WO2023057916A1 - Centrale proprioceptive pour simulateur de conduite - Google Patents

Centrale proprioceptive pour simulateur de conduite Download PDF

Info

Publication number
WO2023057916A1
WO2023057916A1 PCT/IB2022/059495 IB2022059495W WO2023057916A1 WO 2023057916 A1 WO2023057916 A1 WO 2023057916A1 IB 2022059495 W IB2022059495 W IB 2022059495W WO 2023057916 A1 WO2023057916 A1 WO 2023057916A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
seat
pivoting
display device
unit
Prior art date
Application number
PCT/IB2022/059495
Other languages
English (en)
Inventor
Philippe LOUBENS
Original Assignee
Geninvest
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geninvest filed Critical Geninvest
Publication of WO2023057916A1 publication Critical patent/WO2023057916A1/fr

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/04Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63GMERRY-GO-ROUNDS; SWINGS; ROCKING-HORSES; CHUTES; SWITCHBACKS; SIMILAR DEVICES FOR PUBLIC AMUSEMENT
    • A63G31/00Amusement arrangements
    • A63G31/16Amusement arrangements creating illusions of travel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • G09B9/12Motion systems for aircraft simulators
    • G09B9/14Motion systems for aircraft simulators controlled by fluid actuated piston or cylinder ram

Definitions

  • the present invention relates to a proprioceptive, immersive, adaptive and connected driving or steering unit, intended to generate proprioception effects in particular during acceleration, braking and cornering while driving a vehicle.
  • document WO2018185658A1 discloses a proprioceptive unit comprising mechanical guide hoops making it possible to move a seat for a user along curved trajectories.
  • It relates more particularly to a new dynamic unit capable of supporting any type of seat or cabin capable of receiving one or more drivers or pilots, and providing gravitational accelerations in a particularly effective, reliable and compact manner using particular combinations of displacements.
  • a proprioceptive unit comprising a first structure carrying a seat or cabin oriented in a front/rear direction, a pivoting connection about a horizontal axis between the first structure and a second structure, the second structure being deformable according to the geometry of a deformable isosceles trapezium between said pivoting connection and a base of the second structure, and a guide means for moving the base along a forward/backward linear path on a support, a first actuator for controlling the displacement in pivoting of the first structure with respect to the second structure, a second actuator for controlling the deformation of the second structure, and a third actuator for controlling the movement in translation of the second structure relative to the support, and coordinated control means of the first, second and third actuators.
  • the plant optionally includes the following additional characteristics, taken individually or in any combination that the person skilled in the art will apprehend as being technically compatible with each other:
  • the isosceles trapezoid determining the deformation geometry of the second structure has a vertex whose length is between 60 and 85% of the length of the base, and side arms whose length is between 55 and 75% of the length from the base.
  • the first actuator comprises a jack operating between points of the first structure and of the second structure remote from said pivoting connection.
  • the second actuator comprises a jack operating between opposite regions of the deformable isosceles trapezium.
  • the pivoting connection between the first and second structures is located at a location located lower than one region of the seat or cabin where the head of the user is intended to be located, and the coordinated control means are capable of controlling the first actuator and the third actuator such that horizontal displacement of said region is minimized.
  • control unit also includes a device for displaying a virtual environment for a user installed in the seat or cabin.
  • the display device comprises at least one screen attached to a movable support, and a device for controlling the movement of the display device according to the movement of the seat or cabin.
  • control unit also includes a masking screen of the real environment around the control unit and the display device.
  • a simulation system in particular driving simulation, is also proposed, comprising a proprioceptive unit as defined above, sensor means for detecting driving actions by a user installed in the unit, a display device for the user , and a control device responding to the signals supplied by the sensor means to control in a coordinated manner a dynamic scene represented by the display device and the movements of the plant using its actuators.
  • Figs. 1A and 1B are respectively a side view and a front view of a proprioceptive unit according to the invention, in a neutral position,
  • Figs. 2A-2B to 6A-6B are respectively side and front views of the plant of Figs. 1A and 1B, in positions displaced from the neutral position,
  • Figs. 7A to 7H illustrate different postures of the unit for different commands at the level of two actuators of the unit
  • Fig. 8 represents a superposition of different postures of the plant to show a certain geometric property.
  • a proprioceptive, immersive, adaptive and connected control unit has been represented in an initial state or neutral position.
  • the longitudinal X, transverse Y and vertical Z directions are illustrated in these figures.
  • the control unit comprises an upper part 100 comprising a platform 110 carrying a driving position 120 comprising a seat 122 and control elements, here a block 124 comprising a steering wheel 125 and pedals 126. These elements are connected to appropriate sensors, known way.
  • the upper part 100 is carried by a mobile intermediate structure 200 which forms in cross section a deformable isosceles trapezium 220, this structure comprising a connection 210 pivoting about an axis parallel to Y between an upper region 221 of the trapezium and the platform 110, while a jack 230 comprising a jack body 231 and a jack rod 232 operates between said upper region 221 and the platform 110, being connected thereto according to pivoting connections with axes parallel to the transverse axis Y, to control the pivoting of said platform 110 and therefore of the driving position 120 as will be seen in detail below.
  • a mobile intermediate structure 200 which forms in cross section a deformable isosceles trapezium 220, this structure comprising a connection 210 pivoting about an axis parallel to Y between an upper region 221 of the trapezium and the platform 110, while a jack 230 comprising a jack body 231 and a jack rod 232 operates between said upper region 221 and the platform 110
  • the two side arms of the trapezoid 220 are designated by the references 222 and 223 in Figure 1B. Its base is designated by the reference 224. It will be noted that the stability of the intermediate structure with respect to a rotation around the transverse horizontal axis is preferably obtained by providing two deformable trapezoids, respectively front and rear, designated by the references 220av and 220ar. The deformability of the trapezoids is obtained by pivoting links around respective axes oriented along the horizontal longitudinal axis X (axis perpendicular to the drawing of Fig. 1 B).
  • the base 224 of the deformable trapezoid(s) is defined by a platform 230 of the intermediate structure, this platform carrying wheels 231 by which it can move with guidance on horizontal rails 310 carried by a fixed ground structure 300, the rails 310 being oriented in the front/rear or longitudinal direction X.
  • the deformation of the trapezoid(s) is ensured here by a cylinder 240 comprising a cylinder body 241 and a cylinder rod 242, which cylinder operates between the region of a lower corner of the deformable trapezium 220 and the region of the opposite upper corner, in being attached to the trapezoid in these regions with the possibility of pivoting along an axis oriented along the X direction.
  • the front-to-back movement of the structures 100 and 200 on the rails is ensured by a motor 250 or even a jack.
  • the control unit includes a control unit which receives as input the signals picked up at the level of the pedals and the steering wheel (accelerations, braking and changes of direction), in order, on the one hand, to control the progress of a performance in virtual reality either in a helmet virtual reality, either on one or more display screens surrounding the user in an immersive way, and on the other hand to control the movements of the driving position 120 by controlling the cylinders 230, 240 and the motor 250 to apply to the body of the user the corresponding accelerations and orientations.
  • the jacks 230, 240 and the motor (or jack) 250 are of the electric type.
  • FIGS 2A, 2B to 6A, 6B show the control unit with different positions of the driving position 120.
  • the jack 240 has been actuated to lean the driving position to the left (relative to the direction of driving), which will generate for the user a lateral force to the left; this typically corresponds to the force experienced during a turn to the right; this effect is typically adjustable depending on the curvature of the turn and the speed at which it is taken.
  • the driving position 120 with the aid of the cylinder 230 is inclined so that the user is leaning forward, thus applying to the latter a force corresponding to that of braking.
  • the inclination varies in function of the braking force, and this effect can be combined with a displacement of the unit on the rails 310 using the motor 250, in particular if a frontal impact effect is desired.
  • Figs. 5A and 5B illustrate the inclination of the driving position 120 in the opposite direction, corresponding to a situation of acceleration of the vehicle, the inclination being controlled to be all the greater as strong acceleration is simulated.
  • movement along rails 310 can be applied by motor 250 to simulate a rear impact.
  • Figures 6A and 6B illustrate the case of braking in a bend, the driving position 120 being both leaned forwards and to the right, thanks to a combination of the actions of the cylinders 230 and 240.
  • the use of the deformation of an isosceles trapezoid makes it possible to prevent the user's head from crossing the axis of rotation of the seat at the initialization of the movement, this so that it resists the centrifugal force produced by this inclination.
  • the design of these trapezoids responds to achieve this result with relatively precise choices of the respective lengths of the base, the top and the side arms. In a particular example, these dimensions are 60 cm for the base, 50 cm for the top and 35 cm for the side arms. More generally, a length of between 60 and 85% of the length of the base is adopted for the top, and for the side arms a length of between 55 and 75% of the length of the base.
  • the seat while moving concomitantly, only pivots relative to its axis in the direction Y with masses balanced on either side, which makes it possible to limit the need for power of the two cylinders;
  • the position of the head is identified using sensors, for example external sensors fitted to a virtual reality helmet (sensors fitted in particular to a helmet commercially manufactured by HTC Company, Taipei, known as "Vive Pro", or again of any appropriate sensor in the case of images projected on screens, this position being used as a reference position for controlling the movements of the seat
  • the control unit systematically and automatically compensates for the longitudinal displacement of the head procured by the rotation of the seat by performing an opposite displacement of the same value using the motor 250 along the rails 310, so in that it essentially does not advance or retreat (it only goes up or down with the body according to a straight line or a slight arc of a circle, as illustrated in Figs. 7A to 7H). It is this kinematics with tilting of the body that makes it possible to provide gravitational decelerations, even to the strongest, without feeling the major parasitic effect of the recoil of the pelvis or the kidneys that one feels with a movement of failover not corrected in this way.
  • Figs. 7A to 7H show for different settings of the jack 230 and the motor (or jack) 250, the distance taken horizontally between the head and the pivoting link 210, and the way in which the upper body moves tangentially to an arc of a circle vertical.
  • the setback distance of the seat relative to its axis of rotation 210 preferably of the order of 550 to 600 mm depending on the size and position of the user, makes it possible to provide without parasitic effect, by simple rotation at the level of the pivoting connection 210 between the structures 100 and 200, an upward or downward acceleration creating a very realistic lifting and falling effect of the seat in the event of the vehicle taking off due to a speed bump or crossing a speed bump, d a median or sidewalk curb.
  • Figs. 7A (neutral position) and 7B to 7F show that by tilting the structure 100 forward from different angles while moving back all of the structures 100 and 200 from corresponding determined distances, the user's head (here more precisely the headrest of the seat 122) does not undergo any component of horizontal displacement, whereas different braking intensities are simulated (different tilting angles of the structure 100).
  • Figs. 7G and 7H show the same effect for two tilts of the 100 structure backwards, simulating two levels of acceleration without the user's head experiencing substantial horizontal displacement.
  • N panoramic display screens typically three screens
  • suitable inclinations typically three screens
  • the control unit incorporates a telescopic arm with movements controlled in synchronism with those of the driving position and supporting the screens, this arm being mounted on a fixed support, for example on the ceiling of a room in which is installed the central.
  • the support structure of the screens then advantageously incorporates a veil pivoting at its two ends on its horizontal axis so as to conceal, for the various possible positions of the seat, the visual space corresponding to the terrestrial reference, and to avoid the effects of nausea for the driver.
  • the arm When stationary, the arm can advantageously be deployed in the "lecturer" position to project the driving routes of the students in turn during the feedback and discussion sessions by the educator, with the veil in the anti-reflective position and acting as a sound box above the screens.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Control Devices (AREA)

Abstract

Descriptif Une centrale proprioceptive comprenant une première structure portant un siège ou cabine orienté dans une direction avant/arrière, une liaison pivotante autour d'un axe horizontal entre la première structure et une deuxième structure, la deuxième structure étant déformable selon la géométrie d'un trapèze isocèle déformable entre ladite liaison pivotante et une base de la deuxième structure, et un moyen de guidage pour déplacer la base selon un trajet linéaire avant/arrière sur un support. Un premier actionneur commande le déplacement en pivotement de la première structure par rapport à la deuxième structure, un deuxième actionneur commande la déformation de la deuxième structure, et un troisième actionneur commande le déplacement en translation de la deuxième structure par rapport au support. Elle comprend enfin des moyens de commande coordonnée des premier, deuxième et troisième actionneurs. Application aux simulateurs de conduite ou de pilotage de véhicules.

Description

Titre
Centrale proprioceptive pour simulateur de conduite
Domaine de l’invention
La présente invention concerne une centrale de conduite ou de pilotage proprioceptive, immersive, adaptative et connectée, destinée à générer des effets de proprioception notamment lors d’accélérations, de freinages et de virages lors de la conduite d’un véhicule.
Etat de la technique
On connaît par exemple par le document WO2018185658A1 une centrale proprioceptive comprenant des arceaux de guidage mécanique permettant de déplacer un siège pour un utilisateur selon des trajectoires incurvées.
Dans une telle centrale il devient également possible de supprimer les arceaux de support mécanique du siège qui existaient dans l’art antérieur et notamment dans le document, les accélérations étant ici créées grâce au pilotage électronique de mouvements indépendants.
Résumé de l’invention
Elle concerne plus particulièrement une nouvelle centrale dynamique pouvant supporter tout type de siège ou cabine pouvant recevoir un ou des conducteurs ou pilotes, et procurant de façon particulièrement efficace, fiable et compacte des accélérations gravitationnelles à l'aide de combinaisons particulières de déplacements.
On propose à cet effet selon un premier aspect une centrale proprioceptive comprenant une première structure portant un siège ou cabine orienté dans une direction avant/arrière, une liaison pivotante autour d’un axe horizontal entre la première structure et une deuxième structure, la deuxième structure étant déformable selon la géométrie d’un trapèze isocèle déformable entre ladite liaison pivotante et une base de la deuxième structure, et un moyen de guidage pour déplacer la base selon un trajet linéaire avant/arrière sur un support, un premier actionneur pour commander le déplacement en pivotement de la première structure par rapport à la deuxième structure, un deuxième actionneur pour commander la déformation de la deuxième structure, et un troisième actionneur pour commander le déplacement en translation de la deuxième structure par rapport au support, et des moyens de commande coordonnée des premier, deuxième et troisième actionneurs.
La centrale comprend facultativement les caractéristiques additionnelles suivantes, prises individuellement ou en toutes combinaisons que la personne du métier appréhendera comme étant techniquement compatibles entre elles :
* le trapèze isocèle déterminant la géométrie de déformation de la deuxième structure possède un sommet dont la longueur est comprise entre 60 et 85 % de la longueur de la base, et des bras latéraux dont la longueur est comprise entre 55 et 75 % de la longueur de la base.
* le premier actionneur comprend un vérin opérant entre des points de la première structure et de la deuxième structure éloignés de ladite liaison pivotante.
* le deuxième actionneur comprend un vérin opérant entre des régions opposées du trapèze isocèle déformable.
* la liaison pivotante entre les première et deuxième structure est située en un emplacement situé plus bas que l’une région du siège ou cabine où la tête de l’utilisateur est destinée à être située, et les moyens de commande coordonnée sont aptes à commander le premier actionneur et le troisième actionneur de telle manière qu’un déplacement horizontal de ladite région soit minimisé.
* la centrale comprend en outre un dispositif d’affichage d’un environnement virtuel pour un utilisateur installé dans le siège ou cabine.
* le dispositif d’affichage comprend au moins un écran assujetti à un support déplaçable, et un dispositif de commande du déplacement du dispositif d’affichage en fonction du déplacement du siège ou cabine.
* la centrale comprend en outre un écran de masquage de l’environnement réel autour de la centrale et du dispositif d’affichage. On propose également un système de simulation, notamment simulation de conduite, comprenant une centrale proprioceptive telle que définie ci-dessus, des moyens capteurs pour détecter des actions de conduite par un utilisateur installé dans la centrale, un dispositif d’affichage pour l’utilisateur, et un dispositif de commande répondant aux signaux fournis par les moyens capteurs pour commander de façon coordonnée une scène dynamique représentée par le dispositif d’affichage et les déplacements de la centrale à l’aide de ses actionneurs.
Brève description des dessins
D’autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d’exemple non limitatif et faite en référence aux dessins annexés.
Sur les dessins :
- les Figs. 1A et 1 B sont respectivement une vue de côté et une vue de face d’une centrale proprioceptive selon l’invention, dans une position neutre,
- les Figs. 2A-2B à 6A-6B sont respectivement des vues de côté et de face de la centrale des Figs. 1A et 1 B, dans des positions déplacées par rapport à la position neutre,
- les Figs. 7A à 7H illustrent différentes postures de la centrale pour différentes commandes au niveau de deux actionneurs de la centrale, et
- la Fig. 8 représente une superposition de différentes postures de la centrale pour en montrer une certaine propriété géométrique.
Description détaillée de forme de réalisation préférées
On notera à titre préliminaire que d’une figure à l’autre, des éléments ou parties identiques ou similaires sont désignés dans la mesure du possible par les mêmes signes de référence, et ne seront pas décrits à chaque fois.
En référence tout d’abord aux Figs. 1A et 1 B, on a représenté une centrale de conduite proprioceptive, immersive, adaptative et connectée dans un état initial ou position neutre. Les directions longitudinale X, transversale Y et verticale Z sont illustrées sur ces figures.
La centrale comprend une partie supérieure 100 comprenant une plateforme 110 portant un poste de conduite 120 comprenant un siège 122 et des éléments de commande, ici un bloc 124 comportant un volant 125 et des pédales 126. Ces éléments sont reliés à des capteurs appropriés, de façon connue en soi.
La partie supérieure 100 est portée par une structure intermédiaire mobile 200 qui forme en section transversale un trapèze isocèle déformable 220, cette structure comprenant une liaison 210 pivotante autour d’un axe parallèle à Y entre une région supérieure 221 du trapèze et la plateforme 110, tandis qu’un vérin 230 comprenant un corps de vérin 231 et une tige de vérin 232 opère entre ladite région supérieure 221 et la plateforme 110, en y étant relié selon des liaisons pivotantes d’axes parallèles à l’axe transversal Y, pour commander le pivotement de ladite plateforme 110 et donc du poste de conduite 120 comme on le verra en détail plus loin.
Les deux bras latéraux du trapèze 220 sont désignés par les références 222 et 223 sur la Figure 1B. Sa base est désignée par la référence 224. On notera que la stabilité de la structure intermédiaire par rapport à une rotation autour de l’axe horizontal transversal est obtenue de préférence en prévoyant deux trapèzes déformables, respectivement avant et arrière, désignés par les références 220av et 220ar. La déformabilité des trapèzes est obtenue par des liaisons pivotantes autour d’axes respectifs orientés selon l’axe longitudinal horizontal X (axe perpendiculaire au dessin de la Fig. 1 B).
La base 224 du ou des trapèzes déformables est définie par une plateforme 230 de la structure intermédiaire, cette plateforme portant des roues 231 par lesquelles elle peut se déplacer avec guidage sur des rails horizontaux 310 portés par une structure au sol fixe 300, les rails 310 étant orientés dans la direction avant/arrière ou longitudinale X. La déformation du ou des trapèzes est assurée ici par un vérin 240 comprenant un corps de vérin 241 et une tige de vérin 242, vérin qui opère entre la région d’un coin inférieur du trapèze déformable 220 et la région du coin supérieur opposé, en étant attaché au trapèze dans ces régions avec possibilité de pivotement selon un axe orienté selon la direction X.
La déplacement avant arrière des structures 100 et 200 sur les rails est assuré par un moteur 250 ou encore un vérin.
La centrale comprend une unité de commande qui reçoit en entrée les signaux captés au niveau des pédales et du volant (accélérations, freinages et changements de direction), pour d’une part commander le déroulement d’une représentation en réalité virtuelle soit dans un casque de réalité virtuelle, soit sur un ou plusieurs écrans d’affichage entourant l’utilisateur de façon immersive, et d’autre part pour commander les déplacements du poste de conduite 120 par commande des vérins 230, 240 et du moteur 250 pour appliquer au corps de l’utilisateur les accélérations et orientations correspondantes.
De préférence, les vérins 230, 240 et le moteur (ou vérin) 250 sont de type électrique.
Les Figures 2A, 2B à 6A, 6B représentent la centrale avec différentes positions du poste de conduite 120.
Sur les figures 2A et 3B, le vérin 240 a été actionné pour pencher le poste de conduite vers la gauche (par rapport au sens de la conduite), ce qui va générer pour l’utilisateur une force latérale vers la gauche ; ceci correspond typiquement à la force subie lors d’un virage vers la droite ; cet effet est ajustable typiquement en fonction de la courbure du virage et de la vitesse à laquelle il est pris.
Sur les Figures 3A et 3B, le poste de conduite est penché du côté opposé.
Sur les Figs. 4A et 4B, le poste de conduite 120 à l’aide du vérin 230 est incliné pour que l’utilisateur soit penché vers l’avant, appliquant ainsi à ce dernier une force correspondant à celle d’un freinage. L’inclinaison varie en fonction de la force de freinage, et cet effet peut être combiné à un déplacement de la centrale sur les rails 310 à l’aide du moteur 250, notamment si un effet de choc frontal est recherché.
Les Figs. 5A et 5B illustrent l’inclinaison du poste de conduite 120 dans le sens inverse, correspondant à une situation d’accélération du véhicule, l’inclinaison étant pilotée pour être d’autant plus grande que l’une accélération forte est simulée. De même, un déplacement le long des rails 310 peut être appliqué par le moteur 250 pour simuler une choc arrière.
Les Figures 6A et 6B illustrent le cas d’un freinage en virage, le poste de conduite 120 étant à la fois penché vers l’avant et vers la droite, grâce à une combinaison des actions des vérins 230 et 240.
On comprend qu’en combinant de façon judicieuse les commandes au niveau des vérins 230, 240 et du moteur (ou vérin) 250, on peut réaliser de très nombreux effets de proprioception, en minimisant les effets néfastes lorsque liés notamment au déplacement de la tête en translation.
A ce sujet, on notera que le recours à la déformation d’un trapèze isocèle permet, d’éviter que la tête de l’utilisateur ne franchisse l'axe de rotation du siège à l'initialisation du mouvement, ceci de façon qu'elle résiste à la force centrifuge produite par cette inclinaison. La conception de ces trapèzes répond pour arriver à ce résultat à des choix relativement précis des longueurs respectives de la base, du sommet et des bras latéraux. Dans un exemple particulier, ces dimensions sont de 60 cm pour la base, de 50 cm pour le sommet et de 35 cm pour les bras latéraux. Plus généralement, on adopte pour le sommet une longueur comprise entre 60 et 85 % de la longueur de la base, et pour les bras latéraux une longueur comprise entre 55 et 75 % de la longueur de la base.
On observe par ailleurs que la rotation du poste de conduite 120 par rapport à la structure 200 autour de l’axe s’étendant selon la direction Y (liaison 210) peut s’effectuer à la base du siège 122 comme illustré ou en tout autre emplacement approprié, étant noté que la combinaison d’un pivotement vers l’avant ou vers l’arrière et d’une translation le long des rails 310 pourra être optimisé en fonction des signaux délivrés par des capteurs de position équipant le casque de réalité virtuelle au moment où le pilote s'en équipe.
Par rapport à un déplacement du poste de conduite sur des arceaux comme illustré dans le document WO2018185658A1 , la cinématique obtenue grâce à la déformation, dans un plan transversal YZ, d’un trapèze isocèle déformable, apporte plusieurs avantages :
- pour un même déplacement latéral, elle permet d'augmenter significativement l'angle d'inclinaison, ce qui permet de ressentir une quantité d'accélération supérieure pour un déplacement latéral donné,
- elle facilite la tenue et donc le guidage du poste de conduite, la conception et la réalisation de celui-ci étant plus complexes, et sa stabilité plus délicate, lorsqu’il doit rouler sur des arceaux,
- enfin elle évite, lors des inclinaisons autour d’un axe parallèle à la direction Y (typiquement en cas d’accélérations/freinages violents), d’avoir à faire remonter le poste de conduite le long des arceaux, ce qui nécessiterait des moteurs beaucoup plus puissants pour vaincre la force de gravité et le recours à des systèmes d’équilibrage des masses en mouvement qui seraient lourds, complexes et pas toujours fiables,
- au contraire, dans la présente invention le siège ne fait, tout en se déplaçant concomitamment, que pivoter par rapport à son axe selon la direction Y avec des masses équilibrées de part et d’autre, ce qui permet de limiter le besoin de puissance des deux vérins ;
- elle permet néanmoins de réduite au minimum les déplacements de la tête du conducteur, ceci reposant sur deux actions de pilotage des mouvements :
1) lors de l’installation du conducteur, la position de la tête (en fait de l’oreille interne) est repérée à l’aide de capteurs, par exemple des capteurs externes équipant un casque de réalité virtuelle (capteurs équipant notamment un casque du commerce fabriqué par la société HTC, Taipei, connu sous la dénomination « Vive Pro », ou encore de tout capteur approprié en cas d’images projetées sur écrans, cette position étant utilisée comme position de référence pour la commande des mouvements du siège
2) ensuite, l’unité de commande réalise systématiquement et automatiquement une compensation du déplacement longitudinal de la tête procuré par la rotation du siège en réalisant un déplacement opposé de même valeur à l’aide du moteur 250 le long des rails 310, de façon à ce qu’essentiellement elle n’avance pas ou ne recule pas (elle ne fait en fait que monter ou descendre avec le corps selon une droite ou un léger arc de cercle, comme illustré sur les Figs. 7A à 7H). C’est cette cinématique avec mise en inclinaison du corps qui permet de procurer de façon gravitationnelle des décélérations, jusqu’aux plus fortes, sans ressentir l’effet parasite majeur du recul du bassin ou des reins que l’on ressent avec un mouvement de basculement non corrigé de cette façon.
Les Figs. 7A à 7H montrent pour différents réglages du vérin 230 et du moteur (ou vérin) 250, la distance prise horizontalement entre la tête et la liaison pivotante 210, et la façon dont le haut du corps se déplace de façon tangentielle à un arc de cercle vertical. La distance de recul du siège par rapport à son axe de rotation 210, de préférence de l’ordre de 550 à 600 mm selon la taille et la position de l’utilisateur, permet de procurer sans effet parasite, par simple rotation au niveau de la liaison pivotante 210 entre les structures 100 et 200, une accélération ascensionnelle ou descendante créant un effet de soulèvement et de retombée du siège très réaliste en cas de décollage du véhicule dû à un dos d’âne ou de franchissement d’un ralentisseur, d’un terre-plein ou d’une bordure de trottoir.
A l’inverse, il est aussi possible, pour créer un effet d’accélération plus longue ou plus forte, de ne plus compenser tous les déplacements longitudinaux de la tête, pourvu que celle-ci avance alors à l’initialisation du mouvement. Ainsi les Figs. 7A (position neutre) et 7B à 7F montrent qu’en faisant basculer la structure 100 vers l’avant de différents angles tout en reculant l’ensemble des structures 100 et 200 de distances déterminées correspondantes, la tête de l’utilisateur (ici plus précisément l’appuie-tête du siège 122) ne subit aucune composante de déplacement horizontal, alors que différentes intensités de freinages sont simulées (angles de basculement différents de la structure 100). La Fig. 8 qui représente une superposition de nombreuses vues de la centrale dans différentes positions, montre clairement que la tête de l’utilisateur, préalablement repérée par le ou les capteurs du casque de réalité virtuelle ou autres comme précitée, et donc la position est prise en compte pour piloter les mouvements du vérin 230 et du moteur (ou vérin) 250, se déplace selon une trajectoire rectiligne généralement verticale V lors des changements de position exercés pour simuler une accélération ou un freinage.
Inversement, les Figs. 7G et 7H montrent le même effet pour deux inclinaisons de la structure 100 vers l’arrière, simulant deux niveaux d’accélération sans que la tête de l’utilisateur ne subisse un déplacement horizontal substantiel.
Comme on l’a indiqué plus haut, la centrale décrite ci-dessus peut être complétée par l'adjonction de N écrans d’affichage panoramiques (typiquement trois écrans) disposés côte-à-côte avec des inclinaisons adaptées, remplaçant le casque de réalité virtuelle.
Plutôt que d'incorporer ces écrans dans la structure support du pédalier et du volant, ce qui la déséquilibrerait, l'alourdirait, et créerait un encombrement latéral du simulateur consommateur d'espace, tout en obligeant au développement industriel d'un modèle spécifique, selon un autre aspect (non illustré), la centrale incorpore un bras télescopique à mouvements pilotés en synchronisme avec ceux du poste de conduite et supportant les écrans, ce bras étant monté sur un support fixe par exemple au plafond d’un local dans lequel est installée la centrale. La structure support des écrans incorpore alors avantageusement un voile pivotant à ses deux extrémités sur son axe horizontal de façon à occulter pour les différentes positions possibles du siège, l'espace visuel correspondant au référentiel terrestre, et éviter les effets de nausées du conducteur.
A l'arrêt, le bras peut avantageusement se déployer en position "conférencier" pour projeter à tour de rôle les parcours de conduite des élèves lors des sessions de restitution et d'échanges par l'éducateur, avec le voile en position anti-réfléchissante et faisant office de caisse de résonance phonique au-dessus des écrans.
Bien entendu, la présente invention n’est nullement limitée aux formes de réalisation décrites et représentées, mais la personne du métier saura y apporter de nombreuses variantes et modifications.
Elle s’applique à la simulation de conduite de véhicules, notamment véhicules terrestres à roues, plus particulièrement véhicules automobiles.

Claims

Revendications
1 . Centrale proprioceptive comprenant une première structure portant un siège ou cabine orienté dans une direction avant/arrière, une liaison pivotante autour d’un axe horizontal entre la première structure et une deuxième structure, la deuxième structure étant déformable selon la géométrie d’un trapèze isocèle déformable entre ladite liaison pivotante et une base de la deuxième structure, et un moyen de guidage pour déplacer la base selon un trajet linéaire avant/arrière sur un support, un premier actionneur pour commander le déplacement en pivotement de la première structure par rapport à la deuxième structure, un deuxième actionneur pour commander la déformation de la deuxième structure, et un troisième actionneur pour commander le déplacement en translation de la deuxième structure par rapport au support, et des moyens de commande coordonnée des premier, deuxième et troisième actionneurs.
2. Centrale selon la revendication 1 , caractérisé en ce que le trapèze isocèle déterminant la géométrie de déformation de la deuxième structure possède un sommet dont la longueur est comprise entre 60 et 85 % de la longueur de la base, et des bras latéraux dont la longueur est comprise entre 55 et 75 % de la longueur de la base.
3. Centrale selon la revendication 1 ou 2, dans laquelle le premier actionneur comprend un vérin opérant entre des points de la première structure et de la deuxième structure éloignés de ladite liaison pivotante.
3. Centrale selon la revendication 1 ou 2, dans laquelle le deuxième actionneur comprend un vérin opérant entre des régions opposées du trapèze isocèle déformable.
4. Centrale selon l’une des revendications 1 à 3, dans laquelle la liaison pivotante entre les première et deuxième structure est située en un emplacement situé plus bas que l’une région du siège ou cabine où la tête de l’utilisateur est destinée à être située, et les moyens de commande coordonnée sont aptes à commander le premier actionneur et le troisième actionneur de telle manière qu’un déplacement horizontal de ladite région soit minimisé.
5. Centrale proprioceptive selon l’une des revendications 1 à 4, comprenant en outre un dispositif d’affichage d’un environnement virtuel pour un utilisateur installé dans le siège ou cabine.
6. Centrale selon la revendication 5, dans laquelle le dispositif d’affichage comprend au moins un écran assujetti à un support déplaçable, et un dispositif de commande du déplacement du dispositif d’affichage en fonction du déplacement du siège ou cabine.
7. Centrale proprioceptive selon la revendication 6, comprenant en outre un écran de masquage de l’environnement réel autour de la centrale et du dispositif d’affichage.
8. Système de simulation, notamment simulation de conduite, comprenant une centrale proprioceptive selon l’une des revendications 1 à 7, des moyens capteurs pour détecter des actions de conduite par un utilisateur installé dans la centrale, un dispositif d’affichage pour l’utilisateur, et un dispositif de commande répondant aux signaux fournis par les moyens capteurs pour commander de façon coordonnée une scène dynamique représentée par le dispositif d’affichage et les déplacements de la centrale à l’aide de ses actionneurs.
PCT/IB2022/059495 2021-10-05 2022-10-05 Centrale proprioceptive pour simulateur de conduite WO2023057916A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2110491 2021-10-05
FR2110491 2021-10-05

Publications (1)

Publication Number Publication Date
WO2023057916A1 true WO2023057916A1 (fr) 2023-04-13

Family

ID=84083307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/059495 WO2023057916A1 (fr) 2021-10-05 2022-10-05 Centrale proprioceptive pour simulateur de conduite

Country Status (1)

Country Link
WO (1) WO2023057916A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619911A (en) * 1969-05-19 1971-11-16 Singer General Precision Motion system
US4887967A (en) * 1989-03-16 1989-12-19 Bernard Fried Racing Enterprises, Inc. High performance motorcycle simulator
FR2717289A1 (fr) * 1994-03-14 1995-09-15 Mediantsev Alexandre Siège-simulateur d'effets physiques.
WO2008020459A2 (fr) * 2006-08-18 2008-02-21 Zen Technologies Ltd. Système de plate-forme mobile
US20120029703A1 (en) * 2010-07-29 2012-02-02 Veltena Marinus C Movement simulator
WO2018185658A1 (fr) 2017-04-03 2018-10-11 Eurmeka Dispositif générateur dynamique et système de réalité virtuelle l'incorporant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619911A (en) * 1969-05-19 1971-11-16 Singer General Precision Motion system
US4887967A (en) * 1989-03-16 1989-12-19 Bernard Fried Racing Enterprises, Inc. High performance motorcycle simulator
FR2717289A1 (fr) * 1994-03-14 1995-09-15 Mediantsev Alexandre Siège-simulateur d'effets physiques.
WO2008020459A2 (fr) * 2006-08-18 2008-02-21 Zen Technologies Ltd. Système de plate-forme mobile
US20120029703A1 (en) * 2010-07-29 2012-02-02 Veltena Marinus C Movement simulator
WO2018185658A1 (fr) 2017-04-03 2018-10-11 Eurmeka Dispositif générateur dynamique et système de réalité virtuelle l'incorporant

Similar Documents

Publication Publication Date Title
FR2903658A1 (fr) Systeme de commandes de vol et de commande de direction au sol pour aeronef.
EP1899212B1 (fr) Commande de direction de véhicule sans liaison mécanique entre volant et roues directrices
FR2643502A1 (fr) Dispositif de commande a manche basculant, notamment pour aeronef, et systeme comportant un tel dispositif
FR2474619A1 (fr) Systeme mobile a trois ou quatre degres de liberte de mouvement
FR2883827A1 (fr) Commande de direction de vehicule sans liaison mecanique entre volant et roues directrices
WO2014122176A1 (fr) Mini-manche de commande électromagnétique à retour d'effort
EP2452329B1 (fr) Simulateur de parcours en fauteuil roulant
EP2392985B1 (fr) Pédalier pour jeu vidéo ou simulation de conduite
EP1317333B1 (fr) Dispositif d'equilibrage d'une force, a hautes performances
WO2019135056A1 (fr) Système de direction assistée de type steer by wire utilisant des actionneurs rendus transparents par l'utilisation de boucles d'asservissement locales en couple et/ou effort
WO2023057916A1 (fr) Centrale proprioceptive pour simulateur de conduite
WO2018185658A1 (fr) Dispositif générateur dynamique et système de réalité virtuelle l'incorporant
FR2984543A1 (fr) Equipement informatique comprenant une boule de designation et procede de pilotage de l'equipement informatique
EP3248868A1 (fr) Mécanisme de retour d'effort pour un minimanche de pilotage d'un aéronef, ainsi que dispositif de pilotage d'un aéronef, comportant un tel mécanisme
FR2903660A1 (fr) Systeme de commandes de vol electriques pour aeronef et siege l'incorporant
EP3692517B1 (fr) Dispositif de simulation de freinage pour simulateur et méthode associée
FR2903659A1 (fr) Systeme de commande de vol et de freinage au sol pour aeronef.
EP0642689B1 (fr) Dispositif de simulation d'effets physiques
EP0694896B1 (fr) Plate-forme mobile et son utilisation pour la réalisation d'une cabine de simulation
FR2706141A1 (fr) Dispositif de commande à retour d'effort synthétique.
WO2017125428A1 (fr) Equipement de pilotage par teleguidage d'un engin et procede de pilotage mis en oeuvre par ledit equipement
FR2717289A1 (fr) Siège-simulateur d'effets physiques.
WO2022195177A1 (fr) Navigation rotationnelle en environnement virtuel avec une référence visuelle
FR2878987A1 (fr) Interface haptique a cables
FR2877089A1 (fr) Dispositif de simulation de la direction d'un vehicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22801220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022801220

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022801220

Country of ref document: EP

Effective date: 20240506