WO2023058244A1 - 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム - Google Patents

情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム Download PDF

Info

Publication number
WO2023058244A1
WO2023058244A1 PCT/JP2021/037439 JP2021037439W WO2023058244A1 WO 2023058244 A1 WO2023058244 A1 WO 2023058244A1 JP 2021037439 W JP2021037439 W JP 2021037439W WO 2023058244 A1 WO2023058244 A1 WO 2023058244A1
Authority
WO
WIPO (PCT)
Prior art keywords
information processing
buildings
cluster
appraisal
constraint
Prior art date
Application number
PCT/JP2021/037439
Other languages
English (en)
French (fr)
Inventor
直哉 森
祐一郎 増野
悟 古川
Original Assignee
コグニビジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コグニビジョン株式会社 filed Critical コグニビジョン株式会社
Priority to JP2023552673A priority Critical patent/JPWO2023058244A1/ja
Priority to PCT/JP2021/037439 priority patent/WO2023058244A1/ja
Publication of WO2023058244A1 publication Critical patent/WO2023058244A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Definitions

  • the present invention is an information processing device and information processing system for solving the problem of optimizing the movement route (witness route) of a damage insurance adjuster (witness) in the event of an earthquake using a QUBO solver or the like including a quantum computer. , an information processing method and an information processing program (hereinafter referred to as “information processing apparatus, etc.”).
  • non-life insurance companies basically conduct on-site inspections to determine the extent of damage to buildings covered by non-life insurance in order to calculate the amount to be paid according to the extent of damage to the structures covered by the insurance. confirm.
  • 200 witnesses per office are dispatched to the site, and on a busy day, about 1,000 witnesses (appraisals of damage to buildings, etc.) are conducted. ing.
  • Patent Document 1 formulates VRP related to physical distribution in the QUBO format and solves it using a quantum solver in a quantum computing environment based on information (constraints) on "location" and "route preference”.
  • Patent Document 2 formulates TSP and VRP in the QUBO format, and obtains the optimum solution using an Ising solver such as a quantum computer.
  • Non-Patent Document 1 A method for formulating constraints, etc. to solve TSP and VRP, converting them to QUBO, and using a quantum computer such as D-Wave to find the optimal solution is described, for example, in Non-Patent Document 1.
  • a quantum computer quantum annealing machine
  • D-Wave Non-Patent Document 2
  • PyQUBO Non-Patent Document 3
  • JP 2021-036417 A Japanese Patent Application Laid-Open No. 2020-149403
  • all the attendance points on the map are divided into a plurality of grids as necessary, and various types of buildings having structures such as wooden structures, steel frames, and reinforced concrete are appraised.
  • Constraints such as difficulty (estimation difficulty), required time for appraisal of various structures (required time estimate), appraisal skill level of witnesses (spec), desired time frame for each witness, etc. are formulated, and QUBO format By giving it to a quantum annealing machine etc., after performing clustering considering various conditions for each grid, solving the route optimization problem of the witness in each cluster, constructing multiple witnesses for each witness
  • an information processing device or the like capable of determining objects and calculating travel routes to those buildings and order of visits.
  • an information processing device for determining a plurality of buildings to be visited by each of a plurality of visitors and the order of visiting the plurality of buildings is: , At least an appraisal difficulty level for each of the plurality of structures, a required appraisal time for each of the plurality of structures, an appraisal skill level for each of the plurality of visitors, and a desired visiting time frame for each of the plurality of structures.
  • an input data setting unit for setting input data including Based on a predetermined cluster constraint, using the location information of the plurality of buildings, clustering processing is performed to divide the plurality of buildings corresponding to the location information into a plurality of clusters, or via a network a clustering calculation unit that determines the destination of each of the plurality of visitors by causing a connected quantum computer to perform the clustering process; a route optimization problem calculation unit that causes the quantum computer to execute an optimization process for determining the visit order of a plurality of buildings to be visited in each of the plurality of clusters based on predetermined optimization constraints.
  • the predetermined cluster constraint is expressed by a first formalized formula, and the first formula defines that the building with the maximum appraisal difficulty is the cluster of the visitors with the maximum appraisal skill.
  • a constraint term for a building with an intermediate value of appraisal difficulty to belong to a cluster of visitors with an intermediate or higher appraisal skill level, and a desired visit for route optimization a time frame and a constraint term for distributing the appraisal duration;
  • the predetermined optimization constraint is expressed in a formulated second mathematical formula, the second mathematical formula including a constraint term on the desired visit timeframe.
  • the clustering calculation unit performs grid division processing for dividing the plurality of buildings into a plurality of grids using only position information of the plurality of buildings before executing the clustering processing. run, The clustering process is performed for each of the plurality of grids.
  • the first formula includes a cost term for reducing a moving distance in consideration of a route between a plurality of visited buildings included in the cluster, and a cost term included in the cluster. It further includes a cost term that reduces the subtotal estimated time in the desired visit time frame for each of the multiple structures visited, and a constraint term that ensures that each of all clusters contains a predetermined number of visits.
  • an information processing method for determining a plurality of buildings to be visited by each of a plurality of visitors and the order of visiting the plurality of buildings.
  • the information processing method is executed by a terminal device connected to a quantum computer via a network, setting input data including at least an appraisal difficulty level for each of the plurality of buildings, an appraisal skill level for each of the plurality of visitors, and a desired visiting time frame for each of the plurality of buildings;
  • clustering processing is performed to divide the plurality of buildings corresponding to the positional information into a plurality of clusters, or the quantum computer determining a destination of each of the plurality of visitors by performing the clustering process; causing the quantum computer to perform an optimization process that determines the order of visiting a plurality of buildings to be visited in each of the plurality of clusters based on predetermined optimization constraints;
  • the predetermined cluster constraint is expressed by a first formalized formula
  • the predetermined optimization constraint is expressed in a formulated second mathematical formula, the second mathematical formula including at least a constraint term relating to the desired visit timeframe.
  • the step of determining the visit destination of each of the plurality of visitors includes using only the position information of the plurality of buildings before performing the clustering process.
  • Execute grid division processing to divide into multiple grids, The clustering process is performed for each of the plurality of grids.
  • the first formula includes a cost term for reducing the moving distance in consideration of a route between a plurality of visited buildings included in the cluster, and a cost term included in the cluster. It further includes a cost term that reduces the subtotal estimated time in the desired visit time frame for each of the multiple structures visited, and a constraint term that ensures that each of all clusters contains a predetermined number of visits.
  • the information processing system includes: the information processing device; including a quantum computer connected to the information processing device via a network, The quantum computer receives QUBO obtained by transforming the first mathematical formula and the second mathematical formula from the information processing device, and executes the clustering process and the optimization process.
  • the program is executed by a computer to cause the computer to function as each part of the information processing apparatus.
  • the program is executed by a computer to cause the computer to perform each step of the information processing method.
  • the information processing apparatus dispatches each of a plurality of witnesses to which building on which movement route and in which order in order to confirm the damage status of a plurality of buildings in the event of a natural disaster such as a large-scale earthquake.
  • QUBO which formulates constraints such as the difficulty of appraisal of various structures, the skill level of appraisers of witnesses, and the desired time frame for witnessing of each witness, is input into the quantum annealing machine.
  • the present invention can solve the problem of optimizing routes to visits of witnesses (experts), which has never been possible before.
  • it is possible to efficiently conduct on-site inspections to confirm the damage status of buildings in the event of a disaster, and to quickly calculate the insurance payment amount according to the damage status of buildings covered by non-life insurance. can contribute to
  • FIG. 4 is a flow chart showing the flow of processing for finding an optimum solution to a route optimization problem in an information processing device
  • FIG. 3 is a diagram showing an outline of calculation of grid division, clustering, and traveling salesman problem (TS-TSP) in the flow chart shown in FIG. 2
  • FIG. 3 is a diagram showing an example of grid division performed based on position information (latitude and longitude coordinates) of buildings on a map to be attended.
  • FIG. 10 is a diagram showing an example of displaying three clusters out of a plurality of clusters generated by clustering performed in one grid
  • FIG. 10 is a diagram showing an example of displaying optimal travel routes to a plurality of visiting destinations in one cluster;
  • FIG. 1 shows an example of the configuration of an information processing device and system according to one embodiment of the present invention.
  • a client computer 100 which is an information processing device
  • an annealing machine 200 which is an example of a quantum computer
  • the client computer 100 is an information processing device connectable to the network N, such as a personal computer, a notebook computer, a smart phone, and a mobile phone.
  • An information processing system includes a client computer 100 and an annealing machine 200. Although there is one client computer 100 in the embodiment shown in FIG. 1, there may be more than one, and the annealing machine 200 may be more than one.
  • the network N may be, for example, an open network such as the Internet, an intranet connected by a dedicated line, or a closed network.
  • the network N is not limited to this, and a closed network and an open network can be used in combination, as appropriate, according to the required security level and the like.
  • Client computer 100 typically includes one or more processing units (CPUs) 102, memory 104, one or more network interfaces (or other communication interfaces) 106, and a includes one or more communication buses 114 of the .
  • CPUs processing units
  • memory 104 memory 104
  • network interfaces or other communication interfaces
  • a includes one or more communication buses 114 of the .
  • the client computer 100 may also include a user interface 108, for example, the user interface 108 may include a display 110 and input devices (keyboard and/or mouse, or some other pointing device) 112.
  • the input device 112 may be a touch panel.
  • Memory 104 is, for example, high speed random access memory such as DRAM, SRAM, DDR RAM or other random access solid state storage, and may also be one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or A non-volatile memory such as another non-volatile solid-state memory device may be used.
  • the CPU 102 executes various processes according to programs recorded in the memory 104 or programs loaded into the memory 104 from a storage device (not shown). For example, the CPU 102 causes the client computer 100 to calculate a route optimization problem such as TSP and VRP using the annealing machine 200, thereby obtaining a plurality of buildings to be visited by each of the plurality of visitors and the relevant structure.
  • a program for functioning as an information processing device for determining the order of visiting a plurality of buildings can be executed. It is also possible to implement at least part of the functions of the information processing apparatus in the form of hardware such as an application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • the operating system 116 includes, for example, procedures for handling various basic system services and performing tasks with the hardware.
  • Network communication module 118 connects client computer 100 to other computers, for example, one or more network interfaces 106 and one or more networks N, such as the Internet, other wide area networks, local area networks, metropolitan area networks, etc. used to connect via
  • the annealing machine setting module 120 includes an input data setting unit 122, a clustering calculation unit 124, and a traveling sales system that considers various times such as a desired time frame for a visit (desired time frame for attendance), appraisal time (estimated time), and travel time for each cluster. It includes a TS-TSP calculation unit (route optimization problem calculation unit) 126 that calculates a route optimization problem such as a Mann problem (Time Scheduled Traveling Problem; TS-TSP), and a calculation result visualization unit 128 .
  • TS-TSP calculation unit route optimization problem calculation unit 126 that calculates a route optimization problem such as a Mann problem (Time Scheduled Traveling Problem; TS-TSP), and a calculation result visualization unit 128 .
  • the annealing machine setting module 120 is a program recorded or loaded in the memory 104, and is executed by the client computer 100 to set the hardware resources such as the CPU 102 and the memory 104 to the input data setting unit 122 and the clustering calculation unit 124. , the TS-TSP calculation unit 126 and the calculation result visualization unit 128 .
  • FIG. 2 is a flow chart showing the flow of processing for finding the optimum solution to the route optimization problem in the information processing device.
  • FIG. 3 shows an outline of calculation of the grid division, clustering, traveling salesman problem (TS-TSP) in the flow chart shown in FIG. 1 to 3, the functional configuration and processing flow of each part of the client computer 100, which is an information processing apparatus, will be described.
  • TS-TSP traveling salesman problem
  • step S10 the client computer 100 sends each of a plurality of witnesses (visitors) to which building on which movement route and in which order in order to confirm the damage status of a plurality of buildings in the event of a natural disaster such as a large-scale earthquake.
  • the input data setting unit 122 sets (stores) the input data.
  • the annealing machine setting module 120 can make settings for operating the annealing machine 200 according to the input received from the user.
  • the input data setting unit 122 can store specs of each of a plurality of witnesses.
  • Trust specifications can be set to three types of values such as "high”, “medium”, and “low”, which are maximum, intermediate, and minimum values.
  • the input data setting unit 122 can store the attributes of estimation difficulty, desired time frame for attendance, and appraisal time (estimation time) for each of a plurality of buildings to be witnessed.
  • the estimated difficulty of the building is set to three types of values: maximum value, intermediate value, and minimum value such as "Difficult", “Medium”, and “Easy”. 3 types of values such as "PM2" in the latter half of the afternoon can be set, and the estimated time (hour (h)) can be set to 3 types of values such as "0.5", "1.0", and "1.5”. can be done.
  • the input data setting unit 122 can also store the distances between a plurality of buildings to be attended. It should be noted that the specification of the witness, the estimated difficulty level of the building, the desired time frame for witnessing, and the estimated time have three types of values, but the present invention is not limited to this.
  • the input data setting unit 122 can also store the constraints required for calculating the TS-TSP.
  • constraints (1) the observer must leave an office and return to the original office, (2) one observer must visit one observer only once, and (3) One observer should visit 5 buildings, (4) an observer who can handle the difficulty of the visit site should visit, and (5) the same observer should be in charge of the same area. can be done.
  • the visit of witnesses who can handle the difficulty of the visit destination for example, if the estimated difficulty of the building is the maximum value "difficult", the witnesses with the maximum spec value "high" can respond.
  • the number of buildings visited by witnesses is not limited to five, and may be any number.
  • the predetermined number specified by the user can be the number of buildings visited by witnesses.
  • the client computer 100 stores the estimated difficulty level of each building, specs of witnesses, desired time frame of each witness, building Based on the input such as the distance between and the constraints, the annealing machine 200 is given a route optimization problem ( TS-TSP) calculation can be performed.
  • TS-TSP route optimization problem
  • the clustering calculation unit 124 roughly performs clustering based on the location information (for example, latitude and longitude) of the buildings that are the visited destinations as needed, and clusters all the visited destinations on the map data. can be divided into multiple grids.
  • the map data includes at least location information of buildings at the visit destination and route information such as roads in the area including all the visit destinations, and an existing map API or the like can be used. Since the amount of computation in the annealing machine 200 depends on the number of buildings to be visited, if the time it takes for the annealing machine 200 to obtain the optimum solution is long, it is necessary to reduce the size of the problem in advance. , roughly clustering can be performed.
  • the annealing machine 200 since it is not realistic to calculate the distance matrix between visited buildings and the QUBO for, for example, about 1,000 visits at once, rough calculations are performed in advance to reduce the problem size. It is necessary to perform the division into a grid that is uniform.
  • the ratio of the specs of witnesses in an instance, the difficulty of estimating the building to be visited, the desired time frame for witnessing, and the distribution of the estimated time is We implemented it on the assumption that it is maintained in each grid after division.
  • the number of grid divisions was set to 10 so that clustering (step S12) in the post-process can be executed in a realistic time.
  • Grid division uses a conventional classical algorithm (for example, a conventional clustering algorithm such as the constrained K-means method) to convert latitude and longitude information (straight line distance without considering the route on the map). A split can be made based on The grid division (step S11) may also be performed on a classical computer such as the client computer 100. FIG. If the problem size is small, the grid division (step S11) can be omitted.
  • a conventional classical algorithm for example, a conventional clustering algorithm such as the constrained K-means method
  • the left diagram in Fig. 3 shows how the map is divided into four grids based on the location information (for example, latitude and longitude) of all visited buildings.
  • the second drawing from the left shows an enlarged view of the grid surrounded by solid-line squares among the four grids.
  • step S12 the clustering calculation unit 124 calculates for each of the plurality of grids created in the previous step (step S11) (or for all visited destinations if grid division is not performed), Perform processing to cluster visits.
  • Each constraint (cluster constraint) is considered at the time of clustering so that a feasible solution can be easily obtained in the TS-TSP in the post-process (step S12), and based on these cluster constraints, the problem is expressed in QUBO format as follows: was formulated as ⁇ 1st term (coefficient A): cost term that reduces the moving distance (taking into account the route) within the cluster. Close visiting destinations are put in the same cluster.
  • ⁇ Term 5 Visited destinations with a difficulty level of “difficult” belong to the cluster of witnesses with a “high” skill, and visited destinations with a “medium” difficulty degree are witnesses with a “high” or “medium” skill A constraint term for belonging to a person's cluster.
  • coefficient A close visiting destinations are grouped into the same cluster. Let u and v be the visited destinations, and D uv be the moving distance between visited u and visited v.
  • coefficient B all visiting destinations belong to one cluster
  • the fourth term (factor D) is a term that spreads out the desired and estimated times for route optimization, ensuring diversity.
  • the sum of the squares of the estimated times in the same time zone (time frame) within the same cluster is taken.
  • the fourth term can be specifically expressed as follows.
  • the above equation is a cost term that reduces the sum of estimated times within the same time frame (AM, PM1, PM2), where e i is the estimated time at visit i.
  • the term in the first half (coefficient E 1 ) is a constraint term for making the spectator belong to the cluster with the specs of “high” when the estimation difficulty of the visited building is “difficult”.
  • the second term (coefficient E 2 ) is a constraint term for assigning specs of witnesses to clusters of “high” or “medium” when the estimation difficulty of the visited building is “medium”. be.
  • the optimal solution in the clustering is not only solved by a quantum computer such as the annealing machine 200 using a quantum algorithm (quantum annealing), but also by a classical computer such as the client computer 100 using a classical algorithm (simulated annealing). can be used to find the solution.
  • a quantum computer such as the annealing machine 200 using a quantum algorithm (quantum annealing)
  • a classical computer such as the client computer 100 using a classical algorithm (simulated annealing). can be used to find the solution.
  • step S12 The outline of the clustering in step S12 is shown in the two central diagrams of FIG. 3 (the second diagram from the left and the second diagram from the right).
  • Surrounding visited destinations 1 to 9 are divided into clusters of the same pattern such as ⁇ 1, 2, 3, 4 ⁇ , ⁇ 5, 6, 9 ⁇ , and ⁇ 7, 8 ⁇ by clustering processing.
  • step S13 the TS-TSP calculation unit (route optimization problem calculation unit) 126 performs a tour considering various times (travel time, estimated time, time required for witnessing, etc.) for each cluster. Compute the Salesman Problem (TS-TSP).
  • the visit route is optimized (TS-TSP calculation) for each cluster (each containing five visited destinations) obtained by the clustering process (step S12).
  • the TS-TSP calculation can take into account the desired time frame and the estimated time. Details of the optimization constraints are as follows.
  • the travel time was obtained by dividing the route distance between the visited destinations (a, b) by the average travel speed. (The time-duration matrix is independent of time.)
  • the cost term was the time spent on site in units of ⁇ t that each visitor had. (cost does not depend on time.)
  • the first term is the cost term
  • the second term is the constraint term to prohibit any early arrival from the depot
  • the third term is the arrival at the depot ( It is a constraint term not to exceed the time limit when returning).
  • the fourth term represents a constraint on the desired session time
  • TG is a set of time zones
  • TG ⁇ AM, PM1, PM2 ⁇ in this embodiment.
  • a ⁇ T it means that the time zone T includes the desired time of the point (visited place) a. If the fourth term is divided into each time zone and written down, it can be expressed as follows.
  • step S13 The outline of the optimization process (TS-TSP calculation) in step S13 is shown in the right diagram of FIG. 3.
  • step S14 the calculation result visualization unit 128 can display the movement route determined for each cluster on the display 110 of the client computer 100, for example, by superimposing it on the map data.
  • FIG. 4 shows an example of grid division performed based on position information (latitude and longitude coordinates) of buildings on a map to be attended.
  • Figure 4 based on the latitude and longitude of 1,000 visiting destinations within an 8km radius centered on Kawajiri Station in Kumamoto Prefecture, which is the starting point Depot in the base case (without considering routes such as roads on the map) , was divided into 10 so that each grid has 100 cases.
  • the visited points in the same grid in FIG. 4 are shown with the same shape and the same pattern.
  • Grid division is equivalent to dividing the computational area, and the amount of computation required at one time by the annealing machine 200 (or the client computer 100) can be reduced.
  • FIG. 5 shows an example of displaying three clusters out of a plurality of clusters generated by clustering performed in one grid. Destinations whose desired times are appropriately dispersed are displayed in three clusters in circled areas on the map.
  • FIG. 6 shows an example of displaying the optimal movement routes to a plurality of visiting destinations in one cluster. The order of visits and the route of visits such as from 5 to 5 and back from 5 to D are displayed.
  • the displays shown in FIGS. 4 to 6 are examples of visualization of the calculation results in step S14 of the flowchart shown in FIG.
  • OpenStreetMap is used as the map data, but the map data is not limited to this. Any one having a map database that stores information for solving route optimization problems such as distance and route information may be used.
  • the client computer 100 is a QUBO system that formulates constraint conditions such as the difficulty of estimating various structures at the witnesses, specs of witnesses, desired time frame of each witness, and the like. is given to the annealing machine 200, and grid division, clustering, and TS-TSP calculation (steps S11 to S13 in FIG. 2) are performed to determine a plurality of buildings that are optimal for each of the plurality of witnesses. Decisions can be made to obtain travel routes and visit order to those buildings.
  • the present invention is the first to solve the problem of optimizing the movement path of a witness (witness route), which has been difficult to solve, using a QUBO solver or the like including a quantum computer.
  • Table 1 below shows the breakdown of the TS-TSP results for one cluster in the base case visualized as shown in FIG.
  • Table 1 shows visit order, travel time [h], arrival time [h], arrival category, estimated time [h], and travel distance [km].
  • the visit starts from starting point D, visits destinations 1 and 4 in the morning (AM), visits destinations 2 and 3 in the early afternoon (PM1), and visits destination 5 in the late afternoon (PM2).
  • a travel route that goes around and returns to the starting point D is shown together with the travel distance and the like.
  • the information processing system or the like uses a quantum computer (annealing machine) to solve the route optimization problem, and thus, like the calculation of the optimal solution by a classical computer (classical algorithm), there is The optimal solution of the route optimization problem can be obtained in a short time compared to the computation time by the classical algorithm without terminating the computation at a certain time.
  • This will contribute to the planning of which routes, to which buildings, and in what order to dispatch multiple witnesses in order to confirm the damage status of multiple buildings in the event of a natural disaster such as a large-scale earthquake. can do.
  • the information processing device and the like according to the present invention can be used, for example, for determining the optimal movement route (witness route) of a casualty insurance adjuster (witness) in the event of an earthquake.
  • Client computer 102 CPU 104: memory 106: network interface 108: user interface 110: display 112: input device 114: communication bus 116: operating system 118: network communication module 120: annealing machine setting module 122: input data setting unit 124: clustering calculation unit 126: TSP calculation unit 128: calculation result visualization unit 200: annealing machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

大規模地震等の自然災害時に、複数の建造物の被害状況確認のため、複数の立会人の各々をどの移動経路でどこの建造物にどの順序で派遣するかといった経路最適化問題を、古典コンピュータを用いて短時間に解くことは困難である。 そこで、本発明では、必要に応じて地図上の全立会先を複数のグリッドに分割し、木造、鉄骨、鉄筋コンクリートといった構造をもつ各種建造物の見積難易度、立会人のスペック、各立会先の立会希望時間枠等の制約条件を定式化して、QUBO形式で量子アニーリングマシンに与えることで、グリッド毎に各種条件を考慮したクラスタリング及び各クラスタにおける立会先の経路最適化問題の最適解を計算することが可能な情報処理装置等を提供する。

Description

情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム
 本発明は、量子コンピュータを含むQUBOソルバ等を用いて、震災時における損害保険鑑定人(立会人)の移動経路(立会ルート)を最適化する問題を求解するための情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム(以下、「情報処理装置等」という)に関する。
 具体的には、地震等の災害により生じた、建造物の損害状況を鑑定するために、訪問希望時間枠(立会希望時間枠)、訪問先建物と鑑定人(又は立会人)とのマッチング等を考慮した各種条件を二次制約なし二値最適化(Quadratic Unconstrained Binary Optimization; QUBO)形式で定式化して、量子アニーリングマシンに与えることで、複数の訪問者の各々が訪問する複数の訪問先(立会先)への移動経路や所要時間を最適化するための情報処理装置等に関する。
 損害保険会社は、地震等の自然災害時に、損害保険が適用される建造物の損害状況に応じた保険金の支払額を算出するため、基本的には現地立会調査により建造物の損害状況を確認する。大規模な地震では、例えば1オフィスあたり200名程の多数の立会人を現場に派遣し、多い日だと1日に1,000件程度の立会(建造物に対する損害の鑑定等)を実施している。
 多数の立会人を現場に派遣するに際して、1日で複数の立会を効率的に行うために、立会人毎に、複数の立会先のうちどこをどの順序で立会するかといった移動経路を最適化することや、移動時間と立会時間を少なくとも含む所要時間を最小化すること等が求められる。複数の訪問先への移動経路や所要時間の最適化するといったこの種の問題は、一種の数理最適化問題であり、巡回セールスマン問題(Traveling Salesman Problem; TSP)や配送計画問題(Vehicle Routing Problem; VRP)等と呼ばれている。
 近年、TSPやVRPといった数理最適化問題を、量子コンピュータを用いて求解するシステムが提案されている。例えば、特許文献1に記載のシステムは、物流配送に関するVRPを QUBO形式で定式化して「場所」と「ルート選好」に関する情報(制約)を踏まえて量子コンピューティング環境における量子ソルバを用いて求解する。また、特許文献2に記載のシステムは、TSPやVRPをQUBO形式で定式化して、量子計算機等のイジング系ソルバを用いて最適解を求めている。
 TSPやVRPを解くために制約条件等を定式化してQUBOに変換して、D-Wave等の量子コンピュータを用いて最適解を求める方法は、例えば、非特許文献1にも記載されている。D-Wave(非特許文献2)といった量子アニーリング方式の量子コンピュータ(量子アニーリングマシン)でTSPやVRP等の組合せ最適化問題を解く際に必要となるQUBOを自動で構築するドメイン固有言語として、例えば、PyQUBO(非特許文献3)を用いることができる。
特開2021-036417号公報 特開2020-149403号公報
Irie, H., et al. "Quantum Annealing of Vehicle Routing Problem with Time, State and Capacity," arXiv (quant ph ):1903.06322, March 18, 2019(URL https://arxiv.org/pdf/1903.06322.pdf)(2021年10月 1日検索) D-Wave システム入門 ユーザー・マニュアル(URL https://dwavejapan.com/app/uploads/2019/12/09-1076A-T_J_GettingStarted.pdf)(2021年10月 1日検索) PyQUBO(URL https://pyqubo.readthedocs.io/en/latest/)(2021年10月 1日検索)
 従来、大規模地震等の自然災害時に、複数の建造物の被害状況確認のため、複数の立会人の各々をどの移動経路でどこの建造物にどの順序で派遣するかの計画を立案するために、汎用計算機(古典コンピュータ)上で経路計算のソルバを実行して最適解を求めることが行われている。しかしながら、古典コンピュータによる最適解の計算は、膨大な時間がかかるため、基本的にはある一定の時間(例えば、3から4時間)を経過した時点で計算を打ち切り、その時点で得られた解のうち、最適なものを最適解として出力しているに過ぎず、十分な最適解が得られていない可能性がある。
 また、特許文献1及び2に示されるような数理最適化問題の最適解を求めるシステムは、それぞれ特定の制約下でのTSP又はVRPをQUBO形式で定式化して最適解を求めるものであり、複数の立会人の各々が訪問する複数の立会先への移動経路や所要時間の最適化する問題(以下、単に、「経路最適化問題」と呼ぶ)を解くことに、そのまま適用することができない。
 そこで、本発明では、そのような経路最適化問題を解くために、必要に応じて地図上の全立会先を複数のグリッドに分割し、木造、鉄骨、鉄筋コンクリートといった構造をもつ各種建造物の鑑定難易度(見積難易度)、各種建造物の鑑定所要時間(見積所要時間)、立会人の鑑定熟練度(スペック)、各立会先の立会希望時間枠等の制約条件を定式化して、QUBO形式で量子アニーリングマシン等に与えることで、グリッド毎に各種条件を考慮したクラスタリングを行った上で、各クラスタにおける立会先の経路最適化問題の求解を行い、各立会人の複数の立会先の建造物を決定してそれら建造物への移動経路及び訪問順序を算出することが可能な情報処理装置等を提供する。
 本発明に係る情報処理装置の1つの実施形態として、複数の訪問者の各々に対して訪問先となる複数の建造物及び当該複数の建造物への訪問順序を決定するための情報処理装置は、
 前記複数の建造物の各々に対する鑑定難易度、前記複数の建造物の各々の鑑定所要時間、前記複数の訪問者の各々の鑑定熟練度、前記複数の建造物の各々の希望訪問時間枠を少なくとも含む入力データを設定する入力データ設定部と、
 所定のクラスタ制約条件に基づいて、前記複数の建造物の位置情報を用いて、当該位置情報に相当する前記複数の建造物を複数のクラスタに分割するクラスタリング処理を実行する、又はネットワークを介して接続された量子コンピュータに前記クラスタリング処理を実行させることで、前記複数の訪問者の各々の訪問先を決定するクラスタリング計算部と、
 所定の最適化制約条件に基づいて、前記複数のクラスタの各々において訪問先となる複数の建造物の訪問順序を決定する最適化処理を前記量子コンピュータに実行させる経路最適化問題計算部と
を含み、
 前記所定のクラスタ制約条件は定式化された第1の数式で表現され、当該第1の数式は、前記鑑定難易度が最大値の建造物が、前記鑑定熟練度が最大値の訪問者のクラスタに所属するための制約項と、前記鑑定難易度が中間値の建造物が、前記鑑定熟練度が中間値以上の訪問者のクラスタに所属するための制約項、経路最適化のために希望訪問時間枠及び鑑定所要時間を散らすための制約項とを含み、
 前記所定の最適化制約条件は定式化された第2の数式で表現され、当該第2の数式は、前記希望訪問時間枠に関する制約項を含む。
 本発明に係る情報処理装置の1つの実施形態として、前記クラスタリング計算部は、前記クラスタリング処理の実行前に、前記複数の建造物の位置情報のみを用いて複数のグリッドに分割するグリッド分割処理を実行し、
 前記クラスタリング処理は、前記複数のグリッドの各々に対して実行される。
 本発明に係る情報処理装置の1つの実施形態として、前記第1の数式は、クラスタに含まれる訪問先となる複数の建造物間の経路を考慮した移動距離を小さくするコスト項、クラスタに含まれる複数の構造物の各々に対する希望訪問時間枠における見積時間の小計を小さくするコスト項、及び全てのクラスタの各々に所定数の箇所の訪問先が含まれるようにする制約項を更に含む。
 本発明に係る情報処理方法の1つの実施形態として、複数の訪問者の各々に対して訪問先となる複数の建造物及び当該複数の建造物への訪問順序を決定するための情報処理方法であって、前記情報処理方法は、量子コンピュータとネットワークを介して接続された端末装置によって実行され、
 前記複数の建造物の各々に対する鑑定難易度、前記複数の訪問者の各々の鑑定熟練度、前記複数の建造物の各々の希望訪問時間枠を少なくとも含む入力データを設定する段階と、
 所定のクラスタ制約条件に基づいて、前記複数の建造物の位置情報を用いて、当該位置情報に相当する前記複数の建造物を複数のクラスタに分割するクラスタリング処理を実行する、又は前記量子コンピュータに前記クラスタリング処理を実行させることで、前記複数の訪問者の各々の訪問先を決定する段階と、
 所定の最適化制約条件に基づいて、前記複数のクラスタの各々において訪問先となる複数の建造物の訪問順序を決定する最適化処理を前記量子コンピュータに実行させる段階と
を含み、
 前記所定のクラスタ制約条件は定式化された第1の数式で表現され、当該第1の数式は、前記鑑定難易度が最大値の建造物が、前記鑑定熟練度が最大値の訪問者のクラスタに所属するための制約項と、前記鑑定難易度が中間値の建造物が、前記鑑定熟練度が中間値以上の訪問者のクラスタに所属するための制約項とを少なくとも含み、
 前記所定の最適化制約条件は定式化された第2の数式で表現され、当該第2の数式は、前記希望訪問時間枠に関する制約項を少なくとも含む。
 本発明に係る情報処理方法の1つの実施形態として、前記複数の訪問者の各々の訪問先を決定する段階は、前記クラスタリング処理の実行前に、前記複数の建造物の位置情報のみを用いて複数のグリッドに分割するグリッド分割処理を実行し、
 前記クラスタリング処理は、前記複数のグリッドの各々に対して実行される。
 本発明に係る情報処理方法の1つの実施形態として、前記第1の数式は、クラスタに含まれる訪問先となる複数の建造物間の経路を考慮した移動距離を小さくするコスト項、クラスタに含まれる複数の構造物の各々に対する希望訪問時間枠における見積時間の小計を小さくするコスト項、及び全てのクラスタの各々に所定数の箇所の訪問先が含まれるようにする制約項を更に含む。
 本発明に係る情報処理システムの1つの実施形態として、前記情報処理システムは、
 前記情報処理装置と、
 前記情報処理装置とネットワークを介して接続された量子コンピュータと
を含み、
 前記量子コンピュータは、前記情報処理装置から前記第1の数式及び前記第2の数式をそれぞれ変換したQUBOを受け取り、前記クラスタリング処理及び前記最適化処理を実行する。
 本発明に係る情報処理プログラムの1つの実施形態として、前記プログラムがコンピュータによって実行されることで、前記コンピュータを前記情報処理装置の各部として機能させる。
 本発明に係る情報処理プログラムの別の実施形態として、前記プログラムがコンピュータによって実行されることで、前記コンピュータに前記情報処理方法の各段階を行わせる。
 本発明に係る情報処理装置等は、大規模地震等の自然災害時に、複数の建造物の被害状況確認のため、複数の立会人の各々をどの移動経路でどこの建造物にどの順序で派遣するかの計画を立案するために、各種建造物の鑑定難易度、立会人の鑑定熟練度、各立会先の立会希望時間枠等の制約条件を定式化したQUBOを量子アニーリングマシンに入力し、経路最適化問題の最適解を計算することで、ある一定の時間を経過した時点で計算を打ち切ることなく、複数の立会人の各々に最適な複数の立会先の建造物を決定してそれら建造物への移動経路及び訪問順序を得ることができる。このように、本発明は、従来にはない立会人(鑑定人)の訪問先への経路最適化問題を求解することができる。それにより、災害時に建造物の損害状況を確認するための現地立会調査を効率的に行うことができ、損害保険が適用される建造物の損害状況に応じた保険金の支払額の迅速な算出に寄与することができる。
本発明の一実施形態に係る情報処理装置及びシステムの構成の一例を示す図である。 情報処理装置における経路最適化問題の最適解を求めるための処理の流れを示すフローチャートである。 図2に示すフローチャートにおけるグリッド分割、クラスタリング、巡回セールスマン問題(TS-TSP)の計算の概略を示す図である。 立会対象となる地図上の建造物の位置情報(緯度経度座標)に基づいて実施されたグリッド分割の一例を示す図である。 1つのグリッドにおいて実施されたクラスタリングにより生成された複数のクラスタのうちの3クラスタ分を表示した一例を示す図である。 1クラスタにおける複数の訪問先への最適な移動経路を表示した一例を示す図である。
 以下、本発明に係る実施形態について添付図面を参照しながら説明する。以下の実施形態は、本発明を説明するための例示であり、本発明をその実施形態のみに限定する趣旨ではない。また、本発明は、その要旨を逸脱しない限り、様々な変形が可能である。さらに、各図面において同一の構成要素に対しては可能な限り同一の符号を付し、重複する説明は省略する。
 図1は、本発明の一実施形態に係る情報処理装置及びシステムの構成の一例を示す。図1に示す実施例では、情報処理装置であるクライアントコンピュータ100は、ネットワークNを介して接続された量子コンピュータの一例であるアニーリングマシン200と接続される。ユーザは、クライアントコンピュータ100を使用して、アニーリングマシン200にTSPやVRP等の経路最適化問題の計算を実行させることができる。クライアントコンピュータ100は、パーソナルコンピュータ、ノートパソコン、スマートフォン、携帯電話等、ネットワークNに接続可能な情報処理装置である。
 本発明の一実施形態に係る情報処理システムは、クライアントコンピュータ100と、アニーリングマシン200とを含む。図1に示す実施例では、クライアントコンピュータ100は1台であるが複数台あってもよく、アニーリングマシン200も1台だけでなく複数台あってもよい。
 ネットワークNは、例えば、インターネット等のオープンなネットワークであっても良いし、専用回線で接続されたイントラネットであり、クローズドネットワークであっても良い。ネットワークNは、これに限定されるものではなく、要求されるセキュリティのレベル等に応じて、適宜、クローズドネットワークとオープンネットワークを組み合わせて利用することもできる。
 典型的にはクライアントコンピュータ100は、1つ又は複数の処理装置(CPU)102、メモリ104、1つ又は複数のネットワークインタフェース(又は他の通信インタフェース)106、及びこれらの構成要素を相互接続するための1つ又は複数の通信バス114を含む。
 また、クライアントコンピュータ100は、ユーザインタフェース108を備えることもでき、例えば、ユーザインタフェース108として、ディスプレイ110及び入力装置(キーボード及び/又はマウス、又は他の何らかのポインティングデバイス)112を備えることもできる。入力装置112は、タッチパネルでもよい。
 メモリ104は、例えば、DRAM、SRAM、DDR RAM又は他のランダムアクセス固体記憶装置などの高速ランダムアクセスメモリであり、また、1つ又は複数の磁気ディスク記憶装置、光ディスク記憶装置、フラッシュメモリデバイス、又は他の不揮発性固体記憶装置などの不揮発性メモリでもよい。
 CPU102は、メモリ104に記録されているプログラム、又は、記憶装置(図示ぜず)からメモリ104にロードされたプログラムにしたがって各種の処理を実行する。CPU102は、例えば、クライアントコンピュータ100を、アニーリングマシン200を用いてTSPやVRP等の経路最適化問題を計算させることで、複数の訪問者の各々に対して訪問先となる複数の建造物及び当該複数の建造物への訪問順序を決定するための情報処理装置として機能させるためのプログラムを実行することができる。また、情報処理装置の少なくとも一部の機能を、特定用途向け集積回路(ASIC)等でハードウェア的に実装することも可能である。
 オペレーティングシステム116は、例えば、様々な基本的なシステムサービスを処理するとともにハードウェアを用いてタスクを実行するためのプロシージャを含む。
 ネットワーク通信モジュール118は、例えば、クライアントコンピュータ100を他のコンピュータに、1つ又は複数のネットワークインタフェース106及び、インターネット、他の広域ネットワーク、ローカルエリアネットワーク、メトロポリタンエリアネットワークなどの1つ又は複数のネットワークNを介して接続するために使用される。
 アニーリングマシン設定モジュール120は、入力データ設定部122、クラスタリング計算部124、クラスタ毎に訪問希望時間枠(立会希望時間枠)、鑑定時間(見積時間)、移動時間等の各種時間を考慮した巡回セールスマン問題(Time Scheduled Traveling Problem; TS-TSP)といった経路最適化問題を計算するTS-TSP計算部(経路最適化問題計算部)126、及び計算結果可視化部128を含む。アニーリングマシン設定モジュール120は、メモリ104に記録又はロードされたプログラムであり、クライアントコンピュータ100によって実行されることで、CPU102、メモリ104等のハードウェア資源を、入力データ設定部122、クラスタリング計算部124、TS-TSP計算部126、及び計算結果可視化部128として機能させることができる。
 図2は、情報処理装置における経路最適化問題の最適解を求めるための処理の流れを示すフローチャートである。図3は、図2に示すフローチャートにおけるグリッド分割、クラスタリング、巡回セールスマン問題(TS-TSP)の計算の概略を示す。図1乃至図3を参照して、情報処理装置であるクライアントコンピュータ100の各部の機能的構成と処理の流れを説明する。
 ステップS10では、クライアントコンピュータ100は、大規模地震等の自然災害時に、複数の建造物の被害状況確認のため、複数の立会人(訪問者)の各々をどの移動経路でどこの建造物にどの順序で派遣するかの計画を立案するために、各種建造物の鑑定難易度(見積難易度)、立会人の鑑定熟練度(スペック)、各訪問先の訪問希望時間枠(各立会先の立会希望時間枠)等の入力を、ユーザからユーザインタフェース108を介して受け付け、入力データ設定部122において入力データの設定(記憶)を行う。
 アニーリングマシン設定モジュール120は、ユーザから受け取った入力に応じて、アニーリングマシン200を動作させるための設定を行うことができる。例えば、入力データ設定部122は、複数の立会人の各々のスペックを記憶することができる。立会人のスペックは、「高」、「中」、「低」といった最大値、中間値、最小値の3種類の値とすることができる。
 また、入力データ設定部122は、複数の立会先の建造物の各々について、見積難易度、立会希望時間枠、鑑定時間(見積時間)の属性を記憶することができる。建造物の見積難易度は「難」、「中」、「易」といった最大値、中間値、最小値の3種類の値とし、立会希望時間枠は午前「AM」、午後前半「PM1」、午後後半「PM2」といった3種類の値とすることができ、見積時間(時間(h))は「0.5」、「1.0」、「1.5」といった3種類の値とすることができる。そして、入力データ設定部122は、複数の立会先の建物間の距離も記憶することができる。なお、立会人のスペック、建造物の見積難易度立会希望時間枠、及び見積時間を、それぞれ3種類の値としているが、これに限定されるものではない。
 さらに、入力データ設定部122は、TS-TSPを計算するために必要な制約等についても記憶することができる。制約の一例としては、(1)立会人はあるオフィスから出発し元のオフィスに戻ること、(2)1つの立会先に対し、1人の立会人が必ず1度だけ訪れること、(3)1人の立会人は5箇所の建造物を訪れること、(4)訪問先の難易度に対応可能な立会人が訪れること、(5)同じ方面を同じ立会人が担当すること等を挙げることができる。訪問先の難易度に対応可能な立会人が訪れることについては、例えば、建造物の見積難易度が最大値「難」である場合は、スペックが最大値「高」である立会人が対応可能であり、建造物の見積難易度が中間値「中」である場合は、スペックが最大値「高」又は中間値「中」である立会人が対応可能である。なお、立会人が訪問する建造物の数は、5箇所に限定されるものではなく、任意の数でもよい。例えば、ユーザが指定する所定数を立会人が訪問する建造物の数とすることができる。
 本発明の一実施形態では、クライアントコンピュータ100は、上述したように入力データ設定部122で記憶される各種建造物の見積難易度、立会人のスペック、各立会先の立会希望時間枠、建造物間の距離等の入力、及び制約に基づいて、制約を満たしながら総移動時間(見積時間等の立会に掛かる時間を含む)を最小にすることを目的として、アニーリングマシン200に経路最適化問題(TS-TSP)の計算を実行させることができる。
 次に、ステップS11では、クラスタリング計算部124は、必要に応じて訪問先である建造物の位置情報(例えば、緯度経度)に基づいて、大まかにクラスタリングを実行し、地図データ上で全訪問先を複数のグリッドに分割することができる。なお、地図データは、少なくとも訪問先の建造物の位置情報と、全訪問先を含む地域の道路等の経路情報と含み、既存の地図API等を利用することができる。アニーリングマシン200における計算量は、訪問先の建造物の数に依存するため、アニーリングマシン200によって最適解が得られるまでにかかる時間が長時間になる場合には、事前に問題のサイズを小さくするために、大まかにクラスタリングを実行することができる。
 アニーリングマシン200において、訪問先の建造物間の距離行列やQUBOの計算は、例えば、1,000件程度の訪問先について一度に計算するのは現実的でないため、問題サイズを小さくするために事前に大まかなグリッドに分割を行う必要がある。本発明の一実施形態に係る情報処理装置では、(簡単のために)インスタンス内における立会人のスペック、訪問先の建造物の見積難易度、立会希望時間枠、及び見積時間の分布の割合が分割後の各グリッド内でも維持されるという仮定をおいて実装を行った。後工程のクラスタリング(ステップS12)が現実的な時間で実行できるようにグリッドへの分割数は10とした。つまり訪問数が、1,000件であれば100件×10グリッドに分割して各グリッドに対してクラスタリングを行うことができる。グリッド分割(ステップS11)は、従来の古典アルゴリズム(例えば、制約ありのK-means法といった従来のクラスタリングアルゴリズム)を用いて緯度経度の情報(地図上の経路を考慮せずに、直線距離)に基づいた分割を行うことができる。また、グリッド分割(ステップS11)は、クライアントコンピュータ100等の古典コンピュータで実行されてもよい。問題サイズが小さい場合には、グリッド分割(ステップS11)は省略することができる。
 図3における左図には、地図上の全訪問先の建造物の位置情報(例えば、緯度経度)に基づいて、4つのグリッドに分割された様子が示される。また、左から2つ目の図では、4つのグリッドのうち実線の四角で囲まれたグリッドを拡大した様子が示される。
 次に、ステップS12(図2)では、クラスタリング計算部124は、前工程(ステップS11)で作成された複数のグリッドの各々について(又は、グリッド分割を行っていない場合は全訪問先について)、訪問先をクラスタリングする処理を実行する。後工程(ステップS12)のTS-TSPで実行可能解を得やすいようにクラスタリングの時点で各制約条件(クラスタ制約条件)について考慮し、これらのクラスタ制約条件を踏まえてQUBO形式で問題を次のように定式化した。
・第1項(係数A):クラスタ内の移動距離(経路を考慮)を小さくするコスト項。近い訪問先どうしを同クラスタにする。
・第2項(係数B):全ての訪問先がいずれか1つのクラスタに所属するための制約項。
・第3項(係数C):全てのクラスタに5つの訪問先が含まれるようにする制約項。
・第4項(係数D):クラスタに含まれる各立会希望時間枠 period {AM, PM1, PM2} における見積時間の小計を小さくするコスト項。希望時間及び見積時間の長い訪問先がクラスタ内で偏らないようにする。
・第5項(係数E):難易度「難」の訪問先がスキル「高」の立会人のクラスタに所属し、難易度「中」の訪問先がスキル「高」または「中」の立会人のクラスタに所属するための制約項。
 上記第1項から第5項を考慮したクラスタリングを定式化したQUBOは以下のとおりである。
Figure JPOXMLDOC01-appb-M000001
ただし、A,B,C,D,Eは係数であり、Kはクラスタ数であり、Nは訪問先数である。
 第1項(係数A)では、近い訪問先を同一クラスタにする。uとvは訪問先であり、Duvは訪問先uと訪問先v間の移動距離とする。第2項(係数B)では、全ての訪問先をいずれか1つのクラスタに所属させ、第3項(係数C)では1クラスタに含まれる点(つまり1人が回る建物の数)を表し、第3項におけるMはクラスタに含まれる訪問先数を表し、一実施形態では、M=5とした。M=5とすることで、全てのクラスタに5つの訪問先が含まれるようにする。つまり、全てのクラスタに5つの訪問先が含まれるようにする場合には、第3項は次のように表される。
Figure JPOXMLDOC01-appb-M000002
 第4項(係数D)は、ルート最適化のために希望時間及び見積もり時間を散らす項であり、多様性を確保する。本実施例では、同一クラスタ内の同一時間帯(時間枠)の見積時間の2乗和を取った。第4項は、具体的には次のように表すことができる。
Figure JPOXMLDOC01-appb-M000003
上記式は、同一時間枠(AM,PM1,PM2)内での見積時間の総和を小さくするコスト項であり、ここで、eiは訪問先iにおける見積時間である。
 第5項(係数E)は、クラスタとそこに含まれる点をマッチングさせるための制約項である。V=K×Nとし、k,n∈Vに対し、k,n∈Ematch⇔kとnが無矛盾(consistent)であると定義する。矛盾がない(consistent)であることとは、本実施例でいうと立会人のスペックと建造物の見積難易度の整合性を意味する。第5項は、kに対し、無矛盾な(consistent)nを足し合わせる。kを見積難易度毎に分割して書き下すと、本実施例では第5項を次のように係数E1の項と係数E2の項に分けて表すことができる。
Figure JPOXMLDOC01-appb-M000004
前半部の項(係数E1)は訪問先の建造物の見積難易度が「難」である場合に、立会人のスペックが「高」であるクラスタに所属させるための制約項であり、後半部の項(係数E2)は訪問先の建造物の見積難易度が「中」である場合に、立会人のスペックが「高」又は「中」であるクラスタに所属させるための制約項である。
 なお、クラスタリング(ステップS12)における最適解については、アニーリングマシン200等の量子コンピュータによって量子アルゴリズム(quantum annealing)を用いて求解するだけでなく、クライアントコンピュータ100等の古典コンピュータによって古典アルゴリズム(simulated annealing)を用いて求解してもよい。
 ステップS12のクラスタリングの概略は、図3の中央の2つの図(左から2つ目の図と右から2つ目の図)で示されており、図3に示す例では、出発地点Dの周辺の訪問先1から9を、クラスタリング処理により{1,2,3,4}、{5,6,9}、{7,8}といった同じ模様で示されたクラスタに分けられている。
 次に、ステップS13(図2参照)では、TS-TSP計算部(経路最適化問題計算部)126が、クラスタ毎に各種時間(移動時間、見積時間、立会に掛かる時間等)を考慮した巡回セールスマン問題(TS-TSP)を計算する。本実施例では、クラスタリング処理(ステップS12)で得られた各クラスタ(それぞれ訪問先5件を含む)について訪問経路の最適化(TS-TSP計算)を行った。TS-TSP計算(最適化処理)では立会希望時間枠及び見積時間の考慮が可能である。最適化制約条件の詳細は以下の通りである。
 時間単位の分割について、9:00~17:00(8h)をΔt(h)の時間で分割して次のように処理の単位τ(0~T)とした。Δt=0.5(h)の場合、AM:0≦τ≦5(0.0~2.5(h))、PM1:6≦τ≦11(3.0~5.5(h))、PM2:12≦τ≦15(6.0~7.5(h))とした。
 移動時間について、訪問先(a,b)間の経路距離を平均移動速度で割って移動時間とした。
Figure JPOXMLDOC01-appb-M000005
(time-duration matrixは時間に依存しない。)
 見積時間について、各訪問先がもつΔt単位の立会時間をコスト項とした。
Figure JPOXMLDOC01-appb-M000006
(costは時間に依存しない。)
 見積時間は移動時間と合わせて以下のように考慮した。
Figure JPOXMLDOC01-appb-M000007
= b での見積所要時間を含めたbからaへの移動に必要な時間(Δt
 そして、出発地点(depot)から出発して最終的に同じ地点depotに戻る経路を想定した。以上のような制約条件(最適化制約条件)で考慮してTS-TSP計算を定式化したQUBOは以下のとおりである。下記式は、既存の手法(例えば、非特許文献1)に基づくものである。
Figure JPOXMLDOC01-appb-M000008
ただし、μ=dmax,ρ=(dmax-dmin)/λ,λ>0である。
 第1項はコスト項であり、第2項は出発地点(depot)からのあらゆる早期到着(early arrival)を禁止するための制約項であり、第3項は出発地点(depot)に到着する(戻る)際に時間制限(time limit)を超えないための制約項である。
 第4項は、立会希望時間に関する制約を表し、TGは時間帯の集合であり、本実施例ではTG={AM,PM1,PM2}である。a∈Tについては時間帯Tに地点(訪問先)aがもつ希望時間が含まれていることを表す。第4項を各時間帯に分割して書き下すと次のように表すことができる。
Figure JPOXMLDOC01-appb-M000009
 ステップS13の最適化処理(TS-TSP計算)の概略は、図3の右図で示されており、図3に示す例では、出発地点Dから出発してDに戻る移動経路をクラスタ{1,2,3,4}、{5,6,9}、{7,8}毎に決定された様子が示される。
 最後に、ステップS14(図2参照)では、計算結果可視化部128が、クラスタ毎に決定された移動経路を地図データと重ねて、例えば、クライアントコンピュータ100のディスプレイ110に表示することができる。
 図4から図6は、本発明を用いてベースケースについてTS-TSPを求解した結果を示す。図4は、立会対象となる地図上の建造物の位置情報(緯度経度座標)に基づいて実施されたグリッド分割の一例を示す。図4では、ベースケースにおいて出発地点Depotとされた熊本県川尻駅を中心とした半径8km圏内の1,000件の訪問先について緯度経度に基づき(地図上の道路等の経路は考慮せず)、1グリッドあたり100件になるように10分割を行った。図4において同じグリッドにおける訪問先の点は、同じ形状かつ同じ模様で示される。グリッド分割を行うことにより、計算領域を分割することに相当し、アニーリングマシン200(又はクライアントコンピュータ100)の一度にかかる計算量を低減することができる。
 図5は、1つのグリッドにおいて実施されたクラスタリングにより生成された複数のクラスタのうちの3クラスタ分を表示した一例を示しており、立会人のスペックと建造物の見積難易度をマッチさせ、立会希望時間を適当に分散させた訪問先が、地図上において円で囲まれた地域に、3つのクラスタに分けられて表示されている。また、図6は、1クラスタにおける複数の訪問先への最適な移動経路を表示した一例を示しており、出発地点Dから出発して訪問地点1から4、4から2、2から3、3から5、5からDに戻るといった訪問順序及び訪問経路が表示されている。図4から図6のような表示は、図2に示すフローチャートのステップS14の計算結果の可視化の一例であり、クライアントコンピュータ100の計算結果可視化部128で行うことができる。図4から図6に示す実施例では、地図データとしてオープンストリートマップ(OpenStreetMap)を用いているが、これに限定されるものではなく、グーグルマップ(Google Map)やゼンリン地図など、建造物間の距離、経路情報といった経路最適化問題を求解するための情報を記憶した地図データベースを備えているものであればよい。
 このように、本発明の一実施形態に係るクライアントコンピュータ100は、立会先の各種建造物の見積難易度、立会人のスペック、各立会先の立会希望時間枠等の制約条件を定式化したQUBOをアニーリングマシン200に与えて、グリッド分割、クラスタリング、TS-TSP計算(図2のステップS11からS13)の処理を行うことで、複数の立会人の各々に最適な複数の立会先の建造物を決定してそれら建造物への移動経路及び訪問順序を得ることができる。つまり、本発明は、これまで求解することが困難であった立会人の移動経路(立会ルート)を最適化する問題を、量子コンピュータを含むQUBOソルバ等を用いて初めて解いたものである。
 例えば、大規模地震等の自然災害時に、図6に示す移動経路や訪問順序をクライアントコンピュータ100のユーザに提示することで、複数の建造物の被害状況確認のため、複数の立会人の各々をどの移動経路でどこの建造物にどの順序で派遣するかの計画を迅速に立案することを支援することができる。
 図6に示すように可視化されたベースケースの、ある1つのクラスタのTS-TSPの結果の内訳を下記の表1に示す。表1では、訪問順序、移動時間[h]、到着時刻[h]、到着区分、見積時間[h]、移動距離[km]を示す。到着時刻[h]は、立会開始時刻に到着時刻[h]の値を加算した時刻であり、例えば、立会開始時刻が午前9時だと、訪問先1の到着時刻は午前10時30分(=9+1.5)であり、訪問先2の到着時刻は午前11時15分(=9+2.25)である。表3では、出発地点Dから訪問を開始して、午前中(AM)に訪問先1、4を巡り、午後前半(PM1)に訪問先2、3、午後後半(PM2)に訪問先5を巡って、出発地点Dに戻る移動経路が、移動距離等と共に示される。
Figure JPOXMLDOC01-appb-T000010
 以上のように、本発明に係る情報処理システム等は、量子コンピュータ(アニーリングマシン)を用いて、経路最適化問題を解くことで、古典コンピュータ(古典アリゴリズム)による最適解の計算のように、ある一定の時間で計算を打ち切ることなく、古典アリゴリズムによる計算時間に比べて、短い時間で経路最適化問題の最適解を求めることができる。これにより、大規模地震等の自然災害時に、複数の建造物の被害状況確認のため、複数の立会人の各々をどの移動経路でどこの建造物にどの順序で派遣するか等の計画立案に貢献することができる。
 本発明に係る情報処理装置等は、例えば、震災時における損害保険鑑定人(立会人)の最適な移動経路(立会ルート)を決める等の用途に利用可能である。
100    :クライアントコンピュータ
102    :CPU
104    :メモリ
106    :ネットワークインタフェース
108    :ユーザインタフェース
110    :ディスプレイ
112    :入力装置
114    :通信バス
116    :オペレーティングシステム
118    :ネットワーク通信モジュール
120    :アニーリングマシン設定モジュール
122    :入力データ設定部
124    :クラスタリング計算部
126    :TSP計算部
128    :計算結果可視化部
200    :アニーリングマシン

Claims (9)

  1.  複数の訪問者の各々に対して訪問先となる複数の建造物及び当該複数の建造物への訪問順序を決定するための情報処理装置であって、
     前記複数の建造物の各々に対する鑑定難易度、前記複数の建造物の各々の鑑定所要時間、前記複数の訪問者の各々の鑑定熟練度、前記複数の建造物の各々の希望訪問時間枠を少なくとも含む入力データを設定する入力データ設定部と、
     所定のクラスタ制約条件に基づいて、前記複数の建造物の位置情報を用いて、当該位置情報に相当する前記複数の建造物を複数のクラスタに分割するクラスタリング処理を実行する、又はネットワークを介して接続された量子コンピュータに前記クラスタリング処理を実行させることで、前記複数の訪問者の各々の訪問先を決定するクラスタリング計算部と、
     所定の最適化制約条件に基づいて、前記複数のクラスタの各々において訪問先となる複数の建造物の訪問順序を決定する最適化処理を前記量子コンピュータに実行させる経路最適化問題計算部と
    を含み、
     前記所定のクラスタ制約条件は定式化された第1の数式で表現され、当該第1の数式は、前記鑑定難易度が最大値の建造物が、前記鑑定熟練度が最大値の訪問者のクラスタに所属するための制約項と、前記鑑定難易度が中間値の建造物が、前記鑑定熟練度が中間値以上の訪問者のクラスタに所属するための制約項、経路最適化のために希望訪問時間枠及び鑑定所要時間を散らすための制約項とを含み、
     前記所定の最適化制約条件は定式化された第2の数式で表現され、当該第2の数式は、前記希望訪問時間枠に関する制約項を含む、情報処理装置。
  2.  前記クラスタリング計算部は、前記クラスタリング処理の実行前に、前記複数の建造物の位置情報のみを用いて複数のグリッドに分割するグリッド分割処理を実行し、
     前記クラスタリング処理は、前記複数のグリッドの各々に対して実行される、請求項1に記載の情報処理装置。
  3.  前記第1の数式は、クラスタに含まれる訪問先となる複数の建造物間の経路を考慮した移動距離を小さくするコスト項、クラスタに含まれる複数の構造物の各々に対する希望訪問時間枠における見積時間の小計を小さくするコスト項、及び全てのクラスタの各々に所定数の訪問先が含まれるようにする制約項を更に含む、請求項1又は2に記載の情報処理装置。
  4.  複数の訪問者の各々に対して訪問先となる複数の建造物及び当該複数の建造物への訪問順序を決定するための情報処理方法であって、前記情報処理方法は、量子コンピュータとネットワークを介して接続された端末装置によって実行され、
     前記複数の建造物の各々に対する鑑定難易度、前記複数の訪問者の各々の鑑定熟練度、前記複数の建造物の各々の希望訪問時間枠を少なくとも含む入力データを設定する段階と、
     所定のクラスタ制約条件に基づいて、前記複数の建造物の位置情報を用いて、当該位置情報に相当する前記複数の建造物を複数のクラスタに分割するクラスタリング処理を実行する、又は前記量子コンピュータに前記クラスタリング処理を実行させることで、前記複数の訪問者の各々の訪問先を決定する段階と、
     所定の最適化制約条件に基づいて、前記複数のクラスタの各々において訪問先となる複数の建造物の訪問順序を決定する最適化処理を前記量子コンピュータに実行させる段階と
    を含み、
     前記所定のクラスタ制約条件は定式化された第1の数式で表現され、当該第1の数式は、前記鑑定難易度が最大値の建造物が、前記鑑定熟練度が最大値の訪問者のクラスタに所属するための制約項と、前記鑑定難易度が中間値の建造物が、前記鑑定熟練度が中間値以上の訪問者のクラスタに所属するための制約項とを少なくとも含み、
     前記所定の最適化制約条件は定式化された第2の数式で表現され、当該第2の数式は、前記希望訪問時間枠に関する制約項を少なくとも含む、情報処理方法。
  5.  前記複数の訪問者の各々の訪問先を決定する段階は、前記クラスタリング処理の実行前に、前記複数の建造物の位置情報のみを用いて複数のグリッドに分割するグリッド分割処理を実行し、
     前記クラスタリング処理は、前記複数のグリッドの各々に対して実行される、請求項4に記載の情報処理方法。
  6.  前記第1の数式は、クラスタに含まれる訪問先となる複数の建造物間の経路を考慮した移動距離を小さくするコスト項、クラスタに含まれる複数の構造物の各々に対する希望訪問時間枠における見積時間の小計を小さくするコスト項、及び全てのクラスタの各々に所定数の箇所の訪問先が含まれるようにする制約項を更に含む、請求項4又は5に記載の情報処理方法。
  7.  請求項1から3のいずれか1項に記載の情報処理装置と、
     前記情報処理装置とネットワークを介して接続された量子コンピュータと
    を含み、
     前記量子コンピュータは、前記情報処理装置から前記第1の数式及び前記第2の数式をそれぞれ変換したQUBOを受け取り、前記クラスタリング処理及び前記最適化処理を実行する、情報処理システム。
  8.  コンピュータによって実行されることで、前記コンピュータを請求項1から3のいずれか1項に記載の情報処理装置の各部として機能させることを特徴とする情報処理プログラム。
  9.  コンピュータによって実行されることで、前記コンピュータに請求項4から6のいずれか1項に記載の情報処理方法の各段階を行わせることを特徴とする情報処理プログラム。
PCT/JP2021/037439 2021-10-08 2021-10-08 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム WO2023058244A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023552673A JPWO2023058244A1 (ja) 2021-10-08 2021-10-08
PCT/JP2021/037439 WO2023058244A1 (ja) 2021-10-08 2021-10-08 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037439 WO2023058244A1 (ja) 2021-10-08 2021-10-08 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム

Publications (1)

Publication Number Publication Date
WO2023058244A1 true WO2023058244A1 (ja) 2023-04-13

Family

ID=85804092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037439 WO2023058244A1 (ja) 2021-10-08 2021-10-08 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム

Country Status (2)

Country Link
JP (1) JPWO2023058244A1 (ja)
WO (1) WO2023058244A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010224660A (ja) * 2009-03-19 2010-10-07 Hitachi Ltd 訪問計画作成支援装置及びプログラム
JP2018112929A (ja) * 2017-01-12 2018-07-19 国立大学法人東京工業大学 地域内共助巡回支援システム、地域内共助巡回支援装置、地域内共助巡回支援方法及びプログラム
WO2019167685A1 (ja) * 2018-02-27 2019-09-06 株式会社Nttドコモ 訪問時刻決定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010224660A (ja) * 2009-03-19 2010-10-07 Hitachi Ltd 訪問計画作成支援装置及びプログラム
JP2018112929A (ja) * 2017-01-12 2018-07-19 国立大学法人東京工業大学 地域内共助巡回支援システム、地域内共助巡回支援装置、地域内共助巡回支援方法及びプログラム
WO2019167685A1 (ja) * 2018-02-27 2019-09-06 株式会社Nttドコモ 訪問時刻決定装置

Also Published As

Publication number Publication date
JPWO2023058244A1 (ja) 2023-04-13

Similar Documents

Publication Publication Date Title
Mete et al. Stochastic optimization of medical supply location and distribution in disaster management
Balcik et al. Last mile distribution in humanitarian relief
Waddell et al. Microsimulation of urban development and location choices: Design and implementation of UrbanSim
Pettit et al. The online what if? Planning support system: A land suitability application in Western Australia
Chen et al. Optimal team deployment in urban search and rescue
Lu et al. Robust vertex p-center model for locating urgent relief distribution centers
Waddell et al. Accessibility and agglomeration: Discrete-choice models of employment location by industry sector
JP5762588B2 (ja) 重み付けされた周期事象テーブルを使用した大惨事事象による影響の予測および管理
Haase et al. Improving pilgrim safety during the hajj: an analytical and operational research approach
Olanrewaju et al. Current state of building information modelling in the Nigerian construction industry
Koontz et al. Visitor spending effects: assessing and showcasing America's investment in national parks
Jin et al. Understanding residential location choices: An application of the UrbanSim residential location model on Suwon, Korea
Melnychenko et al. Foresight technologies of economic systems: evidence from the tourism sector of Ukraine
El-Barmelgy et al. Economic land use theory and land value in value model
Pamukcu et al. A multi-cover routing problem for planning rapid needs assessment under different information-sharing settings
Grinberger et al. Dynamic agent based simulation of an urban disaster using synthetic big data
JP7037223B1 (ja) 情報処理装置、情報処理方法、及びプログラム
WO2023058244A1 (ja) 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム
Grinberger et al. Simulating urban resilience: Disasters, dynamics and (synthetic) data
Aboelenen et al. Trip Generation Rates Using Household Surveys in the State of Qatar
Clay et al. Data development for implementing integrated land-use and transportation forecasting models in medium-sized metropolitan planning organizations
Renner et al. Agent-based land use transport interaction modeling: State of the art
Anufriev et al. Model of decision-making support in heterarchical system management of regional construction cluster
Alterkawi Measures towards a comprehensive municipal GIS—the case of Ar-Riyadh Municipality
Ghasri et al. Investigating the internal compromise between wife and husband’s commute time changes in residential relocation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552673

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21959983

Country of ref document: EP

Kind code of ref document: A1