WO2023058158A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2023058158A1
WO2023058158A1 PCT/JP2021/037000 JP2021037000W WO2023058158A1 WO 2023058158 A1 WO2023058158 A1 WO 2023058158A1 JP 2021037000 W JP2021037000 W JP 2021037000W WO 2023058158 A1 WO2023058158 A1 WO 2023058158A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
heating
suppression rate
amount
temperature
Prior art date
Application number
PCT/JP2021/037000
Other languages
French (fr)
Japanese (ja)
Inventor
英次 根本
Original Assignee
三菱電機ビルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルソリューションズ株式会社 filed Critical 三菱電機ビルソリューションズ株式会社
Priority to CN202180102903.9A priority Critical patent/CN118043600A/en
Priority to PCT/JP2021/037000 priority patent/WO2023058158A1/en
Priority to JP2023552602A priority patent/JP7415092B2/en
Publication of WO2023058158A1 publication Critical patent/WO2023058158A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/08Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with separate supply and return lines for hot and cold heat-exchange fluids i.e. so-called "4-conduit" system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/20Sunlight

Definitions

  • the present disclosure relates to air conditioning systems.
  • Patent Document 1 discloses an air conditioning system that air-conditions a controlled area.
  • a fan, a cooling coil, and a heating coil are arranged inside the air conditioner.
  • the controller is connected to pyranometers and thermometers on the exterior walls of the building. The controller considers the amount of solar radiation measured by the pyranometer and the ambient temperature measured by the thermometer to determine the supply air temperature set point.
  • An air conditioner having a cooling heat exchanger (cooling coil) and a heating heat exchanger (heating coil) as in Patent Document 1 can freely switch between cooling operation and heating operation. Therefore, depending on the amount of heat entering the room according to the outdoor temperature and the amount of solar radiation, and the amount of heat generated by the human body and equipment inside the room, the room temperature changes from moment to moment. By switching and executing , the indoor temperature can be maintained at the set temperature.
  • the heating operation is executed so as to cancel the cooling effect of the previous cooling operation, and the energy consumption of the air conditioner during the heating operation. is unnecessarily increased.
  • To unnecessarily increase the energy consumption of an air conditioner during the cooling operation by executing the cooling operation so as to cancel out the heating effect of the immediately preceding heating operation even immediately after switching from the heating operation to the cooling operation. is concerned.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to reduce the energy consumption of an air conditioner having a cooling heat exchanger and a heating heat exchanger. To provide an air conditioning system capable of
  • An air conditioning system includes an air conditioner that conditions air in a room of a building, a temperature sensor that is installed in the room and detects the room temperature, and a cooling of the air conditioner according to the room temperature. and a controller for switching between operation and heating operation.
  • An air conditioner includes a first heat exchanger, a second heat exchanger, a first valve, a second valve, and a fan.
  • the first heat exchanger cools the air by heat exchange between the first heat medium and the air.
  • the second heat exchanger heats the air by heat exchange between the second heat medium and the air.
  • the first valve is provided in the circulation path of the first heat medium and is opened during cooling operation.
  • the second valve is provided in the circulation path of the second heat medium and is opened during heating operation.
  • the controller includes a cooling control and a heating control.
  • the cooling control unit controls the degree of opening of the first valve according to a first deviation between the cooling set temperature and the room temperature, thereby supplying the first heat medium to the first heat exchanger.
  • the heating control unit controls the degree of opening of the second valve in accordance with a second deviation between the heating set temperature and the room temperature, thereby supplying the second heat medium to the second heat exchanger.
  • adjust the supply of The cooling control unit adjusts the supply amount of the first heat medium to the first heat exchanger to the first deviation is reduced from the supply amount of the first heat medium according to the .
  • the heating control unit adjusts the amount of the second heat medium supplied to the second heat exchanger by the second deviation is reduced than the supply amount of the second heat medium according to .
  • an air conditioning system capable of reducing the energy consumption of an air conditioner having a cooling heat exchanger and a heating heat exchanger.
  • FIG. 4 is a block diagram showing an example of the functional configuration of a controller
  • FIG. 3 is a block diagram showing a configuration example of a cooling control unit shown in FIG. 2
  • FIG. 4 is a block diagram showing a configuration example of a correction unit shown in FIG. 3
  • FIG. 4 is a diagram schematically showing an example of the relationship between outside air temperature and suppression rate
  • It is a figure which shows typically an example of the relationship between a solar radiation amount and a suppression rate.
  • FIG. 3 is a block diagram showing a configuration example of a heating control unit shown in FIG. 2;
  • FIG. 9 is a block diagram showing a configuration example of a correction unit shown in FIG. 8;
  • FIG. FIG. 4 is a diagram schematically showing an example of the relationship between outside air temperature and suppression rate; It is a figure which shows typically an example of the relationship between a solar radiation amount and a suppression rate. It is a figure which shows an example of opening degree control of the warm water two-way valve in a heating control part.
  • 4 is a flowchart for explaining a processing procedure for controlling the opening degrees of a cold water two-way valve and a hot water two-way valve according to the present embodiment;
  • FIG. 4 is a diagram illustrating a first operation example of the air conditioning system according to the present embodiment;
  • FIG. 4 is a diagram illustrating a second operation example of the air conditioning system according to the present embodiment;
  • the air conditioning system 100 according to the embodiment is applied to an air conditioning system for conditioning air in a room 52 inside a building 50 .
  • FIG. 1 is a diagram showing a schematic configuration of an air conditioning system 100 according to an embodiment.
  • the air conditioning system 100 includes an air conditioner 10, ducts 14, 15, 16, a controller 20, a temperature/humidity sensor 22, an outside temperature sensor 24, and a solar radiation sensor 26. .
  • the air conditioner 10 conditions the air in the room 52 of the building 50.
  • the air conditioner 10 can be installed above the ceiling or under the floor of the building 50, for example.
  • the ceiling is a space formed by providing a ceiling
  • the underfloor is a space formed by providing a floor surface.
  • the air conditioner 10 sucks in air from the suction port 11 and blows out air from the blowout port 12 .
  • the air outlet 12 is connected by the air supply duct 14 to an air outlet 560 provided in the ceiling 56 of the room 52 .
  • the suction port 11 is connected by a return air duct 16 to a suction port 580 provided near the floor surface 58 of the room 52 .
  • the intake 11 is further connected to an outside air duct 15 for taking outside air into the room 52 .
  • the air near the floor surface 58 of the room 52 is sucked into the air conditioner 10 from the suction port 11 via the suction port 580 and the return air duct 16.
  • the air blown out from the air conditioner 10 passes through the air outlet 12 and the air supply duct 14 and is blown into the room 52 from the air outlet 560 .
  • the air conditioner 10 includes a filter 30, a cold water coil 32, a cold water circulation path 33, a cold water two-way valve 34, a hot water coil 36, a hot water circulation path 37, a hot water two-way valve 38, and a humidifier. 40 , a humidification supply path 41 , a two-way humidification valve 42 and a fan 44 .
  • a ventilation path from the suction port 11 to the blowout port 12 is formed inside the air conditioner 10 .
  • the filter 30, the cold water coil 32, the hot water coil 36, the humidifier 40, and the fan 44 are arranged on this ventilation path in order from the upstream side in the direction of air flow.
  • the arrangement order of the cold water coil 32, the hot water coil 36 and the humidifier 40 is not limited as long as the filter 30 is arranged most upstream of the ventilation path and the fan 44 is arranged most downstream of the ventilation path.
  • the air sucked from the suction port 11 of the air conditioner 10 passes through the filter 30. Dust in the air is removed by the filter 30 .
  • the air passing through the filter 30 passes through the cold water coil 32, the hot water coil 36 and the humidifier 40 in order.
  • the cold water coil 32 is supplied with a cooling heat medium (for example, cold water) from an external heat source machine (not shown) via a cold water circulation path 33 .
  • the chilled water coil 32 is configured to cool the ventilated air by exchanging heat between the ventilated air and the heat medium.
  • the cold water two-way valve 34 is provided in the cold water circulation path 33 .
  • the opening degree of the cold water two-way valve 34 is controlled by the controller 20 .
  • Chilled water coil 32 corresponds to an embodiment of "first heat exchanger" and chilled water two-way valve 34 corresponds to an embodiment of "first valve".
  • the hot water coil 36 is supplied with a heating heat medium (for example, hot water) from an external heat source machine (not shown) via a hot water circulation path 37 .
  • the hot water coil 36 is configured to heat the ventilated air by exchanging heat between the ventilated air and the heat medium.
  • a hot water two-way valve 38 is provided in the hot water circulation path 37 .
  • the degree of opening of the hot water two-way valve 38 is controlled by the controller 20 .
  • the hot water coil 36 corresponds to one embodiment of the "second heat exchanger" and the hot water two-way valve 38 corresponds to one embodiment of the "second valve".
  • the humidifier 40 is configured to humidify the ventilated air using the humidifying medium supplied through the humidifying supply path 41 .
  • the humidification two-way valve 42 is provided in the humidification supply path 41 .
  • the fan 44 sends the air that has passed through the ventilation path from the outlet 12 to the supply air duct 14 .
  • the operation of fan 44 is controlled by controller 20 .
  • the temperature and humidity sensor 22 is installed inside the room 52 .
  • the outside air temperature sensor 24 and the solar radiation sensor 26 are installed outside the building 50 (for example, on the outer wall or on the roof of the building 50).
  • the temperature/humidity sensor 22 , the outside air temperature sensor 24 and the solar radiation sensor 26 are communicatively connected to the controller 20 .
  • the temperature/humidity sensor 22 detects the indoor temperature Tr and the indoor humidity Hr, and outputs a signal indicating the detected values to the controller 20 .
  • the temperature/humidity sensor 22 is arranged, for example, in a perimeter zone on the window 54 side (or the outer wall side) of the room 52 .
  • the number of temperature/humidity sensors 22 is not limited.
  • a plurality of temperature and humidity sensors 22 are distributed in the perimeter zone of the room 52 and the interior zone on the central side of the building 50, and the average value of the detection values of the plurality of temperature and humidity sensors 22 is obtained as the indoor temperature Tr. may be
  • the temperature/humidity sensor 22 corresponds to an example of a "temperature sensor.”
  • the outside air temperature sensor 24 detects the outside air temperature To of the building 50 and outputs a signal indicating the detected value to the controller 20 .
  • the solar radiation sensor 26 detects the solar radiation Si indicating the intensity of the solar radiation irradiated to the building 50 and outputs a signal indicating the detected value to the controller 20 .
  • the outside air temperature sensor 24 corresponds to one embodiment of "outside air temperature sensor”
  • the solar radiation sensor 26 corresponds to one embodiment of "solar radiation sensor”.
  • each of the outside air temperature sensors 24 and the solar radiation sensors 26 are not limited.
  • a configuration may be adopted in which a plurality of outside air temperature sensors 24 are arranged in a distributed manner, and the average value of the detection values of the plurality of outside air temperature sensors 24 is acquired as the outside air temperature To.
  • a configuration may be adopted in which a plurality of solar radiation sensors 26 are arranged in a distributed manner, and the average value of the detection values of the plurality of solar radiation sensors 26 is acquired as the solar radiation Si.
  • the controller 20 controls the operation of the air conditioner 10 based on output signals (detected values) from the temperature/humidity sensor 22, the outside air temperature sensor 24, and the solar radiation sensor 26.
  • the air conditioner 10 has a cooling operation and a heating operation as operation modes.
  • the controller 20 switches between cooling operation and heating operation according to the room temperature Tr detected by the temperature/humidity sensor 22 .
  • the controller 20 selects the cooling operation.
  • the controller 20 adjusts the amount of heat medium supplied to the cold water coil 32 by controlling the opening of the cold water two-way valve 34 so that the room temperature Tr matches the cooling set temperature Tsc, and the fan 44 is turned on. control behavior.
  • the opening degree control of the cold water two-way valve 34 will be described later.
  • the controller 20 selects the heating operation.
  • the controller 20 adjusts the amount of heat medium supplied to the hot water coil 36 by controlling the opening of the hot water two-way valve 38 so that the room temperature Tr matches the heating set temperature Tsh, and the fan 44 is turned on. control behavior.
  • the opening degree control of the hot water two-way valve 38 will be described later.
  • the cooling set temperature Tsc and the heating set temperature Tsh can be freely set. However, in order to avoid simultaneous execution of the cooling operation and the heating operation, it is set so as to satisfy the relationship Tsc ⁇ Tsh. Moreover, in order to prevent hunting between the cooling operation and the heating operation, it is desirable to provide a temperature difference between the cooling set temperature Tsc and the heating set temperature Tsh.
  • the controller 20 controls the opening degree of the humidification two-way valve 42 so that the indoor humidity Hr detected by the temperature/humidity sensor 22 matches the predetermined set humidity Hs during the heating operation.
  • the controller 20 includes a CPU (Central Processing Unit), a memory, and an input/output (I/O) circuit as main components. These components can exchange data with each other via an internal bus (not shown).
  • a program is stored in a partial area of the memory, and various processes including control of the air conditioner 10, which will be described later, can be realized by executing the program by the CPU.
  • the I/O circuit inputs and outputs signals and data to and from the outside of controller 20 .
  • At least part of the controller 20 can be configured using a circuit such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit). Also, at least part of the controller 20 can be configured by an analog circuit.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • FIG. 2 is a block diagram showing an example of the functional configuration of the controller 20. As shown in FIG. The function of each block shown in FIG. 2 can be realized by at least one of software processing and hardware processing by the controller 20 .
  • the controller 20 includes an input section 70, a main control section 72, a cooling control section 74, a heating control section 76, a humidity control section 78, and a fan control section 80.
  • the input unit 70 accepts user commands for the air conditioning system 100 .
  • the user commands include an operation ON/OFF command for the air conditioner 10, a set temperature (cooling set temperature Tsc, heating set temperature Tsh) command, and a set humidity command.
  • the user command further includes the setting of the cooling main period/heating main period.
  • the “main cooling period” corresponds to a period during which the indoor temperature Tr is controlled mainly by the cooling operation of the air conditioner 10 .
  • the “heating main period” corresponds to a period in which the room temperature Tr is controlled mainly by the heating operation of the air conditioner 10 .
  • the main cooling period and the main heating period can be set freely.
  • the cooling main period is set to correspond to a period in which the cooling load (heat amount to be removed for cooling) exceeds the heating load (heat amount to be heated for heating).
  • the heating main period is set to correspond to a period in which the heating load exceeds the cooling load.
  • the cooling main period is set to a period including summer (eg, May to October), and the heating main period is set to a period including winter (eg, November to April).
  • the configuration may be such that the controller 20 automatically switches between the cooling main period and the heating main period according to a preset schedule.
  • the controller 20 may automatically switch between the cooling main period and the heating main period based on the temporal transition of the outside air temperature To detected by the outside air temperature sensor 24 . For example, the controller 20 obtains an average value of the maximum temperature and the minimum temperature for each day from the temporal transition of the outside air temperature To over the last several days, and switches between the cooling main period and the heating main period according to the average value.
  • the main control unit 72 receives user commands through the input unit 70 and also receives output signals (detection values Tr, Hr) from the temperature/humidity sensor 22 . Based on these input signals, the main control unit 72 issues control instructions to each unit in order to control the overall operation of the air conditioner 10 .
  • the cooling control unit 74 receives output signals (detection values Tr, To, Si) from the temperature/humidity sensor 22 , the outside air temperature sensor 24 and the solar radiation sensor 26 and also receives control commands from the main control unit 72 .
  • the control command includes a cooling set temperature Tsc and an execution command for suppressing the amount of heat medium supplied to the chilled water coil 32, which will be described later.
  • the cooling control unit 74 Based on these inputs, the cooling control unit 74 generates an opening command Vc*, which is a control amount for the opening of the cold water two-way valve 34, and sends the generated opening command Vc* to the cold water two-way valve 34. Output.
  • the heating control unit 76 receives output signals (detected values Tr, To, Si) from the temperature/humidity sensor 22 , the outside air temperature sensor 24 and the solar radiation sensor 26 and also receives control commands from the main control unit 72 .
  • the control command includes a heating set temperature Tsh and an execution command for suppressing the amount of heat medium supplied to the hot water coil 36, which will be described later.
  • the heating control unit 76 Based on these inputs, the heating control unit 76 generates an opening command Vh*, which is a control amount for the opening of the hot water two-way valve 38, and sends the generated opening command Vh* to the hot water two-way valve 38. Output.
  • Humidity control unit 78 receives an output signal (detected value Hr) from temperature/humidity sensor 22 and a control command from main control unit 72, and generates an opening command for controlling the opening of humidification two-way valve 42. do. Humidity control unit 78 outputs the generated opening command to humidification two-way valve 42 .
  • the fan control unit 80 receives control commands from the main control unit 72 .
  • the control command includes a rotation speed command for controlling the rotation speed of fan 44 .
  • Fan control unit 80 controls the operation of fan 44 in accordance with the rotational speed command.
  • FIG. 3 is a block diagram showing a configuration example of the cooling control section 74 shown in FIG.
  • the cooling control unit 74 controls the opening degree command Vc* of the cold water two-way valve 34 by feedback control for causing the room temperature Tr detected by the temperature/humidity sensor 22 to follow the cooling set temperature Tsc. configured to generate
  • the cooling controller 74 includes a subtractor 740 , a controller 742 and a corrector 744 .
  • a PI (proportional-integral) controller or a PID (proportional-integral-derivative) controller can be used as the controller 742 .
  • Controller 742 corresponds to one embodiment of "first controller.”
  • the correction unit 744 adjusts the opening degree of the cold water two-way valve 34 based on the execution command given from the main control unit 72, the outside air temperature To detected by the outside air temperature sensor 24, and the amount of solar radiation Si detected by the amount of solar radiation sensor 26. Correct command Vc*.
  • the corrector 744 corresponds to an embodiment of the "first corrector".
  • the main control unit 72 determines whether or not the current time corresponds to the main heating period based on current time information given from a clock (not shown). When the current time corresponds to the heating main period, the main control unit 72 generates an execution command for suppressing the amount of heat medium supplied to the cold water coil 32 . If the current time does not correspond to the heating main period, the main control section 72 does not generate the execution command. That is, the main control unit 72 causes the cooling control unit 74 to perform processing for suppressing the amount of heat medium supplied to the cold water coil 32 when the cooling operation is performed during the heating main period.
  • heating operation is the main operation during the heating main period.
  • the air conditioner 10 is configured to be switchable between cooling operation and heating operation according to the room temperature Tr.
  • the indoor temperature Tr changes from moment to moment due to the amount of heat entering the room 52 according to the outside air temperature and the amount of solar radiation, and the amount of heat generated from the human body and equipment in the room 52 . Therefore, the air conditioner 10 may temporarily perform the cooling operation when the room temperature Tr exceeds the cooling set temperature Tsc during the heating main period.
  • the indoor temperature Tr rises so as to follow an increase in the outdoor temperature and an increase in the amount of solar radiation, and the indoor temperature Tr exceeds the cooling set temperature Tsc for several hours after noon, the indoor temperature Tr is set to cooling. A cooling operation is temporarily performed to bring the temperature down to Tsc. After that, when the indoor temperature Tr falls below the heating set temperature Tsh so as to follow the decrease in the outside air temperature and the decrease in the amount of solar radiation, the heating operation is started.
  • the heating operation is performed so as to cancel out the cooling effect of the previous cooling operation.
  • the cooling effect of the previous cooling operation works as a heating load. That is, immediately after the transition to the heating operation, the heating operation is performed so as to replenish the amount of heat removed from the room 52 by the previous cooling operation. As a result, the energy consumption of the air conditioner 10 during the heating operation is unnecessarily increased.
  • the cooling effect is suppressed by reducing the cooling capacity of the air conditioner 10 during the heating main period, as described below.
  • FIG. 4 is a block diagram showing a configuration example of the correction unit 744 shown in FIG.
  • the correction unit 744 includes suppression rate calculation units 82 and 84, multipliers 85 and 88, and a switching unit 86. Restriction rate calculators 82 and 84 and multiplier 85 calculate a correction coefficient for correcting opening command Vc*. Since this correction coefficient represents the extent to which the amount of heat medium supplied to the chilled water coil 32 is suppressed (that is, corresponds to the extent to which the cooling capacity is suppressed), it is defined as "cooling suppression rate Rcs" in this specification. .
  • the cooling suppression rate Rcs is calculated using a suppression rate Rc1 for suppressing the cooling capacity against an increase in outside air temperature and a suppression rate Rc2 for suppressing the cooling capacity against an increase in the amount of solar radiation.
  • correction unit 744 is configured to calculate cooling suppression rate Rcs according to the outdoor temperature and the amount of solar radiation, thereby suppressing the amount of heat removed from room 52 due to the outdoor temperature and the amount of solar radiation. This makes it possible to reduce the amount of heat supplied to the room 52 in the heating operation that follows the cooling operation.
  • the suppression rate calculator 82 calculates the suppression rate Rc1 based on the outside air temperature To detected by the outside air temperature sensor 24 .
  • the suppression rate Rc1 corresponds to an example of "first suppression rate".
  • FIG. 5 is a diagram schematically showing an example of the relationship between the outside air temperature To and the suppression rate Rc1.
  • the horizontal axis of FIG. 5 indicates the outside air temperature To, and the vertical axis indicates the suppression rate Rc1.
  • the suppression rate Rc1 can take a value of 0(%) to 100(%).
  • the suppression rate Rc1 when To ⁇ To2, the suppression rate Rc1 is set to 100%.
  • the suppression rate Rc1 is set to decrease as the outside air temperature To decreases.
  • the suppression rate Rc1 is set to Xc (%) (0 ⁇ Xc ⁇ 100).
  • the suppression rate Rc1 decreases from 100 (%), the extent to which the amount of heat medium supplied to the cold water coil 32 (cooling capacity) is suppressed increases. As shown in FIG. 5, the lower the outside air temperature To, the lower the suppression rate Rc1. can be suppressed from being excessively cooled. As a result, energy consumption during cooling operation can be reduced. In addition, since the amount of heat supplied to the room 52 can be reduced when shifting from the cooling operation to the heating operation, the energy consumption during the heating operation can be reduced.
  • Xc (%) corresponds to the lower limit of the suppression rate Rc1.
  • the relationship between the outside air temperature To and the suppression rate Rc1 (temperatures To1, To2 and lower limit value Xc) can be freely set while considering the trade-off between the energy consumption of the air conditioner 10 and the comfort of the room 52. .
  • the suppression rate calculator 82 calculates the suppression rate Rc1 based on the outside air temperature To detected by the outside air temperature sensor 24. be able to.
  • the suppression rate calculator 84 calculates the suppression rate Rc2 based on the solar radiation amount Si detected by the solar radiation sensor 26.
  • the suppression rate Rc2 corresponds to an example of the "second suppression rate".
  • FIG. 6 is a diagram schematically showing an example of the relationship between the solar radiation amount Si and the suppression rate Rc2.
  • the horizontal axis of FIG. 6 indicates the solar radiation amount Si, and the vertical axis indicates the suppression rate Rc2.
  • the suppression rate Rc2 can take a value of 0(%) to 100(%).
  • the suppression rate Rc2 when Si ⁇ Si2, the suppression rate Rc2 is set to 100 (%).
  • the suppression rate Rc2 is set to decrease as the amount of solar radiation Si decreases.
  • the suppression rate Rc2 is set to Yc (%) (0 ⁇ Yc ⁇ 100).
  • Yc (%) corresponds to the lower limit of the suppression rate Rc2.
  • the suppression rate Rc2 As with the suppression rate Rc1 shown in FIG. 5, as the suppression rate Rc2 also decreases from 100 (%), the extent to which the amount of heat medium supplied to the cold water coil 32 (cooling capacity) is suppressed increases. As shown in FIG. 6, the suppression rate Rc2 is decreased as the amount of solar radiation Si decreases, that is, by increasing the extent to which the cooling capacity is suppressed. Since it is possible to suppress the excessive cooling of 52, it is possible to reduce energy consumption during the cooling operation. In addition, since the amount of heat supplied to the room 52 can be reduced when shifting from the cooling operation to the heating operation, the energy consumption during the heating operation can be reduced.
  • the relationship between the amount of solar radiation Si and the suppression rate Rc2 (the amounts of solar radiation Si1, Si2 and the lower limit Yc) can be freely set while considering the trade-off between the energy consumption of the air conditioner 10 and the comfort of the room 52. can.
  • the suppression rate calculator 84 calculates the suppression rate Rc2 based on the solar radiation amount Si detected by the solar radiation sensor 26. be able to.
  • the switching section 86 has a first input terminal, a second input terminal and an output terminal.
  • the switching unit 86 receives the cooling suppression rate Rcs from the multiplier 85 at its first input terminal, and receives the upper limit value of 100 (%) of the cooling suppression rate Rcs at its second input terminal.
  • the switching unit 86 When the execution command is at the L level, which is the deactivation level, the switching unit 86 outputs the upper limit value (100(%)) of the cooling suppression rate received by the second input terminal to the output terminal.
  • Rcs ⁇ 100% the opening command Vc* is corrected to a value smaller than the original opening command Vc* according to the magnitude of the cooling suppression rate Rcs. It is output to the direction valve 34 .
  • the chilled water two-way valve 34 adjusts the amount of heat medium supplied to the chilled water coil 32 by controlling the degree of opening according to the degree of opening command Vc*.
  • FIG. 7 is a diagram showing an example of opening degree control of the cold water two-way valve 34 in the cooling control section 74. As shown in FIG. FIG. 7 shows an example of the relationship between the indoor temperature Tr and the opening command Vc* of the cold water two-way valve 34. As shown in FIG. The horizontal axis of FIG. 7 indicates the indoor temperature Tr, and the vertical axis indicates the opening command Vc*.
  • a waveform k1 shows the relationship in the cooling main period. Waveform k2 shows the relationship in the heating main period.
  • the opening command Vc* is set to 0% (fully closed).
  • the opening command Vc* changes in proportion to the deviation ⁇ Tc of the room temperature Tr from the cooling set temperature Tsc. Note that when the indoor temperature Tr exceeds the predetermined threshold temperature Tcth, the opening command Vc* is fixed at 100% (fully open).
  • the opening command Vc* is multiplied by the cooling suppression rate Rcs calculated based on the detected values of the outside air temperature To and the amount of solar radiation Si. Therefore, the opening degree command Vc* for a certain room temperature Tr is smaller than the opening degree command Vc* for the same room temperature Tr during the main cooling period. That is, the amount of heat medium supplied to the cold water coil 32 at a certain indoor temperature Tr is smaller during the heating main period than during the cooling main period. As a result, the cooling capacity in the heating main period is suppressed.
  • FIG. 8 is a block diagram showing a configuration example of the heating control unit 76 shown in FIG. As shown in FIG. 8, the heating control unit 76 sets the opening command Vh* of the hot water two-way valve 38 by feedback control for causing the indoor temperature Tr detected by the temperature and humidity sensor 22 to follow the heating set temperature Tsh. configured to generate
  • the heating controller 76 includes a subtractor 760 , a controller 762 and a corrector 764 .
  • a PI controller, a PID controller, or the like can be used as the controller 762 .
  • the correction unit 764 adjusts the opening degree of the hot water two-way valve 38 based on the execution command given from the main control unit 72, the outside air temperature To detected by the outside air temperature sensor 24, and the amount of solar radiation Si detected by the amount of solar radiation sensor 26. Correct command Vh*.
  • the main control unit 72 determines whether or not the current time corresponds to the cooling main period based on current time information given from a clock (not shown). When the current time corresponds to the main cooling period, the main control unit 72 generates an execution command for suppressing the amount of heat medium supplied to the hot water coil 36 . If the current time does not correspond to the main cooling period, the main control unit 72 does not generate the execution command. That is, the main control unit 72 causes the heating control unit 76 to perform a process of suppressing the amount of heat medium supplied to the hot water coil 36 when the heating operation is performed during the cooling main period.
  • cooling operation is the main operation during the cooling main period.
  • the air conditioner 10 since the air conditioner 10 is configured to be able to switch between the cooling operation and the heating operation according to the indoor temperature Tr, when the indoor temperature Tr falls below the heating set temperature Tsh during the cooling main period, , the air conditioner 10 may temporarily perform the heating operation.
  • the heating operation is temporarily performed to raise the indoor temperature Tr to the heating set temperature Tsh. is executed. After that, when the indoor temperature Tr rises above the cooling set temperature Tsc so as to follow the increase in the outside air temperature and the increase in the amount of solar radiation, the operation shifts to the cooling operation.
  • the cooling operation is performed so as to cancel out the heating effect of the previous heating operation.
  • the heating effect of the previous heating operation works as a cooling load. That is, immediately after the start of the cooling operation, the cooling operation is performed so as to remove the amount of heat supplied to the room 52 by the previous heating operation. As a result, the energy consumption of the air conditioner 10 during the cooling operation is unnecessarily increased.
  • the heating effect is suppressed by reducing the heating capacity of the air conditioner 10 during the cooling main period, as described below.
  • FIG. 9 is a block diagram showing a configuration example of the correction unit 764 shown in FIG.
  • the correction unit 764 includes suppression rate calculation units 92 and 94, multipliers 95 and 98, and a switching unit 96. Restriction rate calculators 92 and 94 and multiplier 95 calculate a correction coefficient for correcting opening command Vh*. Since this correction coefficient represents the extent to which the amount of heat medium supplied to the hot water coil 36 is suppressed (that is, corresponds to the extent to which the heating capacity is suppressed), it is defined as "heating suppression rate Rhs" in this specification. .
  • the heating suppression rate Rhs is calculated using a suppression rate Rh1 for suppressing the heating capacity in response to a decrease in outside air temperature and a suppression rate Rh2 for suppressing the heating capacity in response to a decrease in the amount of solar radiation.
  • the correction unit 764 is configured to calculate the heating suppression rate Rhs according to the outside air temperature To and the amount of solar radiation Si, thereby suppressing the amount of heat supplied to the room 52 due to the outside temperature and the amount of solar radiation. do. This makes it possible to reduce the amount of heat removed from the room 52 during the cooling operation.
  • the suppression rate calculator 92 calculates the suppression rate Rh1 based on the outside air temperature To detected by the outside air temperature sensor 24 .
  • the suppression rate Rh1 corresponds to an example of the "third suppression rate".
  • FIG. 10 is a diagram schematically showing an example of the relationship between the outside air temperature To and the suppression rate Rh1.
  • the horizontal axis of FIG. 10 indicates the outside air temperature To, and the vertical axis indicates the suppression rate Rh1.
  • the suppression rate Rh1 can take values from 0(%) to 100(%).
  • the suppression rate Rh1 when To ⁇ To3, the suppression rate Rh1 is set to 100 (%).
  • the suppression rate Rh1 When To3 ⁇ To ⁇ To4, the suppression rate Rh1 is set to decrease as the outside air temperature To increases.
  • the suppression rate Rh1 is set to Xh (%) (0 ⁇ Xh ⁇ 100).
  • Xh (%) corresponds to the lower limit of the suppression rate Rh1.
  • the suppression rate Rh1 decreases from 100 (%), the extent to which the amount of heat medium supplied to the hot water coil 36 (heating capacity) is suppressed increases. As shown in FIG. 10, the higher the outside air temperature To, the lower the suppression rate Rh1, that is, the higher the degree of suppression of the heating capacity. can be suppressed from being excessively heated. As a result, energy consumption during heating operation can be reduced. Moreover, since the amount of heat removed from the room 52 can be reduced when the heating operation is shifted to the cooling operation, the energy consumption during the cooling operation can be reduced.
  • the relationship between the outside air temperature To and the suppression rate Rh1 (temperatures To3, To4 and lower limit value Xh) can be freely set while considering the trade-off between the energy consumption of the air conditioner 10 and the comfort of the room 52. .
  • the suppression rate calculator 92 calculates the suppression rate Rh1 based on the outside air temperature To detected by the outside air temperature sensor 24. be able to.
  • the suppression rate calculator 94 calculates the suppression rate Rh2 based on the solar radiation amount Si detected by the solar radiation sensor 26.
  • the suppression rate Rh2 corresponds to an example of the "fourth suppression rate".
  • FIG. 11 is a diagram schematically showing an example of the relationship between the solar radiation amount Si and the suppression rate Rh2.
  • the horizontal axis of FIG. 11 indicates the amount of solar radiation Si, and the vertical axis indicates the suppression rate Rh2.
  • the suppression rate Rh2 can take a value of 0(%) to 100(%).
  • the suppression rate Rh2 when Si ⁇ Si3, the suppression rate Rh2 is set to 100 (%).
  • the suppression rate Rh2 is set to decrease as the amount of solar radiation Si increases.
  • the suppression rate Rh2 is set to Yh (%) (0 ⁇ Yh ⁇ 100).
  • Yh (%) corresponds to the lower limit of the suppression rate Rh2.
  • the suppression rate Rh1 shown in FIG. 10 As the suppression rate Rh2 also decreases from 100 (%), the extent to which the amount of heat medium supplied to the hot water coil 36 (heating capacity) is suppressed increases.
  • the suppression rate Rc2 As the suppression rate Rc2 as the amount of solar radiation Si increases, that is, by increasing the extent to which the heating capacity is suppressed, the synergistic effect of the increase in the amount of solar radiation Si and the heating operation results in a Since it is possible to suppress the excessive heating of 52, it is possible to reduce energy consumption during the heating operation. Moreover, since the amount of heat removed from the room 52 can be reduced when shifting from the heating operation to the cooling operation, the energy consumption during the cooling operation can be reduced.
  • the relationship between the amount of solar radiation Si and the suppression rate Rh2 (the amounts of solar radiation Si3, Si4 and the lower limit value Yh) can be freely set while considering the trade-off between the energy consumption of the air conditioner 10 and the comfort of the room 52. can.
  • the suppression rate calculator 94 calculates the suppression rate Rh2 based on the solar radiation amount Si detected by the solar radiation sensor 26. be able to.
  • Multiplier 95 inputs calculated heating suppression rate Rhs to a first input terminal of switching section 96 .
  • the switching section 96 has a first input terminal, a second input terminal and an output terminal.
  • the switching unit 96 receives the heating suppression rate Rhs from the multiplier 95 at its first input terminal, and receives the upper limit value 100 (%) of the heating suppression rate Rhs at its second input terminal.
  • Rhs ⁇ 100% the opening command Vh* is corrected to a value smaller than the original opening command Vh* according to the magnitude of the heating suppression rate Rhs.
  • Output to direction valve 38 The hot water two-way valve 38 adjusts the amount of heat medium supplied to the hot water coil 36 by controlling the degree of opening according to the degree of opening command Vh*.
  • FIG. 12 is a diagram showing an example of opening degree control of the hot water two-way valve 38 in the heating control section 76.
  • FIG. 12 shows an example of the relationship between the indoor temperature Tr and the opening command Vh* of the hot water two-way valve 38.
  • the horizontal axis of FIG. 12 indicates the room temperature Tr, and the vertical axis indicates the opening command Vh*.
  • Waveform k3 shows the relationship in the heating main period.
  • Waveform k4 shows the relationship in the cooling main period.
  • the opening command Vh* is set to 0% (fully closed).
  • the opening command Vh* changes in proportion to the deviation ⁇ Th of the room temperature Tr from the heating set temperature Tsh. Note that when the room temperature Tr is lower than the predetermined threshold temperature Thth, the opening command Vh* is fixed at 100% (fully open).
  • the opening command Vh* is multiplied by the heating suppression rate Rhs calculated based on the detected values of the outside air temperature To and the amount of solar radiation Si. Therefore, the opening degree command Vh* for a certain room temperature Tr is smaller than the opening degree command Vh* for the same room temperature Tr in the heating main period. That is, the amount of heat medium supplied to the hot water coil 36 at a certain indoor temperature Tr is smaller during the cooling main period than during the heating main period. As a result, the heating capacity in the cooling main period is suppressed.
  • the heating operation and the following heating operation are performed by executing the process of suppressing the supply amount of the heat medium to the hot water coil 36 to reduce the heating capacity. It is possible to reduce the energy consumption of the air conditioner 10 in the cooling operation performed by
  • FIG. 13 is a flow chart illustrating a processing procedure for controlling the opening degrees of the cold water two-way valve 34 and the hot water two-way valve 38 according to the present embodiment.
  • a control process according to the flowchart shown in FIG. 13 is repeatedly executed by the controller 20 .
  • the controller 20 detects the room temperature Tr based on the output signal of the temperature/humidity sensor 22 in step 01 (hereinafter step is simply referred to as S).
  • the controller 20 compares the indoor temperature Tr with the cooling set temperature Tsc in S02.
  • the controller 20 controls the opening of the cold water two-way valve 34 according to the procedure shown in S03 to S11.
  • the controller 20 executes a control operation for setting the deviation ⁇ Tc between the cooling set temperature Tsc and the room temperature Tr to 0, thereby setting the opening command Vc* of the cold water two-way valve 34 to Generate.
  • the controller 20 determines in S04 whether or not the current time corresponds to the heating main period based on current time information given from a clock (not shown). If the current time does not correspond to the heating main period (NO determination in S04), the controller 20 skips the processes of S05 to S10.
  • the controller 20 executes processing to suppress the amount of heat medium supplied to the cold water coil 32. Specifically, the controller 20 detects the outside air temperature To based on the output signal of the outside air temperature sensor 24 in S05. In S06, the controller 20 calculates the suppression rate Rc1 according to the detected value of the outside air temperature To. In S06, the controller 20 refers to the relationship between the outside air temperature To and the suppression rate Rc1 pre-stored in the memory 204 (see FIG. 5) to calculate the suppression rate Rc1 based on the detected value of the outside air temperature To. do.
  • the controller 20 detects the amount of solar radiation Si based on the output signal of the solar radiation sensor 26 in S07. In S08, the controller 20 calculates the suppression rate Rc2 according to the detected value of the amount of solar radiation Si. In S08, the controller 20 calculates the suppression rate Rc2 based on the detected value of the solar radiation amount Si by referring to the relationship between the solar radiation amount Si and the suppression rate Rc2 pre-stored in the memory 204 (see FIG. 6). do.
  • the controller 20 adjusts the supply of the heat medium to the cold water coil 32 by controlling the opening of the cold water two-way valve 34 according to the opening command Vc* in S11.
  • the opening command Vc* is corrected in S10
  • the opening of the cold water two-way valve 34 is controlled according to the corrected opening command Vc*.
  • the controller 20 compares the room temperature Tr with the heating set temperature Tsh in S12. When the room temperature Tr is lower than the heating set temperature Tsh (YES in S12), the controller 20 controls the opening of the hot water two-way valve 38 according to the procedure shown in S13 to S21.
  • the controller 20 executes a control operation for setting the deviation ⁇ Th between the heating set temperature Tsh and the indoor temperature Tr to 0, thereby setting the opening command Vh* of the hot water two-way valve 38 to Generate.
  • the controller 20 determines in S14 whether or not the current time corresponds to the cooling main period based on current time information given from a clock (not shown). If the current time does not correspond to the cooling main period (NO judgment in S14), the controller 20 skips the processes of S15 to S20.
  • the controller 20 executes processing to suppress the amount of heat medium supplied to the hot water coil 36. Specifically, the controller 20 detects the outside air temperature To based on the output signal of the outside air temperature sensor 24 in S15. In S16, the controller 20 calculates the suppression rate Rh1 according to the detected value of the outside air temperature To. In S16, the controller 20 refers to the relationship between the outside air temperature To and the suppression rate Rh1 pre-stored in the memory 204 (see FIG. 10) to calculate the suppression rate Rh1 based on the detected value of the outside air temperature To. do.
  • the controller 20 detects the solar radiation Si based on the output signal of the solar radiation sensor 26 in S17.
  • the controller 20 calculates the suppression rate Rh2 according to the detected value of the amount of solar radiation Si.
  • the controller 20 calculates the suppression rate Rh2 based on the detected value of the solar radiation amount Si by referring to the relationship between the solar radiation amount Si and the suppression rate Rh2 pre-stored in the memory 204 (see FIG. 11). do.
  • the controller 20 adjusts the supply of the heat medium to the hot water coil 36 by controlling the opening of the hot water two-way valve 38 according to the opening command Vh* in S21.
  • the opening command Vh* is corrected in S20, the opening of the hot water two-way valve 38 is controlled according to the corrected opening command Vh*.
  • FIG. 14 Operaation example of an air conditioning system
  • FIG. 14 is a diagram showing the temporal transition of the outside air temperature in one day during the main cooling period.
  • the horizontal axis of FIG. 14 indicates the time, and the vertical axis indicates the value of the outside air temperature To detected by the outside air temperature sensor 24 .
  • the time zone from 8:30 am to 6:00 pm (18:00) is the time zone (air conditioning time zone) in which the air conditioner 10 is operated to condition the air in the room 52. )
  • the time zones from 0:00 am to 8:30 am and from 6:00 pm to 24:00 pm are time zones in which the air conditioner 10 is in a stopped state.
  • the outside air temperature To becomes low during the night when there is no sunlight, and gradually rises after sunrise (around 5:00 am). As the outside air temperature To rises, the amount of heat entering the room 52 gradually increases, so the room temperature Tr rises gradually.
  • the indoor temperature Tr may be lower than the heating set temperature Tsh for several hours after the air conditioner 10 is started.
  • the air conditioner 10 performs heating operation in order to increase the indoor temperature Tr to the heating set temperature Tsh.
  • a region k1 in the figure corresponds to a time period during which the heating operation is performed.
  • the controller 20 calculates a heating suppression rate Rhs according to the outside air temperature To and the amount of solar radiation Si, and corrects the opening command Vh* of the hot water two-way valve 38 using the calculated heating suppression rate Rhs.
  • FIG. 10 shows the suppression rate Rh1(ta) calculated from the outside air temperature To at time ta immediately after the start of the heating operation and the suppression rate Rh1(tb) calculated from the outside air temperature To at time tb during the heating operation. It is shown.
  • FIG. 11 shows the suppression rate Rh2(ta) calculated from the solar radiation amount Si at time ta and the suppression rate Rh2(tb) calculated from the solar radiation amount Si at time tb.
  • the controller 20 multiplies Rh1(ta) and Rh2(ta) to calculate the heating suppression rate Rhs(ta) at time ta. Controller 20 multiplies Rh1(tb) and Rh2(tb) to calculate heating suppression rate Rhs(tb) at time tb. Since Rh1(ta)>Rh1(tb) and Rh2(ta)>Rh2(tb), Rhs(ta)>Rhs(tb).
  • the heating suppression rate Rhs decreases as the outside air temperature To and the amount of solar radiation Si rise, so that the amount of heat medium supplied to the hot water coil 36 gradually decreases. As a result, the amount of heat replenished to the room 52 gradually decreases, so that excessive heating can be suppressed. Also, it is possible to reduce the cooling load when shifting to the cooling operation. Therefore, it is possible to reduce the energy consumption of the air conditioner 10 in the heating operation and the cooling operation that follows the heating operation.
  • FIG. 15 is a diagram showing the temporal transition of the outside air temperature in one day during the main heating period.
  • the horizontal axis of FIG. 15 indicates the time, and the vertical axis indicates the value of the outside air temperature To detected by the outside air temperature sensor 24 .
  • the air conditioner 10 is operated during the time period from 8:30 am to 6:00 pm (18:00) to condition the air in the room 52.
  • the time zone (air-conditioning time zone) during which the air conditioner 10 is stopped is defined as the time zone from 0:00 am to 8:30 am and from 6:00 pm to 24:00 pm.
  • the outside air temperature To becomes low during the night when there is no sunlight, and gradually rises after sunrise (around 5:00 am). As the outside air temperature To rises, the amount of heat entering the room 52 gradually increases, so the room temperature Tr rises gradually.
  • the room temperature Tr is lower than the heating set temperature Tsh, so the air conditioner 10 performs heating operation.
  • the amount of heat entering the room 52 increases due to the rise in the outside air temperature To and the increase in the amount of solar radiation, and the amount of heat generated by the human body and equipment in the room 52 also increases.
  • the amount of heat supplied to the room 52 increases due to the synergistic effects of the heating operation, the outside air temperature, the human body, etc., and the room temperature Tr rises.
  • the room temperature Tr may exceed the cooling set temperature Tsc for several hours around 1:00 pm when the outside air temperature To peaks.
  • the air conditioner 10 performs cooling operation in order to lower the room temperature Tr to the cooling set temperature Tsc.
  • a region k2 in the figure corresponds to the time period during which the cooling operation is performed.
  • the controller 20 calculates the cooling suppression rate Rcs according to the outside air temperature To and the amount of solar radiation Si, and corrects the opening command Vc* of the cold water two-way valve 34 using the calculated cooling suppression rate Rcs.
  • FIG. 5 shows the suppression rate Rc1(tc) calculated from the outside air temperature To at time tc during the cooling operation and the suppression rate Rc1(td) calculated from the outside air temperature To at time td immediately before the end of the cooling operation.
  • FIG. 6 shows the suppression rate Rc2(tc) calculated from the solar radiation amount Si at time tc and the suppression rate Rc2(td) calculated from the solar radiation amount Si at time td.
  • the controller 20 multiplies Rc1(tc) and Rc2(tc) to calculate the cooling suppression rate Rcs(tc) at time tc. Controller 20 multiplies Rc1(td) and Rc2(td) to calculate cooling suppression rate Rcs(td) at time td. Since Rc1(tc)>Rc1(td) and Rc2(tc)>Rc2(td), Rcs(tc)>Rcs(td).
  • the cooling suppression rate Rcs decreases as the outside air temperature To decreases and the amount of solar radiation Si decreases, so that the amount of heat medium supplied to the chilled water coil 32 gradually decreases.
  • the amount of heat removed from the room 52 gradually decreases, and excessive cooling can be suppressed. Also, the heating load can be reduced when shifting to the heating operation. As a result, it is possible to reduce the energy consumption of the air conditioner 10 in the cooling operation and in the heating operation that follows the cooling operation.
  • the cooling suppression rate Rcs and the heating suppression rate Rhs are calculated according to either one of the outside air temperature To and the amount of solar radiation Si. Even in this case, during the cooling operation during the heating main operation period, the cooling suppression rate Rcs is calculated so that the upper limit value is 100% and the value decreases as the outside air temperature To decreases or the solar radiation amount Si decreases. . This makes it possible to reduce the energy consumption of the air conditioner 10 during the cooling operation and during the heating operation that follows the cooling operation.
  • the heating suppression rate Rhs is calculated so that the upper limit value is 100% and the value decreases as the outside air temperature To rises or the solar radiation amount Si increases. This makes it possible to reduce the energy consumption of the air conditioner 10 during the heating operation and during the cooling operation that follows the heating operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioner (10) includes a heat exchanger (32) for cooling and a heat exchanger (3) for heating. During cooling operation, a controller (20) adjusts the amount of heat medium supplied to the heat exchanger (32) for cooling according to a first deviation between the cooling set temperature and the room temperature. During heating operation, the controller adjusts the amount of heat medium supplied to the heat exchanger (36) for heating according to a second deviation between the heating set temperature and the room temperature. When performing cooling operation during a heating-main period in which air conditioning is performed mainly in heating operation, the controller (20) reduces the amount of heat medium supplied to the heat exchanger (32) for cooling below the amount of heat medium supplied according to the first deviation. When performing heating operation during a cooling-main period in which air conditioning is performed mainly in cooling operation, the controller (20) reduces the amount of heat medium supplied to the heat exchanger (36) for heating below the amount of heat medium supplied according to the second deviation.

Description

空気調和システムair conditioning system
 本開示は、空気調和システムに関する。 The present disclosure relates to air conditioning systems.
 特開2004-125288号公報(特許文献1)には、被制御エリアを空調する空気調和システムが開示されている。空気調和機の内部には、送風機、冷却コイルおよび加熱コイルが配設されている。コントローラは、建物の外壁部に設けられた日射計および温度計に接続されている。コントローラは、日射計により計測される日射量および温度計により計測される外気温度を考慮して給気温度設定値を決定する。 Japanese Patent Laying-Open No. 2004-125288 (Patent Document 1) discloses an air conditioning system that air-conditions a controlled area. A fan, a cooling coil, and a heating coil are arranged inside the air conditioner. The controller is connected to pyranometers and thermometers on the exterior walls of the building. The controller considers the amount of solar radiation measured by the pyranometer and the ambient temperature measured by the thermometer to determine the supply air temperature set point.
特開2004-125288号公報JP-A-2004-125288
 特許文献1のように冷却用熱交換器(冷却コイル)および加熱用熱交換器(加熱コイル)を有する空気調和機は、冷房運転および暖房運転を自在に切り替えることができる。そのため、外気温度および日射量に応じて室内に入ってくる熱量、および、室内で人体および器具類から発生する熱量などに起因して時々刻々と変化する室内温度に応じて、冷房運転および暖房運転を切り替えて実行することにより、室内温度を設定温度に保つことができる。 An air conditioner having a cooling heat exchanger (cooling coil) and a heating heat exchanger (heating coil) as in Patent Document 1 can freely switch between cooling operation and heating operation. Therefore, depending on the amount of heat entering the room according to the outdoor temperature and the amount of solar radiation, and the amount of heat generated by the human body and equipment inside the room, the room temperature changes from moment to moment. By switching and executing , the indoor temperature can be maintained at the set temperature.
 しかしながら、その一方で、冷房運転から暖房運転に切り替えられた直後には、直前の冷房運転による冷房効果を打ち消すように暖房運転が実行されることになり、暖房運転時における空気調和機の消費エネルギーを無駄に増加させることが懸念される。暖房運転から冷房運転に切り替えられた直後においても、直前の暖房運転による暖房効果を打ち消すように冷房運転が実行されることになり、冷房運転時における空気調和機の消費エネルギーを無駄に増加させることが懸念される。 However, on the other hand, immediately after the cooling operation is switched to the heating operation, the heating operation is executed so as to cancel the cooling effect of the previous cooling operation, and the energy consumption of the air conditioner during the heating operation. is unnecessarily increased. To unnecessarily increase the energy consumption of an air conditioner during the cooling operation by executing the cooling operation so as to cancel out the heating effect of the immediately preceding heating operation even immediately after switching from the heating operation to the cooling operation. is concerned.
 本開示は上記のような課題を解決するためになされたものであって、本開示の目的は、冷却用熱交換器および加熱用熱交換器を有する空気調和機の消費エネルギーを低減することができる空気調和システムを提供することである。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to reduce the energy consumption of an air conditioner having a cooling heat exchanger and a heating heat exchanger. To provide an air conditioning system capable of
 本開示の一態様に係る空気調和システムは、建物の室内の空気を調和する空気調和機と、室内に設置され、室内温度を検出する温度センサと、室内温度に応じて、空気調和機の冷房運転および暖房運転を切り替えるコントローラとを備える。空気調和機は、第1の熱交換器と、第2の熱交換器と、第1の弁と、第2の弁と、ファンとを含む。第1の熱交換器は、第1の熱媒体と空気との熱交換により空気を冷却する。第2の熱交換器は、第2の熱媒体と空気との熱交換により空気を加熱する。第1の弁は、第1の熱媒体の循環路に設けられ、冷房運転時に開放される。第2の弁は、第2の熱媒体の循環路に設けられ、暖房運転時に開放される。ファンは、第1の熱交換器および第2の熱交換器に空気を通流させる。コントローラは、冷房制御部と、暖房制御部とを含む。冷房制御部は、冷房運転時に、冷房設定温度と室内温度との第1の偏差に応じて第1の弁の開度を制御することにより、第1の熱交換器への第1の熱媒体の供給量を調整する。暖房制御部は、暖房運転時に、暖房設定温度と室内温度との第2の偏差に応じて第2の弁の開度を制御することにより、第2の熱交換器への第2の熱媒体の供給量を調整する。冷房制御部は、暖房運転を主体に室内の空気を調和する暖房主体期間において冷房運転を行なう場合には、第1の熱交換器への第1の熱媒体の供給量を、第1の偏差に応じた第1の熱媒体の供給量よりも減少させる。暖房制御部は、冷房運転を主体に室内の空気を調和する冷房主体期間において暖房運転を行なう場合には、第2の熱交換器への第2の熱媒体の供給量を、第2の偏差に応じた第2の熱媒体の供給量よりも減少させる。 An air conditioning system according to one aspect of the present disclosure includes an air conditioner that conditions air in a room of a building, a temperature sensor that is installed in the room and detects the room temperature, and a cooling of the air conditioner according to the room temperature. and a controller for switching between operation and heating operation. An air conditioner includes a first heat exchanger, a second heat exchanger, a first valve, a second valve, and a fan. The first heat exchanger cools the air by heat exchange between the first heat medium and the air. The second heat exchanger heats the air by heat exchange between the second heat medium and the air. The first valve is provided in the circulation path of the first heat medium and is opened during cooling operation. The second valve is provided in the circulation path of the second heat medium and is opened during heating operation. A fan forces air through the first heat exchanger and the second heat exchanger. The controller includes a cooling control and a heating control. During cooling operation, the cooling control unit controls the degree of opening of the first valve according to a first deviation between the cooling set temperature and the room temperature, thereby supplying the first heat medium to the first heat exchanger. adjust the supply of During heating operation, the heating control unit controls the degree of opening of the second valve in accordance with a second deviation between the heating set temperature and the room temperature, thereby supplying the second heat medium to the second heat exchanger. adjust the supply of The cooling control unit adjusts the supply amount of the first heat medium to the first heat exchanger to the first deviation is reduced from the supply amount of the first heat medium according to the . The heating control unit adjusts the amount of the second heat medium supplied to the second heat exchanger by the second deviation is reduced than the supply amount of the second heat medium according to .
 本開示によれば、冷却用熱交換器および加熱用熱交換器を有する空気調和機の消費エネルギーを低減することができる空気調和システムを提供することができる。 According to the present disclosure, it is possible to provide an air conditioning system capable of reducing the energy consumption of an air conditioner having a cooling heat exchanger and a heating heat exchanger.
実施の形態に係る空気調和システムの概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the air conditioning system which concerns on embodiment. コントローラの機能構成の一例を示すブロック図である。4 is a block diagram showing an example of the functional configuration of a controller; FIG. 図2に示した冷房制御部の構成例を示すブロック図である。3 is a block diagram showing a configuration example of a cooling control unit shown in FIG. 2; FIG. 図3に示した補正部の構成例を示すブロック図である。4 is a block diagram showing a configuration example of a correction unit shown in FIG. 3; FIG. 外気温度と抑制率との関係の一例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of the relationship between outside air temperature and suppression rate; 日射量と抑制率との関係の一例を模式的に示す図である。It is a figure which shows typically an example of the relationship between a solar radiation amount and a suppression rate. 冷房制御部における冷水二方弁の開度制御の一例を示す図である。It is a figure which shows an example of the opening degree control of the cold-water two-way valve in a cooling control part. 図2に示した暖房制御部の構成例を示すブロック図である。3 is a block diagram showing a configuration example of a heating control unit shown in FIG. 2; FIG. 図8に示した補正部の構成例を示すブロック図である。9 is a block diagram showing a configuration example of a correction unit shown in FIG. 8; FIG. 外気温度と抑制率との関係の一例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of the relationship between outside air temperature and suppression rate; 日射量と抑制率との関係の一例を模式的に示す図である。It is a figure which shows typically an example of the relationship between a solar radiation amount and a suppression rate. 暖房制御部における温水二方弁の開度制御の一例を示す図である。It is a figure which shows an example of opening degree control of the warm water two-way valve in a heating control part. 本実施の形態に係る冷水二方弁および温水二方弁の開度制御の処理手順を説明するフローチャートである。4 is a flowchart for explaining a processing procedure for controlling the opening degrees of a cold water two-way valve and a hot water two-way valve according to the present embodiment; 本実施の形態に係る空気調和システムの第1の動作例を説明する図である。FIG. 4 is a diagram illustrating a first operation example of the air conditioning system according to the present embodiment; 本実施の形態に係る空気調和システムの第2の動作例を説明する図である。FIG. 4 is a diagram illustrating a second operation example of the air conditioning system according to the present embodiment;
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 <空気調和システムの構成>
 最初に、図1を参照して、実施の形態に係る空気調和システムの構成について説明する。実施の形態に係る空気調和システム100は、建物50内の室内52の空気を調和するための空気調和システムに適用される。
<Configuration of air conditioning system>
First, the configuration of an air conditioning system according to an embodiment will be described with reference to FIG. The air conditioning system 100 according to the embodiment is applied to an air conditioning system for conditioning air in a room 52 inside a building 50 .
 図1は、実施の形態に係る空気調和システム100の概略構成を示す図である。図1に示すように、空気調和システム100は、空気調和機10と、ダクト14,15,16と、コントローラ20と、温湿度センサ22と、外気温センサ24と、日射量センサ26とを備える。 FIG. 1 is a diagram showing a schematic configuration of an air conditioning system 100 according to an embodiment. As shown in FIG. 1, the air conditioning system 100 includes an air conditioner 10, ducts 14, 15, 16, a controller 20, a temperature/humidity sensor 22, an outside temperature sensor 24, and a solar radiation sensor 26. .
 空気調和機10は、建物50の室内52の空気を調和する。空気調和機10は、例えば、建物50の天井裏または床下に設置することができる。天井裏とは天井を設けることによって形成される空間であり、床下とは床面を設けることによって形成される空間である。 The air conditioner 10 conditions the air in the room 52 of the building 50. The air conditioner 10 can be installed above the ceiling or under the floor of the building 50, for example. The ceiling is a space formed by providing a ceiling, and the underfloor is a space formed by providing a floor surface.
 空気調和機10は、吸込口11から空気を吸い込み、かつ、吹出口12から空気を吹き出す。吹出口12は、給気ダクト14により、室内52の天井56に設けられた吹出口560に接続されている。吸込口11は、還気ダクト16により、室内52の床面58付近に設けられた吸込口580に接続されている。吸込口11はさらに、外気を室内52に取り込むための外気ダクト15に接続されている。 The air conditioner 10 sucks in air from the suction port 11 and blows out air from the blowout port 12 . The air outlet 12 is connected by the air supply duct 14 to an air outlet 560 provided in the ceiling 56 of the room 52 . The suction port 11 is connected by a return air duct 16 to a suction port 580 provided near the floor surface 58 of the room 52 . The intake 11 is further connected to an outside air duct 15 for taking outside air into the room 52 .
 図1の例では、室内52の床面58付近の空気は、吸込口580および還気ダクト16を経由して吸込口11から空気調和機10に吸い込まれる。空気調和機10から吹き出された空気は、吹出口12および給気ダクト14を経由して吹出口560から室内52に吹き出される。 In the example of FIG. 1, the air near the floor surface 58 of the room 52 is sucked into the air conditioner 10 from the suction port 11 via the suction port 580 and the return air duct 16. The air blown out from the air conditioner 10 passes through the air outlet 12 and the air supply duct 14 and is blown into the room 52 from the air outlet 560 .
 空気調和機10は、フィルタ30と、冷水コイル32と、冷水用循環路33と、冷水二方弁34と、温水コイル36と、温水用循環路37と、温水二方弁38と、加湿器40と、加湿用供給路41と、加湿二方弁42と、ファン44とを備える。 The air conditioner 10 includes a filter 30, a cold water coil 32, a cold water circulation path 33, a cold water two-way valve 34, a hot water coil 36, a hot water circulation path 37, a hot water two-way valve 38, and a humidifier. 40 , a humidification supply path 41 , a two-way humidification valve 42 and a fan 44 .
 空気調和機10の内部には、吸込口11から吹出口12に至る通気経路が形成されている。フィルタ30、冷水コイル32、温水コイル36、加湿器40およびファン44は、この通気経路上に、空気の通流方向の上流側から順に配置されている。なお、フィルタ30が通気経路の最上流に配置され、ファン44が通気経路の最下流に配置される限りにおいて、冷水コイル32、温水コイル36および加湿器40の配置順は限定されない。 A ventilation path from the suction port 11 to the blowout port 12 is formed inside the air conditioner 10 . The filter 30, the cold water coil 32, the hot water coil 36, the humidifier 40, and the fan 44 are arranged on this ventilation path in order from the upstream side in the direction of air flow. The arrangement order of the cold water coil 32, the hot water coil 36 and the humidifier 40 is not limited as long as the filter 30 is arranged most upstream of the ventilation path and the fan 44 is arranged most downstream of the ventilation path.
 空気調和機10の吸込口11から吸い込まれた空気はフィルタ30を通る。フィルタ30によって空気中の塵埃が除去される。フィルタ30を通った空気は、冷水コイル32、温水コイル36および加湿器40を順に通風する。 The air sucked from the suction port 11 of the air conditioner 10 passes through the filter 30. Dust in the air is removed by the filter 30 . The air passing through the filter 30 passes through the cold water coil 32, the hot water coil 36 and the humidifier 40 in order.
 冷水コイル32は、外部の熱源機(図示せず)から冷水用循環路33を介して冷却用熱媒体(例えば、冷水)の供給を受ける。冷水コイル32は、通風される空気と熱媒体とを熱交換させることにより、通風される空気を冷却するように構成される。 The cold water coil 32 is supplied with a cooling heat medium (for example, cold water) from an external heat source machine (not shown) via a cold water circulation path 33 . The chilled water coil 32 is configured to cool the ventilated air by exchanging heat between the ventilated air and the heat medium.
 冷水二方弁34は、冷水用循環路33に設けられる。冷水二方弁34の開度はコントローラ20によって制御される。冷水二方弁34の開度制御によって、冷水コイル32への熱媒体の供給量を調整することができる。なお、冷水二方弁34を全閉(開度=0%)として、冷水コイル32への熱媒体の供給を停止することも可能である。冷水コイル32は「第1の熱交換器」の一実施例に対応し、冷水二方弁34は「第1の弁」の一実施例に対応する。 The cold water two-way valve 34 is provided in the cold water circulation path 33 . The opening degree of the cold water two-way valve 34 is controlled by the controller 20 . The amount of heat medium supplied to the cold water coil 32 can be adjusted by controlling the degree of opening of the cold water two-way valve 34 . It is also possible to stop the supply of the heat medium to the cold water coil 32 by fully closing the cold water two-way valve 34 (opening degree = 0%). Chilled water coil 32 corresponds to an embodiment of "first heat exchanger" and chilled water two-way valve 34 corresponds to an embodiment of "first valve".
 温水コイル36は、外部の熱源機(図示せず)から温水用循環路37を介して加熱用熱媒体(例えば、温水)の供給を受ける。温水コイル36は、通風される空気と熱媒体とを熱交換させることにより、通風される空気を加熱するように構成される。 The hot water coil 36 is supplied with a heating heat medium (for example, hot water) from an external heat source machine (not shown) via a hot water circulation path 37 . The hot water coil 36 is configured to heat the ventilated air by exchanging heat between the ventilated air and the heat medium.
 温水二方弁38は、温水用循環路37に設けられる。温水二方弁38の開度はコントローラ20によって制御される。温水二方弁38の開度制御によって、温水コイル36への熱媒体の供給量を調整することができる。なお、温水二方弁38を全閉(開度=0%)として、温水コイル36への熱媒体の供給を停止することも可能である。温水コイル36は「第2の熱交換器」の一実施例に対応し、温水二方弁38は「第2の弁」の一実施例に対応する。 A hot water two-way valve 38 is provided in the hot water circulation path 37 . The degree of opening of the hot water two-way valve 38 is controlled by the controller 20 . The amount of heat medium supplied to the hot water coil 36 can be adjusted by controlling the degree of opening of the hot water two-way valve 38 . It is also possible to stop the supply of the heat medium to the hot water coil 36 by fully closing the hot water two-way valve 38 (opening degree = 0%). The hot water coil 36 corresponds to one embodiment of the "second heat exchanger" and the hot water two-way valve 38 corresponds to one embodiment of the "second valve".
 加湿器40は、加湿用供給路41を介して供給される加湿用媒体を用いて、通風される空気を加湿するように構成される。加湿二方弁42は、加湿用供給路41に設けられる。加湿二方弁42の開度制御によって、加湿器40への加湿用媒体の供給量を調整することができる。なお、加湿二方弁42を全閉(開度=0%)として、加湿器40への加湿用媒体の供給を停止することも可能である。 The humidifier 40 is configured to humidify the ventilated air using the humidifying medium supplied through the humidifying supply path 41 . The humidification two-way valve 42 is provided in the humidification supply path 41 . The amount of humidifying medium supplied to the humidifier 40 can be adjusted by controlling the degree of opening of the humidifying two-way valve 42 . It is also possible to stop the supply of the humidifying medium to the humidifier 40 by fully closing the humidifying two-way valve 42 (opening degree = 0%).
 ファン44は、通気経路を通流した空気を吹出口12から給気ダクト14に送る。ファン44の動作はコントローラ20によって制御される。 The fan 44 sends the air that has passed through the ventilation path from the outlet 12 to the supply air duct 14 . The operation of fan 44 is controlled by controller 20 .
 温湿度センサ22は、室内52に設置される。外気温センサ24および日射量センサ26は、建物50の外部(例えば、建物50の外壁または屋上など)に設置される。温湿度センサ22、外気温センサ24および日射量センサ26はコントローラ20に通信接続されている。 The temperature and humidity sensor 22 is installed inside the room 52 . The outside air temperature sensor 24 and the solar radiation sensor 26 are installed outside the building 50 (for example, on the outer wall or on the roof of the building 50). The temperature/humidity sensor 22 , the outside air temperature sensor 24 and the solar radiation sensor 26 are communicatively connected to the controller 20 .
 温湿度センサ22は、室内温度Trおよび室内湿度Hrを検出し、その検出値を示す信号をコントローラ20に出力する。温湿度センサ22は、例えば、室内52の窓54側(または外壁側)のペリメータゾーンに配置される。温湿度センサ22の個数は限定されない。例えば、室内52のペリメータゾーンおよび建物50の中央側のインテリアゾーンに複数の温湿度センサ22を分散して配置し、複数の温湿度センサ22の検出値の平均値を室内温度Trとして取得する構成としてもよい。温湿度センサ22は「温度センサ」の一実施例に対応する。 The temperature/humidity sensor 22 detects the indoor temperature Tr and the indoor humidity Hr, and outputs a signal indicating the detected values to the controller 20 . The temperature/humidity sensor 22 is arranged, for example, in a perimeter zone on the window 54 side (or the outer wall side) of the room 52 . The number of temperature/humidity sensors 22 is not limited. For example, a plurality of temperature and humidity sensors 22 are distributed in the perimeter zone of the room 52 and the interior zone on the central side of the building 50, and the average value of the detection values of the plurality of temperature and humidity sensors 22 is obtained as the indoor temperature Tr. may be The temperature/humidity sensor 22 corresponds to an example of a "temperature sensor."
 外気温センサ24は、建物50の外気温度Toを検出し、その検出値を示す信号をコントローラ20に出力する。日射量センサ26は、建物50に照射される日射の強さを示す日射量Siを検出し、その検出値を示す信号をコントローラ20に出力する。外気温センサ24は「外気温センサ」の一実施例に対応し、日射量センサ26は「日射量センサ」の一実施例に対応する。 The outside air temperature sensor 24 detects the outside air temperature To of the building 50 and outputs a signal indicating the detected value to the controller 20 . The solar radiation sensor 26 detects the solar radiation Si indicating the intensity of the solar radiation irradiated to the building 50 and outputs a signal indicating the detected value to the controller 20 . The outside air temperature sensor 24 corresponds to one embodiment of "outside air temperature sensor", and the solar radiation sensor 26 corresponds to one embodiment of "solar radiation sensor".
 外気温センサ24および日射量センサ26の各々の個数は限定されない。例えば、複数の外気温センサ24を分散して配置し、複数の外気温センサ24の検出値の平均値を外気温度Toとして取得する構成としてもよい。同様に、複数の日射量センサ26を分散して配置し、複数の日射量センサ26の検出値の平均値を日射量Siとして取得する構成としてもよい。 The numbers of each of the outside air temperature sensors 24 and the solar radiation sensors 26 are not limited. For example, a configuration may be adopted in which a plurality of outside air temperature sensors 24 are arranged in a distributed manner, and the average value of the detection values of the plurality of outside air temperature sensors 24 is acquired as the outside air temperature To. Similarly, a configuration may be adopted in which a plurality of solar radiation sensors 26 are arranged in a distributed manner, and the average value of the detection values of the plurality of solar radiation sensors 26 is acquired as the solar radiation Si.
 コントローラ20は、温湿度センサ22、外気温センサ24および日射量センサ26からの出力信号(検出値)に基づいて、空気調和機10の運転を制御する。空気調和機10は、運転モードとして、冷房運転と、暖房運転とを有している。コントローラ20は、温湿度センサ22により検出される室内温度Trに応じて、冷房運転と暖房運転とを切り替える。 The controller 20 controls the operation of the air conditioner 10 based on output signals (detected values) from the temperature/humidity sensor 22, the outside air temperature sensor 24, and the solar radiation sensor 26. The air conditioner 10 has a cooling operation and a heating operation as operation modes. The controller 20 switches between cooling operation and heating operation according to the room temperature Tr detected by the temperature/humidity sensor 22 .
 具体的には、温湿度センサ22により検出される室内温度Trが予め設定された冷房設定温度Tscよりも高い場合(Tr>Tsc)には、コントローラ20は、冷房運転を選択する。冷房運転では、コントローラ20は、室内温度Trが冷房設定温度Tscに一致するように、冷水二方弁34の開度制御により冷水コイル32への熱媒体の供給量を調整するとともに、ファン44の動作を制御する。冷水二方弁34の開度制御については後述する。 Specifically, when the indoor temperature Tr detected by the temperature/humidity sensor 22 is higher than the preset cooling set temperature Tsc (Tr>Tsc), the controller 20 selects the cooling operation. In the cooling operation, the controller 20 adjusts the amount of heat medium supplied to the cold water coil 32 by controlling the opening of the cold water two-way valve 34 so that the room temperature Tr matches the cooling set temperature Tsc, and the fan 44 is turned on. control behavior. The opening degree control of the cold water two-way valve 34 will be described later.
 これに対して、温湿度センサ22により検出される室内温度Trが予め設定された暖房設定温度Tshよりも低い場合(Tr<Tsh)には、コントローラ20は、暖房運転を選択する。暖房運転では、コントローラ20は、室内温度Trが暖房設定温度Tshに一致するように、温水二方弁38の開度制御により温水コイル36への熱媒体の供給量を調整するとともに、ファン44の動作を制御する。温水二方弁38の開度制御については後述する。 On the other hand, when the indoor temperature Tr detected by the temperature and humidity sensor 22 is lower than the preset heating temperature Tsh (Tr<Tsh), the controller 20 selects the heating operation. In the heating operation, the controller 20 adjusts the amount of heat medium supplied to the hot water coil 36 by controlling the opening of the hot water two-way valve 38 so that the room temperature Tr matches the heating set temperature Tsh, and the fan 44 is turned on. control behavior. The opening degree control of the hot water two-way valve 38 will be described later.
 なお、冷房設定温度Tscおよび暖房設定温度Tshは自由に設定することができる。但し、冷房運転および暖房運転の同時実行を避けるために、Tsc≧Tshの関係を満たすように設定される。また、冷房運転と暖房運転とのハンチングを防止するために、冷房設定温度Tscと暖房設定温度Tshとの間に温度差を設けることが望ましい。 The cooling set temperature Tsc and the heating set temperature Tsh can be freely set. However, in order to avoid simultaneous execution of the cooling operation and the heating operation, it is set so as to satisfy the relationship Tsc≧Tsh. Moreover, in order to prevent hunting between the cooling operation and the heating operation, it is desirable to provide a temperature difference between the cooling set temperature Tsc and the heating set temperature Tsh.
 コントローラ20は、暖房運転時、温湿度センサ22により検出される室内湿度Hrが予め定められた設定湿度Hsに一致するように、加湿二方弁42の開度を制御する。 The controller 20 controls the opening degree of the humidification two-way valve 42 so that the indoor humidity Hr detected by the temperature/humidity sensor 22 matches the predetermined set humidity Hs during the heating operation.
 コントローラ20は、主たる構成要素として、CPU(Central Processing Unit)と、メモリと、入出力(I/O)回路とを含む。これらのコンポーネントは、図示しない内部バスを経由して、相互にデータの授受が可能である。メモリの一部領域にはプログラムが格納されており、CPUが当該プログラムを実行することで、後述する空気調和機10の制御を含む各種処理を実現することができる。I/O回路は、コントローラ20の外部との間で信号およびデータを入出力する。 The controller 20 includes a CPU (Central Processing Unit), a memory, and an input/output (I/O) circuit as main components. These components can exchange data with each other via an internal bus (not shown). A program is stored in a partial area of the memory, and various processes including control of the air conditioner 10, which will be described later, can be realized by executing the program by the CPU. The I/O circuit inputs and outputs signals and data to and from the outside of controller 20 .
 あるいは、図1の例とは異なり、コントローラ20の少なくとも一部については、FPGA(Field Programmable Gate Array)またはASIC(Application Specific Integrated Circuit)などの回路を用いて構成することができる。また、コントローラ20の少なくとも一部について、アナログ回路によって構成することもできる。 Alternatively, unlike the example in FIG. 1, at least part of the controller 20 can be configured using a circuit such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit). Also, at least part of the controller 20 can be configured by an analog circuit.
 <コントローラの機能構成>
 次に、図2を参照して、コントローラ20の機能構成について説明する。図2は、コントローラ20の機能構成の一例を示すブロック図である。図2に示す各ブロックの機能は、コントローラ20によるソフトウェア処理およびハードウェア処理の少なくとも一方によって実現することができる。
<Functional configuration of the controller>
Next, referring to FIG. 2, the functional configuration of the controller 20 will be described. FIG. 2 is a block diagram showing an example of the functional configuration of the controller 20. As shown in FIG. The function of each block shown in FIG. 2 can be realized by at least one of software processing and hardware processing by the controller 20 .
 図2に示すように、コントローラ20は、入力部70と、主制御部72と、冷房制御部74と、暖房制御部76と、湿度制御部78と、ファン制御部80とを含む。 As shown in FIG. 2, the controller 20 includes an input section 70, a main control section 72, a cooling control section 74, a heating control section 76, a humidity control section 78, and a fan control section 80.
 入力部70は、空気調和システム100のユーザ指令を受け付ける。ユーザ指令には、空気調和機10の運転オン/オフ指令、設定温度(冷房設定温度Tsc、暖房設定温度Tsh)指令および設定湿度指令が含まれる。 The input unit 70 accepts user commands for the air conditioning system 100 . The user commands include an operation ON/OFF command for the air conditioner 10, a set temperature (cooling set temperature Tsc, heating set temperature Tsh) command, and a set humidity command.
 ユーザ指令にはさらに、冷房主体期間/暖房主体期間の設定が含まれる。「冷房主体期間」とは、空気調和機10の冷房運転を主体に室内温度Trの制御が行われる期間に相当する。「暖房主体期間」とは、空気調和機10の暖房運転を主体に室内温度Trの制御が行われる期間に相当する。 The user command further includes the setting of the cooling main period/heating main period. The “main cooling period” corresponds to a period during which the indoor temperature Tr is controlled mainly by the cooling operation of the air conditioner 10 . The “heating main period” corresponds to a period in which the room temperature Tr is controlled mainly by the heating operation of the air conditioner 10 .
 なお、冷房主体期間および暖房主体期間は自由に設定することができる。例えば、冷房主体期間は、冷房負荷(冷房のために取り去るべき熱量)が暖房負荷(暖房のために加熱しなければならない熱量)を上回る期間に対応するように設定される。暖房主体期間は、暖房負荷が冷房負荷を上回る期間に対応するように設定される。一例として、冷房主体期間は夏期を含む期間(例えば5月~10月)に設定され、暖房主体期間は冬期を含む期間(例えば11月~4月)に設定される。 The main cooling period and the main heating period can be set freely. For example, the cooling main period is set to correspond to a period in which the cooling load (heat amount to be removed for cooling) exceeds the heating load (heat amount to be heated for heating). The heating main period is set to correspond to a period in which the heating load exceeds the cooling load. As an example, the cooling main period is set to a period including summer (eg, May to October), and the heating main period is set to a period including winter (eg, November to April).
 本実施の形態では、冷房主体期間および暖房主体期間の切り替えを、空気調和システム100のユーザが手動で行う場合を想定している。但し、予め設定されたスケジュールに従って、コントローラ20が自動で冷房主体期間および暖房主体期間を切り替える構成としてもよい。 In the present embodiment, it is assumed that the user of the air conditioning system 100 manually switches between the cooling main period and the heating main period. However, the configuration may be such that the controller 20 automatically switches between the cooling main period and the heating main period according to a preset schedule.
 あるいは、外気温センサ24により検出される外気温度Toの時間的推移に基づいて、コントローラ20が自動で冷房主体期間および暖房主体期間を切り替える構成とすることも可能である。例えば、コントローラ20は、直近の数日間における外気温度Toの時間的推移から各日の最高温度および最低温度の平均値を求め、当該平均値に応じて冷房主体期間および暖房主体期間を切り替える。 Alternatively, the controller 20 may automatically switch between the cooling main period and the heating main period based on the temporal transition of the outside air temperature To detected by the outside air temperature sensor 24 . For example, the controller 20 obtains an average value of the maximum temperature and the minimum temperature for each day from the temporal transition of the outside air temperature To over the last several days, and switches between the cooling main period and the heating main period according to the average value.
 主制御部72は、入力部70を通じてユーザ指令を受けるとともに、温湿度センサ22からの出力信号(検出値Tr,Hr)を受ける。主制御部72は、これらの入力信号に基づいて、空気調和機10の全体動作を制御するために、各部への制御指令を発生する。 The main control unit 72 receives user commands through the input unit 70 and also receives output signals (detection values Tr, Hr) from the temperature/humidity sensor 22 . Based on these input signals, the main control unit 72 issues control instructions to each unit in order to control the overall operation of the air conditioner 10 .
 冷房制御部74は、温湿度センサ22、外気温センサ24および日射量センサ26からの出力信号(検出値Tr,To,Si)を受けるとともに、主制御部72からの制御指令を受ける。制御指令には、冷房設定温度Tscおよび、後述する冷水コイル32への熱媒体の供給量を抑制する処理の実行指令が含まれる。冷房制御部74は、これらの入力に基づいて、冷水二方弁34の開度の制御量である開度指令Vc*を生成し、生成された開度指令Vc*を冷水二方弁34に出力する。 The cooling control unit 74 receives output signals (detection values Tr, To, Si) from the temperature/humidity sensor 22 , the outside air temperature sensor 24 and the solar radiation sensor 26 and also receives control commands from the main control unit 72 . The control command includes a cooling set temperature Tsc and an execution command for suppressing the amount of heat medium supplied to the chilled water coil 32, which will be described later. Based on these inputs, the cooling control unit 74 generates an opening command Vc*, which is a control amount for the opening of the cold water two-way valve 34, and sends the generated opening command Vc* to the cold water two-way valve 34. Output.
 暖房制御部76は、温湿度センサ22、外気温センサ24および日射量センサ26からの出力信号(検出値Tr,To,Si)を受けるとともに、主制御部72からの制御指令を受ける。制御指令には、暖房設定温度Tshおよび、後述する温水コイル36への熱媒体の供給量を抑制する処理の実行指令が含まれる。暖房制御部76は、これらの入力に基づいて、温水二方弁38の開度の制御量である開度指令Vh*を生成し、生成された開度指令Vh*を温水二方弁38に出力する。 The heating control unit 76 receives output signals (detected values Tr, To, Si) from the temperature/humidity sensor 22 , the outside air temperature sensor 24 and the solar radiation sensor 26 and also receives control commands from the main control unit 72 . The control command includes a heating set temperature Tsh and an execution command for suppressing the amount of heat medium supplied to the hot water coil 36, which will be described later. Based on these inputs, the heating control unit 76 generates an opening command Vh*, which is a control amount for the opening of the hot water two-way valve 38, and sends the generated opening command Vh* to the hot water two-way valve 38. Output.
 湿度制御部78は、温湿度センサ22からの出力信号(検出値Hr)および主制御部72からの制御指令を受けるとともに、加湿二方弁42の開度を制御するための開度指令を生成する。湿度制御部78は、生成された開度指令を加湿二方弁42に出力する。 Humidity control unit 78 receives an output signal (detected value Hr) from temperature/humidity sensor 22 and a control command from main control unit 72, and generates an opening command for controlling the opening of humidification two-way valve 42. do. Humidity control unit 78 outputs the generated opening command to humidification two-way valve 42 .
 ファン制御部80は、主制御部72からの制御指令を受ける。制御指令は、ファン44の回転数を制御するための回転数指令を含む。ファン制御部80は、回転数指令に従ってファン44の動作を制御する。 The fan control unit 80 receives control commands from the main control unit 72 . The control command includes a rotation speed command for controlling the rotation speed of fan 44 . Fan control unit 80 controls the operation of fan 44 in accordance with the rotational speed command.
 (冷房制御部の構成)
 次に、図3から図7を参照して、冷房制御部74の機能構成について説明する。
(Configuration of cooling control section)
Next, the functional configuration of the cooling control unit 74 will be described with reference to FIGS. 3 to 7. FIG.
 図3は、図2に示した冷房制御部74の構成例を示すブロック図である。図3に示すように、冷房制御部74は、温湿度センサ22により検出される室内温度Trを冷房設定温度Tscに追従させるためのフィードバック制御により、冷水二方弁34の開度指令Vc*を生成するように構成される。 FIG. 3 is a block diagram showing a configuration example of the cooling control section 74 shown in FIG. As shown in FIG. 3, the cooling control unit 74 controls the opening degree command Vc* of the cold water two-way valve 34 by feedback control for causing the room temperature Tr detected by the temperature/humidity sensor 22 to follow the cooling set temperature Tsc. configured to generate
 具体的には、冷房制御部74は、減算器740と、制御器742と、補正部744とを含む。減算器740は、冷房設定温度Tscに対する室内温度Trの偏差ΔTcを算出する(ΔTc=Tsc-Tr)。偏差ΔTcは「第1の偏差」に相当する。 Specifically, the cooling controller 74 includes a subtractor 740 , a controller 742 and a corrector 744 . Subtractor 740 calculates deviation ΔTc of room temperature Tr from cooling set temperature Tsc (ΔTc=Tsc−Tr). The deviation ΔTc corresponds to the "first deviation".
 制御器742は、減算器740により算出された偏差ΔTcを入力とし、偏差ΔTcを0にするための制御演算を行うことにより、冷水二方弁34の開度指令Vc*を生成する。すなわち、冷水二方弁34の開度指令Vc*は、Tr=Tscとするための制御量に相当する。なお、制御器742には、PI(比例積分)制御器またはPID(比例積分微分)制御器などを用いることができる。制御器742は「第1の制御器」の一実施例に対応する。 The controller 742 receives the deviation ΔTc calculated by the subtractor 740 and performs a control operation to set the deviation ΔTc to 0, thereby generating an opening command Vc* for the cold water two-way valve 34 . That is, the opening degree command Vc* of the cold water two-way valve 34 corresponds to the control amount for setting Tr=Tsc. A PI (proportional-integral) controller or a PID (proportional-integral-derivative) controller can be used as the controller 742 . Controller 742 corresponds to one embodiment of "first controller."
 補正部744は、主制御部72から与えられる実行指令、外気温センサ24により検出される外気温度Toおよび日射量センサ26により検出される日射量Siに基づいて、冷水二方弁34の開度指令Vc*を補正する。補正部744は「第1の補正部」の一実施例に対応する。 The correction unit 744 adjusts the opening degree of the cold water two-way valve 34 based on the execution command given from the main control unit 72, the outside air temperature To detected by the outside air temperature sensor 24, and the amount of solar radiation Si detected by the amount of solar radiation sensor 26. Correct command Vc*. The corrector 744 corresponds to an embodiment of the "first corrector".
 具体的には、主制御部72は、図示しないクロックから与えられる現在の時刻情報に基づいて、現在の時刻が暖房主体期間に該当するか否かを判定する。現在の時刻が暖房主体期間に該当する場合、主制御部72は、冷水コイル32への熱媒体の供給量を抑制する処理の実行指令を生成する。現在の時刻が暖房主体期間に該当しない場合には、主制御部72は、上記実行指令を生成しない。すなわち、主制御部72は、暖房主体期間中に冷房運転を行う場合には、冷水コイル32への熱媒体の供給量を抑制する処理を冷房制御部74に実行させる。 Specifically, the main control unit 72 determines whether or not the current time corresponds to the main heating period based on current time information given from a clock (not shown). When the current time corresponds to the heating main period, the main control unit 72 generates an execution command for suppressing the amount of heat medium supplied to the cold water coil 32 . If the current time does not correspond to the heating main period, the main control section 72 does not generate the execution command. That is, the main control unit 72 causes the cooling control unit 74 to perform processing for suppressing the amount of heat medium supplied to the cold water coil 32 when the cooling operation is performed during the heating main period.
 上述したように、暖房主体期間では暖房運転が主体となる。その一方で、空気調和機10は、室内温度Trに応じて、冷房運転および暖房運転を切り替え可能に構成されている。室内温度Trは、外気温度および日射量に応じて室内52に入ってくる熱量、および、室内52で人体および器具類から発生する熱量などに起因して、時々刻々と変化する。そのため、暖房主体期間中、室内温度Trが冷房設定温度Tscを超えたことによって、空気調和機10が一時的に冷房運転を実行する場合が起こり得る。 As described above, heating operation is the main operation during the heating main period. On the other hand, the air conditioner 10 is configured to be switchable between cooling operation and heating operation according to the room temperature Tr. The indoor temperature Tr changes from moment to moment due to the amount of heat entering the room 52 according to the outside air temperature and the amount of solar radiation, and the amount of heat generated from the human body and equipment in the room 52 . Therefore, the air conditioner 10 may temporarily perform the cooling operation when the room temperature Tr exceeds the cooling set temperature Tsc during the heating main period.
 例えば、外気温度の上昇および日射量の増加に追従するように室内温度Trが上昇し、正午過ぎの数時間において室内温度Trが冷房設定温度Tscを超えた場合には、室内温度Trを冷房設定温度Tscにまで下げるために冷房運転が一時的に実行される。その後、外気温度の低下および日射量の減少に追従するように室内温度Trが暖房設定温度Tshよりも低下すると、暖房運転に移行する。 For example, if the indoor temperature Tr rises so as to follow an increase in the outdoor temperature and an increase in the amount of solar radiation, and the indoor temperature Tr exceeds the cooling set temperature Tsc for several hours after noon, the indoor temperature Tr is set to cooling. A cooling operation is temporarily performed to bring the temperature down to Tsc. After that, when the indoor temperature Tr falls below the heating set temperature Tsh so as to follow the decrease in the outside air temperature and the decrease in the amount of solar radiation, the heating operation is started.
 このような場合、外気温度の低下および日射量の減少に従い、冷房運転との相乗効果によって室内52の冷房が過剰となりやすく、冷房運転時における空気調和機10の消費エネルギーを無駄に増加させることになる。 In such a case, as the outside air temperature decreases and the amount of solar radiation decreases, the cooling of the room 52 tends to be excessive due to the synergistic effect with the cooling operation, resulting in a wasteful increase in the energy consumption of the air conditioner 10 during the cooling operation. Become.
 また、暖房運転への移行後、直前の冷房運転による冷房効果を打ち消すように暖房運転が実行される。直前の冷房運転による冷房効果が暖房負荷として働くためである。すなわち、暖房運転の移行直後は、直前の冷房運転によって室内52から除去された熱量を補給するように暖房運転が実行される。その結果、暖房運転時における空気調和機10の消費エネルギーを無駄に増加させることになる。 Also, after shifting to the heating operation, the heating operation is performed so as to cancel out the cooling effect of the previous cooling operation. This is because the cooling effect of the previous cooling operation works as a heating load. That is, immediately after the transition to the heating operation, the heating operation is performed so as to replenish the amount of heat removed from the room 52 by the previous cooling operation. As a result, the energy consumption of the air conditioner 10 during the heating operation is unnecessarily increased.
 上述した懸念点を対応するために、本実施の形態では、以下に説明するように、暖房主体期間における空気調和機10の冷房能力を低下させることによって冷房効果を抑制する。 In order to address the above concerns, in the present embodiment, the cooling effect is suppressed by reducing the cooling capacity of the air conditioner 10 during the heating main period, as described below.
 具体的には、補正部744は、主制御部72から実行指令を受けた場合には、制御器742により生成された開度指令Vc*を低減するように、開度指令Vc*を補正する。すなわち、補正部744は、暖房主体期間中に冷房運転を行う場合には、冷水コイル32に供給する熱媒体の供給量を、偏差ΔTcに応じた供給量よりも減少させることによって空気調和機10の冷房能力を低下させる。図4は、図3に示した補正部744の構成例を示すブロック図である。 Specifically, when the correction unit 744 receives an execution command from the main control unit 72, the correction unit 744 corrects the opening command Vc* generated by the controller 742 so as to reduce the opening command Vc*. . That is, when the cooling operation is performed during the heating main period, the correction unit 744 reduces the supply amount of the heat medium to be supplied to the cold water coil 32 from the supply amount corresponding to the deviation ΔTc. reduce the cooling capacity of the FIG. 4 is a block diagram showing a configuration example of the correction unit 744 shown in FIG.
 図4に示すように、補正部744は、抑制率算出部82,84と、乗算器85,88と、切替部86とを含む。抑制率算出部82,84および乗算器85は、開度指令Vc*を補正するための補正係数を算出する。この補正係数は、冷水コイル32への熱媒体の供給量を抑制する程度(すなわち、冷房能力を抑制する程度に相当)を表しているため、本明細書では「冷房抑制率Rcs」と定義する。 As shown in FIG. 4, the correction unit 744 includes suppression rate calculation units 82 and 84, multipliers 85 and 88, and a switching unit 86. Restriction rate calculators 82 and 84 and multiplier 85 calculate a correction coefficient for correcting opening command Vc*. Since this correction coefficient represents the extent to which the amount of heat medium supplied to the chilled water coil 32 is suppressed (that is, corresponds to the extent to which the cooling capacity is suppressed), it is defined as "cooling suppression rate Rcs" in this specification. .
 補正部744は、制御器742から与えられる開度指令Vc*に冷房抑制率Rcsを乗算することにより、開度指令Vc*を補正する(Vc*=Vc*×Rcs)。冷房抑制率Rcsは、外気温度Toおよび日射量Siに応じて0(%)~100(%)の値を取り得る。なお、Rcs=100(%)のとき、Vc*=Vc*となり、開度指令Vc*は実質的に補正されない。したがって、冷水コイル32への熱媒体の供給量(冷房能力)は抑制されない。冷房抑制率Rcsが100(%)から減少するに従って、冷水コイル32への熱媒体の供給量(冷房能力)を抑制する程度が大きくなる。 The correction unit 744 multiplies the opening command Vc* given from the controller 742 by the cooling suppression rate Rcs to correct the opening command Vc* (Vc*=Vc*×Rcs). Cooling suppression rate Rcs can take a value of 0 (%) to 100 (%) depending on outside air temperature To and amount of solar radiation Si. When Rcs=100(%), Vc*=Vc*, and opening command Vc* is not substantially corrected. Therefore, the amount of heat medium supplied to the cold water coil 32 (cooling capacity) is not suppressed. As the cooling suppression rate Rcs decreases from 100(%), the degree of suppression of the amount of heat medium supplied to the cold water coil 32 (cooling capacity) increases.
 冷房抑制率Rcsは、外気温度の上昇に対する冷房能力を抑制するための抑制率Rc1と、日射量の増加に対する冷房能力を抑制するための抑制率Rc2とを用いて算出される。 The cooling suppression rate Rcs is calculated using a suppression rate Rc1 for suppressing the cooling capacity against an increase in outside air temperature and a suppression rate Rc2 for suppressing the cooling capacity against an increase in the amount of solar radiation.
 外気温度および日射量はいずれも室内温度の上昇に繋がり、冷房負荷となる一方で、暖房運転時にはプラス要因として働く。そのため、本実施の形態では、補正部744を、外気温度および日射量に応じて冷房抑制率Rcsを算出する構成として、外気温度および日射量に起因して室内52から取り除く熱量を抑制する。これにより、冷房運転に続いて実行される暖房運転において、室内52に補給する熱量を低減することを可能とする。 Both the outside air temperature and the amount of solar radiation lead to an increase in the indoor temperature, which acts as a cooling load, but also acts as a positive factor during heating operation. Therefore, in the present embodiment, correction unit 744 is configured to calculate cooling suppression rate Rcs according to the outdoor temperature and the amount of solar radiation, thereby suppressing the amount of heat removed from room 52 due to the outdoor temperature and the amount of solar radiation. This makes it possible to reduce the amount of heat supplied to the room 52 in the heating operation that follows the cooling operation.
 具体的には、抑制率算出部82は、外気温センサ24により検出される外気温度Toに基づいて抑制率Rc1を算出する。抑制率Rc1は「第1の抑制率」の一実施例に対応する。図5は、外気温度Toと抑制率Rc1との関係の一例を模式的に示す図である。図5の横軸は外気温度Toを示し、縦軸は抑制率Rc1を示す。抑制率Rc1は0(%)~100(%)の値を取り得る。 Specifically, the suppression rate calculator 82 calculates the suppression rate Rc1 based on the outside air temperature To detected by the outside air temperature sensor 24 . The suppression rate Rc1 corresponds to an example of "first suppression rate". FIG. 5 is a diagram schematically showing an example of the relationship between the outside air temperature To and the suppression rate Rc1. The horizontal axis of FIG. 5 indicates the outside air temperature To, and the vertical axis indicates the suppression rate Rc1. The suppression rate Rc1 can take a value of 0(%) to 100(%).
 図5の例では、To≧To2のとき、抑制率Rc1は100%に設定される。To2>To≧To1のとき、抑制率Rc1は外気温度Toの低下に従って減少するように設定される。To<To1のとき、抑制率Rc1はXc(%)に設定される(0<Xc<100)。 In the example of FIG. 5, when To≧To2, the suppression rate Rc1 is set to 100%. When To2>To≧To1, the suppression rate Rc1 is set to decrease as the outside air temperature To decreases. When To<To1, the suppression rate Rc1 is set to Xc (%) (0<Xc<100).
 抑制率Rc1が100(%)から減少するに従って、冷水コイル32への熱媒体の供給量(冷房能力)を抑制する程度が大きくなる。図5に示すように、外気温度Toが低くなるほど抑制率Rc1を小さくする、すなわち、冷房能力を抑制する程度を大きくすることにより、外気温度Toの低下と冷房運転との相乗効果によって、室内52が過剰に冷房されることを抑制することができる。これにより、冷房運転時の消費エネルギーを低減することができる。また、冷房運転から暖房運転へ移行したときに室内52に補給する熱量を低減することができるため、暖房運転時の消費エネルギーを低減することができる。 As the suppression rate Rc1 decreases from 100 (%), the extent to which the amount of heat medium supplied to the cold water coil 32 (cooling capacity) is suppressed increases. As shown in FIG. 5, the lower the outside air temperature To, the lower the suppression rate Rc1. can be suppressed from being excessively cooled. As a result, energy consumption during cooling operation can be reduced. In addition, since the amount of heat supplied to the room 52 can be reduced when shifting from the cooling operation to the heating operation, the energy consumption during the heating operation can be reduced.
 なお、Xc(%)は抑制率Rc1の下限値に相当する。抑制率Rc1に下限値Xcを設けることにより、冷房能力の抑制によって室内52の快適性が損なわれることを抑制することができる。 Note that Xc (%) corresponds to the lower limit of the suppression rate Rc1. By setting the lower limit value Xc to the suppression rate Rc1, it is possible to suppress the deterioration of the comfort of the room 52 due to the suppression of the cooling capacity.
 外気温度Toと抑制率Rc1との関係(温度To1,To2および下限値Xc)は、空気調和機10の消費エネルギーおよび室内52の快適性のトレードオフを考慮しながら、自在に設定することができる。 The relationship between the outside air temperature To and the suppression rate Rc1 (temperatures To1, To2 and lower limit value Xc) can be freely set while considering the trade-off between the energy consumption of the air conditioner 10 and the comfort of the room 52. .
 図5に示す関係をマップまたは関係式としてメモリ204に予め記憶させておくことにより、抑制率算出部82は、外気温センサ24により検出される外気温度Toに基づいて、抑制率Rc1を算出することができる。 By pre-storing the relationship shown in FIG. 5 as a map or a relational expression in the memory 204, the suppression rate calculator 82 calculates the suppression rate Rc1 based on the outside air temperature To detected by the outside air temperature sensor 24. be able to.
 図4に戻って、抑制率算出部84は、日射量センサ26により検出される日射量Siに基づいて抑制率Rc2を算出する。抑制率Rc2は「第2の抑制率」の一実施例に対応する。図6は、日射量Siと抑制率Rc2との関係の一例を模式的に示す図である。図6の横軸は日射量Siを示し、縦軸は抑制率Rc2を示す。抑制率Rc2は0(%)~100(%)の値を取り得る。 Returning to FIG. 4, the suppression rate calculator 84 calculates the suppression rate Rc2 based on the solar radiation amount Si detected by the solar radiation sensor 26. The suppression rate Rc2 corresponds to an example of the "second suppression rate". FIG. 6 is a diagram schematically showing an example of the relationship between the solar radiation amount Si and the suppression rate Rc2. The horizontal axis of FIG. 6 indicates the solar radiation amount Si, and the vertical axis indicates the suppression rate Rc2. The suppression rate Rc2 can take a value of 0(%) to 100(%).
 図6の例では、Si≧Si2のとき、抑制率Rc2は100(%)に設定される。Si2>Si≧Si1のときには、抑制率Rc2は日射量Siの減少に従って減少するように設定される。Si<Si2のとき、抑制率Rc2はYc(%)に設定される(0<Yc<100)。Yc(%)は抑制率Rc2の下限値に相当する。抑制率Rc2に下限値Ycを設けることにより、冷房能力の抑制によって室内52の快適性が損なわれることを抑制することができる。 In the example of FIG. 6, when Si≧Si2, the suppression rate Rc2 is set to 100 (%). When Si2>Si≧Si1, the suppression rate Rc2 is set to decrease as the amount of solar radiation Si decreases. When Si<Si2, the suppression rate Rc2 is set to Yc (%) (0<Yc<100). Yc (%) corresponds to the lower limit of the suppression rate Rc2. By setting the lower limit value Yc for the suppression rate Rc2, it is possible to suppress the deterioration of the comfort of the room 52 due to the suppression of the cooling capacity.
 図5に示した抑制率Rc1と同様、抑制率Rc2も100(%)から減少するに従って、冷水コイル32への熱媒体の供給量(冷房能力)を抑制する程度が大きくなる。図6に示すように、日射量Siが減少するほど抑制率Rc2を小さくする、すなわち、冷房能力を抑制する程度を大きくすることにより、日射量Siの減少と冷房運転との相乗効果によって、室内52が過剰に冷房されることを抑制できるため、冷房運転時の消費エネルギーを低減することができる。また、冷房運転から暖房運転へ移行したときに室内52に補給する熱量を低減できるため、暖房運転時の消費エネルギーを低減することができる。 As with the suppression rate Rc1 shown in FIG. 5, as the suppression rate Rc2 also decreases from 100 (%), the extent to which the amount of heat medium supplied to the cold water coil 32 (cooling capacity) is suppressed increases. As shown in FIG. 6, the suppression rate Rc2 is decreased as the amount of solar radiation Si decreases, that is, by increasing the extent to which the cooling capacity is suppressed. Since it is possible to suppress the excessive cooling of 52, it is possible to reduce energy consumption during the cooling operation. In addition, since the amount of heat supplied to the room 52 can be reduced when shifting from the cooling operation to the heating operation, the energy consumption during the heating operation can be reduced.
 日射量Siと抑制率Rc2との関係(日射量Si1,Si2および下限値Yc)は、空気調和機10の消費エネルギーおよび室内52の快適性のトレードオフを考慮しながら、自在に設定することができる。 The relationship between the amount of solar radiation Si and the suppression rate Rc2 (the amounts of solar radiation Si1, Si2 and the lower limit Yc) can be freely set while considering the trade-off between the energy consumption of the air conditioner 10 and the comfort of the room 52. can.
 図6に示す関係をマップまたは関係式としてメモリ204に予め記憶させておくことにより、抑制率算出部84は、日射量センサ26により検出される日射量Siに基づいて、抑制率Rc2を算出することができる。 By pre-storing the relationship shown in FIG. 6 in the memory 204 as a map or a relational expression, the suppression rate calculator 84 calculates the suppression rate Rc2 based on the solar radiation amount Si detected by the solar radiation sensor 26. be able to.
 図4に戻って、乗算器85は、抑制率Rc1および抑制率Rc2を乗算することにより、冷房抑制率Rcsを算出する(Rcs=Rc1×Rc2)。乗算器85は、算出された冷房抑制率Rcsを切替部86の第1入力端子に入力する。 Returning to FIG. 4, the multiplier 85 calculates the cooling suppression rate Rcs by multiplying the suppression rate Rc1 and the suppression rate Rc2 (Rcs=Rc1×Rc2). Multiplier 85 inputs the calculated cooling suppression rate Rcs to a first input terminal of switching section 86 .
 切替部86は、第1入力端子、第2入力端子および出力端子を有する。切替部86は、第1入力端子に乗算器85からの冷房抑制率Rcsを受け、第2入力端子に冷房抑制率Rcsの上限値100(%)を受ける。切替部86は、主制御部72からの実行指令に応じて、何れか一方の入力を選択して出力端子に出力する。具体的には、実行指令が活性化レベルであるHレベルのとき、切替部86は第1入力端子が受ける冷房抑制率Rcs(=Rc1×Rc2)を出力端子に出力する。実行指令が非活性化レベルであるLレベルのとき、切替部86は、第2入力端子が受ける冷房抑制率の上限値(100(%))を出力端子に出力する。 The switching section 86 has a first input terminal, a second input terminal and an output terminal. The switching unit 86 receives the cooling suppression rate Rcs from the multiplier 85 at its first input terminal, and receives the upper limit value of 100 (%) of the cooling suppression rate Rcs at its second input terminal. The switching unit 86 selects one of the inputs and outputs it to the output terminal according to the execution command from the main control unit 72 . Specifically, when the execution command is at the H level, which is the activation level, switching unit 86 outputs the cooling suppression rate Rcs (=Rc1×Rc2) received by the first input terminal to the output terminal. When the execution command is at the L level, which is the deactivation level, the switching unit 86 outputs the upper limit value (100(%)) of the cooling suppression rate received by the second input terminal to the output terminal.
 乗算器88は、制御器742により生成される開度指令Vc*に切替部86からの冷房抑制率Rcsを乗算することにより、開度指令Vc*を補正する(Vc*=Vc*×Rcs)。Rcs=100%である場合には、開度指令Vc*は実質的に補正されることなく、冷水二方弁34に出力される。これに対して、Rcs<100%である場合には、開度指令Vc*は、冷房抑制率Rcsの大きさに応じて、元の開度指令Vc*よりも小さい値に補正されて冷水二方弁34に出力される。冷水二方弁34は、開度指令Vc*に従って開度を制御することにより、冷水コイル32への熱媒体の供給量を調整する。 Multiplier 88 corrects opening command Vc* by multiplying opening command Vc* generated by controller 742 by cooling suppression rate Rcs from switching unit 86 (Vc*=Vc*×Rcs). . When Rcs=100%, the opening command Vc* is output to the cold water two-way valve 34 without being substantially corrected. On the other hand, when Rcs<100%, the opening command Vc* is corrected to a value smaller than the original opening command Vc* according to the magnitude of the cooling suppression rate Rcs. It is output to the direction valve 34 . The chilled water two-way valve 34 adjusts the amount of heat medium supplied to the chilled water coil 32 by controlling the degree of opening according to the degree of opening command Vc*.
 図7は、冷房制御部74における冷水二方弁34の開度制御の一例を示す図である。図7には、室内温度Trと冷水二方弁34の開度指令Vc*との関係の一例が示されている。図7の横軸は室内温度Trを示し、縦軸は開度指令Vc*を示す。波形k1は、冷房主体期間における関係を示す。波形k2は、暖房主体期間における関係を示す。 FIG. 7 is a diagram showing an example of opening degree control of the cold water two-way valve 34 in the cooling control section 74. As shown in FIG. FIG. 7 shows an example of the relationship between the indoor temperature Tr and the opening command Vc* of the cold water two-way valve 34. As shown in FIG. The horizontal axis of FIG. 7 indicates the indoor temperature Tr, and the vertical axis indicates the opening command Vc*. A waveform k1 shows the relationship in the cooling main period. Waveform k2 shows the relationship in the heating main period.
 波形k1に示すように、冷房主体期間では、室内温度Trが冷房設定温度Tsc以下である場合、開度指令Vc*は0%(全閉)に設定される。室内温度Trが冷房設定温度Tscを超えると、冷房設定温度Tscに対する室内温度Trの偏差ΔTcに比例するように、開度指令Vc*が変化する。なお、室内温度Trが所定の閾値温度Tcthを超えた場合、開度指令Vc*は100%(全開)に固定される。 As shown by the waveform k1, in the cooling main period, when the room temperature Tr is equal to or lower than the cooling set temperature Tsc, the opening command Vc* is set to 0% (fully closed). When the room temperature Tr exceeds the cooling set temperature Tsc, the opening command Vc* changes in proportion to the deviation ΔTc of the room temperature Tr from the cooling set temperature Tsc. Note that when the indoor temperature Tr exceeds the predetermined threshold temperature Tcth, the opening command Vc* is fixed at 100% (fully open).
 一方、暖房主体期間では、外気温度Toおよび日射量Siの検出値に基づいて算出された冷房抑制率Rcsが開度指令Vc*に乗算される。そのため、ある室内温度Trに対する開度指令Vc*は、冷房主体期間の同じ室内温度Trに対する開度指令Vc*よりも小さくなる。すなわち、ある室内温度Trにおける冷水コイル32への熱媒体の供給量は、冷房主体期間に比べて暖房主体期間の方が少なくなる。その結果、暖房主体期間における冷房能力が抑制される。 On the other hand, in the heating main period, the opening command Vc* is multiplied by the cooling suppression rate Rcs calculated based on the detected values of the outside air temperature To and the amount of solar radiation Si. Therefore, the opening degree command Vc* for a certain room temperature Tr is smaller than the opening degree command Vc* for the same room temperature Tr during the main cooling period. That is, the amount of heat medium supplied to the cold water coil 32 at a certain indoor temperature Tr is smaller during the heating main period than during the cooling main period. As a result, the cooling capacity in the heating main period is suppressed.
 このように暖房主体期間中に冷房運転を行う場合には、冷水コイル32への熱媒体の供給量を抑制する処理を実行して冷房能力を低下させることにより、冷房運転および当該冷房運転に続いて実行される暖房運転における空気調和機10の消費エネルギーを低減することができる。 In this way, when the cooling operation is performed during the heating main period, the process of suppressing the supply amount of the heat medium to the chilled water coil 32 is executed to reduce the cooling capacity, so that the cooling operation and the following cooling operation are performed. It is possible to reduce the energy consumption of the air conditioner 10 in the heating operation performed by
 (暖房制御部の構成)
 次に、図8から図12を参照して、暖房制御部76の機能構成について説明する。
(Configuration of heating control unit)
Next, the functional configuration of the heating control unit 76 will be described with reference to FIGS. 8 to 12. FIG.
 図8は、図2に示した暖房制御部76の構成例を示すブロック図である。図8に示すように、暖房制御部76は、温湿度センサ22により検出される室内温度Trを暖房設定温度Tshに追従させるためのフィードバック制御により、温水二方弁38の開度指令Vh*を生成するように構成される。 FIG. 8 is a block diagram showing a configuration example of the heating control unit 76 shown in FIG. As shown in FIG. 8, the heating control unit 76 sets the opening command Vh* of the hot water two-way valve 38 by feedback control for causing the indoor temperature Tr detected by the temperature and humidity sensor 22 to follow the heating set temperature Tsh. configured to generate
 具体的には、暖房制御部76は、減算器760と、制御器762と、補正部764とを含む。減算器760は、暖房設定温度Tshに対する室内温度Trの偏差ΔThを算出する(ΔTh=Tsh-Tr)。 Specifically, the heating controller 76 includes a subtractor 760 , a controller 762 and a corrector 764 . A subtractor 760 calculates a deviation ΔTh of the room temperature Tr from the heating set temperature Tsh (ΔTh=Tsh−Tr).
 制御器762は、減算器760により算出された偏差ΔThを入力として、偏差ΔThを0にするための制御演算を行うことにより、温水二方弁38の開度指令Vh*を生成する。すなわち、温水二方弁38の開度指令Vh*は、Tr=Tshとするための制御量に相当する。なお、制御器762には、PI制御器またはPID制御器などを用いることができる。 The controller 762 receives the deviation ΔTh calculated by the subtractor 760 as an input, and performs a control operation to set the deviation ΔTh to 0, thereby generating an opening command Vh* for the hot water two-way valve 38 . That is, the opening degree command Vh* of the hot water two-way valve 38 corresponds to the control amount for setting Tr=Tsh. Note that a PI controller, a PID controller, or the like can be used as the controller 762 .
 補正部764は、主制御部72から与えられる実行指令、外気温センサ24により検出される外気温度Toおよび日射量センサ26により検出される日射量Siに基づいて、温水二方弁38の開度指令Vh*を補正する。 The correction unit 764 adjusts the opening degree of the hot water two-way valve 38 based on the execution command given from the main control unit 72, the outside air temperature To detected by the outside air temperature sensor 24, and the amount of solar radiation Si detected by the amount of solar radiation sensor 26. Correct command Vh*.
 具体的には、主制御部72は、図示しないクロックから与えられる現在の時刻情報に基づいて、現在の時刻が冷房主体期間に該当するか否かを判定する。現在の時刻が冷房主体期間に該当する場合、主制御部72は、温水コイル36への熱媒体の供給量を抑制する処理の実行指令を生成する。現在の時刻が冷房主体期間に該当しない場合には、主制御部72は、上記実行指令を生成しない。すなわち、主制御部72は、冷房主体期間中に暖房運転を行う場合には、温水コイル36への熱媒体の供給量を抑制する処理を暖房制御部76に実行させる。 Specifically, the main control unit 72 determines whether or not the current time corresponds to the cooling main period based on current time information given from a clock (not shown). When the current time corresponds to the main cooling period, the main control unit 72 generates an execution command for suppressing the amount of heat medium supplied to the hot water coil 36 . If the current time does not correspond to the main cooling period, the main control unit 72 does not generate the execution command. That is, the main control unit 72 causes the heating control unit 76 to perform a process of suppressing the amount of heat medium supplied to the hot water coil 36 when the heating operation is performed during the cooling main period.
 上述したように、冷房主体期間では冷房運転が主体となる。その一方で、空気調和機10は、室内温度Trに応じて、冷房運転および暖房運転を切り替え可能に構成されているため、冷房主体期間中、室内温度Trが暖房設定温度Tshを下回ったことによって、空気調和機10が一時的に暖房運転を実行する場合が起こり得る。 As described above, cooling operation is the main operation during the cooling main period. On the other hand, since the air conditioner 10 is configured to be able to switch between the cooling operation and the heating operation according to the indoor temperature Tr, when the indoor temperature Tr falls below the heating set temperature Tsh during the cooling main period, , the air conditioner 10 may temporarily perform the heating operation.
 例えば、外気温度が低く、日射量が少ない早朝の数時間において室内温度Trが暖房設定温度Tshを下回っている場合には、室内温度Trを暖房設定温度Tshにまで上げるために暖房運転が一時的に実行される。その後、外気温度の上昇および日射量の増加に追従するように室内温度Trが冷房設定温度Tscよりも上昇すると、冷房運転に移行する。 For example, when the indoor temperature Tr is lower than the heating set temperature Tsh for several hours in the early morning when the outdoor temperature is low and the amount of solar radiation is low, the heating operation is temporarily performed to raise the indoor temperature Tr to the heating set temperature Tsh. is executed. After that, when the indoor temperature Tr rises above the cooling set temperature Tsc so as to follow the increase in the outside air temperature and the increase in the amount of solar radiation, the operation shifts to the cooling operation.
 このような場合、外気温度の上昇および日射量の増加に従い、暖房運転との相乗効果によって室内52の暖房が過剰となりやすく、暖房運転時における空気調和機10の消費エネルギーを無駄に増加させることになる。 In such a case, as the outside air temperature rises and the amount of solar radiation increases, the heating of the room 52 tends to be excessive due to the synergistic effect with the heating operation, resulting in a wasteful increase in the energy consumption of the air conditioner 10 during the heating operation. Become.
 また、冷房運転への移行後、直前の暖房運転による暖房効果を打ち消すように冷房運転が実行される。直前の暖房運転による暖房効果が冷房負荷として働くためである。すなわち、冷房運転の開始直後は、直前の暖房運転によって室内52に補給された熱量を除去するように冷房運転が実行される。その結果、冷房運転時における空気調和機10の消費エネルギーを無駄に増加させることになる。 Also, after shifting to the cooling operation, the cooling operation is performed so as to cancel out the heating effect of the previous heating operation. This is because the heating effect of the previous heating operation works as a cooling load. That is, immediately after the start of the cooling operation, the cooling operation is performed so as to remove the amount of heat supplied to the room 52 by the previous heating operation. As a result, the energy consumption of the air conditioner 10 during the cooling operation is unnecessarily increased.
 上述した懸念点を対応するために、本実施の形態では、以下に説明するように、冷房主体期間における空気調和機10の暖房能力を低下させることによって暖房効果を抑制する。 In order to address the above concerns, in the present embodiment, the heating effect is suppressed by reducing the heating capacity of the air conditioner 10 during the cooling main period, as described below.
 具体的には、補正部764は、主制御部72から実行指令を受けた場合には、制御器762により生成された開度指令Vh*を低減するように、開度指令Vh*を補正する。すなわち、補正部764は、冷房主体期間中に暖房運転を行う場合には、温水コイル36に供給する熱媒体の供給量を、偏差ΔThに応じた供給量よりも減少させることによって空気調和機10の暖房能力を低下させる。図9は、図8に示した補正部764の構成例を示すブロック図である。 Specifically, when the correction unit 764 receives an execution command from the main control unit 72, the correction unit 764 corrects the opening command Vh* generated by the controller 762 so as to reduce the opening command Vh*. . That is, when the heating operation is performed during the cooling main period, the correction unit 764 reduces the supply amount of the heat medium supplied to the hot water coil 36 from the supply amount corresponding to the deviation ΔTh. reduce the heating capacity of FIG. 9 is a block diagram showing a configuration example of the correction unit 764 shown in FIG.
 図9に示すように、補正部764は、抑制率算出部92,94と、乗算器95,98と、切替部96とを含む。抑制率算出部92,94および乗算器95は、開度指令Vh*を補正するための補正係数を算出する。この補正係数は、温水コイル36への熱媒体の供給量を抑制する程度(すなわち、暖房能力を抑制する程度に相当)を表しているため、本明細書では「暖房抑制率Rhs」と定義する。 As shown in FIG. 9, the correction unit 764 includes suppression rate calculation units 92 and 94, multipliers 95 and 98, and a switching unit 96. Restriction rate calculators 92 and 94 and multiplier 95 calculate a correction coefficient for correcting opening command Vh*. Since this correction coefficient represents the extent to which the amount of heat medium supplied to the hot water coil 36 is suppressed (that is, corresponds to the extent to which the heating capacity is suppressed), it is defined as "heating suppression rate Rhs" in this specification. .
 補正部764は、制御器762から与えられる開度指令Vh*に暖房抑制率Rhsを乗算することにより、開度指令Vh*を補正する(Vh*=Vh*×Rhs)。暖房抑制率Rhsは、外気温度Toおよび日射量Siに応じて0(%)~100(%)の値を取り得る。なお、Rhs=100(%)のとき、Vh*=Vh*となり、開度指令Vh*は実質的に補正されない。したがって、温水コイル36への熱媒体の供給量(暖房能力)は抑制されない。暖房抑制率Rhsが100(%)から減少するに従って、温水コイル36への熱媒体の供給量(暖房能力)を抑制する程度が大きくなる。 The correction unit 764 corrects the opening command Vh* by multiplying the opening command Vh* given from the controller 762 by the heating suppression rate Rhs (Vh*=Vh*×Rhs). Heating suppression rate Rhs can take a value of 0 (%) to 100 (%) depending on outside air temperature To and amount of solar radiation Si. When Rhs=100(%), Vh*=Vh*, and the opening command Vh* is not substantially corrected. Therefore, the amount of heat medium supplied to the hot water coil 36 (heating capacity) is not suppressed. As the heating suppression rate Rhs decreases from 100(%), the extent to which the amount of heat medium supplied to the hot water coil 36 (heating capacity) is suppressed increases.
 暖房抑制率Rhsは、外気温度の低下に対する暖房能力を抑制するための抑制率Rh1と、日射量の減少に対する暖房能力を抑制するための抑制率Rh2とを用いて算出される。 The heating suppression rate Rhs is calculated using a suppression rate Rh1 for suppressing the heating capacity in response to a decrease in outside air temperature and a suppression rate Rh2 for suppressing the heating capacity in response to a decrease in the amount of solar radiation.
 上述したように、外気温度および日射量はいずれも室内温度の上昇に繋がり、冷房負荷となる一方で、暖房運転時にはプラス要因として働く。そのため、本実施の形態では、補正部764を、外気温度Toおよび日射量Siに応じて暖房抑制率Rhsを算出する構成として、外気温度および日射量に起因して室内52に補給する熱量を抑制する。これにより、冷房運転時に室内52から取り除く熱量を低減することを可能とする。 As mentioned above, both the outside air temperature and the amount of solar radiation lead to an increase in the indoor temperature, which acts as a cooling load, but also acts as a positive factor during heating operation. Therefore, in the present embodiment, the correction unit 764 is configured to calculate the heating suppression rate Rhs according to the outside air temperature To and the amount of solar radiation Si, thereby suppressing the amount of heat supplied to the room 52 due to the outside temperature and the amount of solar radiation. do. This makes it possible to reduce the amount of heat removed from the room 52 during the cooling operation.
 具体的には、抑制率算出部92は、外気温センサ24により検出される外気温度Toに基づいて抑制率Rh1を算出する。抑制率Rh1は「第3の抑制率」の一実施例に対応する。図10は、外気温度Toと抑制率Rh1との関係の一例を模式的に示す図である。図10の横軸は外気温度Toを示し、縦軸は抑制率Rh1を示す。抑制率Rh1は0(%)~100(%)の値を取り得る。 Specifically, the suppression rate calculator 92 calculates the suppression rate Rh1 based on the outside air temperature To detected by the outside air temperature sensor 24 . The suppression rate Rh1 corresponds to an example of the "third suppression rate". FIG. 10 is a diagram schematically showing an example of the relationship between the outside air temperature To and the suppression rate Rh1. The horizontal axis of FIG. 10 indicates the outside air temperature To, and the vertical axis indicates the suppression rate Rh1. The suppression rate Rh1 can take values from 0(%) to 100(%).
 図10の例では、To≦To3のとき、抑制率Rh1は100(%)に設定される。To3<To≦To4のときには、抑制率Rh1は外気温度Toの上昇に従って低下するように設定される。To>To4のとき、抑制率Rh1はXh(%)に設定される(0<Xh<100)。Xh(%)は抑制率Rh1の下限値に相当する。抑制率Rh1に下限値Xhを設けることにより、暖房能力の抑制によって室内52の快適性が損なわれることを抑制することができる。 In the example of FIG. 10, when To≦To3, the suppression rate Rh1 is set to 100 (%). When To3<To≤To4, the suppression rate Rh1 is set to decrease as the outside air temperature To increases. When To>To4, the suppression rate Rh1 is set to Xh (%) (0<Xh<100). Xh (%) corresponds to the lower limit of the suppression rate Rh1. By setting the lower limit value Xh for the suppression rate Rh1, it is possible to suppress the deterioration of the comfort of the room 52 due to the suppression of the heating capacity.
 抑制率Rh1が100(%)から減少するに従って、温水コイル36への熱媒体の供給量(暖房能力)を抑制する程度が大きくなる。図10に示すように、外気温度Toが高くなるほど抑制率Rh1を小さくする、すなわち、暖房能力を抑制する程度を大きくすることにより、外気温度Toの上昇と暖房運転との相乗効果によって、室内52が過剰に暖房されることを抑制することができる。これにより、暖房運転時の消費エネルギーを低減することができる。また、暖房運転から冷房運転へ移行したときに室内52から取り除く熱量を低減することができるため、冷房運転時の消費エネルギーを低減することができる。 As the suppression rate Rh1 decreases from 100 (%), the extent to which the amount of heat medium supplied to the hot water coil 36 (heating capacity) is suppressed increases. As shown in FIG. 10, the higher the outside air temperature To, the lower the suppression rate Rh1, that is, the higher the degree of suppression of the heating capacity. can be suppressed from being excessively heated. As a result, energy consumption during heating operation can be reduced. Moreover, since the amount of heat removed from the room 52 can be reduced when the heating operation is shifted to the cooling operation, the energy consumption during the cooling operation can be reduced.
 外気温度Toと抑制率Rh1との関係(温度To3,To4および下限値Xh)は、空気調和機10の消費エネルギーおよび室内52の快適性のトレードオフを考慮しながら、自在に設定することができる。 The relationship between the outside air temperature To and the suppression rate Rh1 (temperatures To3, To4 and lower limit value Xh) can be freely set while considering the trade-off between the energy consumption of the air conditioner 10 and the comfort of the room 52. .
 図10に示す関係をマップまたは関係式としてメモリ204に予め記憶させておくことにより、抑制率算出部92は、外気温センサ24により検出される外気温度Toに基づいて、抑制率Rh1を算出することができる。 By pre-storing the relationship shown in FIG. 10 in the memory 204 as a map or a relational expression, the suppression rate calculator 92 calculates the suppression rate Rh1 based on the outside air temperature To detected by the outside air temperature sensor 24. be able to.
 図9に戻って、抑制率算出部94は、日射量センサ26により検出される日射量Siに基づいて抑制率Rh2を算出する。抑制率Rh2は「第4の抑制率」の一実施例に対応する。図11は、日射量Siと抑制率Rh2との関係の一例を模式的に示す図である。図11の横軸は日射量Siを示し、縦軸は抑制率Rh2を示す。抑制率Rh2は0(%)~100(%)の値を取り得る。 Returning to FIG. 9, the suppression rate calculator 94 calculates the suppression rate Rh2 based on the solar radiation amount Si detected by the solar radiation sensor 26. The suppression rate Rh2 corresponds to an example of the "fourth suppression rate". FIG. 11 is a diagram schematically showing an example of the relationship between the solar radiation amount Si and the suppression rate Rh2. The horizontal axis of FIG. 11 indicates the amount of solar radiation Si, and the vertical axis indicates the suppression rate Rh2. The suppression rate Rh2 can take a value of 0(%) to 100(%).
 図11の例では、Si≦Si3のとき、抑制率Rh2は100(%)に設定される。Si3<Si≦Si4のときには、抑制率Rh2は日射量Siの増加に従って低下するように設定される。Si>Si4のとき、抑制率Rh2はYh(%)に設定される(0<Yh<100)。Yh(%)は抑制率Rh2の下限値に相当する。抑制率Rh2に下限値Yhを設けることにより、暖房能力の抑制によって室内52の快適性が損なわれることを抑制することができる。 In the example of FIG. 11, when Si≤Si3, the suppression rate Rh2 is set to 100 (%). When Si3<Si≤Si4, the suppression rate Rh2 is set to decrease as the amount of solar radiation Si increases. When Si>Si4, the suppression rate Rh2 is set to Yh (%) (0<Yh<100). Yh (%) corresponds to the lower limit of the suppression rate Rh2. By setting the lower limit value Yh for the suppression rate Rh2, it is possible to suppress deterioration of comfort in the room 52 due to suppression of the heating capacity.
 図10に示した抑制率Rh1と同様、抑制率Rh2も100(%)から減少するに従って、温水コイル36への熱媒体の供給量(暖房能力)を抑制する程度が大きくなる。図11に示すように、日射量Siが増加するほど抑制率Rc2を小さくする、すなわち、暖房能力を抑制する程度を大きくすることにより、日射量Siの増加と暖房運転との相乗効果によって、室内52が過剰に暖房されることを抑制できるため、暖房運転時の消費エネルギーを低減することができる。また、暖房運転から冷房運転へ移行したときに室内52から取り除く熱量を低減できるため、冷房運転時の消費エネルギーを低減することができる。 As with the suppression rate Rh1 shown in FIG. 10, as the suppression rate Rh2 also decreases from 100 (%), the extent to which the amount of heat medium supplied to the hot water coil 36 (heating capacity) is suppressed increases. As shown in FIG. 11, by decreasing the suppression rate Rc2 as the amount of solar radiation Si increases, that is, by increasing the extent to which the heating capacity is suppressed, the synergistic effect of the increase in the amount of solar radiation Si and the heating operation results in a Since it is possible to suppress the excessive heating of 52, it is possible to reduce energy consumption during the heating operation. Moreover, since the amount of heat removed from the room 52 can be reduced when shifting from the heating operation to the cooling operation, the energy consumption during the cooling operation can be reduced.
 日射量Siと抑制率Rh2との関係(日射量Si3,Si4および下限値Yh)は、空気調和機10の消費エネルギーおよび室内52の快適性のトレードオフを考慮しながら、自在に設定することができる。 The relationship between the amount of solar radiation Si and the suppression rate Rh2 (the amounts of solar radiation Si3, Si4 and the lower limit value Yh) can be freely set while considering the trade-off between the energy consumption of the air conditioner 10 and the comfort of the room 52. can.
 図11に示す関係をマップまたは関係式としてメモリ204に予め記憶させておくことにより、抑制率算出部94は、日射量センサ26により検出される日射量Siに基づいて、抑制率Rh2を算出することができる。 By pre-storing the relationship shown in FIG. 11 in the memory 204 as a map or a relational expression, the suppression rate calculator 94 calculates the suppression rate Rh2 based on the solar radiation amount Si detected by the solar radiation sensor 26. be able to.
 図9に戻って、乗算器95は、抑制率Rh1および抑制率Rh2を乗算することにより、暖房抑制率Rhsを算出する(Rhs=Rh1×Rh2)。乗算器95は、算出された暖房抑制率Rhsを切替部96の第1入力端子に入力する。 Returning to FIG. 9, the multiplier 95 calculates the heating suppression rate Rhs by multiplying the suppression rate Rh1 and the suppression rate Rh2 (Rhs=Rh1×Rh2). Multiplier 95 inputs calculated heating suppression rate Rhs to a first input terminal of switching section 96 .
 切替部96は、第1入力端子、第2入力端子および出力端子を有する。切替部96は、第1入力端子に乗算器95からの暖房抑制率Rhsを受け、第2入力端子に暖房抑制率Rhsの上限値100(%)を受ける。切替部96は、主制御部72からの実行指令に応じて、何れか一方の入力を選択して出力端子に出力する。具体的には、実行指令が活性化レベルであるHレベルのとき、切替部96は第1入力端子が受ける暖房抑制率Rhs(=Rh1×Rh2)を出力端子に出力する。実行指令が非活性化レベルであるLレベルのとき、切替部96は、第2入力端子が受ける暖房抑制率の上限値(100(%))を出力端子に出力する。 The switching section 96 has a first input terminal, a second input terminal and an output terminal. The switching unit 96 receives the heating suppression rate Rhs from the multiplier 95 at its first input terminal, and receives the upper limit value 100 (%) of the heating suppression rate Rhs at its second input terminal. The switching unit 96 selects one of the inputs according to the execution command from the main control unit 72 and outputs it to the output terminal. Specifically, when the execution command is at the H level, which is the activation level, the switching unit 96 outputs the heating suppression rate Rhs (=Rh1×Rh2) received by the first input terminal to the output terminal. When the execution command is at the L level, which is the inactivation level, the switching unit 96 outputs the upper limit value (100(%)) of the heating suppression rate received by the second input terminal to the output terminal.
 乗算器98は、制御器762により生成される開度指令Vh*に切替部96からの暖房抑制率Rhsを乗算することにより、開度指令Vh*を補正する(Vh*=Vh*×Rhs)。Rhs=100%である場合には、開度指令Vh*は実質的に補正されることなく、温水二方弁38に出力される。これに対して、Rhs<100%である場合には、開度指令Vh*は、暖房抑制率Rhsの大きさに応じて、元の開度指令Vh*よりも小さい値に補正されて温水二方弁38に出力される。温水二方弁38は、開度指令Vh*に従って開度を制御することにより、温水コイル36への熱媒体の供給量を調整する。 Multiplier 98 corrects opening command Vh* by multiplying opening command Vh* generated by controller 762 by heating suppression rate Rhs from switching unit 96 (Vh*=Vh*×Rhs). . When Rhs=100%, the opening command Vh* is output to the hot water two-way valve 38 without being substantially corrected. On the other hand, when Rhs<100%, the opening command Vh* is corrected to a value smaller than the original opening command Vh* according to the magnitude of the heating suppression rate Rhs. Output to direction valve 38 . The hot water two-way valve 38 adjusts the amount of heat medium supplied to the hot water coil 36 by controlling the degree of opening according to the degree of opening command Vh*.
 図12は、暖房制御部76における温水二方弁38の開度制御の一例を示す図である。図12には、室内温度Trと温水二方弁38の開度指令Vh*との関係の一例が示されている。図12の横軸は室内温度Trを示し、縦軸は開度指令Vh*を示す。波形k3は、暖房主体期間における関係を示す。波形k4は、冷房主体期間における関係を示す。 FIG. 12 is a diagram showing an example of opening degree control of the hot water two-way valve 38 in the heating control section 76. As shown in FIG. FIG. 12 shows an example of the relationship between the indoor temperature Tr and the opening command Vh* of the hot water two-way valve 38. As shown in FIG. The horizontal axis of FIG. 12 indicates the room temperature Tr, and the vertical axis indicates the opening command Vh*. Waveform k3 shows the relationship in the heating main period. Waveform k4 shows the relationship in the cooling main period.
 波形k3に示すように、暖房主体期間では、室内温度Trが暖房設定温度Tsh以上である場合、開度指令Vh*は0%(全閉)に設定される。室内温度Trが暖房設定温度Tshを下回ると、暖房設定温度Tshに対する室内温度Trの偏差ΔThに比例するように、開度指令Vh*が変化する。なお、室内温度Trが所定の閾値温度Thth未満となる場合、開度指令Vh*は100%(全開)に固定される。 As shown by the waveform k3, in the heating main period, when the indoor temperature Tr is equal to or higher than the heating set temperature Tsh, the opening command Vh* is set to 0% (fully closed). When the room temperature Tr falls below the heating set temperature Tsh, the opening command Vh* changes in proportion to the deviation ΔTh of the room temperature Tr from the heating set temperature Tsh. Note that when the room temperature Tr is lower than the predetermined threshold temperature Thth, the opening command Vh* is fixed at 100% (fully open).
 一方、冷房主体期間では、外気温度Toおよび日射量Siの検出値に基づいて算出された暖房抑制率Rhsが開度指令Vh*に乗算される。そのため、ある室内温度Trに対する開度指令Vh*は、暖房主体期間の同じ室内温度Trに対する開度指令Vh*よりも小さくなる。すなわち、ある室内温度Trにおける温水コイル36への熱媒体の供給量は、暖房主体期間に比べて冷房主体期間の方が少なくなる。その結果、冷房主体期間における暖房能力が抑制される。 On the other hand, in the cooling main period, the opening command Vh* is multiplied by the heating suppression rate Rhs calculated based on the detected values of the outside air temperature To and the amount of solar radiation Si. Therefore, the opening degree command Vh* for a certain room temperature Tr is smaller than the opening degree command Vh* for the same room temperature Tr in the heating main period. That is, the amount of heat medium supplied to the hot water coil 36 at a certain indoor temperature Tr is smaller during the cooling main period than during the heating main period. As a result, the heating capacity in the cooling main period is suppressed.
 このように冷房主体期間中に暖房運転を行う場合には、温水コイル36への熱媒体の供給量を抑制する処理を実行して暖房能力を低下させることにより、暖房運転および当該暖房運転に続いて実行される冷房運転における空気調和機10の消費エネルギーを低減することができる。 In this way, when the heating operation is performed during the cooling main period, the heating operation and the following heating operation are performed by executing the process of suppressing the supply amount of the heat medium to the hot water coil 36 to reduce the heating capacity. It is possible to reduce the energy consumption of the air conditioner 10 in the cooling operation performed by
 (フローチャート)
 図13は、本実施の形態に係る冷水二方弁34および温水二方弁38の開度制御の処理手順を説明するフローチャートである。図13に示したフローチャートに従う制御処理は、コントローラ20によって繰り返し実行される。
(flowchart)
FIG. 13 is a flow chart illustrating a processing procedure for controlling the opening degrees of the cold water two-way valve 34 and the hot water two-way valve 38 according to the present embodiment. A control process according to the flowchart shown in FIG. 13 is repeatedly executed by the controller 20 .
 図13に示すように、コントローラ20は、ステップ(以下、単にステップをSと表記する)01により、温湿度センサ22の出力信号に基づいて室内温度Trを検出する。コントローラ20は、S02により、室内温度Trと冷房設定温度Tscとを比較する。室内温度Trが冷房設定温度Tscよりも高い場合(S02のYES判定時)、コントローラ20は、S03~S11に示す手順に従って冷水二方弁34の開度制御を実行する。 As shown in FIG. 13, the controller 20 detects the room temperature Tr based on the output signal of the temperature/humidity sensor 22 in step 01 (hereinafter step is simply referred to as S). The controller 20 compares the indoor temperature Tr with the cooling set temperature Tsc in S02. When the indoor temperature Tr is higher than the cooling set temperature Tsc (YES determination in S02), the controller 20 controls the opening of the cold water two-way valve 34 according to the procedure shown in S03 to S11.
 具体的には、コントローラ20は、S03により、冷房設定温度Tscと室内温度Trとの偏差ΔTcを0とするための制御演算を実行することにより、冷水二方弁34の開度指令Vc*を生成する。 Specifically, in S03, the controller 20 executes a control operation for setting the deviation ΔTc between the cooling set temperature Tsc and the room temperature Tr to 0, thereby setting the opening command Vc* of the cold water two-way valve 34 to Generate.
 コントローラ20は、S04により、図示しないクロックから与えられる現在の時刻情報に基づいて、現在の時刻が暖房主体期間に該当するか否かを判定する。現在の時刻が暖房主体期間に該当しない場合(S04のNO判定時)、コントローラ20は、S05~S10の処理をスキップする。 The controller 20 determines in S04 whether or not the current time corresponds to the heating main period based on current time information given from a clock (not shown). If the current time does not correspond to the heating main period (NO determination in S04), the controller 20 skips the processes of S05 to S10.
 一方、現在の時刻が暖房主体期間に該当する場合(S04のYES判定時)、コントローラ20は、冷水コイル32への熱媒体の供給量を抑制する処理を実行する。具体的には、コントローラ20は、S05により、外気温センサ24の出力信号に基づいて、外気温度Toを検出する。コントローラ20は、S06により、外気温度Toの検出値に応じて抑制率Rc1を算出する。S06では、コントローラ20は、メモリ204に予め記憶された外気温度Toと抑制率Rc1との関係(図5参照)を参照することにより、外気温度Toの検出値に基づいて、抑制率Rc1を算出する。 On the other hand, if the current time corresponds to the heating main period (YES determination in S04), the controller 20 executes processing to suppress the amount of heat medium supplied to the cold water coil 32. Specifically, the controller 20 detects the outside air temperature To based on the output signal of the outside air temperature sensor 24 in S05. In S06, the controller 20 calculates the suppression rate Rc1 according to the detected value of the outside air temperature To. In S06, the controller 20 refers to the relationship between the outside air temperature To and the suppression rate Rc1 pre-stored in the memory 204 (see FIG. 5) to calculate the suppression rate Rc1 based on the detected value of the outside air temperature To. do.
 次に、コントローラ20は、S07により、日射量センサ26の出力信号に基づいて、日射量Siを検出する。コントローラ20は、S08により、日射量Siの検出値に応じて抑制率Rc2を算出する。S08では、コントローラ20は、メモリ204に予め記憶された日射量Siと抑制率Rc2との関係(図6参照)を参照することにより、日射量Siの検出値に基づいて、抑制率Rc2を算出する。 Next, the controller 20 detects the amount of solar radiation Si based on the output signal of the solar radiation sensor 26 in S07. In S08, the controller 20 calculates the suppression rate Rc2 according to the detected value of the amount of solar radiation Si. In S08, the controller 20 calculates the suppression rate Rc2 based on the detected value of the solar radiation amount Si by referring to the relationship between the solar radiation amount Si and the suppression rate Rc2 pre-stored in the memory 204 (see FIG. 6). do.
 コントローラ20は、S09により、S06で算出された抑制率Rc1およびS08で算出された抑制率Rc2を乗算することにより、冷房抑制率Rcsを算出する(Rcs=Rc1×Rc2)。コントローラ20は、S10により、S09で算出された冷房抑制率Rcsを、S03で生成された開度指令Vc*に乗算することにより、開度指令Vc*を補正する(Vc*=Vc*×Rcs)。 In S09, the controller 20 calculates the cooling suppression rate Rcs by multiplying the suppression rate Rc1 calculated in S06 and the suppression rate Rc2 calculated in S08 (Rcs=Rc1×Rc2). The controller 20 corrects the opening command Vc* generated in S03 by multiplying the opening command Vc* generated in S03 by the cooling suppression rate Rcs calculated in S09 (Vc*=Vc*×Rcs ).
 コントローラ20は、S11により、開度指令Vc*に従って冷水二方弁34の開度を制御することにより、冷水コイル32への熱媒体の供給を調整する。S10にて開度指令Vc*が補正された場合には、補正された開度指令Vc*に従って、冷水二方弁34の開度が制御される。 The controller 20 adjusts the supply of the heat medium to the cold water coil 32 by controlling the opening of the cold water two-way valve 34 according to the opening command Vc* in S11. When the opening command Vc* is corrected in S10, the opening of the cold water two-way valve 34 is controlled according to the corrected opening command Vc*.
 S02に戻って、室内温度Trが冷房設定温度Tsc以下である場合(S02のNO判定時)、コントローラ20は、S12により、室内温度Trと暖房設定温度Tshとを比較する。室内温度Trが暖房設定温度Tshよりも低い場合(S12のYES判定時)、コントローラ20は、S13~S21に示す手順に従って温水二方弁38の開度制御を実行する。 Returning to S02, if the room temperature Tr is equal to or lower than the cooling set temperature Tsc (NO in S02), the controller 20 compares the room temperature Tr with the heating set temperature Tsh in S12. When the room temperature Tr is lower than the heating set temperature Tsh (YES in S12), the controller 20 controls the opening of the hot water two-way valve 38 according to the procedure shown in S13 to S21.
 具体的には、コントローラ20は、S13により、暖房設定温度Tshと室内温度Trとの偏差ΔThを0とするための制御演算を実行することにより、温水二方弁38の開度指令Vh*を生成する。 Specifically, in S13, the controller 20 executes a control operation for setting the deviation ΔTh between the heating set temperature Tsh and the indoor temperature Tr to 0, thereby setting the opening command Vh* of the hot water two-way valve 38 to Generate.
 コントローラ20は、S14により、図示しないクロックから与えられる現在の時刻情報に基づいて、現在の時刻が冷房主体期間に該当するか否かを判定する。現在の時刻が冷房主体期間に該当しない場合(S14のNO判定時)、コントローラ20は、S15~S20の処理をスキップする。 The controller 20 determines in S14 whether or not the current time corresponds to the cooling main period based on current time information given from a clock (not shown). If the current time does not correspond to the cooling main period (NO judgment in S14), the controller 20 skips the processes of S15 to S20.
 一方、現在の時刻が冷房主体期間に該当する場合(S14のYES判定時)、コントローラ20は、温水コイル36への熱媒体の供給量を抑制する処理を実行する。具体的には、コントローラ20は、S15により、外気温センサ24の出力信号に基づいて、外気温度Toを検出する。コントローラ20は、S16により、外気温度Toの検出値に応じて抑制率Rh1を算出する。S16では、コントローラ20は、メモリ204に予め記憶された外気温度Toと抑制率Rh1との関係(図10参照)を参照することにより、外気温度Toの検出値に基づいて、抑制率Rh1を算出する。 On the other hand, if the current time corresponds to the main cooling period (YES determination in S14), the controller 20 executes processing to suppress the amount of heat medium supplied to the hot water coil 36. Specifically, the controller 20 detects the outside air temperature To based on the output signal of the outside air temperature sensor 24 in S15. In S16, the controller 20 calculates the suppression rate Rh1 according to the detected value of the outside air temperature To. In S16, the controller 20 refers to the relationship between the outside air temperature To and the suppression rate Rh1 pre-stored in the memory 204 (see FIG. 10) to calculate the suppression rate Rh1 based on the detected value of the outside air temperature To. do.
 次に、コントローラ20は、S17により、日射量センサ26の出力信号に基づいて、日射量Siを検出する。コントローラ20は、S18により、日射量Siの検出値に応じて抑制率Rh2を算出する。S18では、コントローラ20は、メモリ204に予め記憶された日射量Siと抑制率Rh2との関係(図11参照)を参照することにより、日射量Siの検出値に基づいて、抑制率Rh2を算出する。 Next, the controller 20 detects the solar radiation Si based on the output signal of the solar radiation sensor 26 in S17. In S18, the controller 20 calculates the suppression rate Rh2 according to the detected value of the amount of solar radiation Si. In S18, the controller 20 calculates the suppression rate Rh2 based on the detected value of the solar radiation amount Si by referring to the relationship between the solar radiation amount Si and the suppression rate Rh2 pre-stored in the memory 204 (see FIG. 11). do.
 コントローラ20は、S19により、S16で算出された抑制率Rh1およびS18で算出された抑制率Rh2を乗算することにより、暖房抑制率Rhsを算出する(Rhs=Rh1×Rh2)。コントローラ20は、S20により、S19で算出された暖房抑制率Rhsを、S13で生成された開度指令Vh*に乗算することにより、開度指令Vh*を補正する(Vh*=Vh*×Rhs)。 In S19, the controller 20 calculates the heating suppression rate Rhs by multiplying the suppression rate Rh1 calculated in S16 and the suppression rate Rh2 calculated in S18 (Rhs=Rh1×Rh2). The controller 20 multiplies the opening command Vh* generated in S13 by the heating suppression rate Rhs calculated in S19 in S20, thereby correcting the opening command Vh* (Vh*=Vh*×Rhs ).
 コントローラ20は、S21により、開度指令Vh*に従って温水二方弁38の開度を制御することにより、温水コイル36への熱媒体の供給を調整する。S20にて開度指令Vh*が補正された場合には、補正された開度指令Vh*に従って、温水二方弁38の開度が制御される。 The controller 20 adjusts the supply of the heat medium to the hot water coil 36 by controlling the opening of the hot water two-way valve 38 according to the opening command Vh* in S21. When the opening command Vh* is corrected in S20, the opening of the hot water two-way valve 38 is controlled according to the corrected opening command Vh*.
 (空気調和システムの動作例)
 次に、図14および図15を参照して、本実施の形態に係る空気調和システムの動作例について説明する。
(Operation example of an air conditioning system)
Next, an operation example of the air conditioning system according to the present embodiment will be described with reference to FIGS. 14 and 15. FIG.
 図14は、冷房主体期間中のある1日における外気温度の時間的推移を示す図である。図14の横軸は時刻を示し、縦軸は外気温センサ24による外気温度Toの検出値を示している。なお、図14の例では、午前8時30分~午後6:00(18:00)の時間帯を、空気調和機10を運転させて室内52の空気の調和を行う時間帯(空調時間帯)とし、午前0時~午前8時30分および午後6時~午後24時の時間帯を、空気調和機10を停止状態とする時間帯としている。 FIG. 14 is a diagram showing the temporal transition of the outside air temperature in one day during the main cooling period. The horizontal axis of FIG. 14 indicates the time, and the vertical axis indicates the value of the outside air temperature To detected by the outside air temperature sensor 24 . In the example of FIG. 14, the time zone from 8:30 am to 6:00 pm (18:00) is the time zone (air conditioning time zone) in which the air conditioner 10 is operated to condition the air in the room 52. ), and the time zones from 0:00 am to 8:30 am and from 6:00 pm to 24:00 pm are time zones in which the air conditioner 10 is in a stopped state.
 図14に示すように、外気温度Toは、日光がない夜中に低温となり、日の出(午前5時前後)後に徐々に上昇する。外気温度Toの上昇に伴って、室内52に入ってくる熱量が徐々に増加するため、室内温度Trが徐々に上昇する。 As shown in FIG. 14, the outside air temperature To becomes low during the night when there is no sunlight, and gradually rises after sunrise (around 5:00 am). As the outside air temperature To rises, the amount of heat entering the room 52 gradually increases, so the room temperature Tr rises gradually.
 ただし、空気調和機10を起動させた後の数時間において、室内温度Trが暖房設定温度Tshを下回っている場合がある。この場合、室内温度Trを暖房設定温度Tshまで上昇させるために、空気調和機10は暖房運転を実行する。図中の領域k1は、暖房運転が実行される時間帯に対応している。 However, the indoor temperature Tr may be lower than the heating set temperature Tsh for several hours after the air conditioner 10 is started. In this case, the air conditioner 10 performs heating operation in order to increase the indoor temperature Tr to the heating set temperature Tsh. A region k1 in the figure corresponds to a time period during which the heating operation is performed.
 上記暖房運転の実行中、外気温度Toが上昇して室内52に入ってくる熱量が増加する。さらに室内52において人体および器具類が発生する熱量も増加する。そのため、暖房運転、外気温度および人体等の相乗的な作用によって室内52に補給される熱量が増加し、室内温度Trを上昇させる。コントローラ20は、外気温度Toおよび日射量Siに応じて暖房抑制率Rhsを算出し、算出された暖房抑制率Rhsを用いて温水二方弁38の開度指令Vh*を補正する。 During the heating operation, the outside air temperature To rises and the amount of heat entering the room 52 increases. Furthermore, the amount of heat generated by the human body and equipment in the room 52 also increases. Therefore, the amount of heat supplied to the room 52 increases due to the synergistic effects of the heating operation, the outside air temperature, the human body, etc., and the room temperature Tr rises. The controller 20 calculates a heating suppression rate Rhs according to the outside air temperature To and the amount of solar radiation Si, and corrects the opening command Vh* of the hot water two-way valve 38 using the calculated heating suppression rate Rhs.
 図10には、暖房運転の開始直後の時刻taにおける外気温度Toから算出される抑制率Rh1(ta)および、暖房運転中の時刻tbにおける外気温度Toから算出される抑制率Rh1(tb)が示されている。図11には、時刻taにおける日射量Siから算出される抑制率Rh2(ta)および、時刻tbにおける日射量Siから算出される抑制率Rh2(tb)が示されている。 FIG. 10 shows the suppression rate Rh1(ta) calculated from the outside air temperature To at time ta immediately after the start of the heating operation and the suppression rate Rh1(tb) calculated from the outside air temperature To at time tb during the heating operation. It is shown. FIG. 11 shows the suppression rate Rh2(ta) calculated from the solar radiation amount Si at time ta and the suppression rate Rh2(tb) calculated from the solar radiation amount Si at time tb.
 コントローラ20は、Rh1(ta)およびRh2(ta)を乗算して、時刻taにおける暖房抑制率Rhs(ta)を算出する。コントローラ20は、Rh1(tb)およびRh2(tb)を乗算して、時刻tbにおける暖房抑制率Rhs(tb)を算出する。Rh1(ta)>Rh1(tb)であり、かつ、Rh2(ta)>Rh2(tb)であるため、Rhs(ta)>Rhs(tb)となる。 The controller 20 multiplies Rh1(ta) and Rh2(ta) to calculate the heating suppression rate Rhs(ta) at time ta. Controller 20 multiplies Rh1(tb) and Rh2(tb) to calculate heating suppression rate Rhs(tb) at time tb. Since Rh1(ta)>Rh1(tb) and Rh2(ta)>Rh2(tb), Rhs(ta)>Rhs(tb).
 このように暖房運転中、外気温度Toおよび日射量Siの上昇に従って暖房抑制率Rhsが減少することにより、温水コイル36への熱媒体の供給量が徐々に減少する。これにより、室内52に補給される熱量が徐々に減少するため、暖房が過剰となることを抑制することができる。また、冷房運転へ移行したときの冷房負荷を低減することができる。よって、暖房運転および当該暖房運転に続いて実行される冷房運転における空気調和機10の消費エネルギーを低減することができる。 As described above, during heating operation, the heating suppression rate Rhs decreases as the outside air temperature To and the amount of solar radiation Si rise, so that the amount of heat medium supplied to the hot water coil 36 gradually decreases. As a result, the amount of heat replenished to the room 52 gradually decreases, so that excessive heating can be suppressed. Also, it is possible to reduce the cooling load when shifting to the cooling operation. Therefore, it is possible to reduce the energy consumption of the air conditioner 10 in the heating operation and the cooling operation that follows the heating operation.
 図15は、暖房主体期間中のある1日における外気温度の時間的推移を示す図である。図15の横軸は時刻を示し、縦軸は外気温センサ24による外気温度Toの検出値を示している。なお、図15の例においても、図14と同様に、午前8時30分~午後6:00(18:00)の時間帯を、空気調和機10を運転させて室内52の空気の調和を行う時間帯(空調時間帯)とし、午前0時~午前8時30分および午後6時~午後24時の時間帯を、空気調和機10を停止状態とする時間帯としている。 FIG. 15 is a diagram showing the temporal transition of the outside air temperature in one day during the main heating period. The horizontal axis of FIG. 15 indicates the time, and the vertical axis indicates the value of the outside air temperature To detected by the outside air temperature sensor 24 . In the example of FIG. 15, as in FIG. 14, the air conditioner 10 is operated during the time period from 8:30 am to 6:00 pm (18:00) to condition the air in the room 52. The time zone (air-conditioning time zone) during which the air conditioner 10 is stopped is defined as the time zone from 0:00 am to 8:30 am and from 6:00 pm to 24:00 pm.
 図15に示すように、外気温度Toは、日光がない夜中に低温となり、日の出(午前5時前後)後に徐々に上昇する。外気温度Toの上昇に伴って、室内52に入ってくる熱量が徐々に増加するため、室内温度Trが徐々に上昇する。 As shown in FIG. 15, the outside air temperature To becomes low during the night when there is no sunlight, and gradually rises after sunrise (around 5:00 am). As the outside air temperature To rises, the amount of heat entering the room 52 gradually increases, so the room temperature Tr rises gradually.
 空気調和機10が起動すると、室内温度Trが暖房設定温度Tshを下回っているため、空気調和機10は暖房運転を実行する。暖房運転の実行中、外気温度Toの上昇および日射量の増加に起因して室内52に入ってくる熱量が増加するとともに、室内52において人体および器具類が発生する熱量も増加する。暖房運転、外気温度および人体等の相乗的な作用によって室内52に補給される熱量が増加し、室内温度Trが上昇する。 When the air conditioner 10 starts up, the room temperature Tr is lower than the heating set temperature Tsh, so the air conditioner 10 performs heating operation. During the heating operation, the amount of heat entering the room 52 increases due to the rise in the outside air temperature To and the increase in the amount of solar radiation, and the amount of heat generated by the human body and equipment in the room 52 also increases. The amount of heat supplied to the room 52 increases due to the synergistic effects of the heating operation, the outside air temperature, the human body, etc., and the room temperature Tr rises.
 これにより、外気温度Toがピークとなる午後1時付近の数時間において、室内温度Trが冷房設定温度Tscを上回る場合がある。この場合、室内温度Trを冷房設定温度Tscまで低下させるために、空気調和機10は冷房運転を実行する。図中の領域k2は、冷房運転が実行される時間帯に対応している。 As a result, the room temperature Tr may exceed the cooling set temperature Tsc for several hours around 1:00 pm when the outside air temperature To peaks. In this case, the air conditioner 10 performs cooling operation in order to lower the room temperature Tr to the cooling set temperature Tsc. A region k2 in the figure corresponds to the time period during which the cooling operation is performed.
 上記冷房運転の実行中、外気温度Toが徐々に低下して室内52に入ってくる熱量が減少する。また、日射量Siが徐々に減少して室内52に入ってくる熱量が減少する。冷房運転、外気温度および日射量の相乗的な作用によって室内52から取り除かれる熱量が増加し、室内温度Trを低下させる。コントローラ20は、外気温度Toおよび日射量Siに応じて冷房抑制率Rcsを算出し、算出された冷房抑制率Rcsを用いて冷水二方弁34の開度指令Vc*を補正する。 During the execution of the cooling operation, the outside air temperature To gradually decreases and the amount of heat entering the room 52 decreases. Also, the amount of solar radiation Si gradually decreases, and the amount of heat entering the room 52 decreases. The amount of heat removed from the room 52 increases due to the synergistic action of the cooling operation, the outside air temperature, and the amount of solar radiation, thereby lowering the room temperature Tr. The controller 20 calculates the cooling suppression rate Rcs according to the outside air temperature To and the amount of solar radiation Si, and corrects the opening command Vc* of the cold water two-way valve 34 using the calculated cooling suppression rate Rcs.
 図5には、冷房運転中の時刻tcにおける外気温度Toから算出される抑制率Rc1(tc)および、冷房運転終了直前の時刻tdにおける外気温度Toから算出される抑制率Rc1(td)が示されている。図6には、時刻tcにおける日射量Siから算出される抑制率Rc2(tc)および、時刻tdにおける日射量Siから算出される抑制率Rc2(td)が示されている。 FIG. 5 shows the suppression rate Rc1(tc) calculated from the outside air temperature To at time tc during the cooling operation and the suppression rate Rc1(td) calculated from the outside air temperature To at time td immediately before the end of the cooling operation. It is FIG. 6 shows the suppression rate Rc2(tc) calculated from the solar radiation amount Si at time tc and the suppression rate Rc2(td) calculated from the solar radiation amount Si at time td.
 コントローラ20は、Rc1(tc)およびRc2(tc)を乗算して、時刻tcにおける冷房抑制率Rcs(tc)を算出する。コントローラ20は、Rc1(td)およびRc2(td)を乗算して、時刻tdにおける冷房抑制率Rcs(td)を算出する。Rc1(tc)>Rc1(td)であり、Rc2(tc)>Rc2(td)であるため、Rcs(tc)>Rcs(td)となる。冷房運転中、外気温度Toの低下および日射量Siの減少に従って冷房抑制率Rcsが減少することにより、冷水コイル32への熱媒体の供給量が徐々に減少する。したがって、室内52から取り除かれる熱量が徐々に減少し、冷房が過剰となることを抑制することができる。また、暖房運転へ移行したときの暖房負荷を低減することができる。この結果、冷房運転および当該冷房運転に続いて実行される暖房運転における空気調和機10の消費エネルギーを低減することができる。 The controller 20 multiplies Rc1(tc) and Rc2(tc) to calculate the cooling suppression rate Rcs(tc) at time tc. Controller 20 multiplies Rc1(td) and Rc2(td) to calculate cooling suppression rate Rcs(td) at time td. Since Rc1(tc)>Rc1(td) and Rc2(tc)>Rc2(td), Rcs(tc)>Rcs(td). During the cooling operation, the cooling suppression rate Rcs decreases as the outside air temperature To decreases and the amount of solar radiation Si decreases, so that the amount of heat medium supplied to the chilled water coil 32 gradually decreases. Therefore, the amount of heat removed from the room 52 gradually decreases, and excessive cooling can be suppressed. Also, the heating load can be reduced when shifting to the heating operation. As a result, it is possible to reduce the energy consumption of the air conditioner 10 in the cooling operation and in the heating operation that follows the cooling operation.
 <その他の構成例>
 上述した実施の形態では、暖房主体期間における冷房抑制率Rcsおよび冷房主体期間における暖房抑制率Rhsの各々を、外気温度Toおよび日射量Siに応じて算出する構成例について説明したが、外気温度Toおよび日射量Siの少なくとも一方に応じて冷房抑制率Rcsおよび暖房抑制率Rhsを算出する構成とすることによって、上述した本実施の形態と同様の効果を得ることができる。
<Other configuration examples>
In the above-described embodiment, the configuration example in which the cooling suppression rate Rcs in the heating main period and the heating suppression rate Rhs in the cooling main period are each calculated according to the outside air temperature To and the amount of solar radiation Si has been described. By adopting a configuration in which the cooling suppression rate Rcs and the heating suppression rate Rhs are calculated according to at least one of the amount of solar radiation Si and the amount of solar radiation Si, the same effects as in the present embodiment described above can be obtained.
 したがって、外気温度Toおよび日射量Siのいずれか一方に応じて冷房抑制率Rcsおよび暖房抑制率Rhsを算出する構成とすることも可能である。この場合においても、暖房主体運転期間中の冷房運転時には、100%を上限値として、外気温度Toの低下または日射量Siの減少に応じて値が小さくなるように冷房抑制率Rcsが算出される。これにより、冷房運転時および当該冷房運転に続いて実行される暖房運転における空気調和機10の消費エネルギーを低減することができる。 Therefore, it is also possible to adopt a configuration in which the cooling suppression rate Rcs and the heating suppression rate Rhs are calculated according to either one of the outside air temperature To and the amount of solar radiation Si. Even in this case, during the cooling operation during the heating main operation period, the cooling suppression rate Rcs is calculated so that the upper limit value is 100% and the value decreases as the outside air temperature To decreases or the solar radiation amount Si decreases. . This makes it possible to reduce the energy consumption of the air conditioner 10 during the cooling operation and during the heating operation that follows the cooling operation.
 また冷房主体運転期間中の暖房運転時には、100%を上限値として、外気温度Toの上昇または日射量Siの増加に応じて値が小さくなるように暖房抑制率Rhsが算出される。これにより、暖房運転時および当該暖房運転に続いて実行される冷房運転における空気調和機10の消費エネルギーを低減することができる。 Also, during the heating operation during the cooling-main operation period, the heating suppression rate Rhs is calculated so that the upper limit value is 100% and the value decreases as the outside air temperature To rises or the solar radiation amount Si increases. This makes it possible to reduce the energy consumption of the air conditioner 10 during the heating operation and during the cooling operation that follows the heating operation.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The present invention is indicated by the scope of claims rather than the above description, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
 10 空気調和機、11,580 吸込口、12,560 吹出口、14 給気ダクト、15 換気ダクト、16 還気ダクト、20 コントローラ、22 温湿度センサ、24 外気温センサ、26 日射量センサ、30 フィルタ、32 冷水コイル、33 冷水用循環路、34 冷水二方弁、36 温水コイル、37 温水用循環路、38 温水二方弁、40 加湿器、41 加湿用供給路、42 加湿二方弁、44 ファン、50 建物、52 室内、54 窓、56 天井、58 床面、70 入力部、72 主制御部、74 冷房制御部、76 暖房制御部、78 湿度制御部、80 ファン制御部、82,84,92,94 抑制率算出部、85,88,95,98 乗算器、86,96 切替部、100 空気調和システム、202 CPU、204 メモリ、206 I/O回路、740,760 減算器、742,762 制御器、744,764 補正部、Tr 室内温度、To 外気温度、Si 日射量、Tsc 冷房設定温度、Tsh 暖房設定温度、Vc*,Vh* 開度指令、Rcs 冷房抑制率、Rhs 暖房抑制率、Rc1,Rc2,Rh1,Rh2 抑制率。 10 air conditioner, 11,580 suction port, 12,560 air outlet, 14 supply air duct, 15 ventilation duct, 16 return air duct, 20 controller, 22 temperature and humidity sensor, 24 outside temperature sensor, 26 solar radiation sensor, 30 filter, 32 cold water coil, 33 cold water circulation path, 34 cold water two-way valve, 36 hot water coil, 37 hot water circulation path, 38 hot water two-way valve, 40 humidifier, 41 humidification supply path, 42 humidification two-way valve, 44 fan, 50 building, 52 room, 54 window, 56 ceiling, 58 floor, 70 input section, 72 main control section, 74 cooling control section, 76 heating control section, 78 humidity control section, 80 fan control section, 82, 84, 92, 94 suppression rate calculation unit, 85, 88, 95, 98 multiplier, 86, 96 switching unit, 100 air conditioning system, 202 CPU, 204 memory, 206 I/O circuit, 740, 760 subtractor, 742 , 762 Controller, 744, 764 Corrector, Tr Indoor temperature, To Outdoor temperature, Si Solar radiation amount, Tsc Cooling set temperature, Tsh Heating set temperature, Vc*, Vh* Opening command, Rcs Cooling suppression rate, Rhs Heating suppression rate, Rc1, Rc2, Rh1, Rh2 suppression rate.

Claims (9)

  1.  建物の室内の空気を調和する空気調和機と、
     前記室内に設置され、室内温度を検出する温度センサと、
     前記室内温度に応じて、前記空気調和機の冷房運転および暖房運転を切り替えるコントローラとを備え、
     前記空気調和機は、
     第1の熱媒体と前記空気との熱交換により前記空気を冷却する第1の熱交換器と、
     第2の熱媒体と前記空気との熱交換により前記空気を加熱する第2の熱交換器と、
     前記第1の熱媒体の循環路に設けられ、前記冷房運転時に開放される第1の弁と、
     前記第2の熱媒体の循環路に設けられ、前記暖房運転時に開放される第2の弁と、
     前記第1の熱交換器および前記第2の熱交換器に前記空気を通流させるファンとを含み、
     前記コントローラは、
     前記冷房運転時に、冷房設定温度と前記室内温度との第1の偏差に応じて前記第1の弁の開度を制御することにより、前記第1の熱交換器への前記第1の熱媒体の供給量を調整する冷房制御部と、
     前記暖房運転時に、暖房設定温度と前記室内温度との第2の偏差に応じて前記第2の弁の開度を制御することにより、前記第2の熱交換器への前記第2の熱媒体の供給量を調整する暖房制御部とを含み、
     前記冷房制御部は、前記暖房運転を主体に前記室内の空気を調和する暖房主体期間において前記冷房運転を行なう場合には、前記第1の熱交換器への前記第1の熱媒体の供給量を、前記第1の偏差に応じた前記第1の熱媒体の供給量よりも減少させ、
     前記暖房制御部は、前記冷房運転を主体に前記室内の空気を調和する冷房主体期間において前記暖房運転を行なう場合には、前記第2の熱交換器への前記第2の熱媒体の供給量を、前記第2の偏差に応じた前記第2の熱媒体の供給量よりも減少させる、空気調和システム。
    an air conditioner for conditioning the indoor air of the building;
    a temperature sensor installed in the room to detect the room temperature;
    a controller that switches between cooling operation and heating operation of the air conditioner according to the indoor temperature;
    The air conditioner is
    a first heat exchanger that cools the air by heat exchange between the first heat medium and the air;
    a second heat exchanger that heats the air by exchanging heat between the second heat medium and the air;
    a first valve provided in the circulation path of the first heat medium and opened during the cooling operation;
    a second valve provided in the circulation path of the second heat medium and opened during the heating operation;
    a fan that causes the air to flow through the first heat exchanger and the second heat exchanger;
    The controller is
    During the cooling operation, the first heat medium to the first heat exchanger is supplied to the first heat exchanger by controlling the degree of opening of the first valve according to the first deviation between the cooling set temperature and the indoor temperature. A cooling control unit that adjusts the supply amount of
    During the heating operation, the second heat medium is supplied to the second heat exchanger by controlling the degree of opening of the second valve according to a second deviation between the heating set temperature and the room temperature. and a heating control unit that adjusts the amount of supply of
    The cooling control unit supplies the first heat medium to the first heat exchanger when the cooling operation is performed in a heating main period in which the air in the room is adjusted mainly by the heating operation. is less than the supply amount of the first heat medium according to the first deviation,
    The heating control unit supplies the second heat medium to the second heat exchanger when the heating operation is performed in a cooling main period in which the air in the room is adjusted mainly by the cooling operation. is less than the supply amount of the second heat medium according to the second deviation.
  2.  外気温度を検出する外気温センサと、
     日射量を検出する日射量センサとをさらに備え、
     前記冷房制御部は、
     前記第1の偏差を入力とする制御演算によって、前記第1の弁に対する第1の開度指令を生成する第1の制御器と、
     前記暖房主体期間には、前記外気温度および前記日射量の少なくとも一方に基づいて、前記第1の開度指令を補正する第1の補正部を含む、請求項1に記載の空気調和システム。
    an outside air temperature sensor that detects the outside air temperature;
    Further comprising a solar radiation sensor that detects the amount of solar radiation,
    The cooling control unit is
    a first controller that generates a first degree-of-opening command for the first valve by a control calculation with the first deviation as an input;
    2. The air conditioning system according to claim 1, further comprising a first correction unit that corrects said first degree-of-opening command based on at least one of said outdoor temperature and said amount of solar radiation during said main heating period.
  3.  前記第1の補正部は、前記第1の制御器により生成される前記第1の開度指令に冷房抑制率を乗算することにより、前記第1の開度指令を補正するように構成され、
     前記冷房抑制率は、100%を上限値として、前記外気温度の低下または前記日射量の減少に従って、値が小さくなるように算出される、請求項2に記載の空気調和システム。
    The first correction unit is configured to correct the first opening command by multiplying the first opening command generated by the first controller by a cooling suppression rate,
    3. The air conditioning system according to claim 2, wherein said cooling suppression rate is calculated such that the upper limit value is 100% and the value decreases as the outdoor temperature decreases or the amount of solar radiation decreases.
  4.  前記第1の補正部は、前記外気温度に応じて算出される第1の抑制率と、前記日射量に応じて算出される第2の抑制率とを乗算することにより、前記冷房抑制率を算出するように構成され、
     前記第1の抑制率は、100%を上限値として、前記外気温度が低下するに従って値が小さくなるように算出され、
     前記第2の抑制率は、100%を上限値として、前記日射量が減少するに従って値が小さくなるように算出される、請求項3に記載の空気調和システム。
    The first correction unit calculates the cooling suppression rate by multiplying a first suppression rate calculated according to the outside temperature by a second suppression rate calculated according to the amount of solar radiation. configured to calculate
    The first suppression rate is calculated so that the upper limit value is 100% and the value decreases as the outside temperature decreases,
    4. The air conditioning system according to claim 3, wherein said second suppression rate has an upper limit of 100% and is calculated such that the value decreases as said amount of solar radiation decreases.
  5.  前記第1の抑制率および前記第2の抑制率の各々は、0%より大きい下限値を有する、請求項4に記載の空気調和システム。 The air conditioning system according to claim 4, wherein each of said first suppression rate and said second suppression rate has a lower limit value greater than 0%.
  6.  外気温度を検出する外気温センサと、
     日射量を検出する日射量センサとをさらに備え、
     前記暖房制御部は、
     前記第2の偏差を入力とする制御演算によって、前記第2の弁に対する第2の開度指令を生成する第2の制御器と、
     前記冷房主体期間には、前記外気温度および前記日射量の少なくとも一方に基づいて、前記第2の開度指令を補正する第2の補正部を含む、請求項1に記載の空気調和システム。
    an outside air temperature sensor that detects the outside air temperature;
    Further comprising a solar radiation sensor that detects the amount of solar radiation,
    The heating control unit
    a second controller that generates a second opening degree command for the second valve by a control calculation using the second deviation as an input;
    2. The air conditioning system according to claim 1, further comprising a second correction unit that corrects said second opening command based on at least one of said outdoor temperature and said amount of solar radiation during said main cooling period.
  7.  前記第2の補正部は、前記第2の制御器により生成される前記第2の開度指令に暖房抑制率を乗算することにより、前記第2の開度指令を補正するように構成され、
     前記暖房抑制率は、100%を上限値として、前記外気温度の上昇または前記日射量の増加に従って、値が小さくなるように算出される、請求項6に記載の空気調和システム。
    The second correction unit is configured to correct the second opening command by multiplying the second opening command generated by the second controller by a heating suppression rate,
    7. The air conditioning system according to claim 6, wherein said heating suppression rate is calculated such that the upper limit value is 100% and the value decreases as the outdoor temperature increases or the amount of solar radiation increases.
  8.  前記第2の補正部は、前記外気温度に応じて算出される第3の抑制率と、前記日射量に応じて算出される第4の抑制率とを乗算することにより、前記暖房抑制率を算出するように構成され、
     前記第3の抑制率は、100%を上限値として、前記外気温度が上昇するに従って値が小さくなるように算出され、
     前記第4の抑制率は、100%を上限値として、前記日射量が増加するに従って値が小さくなるように算出される、請求項7に記載の空気調和システム。
    The second correction unit calculates the heating suppression rate by multiplying a third suppression rate calculated according to the outside air temperature by a fourth suppression rate calculated according to the amount of solar radiation. configured to calculate
    The third suppression rate is calculated so that the upper limit value is 100% and the value decreases as the outside temperature rises,
    8. The air conditioning system according to claim 7, wherein said fourth suppression rate has an upper limit of 100% and is calculated such that the value decreases as said amount of solar radiation increases.
  9.  前記第3の抑制率および前記第4の抑制率の各々は、0%より大きい下限値を有する、請求項8に記載の空気調和システム。 The air conditioning system according to claim 8, wherein each of said third suppression rate and said fourth suppression rate has a lower limit value greater than 0%.
PCT/JP2021/037000 2021-10-06 2021-10-06 Air conditioning system WO2023058158A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180102903.9A CN118043600A (en) 2021-10-06 2021-10-06 Air conditioning system
PCT/JP2021/037000 WO2023058158A1 (en) 2021-10-06 2021-10-06 Air conditioning system
JP2023552602A JP7415092B2 (en) 2021-10-06 2021-10-06 air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037000 WO2023058158A1 (en) 2021-10-06 2021-10-06 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2023058158A1 true WO2023058158A1 (en) 2023-04-13

Family

ID=85803317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037000 WO2023058158A1 (en) 2021-10-06 2021-10-06 Air conditioning system

Country Status (3)

Country Link
JP (1) JP7415092B2 (en)
CN (1) CN118043600A (en)
WO (1) WO2023058158A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260236A (en) * 1994-03-22 1995-10-13 Toyo Techno Corp:Kk Fuzzy air conditioning controller for hotel guest room
JP2001255035A (en) * 2000-03-14 2001-09-21 Sanyo Electric Co Ltd Air conditioner
JP2004125288A (en) * 2002-10-02 2004-04-22 Sanki Eng Co Ltd Air conditioning system
JP2009058176A (en) * 2007-08-31 2009-03-19 Hironori Takahashi Operation method for air conditioner
JP2010139162A (en) * 2008-12-11 2010-06-24 Daikin Ind Ltd Air conditioning system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7260236B1 (en) 2022-11-28 2023-04-19 大学共同利用機関法人情報・システム研究機構 Information processing device, information processing system, program and information processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260236A (en) * 1994-03-22 1995-10-13 Toyo Techno Corp:Kk Fuzzy air conditioning controller for hotel guest room
JP2001255035A (en) * 2000-03-14 2001-09-21 Sanyo Electric Co Ltd Air conditioner
JP2004125288A (en) * 2002-10-02 2004-04-22 Sanki Eng Co Ltd Air conditioning system
JP2009058176A (en) * 2007-08-31 2009-03-19 Hironori Takahashi Operation method for air conditioner
JP2010139162A (en) * 2008-12-11 2010-06-24 Daikin Ind Ltd Air conditioning system

Also Published As

Publication number Publication date
CN118043600A (en) 2024-05-14
JPWO2023058158A1 (en) 2023-04-13
JP7415092B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
US20190323717A1 (en) Control method for heating operation of air-conditioner
JP5375945B2 (en) Air conditioning system that adjusts temperature and humidity
JP7042731B2 (en) Air conditioning control system
EP2650617A1 (en) Ventilation and air-conditioning device
WO2007094774A1 (en) Energy efficient house ventilation
JP5612978B2 (en) Air conditioning system
JP2010019506A (en) Air conditioning control system, and supply air switching controller and air conditioning control method used for the same,
JP2012154596A (en) Air conditioning control device and method
JPH09303840A (en) Air conditioner
CN106152374A (en) The control method of indoor apparatus of air conditioner and indoor apparatus of air conditioner
CN110500731A (en) A kind of control method of air-conditioning system and system using the control method
WO2023058158A1 (en) Air conditioning system
JP6219107B2 (en) Air conditioning method and air conditioning system used in the air conditioning method
WO2018196577A1 (en) Air conditioner heating control method
KR102042771B1 (en) Ventilation control system
JP2017003205A (en) Energy-saving cooling method for air-conditioner and cooling control device
JP5730689B2 (en) Air conditioning operation control system
JP2018013282A (en) Air conditioning system and building
CN112460768B (en) Method for controlling air conditioning system and air conditioning system using the same
JP6188939B2 (en) Air conditioning system
JP2007078250A (en) Air conditioner
JP3548627B2 (en) Air conditioner
JPH0213750A (en) Airconditioning system control device
JPH0763392A (en) Controller for air conditioner
JP2000161685A (en) Hot air floor heating system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959900

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552602

Country of ref document: JP