WO2023058245A1 - Windmill structure for wind power generation - Google Patents

Windmill structure for wind power generation Download PDF

Info

Publication number
WO2023058245A1
WO2023058245A1 PCT/JP2021/037457 JP2021037457W WO2023058245A1 WO 2023058245 A1 WO2023058245 A1 WO 2023058245A1 JP 2021037457 W JP2021037457 W JP 2021037457W WO 2023058245 A1 WO2023058245 A1 WO 2023058245A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
wind turbine
frame
windmill
plate
Prior art date
Application number
PCT/JP2021/037457
Other languages
French (fr)
Japanese (ja)
Inventor
久和 内山
尊之 青木
Original Assignee
サンパワ―株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンパワ―株式会社 filed Critical サンパワ―株式会社
Priority to PCT/JP2021/037457 priority Critical patent/WO2023058245A1/en
Publication of WO2023058245A1 publication Critical patent/WO2023058245A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a wind turbine structure for wind power generation.
  • Vertical-axis wind turbines include drag-type wind turbines (e.g., Savonius wind turbines, paddle wind turbines, cross-flow wind turbines, etc.) that use the drag force acting on the impeller to obtain rotational force, and wind turbines that use the lift force acting on the impeller to rotate.
  • drag-type wind turbines e.g., Savonius wind turbines, paddle wind turbines, cross-flow wind turbines, etc.
  • Patent Literature 1 discloses a blade support structure for a vertical axis vertical wing type wind turbine.
  • This vertical axis type windmill does not need to control the direction of the windmill according to the direction of the wind, so it can be rotated regardless of the direction of the wind.
  • a heavy generator or the like is installed near the ground, the structure of the rotational energy transmission mechanism can be simplified.
  • vertical axis wind turbines have the problem that they require more energy to start rotation than horizontal axis wind turbines.
  • Patent Document 2 an upper wind collecting plate provided on the upper side of the vertical axis wind turbine, a lower wind collecting plate provided on the lower side of the vertical axis wind turbine, and a wind collecting plate provided on the outer periphery of the vertical axis wind turbine
  • a wind collector is disclosed that includes an outer wind collector plate.
  • the upper air collecting plate and the lower air collecting plate are vertically inclined so that the gap between them decreases from the outside to the inside of the wind turbine. Further, the outer peripheral side air collecting plate is radially provided at equal intervals from the wind turbine.
  • Patent Document 1 discloses a wind collecting mechanism in which a wind lens-type wind collecting mechanism that collects wind at the inlet and diffuses the wind at the outlet is provided radially at intervals of 90 degrees so that the light is converged by the optical lens.
  • An apparatus is disclosed.
  • Non-Patent Document 1 reports that when a plate-shaped appendage extending in the vertical direction is installed on the upstream side of the wind turbine, a larger output can be obtained than with a so-called wind lens type wind collector. be.
  • Non-Patent Document 1 examines the inflow and outflow of wind to and from the wind turbine in a plan view, and does not include a three-dimensional examination.
  • Non-Patent Document 1 does not assume natural winds blowing from all directions, but considers the wind collection effect of winds from one direction.
  • the wind collecting device of Patent Document 2 has wind lens type wind collecting mechanisms arranged radially at intervals of 90 degrees. come. SUMMARY OF THE INVENTION An object of the present invention is to provide a wind turbine structure for wind power generation that can efficiently rotate when exposed to wind.
  • a first aspect of a wind turbine structure for wind power generation comprises a vertical axis wind turbine and a wind collector, wherein the wind collector is upstream of the wind turbine and and a flat plate-shaped wind direction plate arranged to face the wind direction plate, the wind direction plate having a left side, a right side, an upper side, and a window surrounded by them.
  • “arranged so as to face the wind” means to be substantially perpendicular to the vector of the received wind.
  • the wind direction plate having the window is provided on the upstream side of the wind with respect to the wind turbine. can be increased. Therefore, the windmill can be efficiently rotated.
  • the wind direction plate has a lower surface and the window is surrounded by left and right surfaces and upper and lower surfaces. By closing the four sides of the window with the wind direction plate, the amount of air flowing into the window can be further increased.
  • the width of each of the left and right sides is 0.5 times or more the width D of the impeller.
  • the wind deflector is rotatable around the wind turbine.
  • the wind direction plate is rotatable around the axis of the windmill.
  • the wind turbine includes a frame and an impeller supported by the frame, and the wind direction plate is fixed to the frame. It is preferable to have In particular, it is preferable that the wind direction plate is rotatably supported by the frame. In that case, it is preferable that the frame comprises a plurality of pillars and an annular connecting member that fixes the plurality of pillars at regular intervals in the circumferential direction.
  • the wind turbine structure for wind power generation according to the first aspect of the present invention has a housing that covers the wind turbine and the wind collector, and the housing redirects the wind from upstream to downstream. It is preferred to have sidewalls that allow passage through.
  • the wind turbine structure of the first aspect is provided with a flat plate-like wind direction plate having the wind direction plate arranged to face the wind, and even if it is damaged by the pressure of the wind, the broken objects can be prevented from scattering. can be done.
  • a second aspect of the wind turbine structure for wind power generation of the present invention comprises a vertical axis wind turbine and a wind collector, wherein the wind collector is disposed upstream of the wind turbine. and a wind direction plate that guides the wind to the windmill by means of, the wind direction plate being rotatable around the windmill.
  • the wind direction plate is rotatable around the axis of the wind turbine.
  • the wind direction plate is a flat plate extending in the vertical direction, and the wind direction plate comprises a frame and a plate main body accommodated in the frame. and the plate body is preferably a solar panel.
  • the wind direction plate is a flat plate extending in the vertical direction, and the wind direction plate comprises a frame and a plate main body accommodated in the frame. and the plate body is preferably rotatable.
  • the wind collector includes a support member that connects the wind direction plate and the wind turbine, and the support member is rotatably supported by the wind turbine.
  • the wind turbine has a frame and an impeller supported by the frame, and the wind direction plate is fixed to the frame. is preferable, and it is particularly preferable that the wind direction plate is rotatably supported by the frame.
  • the wind turbine structure for wind power generation according to the second aspect of the present invention has a housing that covers the wind turbine and the wind collector, and the housing redirects the wind from upstream to downstream. It is preferred to have sidewalls that allow passage through.
  • the wind turbine structure of the second aspect includes a wind direction plate that guides the wind to the wind turbine, and even if it should be damaged by the pressure of the wind, it is possible to prevent the broken objects from scattering.
  • a third aspect of the wind turbine structure for wind power generation of the present invention comprises a vertical axis wind turbine and a wind collector, and the wind collector is arranged upstream of the wind turbine.
  • the present inventor has found through research that when the rotation speed of a vertical axis wind turbine that rotates by lift force, especially a vertical axis vertical blade wind turbine, increases, the rotation of the wind turbine generates a tornado-like airflow around the wind turbine. rice field.
  • the wind direction plate has a left surface, a right surface, and a window provided therebetween, and the wind guide plate is provided on the left surface and/or the right surface. It preferably extends from the back side in the downstream direction of the wind. In this case, generation of a tornado-like air current can be prevented without interfering with the rotation of the wind turbine caused by the wind guided to the wind turbine by the wind direction plate.
  • the wind guide plate of the third aspect of the wind turbine structure of the present invention can also be applied to the wind turbine structure of the first aspect and the wind turbine structure of the second aspect.
  • the wind turbine structure for wind power generation has a housing that covers the wind turbine and the wind collector, and the housing redirects the wind from upstream to downstream. It is preferred to have sidewalls that allow passage through.
  • the wind turbine structure of the third aspect also has a flat plate wind direction plate having the wind direction plate arranged to face the wind, and even if it is damaged by the pressure of the wind, the broken objects can be prevented from scattering. can be done.
  • a fourth aspect of the wind turbine structure for wind power generation of the present invention comprises a vertical axis wind turbine, a wind collector, and a housing covering the wind turbine and the wind collector.
  • a wind direction plate is provided upstream of the wind turbine to guide the wind to the wind turbine, and the housing includes a side wall that allows the wind to pass from upstream to downstream without changing direction.
  • the "side wall of the housing” refers to a wall that forms the outer surface of the housing and receives wind coming from the side (horizontal wind).
  • the fourth aspect of the wind turbine structure of the present invention includes a housing that covers the wind turbine and the wind collector, so even if the wind turbine and the wind collector are damaged, there is no risk of the parts scattering.
  • the housing since the housing includes side walls that allow the wind to flow from upstream to downstream without changing its direction, the influence on the wind flowing into the windmill is small.
  • the side wall is a wire mesh formed of metal wires. Examples of the wire mesh include those formed by weaving metal wires and those formed by welding metal wires together. It is preferable that the distance between the intersections of the wire mesh is 10 cm to 50 cm. If the distance between the intersection points is less than 10 cm, the effect on the wind flowing into the wind turbine becomes large. On the other hand, if the distance between the intersection points is greater than 50 cm, there is a greater possibility that the damaged object will scatter around. Especially if the wind collector rotates around the windmill, it is safe.
  • the windmill structures of the first and third aspects of the present invention have high rotational efficiency when subjected to wind perpendicular to the axis of the windmill.
  • the wind turbine structure of the second aspect of the present invention can efficiently guide the natural winds that blow from all directions to the wind turbines, so that the rotation efficiency is high.
  • the wind turbine structure of the fourth aspect of the present invention is safe because there is little risk of the damaged objects scattering around even if the wind turbine or the wind collector is damaged.
  • FIGS. 2f, g, h are respectively a plan view, a side view and a schematic view of the plane of rotation of an impeller of a wind turbine.
  • 3a, 3b and 3c are respectively a front view, a side view and a plan view of the wind collector of the windmill structure of FIG. 1, and FIG. 3d is a schematic diagram showing the rotation of the wind collector.
  • Figures 4a to 4f are drawings showing other embodiments of the wind turbine structure of the first aspect, respectively.
  • Figures 5a, b and c are a front view, a side view and a plan view, respectively, showing an embodiment of the second aspect of the wind turbine structure for wind power generation of the present invention.
  • 6a and 6b are a plan view and a side view, respectively, of the wind turbine structure of FIG. 5
  • FIGS. 6c, 6d, and 6e are a plan view, a front view, and a cross-sectional view taken along the line BB, respectively, showing the frame of the wind turbine.
  • 6f, g, h are respectively a top view, a side view and a schematic view of the plane of rotation of an impeller of a wind turbine.
  • FIG. 7a, 7b and 7c are respectively a front view, a side view and a plan view of the wind turbine structure wind collector of FIG. 8a, 8b, and 8c are a front view, a side view, and a plan view, respectively, showing the state when the solar panel of the wind direction plate of the wind collector is rotated by 90 degrees.
  • Figures 9a to 9e are drawings showing other embodiments of the wind turbine structure of the second aspect, respectively.
  • 10a and 10b are a side view and a plan view respectively showing still another embodiment of the wind turbine structure of the second aspect
  • FIGS. 10c and 10d respectively show still another embodiment of the wind turbine structure of the second aspect. It is a top view.
  • FIGS. 11a, b and c are respectively a front view, a side view and a plan view showing an embodiment of the third aspect of the wind turbine structure for wind power generation of the present invention
  • FIGS. It is a top view showing other embodiments.
  • Figures 12a-12c are plan views respectively showing still other embodiments of the wind turbine structure of the third aspect.
  • 13a and 13b are a plan view and a side view, respectively, showing an embodiment of the fourth aspect of the wind turbine structure for wind power generation of the present invention.
  • a windmill 100 includes an impeller 20 supported by a frame 10 .
  • the wind collector 200 comprises a wind vane 210 with a window 215 arranged upstream of the wind relative to the wind turbine 100 .
  • this windmill structure 1 By connecting this windmill structure 1 with a generator, it can be used as a wind power generator.
  • the windmill 100 has a frame 10 and an impeller 20 rotatably attached to the frame, as shown in FIGS. 2a and 2b.
  • the frame 10 includes three vertically extending columns 11 and two annular connecting members 12 connecting the columns at regular intervals in the circumferential direction.
  • the connecting member 12 has a boss 13, three spokes 14 radially extending from the boss 13, and a ring 15 connecting the ends of the spokes 14.
  • the boss 13 is provided with a bearing 13a that rotatably supports the impeller 20.
  • the connecting member 12 is arranged at the upper end and central portion of the column 11 so that the bearings 13a face each other. In other words, the impeller 20 is housed between the two connecting members 12 with its upper side released.
  • a support shaft 50 that rotatably supports a later-described air collecting device 200 is provided on the upper surface of the boss 13 of the upper connecting member 12 .
  • the impeller 20 has a rotating shaft 21 extending vertically, support arms 22 radially extending from the rotating shaft 21, and vertical blades 23 fixed to the tips of the supporting arms. It has The rotary shaft 21, support arm 22 and vertical blade 23 are integrated.
  • the rotating shaft 21 is rotatably attached to the frame 10 by being supported by the bearing 13a of the frame 10. As shown in FIG. By transmitting the rotational force of this rotating shaft 21 to a generator (not shown), a wind turbine generator is formed.
  • the support arms 22 radially extend three each from the upper portion and the lower portion of the rotating shaft 21 .
  • the number is not particularly limited.
  • the vertical blades 23 are supported by upper and lower support arms 22 and are provided in parallel with the rotation shaft 21 .
  • the number of vertical blades 23 is not particularly limited, it is preferably two to six, and particularly preferably two or three.
  • the shape of the vertical blades is such that when the wind turbine receives wind perpendicular to the axis of the wind turbine, the resultant force generated on multiple vertical blades provided at equal intervals in the circumferential direction is clockwise when viewed from above.
  • the shape is not particularly limited as long as it generates a moment in the (M direction in FIG. 2h) or counterclockwise direction.
  • the width D of the impeller refers to the diameter of the rotating surface of the vertical blades
  • the height H of the impeller refers to the height of the vertical blades.
  • the wind collector 200 has a flat wind direction plate 210 and a support member 220 that supports the wind direction plate 210 rotatably with respect to the frame.
  • the top of the wind turbine 100 is open.
  • the wind direction plate 210 is a flat plate-shaped one arranged on the upstream side of the wind with respect to the windmill and facing the wind.
  • the wind deflector 210 is a rectangular plate having a left side 211, a right side 212, an upper side 213, a lower side 214 and a window 215 surrounded by them (see FIG. 3a). At least a part of the impeller 20 can be seen through the window 215 when the wind turbine structure 1 is viewed from the front (viewpoint seen from the upstream side of the wind).
  • the width center of the window 215 coincides with the width center of the wind direction plate 210, and is on the axis of the wind turbine 100 when viewed from the front (viewpoint from the upstream side of the wind) (see FIG. 1).
  • the width X of the window 215 is D ⁇ X ⁇ 1.2D, preferably D ⁇ X ⁇ 1.1D, particularly preferably X ⁇ D (substantially the same), relative to the impeller width D. be.
  • the height Y of the window 215 is such that H ⁇ Y ⁇ 1.2H, preferably H ⁇ Y ⁇ 1.1H, particularly preferably Y ⁇ H (substantially the same ).
  • the left and right sides 211 and 212 of the wind direction plate 210 have the same width X1.
  • the lower limit of the width X1 is 0.5D or more, preferably 0.8D or more, and particularly preferably D or more.
  • the wind is efficiently guided to the window 215, and the turbulent wind that collides with the left and right faces and flows from the outside of the left face or the right face is prevented from flowing to the windmill.
  • the width X1 is larger than 2D, the wind collector becomes too large for the wind turbine, which is not preferable.
  • the height position of the upper surface 213 of the wind direction plate 210 is such that the lower end of the upper surface 213 and the upper end of the impeller 20 are substantially the same or the lower end of the upper surface 213 is slightly higher.
  • the lower limit of the height width Y1 of the upper surface 213 is 0.5D or more, preferably 0.8D or more, and particularly preferably D or more. As a result, the wind colliding with the upper surface is efficiently guided to the window 215 . If the width Y1 is larger than 2D, the wind collector becomes too large for the wind turbine, which is not preferable.
  • the upper end of the lower surface 214 and the lower end of the impeller 20 are substantially the same or the upper end of the lower surface 214 is slightly lower.
  • the lower limit of the height width Y2 of the lower surface 214 is not particularly limited, but is 0.5D or more, preferably 0.8D or more, and particularly preferably D or more.
  • the upper limit of the width Y2 is 2D or less.
  • the width of the upper surface 213 and the lower surface 214 of the wind direction plate 210 is preferably the same. However, the width of the upper surface 213 may be larger or smaller than the width of the lower surface 214 .
  • the wind direction plate 210 is composed of a frame body 216 and a plate body 217 fitted in the frame body.
  • the frame body 216 has an outer frame 216a and an inner frame 216b. Wheels 218 are provided at the lower end of the outer frame 216a.
  • the structure of the wind direction plate 210 is not particularly limited, and it may be an integral body or a structure in which a plurality of frames are integrated.
  • a circular rail 250 may be provided as shown by the imaginary line in FIG. 3c to regulate the rotation direction of the wheel 218.
  • the support member 220 has a rotating portion 221 that rotates about the support shaft 50 of the frame, and a connecting arm 222 that extends from the rotating portion 221 to the frame 216 of the wind direction plate 210, as shown in FIG. 3c.
  • a total of four connecting arms 222 are provided, that is, left and right outer frames 216a and left and right inner frames 216b.
  • the wind direction plate 210 can always be positioned on the upstream side of the wind from the wind turbine 100 .
  • the structure of the support member 220 is not particularly limited as long as it supports the wind direction plate 210 rotatably with respect to the frame 10 .
  • the wind turbine structure 1 configured in this way has the vertical wind direction plate 210 having the window on the upstream side of the wind direction, so that the wind is efficiently guided to the wind turbine through the window. be able to.
  • the wind direction plate 210 can be rotated around the wind turbine 100 in the wind turbine structure 1, the wind direction plate can be moved to the upstream side of the wind with respect to the wind turbine.
  • the wind turbine structure 1 becomes a wind turbine generator by attaching it to a generator.
  • a calculation device that calculates the position of the wind direction plate 210 according to the direction of the wind and a drive device that rotates the rotating part 221 based on the calculation, further efficiency can be achieved. It can be operated as a wind power generator.
  • the vertical axis wind turbine is a lift type vertical axis vertical wing wind turbine (vertical Darrieus wind turbine), but it is not particularly limited to this.
  • Other lift type wind turbines such as Darrieus windmills, helix turbines (twisted Darrieus windmills), vertical axis Magnus windmills may also be used, e.g. may be used.
  • the wind turbine structure in FIG. 1 shows a wind turbine with a frame and an impeller. good too.
  • the frame of the above embodiment is composed of three pillars 11 and two connecting members 12. is not particularly limited.
  • the upper part of the impeller 20 is open.
  • a plurality of pillars and a structure in which the pillars are connected at equal intervals in the circumferential direction are preferable because strength can be maintained.
  • a frame 10 having three posts 11, one connecting member 12, and a bearing 13a at the lower end, or a reinforcing ring 70 connected to the posts 11, as shown in FIG. 4b. may be provided one or more depending on the height of the wind turbine.
  • FIG. 4a a frame 10 having three posts 11, one connecting member 12, and a bearing 13a at the lower end, or a reinforcing ring 70 connected to the posts 11, as shown in FIG. 4b.
  • a plurality of impellers 20 may be accommodated vertically.
  • the ring 15 of the connecting member 12 may be a regular polygon instead of a circle as long as it is annular.
  • a multi-stage wind direction plate 210 multiple windows 215) as shown in FIG. 4d.
  • top windmill is provided with a top surface 213
  • bottom windmill is provided with a bottom surface 214
  • the windmills in between are provided with left and right surfaces 211, 212.
  • a plurality of windmills may be provided on the wind direction plate having one window 215 that becomes .
  • the rotating shaft and the vertical blades are connected by the support arm 22, but instead of the support arm 22, horizontal blades are used to produce an upward lift force when the impeller 20 rotates. may be used.
  • the impeller 20 rotates the rotating shaft 21, it may have a structure in which it rotates around the shaft fixed to the frame.
  • the air deflector 210 has a lower surface 214 below the window 215, but as shown in FIG. 4f, it may be omitted.
  • the wind direction plate is rotatably supported with respect to the frame.
  • the structure is not particularly limited. For example, it may be rotatably supported only on the axis of the windmill.
  • the wind collector may also rotate independently of the windmill. For example, it may be supported and rotated on rails 250 of FIG. 3c.
  • the rotation angle is not particularly limited. For example, in areas where the direction of the wind is generally constant, the rotation angle may be about 90 degrees, and the rotation angle can be selected according to the installation location.
  • FIG. The wind turbine structure 2 of FIGS. 5 a, b, c comprises a vertical axis vertical blade wind turbine 100 and a wind collector 200 .
  • a windmill 100 includes an impeller 20 supported by a frame 10 .
  • the wind collector 200 includes a wind direction plate 210 arranged upstream of the wind turbine 100 to guide the wind to the wind turbine 100 .
  • the wind direction plate 210 is connected to the wind turbine 100 so as to be rotatable around the axis of the wind turbine 100 . By connecting this windmill structure 1 with a generator, it can be used as a wind power generator.
  • the windmill 100 has a frame 10 and an impeller 20 rotatably attached to the frame, as shown in FIGS. 6a and 6b.
  • the frame 10 includes three vertically extending columns 11 and two annular connecting members 12 that connect the columns at equal intervals in the circumferential direction.
  • the connecting member 12 has a boss 13, three spokes 14 radially extending from the boss 13, and a ring 15 connecting the ends of the spokes 14.
  • the boss 13 is provided with a bearing 13a that rotatably supports the impeller 20.
  • the connecting member 12 is arranged at the upper end and central portion of the column 11 so that the bearings 13a face each other. In other words, the impeller 20 is housed between the two connecting members 12 with its upper side released.
  • a support shaft 50 that rotatably supports a later-described air collecting device 200 is provided on the upper surface of the boss 13 of the upper connecting member 12 .
  • the impeller 20 has a rotating shaft 21 extending vertically, supporting arms 22 radially extending from the rotating shaft 21, and vertical blades 23 fixed to the tips of the supporting arms. It has The rotary shaft 21, support arm 22 and vertical blade 23 are integrated.
  • the rotating shaft 21 is rotatably attached to the frame 10 by being supported by the bearing 13a of the frame 10. As shown in FIG. By transmitting the rotational force of this rotating shaft 21 to a generator (not shown), a wind turbine generator is formed.
  • the support arms 22 radially extend three each from the upper portion and the lower portion of the rotating shaft 21 .
  • the vertical blades 23 are supported by upper and lower support arms 22 and are provided in parallel with the rotation shaft 21 .
  • the number of vertical blades 23 is not particularly limited, it is preferably two to six, and particularly preferably two to three.
  • the shape of the vertical blades is such that when the wind turbine receives wind perpendicular to the axis of the wind turbine, the resultant force generated on multiple vertical blades provided at equal intervals in the circumferential direction is clockwise when viewed from above.
  • the shape is not particularly limited as long as it generates a moment in the (M direction in FIG. 6h) or counterclockwise direction.
  • the width D of the impeller refers to the diameter of the rotating surface of the vertical blades
  • the height H of the impeller refers to the height of the vertical blades.
  • the wind collector 200 has a flat plate-shaped wind direction plate 210 and a support member 220 that supports the wind direction plate 210 rotatably with respect to the frame.
  • the top of the wind turbine 100 is open.
  • the wind direction plate 210 is a plate-like member that guides the wind toward the windmill by being arranged upstream of the windmill. It has a rectangular shape composed of a frame 216A and a solar panel 212A fitted in the frame, and has a window 215 in the center.
  • the wind direction plate 210 is arranged so as to extend in the vertical direction.
  • the frame 216A has a left frame 216A1, a right frame 216A2, an upper frame 216A3, a lower frame 216A4, and a window 215 surrounded by these frames.
  • Bearings 217 are provided as indicated by dotted lines at the inner centers of the left and right frames of each frame other than the lower frame 216A4 (only the frame 216A3 is shown for the bearing 217).
  • the lower frame 216A4 is provided with bearings (not shown) at the inner lower ends of the left and right frames. Wheels 218 are provided at the lower end of the lower frame 216A4. Circular rails 250 may also be provided, as shown in phantom in FIG. 7c.
  • the solar panel 212A includes a left panel 212A1 attached to the left frame 216A1, a right panel 212A2 attached to the right frame 216A2, an upper panel 212A3 attached to the upper frame 216A3, and a lower panel 212A3 attached to the lower frame 216A4. and a side panel 212A4.
  • each panel other than the lower panel 212A4 At the center of both sides of each panel other than the lower panel 212A4, shaft cores (not shown) that are inserted into the bearings of each frame are protrudingly provided (not shown).
  • the lower panel 212A4 has axial centers (not shown) at the lower ends on both sides.
  • Solar panels 212A of wind deflector 210 are configured in this way so that each panel 212A1-212A4 is parallel to the horizontal axis with respect to each frame 216A1-216A4, as shown in FIGS. 8a-8c. It is rotatable around its axis. L1, L2, L3 in FIG. 8b indicate the rotational trajectories of panels 212A1, 212A3, 212A4, respectively. Because of this configuration, when the wind is still or not blowing enough, each panel can be rotated to face the sun and generate electricity from solar energy. In addition, during storms, leveling each panel (perpendicular to the wind) prevents the panels from being blown away or damaged by the wind. Although each panel is rotatable about the horizontal axis here, it may be rotatable about the vertical axis.
  • the width X of the window 215 is D ⁇ X ⁇ 1.2D, preferably D ⁇ X ⁇ 1.1D, and particularly preferably X ⁇ D ( substantially the same).
  • the height Y of the window 215 is such that H ⁇ Y ⁇ 1.2H, preferably H ⁇ Y ⁇ 1.1H, particularly preferably Y ⁇ H (substantially the same ).
  • Left side frame 216A1 and right side frame 216A2 of frame 216A have the same width X1.
  • the lower limit of the width X1 is 0.5D or more, preferably 0.8D or more, and particularly preferably D or more.
  • the wind is efficiently guided to the window 215, and the turbulent wind that collides with the left and right faces and flows from the outside of the left face or the right face is prevented from flowing to the windmill. If the width X1 is larger than 2D, the wind collector becomes too large for the wind turbine, which is not preferable.
  • the lower end of the upper frame 216A3 and the upper end of the impeller 20 are substantially the same or the lower end of the upper frame 216A3 is slightly higher.
  • the lower limit of the height width Y1 of the upper frame 216A3 is 0.5D or more, preferably 0.8D or more, and particularly preferably D or more. This guides the wind to the window 215 efficiently. If the width Y1 is larger than 2D, the wind collector becomes too large for the wind turbine, which is not preferable.
  • the upper end of the lower frame 216A4 and the lower end of the impeller 20 are substantially the same or the upper end of the lower frame 216A4 is slightly lower.
  • the lower limit of the height width Y2 of the lower frame 216A4 is not particularly limited, but is 0.5D or more, preferably 0.8D or more, and particularly preferably D or more.
  • the upper limit of the width Y2 is 2D or less. It is preferable that the upper frame 216A3 and the lower frame 216A4 of the window 215 have the same width.
  • the support member 220 has a rotating portion 221 that rotates about the support shaft 50 of the frame, and a connecting arm 222 that extends from the rotating portion 221 to the frame 216A of the wind direction plate 210, as shown in FIG. 7c.
  • This embodiment has a total of four connecting arms 222 .
  • the wind direction plate 210 rotates around the outer periphery of the connecting member 12 of the frame with the width center O as an axis.
  • the wind direction plate 210 can always be positioned on the upstream side of the wind from the wind turbine 100 .
  • the shorter the distance Z the better, as long as it does not interfere with the rotation of the wind deflector 210 (see FIG. 7c).
  • the wind turbine structure 2 configured in this way is used with the wind direction plate 210 in a flat plate shape when the wind is blowing. That is, the wind direction plate 210 gathers the received wind to the window 215 .
  • the windmill can be efficiently rotated.
  • the wind collector 200 can rotate the wind direction plate with respect to the frame according to the direction of the wind, and can arrange the wind direction plate on the upstream side of the wind with respect to the wind turbine. Therefore, it is possible to efficiently utilize wind energy corresponding to various winds.
  • the wind deflector 210 is rotated around the axis of the windmill so that each solar panel faces the sun, as shown in FIG. 7c.
  • each panel of the solar panel 212A is rotated around the axis of each frame of the frame 216A as shown in FIG. 8b, solar energy can be efficiently obtained. Additionally, during storms, each panel is leveled (perpendicular to the wind), shutting down the entire system and preventing the panels from being blown away or damaged by the wind. can.
  • the vertical axis wind turbine is a lift type vertical axis vertical wing wind turbine (vertical Darrieus wind turbine), but it is not particularly limited to this.
  • Other lift type wind turbines such as Darrieus windmills, helix turbines (twisted Darrieus windmills), vertical axis Magnus windmills may also be used, e.g. may be used.
  • a wind turbine with a frame and an impeller is mentioned, but for example, it is not equipped with a frame and consists only of a fixed rotating shaft and an impeller rotating around it. may The windmill structure 2 in FIG.
  • the wind direction plate rotates 360 degrees, but the angle of rotation is not particularly limited. For example, in areas where the direction of the wind is generally constant, the rotation angle may be about 90 degrees, and the rotation angle can be selected according to the installation location.
  • the wind collector 200 is supported by the frame of the wind turbine and rotates, but the wind collector 200 may rotate independently. For example, it may be supported by rails 250 in FIG. 7 and rotated.
  • the frame of the above embodiment is composed of three pillars 11 and two connecting members 12, but the upper part of the impeller 20 is open so that the impeller 20 can be rotated.
  • the structure is not particularly limited as long as it can be freely supported.
  • a plurality of pillars and a structure in which the pillars are connected at equal intervals in the circumferential direction are preferable because strength can be maintained.
  • a frame 10 having three pillars 11, one connecting member 12, and a bearing 13a at the lower end, or a reinforcing ring 70 connected to the pillars 11, as shown in FIG. 9b. may be provided one or more depending on the height of the wind turbine.
  • FIG. 9a a frame 10 having three pillars 11, one connecting member 12, and a bearing 13a at the lower end, or a reinforcing ring 70 connected to the pillars 11, as shown in FIG. 9b.
  • a plurality of impellers 20 may be accommodated vertically.
  • the ring 15 of the connecting member 12 may be a regular polygon instead of a circle as long as it is annular.
  • the rotating shaft and the vertical blades are connected by the support arm 22, but instead of the support arm 22, horizontal blades are used to produce an upward lift force when the impeller 20 rotates. may be used.
  • the impeller 20 rotates the rotating shaft 21, it may have a structure in which it rotates around the shaft fixed to the frame.
  • the wind direction plate of the wind collector is not particularly limited as long as it is arranged upstream of the wind turbine to guide the wind to the wind turbine.
  • the wind direction plates 210A of the wind collector 200A are not provided above and below the wind turbine 100, but consist of a left plate (left surface) 210A1 and a right plate (right surface) 210A2. ing.
  • the left side plate 210A1 and the right side plate 210A2 are connected by the support member 220.
  • a connecting portion may be provided between the left side plate 210A1 and the right side plate 210A2.
  • a wind direction plate 210 that does not have a plate only below the wind turbine may be used.
  • a multi-stage wind turbine having upper and lower impellers 20 as shown in FIG. 9c
  • a single window 215 may direct air to multiple windmills, as shown in FIG. 4e.
  • a pair of flat plates (210B1 and 210B2) inclined with respect to the direction of the wind to increase the density of the wind towards the wind turbine from upstream, as in the wind turbine structure 2B of FIG. 10c and the wind turbine structure 2C of FIG.
  • Wind direction plates 210B and 210C made of curved plates (210C1 and 210C2) may also be used.
  • the frame body of the wind direction plate of the wind collector is divided vertically and horizontally, but the divided shape is not particularly limited.
  • the solar panel may be rotatably fitted in at least one frame, and a normal panel may be fixed to the other frames so as not to rotate.
  • the left and right frames may be fitted with solar panels, and the top and bottom frames may be fixed with normal panels.
  • the panel may not be a solar panel as long as it can guide the wind to the windmill.
  • the structure of the support member is not particularly limited as long as it supports the wind direction plate 210 rotatably with respect to the frame 10 .
  • the rotating portion 221 is supported by the support shaft 50 provided at the upper end of the frame 10, but may be rotatably supported on the upper surface of the connecting member 12 on the upper side of the frame 10.
  • FIG. it is conceivable to provide a ring-shaped rail on the upper surface of the connecting member 12 and provide a wheel on the lower surface of the rotating part 221 to movably engage with the rail.
  • the support member 220 is provided only at the upper end of the frame, but two or more may be attached so as to sandwich the upper and lower windmills.
  • the wind collecting device may be rotated independently.
  • the frame and the wind collecting device may be integrated so that they rotate together with the frame.
  • FIG. The wind turbine structure 3 of Figures 11a,b,c comprises a vertical axis vertical blade wind turbine 100 and a wind collector 200A.
  • a windmill 100 includes an impeller 20 supported by a frame 10 .
  • the wind collector 200A includes a wind direction plate 210A that guides the wind to the windmill 100 by being arranged upstream of the windmill 100 .
  • a wind guide plate 260 extending from upstream to downstream is provided on the downstream side (rear surface) of the wind direction plate 210A.
  • the wind turbine 100 is substantially the same as the wind turbine 100 of the wind turbine structure 1 of FIG. 1 or the wind turbine structure 2 of FIG.
  • the wind collector 200A has a flat wind direction plate 210A and a support member 220 that rotatably supports the wind direction plate 210A with respect to the frame.
  • the support member 220 is substantially the same as the support member 220 of the wind turbine structure 1 of FIG.
  • the wind direction plate 210A is a plate-like plate arranged on the upstream side of the wind with respect to the wind turbine and facing the wind.
  • the wind direction plate 210A is a rectangular plate and has a left surface 210A1, a right surface 210A2, and a window 215 provided therebetween.
  • the wind guide plate 260 is on the back side (downstream side) of the right surface 210A2 and extends from the inner side (window 215 side) toward the back side (downstream direction).
  • the wind guide plate 260 is provided on the upstream side (right side) of the impeller.
  • the wind guide plate 260 parallel to the flow of wind extends from the back side of the right surface 210A2 to the central axis of the windmill 100 (that is, its length is half the width D of the impeller 20).
  • it may extend to the back side (downstream side) of the wind turbine 100 (length D), and as shown in FIG. /2D) may be extended.
  • the lower limit of the length of the wind guide plate is 1/4D or more, preferably 1/3D or more.
  • the upper limit is D or less.
  • the wind guide plate 260 is provided on the upstream side of the impeller rotation (right surface 210A2), but may be provided on the downstream side of the impeller rotation (left surface 210A1) as shown in FIG. 11f. , may be provided on both the left and right sides as shown in FIG. 11g.
  • the third aspect of the invention is not limited to the above embodiments.
  • the wind direction plate 210 of the wind turbine structure 3 of FIG. 11 is provided with a wind guide plate on the wind direction plate consisting of left and right sides, but like the wind turbine structure 1 of FIG.
  • a wind guide plate may be provided on the wind direction plate 210 (not shown).
  • the wind direction plate 210B is provided with a pair of flat plates (left surface 210B1 and right surface 210B2) inclined with respect to the direction of the wind so as to increase the density of the wind directed from the upstream toward the wind turbine.
  • a wind guide plate 260 may also be provided in the wind turbine structure 2C of FIG. The wind guide plate 260 of the wind turbine structure 3 of FIG.
  • the wind guide plate 260 extends from the back side of the wind guide plate 210, but has a gap between the wind guide plate 210 and the wind guide plate 260, like the wind turbine structure 3B of FIG. 12b. may be It is preferable to install the wind guide plate in parallel with the wind flow (flow direction from upstream to downstream), but like the wind turbine structure 3C in FIG. 260 may be provided.
  • the arrangement of the wind guide plate 260 is not particularly limited as long as it is provided around the windmill so as not to generate an airflow around the windmill.
  • the wind turbine structure 4 of FIGS. 13a and 13b has a vertical axis vertical wing type wind turbine 100 , a wind collector 200 , and a housing 300 covering the wind turbine 100 and the wind collector 200 .
  • the housing 300 has columns 301 , crosspieces 302 , side walls 303 provided between the columns 301 , and top walls 304 provided between the crosspieces 302 .
  • the side wall 303 passes the wind flowing from upstream to downstream without changing its direction. In other words, the housing 300 is configured to pass the wind in all directions without changing its direction.
  • the housing 300 covers the windmill 100 and the wind collector 200 .
  • Side wall 303 is a wire mesh formed of metal wires.
  • the wire mesh may be formed by weaving metal wires or by welding metal wires together.
  • the distance between intersection points of the wire mesh is preferably 10 cm to 50 cm, and the preferred lower limit thereof is 20 cm or more, particularly preferably 30 cm or more. If it is smaller than 10 cm, the resistance to the wind flowing into the windmill increases, and the degree of deceleration of the wind flowing into the windmill increases. On the other hand, if the length is larger than 50 cm, there is a risk that the damaged objects may scatter when the wind turbine 100 or the wind collector 200 should break.
  • the wire diameter of the metal wire is 10 mm to 100 mm, and the preferred lower limit thereof is 20 mm or more, particularly preferably 30 mm or more. If it is smaller than 10 mm, it may be torn by broken objects. On the other hand, if the length is greater than 100 mm, the iron wire itself acts as a resistance to the wind, increasing the effect on the windmill. Examples of the material of the metal wire include iron, steel, aluminum, etc., and those processed with stainless steel are preferable. In particular, a stainless steel (SUS) wire having strength is preferable.
  • the wind turbine 100 and the wind collector 200 are substantially the same as the wind turbine structure wind turbine 100 and the wind collector 200 of FIG. 1, respectively.
  • this windmill structure 4 By connecting this windmill structure 4 with a generator, it can be used as a wind power generator. In this way, the windmill structure 4 prevents scattering of damaged objects in the surroundings even if the windmill or the wind collector is damaged by wind pressure. Since the wind collecting device 200 that receives and guides the wind receives a greater force than the vertical axis windmill that flows the wind, safety is important. In particular, the wind collector 200 that rotates around the windmill has a complicated structure, so safety is important.
  • the fourth embodiment is not limited to the wind turbine structure of FIG. 13 either.
  • the housing of the windmill structure 4 is a rectangular parallelepiped, but is not particularly limited as long as it can cover the windmill 100 and the wind collector 200 .
  • a cylinder, a triangular prism, a pentagonal prism (polygonal prism), etc. may be considered, and a cone, a truncated cone, a pyramid, a truncated pyramid, etc. may be used. All of them need only be constructed so as to pass the wind blowing from all directions.
  • the windmill structure 4 has a fixed housing, it may be rotated together with the wind collector.
  • the fourth embodiment is not limited to the wind turbine structure 4 of FIG. 13 either.
  • This housing 300 can also be applied to the wind turbine structure of the second aspect and the wind turbine structure of the third aspect. In particular, it is preferable for a device in which the wind collecting device rotates.
  • the windmill structure of the present invention becomes a wind power generator by attaching it to a generator. Further, although not shown here, by providing a calculation device that calculates the position of the wind direction plate 210 according to the direction of the wind and a drive device that rotates the rotating part 221 based on the calculation, further efficiency can be achieved. It can be operated as a wind power generator.

Abstract

Provided is a windmill structure which is for wind power generation and capable of efficiently rotating when receiving wind. The windmill structure for wind power generation has a vertical axis-type windmill (100) and a wind collection device (200), wherein: the windmill (100) comprises a frame (10) and an impeller (20) supported by the frame (10); the wind collection device (200) comprises a wind deflector (210) which is disposed upstream of wind with respect to the windmill (100) and extends in the vertical direction; and the wind deflector (210) has a window (215).

Description

風力発電用の風車構造Wind turbine structure for wind power generation
 本発明は、風力発電用の風車構造に関する。 The present invention relates to a wind turbine structure for wind power generation.
 近年、環境問題や安全性の問題から風力発電への関心が高まっている。このような風力発電用の風車として、垂直軸型の風車が注目されている。垂直軸型の風車には、羽根車に働く抗力を利用して回転力を得る抗力型風車(例えば、サボニウス風車、パドル風車、クロスフロー風車など)と、羽根車に働く揚力を利用して回転力を得る揚力型風車(例えば、垂直軸垂直翼型風車(垂直ダリウス風車またはジャイロミル風車)、ダリウス風車、ヘリックスタービン(ひねりダリウス風車)、垂直軸型マグナス風車など)がある。例えば、特許文献1には、垂直軸垂直翼型の風車の羽根支持構造が開示されている。
 この垂直軸型の風車は、風向きに応じて風車の方向を制御する必要がないため、風向きに関係なく回転させることができる。また、重さのある発電機等を地上近くに設けても回転エネルギーの伝達機構を簡単な構造にできるという利点を有している。一方、垂直軸型の風車は、水平軸型の風車に比べて回転を始動させるのに大きなエネルギーを必要とするという課題がある。
In recent years, interest in wind power generation has increased due to environmental and safety issues. As a wind turbine for such wind power generation, a vertical-axis wind turbine has attracted attention. Vertical-axis wind turbines include drag-type wind turbines (e.g., Savonius wind turbines, paddle wind turbines, cross-flow wind turbines, etc.) that use the drag force acting on the impeller to obtain rotational force, and wind turbines that use the lift force acting on the impeller to rotate. There are force-harvesting lift-type windmills, such as vertical-axis vertical-blade windmills (vertical Darrieus or gyromill windmills), Darrieus windmills, helix turbines (twisted Darrieus windmills), vertical-axis Magnus windmills, and the like. For example, Patent Literature 1 discloses a blade support structure for a vertical axis vertical wing type wind turbine.
This vertical axis type windmill does not need to control the direction of the windmill according to the direction of the wind, so it can be rotated regardless of the direction of the wind. In addition, there is an advantage that even if a heavy generator or the like is installed near the ground, the structure of the rotational energy transmission mechanism can be simplified. On the other hand, vertical axis wind turbines have the problem that they require more energy to start rotation than horizontal axis wind turbines.
 そこで垂直軸型の風車へ風を効率よく集める集風機構の研究が進められている。
 特許文献2には、垂直軸型風車の上側に設けられた上側集風板と、垂直軸型風車の下側に設けられた下側集風板と、垂直軸型風車の外周に設けられた外周側集風板とを備えている集風装置が開示されている。上側集風板および下側集風板は、その間隙が風車の外側から内側に向けて縮小するように上下に傾斜させている。また外周側集風板は、風車から等間隔に放射状に設けられている。つまり、隣り合う外周側集風板の間隙が風車の外側から内側に向けて縮小するように配置されている。このように特許文献1には、光レンズによって光が収束するように、インレットで風を集め、アウトレットで風を拡散する風レンズ型の集風機構が90度間隔で放射状に設けられた集風装置が開示されている。
 非特許文献1には、鉛直方向に延びる平板形状の付加物を風車の上流側に設置したとき、いわゆる風レンズ型の集風装置に比べて、大きな出力を得られることができたとの報告がある。
Therefore, research is being conducted on a wind collecting mechanism that efficiently collects wind into a vertical axis wind turbine.
In Patent Document 2, an upper wind collecting plate provided on the upper side of the vertical axis wind turbine, a lower wind collecting plate provided on the lower side of the vertical axis wind turbine, and a wind collecting plate provided on the outer periphery of the vertical axis wind turbine A wind collector is disclosed that includes an outer wind collector plate. The upper air collecting plate and the lower air collecting plate are vertically inclined so that the gap between them decreases from the outside to the inside of the wind turbine. Further, the outer peripheral side air collecting plate is radially provided at equal intervals from the wind turbine. In other words, the gaps between the adjacent outer peripheral side wind collecting plates are arranged so as to decrease from the outside to the inside of the wind turbine. As described above, Patent Document 1 discloses a wind collecting mechanism in which a wind lens-type wind collecting mechanism that collects wind at the inlet and diffuses the wind at the outlet is provided radially at intervals of 90 degrees so that the light is converged by the optical lens. An apparatus is disclosed.
Non-Patent Document 1 reports that when a plate-shaped appendage extending in the vertical direction is installed on the upstream side of the wind turbine, a larger output can be obtained than with a so-called wind lens type wind collector. be.
国際公開WO2003/067079International publication WO2003/067079 特開2017-15094号公報JP 2017-15094 A
 しかし、非特許文献1の研究は、平面視における風車への風の流入、流出を検討しているものであり、三次元的な検討はない。また非特許文献1では、あらゆる方向から吹いてくる自然風を想定したものではなく、一方向からの風について集風効果を検討するものである。
 なお、特許文献2の集風装置は、風レンズ型の集風機構を90度間隔に放射状に設けているが、各集風機構が真正面から風を受ける場合と、それ以外とでは効率は変わってくる。
 本発明は、このような事実に鑑みて、風を受けたとき効率良く回転することができる風力発電用の風車構造を提供することを目的としている。
However, the research in Non-Patent Document 1 examines the inflow and outflow of wind to and from the wind turbine in a plan view, and does not include a three-dimensional examination. In addition, Non-Patent Document 1 does not assume natural winds blowing from all directions, but considers the wind collection effect of winds from one direction.
In addition, the wind collecting device of Patent Document 2 has wind lens type wind collecting mechanisms arranged radially at intervals of 90 degrees. come.
SUMMARY OF THE INVENTION An object of the present invention is to provide a wind turbine structure for wind power generation that can efficiently rotate when exposed to wind.
 本発明の風力発電用の風車構造の第1の態様は、垂直軸型の風車と、集風装置とから構成され、前記集風装置は、前記風車に対して風の上流に、かつ、風に対向するように配置される平板状の風向板を備え、前記風向板は、左面と、右面と、上面と、それらに囲まれた窓とを有していることを特徴としている。
 ここで「風に対向するように配置」とは、受ける風のベクトルに対して実質的に垂直になることをいう。
A first aspect of a wind turbine structure for wind power generation according to the present invention comprises a vertical axis wind turbine and a wind collector, wherein the wind collector is upstream of the wind turbine and and a flat plate-shaped wind direction plate arranged to face the wind direction plate, the wind direction plate having a left side, a right side, an upper side, and a window surrounded by them.
Here, "arranged so as to face the wind" means to be substantially perpendicular to the vector of the received wind.
 本発明の風力発電用の風車構造の第1の態様は、風車に対して風の上流側に、窓を備えた風向板を備えているため、風向板から内側の窓に向けて流れ込む風量を増加することができる。そのため、効率よく風車を回転させることができる。 In the first aspect of the wind turbine structure for wind power generation of the present invention, the wind direction plate having the window is provided on the upstream side of the wind with respect to the wind turbine. can be increased. Therefore, the windmill can be efficiently rotated.
 本発明の第1の態様の風力発電用の風車構造であって、前記風向板は、下面を有し、前記窓は左右面および上下面によって囲まれているものが好ましい。窓の四方を風向板によって閉じることにより、一層窓に流れ込む風量を増加することができる。
 本発明の第1の態様の風力発電用の風車構造であって、前記左右面の幅が、それぞれ前記羽根車の幅Dに対して0.5倍以上であるものが好ましい。
 本発明の第1の態様の風力発電用の風車構造であって、前記風向板が、前記風車の周りに回転可能であるものが好ましい。特に、風向板が、前記風車の軸心周りに回転可能であるものが好ましい。
 本発明の第1の態様の風力発電用の風車構造であって、前記風車は、フレームと、そのフレームに支持される羽根車とを備えており、前記風向板は、前記フレームに固定されているものが好ましい。特に、前記風向板は、前記フレームに回転支持されているものが好ましい。その場合、前記フレームが、複数本の柱と、その複数本の柱を円周方向等間隔に固定する環状の連結部材とからなるものが好ましい。
 本発明の第1の態様の風力発電用の風車構造であって、前記風車および前記集風装置を覆う筐体を有し、前記筐体は、前記風を上流から下流へと向きを変えることなく通す側壁を備えているものが好ましい。第1の態様の風車構造は、風に対向するように配置される風向板を有する平板上の風向板を備えており、風の圧力によって万が一破損した場合でも、破損物の飛散を防止することができる。
In the wind turbine structure for wind power generation according to the first aspect of the present invention, it is preferable that the wind direction plate has a lower surface and the window is surrounded by left and right surfaces and upper and lower surfaces. By closing the four sides of the window with the wind direction plate, the amount of air flowing into the window can be further increased.
In the wind turbine structure for wind power generation according to the first aspect of the present invention, it is preferable that the width of each of the left and right sides is 0.5 times or more the width D of the impeller.
Preferably, in the wind turbine structure for wind power generation according to the first aspect of the present invention, the wind deflector is rotatable around the wind turbine. In particular, it is preferable that the wind direction plate is rotatable around the axis of the windmill.
In the wind turbine structure for wind power generation according to the first aspect of the present invention, the wind turbine includes a frame and an impeller supported by the frame, and the wind direction plate is fixed to the frame. It is preferable to have In particular, it is preferable that the wind direction plate is rotatably supported by the frame. In that case, it is preferable that the frame comprises a plurality of pillars and an annular connecting member that fixes the plurality of pillars at regular intervals in the circumferential direction.
The wind turbine structure for wind power generation according to the first aspect of the present invention has a housing that covers the wind turbine and the wind collector, and the housing redirects the wind from upstream to downstream. It is preferred to have sidewalls that allow passage through. The wind turbine structure of the first aspect is provided with a flat plate-like wind direction plate having the wind direction plate arranged to face the wind, and even if it is damaged by the pressure of the wind, the broken objects can be prevented from scattering. can be done.
 本発明の風力発電用の風車構造の第2の態様は、垂直軸型の風車と、集風装置とを有し、前記集風装置は、前記風車に対して風の上流に配置されることによって前記風を前記風車へ誘導する風向板を備え、前記風向板は、前記風車の周りに回転可能であることを特徴としている。特に、風向板が、前記風車の軸心周りに回転可能であるのが好ましい。
 このように風を風車に誘導する風向板を風車の軸心周りに回転自在とすることにより、あらゆる方向から吹かれる風を効率よく風車に誘導することができる。
A second aspect of the wind turbine structure for wind power generation of the present invention comprises a vertical axis wind turbine and a wind collector, wherein the wind collector is disposed upstream of the wind turbine. and a wind direction plate that guides the wind to the windmill by means of, the wind direction plate being rotatable around the windmill. In particular, it is preferable that the wind direction plate is rotatable around the axis of the wind turbine.
By making the wind direction plate that guides the wind to the windmill freely rotatable around the axis of the windmill in this way, the wind blowing from all directions can be efficiently guided to the windmill.
 本発明の第2の態様の風力発電用の風車構造であって、前記風向板は、鉛直方向に延びる平板であり、前記風向板は、枠体と、その枠体内に収容される板本体とを備え、前記板本体は、ソーラーパネルであるものが好ましい。
 本発明の第2の態様の風力発電用の風車構造であって、前記風向板は、鉛直方向に延びる平板であり、前記風向板は、枠体と、その枠体内に収容される板本体とを備え、前記板本体は、回転可能であるものが好ましい。
 本発明の第2の態様の風力発電用の風車構造であって、前記集風装置は、前記風向板と前記風車とを連結する支持部材を備え、前記支持部材は、前記風車に回転支持される回転部と、前記回転部から風向板に延びる連結アームとを備えたものが好ましい。
 本発明の第2の態様の風力発電用の風車構造であって、前記風車は、フレームと、そのフレームに支持される羽根車とを有し、前記風向板は、前記フレームに固定されているものが好ましく、特に、前記風向板は、前記フレームに回転支持されるものが好ましい。
 本発明の第2の態様の風力発電用の風車構造であって、前記風車および前記集風装置を覆う筐体を有し、前記筐体は、前記風を上流から下流へと向きを変えることなく通す側壁を備えているものが好ましい。第2の態様の風車構造は、風を風車に誘導する風向板を備えており、風の圧力によって万が一破損した場合でも、破損物の飛散を防止することができる。
In the wind turbine structure for wind power generation according to the second aspect of the present invention, the wind direction plate is a flat plate extending in the vertical direction, and the wind direction plate comprises a frame and a plate main body accommodated in the frame. and the plate body is preferably a solar panel.
In the wind turbine structure for wind power generation according to the second aspect of the present invention, the wind direction plate is a flat plate extending in the vertical direction, and the wind direction plate comprises a frame and a plate main body accommodated in the frame. and the plate body is preferably rotatable.
In the wind turbine structure for wind power generation according to the second aspect of the present invention, the wind collector includes a support member that connects the wind direction plate and the wind turbine, and the support member is rotatably supported by the wind turbine. and a connecting arm extending from the rotating portion to the wind direction plate.
In the wind turbine structure for wind power generation according to the second aspect of the present invention, the wind turbine has a frame and an impeller supported by the frame, and the wind direction plate is fixed to the frame. is preferable, and it is particularly preferable that the wind direction plate is rotatably supported by the frame.
The wind turbine structure for wind power generation according to the second aspect of the present invention has a housing that covers the wind turbine and the wind collector, and the housing redirects the wind from upstream to downstream. It is preferred to have sidewalls that allow passage through. The wind turbine structure of the second aspect includes a wind direction plate that guides the wind to the wind turbine, and even if it should be damaged by the pressure of the wind, it is possible to prevent the broken objects from scattering.
 本発明の風力発電用の風車構造の第3の態様は、垂直軸型の風車と、集風装置とから構成され、前記集風装置は、前記風車に対して風の上流に配置されることによって前記風を前記風車へ誘導する風向板を備え、前記風向板の下流側に、前記風車周りに設けられた風誘導板を有することを特徴としている。
 本発明者は、研究により揚力によって回転する垂直軸型風車、特に、垂直軸垂直翼型風車の回転速度が大きくなると、その風車の回転によって風車の周りに竜巻状の気流が発生することを見出した。そして、揚力によって回転する垂直軸型風車は、風が風車を抜けることによって回転するものであるため、このような羽根車と同じ方向の気流は、逆に回転効率を下げることを見出した。この風誘導板は、風車周りに設けられているため、竜巻状の気流の発生を防止することができる。
A third aspect of the wind turbine structure for wind power generation of the present invention comprises a vertical axis wind turbine and a wind collector, and the wind collector is arranged upstream of the wind turbine. a wind direction plate for guiding the wind to the windmill by means of the wind direction plate, and a wind guide plate provided around the windmill on the downstream side of the wind direction plate.
The present inventor has found through research that when the rotation speed of a vertical axis wind turbine that rotates by lift force, especially a vertical axis vertical blade wind turbine, increases, the rotation of the wind turbine generates a tornado-like airflow around the wind turbine. rice field. And since the vertical axis windmill that rotates by lift is rotated by the wind passing through the windmill, it was found that the airflow in the same direction as the impeller lowers the rotation efficiency. Since this wind guide plate is provided around the windmill, it is possible to prevent the occurrence of tornado-like air currents.
 本発明の風車構造の第3の態様であって、前記風向板は、左面と、右面と、その間に設けられる窓とを有しており、前記風誘導板は、前記左面および/または右面の裏側から風の下流方向に延びているものが好ましい。この場合、風向板によって風車に誘導された風による風車の回転を邪魔することなく、竜巻状の気流の発生を防止することができる。
 なお、本発明の風車構造の第3の態様の風誘導板は、第1の態様の風車構造および第2の態様の風車構造に適用することもできる。
 本発明の第3の態様の風力発電用の風車構造であって、前記風車および前記集風装置を覆う筐体を有し、前記筐体は、前記風を上流から下流へと向きを変えることなく通す側壁を備えているものが好ましい。第3の態様の風車構造も、風に対向するように配置される風向板を有する平板上の風向板を備えており、風の圧力によって万が一破損した場合でも、破損物の飛散を防止することができる。
In a third aspect of the wind turbine structure of the present invention, the wind direction plate has a left surface, a right surface, and a window provided therebetween, and the wind guide plate is provided on the left surface and/or the right surface. It preferably extends from the back side in the downstream direction of the wind. In this case, generation of a tornado-like air current can be prevented without interfering with the rotation of the wind turbine caused by the wind guided to the wind turbine by the wind direction plate.
The wind guide plate of the third aspect of the wind turbine structure of the present invention can also be applied to the wind turbine structure of the first aspect and the wind turbine structure of the second aspect.
The wind turbine structure for wind power generation according to the third aspect of the present invention has a housing that covers the wind turbine and the wind collector, and the housing redirects the wind from upstream to downstream. It is preferred to have sidewalls that allow passage through. The wind turbine structure of the third aspect also has a flat plate wind direction plate having the wind direction plate arranged to face the wind, and even if it is damaged by the pressure of the wind, the broken objects can be prevented from scattering. can be done.
 本発明の風力発電用の風車構造の第4の態様は、垂直軸型の風車と、集風装置と、前記風車および集風 装置を覆う筐体とから構成され、前記集風装置は、前記風車に対して風の上流に配置されることによって前記風を前記風車へ誘導する風向板を備え、前記筐体は、前記風を上流から下流へと向きを変えることなく通す側壁を備えていることを特徴としている。ここで「筐体の側壁」とは、筐体の外面を構成する壁であって、横からくる風(水平な風)を受ける壁をいう。
 本発明の風車構造の第4の態様は、風車および集風装置を覆う筐体を備えているため、風車や集風装置が破損しても、部品が飛散するおそれがない。そして、筐体は、前記風を上流から下流へと向きを変えることなく通す側壁を備えているため、風車に流れ込む風への影響が小さい。
 本発明の風車構造の第4の態様であって、前記側壁は金属線で形成した金網であるものが好ましい。金網としては、金属線を編み込んで形成したもの、金属線同士を溶着させたものなどが挙げられる。前記金網の交点同士の距離が10cm~50cmであるものが好ましい。交点同士の距離が10cmより小さい場合、風車に流れ込む風への影響が大きくなる。一方、交点同士の距離が50cmより大きい場合、破損物が周囲に飛散するおそれが大きくなる。特に、集風装置が風車周りに回転する場合、安全である。
A fourth aspect of the wind turbine structure for wind power generation of the present invention comprises a vertical axis wind turbine, a wind collector, and a housing covering the wind turbine and the wind collector. A wind direction plate is provided upstream of the wind turbine to guide the wind to the wind turbine, and the housing includes a side wall that allows the wind to pass from upstream to downstream without changing direction. It is characterized by Here, the "side wall of the housing" refers to a wall that forms the outer surface of the housing and receives wind coming from the side (horizontal wind).
The fourth aspect of the wind turbine structure of the present invention includes a housing that covers the wind turbine and the wind collector, so even if the wind turbine and the wind collector are damaged, there is no risk of the parts scattering. Further, since the housing includes side walls that allow the wind to flow from upstream to downstream without changing its direction, the influence on the wind flowing into the windmill is small.
In the fourth aspect of the wind turbine structure of the present invention, it is preferable that the side wall is a wire mesh formed of metal wires. Examples of the wire mesh include those formed by weaving metal wires and those formed by welding metal wires together. It is preferable that the distance between the intersections of the wire mesh is 10 cm to 50 cm. If the distance between the intersection points is less than 10 cm, the effect on the wind flowing into the wind turbine becomes large. On the other hand, if the distance between the intersection points is greater than 50 cm, there is a greater possibility that the damaged object will scatter around. Especially if the wind collector rotates around the windmill, it is safe.
 本発明の第1および第3の態様の風車構造は、風車の軸に対して垂直な風を受けたときの回転効率が高い。また本発明の第2の態様の風車構造は、あらゆる方向から吹いてくる自然風に対して効率よく風を風車に誘導することができるため、回転効率が高い。さらに本発明の第4の態様の風車構造は、風車や集風装置が破損しても破損物が周囲に飛散するおそれが小さく安全である。 The windmill structures of the first and third aspects of the present invention have high rotational efficiency when subjected to wind perpendicular to the axis of the windmill. In addition, the wind turbine structure of the second aspect of the present invention can efficiently guide the natural winds that blow from all directions to the wind turbines, so that the rotation efficiency is high. Furthermore, the wind turbine structure of the fourth aspect of the present invention is safe because there is little risk of the damaged objects scattering around even if the wind turbine or the wind collector is damaged.
図1a、b、cは、それぞれ本発明の風力発電用の風車構造の第1の態様の実施形態を示す正面図、側面図、平面図である。1a, b and c are a front view, a side view and a plan view, respectively, showing an embodiment of a first aspect of a wind turbine structure for wind power generation according to the present invention. 図2a、bはそれぞれ図1の風車構造の風車を示す平面図、側面図であり、図2c、d、eはそれぞれ風車のフレームを示す平面図、正面図、A-A線断面図であり、図2f、g、hはそれぞれ風車の羽根車を示す平面図、側面図、回転面の概略図である。2a and 2b are respectively a plan view and a side view showing the wind turbine of the wind turbine structure of FIG. 1, and FIGS. 2f, g, h are respectively a plan view, a side view and a schematic view of the plane of rotation of an impeller of a wind turbine. 図3a、b、cはそれぞれ図1の風車構造の集風装置の正面図、側面図、平面図であり、図3dは集風装置の回転を示す概略図である。3a, 3b and 3c are respectively a front view, a side view and a plan view of the wind collector of the windmill structure of FIG. 1, and FIG. 3d is a schematic diagram showing the rotation of the wind collector. 図4a~図4fは、それぞれ第1の態様の風車構造の他の実施形態を示す図面である。Figures 4a to 4f are drawings showing other embodiments of the wind turbine structure of the first aspect, respectively. 図5a、b、cは、それぞれ本発明の風力発電用の風車構造の第2の態様の実施形態を示す正面図、側面図、平面図である。Figures 5a, b and c are a front view, a side view and a plan view, respectively, showing an embodiment of the second aspect of the wind turbine structure for wind power generation of the present invention. 図6a、bはそれぞれ図5の風車構造の風車を示す平面図、側面図であり、図6c、d、eはそれぞれ風車のフレームを示す平面図、正面図、B-B線断面図であり、図6f、g、hはそれぞれ風車の羽根車を示す平面図、側面図、回転面の概略図である。6a and 6b are a plan view and a side view, respectively, of the wind turbine structure of FIG. 5, and FIGS. 6c, 6d, and 6e are a plan view, a front view, and a cross-sectional view taken along the line BB, respectively, showing the frame of the wind turbine. 6f, g, h are respectively a top view, a side view and a schematic view of the plane of rotation of an impeller of a wind turbine. 図7a、b、cはそれぞれ図5の風車構造の集風装置の正面図、側面図、平面図である。7a, 7b and 7c are respectively a front view, a side view and a plan view of the wind turbine structure wind collector of FIG. 図8a、b、cは、それぞれ集風装置の風向板のソーラーパネルを90度回転させたときの状態を示す正面図、側面図、平面図である。8a, 8b, and 8c are a front view, a side view, and a plan view, respectively, showing the state when the solar panel of the wind direction plate of the wind collector is rotated by 90 degrees. 図9a~図9eは、それぞれ第2の態様の風車構造の他の実施形態を示す図面である。Figures 9a to 9e are drawings showing other embodiments of the wind turbine structure of the second aspect, respectively. 図10a、bはそれぞれ第2の態様の風車構造のさらに他の実施形態を示す側面図、平面図であり、図10c、dはそれぞれ第2の態様の風車構造のさらに他の実施形態を示す平面図である。10a and 10b are a side view and a plan view respectively showing still another embodiment of the wind turbine structure of the second aspect, and FIGS. 10c and 10d respectively show still another embodiment of the wind turbine structure of the second aspect. It is a top view. 図11a、b、cは、それぞれ本発明の風力発電用の風車構造の第3の態様の実施形態を示す正面図、側面図、平面図であり、図11d~図11gは第3の態様の他の実施形態を示す平面図である。11a, b and c are respectively a front view, a side view and a plan view showing an embodiment of the third aspect of the wind turbine structure for wind power generation of the present invention, and FIGS. It is a top view showing other embodiments. 図12a~図12cは、それぞれ第3の態様の風車構造のさらに他の実施形態を示す平面図である。Figures 12a-12c are plan views respectively showing still other embodiments of the wind turbine structure of the third aspect. 図13a、bは、それぞれ本発明の風力発電用の風車構造の第4の態様の実施形態を示す平面図、側面図である。13a and 13b are a plan view and a side view, respectively, showing an embodiment of the fourth aspect of the wind turbine structure for wind power generation of the present invention.
 図1~図4を用いて本発明の風力発電用の風車構造の第1の態様について説明する。
 図1a、b、cの風車構造1は、垂直軸垂直翼型の風車100と、集風装置200とを有している。風車100はフレーム10に支持される羽根車20を備えている。集風装置200は風車100に対して風の上流に配置される窓215を有する風向板210を備えている。この風車構造1を発電機と連結することにより風力発電装置として使用できる。
A first embodiment of a wind turbine structure for wind power generation according to the present invention will be described with reference to FIGS. 1 to 4. FIG.
The wind turbine structure 1 of FIGS. A windmill 100 includes an impeller 20 supported by a frame 10 . The wind collector 200 comprises a wind vane 210 with a window 215 arranged upstream of the wind relative to the wind turbine 100 . By connecting this windmill structure 1 with a generator, it can be used as a wind power generator.
 風車100は、図2a、bに示すように、フレーム10と、そのフレームに回転自在に取り付けられる羽根車20とを有する。 The windmill 100 has a frame 10 and an impeller 20 rotatably attached to the frame, as shown in FIGS. 2a and 2b.
 フレーム10は、図2c、d、eに示すように、上下方向に延びる3本の柱11と、それらの柱を円周方向等間隔に連結する2つの環状の連結部材12とを備えている。
 連結部材12は、ボス13と、そのボス13から放射状に延びる3本のスポーク14と、それらのスポーク14の端部をつなぐリング15とを備えている。ボス13には、羽根車20を回転自在に支持する軸受け13aが設けられている。この連結部材12は、軸受け13aが相対するように柱11の上端および中部に配置されている。つまり、羽根車20は、上方が解放されつつ、2つの連結部材12の間に収容される。また上側の連結部材12のボス13の上面には、後述する集風装置200を回転自在に支持する支軸50が設けられている。
As shown in FIGS. 2c, d, and 2e, the frame 10 includes three vertically extending columns 11 and two annular connecting members 12 connecting the columns at regular intervals in the circumferential direction. .
The connecting member 12 has a boss 13, three spokes 14 radially extending from the boss 13, and a ring 15 connecting the ends of the spokes 14. As shown in FIG. The boss 13 is provided with a bearing 13a that rotatably supports the impeller 20. As shown in FIG. The connecting member 12 is arranged at the upper end and central portion of the column 11 so that the bearings 13a face each other. In other words, the impeller 20 is housed between the two connecting members 12 with its upper side released. A support shaft 50 that rotatably supports a later-described air collecting device 200 is provided on the upper surface of the boss 13 of the upper connecting member 12 .
 羽根車20は、図2f、g、hに示すように、上下に延びる回転軸21と、その回転軸21から放射状に延びる支持アーム22と、その支持アームの先端に固定される縦ブレード23とを備えている。回転軸21、支持アーム22、縦ブレード23は一体化されている。回転軸21は、フレーム10の軸受け13aに支持させることによってフレーム10に回転自在に取付けられる。この回転軸21の回転力を発電機(図示せず)に伝えることにより、風力発電装置となる。
 支持アーム22は、回転軸21の上部および下部から3本ずつ放射状に延びている。しかし、その本数は特に限定されるものではない。
 縦ブレード23は、上下の支持アーム22によって支持されており、回転軸21と平行に3本設けられている。この縦ブレード23の数は、特に限定されるものではないが、例えば、2個から6個が好ましく、特に、2個または3個が好ましい。縦ブレードの形状は、風車が風車の軸に対して垂直な風を受けたときに、円周方向等間隔に設けられた複数の縦ブレードに生ずる力の合力が上から見たときに時計方向(図2hのM方向)または反時計方向のモーメントを生じるようなものであれば、その形状は特に限定されるものではない。
 本明細書において、羽根車の幅Dは、この縦ブレードの回転面の直径をいい、羽根車の高さHは、縦ブレードの高さをいう。
As shown in FIGS. 2f, 2g, and 2h, the impeller 20 has a rotating shaft 21 extending vertically, support arms 22 radially extending from the rotating shaft 21, and vertical blades 23 fixed to the tips of the supporting arms. It has The rotary shaft 21, support arm 22 and vertical blade 23 are integrated. The rotating shaft 21 is rotatably attached to the frame 10 by being supported by the bearing 13a of the frame 10. As shown in FIG. By transmitting the rotational force of this rotating shaft 21 to a generator (not shown), a wind turbine generator is formed.
The support arms 22 radially extend three each from the upper portion and the lower portion of the rotating shaft 21 . However, the number is not particularly limited.
The vertical blades 23 are supported by upper and lower support arms 22 and are provided in parallel with the rotation shaft 21 . Although the number of vertical blades 23 is not particularly limited, it is preferably two to six, and particularly preferably two or three. The shape of the vertical blades is such that when the wind turbine receives wind perpendicular to the axis of the wind turbine, the resultant force generated on multiple vertical blades provided at equal intervals in the circumferential direction is clockwise when viewed from above. The shape is not particularly limited as long as it generates a moment in the (M direction in FIG. 2h) or counterclockwise direction.
In this specification, the width D of the impeller refers to the diameter of the rotating surface of the vertical blades, and the height H of the impeller refers to the height of the vertical blades.
 集風装置200は、図3a、b、cに示すように、平板状の風向板210と、その風向板210をフレームに対して回転自在に支持する支持部材220とを有する。そして、風車100の上方を開放している。 As shown in FIGS. 3a, 3b, and 3c, the wind collector 200 has a flat wind direction plate 210 and a support member 220 that supports the wind direction plate 210 rotatably with respect to the frame. The top of the wind turbine 100 is open.
 風向板210は、風車に対して風の上流側であって、かつ、風に対向するように配置される平板状のものである。詳しくは、風向板210は、長方形状の板からなり、左面211と、右面212と、上面213と、下面214と、それらに囲まれた窓215とを有している(図3a参照)。そして、風車構造1の前方視(風の上流側から見た視点)において、少なくとも羽根車20の一部が窓215から視認できるようになっている。特に、窓215の幅中心は、前記風向板210の幅中心と一致し、前方視(風の上流側から見た視点)において、風車100の軸芯上にある(図1参照)。
 窓215の幅Xは、羽根車の幅Dに対して、D≦X<1.2D、好ましくは、D≦X<1.1Dであり、特に好ましくはX≒D(実質的に同じ)である。
窓215の高さYは、羽根車の高さHに対して、H≦Y<1.2H、好ましくは、H≦Y<1.1Hであり、特に好ましくはY≒H(実質的に同じ)である。
The wind direction plate 210 is a flat plate-shaped one arranged on the upstream side of the wind with respect to the windmill and facing the wind. Specifically, the wind deflector 210 is a rectangular plate having a left side 211, a right side 212, an upper side 213, a lower side 214 and a window 215 surrounded by them (see FIG. 3a). At least a part of the impeller 20 can be seen through the window 215 when the wind turbine structure 1 is viewed from the front (viewpoint seen from the upstream side of the wind). In particular, the width center of the window 215 coincides with the width center of the wind direction plate 210, and is on the axis of the wind turbine 100 when viewed from the front (viewpoint from the upstream side of the wind) (see FIG. 1).
The width X of the window 215 is D≦X<1.2D, preferably D≦X<1.1D, particularly preferably X≈D (substantially the same), relative to the impeller width D. be.
The height Y of the window 215 is such that H≦Y<1.2H, preferably H≦Y<1.1H, particularly preferably Y≈H (substantially the same ).
 風向板210の左右面211、212は、同じ幅X1を有している。その幅X1の下限は、0.5D以上、好ましくは、0.8D以上、特に好ましくはD以上である。これにより、効率よく風を窓215に誘導し、かつ、左右面に衝突して左面または右面の外側から流れ込む乱れた風が、風車へと流れていくことを防止する。なお、幅X1が2Dより大きい場合、風車に対して集風装置が大きくなりすぎるため、好ましくない。
 風向板210の上面213の高さ位置は、上面213の下端と羽根車20の上端とが実質的に同じあるいは上面213の下端が若干高い。上面213の高さ幅Y1の下限は、0.5D以上、好ましくは、0.8D以上、特に好ましくはD以上である。これにより、上面に衝突した風を効率よく窓215に誘導する。なお、幅Y1が2Dより大きい場合、風車に対して集風装置が大きくなりすぎるため、好ましくない。
 風向板210の下面214の高さ位置は、下面214の上端と羽根車20の下端とが実質的に同じあるいは下面214の上端が若干低い。下面214の高さ幅Y2の下限は、特に限定されるものではないが、0.5D以上、好ましくは、0.8D以上、特に好ましくはD以上である。そして、幅Y2の上限は、2D以下である。
 なお、風向板210の上面213および下面214の幅は、同じが好ましい。しかし、上面213の幅を下面214の幅より大きくしたり、小さくしたりしてもよい。
The left and right sides 211 and 212 of the wind direction plate 210 have the same width X1. The lower limit of the width X1 is 0.5D or more, preferably 0.8D or more, and particularly preferably D or more. As a result, the wind is efficiently guided to the window 215, and the turbulent wind that collides with the left and right faces and flows from the outside of the left face or the right face is prevented from flowing to the windmill. If the width X1 is larger than 2D, the wind collector becomes too large for the wind turbine, which is not preferable.
The height position of the upper surface 213 of the wind direction plate 210 is such that the lower end of the upper surface 213 and the upper end of the impeller 20 are substantially the same or the lower end of the upper surface 213 is slightly higher. The lower limit of the height width Y1 of the upper surface 213 is 0.5D or more, preferably 0.8D or more, and particularly preferably D or more. As a result, the wind colliding with the upper surface is efficiently guided to the window 215 . If the width Y1 is larger than 2D, the wind collector becomes too large for the wind turbine, which is not preferable.
As for the height position of the lower surface 214 of the wind direction plate 210, the upper end of the lower surface 214 and the lower end of the impeller 20 are substantially the same or the upper end of the lower surface 214 is slightly lower. The lower limit of the height width Y2 of the lower surface 214 is not particularly limited, but is 0.5D or more, preferably 0.8D or more, and particularly preferably D or more. The upper limit of the width Y2 is 2D or less.
The width of the upper surface 213 and the lower surface 214 of the wind direction plate 210 is preferably the same. However, the width of the upper surface 213 may be larger or smaller than the width of the lower surface 214 .
 風向板210は、枠体216と、その枠体内に嵌め込まれる板本体217とから構成されている。枠体216は、外枠216aと内枠216bとを有する。外枠216aの下端には車輪218が設けられている。しかし、風向板210の構造は特に限定されるものではなく、一体物であってもよく、複数の枠体を一体化したものであってもよい。なお、車輪218の回転方向を規制するべく、図3cの想像線で示すように、円状のレール250を設けてもよい。 The wind direction plate 210 is composed of a frame body 216 and a plate body 217 fitted in the frame body. The frame body 216 has an outer frame 216a and an inner frame 216b. Wheels 218 are provided at the lower end of the outer frame 216a. However, the structure of the wind direction plate 210 is not particularly limited, and it may be an integral body or a structure in which a plurality of frames are integrated. A circular rail 250 may be provided as shown by the imaginary line in FIG. 3c to regulate the rotation direction of the wheel 218.
 支持部材220は、図3cに示すように、フレームの支軸50に対して回転する回転部221と、その回転部221から風向板210の枠体216に延びる連結アーム222とを有する。この実施形態では、連結アーム222は、左右の外枠216aおよび左右の内枠216bの計4本設けられている。
 この支持部材220によって、図3dに示すように、風向板210は、幅の中心Oを軸に、フレームの連結部材12の外周を回転する。つまり、風向板210は風車100の軸心周りを回転する。そのため、風向板210を回転させることにより、風向板210を常に風車100より風の上流側に位置させることができる。風向板210とフレームとの距離Zは風向板210の回転に邪魔にならなければ、近いほどよい(図3c参照)。一方、距離Zが離れすぎていると、風向板210の窓の効果が薄れる。例えば、風向板210とフレームとの距離Zは、0≦Z<0.5D、0≦Z<0.2D、0≦Z<0.1D、実質的にZ=0とするのが好ましい。
 なお、この支持部材220の構造は、風向板210をフレーム10に対して回転自在に支持するものであれば、特に限定されるものではない。
The support member 220 has a rotating portion 221 that rotates about the support shaft 50 of the frame, and a connecting arm 222 that extends from the rotating portion 221 to the frame 216 of the wind direction plate 210, as shown in FIG. 3c. In this embodiment, a total of four connecting arms 222 are provided, that is, left and right outer frames 216a and left and right inner frames 216b.
By this support member 220, as shown in FIG. 3d, the wind direction plate 210 rotates around the width center O as an axis around the outer periphery of the connecting member 12 of the frame. That is, the wind direction plate 210 rotates around the axis of the wind turbine 100 . Therefore, by rotating the wind direction plate 210 , the wind direction plate 210 can always be positioned on the upstream side of the wind from the wind turbine 100 . The closer the distance Z between the wind deflector 210 and the frame, the better, as long as it does not interfere with the rotation of the wind deflector 210 (see FIG. 3c). On the other hand, if the distance Z is too far, the window effect of the wind deflector 210 is diminished. For example, the distance Z between the wind deflector 210 and the frame is preferably 0≦Z<0.5D, 0≦Z<0.2D, 0≦Z<0.1D, and substantially Z=0.
The structure of the support member 220 is not particularly limited as long as it supports the wind direction plate 210 rotatably with respect to the frame 10 .
 このように構成された風車構造1は、風の向きに対して風の上流側に窓を有した鉛直状の風向板210を有しているため、窓を介して効率よく風を風車に導くことができる。
 また風車構造1は、風向板210を風車100の周りに回転させることができるため、風の向きに応じて風向板が風車に対して風の上流側となるように動かすことができる。
 そして、上述したように、風車構造1は、発電機に取り付けることにより、風力発電装置となる。またここでは図示していないが、風の向きに応じて風向板210の位置を計算する計算装置と、その計算に基づいて回転部221を回転させる駆動装置とを設けることにより、一層、効率よく風力発電装置として作動させることができる。
The wind turbine structure 1 configured in this way has the vertical wind direction plate 210 having the window on the upstream side of the wind direction, so that the wind is efficiently guided to the wind turbine through the window. be able to.
In addition, since the wind direction plate 210 can be rotated around the wind turbine 100 in the wind turbine structure 1, the wind direction plate can be moved to the upstream side of the wind with respect to the wind turbine.
Then, as described above, the wind turbine structure 1 becomes a wind turbine generator by attaching it to a generator. Further, although not shown here, by providing a calculation device that calculates the position of the wind direction plate 210 according to the direction of the wind and a drive device that rotates the rotating part 221 based on the calculation, further efficiency can be achieved. It can be operated as a wind power generator.
 本発明の第1の態様は、上記実施形態に限定されるものではない。
 図1の風車構造1では、垂直軸型の風車として、揚力型の垂直軸垂直翼型風車(垂直ダリウス風車)を挙げているが、これに特に限定するものではない。例えば、ダリウス風車、ヘリックスタービン(ひねりダリウス風車)、垂直軸型マグナス風車などの他の揚力型風車を用いてもよく、例えば、例えば、サボニウス風車、パドル風車、クロスフロー風車などの効力型風車を用いてもよい。
 図1の風車構造では、フレームと羽根車とを備えた風車を挙げているが、例えば、フレームを備えず、固定された回転軸と、その周りに回転する羽根車とからのみ構成されていてもよい。
The first aspect of the invention is not limited to the above embodiments.
In the wind turbine structure 1 of FIG. 1, the vertical axis wind turbine is a lift type vertical axis vertical wing wind turbine (vertical Darrieus wind turbine), but it is not particularly limited to this. Other lift type wind turbines such as Darrieus windmills, helix turbines (twisted Darrieus windmills), vertical axis Magnus windmills may also be used, e.g. may be used.
The wind turbine structure in FIG. 1 shows a wind turbine with a frame and an impeller. good too.
 風車のフレームについて、上記の実施形態のフレームは、3本の柱11と、2個の連結部材12とから構成されているが、羽根車20を回転自在に支持するものであれば、その構造は特に限定されるものではない。なお、羽根車20の上方が解放されているものが好ましい。一方、複数本の柱と、それらの柱を円周方向等間隔に連結するものは、強度が保てて好ましい。例えば、図4aに示すように、3本の柱11と、1個の連結部材12と、下端に軸受け13aとを有するフレーム10や、図4bに示すように、柱11と連結する補強リング70を風車の高さに応じて1個または複数個設けてもよい。さらに、図4cに示すように、複数個の羽根車20を上下に収容できるようにしてもよい。その場合、上下端の連結部材以外の連結部材12aは、上下面に軸受けを設けるのが好ましい。また例えば、連結部材12のリング15は、環状であれば、円形でなくても、正多角形であってもよい。そして、図4cのように上下に羽根車20が設けられた多段式の風車に対しては、図4dに示すように、風向板210も多段式(窓215を多段)にするのが好ましい。しかし、図4eに示すように、一番上の風車に対してのみ上面213を設け、一番下の風車に対してのみ下面214を設け、その間の風車に対しては左右面211、212だけとなる一つの窓215を有する風向板に複数の風車を設けるようにしてもよい。 Regarding the frame of the wind turbine, the frame of the above embodiment is composed of three pillars 11 and two connecting members 12. is not particularly limited. In addition, it is preferable that the upper part of the impeller 20 is open. On the other hand, a plurality of pillars and a structure in which the pillars are connected at equal intervals in the circumferential direction are preferable because strength can be maintained. For example, as shown in FIG. 4a, a frame 10 having three posts 11, one connecting member 12, and a bearing 13a at the lower end, or a reinforcing ring 70 connected to the posts 11, as shown in FIG. 4b. may be provided one or more depending on the height of the wind turbine. Furthermore, as shown in FIG. 4c, a plurality of impellers 20 may be accommodated vertically. In that case, it is preferable to provide bearings on the upper and lower surfaces of the connecting members 12a other than the connecting members at the upper and lower ends. Further, for example, the ring 15 of the connecting member 12 may be a regular polygon instead of a circle as long as it is annular. For a multi-stage wind turbine having upper and lower impellers 20 as shown in FIG. 4c, it is preferable to use a multi-stage wind direction plate 210 (multiple windows 215) as shown in FIG. 4d. However, as shown in FIG. 4e, only the top windmill is provided with a top surface 213, only the bottom windmill is provided with a bottom surface 214, and the windmills in between are provided with left and right surfaces 211, 212. A plurality of windmills may be provided on the wind direction plate having one window 215 that becomes .
 風車の羽根車について、回転軸と縦ブレードとの間を支持アーム22で連結していたが、支持アーム22の代わりに、羽根車20が回転したときに上向きの揚力が働くような横ブレードを用いてもよい。また羽根車20は、回転軸21を回転させているが、フレームに固定された軸の周りを回転する構造としてもよい。 Regarding the impeller of the windmill, the rotating shaft and the vertical blades are connected by the support arm 22, but instead of the support arm 22, horizontal blades are used to produce an upward lift force when the impeller 20 rotates. may be used. Further, although the impeller 20 rotates the rotating shaft 21, it may have a structure in which it rotates around the shaft fixed to the frame.
 集風装置の風向板について、上記実施形態では、風向板210は、窓215の下方に下面214備えていたが、図4fに示すように、なくてもよい。
 集風装置の回転機構について、上記実施形態では、風向板がフレームに対して回転自在に支持されているが、風車の周りに回転可能、特に風車の軸心周りに回転可能であれば、その構造は特に限定されない。例えば、風車の軸芯のみに回転自在に支持されてもよい。また集風装置は、風車と独立して回転させてもよい。例えば、図3cのレール250に支持させて回転させてもよい。
 また集風装置の回転機構について、上記実施形態では、360度回転するものを挙げているが、回転角度は特に限定されるものではない。例えば、風の方向が概ね一定である地域においては、回転角度は90度程度としてもよく、設置場所に応じて回転角度は選択することができる。
Regarding the air deflector of the air collector, in the above embodiment, the air deflector 210 has a lower surface 214 below the window 215, but as shown in FIG. 4f, it may be omitted.
Regarding the rotation mechanism of the wind collector, in the above embodiment, the wind direction plate is rotatably supported with respect to the frame. The structure is not particularly limited. For example, it may be rotatably supported only on the axis of the windmill. The wind collector may also rotate independently of the windmill. For example, it may be supported and rotated on rails 250 of FIG. 3c.
Further, with respect to the rotating mechanism of the wind collecting device, in the above embodiment, one that rotates 360 degrees is mentioned, but the rotation angle is not particularly limited. For example, in areas where the direction of the wind is generally constant, the rotation angle may be about 90 degrees, and the rotation angle can be selected according to the installation location.
 次に図5~図10を用いて本発明の風力発電用の風車構造の第2の態様について説明する。
 図5a、b、cの風車構造2は、垂直軸垂直翼型の風車100と、集風装置200とを有する。風車100はフレーム10に支持される羽根車20を備えている。集風装置200は風車100に対して風の上流に配置されることによって風を風車100へ誘導する風向板210を備えている。風向板210は、風車100と、風車100の軸心周りに回転自在に連結されている。この風車構造1を発電機と連結することにより風力発電装置として使用できる。
Next, a second embodiment of the wind turbine structure for wind power generation according to the present invention will be described with reference to FIGS. 5 to 10. FIG.
The wind turbine structure 2 of FIGS. 5 a, b, c comprises a vertical axis vertical blade wind turbine 100 and a wind collector 200 . A windmill 100 includes an impeller 20 supported by a frame 10 . The wind collector 200 includes a wind direction plate 210 arranged upstream of the wind turbine 100 to guide the wind to the wind turbine 100 . The wind direction plate 210 is connected to the wind turbine 100 so as to be rotatable around the axis of the wind turbine 100 . By connecting this windmill structure 1 with a generator, it can be used as a wind power generator.
 風車100は、図6a、bに示すように、フレーム10と、そのフレームに回転自在に取り付けられる羽根車20とを有する。 The windmill 100 has a frame 10 and an impeller 20 rotatably attached to the frame, as shown in FIGS. 6a and 6b.
 フレーム10は、図6c、d、eに示すように、上下方向に延びる3本の柱11と、それらの柱を円周方向等間隔に連結する2つの環状の連結部材12とを備えている。
 連結部材12は、ボス13と、そのボス13から放射状に延びる3本のスポーク14と、それらのスポーク14の端部をつなぐリング15とを備えている。ボス13には、羽根車20を回転自在に支持する軸受け13aが設けられている。この連結部材12は、軸受け13aが相対するように柱11の上端および中部に配置されている。つまり、羽根車20は、上方が解放されつつ、2つの連結部材12の間に収容される。また上側の連結部材12のボス13の上面には、後述する集風装置200を回転自在に支持する支軸50が設けられている。
As shown in FIGS. 6c, d, and 6e, the frame 10 includes three vertically extending columns 11 and two annular connecting members 12 that connect the columns at equal intervals in the circumferential direction. .
The connecting member 12 has a boss 13, three spokes 14 radially extending from the boss 13, and a ring 15 connecting the ends of the spokes 14. As shown in FIG. The boss 13 is provided with a bearing 13a that rotatably supports the impeller 20. As shown in FIG. The connecting member 12 is arranged at the upper end and central portion of the column 11 so that the bearings 13a face each other. In other words, the impeller 20 is housed between the two connecting members 12 with its upper side released. A support shaft 50 that rotatably supports a later-described air collecting device 200 is provided on the upper surface of the boss 13 of the upper connecting member 12 .
 羽根車20は、図6f、g、hに示すように、上下に延びる回転軸21と、その回転軸21から放射状に延びる支持アーム22と、その支持アームの先端に固定される縦ブレード23とを備えている。回転軸21、支持アーム22、縦ブレード23は一体化されている。回転軸21は、フレーム10の軸受け13aに支持させることによってフレーム10に回転自在に取付けられる。この回転軸21の回転力を発電機(図示せず)に伝えることにより、風力発電装置となる。 As shown in FIGS. 6f, 6g, and 6h, the impeller 20 has a rotating shaft 21 extending vertically, supporting arms 22 radially extending from the rotating shaft 21, and vertical blades 23 fixed to the tips of the supporting arms. It has The rotary shaft 21, support arm 22 and vertical blade 23 are integrated. The rotating shaft 21 is rotatably attached to the frame 10 by being supported by the bearing 13a of the frame 10. As shown in FIG. By transmitting the rotational force of this rotating shaft 21 to a generator (not shown), a wind turbine generator is formed.
 支持アーム22は、回転軸21の上部および下部から3本ずつ放射状に延びている。しかし、その本数は特に限定されるものではない。
 縦ブレード23は、上下の支持アーム22によって支持されており、回転軸21と平行に3本設けられている。この縦ブレード23の数は、特に限定されるものではないが、例えば、2個から6個が好ましく、特に、2個から3個が好ましい。縦ブレードの形状は、風車が風車の軸に対して垂直な風を受けたときに、円周方向等間隔に設けられた複数の縦ブレードに生ずる力の合力が上から見たときに時計方向(図6hのM方向)または反時計方向のモーメントを生じるようなものであれば、その形状は特に限定されるものではない。
 本明細書において、羽根車の幅Dは、この縦ブレードの回転面の直径をいい、羽根車の高さHは、縦ブレードの高さをいう。
The support arms 22 radially extend three each from the upper portion and the lower portion of the rotating shaft 21 . However, the number is not particularly limited.
The vertical blades 23 are supported by upper and lower support arms 22 and are provided in parallel with the rotation shaft 21 . Although the number of vertical blades 23 is not particularly limited, it is preferably two to six, and particularly preferably two to three. The shape of the vertical blades is such that when the wind turbine receives wind perpendicular to the axis of the wind turbine, the resultant force generated on multiple vertical blades provided at equal intervals in the circumferential direction is clockwise when viewed from above. The shape is not particularly limited as long as it generates a moment in the (M direction in FIG. 6h) or counterclockwise direction.
In this specification, the width D of the impeller refers to the diameter of the rotating surface of the vertical blades, and the height H of the impeller refers to the height of the vertical blades.
 集風装置200は、図7a、b、cに示すように、平板状の風向板210と、その風向板210をフレームに対して回転自在に支持する支持部材220とを有する。そして、風車100の上方を開放している。 As shown in FIGS. 7a, 7b, and 7c, the wind collector 200 has a flat plate-shaped wind direction plate 210 and a support member 220 that supports the wind direction plate 210 rotatably with respect to the frame. The top of the wind turbine 100 is open.
 風向板210は、風車に対して風の上流に配置されることによって風を風車へ誘導する平板状のものである。枠体216Aと、その枠体内に嵌め込まれるソーラーパネル212Aとから構成されている長方形状のものであり、中央に窓215を有する。この風向板210は、鉛直方向に延びるように配置される。
 枠体216Aは、左側枠体216A1と、右側枠体216A2と、上側枠体216A3と、下側枠体216A4と、それらの枠体によって囲まれる窓215とを有する。また下側枠体216A4以外の各枠体の左右枠の内側中心には、点線で示すように軸受け217が設けられている(軸受け217は枠体216A3のみ図示)。なお下側枠体216A4は、左右枠の内側下端に軸受け(図示せず)が設けられている。また下側枠体216A4の下端には車輪218が設けられている。また図7cの想像線に示すように、円状のレール250を設けてもよい。
 ソーラーパネル212Aは、左側枠体216A1に取り付けられる左側パネル212A1と、右側枠体216A2に取り付けられる右側パネル212A2と、上側枠体216A3に取り付けられる上側パネル212A3と、下側枠体216A4に取り付けられる下側パネル212A4とを有する。下側パネル212A4以外の各パネルの両側中心には、各枠体の軸受けに挿入される軸芯(図示せず)が突出して設けられている(図示せず)。下側パネル212A4は、両側の下端に軸心(図示せず)が設けられている。
The wind direction plate 210 is a plate-like member that guides the wind toward the windmill by being arranged upstream of the windmill. It has a rectangular shape composed of a frame 216A and a solar panel 212A fitted in the frame, and has a window 215 in the center. The wind direction plate 210 is arranged so as to extend in the vertical direction.
The frame 216A has a left frame 216A1, a right frame 216A2, an upper frame 216A3, a lower frame 216A4, and a window 215 surrounded by these frames. Bearings 217 are provided as indicated by dotted lines at the inner centers of the left and right frames of each frame other than the lower frame 216A4 (only the frame 216A3 is shown for the bearing 217). The lower frame 216A4 is provided with bearings (not shown) at the inner lower ends of the left and right frames. Wheels 218 are provided at the lower end of the lower frame 216A4. Circular rails 250 may also be provided, as shown in phantom in FIG. 7c.
The solar panel 212A includes a left panel 212A1 attached to the left frame 216A1, a right panel 212A2 attached to the right frame 216A2, an upper panel 212A3 attached to the upper frame 216A3, and a lower panel 212A3 attached to the lower frame 216A4. and a side panel 212A4. At the center of both sides of each panel other than the lower panel 212A4, shaft cores (not shown) that are inserted into the bearings of each frame are protrudingly provided (not shown). The lower panel 212A4 has axial centers (not shown) at the lower ends on both sides.
 このように風向板210のソーラーパネル212Aは構成されているため、図8a~図8cに示すように、各パネル212A1~212A4は、各枠体216A1~216A4に対して水平軸と平行な各パネルの軸芯周りに回転可能となっている。図8bのL1、L2、L3は、それぞれパネル212A1、212A3、212A4の回転軌跡を示す。このように構成されているため、風が止んでいる、または、風が十分に吹いていないとき、各パネルが太陽に向くように回転させ、太陽エネルギーによる発電が可能である。さらに、暴風のときは、各パネルを水平にする(各パネルを風に対して垂直にする)ことにより、パネルが風に飛ばされたり、損傷したりすることから防止できる。なお、ここでは各パネルは水平軸の周りに回転可能としているが、上下軸周りに回転可能としてもよい。 Solar panels 212A of wind deflector 210 are configured in this way so that each panel 212A1-212A4 is parallel to the horizontal axis with respect to each frame 216A1-216A4, as shown in FIGS. 8a-8c. It is rotatable around its axis. L1, L2, L3 in FIG. 8b indicate the rotational trajectories of panels 212A1, 212A3, 212A4, respectively. Because of this configuration, when the wind is still or not blowing enough, each panel can be rotated to face the sun and generate electricity from solar energy. In addition, during storms, leveling each panel (perpendicular to the wind) prevents the panels from being blown away or damaged by the wind. Although each panel is rotatable about the horizontal axis here, it may be rotatable about the vertical axis.
 図7に戻って、窓215の幅Xは、羽根車の幅Dに対して、D≦X<1.2D、好ましくは、D≦X<1.1Dであり、特に好ましくはX≒D(実質的に同じ)である。
窓215の高さYは、羽根車の高さHに対して、H≦Y<1.2H、好ましくは、H≦Y<1.1Hであり、特に好ましくはY≒H(実質的に同じ)である。
Returning to FIG. 7, the width X of the window 215 is D≦X<1.2D, preferably D≦X<1.1D, and particularly preferably X≈D ( substantially the same).
The height Y of the window 215 is such that H≦Y<1.2H, preferably H≦Y<1.1H, particularly preferably Y≈H (substantially the same ).
 枠体216Aの左側枠体216A1および右側枠体216A2は、同じ幅X1を有している。その幅X1の下限は、0.5D以上、好ましくは、0.8D以上、特に好ましくはD以上である。これにより、効率よく風を窓215に誘導し、かつ、左右面に衝突して左面または右面の外側から流れ込む乱れた風が、風車へと流れていくことを防止する。なお、幅X1が2Dより大きい場合、風車に対して集風装置が大きくなりすぎるため、好ましくない。
 枠体216Aの上側枠体216A3の高さ位置は、上側枠体216A3の下端と羽根車20の上端とが実質的に同じあるいは上側枠体216A3の下端が若干高い。上側枠体216A3の高さ幅Y1の下限は、0.5D以上、好ましくは、0.8D以上、特に好ましくはD以上である。これにより、効率よく風を窓215に誘導する。なお、幅Y1が2Dより大きい場合、風車に対して集風装置が大きくなりすぎるため、好ましくない。
 枠体216Aの下側枠体216A4の高さ位置は、下側枠体216A4の上端と羽根車20の下端とが実質的に同じあるいは下側枠体216A4の上端が若干低い。下側枠体216A4の高さ幅Y2の下限は、特に限定されるものではないが、0.5D以上、好ましくは、0.8D以上、特に好ましくはD以上である。そして、幅Y2の上限は、2D以下である。なお、窓215の上側枠体216A3および下側枠体216A4の幅は同じが好ましい。
Left side frame 216A1 and right side frame 216A2 of frame 216A have the same width X1. The lower limit of the width X1 is 0.5D or more, preferably 0.8D or more, and particularly preferably D or more. As a result, the wind is efficiently guided to the window 215, and the turbulent wind that collides with the left and right faces and flows from the outside of the left face or the right face is prevented from flowing to the windmill. If the width X1 is larger than 2D, the wind collector becomes too large for the wind turbine, which is not preferable.
As for the height position of the upper frame 216A3 of the frame 216A, the lower end of the upper frame 216A3 and the upper end of the impeller 20 are substantially the same or the lower end of the upper frame 216A3 is slightly higher. The lower limit of the height width Y1 of the upper frame 216A3 is 0.5D or more, preferably 0.8D or more, and particularly preferably D or more. This guides the wind to the window 215 efficiently. If the width Y1 is larger than 2D, the wind collector becomes too large for the wind turbine, which is not preferable.
As for the height position of the lower frame 216A4 of the frame 216A, the upper end of the lower frame 216A4 and the lower end of the impeller 20 are substantially the same or the upper end of the lower frame 216A4 is slightly lower. The lower limit of the height width Y2 of the lower frame 216A4 is not particularly limited, but is 0.5D or more, preferably 0.8D or more, and particularly preferably D or more. The upper limit of the width Y2 is 2D or less. It is preferable that the upper frame 216A3 and the lower frame 216A4 of the window 215 have the same width.
 支持部材220は、図7cに示すように、フレームの支軸50に対して回転する回転部221と、その回転部221から風向板210の枠体216Aに延びる連結アーム222とを有する。この実施形態は、連結アーム222を計4本有する。
 この支持部材220によって、風向板210は、幅の中心Oを軸としてフレームの連結部材12の外周を回転する。つまり、風向板210を回転させることにより、風向板210を常に風車100より風の上流側に位置することができる。距離Zは風向板210の回転に邪魔にならなければ、近いほどよい(図7c参照)。一方、距離Zが離れすぎていると、風向板210の窓の効果が薄れる。例えば、風向板210とフレームとの距離Zは、0≦Z<0.5D、0≦Z<0.2D、特に0≦Z<0.1D、実質的にZ=0とするのが好ましい。
The support member 220 has a rotating portion 221 that rotates about the support shaft 50 of the frame, and a connecting arm 222 that extends from the rotating portion 221 to the frame 216A of the wind direction plate 210, as shown in FIG. 7c. This embodiment has a total of four connecting arms 222 .
By this support member 220, the wind direction plate 210 rotates around the outer periphery of the connecting member 12 of the frame with the width center O as an axis. In other words, by rotating the wind direction plate 210 , the wind direction plate 210 can always be positioned on the upstream side of the wind from the wind turbine 100 . The shorter the distance Z, the better, as long as it does not interfere with the rotation of the wind deflector 210 (see FIG. 7c). On the other hand, if the distance Z is too far, the window effect of the wind deflector 210 is diminished. For example, the distance Z between the wind direction plate 210 and the frame is preferably 0≤Z<0.5D, 0≤Z<0.2D, particularly 0≤Z<0.1D, substantially Z=0.
 このように構成された風車構造2は、風が吹いているとき、風向板210を平板状にして使用する。つまり、風向板210は受けた風を窓215に集める。これにより風車を効率よく回転させることができる。特に、集風装置200は、風の向きに応じて風向板をフレームに対して回転させることができ、風向板を風車に対して風の上流側に配置させることができる。よって、様々な風に対応して風エネルギーを効率よく利用することができる。
 一方、風が止んでいるとき、あるいは、風が十分に吹いていないとき、風向板210は、各ソーラーパネルが太陽へと向くように、図7cのように風向板210を風車の軸心周りに回転させ、かつ、図8bのようにソーラーパネル212Aの各パネルを枠体216Aの各枠体の軸心周りに回転させることによって、太陽エネルギーを効率よく取得することができる。
 さらに、暴風のときは、各パネルを水平にする(各パネルを風に対して垂直にする)ことにより、全体のシステムを停止させ、パネルが風に飛ばされたり、損傷したりすることから防止できる。
The wind turbine structure 2 configured in this way is used with the wind direction plate 210 in a flat plate shape when the wind is blowing. That is, the wind direction plate 210 gathers the received wind to the window 215 . As a result, the windmill can be efficiently rotated. In particular, the wind collector 200 can rotate the wind direction plate with respect to the frame according to the direction of the wind, and can arrange the wind direction plate on the upstream side of the wind with respect to the wind turbine. Therefore, it is possible to efficiently utilize wind energy corresponding to various winds.
On the other hand, when the wind is still or not blowing sufficiently, the wind deflector 210 is rotated around the axis of the windmill so that each solar panel faces the sun, as shown in FIG. 7c. and by rotating each panel of the solar panel 212A around the axis of each frame of the frame 216A as shown in FIG. 8b, solar energy can be efficiently obtained.
Additionally, during storms, each panel is leveled (perpendicular to the wind), shutting down the entire system and preventing the panels from being blown away or damaged by the wind. can.
 本発明の第2の態様は、上記実施形態に限定されるものではない。
 図5の風車構造2では、垂直軸型の風車として、揚力型の垂直軸垂直翼型風車(垂直ダリウス風車)を挙げているが、これに特に限定するものではない。例えば、ダリウス風車、ヘリックスタービン(ひねりダリウス風車)、垂直軸型マグナス風車などの他の揚力型風車を用いてもよく、例えば、例えば、サボニウス風車、パドル風車、クロスフロー風車などの効力型風車を用いてもよい。
 図5の風車構造2では、フレームと羽根車とを備えた風車を挙げているが、例えば、フレームを備えず、固定された回転軸と、その周りに回転する羽根車とからのみ構成されていてもよい。
 図5の風車構造2は、風車の軸心周りに回転するものであるが、風車の周りに回転可能であれば、特に限定されるものではない。しかし、風車の軸心周りに回転させる場合、風向板と風車との距離Zを保ちながら回転させることができて好ましい。
 図5の風車構造2は、風向板が360度回転するものであるが、回転角度は特に限定されるものではない。例えば、風の方向が概ね一定である地域においては、回転角度は90度程度としてもよく、設置場所に応じて回転角度は選択することができる。
 図5の風車構造2は、集風装置200が風車のフレームに支持されて回転しているが、集風装置200は、独立して回転してもよい。例えば、図7のレール250に支持させて回転させてもよい。
The second aspect of the invention is not limited to the above embodiments.
In the wind turbine structure 2 of FIG. 5, the vertical axis wind turbine is a lift type vertical axis vertical wing wind turbine (vertical Darrieus wind turbine), but it is not particularly limited to this. Other lift type wind turbines such as Darrieus windmills, helix turbines (twisted Darrieus windmills), vertical axis Magnus windmills may also be used, e.g. may be used.
In the wind turbine structure 2 of FIG. 5, a wind turbine with a frame and an impeller is mentioned, but for example, it is not equipped with a frame and consists only of a fixed rotating shaft and an impeller rotating around it. may
The windmill structure 2 in FIG. 5 rotates around the axis of the windmill, but is not particularly limited as long as it can rotate around the windmill. However, when rotating around the axis of the windmill, it is possible to rotate while maintaining the distance Z between the wind direction plate and the windmill, which is preferable.
In the windmill structure 2 of FIG. 5, the wind direction plate rotates 360 degrees, but the angle of rotation is not particularly limited. For example, in areas where the direction of the wind is generally constant, the rotation angle may be about 90 degrees, and the rotation angle can be selected according to the installation location.
In the wind turbine structure 2 of FIG. 5, the wind collector 200 is supported by the frame of the wind turbine and rotates, but the wind collector 200 may rotate independently. For example, it may be supported by rails 250 in FIG. 7 and rotated.
 風車のフレームについて、上記の実施形態のフレームは、3本の柱11と、2個の連結部材12とから構成されているが、羽根車20の上方が解放されており、羽根車20を回転自在に支持するものであれば、その構造は特に限定されるものではない。一方、複数本の柱と、それらの柱を円周方向等間隔に連結するものは、強度が保てて好ましい。例えば、図9aに示すように、3本の柱11と、1個の連結部材12と、下端に軸受け13aとを有するフレーム10や、図9bに示すように、柱11と連結する補強リング70を風車の高さに応じて1個または複数個設けてもよい。さらに、図9cに示すように、複数個の羽根車20を上下に収容できるようにしてもよい。その場合、上下端の連結部材以外の連結部材12aは、上下面に軸受けを設けるのが好ましい。また例えば、連結部材12のリング15は、環状であれば、円形でなくても、正多角形であってもよい。 Regarding the frame of the wind turbine, the frame of the above embodiment is composed of three pillars 11 and two connecting members 12, but the upper part of the impeller 20 is open so that the impeller 20 can be rotated. The structure is not particularly limited as long as it can be freely supported. On the other hand, a plurality of pillars and a structure in which the pillars are connected at equal intervals in the circumferential direction are preferable because strength can be maintained. For example, as shown in FIG. 9a, a frame 10 having three pillars 11, one connecting member 12, and a bearing 13a at the lower end, or a reinforcing ring 70 connected to the pillars 11, as shown in FIG. 9b. may be provided one or more depending on the height of the wind turbine. Furthermore, as shown in FIG. 9c, a plurality of impellers 20 may be accommodated vertically. In that case, it is preferable to provide bearings on the upper and lower surfaces of the connecting members 12a other than the connecting members at the upper and lower ends. Further, for example, the ring 15 of the connecting member 12 may be a regular polygon instead of a circle as long as it is annular.
 風車の羽根車について、回転軸と縦ブレードとの間を支持アーム22で連結していたが、支持アーム22の代わりに、羽根車20が回転したときに上向きの揚力が働くような横ブレードを用いてもよい。また羽根車20は、回転軸21を回転させているが、フレームに固定された軸の周りを回転する構造としてもよい。 Regarding the impeller of the windmill, the rotating shaft and the vertical blades are connected by the support arm 22, but instead of the support arm 22, horizontal blades are used to produce an upward lift force when the impeller 20 rotates. may be used. Further, although the impeller 20 rotates the rotating shaft 21, it may have a structure in which it rotates around the shaft fixed to the frame.
 集風装置の風向板について、風車に対して風の上流に配置されることによって風を風車へ誘導するものであれば、特に限定されるものではない。例えば、図10a、図10bの風車構造2Aのように、集風装置200Aの風向板210Aは、風車100の上方および下方に設けず、左側板(左面)210A1および右側板(右面)210A2からなっている。この場合、左側板210A1および右側板210A2は支持部材220によって連結されている。しかし、左側板210A1および右側板210A2との間に連結部を設けてもよい。また、図9dに示すように、風車の下方のみ板を設けない風向板210であってもよい。そして、図9cのように上下に羽根車20が設けられた多段式の風車に対しては、図9eに示すように、風向板210も多段式(窓215を多段)にするのが好ましい。しかし、図4eのように、一つの窓215から複数の風車に風を送るようにしてもよい。さらに、図10cの風車構造2Bおよび図10dの風車構造2Cのように、上流から風車に向かう風の密度を高めるように、風の向きに対して傾斜させた一対の平板(210B1および210B2)または湾曲板(210C1および210C2)からなる風向板210B、210Cであってもよい。 The wind direction plate of the wind collector is not particularly limited as long as it is arranged upstream of the wind turbine to guide the wind to the wind turbine. For example, like the wind turbine structure 2A in FIGS. 10a and 10b, the wind direction plates 210A of the wind collector 200A are not provided above and below the wind turbine 100, but consist of a left plate (left surface) 210A1 and a right plate (right surface) 210A2. ing. In this case, the left side plate 210A1 and the right side plate 210A2 are connected by the support member 220. As shown in FIG. However, a connecting portion may be provided between the left side plate 210A1 and the right side plate 210A2. Alternatively, as shown in FIG. 9d, a wind direction plate 210 that does not have a plate only below the wind turbine may be used. For a multi-stage wind turbine having upper and lower impellers 20 as shown in FIG. 9c, it is preferable to use a multi-stage wind direction plate 210 (multi-stage windows 215) as shown in FIG. 9e. However, a single window 215 may direct air to multiple windmills, as shown in FIG. 4e. In addition, a pair of flat plates (210B1 and 210B2) inclined with respect to the direction of the wind to increase the density of the wind towards the wind turbine from upstream, as in the wind turbine structure 2B of FIG. 10c and the wind turbine structure 2C of FIG. Wind direction plates 210B and 210C made of curved plates (210C1 and 210C2) may also be used.
 集風装置の風向板の枠体について、上記実施形態では、上下左右に分割しているが、その分割形状は特に限定されない。また各枠体に、ソーラーパネルをはめ込んでいるが、枠体の少なくとも1個にソーラーパネルを回転可能に嵌め、他の枠体には通常のパネルを回転しないように固定してもよい。例えば、左右枠体にソーラーパネルをはめ込み、上下枠体には通常のパネルを固定してもよい。またパネルとしては、風を風車に誘導できればよく、ソーラーパネルにしなくてもよい。 In the above embodiment, the frame body of the wind direction plate of the wind collector is divided vertically and horizontally, but the divided shape is not particularly limited. Moreover, although the solar panel is fitted in each frame, the solar panel may be rotatably fitted in at least one frame, and a normal panel may be fixed to the other frames so as not to rotate. For example, the left and right frames may be fitted with solar panels, and the top and bottom frames may be fixed with normal panels. Also, the panel may not be a solar panel as long as it can guide the wind to the windmill.
 集風装置の支持部材について、支持部材の構造は、風向板210をフレーム10に対して回転自在に支持するものであれば、特に限定されるものではない。例えば、回転部221は、フレーム10の上端に設けられた支軸50に支持されているが、フレーム10の上側の連結部材12の上面に回転自在に支持させてもよい。一例として、連結部材12の上面に環状のレールを設け、回転部221の下面にそのレールと移動自在に係合する車輪を設けたりすることが考えられる。
 また上記実施形態では、支持部材220をフレームの上端のみに設けていたが、上下風車を挟むように2個以上取り付けてもよい。また集風装置を独立して回転させてもよい。さらに、フレームと集風装置とを一体化させて、フレームと一体に回転するようにしてもよい。
Regarding the support member of the wind collector, the structure of the support member is not particularly limited as long as it supports the wind direction plate 210 rotatably with respect to the frame 10 . For example, the rotating portion 221 is supported by the support shaft 50 provided at the upper end of the frame 10, but may be rotatably supported on the upper surface of the connecting member 12 on the upper side of the frame 10. FIG. As an example, it is conceivable to provide a ring-shaped rail on the upper surface of the connecting member 12 and provide a wheel on the lower surface of the rotating part 221 to movably engage with the rail.
Further, in the above embodiment, the support member 220 is provided only at the upper end of the frame, but two or more may be attached so as to sandwich the upper and lower windmills. Alternatively, the wind collecting device may be rotated independently. Furthermore, the frame and the wind collecting device may be integrated so that they rotate together with the frame.
 次に図11~図12を用いて本発明の風力発電用の風車構造の第3の態様について説明する。
 図11a、b、cの風車構造3は、垂直軸垂直翼型の風車100と、集風装置200Aとを有する。風車100はフレーム10に支持される羽根車20を備えている。集風装置200Aは風車100に対して風の上流に配置されることによって風を風車100へ誘導する風向板210Aを備えている。さらに、風向板210Aの下流側(裏面)に上流から下流に向かって延びる風誘導板260が設けられている。風車100は、図1の風車構造1または図5の風車構造2の風車100と実質的に同じものである。
 集風装置200Aは、平板状の風向板210Aと、その風向板210Aをフレームに対して回転自在に支持する支持部材220とを有する。支持部材220は、図1の風車構造1の支持部材220と実質的に同じものである。
 風向板210Aは、風車に対して風の上流側であって、かつ、風に対向するように配置される平板状のものである。詳しくは、風向板210Aは、長方形状の板からなり、左面210A1と、右面210A2と、それらの間に設けられた窓215とを有している。
 風誘導板260は、右面210A2の裏側(下流側)であって、内側(窓215側)から裏方向(下流方向)に向かって延びている。つまり、図11bに示すように、側面からみたとき、風車100の羽根車20の約半分は風誘導板260によって覆われている。風誘導板260は、羽根車の回転上流側(右面)に設けられている。
 風の流れと平行な風誘導板260は、右面210A2の裏側から風車100の中心軸(つまり、長さが羽根車20の幅Dの半分)まで延びている。しかし、図11dに示すように、風車100の裏側(下流側)まで(長さがD)延びていてもよく、図11eに示すように、風車100の中心軸の手前まで(長さが1/2D未満)延びていてもよい。風誘導板の長さの下限は、1/4D以上、好ましくは1/3D以上である。上限はD以下である。
 このように風誘導板260を設けることにより、風車100の羽根車の回転によって生じる風車の軸心周りの竜巻状の気流の発生を防止することができる。
 なお、風車構造3は、風誘導板260を、羽根車の回転上流側(右面210A2)に設けているが、図11fのように、羽根車の回転下流側(左面210A1)に設けても良く、図11gのように左右面の両方に設けてもよい。
Next, a third embodiment of the wind turbine structure for wind power generation according to the present invention will be described with reference to FIGS. 11 and 12. FIG.
The wind turbine structure 3 of Figures 11a,b,c comprises a vertical axis vertical blade wind turbine 100 and a wind collector 200A. A windmill 100 includes an impeller 20 supported by a frame 10 . The wind collector 200A includes a wind direction plate 210A that guides the wind to the windmill 100 by being arranged upstream of the windmill 100 . Further, a wind guide plate 260 extending from upstream to downstream is provided on the downstream side (rear surface) of the wind direction plate 210A. The wind turbine 100 is substantially the same as the wind turbine 100 of the wind turbine structure 1 of FIG. 1 or the wind turbine structure 2 of FIG.
The wind collector 200A has a flat wind direction plate 210A and a support member 220 that rotatably supports the wind direction plate 210A with respect to the frame. The support member 220 is substantially the same as the support member 220 of the wind turbine structure 1 of FIG.
The wind direction plate 210A is a plate-like plate arranged on the upstream side of the wind with respect to the wind turbine and facing the wind. Specifically, the wind direction plate 210A is a rectangular plate and has a left surface 210A1, a right surface 210A2, and a window 215 provided therebetween.
The wind guide plate 260 is on the back side (downstream side) of the right surface 210A2 and extends from the inner side (window 215 side) toward the back side (downstream direction). That is, as shown in FIG. 11b, about half of the impeller 20 of the wind turbine 100 is covered with the wind guide plate 260 when viewed from the side. The wind guide plate 260 is provided on the upstream side (right side) of the impeller.
The wind guide plate 260 parallel to the flow of wind extends from the back side of the right surface 210A2 to the central axis of the windmill 100 (that is, its length is half the width D of the impeller 20). However, as shown in FIG. 11d, it may extend to the back side (downstream side) of the wind turbine 100 (length D), and as shown in FIG. /2D) may be extended. The lower limit of the length of the wind guide plate is 1/4D or more, preferably 1/3D or more. The upper limit is D or less.
By providing the wind guide plate 260 in this way, it is possible to prevent the generation of a tornado-like airflow around the axis of the windmill caused by the rotation of the impeller of the windmill 100 .
In the wind turbine structure 3, the wind guide plate 260 is provided on the upstream side of the impeller rotation (right surface 210A2), but may be provided on the downstream side of the impeller rotation (left surface 210A1) as shown in FIG. 11f. , may be provided on both the left and right sides as shown in FIG. 11g.
 本発明の第3の態様は、上記実施形態に限定されるものではない。
 図11の風車構造3の風向板210は、左右面からなっている風向板に風誘導板が設けられているが、図1の風車構造1のように左右上下の全ての面を有している風向板210に風誘導板を設けてもよい(図示せず)。また、図12aの風車構造3Aのように、上流から風車に向かう風の密度を高めるように、風の向きに対して傾斜させた一対の平板(左面210B1および右面210B2)を備えた風向板210Bに風誘導板260を設けてもよく、また、図10dの風車構造2Cの湾曲板(210C1および210C2)からなる風向板210Cに風誘導板を設けてもよい(図示せず)。
 図11の風車構造3の風誘導板260は、風向板210の裏側から延びているが、図12bの風車構造3Bのように、風向板210と風誘導板260との間に隙間を有していてもよい。また風誘導板は、風の流れ(上流から下流へと流れる向き)と平行に設けるのが好ましいが、図12cの風車構造3Cのように、風車周りに対して直角となるように風誘導板260を設けてもよい。このように風誘導板260の配置は、風車周りの気流が発生しないように風車周りに設けられれば、特に限定されるものではない。
The third aspect of the invention is not limited to the above embodiments.
The wind direction plate 210 of the wind turbine structure 3 of FIG. 11 is provided with a wind guide plate on the wind direction plate consisting of left and right sides, but like the wind turbine structure 1 of FIG. A wind guide plate may be provided on the wind direction plate 210 (not shown). Also, like the wind turbine structure 3A in FIG. 12a, the wind direction plate 210B is provided with a pair of flat plates (left surface 210B1 and right surface 210B2) inclined with respect to the direction of the wind so as to increase the density of the wind directed from the upstream toward the wind turbine. A wind guide plate 260 may also be provided in the wind turbine structure 2C of FIG.
The wind guide plate 260 of the wind turbine structure 3 of FIG. 11 extends from the back side of the wind guide plate 210, but has a gap between the wind guide plate 210 and the wind guide plate 260, like the wind turbine structure 3B of FIG. 12b. may be It is preferable to install the wind guide plate in parallel with the wind flow (flow direction from upstream to downstream), but like the wind turbine structure 3C in FIG. 260 may be provided. As described above, the arrangement of the wind guide plate 260 is not particularly limited as long as it is provided around the windmill so as not to generate an airflow around the windmill.
 次に図13を用いて本発明の風力発電用の風車構造の第4の態様について説明する。
 図13a、bの風車構造4は、垂直軸垂直翼型の風車100と、集風装置200と、風車100および集風装置200を覆う筐体300とを有している。筐体300は、柱301と、桟302と、柱301の間に設けられる側壁303と、桟302の間に設けられる天壁304とを有している。側壁303は、上流から下流へと流れる風を、向きを変えることなく通すものである。つまり、筐体300は、全方向の風をそのまま向きを変えることなく通すように構成されている。
 筐体300は、風車100および集風装置200を覆うものである。特に集風装置200の回転軌跡を含めて覆うものである。
 側壁303は、金属線で形成した金網である。金網は、金属線を編みこんでも、金属線同士を溶接してもよい。金網の交点同士の距離が10cm~50cmであるのが好ましく、その好ましい下限は、20cm以上、特に好ましくは30cm以上である。10cmより小さい場合、風車に流れる風への抵抗が大きくなり、風車に流れ込む風を減速する度合いが大きくなる。一方、50cmより大きい場合、風車100または集風装置200が万一破損したとき、その破損物が飛散するおそれがある。また金属線の線径は、10mm~100mmであり、その好ましい下限は、20mm以上、特に好ましくは30mm以上である。10mmより小さい場合、破損物によって破れるおそれがある。一方、100mmより大きい場合、鉄線自体が風への抵抗となり、風車への影響が大きくなる。金属線の材質としては、鉄、鋼、アルミニウム等が挙げられ、ステンレス加工を施したものが好ましい。特に、強度を有するステンレス鋼(SUS)線が好ましく挙げられる。
 風車100および集風装置200は、それぞれ図1の風車構造の風車100および集風装置200と実質的に同じものである。この風車構造4を発電機と連結することにより風力発電装置として使用できる。
 このように風車構造4は、万が一、風の圧力に対して風車または集風装置が破損しても周囲に破損物の飛散を防止する。風を受けて誘導する集風装置200は、風を流す垂直軸風車より大きな力が加わるため、安全性が重要となる。特に、風車周りに回転する集風装置200は、構造も複雑となるため、安全性が重要となる。
Next, a fourth aspect of the wind turbine structure for wind power generation according to the present invention will be described with reference to FIG.
The wind turbine structure 4 of FIGS. 13a and 13b has a vertical axis vertical wing type wind turbine 100 , a wind collector 200 , and a housing 300 covering the wind turbine 100 and the wind collector 200 . The housing 300 has columns 301 , crosspieces 302 , side walls 303 provided between the columns 301 , and top walls 304 provided between the crosspieces 302 . The side wall 303 passes the wind flowing from upstream to downstream without changing its direction. In other words, the housing 300 is configured to pass the wind in all directions without changing its direction.
The housing 300 covers the windmill 100 and the wind collector 200 . In particular, it covers the locus of rotation of the wind collector 200 as well.
Side wall 303 is a wire mesh formed of metal wires. The wire mesh may be formed by weaving metal wires or by welding metal wires together. The distance between intersection points of the wire mesh is preferably 10 cm to 50 cm, and the preferred lower limit thereof is 20 cm or more, particularly preferably 30 cm or more. If it is smaller than 10 cm, the resistance to the wind flowing into the windmill increases, and the degree of deceleration of the wind flowing into the windmill increases. On the other hand, if the length is larger than 50 cm, there is a risk that the damaged objects may scatter when the wind turbine 100 or the wind collector 200 should break. The wire diameter of the metal wire is 10 mm to 100 mm, and the preferred lower limit thereof is 20 mm or more, particularly preferably 30 mm or more. If it is smaller than 10 mm, it may be torn by broken objects. On the other hand, if the length is greater than 100 mm, the iron wire itself acts as a resistance to the wind, increasing the effect on the windmill. Examples of the material of the metal wire include iron, steel, aluminum, etc., and those processed with stainless steel are preferable. In particular, a stainless steel (SUS) wire having strength is preferable.
The wind turbine 100 and the wind collector 200 are substantially the same as the wind turbine structure wind turbine 100 and the wind collector 200 of FIG. 1, respectively. By connecting this windmill structure 4 with a generator, it can be used as a wind power generator.
In this way, the windmill structure 4 prevents scattering of damaged objects in the surroundings even if the windmill or the wind collector is damaged by wind pressure. Since the wind collecting device 200 that receives and guides the wind receives a greater force than the vertical axis windmill that flows the wind, safety is important. In particular, the wind collector 200 that rotates around the windmill has a complicated structure, so safety is important.
 なお、第4の実施形態も図13の風車構造に限定されるものではない。
 風車構造4の筐体は直方体となっているが、風車100および集風装置200を覆うことができれば、特に限定されるものではない。例えば、円柱や3角柱や5角柱(多角柱)などが考えられ、円錐、円錐台、角錐、角錐台などでもよい。いずれも全方向から吹く風を通すように構成されていればよい。
 また風車構造4は、筐体を固定しているが、集風装置と共に回転するようにしてもよい。その場合、風の上流および下流となる側壁だけを金網(風を通すよう面)とし、その他の側壁は風を通さないようにしてもよい。
 なお、第4の実施形態も図13の風車構造4に限定されるものではない。この筐体300は、第2の態様の風車構造および第3の態様の風車構造にも適用することができる。特に、集風装置が回転するものに好ましい。
It should be noted that the fourth embodiment is not limited to the wind turbine structure of FIG. 13 either.
The housing of the windmill structure 4 is a rectangular parallelepiped, but is not particularly limited as long as it can cover the windmill 100 and the wind collector 200 . For example, a cylinder, a triangular prism, a pentagonal prism (polygonal prism), etc., may be considered, and a cone, a truncated cone, a pyramid, a truncated pyramid, etc. may be used. All of them need only be constructed so as to pass the wind blowing from all directions.
Further, although the windmill structure 4 has a fixed housing, it may be rotated together with the wind collector. In that case, only the side walls that are upstream and downstream of the wind may be made of wire mesh (surfaces that let the wind pass), and the other side walls may not pass the wind.
Note that the fourth embodiment is not limited to the wind turbine structure 4 of FIG. 13 either. This housing 300 can also be applied to the wind turbine structure of the second aspect and the wind turbine structure of the third aspect. In particular, it is preferable for a device in which the wind collecting device rotates.
 上述したように、本発明の風車構造は、発電機に取り付けることにより、風力発電装置となる。またここでは図示していないが、風の向きに応じて風向板210の位置を計算する計算装置と、その計算に基づいて回転部221を回転させる駆動装置とを設けることにより、一層、効率よく風力発電装置として作動させることができる。 As described above, the windmill structure of the present invention becomes a wind power generator by attaching it to a generator. Further, although not shown here, by providing a calculation device that calculates the position of the wind direction plate 210 according to the direction of the wind and a drive device that rotates the rotating part 221 based on the calculation, further efficiency can be achieved. It can be operated as a wind power generator.
1、2、2A、2B、2C、3、4 風車構造;100 風車;10 フレーム;11 柱;12 連結部材;12a 連結部材;13 ボス;13a 軸受け;14 スポーク;15 リング;20 羽根車;21 回転軸;22 支持アーム;23 縦ブレード;50 支軸;70 補強リング;200、200A 集風装置;210、210A、210B、210C 風向板;210A1、210B1、210C1 左側板(左面);210A2、210B2、210C2 右側板(右面);211 左面;212 右面;212A ソーラーパネル;212A1 左側パネル;212A2 右側パネル;212A3 上側パネル;212A4 下側パネル;213 上面;214 下面;215 窓;216、216A 枠体;216a外枠;216b 内枠;216A1 左側枠体;216A2 右側枠体;216A3 上側枠体;216A4 下側枠体;217 板本体;218 車輪;220 支持部材;221 回転部;222 連結アーム;250 レール;260 風誘導板;300 筐体;301 柱;302 桟;303 側壁;304 天壁 1, 2, 2A, 2B, 2C, 3, 4 Windmill structure; 100 Windmill; 10 Frame; 11 Column; 12 Connecting member; 12a Connecting member; 13 Boss; 13a Bearing; 14 Spoke; Rotating shaft; 22 Support arm; 23 Vertical blade; 50 Support shaft; 70 Reinforcement ring; 200, 200A Air collector; 210C2 right panel (right surface); 211 left surface; 212 right surface; 212A solar panel; 212A1 left panel; 212A2 right panel; 212A3 upper panel; 212A4 lower panel; 216a outer frame; 216b inner frame; 216A1 left frame; 216A2 right frame; 216A3 upper frame; 216A4 lower frame; 217 plate body; 218 wheel; ; 260 wind guide plate; 300 housing; 301 pillar; 302 crosspiece; 303 side wall; 304 ceiling wall

Claims (19)

  1. 垂直軸型の風車と、
    集風装置とから構成され、
    前記集風装置は、前記風車に対して風の上流に、かつ、風に対向するように配置される平板状の風向板を備え、
    前記風向板は、左面と、右面と、上面と、それらに囲まれた窓とを有している、
    風力発電用の風車構造。
    a vertical axis wind turbine;
    It consists of a wind collector and
    The wind collector includes a flat plate-shaped wind direction plate arranged upstream of the wind turbine and facing the wind,
    The wind vane has a left side, a right side, a top side, and a window surrounded by them.
    Windmill structure for wind power generation.
  2. 前記風向板は、下面を有し、前記窓は左右面および上下面によって囲まれている、
    請求項1記載の風車構造。
    the wind deflector has a bottom surface, and the window is bounded by left and right surfaces and top and bottom surfaces;
    The wind turbine structure according to claim 1.
  3. 前記左右面の幅が、それぞれ前記羽根車の幅Dに対して0.5倍以上である、
    請求項1または2記載の風車構造。
    The widths of the left and right surfaces are each 0.5 times or more the width D of the impeller,
    The wind turbine structure according to claim 1 or 2.
  4. 前記風向板は、前記風車の周りに回転可能である、
    請求項1から3のいずれかに記載の風車構造。
    the wind deflector is rotatable around the wind turbine;
    A wind turbine structure according to any one of claims 1 to 3.
  5. 前記風向板は、前記風車の軸心周りに回転可能である、
    請求項4記載の風車構造。
    The wind direction plate is rotatable around the axis of the wind turbine,
    The wind turbine structure according to claim 4.
  6. 前記風車は、フレームと、そのフレームに支持される羽根車とを備えており、
    前記風向板は、前記フレームに固定されている、
    請求項1から5のいずれかに記載の風車構造。
    The windmill comprises a frame and an impeller supported by the frame,
    The wind deflector is fixed to the frame,
    A wind turbine structure according to any one of claims 1 to 5.
  7. 前記風車および前記集風装置を覆う筐体を有し、
    前記筐体は、前記風を上流から下流へと向きを変えることなく通す側壁を備えている、
    請求項1から6のいずれかに記載の風車構造。
    Having a housing that covers the windmill and the wind collector,
    The housing has a side wall that allows the wind to flow from upstream to downstream without changing direction.
    A wind turbine structure according to any one of claims 1 to 6.
  8. 垂直軸型の風車と、
    集風装置とを有し、
    前記集風装置は、前記風車に対して風の上流に配置されることによって前記風を前記風車へ誘導する風向板を備え、
    前記風向板は、前記風車の周りに回転可能である、
    風力発電用の風車構造。
    a vertical axis wind turbine;
    and a wind collector,
    The wind collector includes a wind direction plate arranged upstream of the wind turbine to guide the wind to the wind turbine,
    the wind deflector is rotatable around the wind turbine;
    Windmill structure for wind power generation.
  9. 前記風向板は、前記風車の軸心周りに回転可能である、
    請求項8記載の風車構造。
    The wind direction plate is rotatable around the axis of the wind turbine,
    The wind turbine structure according to claim 8.
  10. 前記風向板は、鉛直方向に延びる平板であり、
    前記風向板は、枠体と、その枠体内に収容される板本体とを備え、
    前記板本体は、ソーラーパネルである、
    請求項8または9記載の風車構造。
    The wind direction plate is a flat plate extending in the vertical direction,
    The wind direction plate comprises a frame and a plate body housed in the frame,
    The plate body is a solar panel,
    The wind turbine structure according to claim 8 or 9.
  11. 前記風向板は、鉛直方向に延びる平板であり、
    前記風向板は、枠体と、その枠体内に収容される板本体とを備え、
    前記板本体は、回転可能である、
    請求項8から9記載の風車構造。
    The wind direction plate is a flat plate extending in the vertical direction,
    The wind direction plate comprises a frame and a plate body housed in the frame,
    The plate body is rotatable,
    Wind turbine structure according to claim 8-9.
  12. 前記集風装置は、前記風向板と前記風車とを連結する支持部材を備え、
    前記支持部材は、前記風車に回転支持される回転部と、前記回転部から風向板に延びる連結アームとを備えた、
    請求項8から11のいずれかに記載の風車構造。
    The wind collector includes a support member that connects the wind direction plate and the wind turbine,
    The support member includes a rotating portion that is rotatably supported by the wind turbine, and a connecting arm that extends from the rotating portion to the wind direction plate,
    Wind turbine structure according to any one of claims 8 to 11.
  13. 前記風車は、フレームと、そのフレームに支持される羽根車とを有し、
    前記風向板は、前記フレームに回転支持される、
    請求項8から12いずれかに記載の風車構造。
    The windmill has a frame and an impeller supported by the frame,
    The wind direction plate is rotatably supported by the frame,
    Wind turbine structure according to any one of claims 8 to 12.
  14. 前記風車および前記集風装置を覆う筐体を有し、
    前記筐体は、前記風を上流から下流へと向きを変えることなく通す側壁を備えている、
    請求項8から13のいずれかに記載の風車構造。
    Having a housing that covers the windmill and the wind collector,
    The housing has a side wall that allows the wind to flow from upstream to downstream without changing direction.
    Wind turbine structure according to any one of claims 8 to 13.
  15. 垂直軸型の風車と、
    集風装置とから構成され、
    前記集風装置は、前記風車に対して風の上流に配置されることによって前記風を前記風車へ誘導する風向板を備え、
    前記風向板の下流側に、前記風車周りに設けられた風誘導板を有する、
    風力発電用の風車構造。
    a vertical axis wind turbine;
    It consists of a wind collector and
    The wind collector includes a wind direction plate arranged upstream of the wind turbine to guide the wind to the wind turbine,
    A wind guide plate provided around the wind turbine on the downstream side of the wind direction plate,
    Windmill structure for wind power generation.
  16. 前記風向板は、左面と、右面と、その間に設けられる窓とを有しており、
    前記風誘導板は、前記左面および/または右面の裏側から風の下流方向に延びている、
    請求項15記載の風車構造。
    The wind direction plate has a left surface, a right surface, and a window provided therebetween,
    The wind guide plate extends in the downstream direction of the wind from the back side of the left surface and/or the right surface.
    Wind turbine structure according to claim 15.
  17. 前記風車および前記集風装置を覆う筐体を有し、
    前記筐体は、前記風を上流から下流へと向きを変えることなく通す側壁を備えている、
    請求項15または16記載の風車構造。
    Having a housing that covers the windmill and the wind collector,
    The housing has a side wall that allows the wind to flow from upstream to downstream without changing direction.
    Wind turbine structure according to claim 15 or 16.
  18. 垂直軸型の風車と、
    集風装置と、
    前記風車および集風装置を覆う筐体とから構成され、
    前記集風装置は、前記風車に対して風の上流に配置されることによって前記風を前記風車へ誘導する風向板を備え、
    前記筐体は、前記風を上流から下流へと向きを変えることなく通す側壁を備えている、
    風車構造。
    a vertical axis wind turbine;
    a wind collector;
    It is composed of a housing that covers the wind turbine and the wind collector,
    The wind collector includes a wind direction plate arranged upstream of the wind turbine to guide the wind to the wind turbine,
    The housing has a side wall that allows the wind to flow from upstream to downstream without changing direction.
    windmill structure.
  19. 前記側壁は、金属線で形成した金網である、
    請求項18記載の風車構造。
    The sidewall is a wire mesh formed of metal wires,
    Wind turbine structure according to claim 18.
PCT/JP2021/037457 2021-10-08 2021-10-08 Windmill structure for wind power generation WO2023058245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037457 WO2023058245A1 (en) 2021-10-08 2021-10-08 Windmill structure for wind power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037457 WO2023058245A1 (en) 2021-10-08 2021-10-08 Windmill structure for wind power generation

Publications (1)

Publication Number Publication Date
WO2023058245A1 true WO2023058245A1 (en) 2023-04-13

Family

ID=85804094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037457 WO2023058245A1 (en) 2021-10-08 2021-10-08 Windmill structure for wind power generation

Country Status (1)

Country Link
WO (1) WO2023058245A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178564A (en) * 1985-02-01 1986-08-11 Hitachi Ltd Wind collection type wind power generation device
JP2005337245A (en) * 2004-04-30 2005-12-08 Mekatekku Kk Vertical axis type wind power generator
JP2011064097A (en) * 2009-09-16 2011-03-31 Tenso Kogyo Kk Wind turbine device and wind turbine generator using the same
JP2013019392A (en) * 2011-07-14 2013-01-31 Toyomi Nohara Wind power generation device
JP2014101756A (en) * 2012-11-16 2014-06-05 Matsumoto Kenzai:Kk Wind power generation device
JP2015224586A (en) * 2014-05-27 2015-12-14 株式会社ドクター中松創研 Hybrid power generator serving as solar panel wind power guide
CN107747530A (en) * 2017-12-05 2018-03-02 许占欣 A kind of wind tunnel type vertical axis wind turbine device
JP2018080649A (en) * 2016-11-17 2018-05-24 グエン チー カンパニー リミテッド Wind power rotating device and wind power generation device
JP2019517641A (en) * 2016-06-02 2019-06-24 イビス パワー ホールディング ビー.ヴイ.Ibis Power Holding B.V. Electric power system for converting wind energy into electric energy and building having the system
JP2021161963A (en) * 2020-03-31 2021-10-11 久和 内山 Wind turbine structure for wind power generation
JP2021161964A (en) * 2020-03-31 2021-10-11 久和 内山 Wind turbine structure for wind power generation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178564A (en) * 1985-02-01 1986-08-11 Hitachi Ltd Wind collection type wind power generation device
JP2005337245A (en) * 2004-04-30 2005-12-08 Mekatekku Kk Vertical axis type wind power generator
JP2011064097A (en) * 2009-09-16 2011-03-31 Tenso Kogyo Kk Wind turbine device and wind turbine generator using the same
JP2013019392A (en) * 2011-07-14 2013-01-31 Toyomi Nohara Wind power generation device
JP2014101756A (en) * 2012-11-16 2014-06-05 Matsumoto Kenzai:Kk Wind power generation device
JP2015224586A (en) * 2014-05-27 2015-12-14 株式会社ドクター中松創研 Hybrid power generator serving as solar panel wind power guide
JP2019517641A (en) * 2016-06-02 2019-06-24 イビス パワー ホールディング ビー.ヴイ.Ibis Power Holding B.V. Electric power system for converting wind energy into electric energy and building having the system
JP2018080649A (en) * 2016-11-17 2018-05-24 グエン チー カンパニー リミテッド Wind power rotating device and wind power generation device
CN107747530A (en) * 2017-12-05 2018-03-02 许占欣 A kind of wind tunnel type vertical axis wind turbine device
JP2021161963A (en) * 2020-03-31 2021-10-11 久和 内山 Wind turbine structure for wind power generation
JP2021161964A (en) * 2020-03-31 2021-10-11 久和 内山 Wind turbine structure for wind power generation

Similar Documents

Publication Publication Date Title
US8961103B1 (en) Vertical axis wind turbine with axial flow rotor
US9453494B2 (en) Building integrated wind energy power enhancer system
US8459930B2 (en) Vertical multi-phased wind turbine system
JP5934110B2 (en) Wind energy conversion device
CA2479165C (en) Windmill for wind power generation
US7323791B2 (en) Louvered horizontal wind turbine
EP2609325B1 (en) Vertical axis turbine
US20100296913A1 (en) Wind power generating system with vertical axis jet wheel turbine
US8403623B2 (en) Wind energy power enhancer system
WO2016023351A1 (en) All-directional flow-guide shaftless wind-driven generator
US10280900B1 (en) Omnidirectional building integrated wind energy power enhancer system
JP2008522082A (en) Wind turbine
JP2007528467A (en) Wind turbine in wind tunnel
US11156204B2 (en) Wind turbine
US20140105738A1 (en) Nozzle assembly for use with a wind lens system for the generation of electric power
US9273665B1 (en) Dual wind energy power enhancer system
JP2012107612A (en) Wind tunnel body, vertical axis wind turbine, structure, wind power generator, hydraulic device, and building
US20230053124A1 (en) Systems and Methods for Harnessing Energy from Wind
JP2021161963A (en) Wind turbine structure for wind power generation
WO2023058245A1 (en) Windmill structure for wind power generation
KR20070015926A (en) Wind powered turbine in a tunnel
WO2011052536A1 (en) Wind power generator
US9145868B2 (en) Vertical axis turbine and constructions employing same
JP2021161964A (en) Wind turbine structure for wind power generation
US20120269627A1 (en) Vertical axis windmill system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959984

Country of ref document: EP

Kind code of ref document: A1