ 41.2,102.5,105.5,121.3,126.2,126.5,129.0,129.5,130.2,137.2,140.3,145.0,155.5,156.4。
Mass spectrum: (m/z) 364.
1 H-NMR: (500 MHz, DMSO-d 6 ): δ 5.85 (s, 1H), 6.13 (dd, J = 8.3 Hz, 2.4 Hz, 2H), 6.30 (d, J = 2.5Hz, 2H), 6.49 (d, J = 8.3Hz, 2H), 7.05 (d, J = 8.1Hz, 2H), 7.30 (tt, J = 7.4Hz, 1.4 Hz, 1 H), 7.41 (t, J = 7.7 Hz, 2 H), 7.51 (d, J = 8.3 Hz, 2 H), 7.61 (dd, J = 8.4 Hz, 1 .2 Hz, 2 H), 8.90-9.30 (a pair of br s, 4 H).
13 H-NMR: (500 MHz, DMSO-d 6 ): δ 41.2, 102.5, 105.5, 121.3, 126.2, 126.5, 129.0, 129.5, 130.2 , 137.2, 140.3, 145.0, 155.5, 156.4.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 表1に、実施例1、比較例1でそれぞれ得られた化合物の屈折率、屈折率の測定に用いた溶液の濃度と屈折率を示す。 Table 1 shows the refractive index of the compounds obtained in Example 1 and Comparative Example 1, and the concentration and refractive index of the solution used for measuring the refractive index.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 実施例1の化合物は、比較例1の化合物に比べ、高屈折率であった。 The compound of Example 1 had a higher refractive index than the compound of Comparative Example 1.
 本発明によれば、高屈折率を発現できる化合物およびその用途を提供できる。 According to the present invention, a compound capable of exhibiting a high refractive index and its use can be provided.

Claims (9)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Rは、水素原子またはアリール基であり、
     Rは、少なくとも2個のベンゼン環を含む2価基であり、2個のRは同一でも異なっていてもよく、
     aおよびbは、それぞれ独立に0~6の整数であり、
     Rは、アルキレン基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
     cおよびdは、それぞれ独立に1~10の整数であり、
     eは0~5の整数であり、fは0~4の整数であり、
     Rは置換基であり、(e+f)が2以上である場合、(e+f)個のRは同一でも異なっていてもよい。
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), R 1 is a hydrogen atom or an aryl group,
    R 2 is a divalent group containing at least two benzene rings, two R 2 may be the same or different,
    a and b are each independently an integer of 0 to 6,
    R 3 is an alkylene group, and when (a + b) is 2 or more, (a + b) R 3 may be the same or different,
    c and d are each independently an integer of 1 to 10,
    e is an integer from 0 to 5, f is an integer from 0 to 4,
    R 4 is a substituent, and when (e+f) is 2 or more, (e+f) R 4s may be the same or different.
  2.  下記式(2)で表される化合物。
    Figure JPOXMLDOC01-appb-C000002
     式(2)中、Rは、水素原子またはアリール基であり、
     Rは、少なくとも2個のベンゼン環を含む2価基であり、2個のRは同一でも異なっていてもよく、
     aおよびbは、それぞれ独立に0~6の整数であり、
     Rは、アルキレン基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
     cおよびdは、それぞれ独立に1~10の整数であり、
     Xは、重合性官能基もしくは反応性官能基を含む1価基、または水素原子であり、(c+d)個のXは同一でも異なっていてもよく、(c+d)個のXのうち少なくとも1個は前記1価基であり、
     eは0~5の整数であり、fは0~4の整数であり、
     Rは置換基であり、(e+f)が2以上である場合、(e+f)個のRは同一でも異なっていてもよい。
    A compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    In formula (2), R 1 is a hydrogen atom or an aryl group,
    R 2 is a divalent group containing at least two benzene rings, two R 2 may be the same or different,
    a and b are each independently an integer of 0 to 6,
    R 3 is an alkylene group, and when (a + b) is 2 or more, (a + b) R 3 may be the same or different,
    c and d are each independently an integer of 1 to 10,
    X is a monovalent group containing a polymerizable functional group or a reactive functional group, or a hydrogen atom, (c + d) X may be the same or different, and at least one of (c + d) X is the monovalent group,
    e is an integer from 0 to 5, f is an integer from 0 to 4,
    R 4 is a substituent, and when (e+f) is 2 or more, (e+f) R 4s may be the same or different.
  3.  請求項1に記載の化合物に基づく構成単位を有する樹脂。 A resin having a structural unit based on the compound according to claim 1.
  4.  ポリカーボネート樹脂である請求項3に記載の樹脂。 The resin according to claim 3, which is a polycarbonate resin.
  5.  ポリエステル樹脂である請求項3に記載の樹脂。 The resin according to claim 3, which is a polyester resin.
  6.  請求項2に記載の化合物を含む硬化性組成物。 A curable composition containing the compound according to claim 2.
  7.  請求項6に記載の硬化性組成物の硬化物。 A cured product of the curable composition according to claim 6.
  8.  請求項3~5のいずれか一項に記載の樹脂を含む光学部材。 An optical member containing the resin according to any one of claims 3 to 5.
  9.  請求項7に記載の硬化物を含む光学部材。 An optical member containing the cured product according to claim 7.
PCT/JP2022/036190 2021-10-04 2022-09-28 Compound, resin, curable composition, cured product, and optical member WO2023058524A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-163480 2021-10-04
JP2021163480 2021-10-04
JP2022-143464 2022-09-09
JP2022143464A JP2023054758A (en) 2021-10-04 2022-09-09 Compound, resin, curable composition, cured material and optical member

Publications (1)

Publication Number Publication Date
WO2023058524A1 true WO2023058524A1 (en) 2023-04-13

Family

ID=85803394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036190 WO2023058524A1 (en) 2021-10-04 2022-09-28 Compound, resin, curable composition, cured product, and optical member

Country Status (1)

Country Link
WO (1) WO2023058524A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160663A (en) * 2004-12-07 2006-06-22 Honshu Chem Ind Co Ltd Method for producing 1,1'-bis(2-hydroxynaphthyl)
JP2007199653A (en) * 2005-12-27 2007-08-09 Shin Etsu Chem Co Ltd Photoresist underlayer film forming material and pattern forming method
WO2014123005A1 (en) * 2013-02-08 2014-08-14 三菱瓦斯化学株式会社 Novel aryl compound and method for producing same
JP2019077672A (en) * 2017-10-25 2019-05-23 田岡化学工業株式会社 Bisaryl alcohols having naphthalene skeleton and method for producing the same
JP2021513535A (en) * 2018-02-09 2021-05-27 三菱瓦斯化学株式会社 Triarylmethane compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160663A (en) * 2004-12-07 2006-06-22 Honshu Chem Ind Co Ltd Method for producing 1,1'-bis(2-hydroxynaphthyl)
JP2007199653A (en) * 2005-12-27 2007-08-09 Shin Etsu Chem Co Ltd Photoresist underlayer film forming material and pattern forming method
WO2014123005A1 (en) * 2013-02-08 2014-08-14 三菱瓦斯化学株式会社 Novel aryl compound and method for producing same
JP2019077672A (en) * 2017-10-25 2019-05-23 田岡化学工業株式会社 Bisaryl alcohols having naphthalene skeleton and method for producing the same
JP2021513535A (en) * 2018-02-09 2021-05-27 三菱瓦斯化学株式会社 Triarylmethane compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHATERIAN, H.R. GHASHANG, M. HASSANKHANI, A.: "One-pot synthesis of aryl 14H-dibenzo[a,j]xanthene leuco-dye derivatives", DYES AND PIGMENTS, ELSEVIER APPLIED SCIENCE PUBLISHERS BARKING, GB, vol. 76, no. 2, 14 September 2007 (2007-09-14), GB , pages 564 - 568, XP022245347, ISSN: 0143-7208, DOI: 10.1016/j.dyepig.2006.11.004 *

Similar Documents

Publication Publication Date Title
US8110614B2 (en) Adamantane derivative, method for producing the same, and resin composition containing adamantane derivative
US10689318B2 (en) Bisphenol having fluorene skeleton, method for producing same, polyarylate resin, (meth)acrylate compound and epoxy resin which are derived from the bisphenol
JP5330683B2 (en) Alcohol having a fluorene skeleton
CN101426827B (en) Adamantyl group-containing epoxy-modified (meth) acrylate and resin composition containing the same
US20100145002A1 (en) Tetracarboxylic acid or polyesterimide thereof, and process for production of the same
US7939682B2 (en) Fluorine-containing adamantane derivative, fluorine-containing adamantane derivative having polymerizable group, and resin composition containing same
JP2012102228A (en) Epoxy resin composition having fluorene skeleton, and cured material thereof
JP2014028806A (en) Alcohol having fluorene skeleton
JP5186200B2 (en) Epoxy compound having fluorene skeleton
JP5395352B2 (en) Alcohol having a fluorene skeleton
WO2010084802A1 (en) Adamantane compound
WO2007010784A1 (en) Fluoroadamantane derivative, resin composition containing the same, and optical electron member using the resin composition
WO2023058524A1 (en) Compound, resin, curable composition, cured product, and optical member
JP2023054758A (en) Compound, resin, curable composition, cured material and optical member
WO2023190508A1 (en) Optical member, material for forming optical member and method for manufacturing same, and method for manufacturing optical member
JP2023152833A (en) Optical member, optical member forming material, manufacturing method thereof, and manufacturing method of optical member
JP6743993B2 (en) Epoxy (meth)acrylate resin composition, curable resin composition, cured product and article
JP5396120B2 (en) Adamantane derivatives
TW200904808A (en) Adamantane derivative, resin composition using the same, and resin cured product
WO2019022251A1 (en) Novel (poly)amine compound, resin, and cured product
JP2011105619A (en) Adamantane derivative
JP2011219451A (en) Adamantane derivative, method for producing the same and resin composition containing adamantane derivative
JP2013203695A (en) Novel fluorene epoxy compound
JP2017128626A (en) Thermosetting compound
JP6487239B2 (en) Phenoxy (meth) acrylate and production method and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878394

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)