WO2023057910A1 - Dispositivo disipador de energía hidrocinética - Google Patents
Dispositivo disipador de energía hidrocinética Download PDFInfo
- Publication number
- WO2023057910A1 WO2023057910A1 PCT/IB2022/059484 IB2022059484W WO2023057910A1 WO 2023057910 A1 WO2023057910 A1 WO 2023057910A1 IB 2022059484 W IB2022059484 W IB 2022059484W WO 2023057910 A1 WO2023057910 A1 WO 2023057910A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tapes
- tape
- volume
- connection points
- energy dissipating
- Prior art date
Links
- 230000001970 hydrokinetic effect Effects 0.000 title claims abstract description 65
- 239000000463 material Substances 0.000 claims description 26
- 239000012190 activator Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 244000005700 microbiome Species 0.000 claims description 4
- 239000010954 inorganic particle Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 230000000694 effects Effects 0.000 description 20
- 230000003628 erosive effect Effects 0.000 description 12
- 230000033001 locomotion Effects 0.000 description 8
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 6
- -1 polypropylene Polymers 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 241000195493 Cryptophyta Species 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000000116 mitigating effect Effects 0.000 description 4
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 4
- 235000014653 Carica parviflora Nutrition 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- 241000242757 Anthozoa Species 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000013528 metallic particle Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 241000842962 Apoda limacodes Species 0.000 description 1
- 241000237519 Bivalvia Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000238586 Cirripedia Species 0.000 description 1
- 241000243321 Cnidaria Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000238424 Crustacea Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000237852 Mollusca Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000243820 Polychaeta Species 0.000 description 1
- 241000238425 Polyplacophora Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XQBCVRSTVUHIGH-UHFFFAOYSA-L [dodecanoyloxy(dioctyl)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCCCCCC)(CCCCCCCC)OC(=O)CCCCCCCCCCC XQBCVRSTVUHIGH-UHFFFAOYSA-L 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- GEHJBWKLJVFKPS-UHFFFAOYSA-N bromochloroacetic acid Chemical compound OC(=O)C(Cl)Br GEHJBWKLJVFKPS-UHFFFAOYSA-N 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000020639 clam Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003000 extruded plastic Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000002650 laminated plastic Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K61/00—Culture of aquatic animals
- A01K61/70—Artificial fishing banks or reefs
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K61/00—Culture of aquatic animals
- A01K61/70—Artificial fishing banks or reefs
- A01K61/73—Artificial fishing banks or reefs assembled of components
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K61/00—Culture of aquatic animals
- A01K61/70—Artificial fishing banks or reefs
- A01K61/75—Artificial fishing banks or reefs floating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/10—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/10—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
- B32B3/12—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/28—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
- E02B3/06—Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
- E02B3/12—Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
- E02B3/12—Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor
- E02B3/14—Preformed blocks or slabs for forming essentially continuous surfaces; Arrangements thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N3/00—Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom
Definitions
- the present disclosure relates to kinetic energy dissipating devices.
- the present disclosure refers to a device for dissipating hydrokinetic energy in bodies of water, which allows mitigating coastal erosion due to marine currents, being a refuge for aquatic fauna and flora.
- Wave motion, water currents, and tidal movement patterns are known to cause erosion and migration of sediments on beaches and coastal regions.
- wave energy dissipation devices that are used to mitigate these erosive conditions.
- said wave energy dissipation devices include barriers made of stone or topdressing, wood, concrete or jetty-type installations, breakwaters or breakwaters.
- Other wave energy dissipation devices are made up of an artificial construction that imitates a natural reef. These “artificial reefs” are often made of concrete, steel, used tires, rubble, inflatable bladders, stone, or other materials.
- the devices used to mitigate coastal erosion are usually permanently installed on beaches and coastal areas.
- the long-term results of an installation of such devices is difficult to predict, taking into account the synergistic effects of a plurality of factors associated with oceanic conditions.
- a submerged artificial reef which is located on a base and comprises a tube made of a flexible material, which is divided by walls of a material flexible, into a series of compartments that extend the length of the tube.
- Said compartments are arranged in rows and columns so that the tube divided by the walls has a honeycomb structure, a first end being located of the tube at the base and a second end of the tube above the first end of the tube and under the water.
- some or all of the compartments may accommodate a filler material such that at least some of the compartments are adjacent to two or more other compartments filled with the filler material to support and be supported by the adjacent compartments.
- the artificial reef may be designed to dissipate wave action or to protect a shoreline, in which case it is preferable that all compartments be substantially filled with fill material. Conversely, where the artificial reef is designed to provide an area for the propagation of marine life, it is preferable that some or all of the compartments be only partially filled with the fill material to allow room for fish and other marine creatures.
- the tube is arranged on one of its sides on the seabed, so that the axes of the compartments are approximately parallel to the seabed.
- the tube is contracted at a central point by means of a flexible cord.
- Some of the compartments, particularly those on the seabed, are partially or completely filled with a fill material to hold the tube in position on the seabed.
- the artificial reef unit provides a habitat for marine life.
- the tube and partition walls may be made of any suitable flexible material, such as a co-extruded or biaxially extruded plastic material, a plastic mesh material, a plastic laminate, a metallic material or a textile or a material of paper or cardboard.
- document US20200208365A1 refers to a removable barrier and artificial reef system capable of mitigating erosion problems and wave energy and pequdic currents, improving biological growth and marine aquaculture, increasing carbon sequestration, providing power generation and improving favorable wave conditions for recreational use.
- the described system consists of an assembly of elongated and spaced members, such as a coil-shaped structure, that form a continuous structure to impede or harness the energy of waves, tides and water and current, and the movement of objects.
- the structure can reside on the floor of the marine environment, suspended or floating at any desirable depth from the surface.
- the structure is made up of a metal sheet in the form of a rolled strip, which is unrolled by means of two rollers to give it a spiral shape as it enters the body of water.
- the structure can also be fabricated from biocompatible non-metallic materials, including fiber and resin materials exempted or laminated for fabrication.
- document US20050115186A1 discloses a tubular structure made up of at least two helical elements that include at least four elongated segments arranged so as to form spirals that make a complete rotation around a common axis along the tubular structure.
- Said elements can be rigid or flexible according to the application where the structure is used and be made of materials such as fiberglass, carbon fiber, boron fiber, aramid fibers, thermoplastic materials such as polyester, polypropylene, or PVC, or materials such as wood or ceramics.
- an artificial reef is manufactured with various tubular structures that include at one end an element heavy enough to sink under the sea, for example, made of concrete, and the other end is kept free.
- Several structures can be linked together to form the artificial reef and made with ecological epoxy to allow the growth of organisms.
- the present disclosure is directed to a hydrokinetic energy dissipating device that comprises first and second flexible tapes where each tape has a lower edge and an upper edge, a first end and a second end, and a first side and a second side, where the first and second tapes face each other on opposite sides.
- the disclosed device also comprises a plurality of connection points arranged along the first and second tapes between the first end and second end of each tape on each of its faces, said connection points are separated, and connect the first tape with the second tape forming a first tape pair. Wherein a plurality of pairs of tapes are connected adjacently between the connection points; and wherein said plurality of pairs of ribbons form a volume having an outer edge and an inner edge.
- a plurality of cirri are connected to a plurality of through holes in at least one pair of ribbons of the plurality of ribbon pairs, increasing the surface area and volume of the hydrokinetic energy dissipating device.
- FIG. 1 A shows one embodiment of the hydrokinetic energy dissipating device, arranged on a seabed and configured to be an artificial reef.
- FIG. 1B shows a modality of the hydrokinetic energy dissipating device, arranged partially submerged, in a coastal zone, allowing the dissipation of energy from the waves that are directed in the direction of said coastal zone.
- FIG. 2 shows first and second straps of the hydrokinetic energy dissipating device, and a plurality of connection points between said first and second straps forming a first pair of straps.
- FIG. 3A shows a first pair of tapes of the hydrokinetic energy dissipating device, wherein said first pair of tapes comprises a plurality of through holes arranged in the first and second tapes.
- FIG.3B shows the first pair of tapes of FIG.3A, wherein said first pair of tapes comprises cirri connected to the plurality of holes in each tape.
- FIG.4 shows a plurality of pairs of tapes of FIG.3A, wherein said plurality of pairs of tapes are connected to each other by a plurality of connection points.
- FIG. 5 A shows a first ballast element, and a second ballast element, where said first ballast element and second ballast element are configured to join each other on one of their faces and form a ballast.
- FIG.5B shows the first or second tape of FIG.3A, where on one side of said tape the first ballast element is arranged, and on the opposite face of said tape the second ballast element is arranged, and where said ballast elements are connected to each other through the plurality of holes in said tape.
- FIG.6A shows a modality of the hydrokinetic energy dissipating device where a conduit-shaped volume is formed, joining a plurality of pairs of tapes, like the one in FIG.4.
- FIG. 6B shows a type of hydrokinetic energy dissipating device in which a total volume is formed that comprises a first volume that has a second volume internally arranged, where said volumes correspond to the volumes of FIG. 6A of different size.
- the present disclosure refers to a device for dissipation and/or transduction of hydrokinetic energy of masses of water.
- Said device forms a volume with a mesh-type pattern, made up of a plurality of ribbons connected to each other that dissipates the hydrokinetic energy of a body of water where it is located.
- Said device can be located at different depths below a water level and at different distances from a coast, where said depths and distances are selected according to the effect that is desired to be provided.
- this disclosure refers to a hydrokinetic energy dissipating device (10) comprising:
- first and second flexible strip (1,2) where each strip has a lower edge (la, 2a) and an upper edge (Ib, 2b), a first end (1c, 2c) and a second end (Id, 2d ), and a first face (le, 2e) and a second face (If, 2f), where the first and second tapes (1, 2) face each other on their opposite faces;
- connection points (a) arranged along the first and second bands (1, 2) between the first end (1c, 2c) and second end (Id, 2d) of each band (1, 2) on each of their faces, said connection points (a) are separated, and said plurality of connection points (a) connect the first tape (1) with the second tape (2) forming a pair of tapes (3);
- a plurality of pairs of tapes (3) are connected adjacently between the connection points (a), and wherein said plurality of pairs of tapes (3) form a volume having an outer edge and an inner edge.
- the movement of waves, marine currents and storms in coastal areas can have a negative impact on these regions by producing coastal erosion.
- Such erosion modifies the coastal ecosystems, which in the long term produces changes in the local flora and fauna and the hydrological conditions of the affected region.
- One of the purposes of this disclosure is to dissipate the hydrokinetic energy of the waves to reduce the force with which they impact the coast, so as to mitigate the erosion produced by waves and meteorological phenomena in coastal ecosystems. Said dissipation of hydrokinetic energy is achieved when the movement of sea currents is transferred to the plurality of pairs of belts (3) that form the volume of the device (10). By losing energy by moving the device (10), the current impacts the coast with less force.
- said device can also affect the sea currents that pass through it, depending on the depth at which the device is located and the location of said device. This can modify the temperatures of the sea surface, which can affect the reduction of meteorological phenomena such as hurricanes and storms.
- the hydrokinetic energy dissipation device in water masses also makes it possible to control sediments that affect marine ecosystems and human activities on the coasts.
- the first and second tapes (1, 2) are shown. Said tapes are connected to each other by means of a plurality of connection points (8). Of In fact said tapes are connected on their opposite faces, particularly between the face (If) of the first tape (1) and the face (2e) of the second tape (2).
- the plurality of connection points (a) hold together the first tape (1) and the second tape (2) forming the first pair of tapes (3).
- Said first pair of tapes (3) has a separation space between the first tape (1) and the second tape (2) in the middle of the connection points (a), so that in each pair of tapes (3) forms a mesh-like pattern along said pair of straps (3).
- connection points (a) are preferably equidistantly spaced to configure a homogeneous mesh-like pattern along said pair of straps (3).
- the distance between the connection points (a) can be variable depending on the application.
- a plurality of pairs of tapes (3) are shown, as illustrated in FIG.3A, said plurality of pairs of tapes (3) are adjacently connected to each other by the plurality of connection points (a) arranged along the first tape (1) and the second tape (2) of each of the pairs of tapes (3).
- the ribbons (1, 2) refer to flexible two-dimensional or three-dimensional elements, where a ribbon is selected from the group comprising: flat oblong ribbons , oblong tubular tapes, hoses, cords, or similar items known to a person of moderate knowledge.
- the first and second tapes (1, 2) are flexible hoses.
- said tapes (1, 2) are made of a material selected from the group comprising: organic polymers, vinyl organic polymers, non-vinyl organic polymers, inorganic polymers.
- the tapes (1, 2) are made of polyesters, polystyrenes, polypropylenes, polyamides, carbon fibers, glass fibers, polyurethane, and combinations thereof, or similar materials known to a person of ordinary skill.
- Said tapes (1, 2) are made of the aforementioned materials, where the manufacture of said tapes is selected from the group comprising: woven textile fibers, laminated monolithic sheets, tapes extracted tubulars, and combinations thereof, or similar manufactures known to a person of average skill.
- a volume is formed. Referring to FIG.2 and FIG.4., said volume is preferably formed by connecting the first face (le) of a first tape (1) of a first pair of tapes (3) with the second face (2f) of a second tape (2) of a second pair of tapes (3'). Where the first face (le) of the first tape (1) of the first pair of tapes (3), and the second face (2f) of a second tape (2) of a second pair of tapes (3') correspond to the two most distal faces among the plurality of pairs of tapes (3) connected adjacently. Said first face (le) of a first tape (1) of a first pair of tapes (3), and second face (2f) of a second tape (2) of a second pair of tapes (3') are connected by the plurality of connection points (a).
- said volume of the hydrokinetic energy dissipating device (10) in one embodiment has a shape similar to a sleeve, or a flexible tubular conduit with a longitudinal axis, wherein the ends of said flexible tubular conduit are open.
- Said volume has a surface, and said surface comprises an outer edge and an inner edge.
- the outer edge corresponds to the upper edges (Ib, 2b) and the inner edge corresponds to the lower edges (la, 2a).
- said volume is formed by folding the first face (le) of a first tape (1) of a first pair of tapes (3) in a clockwise direction with respect to the second face (2f) of a second tape ( 2) of a second pair of straps (3') around the longitudinal axis and connecting said first face (le) and said second face (2f).
- both the plurality of pairs of tapes (3) and the volume that is formed from said plurality of pairs of tapes (3) can be manufactured in a range of dimensions ranging from centimeters to kilometers, from according to application and location.
- the hydrokinetic energy dissipating device can have a total length from one meter to thousands of kilometers, when disposed in a body of water such as seas or lakes.
- the hydrokinetic energy dissipating device could also have a total length of a few centimeters for applications such as aquariums, tanks, or containers where laboratory tests are carried out. Therefore, the dimensions of length, width and volume of the hydrokinetic energy dissipating device and the elements that comprise it, can be whatever is required and do not limit its inventive concept.
- one of the technical effects of the volume formed by the hydrokinetic energy dissipating device is that it allows the movement of a mass of flowing water in any incident direction on said volume.
- said technical characteristic in combination with the flexible nature of said volume allows kinetic energy to be removed from the flowing mass by providing a physical obstruction in said flow.
- said volume modifies the flow patterns of a mass of water, changing the magnitude of the amount of movement of the mass of water, as well as its incidence on a coastal ecosystem, particularly, mitigating effects unwanted as erosion of beaches, bays, and coasts.
- said mother wave can reduce its amount of energy due to the effect of reciprocating motion or tilting that has said volume, so that said mother wave is reduced to some residual waves that carry a fraction of the hydrokinetic energy of the mother wave.
- Said technical effect has application in modalities whose purpose is to reduce the rate of erosion in a coastal ecosystem.
- the hydrokinetic energy dissipating device of the present disclosure has a plurality of modalities, among which are: hydrokinetic energy dissipating devices, and artificial reefs, said modality An artificial reef can serve as a refuge for aquatic species, in addition to serving as a substrate for the fixation of aquatic flora such as algae, and benthic species.
- the device (10) in a form of hydrokinetic energy dissipator is placed in a body of water so that said device (10) is found floating in the body of water.
- said arrangement is at a depth determined according to need.
- the device can be placed on the surface of the body of water, totally submerged at any point between the surface and the bottom of the body of water, or touching the seabed or aquifer where it is placed. the device.
- said device (10) in a modality of the hydrokinetic energy dissipating device where it is configured as an artificial reef, said device (10) is arranged submerged in the mass of water, so that said device (10 ) is anchored to the bottom of the body of water.
- said arrangement can be made at a depth defined according to the technical need and the local conditions of the application of said device (10).
- Said artificial reef modality works as a hydrokinetic energy dissipator where it also provides a configured structure to allow the precipitation of carbonates, mainly calcium carbonates, and other elements such as phosphorus, magnesium, sodium, or potassium, but not limited only to these. .
- Said carbonates precipitate and adhere to the surface of the volume that makes up said device (10).
- Said precipitation of carbonates modifies the flexible nature of the device (10) turning it into a rigid device. Particularly, when said device (10) is rigid, it allows the proliferation of aquatic fauna and flora on said device (10), becoming an artificial reef.
- the device (10) made up of a plurality of pairs of tapes (3), where said pairs of tapes (3) are flexible, and said pairs of tapes (3) are connected and form a flexible volume, provides an associated effect to a reduction of a space for storage and transportation prior to the installation of said device (10).
- said technical effect associated with having a flexible volume that forms the hydrokinetic energy dissipating device, particularly similarly a flexible tubular conduit where the ends of said flexible tubular conduit are open is that it can be transported while compressed or collapsed.
- said hydrokinetic energy dissipating device requires a storage space that is approximately between a 0.1% to 1% of the volume of said hydrokinetic energy dissipating device when installed in a body of water.
- the plurality of pairs of ribbons (3) are folded together in the same way as folding paper garlands do.
- the hydrokinetic energy dissipating device in an oceanic application modality, is connected to a plurality of buoys, where at least two buoys are each connected to the ends of said device ( 10), and preferably along the longitudinal axis of said device (10) a plurality of equidistantly spaced buoys are connected.
- the buoys are preferably selected from the group comprising: beacon buoys, life buoys, response buoys, weather buoys, inflatable buoys, and combinations thereof or similar buoys known to a person of ordinary skill.
- Said buoys are connected to the device (10) by means of elements from the group that includes: ropes, ties, chains, and combinations thereof or similar elements known by a person of moderate knowledge.
- One of the technical effects of connecting the device (10) to said buoys is that it makes it possible to maintain a floating depth of said device that is invariant over time, during the useful life of said device (10).
- said device (10) is located at a depth below the surface of the body of water, and at a distance from a determined coastline. Particularly the depth and the distance are maintained by the effect of the plurality of buoys and a plurality of anchorages.
- the anchors are fixing elements that are anchored to the bottom of the body of water, or arranged on said bottom.
- at least two anchors are connected, each one to the ends of the device (10), and preferably along the longitudinal axis of said device (10) a plurality of equidistantly spaced anchors are connected as seen in FIG.1A and FIG.1B.
- Said plurality of anchors is selected from the group comprising: dead weights, natural coral reefs, artificial reefs, anchors, and combinations thereof or similar elements known to a person of average skill.
- Said anchors are connected to the device (10) by means of ropes, ties, chains, and combinations of the same or similar elements known by a moderately versed person.
- said depth tends to remain invariant over time as long as there is no precipitation of organisms on the surface of the volume of the hydrokinetic energy dissipator, and the buoys and anchors continue to be connected to said device (10).
- a first volume (10a) and a second volume (10b) are formed, wherein said first volume (10a) has said second volume (10b) disposed therein. ), forming a hydrokinetic energy dissipating device (10), which is formed by the first volume (10a) and the second volume (10b).
- a first plurality of pairs of tapes (3) when connected form a first volume (10a) and a second plurality of pairs of tapes (3) when connected form a second volume (10b), where said first volume (10a) contains said second volume (10b) along a longitudinal axis of said volumes (10a, 10b).
- one of the technical effects that is achieved with the configuration described in the previous paragraph is that it allows the hydrokinetic energy dissipating effect to be increased in comparison with the modality in which the hydrokinetic energy dissipating device is formed solely by a volume.
- Said technical effect occurs because a total area of a total volume of the hydrokinetic energy dissipating device that contains two volumes of two devices (10) is greater compared to the modality in which the hydrokinetic energy dissipating device is formed only by one volume.
- the resultant of a fluid friction force between the mass of water and the total surface of the total volume increases with respect to the modality of a single volume, therefore the dissipating effect of said modality is greater.
- the hydrokinetic energy dissipating device (10) of the present invention can comprise a plurality of volumes, which are arranged one inside the other, and these can be more than two volumes. That is, the hydrokinetic energy dissipating device (10) illustrated in FIG. 6B could be inside another volume or accommodate another volume, so as to be configured, for example, as three coaxial ducts, or two coaxial ducts accommodating a third volume that rolls up on itself, etc.
- the first tape (1) and second tape (2) contain particles selected from the group comprising: organic, inorganic particles, and combinations thereof. Said particles contained in the first and second belts (1, 2) can be contained in the form of coating or as alloying agents in the composition of the material. According to the specific application of the hydrokinetic energy dissipating device, the mentioned particles are selected.
- said particles can be preferably metallic particles or nanoparticles from the group that includes: copper, copper sulfate, aluminum sulfate, sodium bisulfate , ethylenediaminetetraacetic acid, dioctyltin dilaurate (for its English name) or dotl (for its acronym in English), and combinations thereof known to a person of ordinary skill in the art.
- said particles can be preferably metallic particles or nanoparticles, for example, nickel.
- said particles promote the precipitation and fixation of carbonates on the surface of the hydrokinetic energy dissipating device.
- One of the technical effects of such particle inclusions is to allow the precipitation of carbonates and the subsequent fixation of living organisms, algae, microalgae, macroalgae, barnacles, organisms with exoskeletons, corals, clams, chitons, polychaetes, etc.
- the device (10) functions as an artificial reef where fish and other animals live and feed.
- first tape (1) and second tape (2) contain elements selected from the group comprising: biotic activators, biological activators, active microorganisms, and combinations thereof.
- one of the technical effects of including biotic activators in a modality of the hydrokinetic energy dissipating device configured as an artificial reef which includes organisms such as micro algae such as zooxanthellae is to allow the colonization of benthic organisms on the surface of the first and second strips (1, and 2). This occurs because the inclusion of biotic activators, biological activators, active microorganisms, or combinations thereof generates a biological layer or culture medium for microorganisms and macroorganisms.
- the hydrokinetic energy dissipating device particularly has a plurality of through holes (4) that are arranged on the faces of the first and second tapes (1, 2), between the connection points (a).
- said plurality of through holes (4) are arranged in each of the first and second belts (1, 2), in the area between the connection points (a).
- said plurality of holes forms homogeneous patterns.
- each hole has a shape selected from the group comprising: circles, ellipses, squares, triangles, diamonds, hexagons, and combinations thereof.
- said plurality of through holes (4) preferably forms a symmetrical pattern that is selected from the group comprising: Euclidean symmetries, reflection symmetries, central symmetries, helical symmetries.
- said symmetry pattern is arranged between the plurality of connection points (a) that connect the first and second straps (1, 2) of each pair of straps (3).
- said plurality of through holes (4) corresponds to an area comprised between a range of 20% to 50% of the area comprised between two connection points (a), where said connection points (a) are contiguous points.
- One of the technical effects of said plurality of through holes (4) consists in increasing the resultant of a fluid friction force on the surface of the volume that makes up the hydrokinetic energy dissipating device. This occurs because said through holes (4) allow connecting to the first or second straps (1, 2) of at least one pair of straps (3) of the device (10) a plurality of elements such as ballasts (5) (such as the observed in FIG.5A and FIG.5B) and/or some cirrus clouds (6) (like those observed in FIG. 3B) that increase the volume surface of the device (10). Particularly, the larger the surface of the volume of the device (10), the dissipative effect of hydrokinetic energy increases.
- said cirri (6) are preferably oblong or slender elements that can be analogous to tabs, bars, festoons, or any element that is arranged on a surface. or body and act as an appendage.
- the hydrokinetic energy dissipating device (10) where at least one ballast (5) formed by a first ballast element (5a) and a second ballast element (5b) are arranged on the first face (le, 2e) and the second face (If, 2f) of at least one pair of straps (3) respectively and said first and second ballast elements (5a, 5b) are connected to each other through the plurality of through holes (4) of each strap (1, 2) of said pair of tapes (3).
- a ballast (5) a first ballast element (5a) and a second ballast element (5b) are shown. Said first element and second ballast element (5a, 5b) are configured to engage the first faces (le, 2e) and the second faces (If, 2f) of the first and second belts (1, 2).
- the ballast (5) is formed when said first ballast element (5A) and said second ballast element (5b) are connected to each other through the plurality of through holes ( 4) that is on a first tape (1) or a second tape (2).
- a ballast (5) is arranged in each space comprised between two connection points (a) that are contiguous.
- said first and second ballast elements (5a, 5b) are two-dimensional or three-dimensional elements.
- the ballast (5) has an area slightly greater than the area between two adjacent connection points (a) on a first tape (1) or a second tape (2).
- Said weights (5) are preferably arranged in a plurality of pairs of belts (3), particularly in the first belt (1) and in the second belt (2).
- said ballasts (5) are arranged in a first tape (1) or a second tape (2) of a single pair of tapes (3).
- ballast (5) allows the hydrokinetic energy dissipating device (10) to be located at a determined depth based on the density of the local water, so that the inclusion of said ballasts (5) modifies the mass of the volume that makes up the hydrokinetic energy dissipating device (10).
- the ballasts (5) make it possible to increase the weight of the device (10), so that it can be installed at variable depths, depending on oceanographic conditions, achieving a buoyancy balance in the hydrokinetic energy dissipating device.
- Said ballasts (5) are made of materials selected from the group comprising: metallic and ceramic materials.
- said ballasts (5) have a coating of polyesters, polystyrenes, polypropylenes, polyamides or similar materials known to a person of moderate knowledge.
- the ballasts (5) can preferably have a density greater than the density of the material of the first and second belts (1, and 2). Said higher density can be achieved by including additional weights such as pieces of metal or rocks in said ballasts.
- the density of the device (10) can be between 988 kg/m 3 and 995 kg/m 3 .
- ballasts (5) The inclusion of metal pieces or rocks in said ballasts (5) increases the density of the ballasts (5) making said density of ballasts (5) greater than 988 kg/m 3 to 995 kg/m 3 of the dissipating device (10 ) and higher than the average density of seawater, which is 1027 kg/m 3 .
- the ballasts (5) can be made with a combination of a polymer with an igneous rock or with a dense metal, such as steel, for example.
- At least one cirrus (6) is connected to at least the first or second straps (1, 2) through at least one of the plurality of through holes (4).
- a cirrus (6) is an oblong body that can be flexible or rigid, two-dimensional or three-dimensional, it can have a constant or variable cross section, tubular or solid.
- the hydrokinetic energy dissipating device has at least one cirrus (6) that is connected to at least one of the straps (1, 2) of at least one pair of straps (3), wherein said cirrus (6) it is connected to said tape (1, 2) through at least one hole of the plurality of through holes (4) of said tape (1, 2).
- a plurality of cirri (6) connect with a plurality of through holes (4) arranged in a first ribbon (1).
- the material of said cirri (6) is selected from the group comprising: organic, inorganic materials, and combinations thereof.
- said materials are specifically selected from among textiles, polymers, elastomers, resins, keratins, carbonates, biotic activators, or combinations thereof.
- a hydrokinetic energy dissipating device (10) was fabricated and placed in a body of water. The device was installed at a depth of 15m. Said hydrokinetic energy dissipating device was configured as a volume in the form of a flexible tubular duct and comprised:
- the first tape (1) and the second tape (2) of each pair of tapes (3) were symmetrical tapes with identical characteristics. In fact, the distance between the lower edge (la) and the upper edge (Ib) of said tapes (1) was 0.3m and the distance between two adjacent connection points (a) was 0.15m.
- the material with which the plurality of pairs of tapes (3) were manufactured was high-density polyethylene.
- Some ballasts (5) were connected to the plurality of holes (4) along some pairs of tapes (3) corresponding to approximately 1% of all the pairs of tapes (3) that made up the volume of the heat dissipating device. hydrokinetic energy.
- some buoys and anchors connected to extreme portions of the volume that make up the hydrokinetic energy dissipating device kept the device in its initial location, preventing said device from being dragged by ocean currents.
Landscapes
- General Engineering & Computer Science (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Biodiversity & Conservation Biology (AREA)
- Marine Sciences & Fisheries (AREA)
- Zoology (AREA)
- Animal Husbandry (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Auxiliary Devices For And Details Of Packaging Control (AREA)
- Orthopedics, Nursing, And Contraception (AREA)
- Catching Or Destruction (AREA)
Abstract
La presente divulgación está dirigida a un dispositivo disipador de energía hidrocinética que comprende una primera y segunda cintas flexibles, donde la primera y segunda cinta están enfrentadas por sus caras opuestas; una pluralidad de puntos de conexión separados y dispuestos a lo largo de la primera y segunda cintas sobre cada una de sus caras. Dichos puntos de conexión conectan la primera cinta con la segunda cinta formando una primera pareja de cintas. En donde una pluralidad de parejas de cintas se conecta adyacentemente entre los puntos de conexión; y dicha pluralidad de parejas de cintas forman un volumen que tiene un borde exterior y un bode interior.
Description
DISPOSITIVO DISIPADOR DE ENERGIA HIDROCINETICA
CAMPO TÉCNICO
La presente divulgación se relaciona con dispositivos disipadores de energía cinética. Particularmente, la presente divulgación se refiere a un dispositivo disipador de energía hidrocinética en masas de agua, que permite mitigar la erosión costera a causa de las corrientes marinas, ser refugio de fauna y flora acuática.
DESCRIPCIÓN DEL ESTADO DE LA TÉCNICA
Es conocido que el movimiento de las olas, las corrientes de agua y los patrones de movimiento de las mareas causan erosión y migración de sedimentos en las playas y regiones costeras. Existen diversos diseños de aparatos para disipación de energía de las olas que son empleados para mitigar estas condiciones erosivas. En algunos casos, dichos aparatos para disipación de energía de las olas comprenden barreras hechas en piedra o recebo, madera, concreto o instalaciones de tipo embarcadero, espigones o escolleras. Otros dispositivos para disipación de energía de las olas, están constituidos por una construcción artificial que imita un arrecife natural. Estos “arrecifes artificiales” suelen fabricarse en concreto, acero, llantas usadas, escombros, vejigas inflables, piedra u otros materiales.
Actualmente, los dispositivos usados para mitigar la erosión costera, tales como rompeolas o gaviones suelen ser instalados de manera permanente en las playas y zonas costeras. Sin embargo, los resultados a largo plazo de una instalación de dichos aparatos es difícil de predecir, teniendo en cuenta los efectos sinérgicos de una pluralidad de factores asociados a las condiciones oceánicas. Y en algunos casos, ha habido efectos adversos, como aumentos en la erosión y la migración de arena, o impactos negativos en áreas ambientalmente sensibles o la pérdida de activos asociados con áreas costeras.
En el estado de la técnica, se pueden encontrar dispositivos como el divulgado en el documento US6565283B 1 que enseña un arrecife artificial sumergido, que se ubica sobre una base y comprende un tubo de un material flexible, el cual es dividido por paredes de un material flexible, en una serie de compartimentos que se extienden a lo largo del tubo. Dichos compartimentos se disponen en filas y columnas de modo que el tubo dividido por las paredes tiene una estructura de panal de abeja, estando situado un primer extremo
del tubo en la base y un segundo extremo del tubo por encima del primer extremo del tubo y bajo el agua. Además, algunos o todos los compartimentos pueden alojar un material de relleno de modo que al menos algunos de los compartimentos estén adyacentes a otros dos o más compartimentos llenos del material de relleno para soportar y ser soportados por los compartimentos adyacentes. El arrecife artificial puede estar diseñado para disipar la acción de las olas o para proteger una orilla, en este caso es preferible que todos los compartimentos estén sustancialmente llenos del material de relleno. Por el contrario, cuando el arrecife artificial está diseñado para proporcionar un área para la propagación de la vida marina, es preferible que algunos o todos los compartimentos se llenen solo parcialmente con el material de relleno para dejar espacios para peces y otras criaturas marinas.
En una realización de US6565283B1, el tubo se dispone sobre uno de sus lados en el lecho marino, de modo que los ejes de los compartimentos son aproximadamente paralelos al fondo del mar. En dicha realización el tubo se contrae en un punto central por medio de una cuerda flexible. Algunos de los compartimentos, particularmente los que se encuentran sobre el lecho marino se llenan parcial o completamente con un material de relleno para mantener el tubo en su posición sobre el fondo marino. La unidad de arrecife artificial proporciona un hábitat para vida marina. Además, el tubo y las paredes divisorias pueden estar hechos de cualquier material flexible adecuado como, por ejemplo, un material plástico coextruido o extruido biaxialmente, un material de malla de plástico, un material laminado de plástico, un material metálico o un material textil o un material de papel o cartón.
Por otra parte, el documento US20200208365A1 se refiere a un sistema de barrera y arrecife artificial removible capaz de mitigar los problemas de erosión y energía de las olas y corrientes pequdiciales, mejorando el crecimiento biológico y la acuicultura marina, aumentando el secuestro de carbono, proporcionando generación de energía y mejorando las condiciones favorables del oleaje para uso recreativo. El sistema descrito consiste en un ensamblaje de miembros alargados y espaciados, tal como una estructura en forma de bobina, que forman una estructura continua para impedir o aprovechar la energía de las olas, mareas y de agua y corriente, y el movimiento de objetos. La estructura puede residir en el piso del ambiente marino, suspendida o flotando a cualquier profundidad deseable desde la superficie. Además, en algunas realizaciones de la
divulgación la estructura se conforma de una lámina metálica en forma de tira enrollada, que se desenrolla por medio de dos rodillos para darle forma de espiral a medida que entra en el cuerpo de agua. Además, la estructura también puede fabricarse con materiales no metálicos biocompatibles, incluidos materiales de fibra y resina eximidos o estratificados para la fabricación.
También, el documento US20050115186A1 divulga una estructura tubular conformada de al menos dos elementos helicoidales que incluyen al menos cuatro segmentos alargados dispuestos de manera que forman espirales que hacen una rotación completa alrededor de un eje común a lo largo de la estructura tubular. Dichos elementos pueden ser rígidos o flexibles de acuerdo a la aplicación donde se utilice la estructura y estar fabricados con materiales como fibra de vidrio, fibra de carbono, fibra de boro, fibras de aramida, materiales termoplásticos como poliéster, polipropileno, o PVC, o materiales como madera o cerámicos. En una realización de la divulgación se fabrica un arrecife artificial con varias estructuras tubulares que incluyen en un extremo un elemento suficientemente pesado como para hundirse bajo el mar, por ejemplo de hormigón, y se mantiene el otro extremo libre. Varias estructuras pueden estar unidas entre sí para formar el arrecife artificial y fabricarse con epoxi ecológico para permitir el crecimiento de organismos.
Sin embargo, el estado de la técnica no divulga un dispositivo para disipar energía hidrocinética que pueda ser transportado de manera plegada y desplegado in situ, y que pueda ser instalado de manera temporal y ser retirado sin necesidad de equipos y/o maquinaria especializada.
BREVE DESCRIPCIÓN
La presente divulgación está dirigida a un dispositivo disipador de energía hidrocinética que comprende una primera y segunda cintas flexibles donde cada cinta tiene un borde inferior y un borde superior, un primer extremo y un segundo extremo, y una primera cara y una segunda cara, donde la primera y segunda cinta están enfrentadas por sus caras opuestas. El dispositivo divulgado, también comprende una pluralidad de puntos de conexión dispuestos a lo largo de la primera y segunda cintas entre el primer extremo y segundo extremo de cada cinta sobre cada una de sus caras, dichos puntos de conexión están separados, y conectan la primera cinta con la segunda cinta formando una primera
pareja de cintas. En donde una pluralidad de parejas de cintas se conectan adyacentemente entre los puntos de conexión; y en donde dicha pluralidad de parejas de cintas forman un volumen que tiene un borde exterior y un bode interior.
Adicionalmente y de manera opcional, una pluralidad de cirros están conectados a una pluralidad de agujeros pasantes en al menos una pareja de cintas de la pluralidad de parejas de cintas aumentando la superficie y el volumen del dispositivo disipador de energía hidrocinética.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La FIG. 1 A muestra una modalidad del dispositivo disipador de energía hidrocinética, dispuesto en un lecho marino y configurado para ser un arrecife artificial.
La FIG.1B muestra una modalidad del dispositivo disipador de energía hidrocinética, dispuesto parcialmente sumergido, en una zona costera, permitiendo la disipación de energía de las olas que se dirigen en dirección de dicha zona costera.
La FIG.2 muestra una primera y segunda cintas del dispositivo disipador de energía hidrocinética, y una pluralidad de puntos de conexión entre dichas primera y segunda cintas formando una primera pareja de cintas.
La FIG.3A muestra una primera pareja de cintas del dispositivo disipador de energía hidrocinética, donde dicha primera parej a de cintas comprende una pluralidad de aguj eros pasantes dispuestos en la primera y segunda cintas.
La FIG.3B muestra la primera pareja de cintas de la FIG.3A, donde dicha primera pareja de cintas comprende unos cirros conectados a la pluralidad de agujeros de cada cinta.
La FIG.4 muestra una pluralidad de parejas de cintas de laFIG.3A, donde dicha pluralidad de parejas de cintas se conectan entre sí mediante una pluralidad de puntos de conexión.
La FIG.5 A muestra un primer elemento de lastre, y un segundo elemento de lastre, donde dicho primer elemento de lastre y segundo elemento de lastre están configurados para unirse entre sí por una de sus caras y formar un lastre.
La FIG.5B muestra la primera o segunda cinta de la FIG.3A, donde sobre una cara de dicha cinta se dispone el primer elemento de lastre, y sobre la cara opuesta de dicha cinta se dispone el segundo elemento de lastre, y donde dichos elementos de lastre se conectan entre sí a través de la pluralidad de agujeros de dicha cinta.
La FIG.6A muestra una modalidad del dispositivo disipador de energía hidrocinética en donde se forma un volumen con forma de conducto, uniendo una pluralidad de parejas de cintas, como la de la FIG.4.
La FIG.6B muestra una modalidad de dispositivo disipador de energía hidrocinética en donde se forma un volumen total que comprende un primer volumen que tiene dispuesto internamente un segundo volumen, donde dichos volúmenes corresponden a volúmenes de la FIG. 6A de diferente tamaño.
DESCRIPCIÓN DETALLADA
La presente divulgación se refiere a un dispositivo para disipación y /o transducción de energía hidrocinética de masas de agua. Dicho dispositivo forma un volumen con un patrón de tipo malla, conformado por una pluralidad de cintas conectadas entre sí que disipa la energía hidrocinética de una masa de agua donde se dispone. Dicho dispositivo puede ser ubicado en diferentes profundidades por debajo de un nivel hídrico y a diferentes distancias de una costa, donde dichas profundidades y distancias se seleccionan de acuerdo al efecto que se desee proporcionar.
Específicamente, la presente divulgación se refiere a un dispositivo (10) disipador de energía hidrocinética que comprende:
- una primera y segunda cintas (1,2) flexibles donde cada cinta tiene un borde inferior (la, 2a) y un borde superior (Ib, 2b), un primer extremo (1c, 2c) y un segundo extremo (Id, 2d), y una primera cara (le, 2e) y una segunda cara (If,
2f), donde la primera y segunda cinta (1, 2) están enfrentadas por sus caras opuestas;
- una pluralidad de puntos de conexión (a) dispuestos a lo largo de la primera y segunda cintas (1, 2) entre el primer extremo (1c, 2c) y segundo extremo (Id, 2d) de cada cinta (1,2) sobre cada una de sus caras, dichos puntos de conexión (a) están separados, y dicha pluralidad de puntos de conexión (a) conectan la primera cinta (1) con la segunda cinta (2) formando una pareja de cintas (3);
Particularmente, una pluralidad de parejas de cintas (3) se conectan adyacentemente entre los puntos de conexión (a), y en donde dicha pluralidad de parejas de cintas (3) forman un volumen que tiene un borde exterior y un bode interior.
El movimiento de las olas, las corrientes marinas y las tormentas en zonas costeras, pueden tener un impacto negativo sobre dichas regiones al producir erosión costera. Dicha erosión modifica los ecosistemas costeros, lo que a largo plazo produce cambios en la flora y fauna local y las condiciones hidrológicas de la región afectada. Uno de los propósitos de la presente divulgación consiste en disipar la energía hidrocinética de las olas para disminuir la fuerza con la que estas impactan la costa, de manera que se mitigue la erosión producida por el oleaje y los fenómenos meteorológicos en los ecosistemas costeros. Dicha disipación de la energía hidrocinética se logra cuando el movimiento de las corrientes marinas se transfiere a la pluralidad de parejas de cintas (3) que forman el volumen del dispositivo (10). Al perder energía moviendo el dispositivo (10), la corriente impacta con menor fuerza la costa.
Además, dicho dispositivo también puede incidir en las corrientes marítimas que lo atraviesan, según la profundidad a la que se encuentre el dispositivo y la ubicación de dicho dispositivo. Lo anterior puede modificar las temperaturas de la superficie del mar, lo cual puede incidir en la disminución de fenómenos meteorológicos como huracanes y tormentas. Por otra parte, el dispositivo disipador de energía hidrócinetica en masas de agua también permite controlar los sedimentos que afectan los ecosistemas marinos y las actividades humanas en las costas.
Haciendo referencia a la FIG.2, se muestra la primera y segunda cintas (1, 2). Dichas cintas están conectadas entre sí mediante una pluralidad de puntos de conexión (8). De
hecho dichas cintas están conectadas sobre sus caras opuestas, particularmente entre la cara (If) de la primera cinta (1) y la cara (2e) de la segunda cinta (2). La pluralidad de puntos de conexión (a) mantiene unidas la primera cinta (1) y la segunda cinta (2) conformando la primera pareja de cintas (3). Dicha primera pareja de cintas (3) presenta un espacio de separación entre la primera cinta (1) y la segunda cinta (2) en medio de los puntos de conexión (a), de manera que en cada pareja de cintas (3) se forma un patrón tipo malla a lo largo de dicha pareja de cintas (3).
Por otra parte, los puntos de conexión (a) se encuentran preferiblemente distanciados equidistantemente para configurar un patrón tipo malla homogéneo a lo largo de dicha pareja de cintas (3). Opcionalmente, el distanciamiento entre los puntos de conexión (a) puede ser variable dependiendo de la aplicación.
Haciendo referencia a las FIG.3A y FIG.4 se muestra una pluralidad de parejas de cintas (3), como las ilustradas en la FIG.3A, dicha pluralidad de parejas de cintas (3) están conectadas entre sí de manera adyacente por la pluralidad de puntos de conexión (a) dispuestos a lo largo de la primera cinta (1) y la segunda cinta (2) de cada una de las parejas de cintas (3).
Para el entendimiento de la presente divulgación, y haciendo referencia a las FIG.2 y FIG.3, las cintas (1, 2) hacen referencia a elementos bidimensionales o tridimensionales flexibles, donde una cinta se selecciona del grupo que comprende: cintas oblongas planas, cintas oblongas tubulares, mangueras, cordeles, o elementos similares conocidos por una persona medianamente versada. En una modalidad no ilustrada de la divulgación, la primera y segunda cintas (1, 2) son mangueras flexibles.
Particularmente, dichas cintas (1, 2) están hechas de un material seleccionado del grupo que comprende: polímeros orgánicos, polímeros orgánicos vinílicos, polímeros orgánicos no vinílicos, polímeros inorgánicos. Preferiblemente, las cintas (1, 2) están fabricadas de poliésteres, poliestirenos, polipropilenos, poliamidas, fibras de carbono, fibras de vidrio, poliuretano, y combinaciones de los mismos, o materiales similares conocidos por una persona medianamente versada. Dichas cintas (1, 2) están fabricadas de los materiales mencionados anteriormente, donde la manufactura de dichas cintas se selecciona del grupo que comprende: fibras textiles tejidas, láminas monolíticas laminadas, cintas
tubulares extraídas, y combinaciones de las mismas, o manufacturas similares conocidas por una persona medianamente versada.
Para formar el dispositivo (10) disipador de energía hidrocinética de la presente divulgación, se forma un volumen. Haciendo referencia a la FIG.2 y FIG.4., dicho volumen se forma preferiblemente conectando la primera cara (le) de una primera cinta (1) de una primera pareja de cintas (3) con la segunda cara (2f) de una segunda cinta (2) de una segunda pareja de cintas (3’). Donde la primera cara (le) de la primera cinta (1) de la primera pareja de cintas (3), y la segunda cara (2f) de una segunda cinta (2) de una segunda pareja de cintas (3’) corresponden con las dos caras más distales entre la pluralidad de parejas de cintas (3) conectadas adyacentemente. Dichas primera cara (le) de una primera cinta (1) de una primera pareja de cintas (3), y segunda cara (2f) de una segunda cinta (2) de una segunda pareja de cintas (3’) están conectadas mediante la pluralidad de puntos de conexión (a).
Particularmente, al estar conectadas de esta manera todas las parejas de cintas (3) forman un volumen. Haciendo referencia a las FIG.6A, dicho volumen del dispositivo disipador de energía hidrocinética (10) en una modalidad tiene una forma similar a una manga, o un conducto tubular flexible con un eje longitudinal, en donde los extremos de dicho conducto tubular flexible son abiertos. Dicho volumen tiene una superficie, y dicha superficie comprende un borde exterior y un borde interior. Particularmente, y haciendo referencia a la FIG.4, para el caso descrito en el párrafo anterior, en dicho volumen, el borde exterior corresponde los bordes superiores (Ib, 2b) y el borde interior corresponde a los bordes inferiores (la, 2a), de cada cinta (1, 2) de cada pareja de cintas (3). Esto para el caso en que dicho volumen se forma plegando en sentido horario la primera cara (le) de una primera cinta (1) de una primera pareja de cintas (3) con respecto a la segunda cara (2f) de una segunda cinta (2) de una segunda pareja de cintas (3’) alrededor del eje longitudinal y conectando dicha primera cara (le) y dicha segunda cara (2f).
Vale la pena mencionar que tanto la pluralidad de parejas de cintas (3), como el volumen que se forma a partir de dicha pluralidad de parejas de cintas (3), pueden fabricarse en un rango de dimensiones que abarca desde centímetros hasta kilómetros, de acuerdo a la aplicación y ubicación. Por ejemplo, el dispositivo disipador de energía hidrocinética puede tener una longitud total desde un metro hasta miles de kilómetros, cuando se
dispone en un cuerpo de agua como mares o lagos. Sin embargo, también el dispositivo disipador de energía hidrocinética podría tener una longitud total de algunos centímetros para aplicaciones como acuarios, tanques, o contenedores donde se llevan a cabo pruebas de laboratorio. Por lo tanto, las dimensiones de longitud, ancho y volumen del dispositivo disipador de energía hidrocinética y los elementos que lo conforman, pueden ser cualquiera que se requiera y no limitan su concepto inventivo.
Particularmente, uno de los efectos técnicos del volumen que forma el dispositivo disipador de energía hidrocinética es que permite el movimiento de una masa de agua fluyente en cualquier dirección incidente sobre dicho volumen. De hecho, dicha característica técnica en combinación con la naturaleza flexible de dicho volumen permite retirar energía cinética de la masa de fluyente al disponer una obstrucción física en dicho flujo. Particularmente, en una aplicación oceánica, dicho volumen modifica los patrones de flujo de una masa de agua, cambiando la magnitud de la cantidad del movimiento de la masa de agua, así como la incidencia de la misma sobre un ecosistema costero, particularmente, mitigando efectos indeseados como erosión de playas, bahías, y costas.
Por ejemplo, en una modalidad de aplicación oceánica del dispositivo (10), con el paso de una ola madre que fluye a través de dicho dispositivo disipador de energía hidrocinética dicha ola madre puede reducir su cantidad de energía debido al efecto de movimiento de alternativo o basculante que presenta dicho volumen, de manera que dicho ola madre se reduce a unas olas residuales que transportan una fracción energía hidrocinética de la ola madre. Dicho efecto técnico tiene aplicación en modalidades cuyo propósito es disminuir la tasa de erosión en un ecosistema costero.
Por otra parte, haciendo referencia a las FIG.1A, y FIG.1B, el dispositivo disipador de energía hidrocinética de la presente divulgación tiene una pluralidad de modalidades entre las que se encuentran: dispositivos disipadores de energía hidrocinética, y arrecifes artificiales, dicha modalidad de arrecife artificial puede servir de refugio para especies acuáticas, además de servir como sustrato para la fijación de flora acuática como algas, y especies bentónicas.
Particularmente, el dispositivo (10) en una modalidad de disipador de energía hidrocinética se dispone en una masa de agua de manera que dicho dispositivo (10) se
encuentra flotando en la masa de agua. Particularmente, dependiendo del efecto técnico deseado, dicha disposición se encuentra a una profundidad determinada según la necesidad. Por ejemplo, para mitigación de erosión costera, el dispositivo puede disponerse en la superficie de la masa de agua, totalmente sumergido en cualquier punto entre la superficie y el fondo de la masa de o agua, o tocando el lecho marino o acuífero donde esté dispuesto el dispositivo.
Por otro lado, haciendo referencia a la FIG.1A, en una modalidad del dispositivo disipador de energía hidrocinética donde se configura como un arrecife artificial, dicho dispositivo (10) se dispone sumergido en la masa de agua, de manera que dicho dispositivo (10) está anclado al fondo de la masa de agua. De hecho, dependiendo de la aplicación y necesidad técnica, dicha disposición se puede realizar a una profundidad definida según la necesidad técnica y las condiciones locales de la aplicación de dicho dispositivo (10). Dicha modalidad de arrecife artificial, funciona como un disipador de energía hidrocinética donde además provee una estructura configurada para permitir la precipitación de carbonates, principalmente carbonates de calcio, y otros elementos como fósforo, magnesio, sodio, o potasio, pero no limitado únicamente a estos. Dichos carbonates se precipitan y adhieren a la superficie del volumen que conforma dicho dispositivo (10). Dicha precipitación de carbonates modifica la naturaleza flexible del dispositivo (10) convirtiéndolo en un dispositivo rígido. Particularmente, cuando dicho dispositivo (10) es rígido permite la proliferación de fauna y flora acuáticas sobre dicho dispositivo (10) convirtiéndose en un arrecife artificial.
En otro aspecto de la presente divulgación. Particularmente el dispositivo (10) al conformado por una pluralidad de parejas de cintas (3), donde dichas parejas de cintas (3) son flexibles, y dichas parejas de cintas (3) están conectadas y forman un volumen flexible, provee un efecto asociado a una reducción de un espacio para almacenamiento y transporte previos a la instalación de dicho dispositivo (10). De hecho, dicho efecto técnico asociado a tener un volumen flexible que forma el dispositivo disipador de energía hidrocinética, particularmente en forma similar un conducto tubular flexible en donde los extremos de dicho conducto tubular flexible son abiertos es que puede ser transportado estando comprimido o colapsado. De manera que dicho dispositivo disipador de energía hidrocinética requiere un espacio de almacenamiento que es aproximadamente entre un
0.1% a 1% del volumen de dicho dispositivo disipador de energía hidrocinética cuando está instalado en una masa de agua. Particularmente para el transporte de dicho dispositivo (10) disipador de energía hidrocinética la pluralidad de parejas de cintas (3) se pliegan entre sí de la misma forma como lo hacen unas guirnaldas de papel plegables.
Por otra parte, y haciendo referencia a la FIG.1B, el dispositivo disipador de energía hidrocinética, en una modalidad de aplicación oceánica se conecta a una pluralidad de boyas, donde al menos dos boyas se conectan cada una a los extremos de dicho dispositivo (10), y preferiblemente a lo largo del eje longitudinal de dicho dispositivo (10) se conecta una pluralidad de boyas distanciadas equidistantemente. Las boyas se seleccionan preferiblemente del grupo que comprende: boyas de balizamiento, boyas salvavidas, boyas respondedoras, boyas meteorológicas, boyas inflables, y combinaciones de las mismas o boyas similares conocidas por una persona medianamente versada. Dichas boyas se conectan al dispositivo (10) mediante elementos del grupo que comprende: cuerdas, lazos, cadenas, y combinaciones de los mismos o elementos similares conocidos por una persona medianamente versada. Uno de los efectos técnicos de conectar el dispositivo (10) a dichas boyas es que permite mantener una profundidad de flotación de dicho dispositivo invariante en el tiempo, durante el tiempo de vida útil de dicho dispositivo (10).
Por otro lado, dicho dispositivo (10) se ubica a una profundidad por debajo de la superficie de la masa de agua, y a una distancia de una línea costera determinada. Particularmente la profundidad y la distancia se mantienen por efecto de la pluralidad de boyas y una pluralidad de anclajes. Particularmente, los anclajes son elementos de fijación que están anclados al fondo de la masa de agua, o dispuestos sobre dicho fondo. De dicha pluralidad de anclajes, al menos dos anclajes se conectan, cada uno a los extremos del dispositivo (10), y preferiblemente a lo largo del eje longitudinal de dicho dispositivo (10) se conecta una pluralidad de anclajes distanciados equidistantemente como se observa en la FIG.1A y FIG.1B.
Dicha pluralidad de anclajes se selecciona del grupo que comprende: pesos muertos, arrecifes de coral naturales, arrecifes artificiales, anclas, y combinaciones de los mismos o elementos similares conocidos por una persona medianamente versada. Dichos anclajes se conectan al dispositivo (10) mediante cuerdas, lazos, cadenas, y combinaciones de los
mismos o elementos similares conocidos por una persona medianamente versada. Particularmente, dicha profundidad tiende a permanecer invariante en el tiempo siempre que no exista precipitación de organismos sobre la superficie del volumen del disipador de energía hidrocinética, y las boyas y anclajes sigan conectados a dicho dispositivo (10).
Haciendo referencia a la FIG.6B, en una modalidad de la divulgación, se forma un primer volumen (10a) y un segundo volumen (10b), en donde dicho primer volumen (10a) tiene dispuesto en su interior a dicho segundo volumen (10b), formando un dispositivo disipador de energía hidrocinética (10), que está formado por el primer volumen (10a) y el segundo volumen (10b). Particularmente, una primera pluralidad de parejas de cintas (3) al conectarse forman un primer volumen (10a) y una segunda pluralidad de parejas de cintas (3) al conectarse forman un segundo volumen (10b), donde dicho primer volumen (10a) contiene dicho segundo volumen (10b) a lo largo de un eje longitudinal de dichos volúmenes (10a, 10b).
Particularmente, uno de los efectos técnicos que se logra con la configuración descrita en el párrafo anterior es que permite aumentar el efecto disipador de energía hidrocinética en comparación con la modalidad en donde el dispositivo disipador de energía hidrocinética está formado únicamente por un volumen. Dicho efecto técnico ocurre porque una superficie total de un volumen total del dispositivo disipador de energía hidrocinética que contiene dos volúmenes de dos dispositivos (10), es mayor en comparación con la modalidad en donde el dispositivo disipador de energía hidrocinética está formado únicamente por un volumen. Particularmente, la resultante de una fuerza de fricción fluida entre la masa de agua y la superficie total del volumen total incrementa con respecto a la modalidad de un único volumen, por lo que el efecto disipador de dicha modalidad es mayor.
Por otro lado, en una modalidad no ilustrada, el dispositivo disipador de energía hidrocinética (10) de la presente invención puede comprender una pluralidad de volúmenes, que se disponen uno dentro de otro, y estos pueden ser más de dos volúmenes. Es decir, el dispositivo disipador de energía hidrocinética (10) que se ilustra en la FIG. 6B podría estar dentro de otro volumen o alojar otro volumen, de manera que se configure, por ejemplo, como tres conductos coaxiales, o dos conductos coaxiales que alojan un tercer volumen que se enrolla sobre sí mismo, etc.
En otro aspecto de la presente divulgación, particularmente la primera cinta (1) y segunda cinta (2) contienen partículas seleccionadas del grupo que comprende: partículas orgánicas, inorgánicas, y combinaciones de las mismas. Dichas partículas contenidas en las primera y segunda cintas (1, 2) pueden estar contenidas en forma de recubrimiento o a modo de aleantes en la composición del material. Según la aplicación específica del dispositivo disipador de energía hidrocinética se seleccionan las partículas mencionadas.
Particularmente, en aplicaciones del dispositivo disipador de energía hidrocinética donde conviene mitigar la propagación de organismos vivos o ralentizar la biocorrosión, dichas partículas pueden ser partículas o nano partículas preferiblemente metálicas del grupo que comprende: cobre, sulfato de cobre, sulfato de aluminio, bisulfato sódico, ácido etilendiaminotetracetíco, dioctyltin dilaurate (por su nombre en inglés) o dotl (por sus siglas en inglés), y combinaciones de las mismas conocidas por una persona medianamente versada en la materia.
En una modalidad donde conviene la propagación de organismos vivos como organismos bentónicos como, moluscos, crustáceos, algas y corales, u organismos con exoesqueletos, dichas partículas pueden ser partículas o nano partículas preferiblemente metálicas, por ejemplo, níquel. De manera que dichas partículas promueven la precipitación y fijación de carbonates sobre la superficie del dispositivo disipador de energía hidrocinética. Uno de los efectos técnicos de dichas inclusiones de partículas es permitir la precipitación de carbonates y la posterior fijación de organismos vivos, algas, micro algas, macro algas, balanos, organismos con exoesqueletos, corales, almejas , chitones, poliquetos, etc. De manera que el dispositivo (10) funciona como un arrecife artificial donde viven y se alimentan peces y otros animales.
Por otro lado y en una modalidad no ilustrada de la divulgación, particularmente la primera cinta (1) y segunda cinta (2) contienen elementos seleccionados del grupo que comprende: activadores bióticos, activadores biológicos, microrganismos activos, y combinaciones de los mismos.
De hecho, uno de los efectos técnicos de incluir activadores bióticos en una modalidad del dispositivo disipador de energía hidrocinética configurado como arrecife artificial
que incluye organismos como micro algas como zooxantelas, es permitir la colonización de organismos bentónicos sobre la superficie de las primera y segunda cintas (1, y 2). Esto ocurre porque la inclusión de activadores bióticos, activadores biológicos, microrganismos activos, o combinaciones de los mismos genera una capa biológica o medio de cultivo de micro organismos y macro organismos.
Haciendo referencia a la FIG.3A en una modalidad de la divulgación, el dispositivo disipador de energía hidrocinética particularmente tiene una pluralidad de agujeros pasantes (4) que están dispuestos en las caras de la primera y segunda cinta (1, 2), entre los puntos de conexión (a).
Adicionalmente, dicha pluralidad de agujeros pasantes (4) se disponen en cada una de las primera y segunda cintas (1, 2), en el área entre los puntos de conexión (a). Preferiblemente dicha pluralidad de agujeros forma patrones homogéneos. En dicha pluralidad de agujeros pasantes (4), cada agujero tiene una forma que se selecciona del grupo que comprende: círculos, elipses, cuadrados, triángulos, rombos, hexágonos, y combinaciones de los mismos.
Por otro lado, dicha pluralidad de agujeros pasantes (4) forma preferiblemente un patrón simétrico que se selecciona del grupo que comprende: simetrías euclídeas, simetrías de reflexión, simetrías centrales, simetrías helicoidales. Donde dicho patrón de simetría está dispuesto entre la pluralidad de puntos de conexión (a) que conectan a las primeras y segundas cintas (1, 2) de cada pareja de cintas (3).
Particularmente dicha pluralidad de agujeros pasantes (4) corresponde a un área comprendida entre un rango de 20% a 50% del área comprendida entre dos puntos de conexión (a), donde dichos puntos de conexión (a) son puntos contiguos.
Uno de los efectos técnicos de dicha pluralidad de agujeros pasantes (4) consiste en aumentar la resultante de una fuerza de fricción fluida sobre la superficie del volumen que conforma el dispositivo disipador de energía hidrocinética. Esto ocurre porque dichos agujeros pasantes (4) permiten conectar a las primeras o segundas cintas (1, 2) de al menos una pareja de cintas (3) del dispositivo (10) una pluralidad de elementos como unos lastres (5) (como los observados en la FIG.5A y FIG.5B) y/o unos cirros (6) (como
los observados en la FIG.3B) que aumentan la superficie del volumen del dispositivo (10). Particularmente, entre más grande la superficie del volumen del dispositivo (10), el efecto disipador de energía hidrocinética aumenta.
Para el entendimiento de la presente invención, cuando se hace referencia a los cirros (6), dichos cirros (6) son elementos preferiblemente oblongos o esbeltos que pueden ser análogos a pestañas, barras, festones, o cualquier elemento que se disponga sobre una superficie o cuerpo y que actué como un apéndice.
En una modalidad ilustrada en las FIG. 5 A y las FIG. 5B, el dispositivo (10) disipador de energía hidrocinética donde al menos un lastre (5) formado por un primer elemento de lastre (5a) y un segundo elemento de lastre (5b) se disponen en la primera cara (le, 2e) y la segunda cara (If, 2f) de al menos una pareja de cintas (3) respectivamente y dichos primer y segundo elemento de lastre (5a, 5b) se conectan entre sí a través de la pluralidad de agujeros pasantes (4) de cada cinta (1, 2) de dicha pareja de cintas (3).
Haciendo referencia a la FIG.5A, se muestra un lastre (5), un primer elemento de lastre (5a) y un segundo elemento de lastre (5b). Dichos primer elemento y segundo elemento de lastre (5a, 5b) están configurados para acoplarse a las primeras caras (le, 2e) y a las segundas caras (If, 2f) de las primera y segunda cintas (1, 2). De hecho, haciendo referencia a la FIG.5B, el lastre (5) se forma cuando dicho primer elemento de lastre (5 A) y dicho segundo elemento de lastre (5b) se conectan entre sí a través de la pluralidad de agujeros pasantes (4) que hay en una primera cinta (1) o una segunda cinta (2). Particularmente, en una modalidad de la divulgación, un lastre (5) se dispone en cada espacio comprendido entre dos puntos de conexión (a) que sea contiguos.
Particularmente dichos primer y segundo elemento de lastre (5a, 5b) son elementos bidimensi onales o tridimensionales. Preferiblemente el lastre (5) tiene un área ligeramente superior al área comprendida entre dos puntos de conexión (a) contiguos sobre una primera cinta (1) o una segunda cinta (2). Dichos lastres (5) se disponen preferiblemente en una pluralidad de parejas de cintas (3), particularmente en la primera cinta (1) y en la segunda cinta (2). Opcionalmente, dichos lastres (5) se disponen en una primera cinta (1) o una segunda cinta (2) de una única pareja de cintas (3).
Particularmente, en una modalidad de aplicación oceánica, el hecho de incluir dicho lastre (5) permite que el dispositivo (10) disipador de energía hidrocinética sea ubicado a una profundidad determinada en función de la densidad del agua local, de manera que la inclusión de dichos lastres (5) modifica la masa del volumen que conforma el dispositivo (10) disipador de energía hidrocinética. De hecho, los lastres (5) permiten aumentar el peso del dispositivo (10), de manera que este pueda ser instalado en profundidades variables, dependiendo de unas condiciones oceanógraficas, logrando un equilibrio de flotación en el dispositivo disipador de energía hidrocinética.
Dichos lastres (5) están hechos de materiales seleccionados del grupo que comprende: materiales metálicos y cerámicos. Preferiblemente, dichos lastres (5) tienen un recubrimiento de poliésteres, poliestirenos, polipropilenos, poliamidas o materiales similares conocidos por una persona medianamente versada. Por otro lado, los lastres (5) preferiblemente pueden tener una densidad mayor que la densidad del material de las primera y segunda cintas (1, y 2). Dicha densidad mayor puede alcanzarse incluyendo en dichos lastres pesos adicionales como piezas metálicas o rocas. De hecho, la densidad del dispositivo (10) puede estar comprendida entre 988 kg/m3 a 995 kg/m3. La inclusión de piezas metálicas o de rocas en dichos lastres (5) aumenta la densidad de los lastres (5) haciendo dicha densidad de lastres (5) superior a los 988 kg/m3 a 995 kg/m3 del dispositivo disipador (10) y superior a la densidad promedio del agua de mar que es 1027 kg/m3. En algunas modalidades, los lastres (5) pueden fabricarse con una combinación de un polímero con una roca ígnea o con un metal denso, como por ejemplo, el acero.
Adicionalmente, en otra modalidad de la divulgación, al menos un cirro (6) se conecta a al menos la primera o segunda cintas (1, 2) mediante al menos uno de los agujeros de la pluralidad de agujeros pasantes (4). Particularmente, para el entendimiento de la presente divulgación un cirro (6) es un cuerpo oblongo que puede ser flexible o rígido, bidimensional o tridimensional, puede ser de sección transversal constante o variable, tubular o macizo.
Haciendo referencia a la FIG. 3B, el dispositivo disipador de energía hidrocinética, tiene al menos un cirro (6) que se conecta a al menos una de las cintas (1, 2) de al menos una pareja de cintas (3), en donde dicho cirro (6) se conecta a dicha cinta (1, 2) a través de al menos un agujero de la pluralidad de agujeros pasantes (4) de dicha cinta (1, 2).
Particularmente haciendo referencia a la FIG. 3B, una pluralidad de cirros (6) se conectan con una pluralidad de agujeros pasantes (4) dispuestos en una primera cinta (1). Uno de los efectos técnicos que provee dicha modalidad es que aumenta la superficie del volumen del dispositivo disipador de energía hidrocinética. De hecho, dicha característica permite al dispositivo disipador de energía hidrocinética disipar una mayor cantidad de energía hidrocinética en comparación con la modalidad donde el volumen no tiene cirros (6).
Particularmente, el material de dichos cirros (6) se selecciona del grupo que comprende: materiales orgánicos, inorgánicos, y combinaciones de los mismos. Preferiblemente, dichos materiales se seleccionan específicamente entre textiles, polímeros, elastómeros, resinas, queratinas, carbonates, activadores bióticos o combinaciones de los mismos
Ejemplo 1
Haciendo referencia a la FIG. 6A, se fabricó un dispositivo (10) disipador de energía hidrocinética que se dispuso en una masa de agua. El dispositivo fue instalado a una profundidad de 15m. Dicho dispositivo disipador de energía hidrocinética se configuró como un volumen en forma de conducto tubular flexible y comprendió:
Una pluralidad de parejas de cintas (3) donde dicha pluralidad de parejas de cintas (3) conformó un volumen de transporte de 0,45m3, y un volumen de instalación de 250m3. Adicionalmente, dicho volumen tenía una longitud de 20m de largo. Particularmente la primera cinta (1) y la segunda cinta (2) de cada pareja de cintas (3) eran cintas simétricas y de características idénticas. De hecho, la distancia entre el borde inferior (la) y el borde superior (Ib) de dichas cintas (1) era de 0,3m y la distancia entre dos puntos de conexión (a) contiguos fue de 0, 15m. El área vacía producida por la pluralidad de agujeros pasantes (4) correspondía al 20% del área comprendida entre dos puntos de conexión (8) que fuesen contiguos. Dicha pluralidad de agujeros pasantes (4) tenía forma de circunferencias formando un patrón de simetría de reflexión. El material con el cual se fabricó la pluralidad de parejas de cintas (3) fue polietileno de alta densidad.
Unos lastres (5) se conectaron a la pluralidad de agujeros (4) a lo largo de unas parejas de cintas (3) correspondientes a aproximadamente el 1% de la totalidad de parejas de cintas (3) que formaron el volumen del dispositivo disipador de energía hidrocinética. Adicionalmente, unas boyas y unos anclajes conectados a unas porciones extremas del volumen que conforma el dispositivo disipador de energía hidrocinética mantuvieron el dispositivo en su ubicación inicial impidiendo que dicho dispositivo fuese arrastrado por las corrientes oceánicas.
Claims
1. Un dispositivo disipador de energía hidrocinética (10) que comprende :
- una primera y segunda cintas (1,2) flexibles donde cada cinta tiene un borde inferior (la, 2a) y un borde superior (Ib, 2b), un primer extremo (1c, 2c) y un segundo extremo (Id, 2d), y una primera cara (le, 2e) y una segunda cara (If, 2f), donde la primera y segunda cinta (1, 2) están enfrentadas por sus caras opuestas;
- una pluralidad de puntos de conexión (a) dispuestos a lo largo de la primera y segunda cintas (1, 2) entre el primer extremo (1c, 2c) y segundo extremo (Id, 2d) de cada cinta (1,2) sobre cada una de sus caras, dichos puntos de conexión (a) están separados, y dicha pluralidad de puntos de conexión (a) conectan la primera cinta (1) con la segunda cinta (2) formando una pareja de cintas (3); en donde una pluralidad de parejas de cintas (3) se conectan adyacentemente entre los puntos de conexión (a); y en donde dicha pluralidad de parejas de cintas (3) forman un volumen que tiene un borde exterior y un bode interior.
2. El dispositivo de la Reivindicación 1, donde una primera pluralidad de parejas de cintas al conectarse forma un primer volumen (10a) y una segunda pluralidad de parejas de cintas al conectarse forman un segundo volumen (10b), donde dicho primer volumen (10a) tiene dispuesto en su interior dicho segundo volumen (10b) a lo largo de un eje longitudinal de dichos volúmenes.
3. El dispositivo de la Reivindicación 1, donde la primera cinta (1) y segunda cinta (2) contienen partículas seleccionadas del grupo que comprende: partículas orgánicas, inorgánicas, y combinaciones de las mismas.
4. El dispositivo de la Reivindicación 1, donde la primera cinta (1) y segunda cinta (2) contienen elementos seleccionados del grupo que comprende: activadores bióticos, activadores biológicos, microrganismos activos, y combinaciones de los mismos.
5. El dispositivo de la Reivindicación 1, donde las caras de la primera y segunda cinta (1, 2) tienen una pluralidad de agujeros pasantes (4) entre los puntos de conexión (a).
6. El dispositivo de la Reivindicación 5, donde al menos una pareja de cintas (3) tienen al menos un lastre (5) formado por un primer elemento de lastre (5a) y un segundo elemento de lastre (5b) dispuestos respectivamente en la primera cara (le, 2e) y la segunda cara (If, 2f) ,y dichos primer y segundo elemento de lastre (5a, 5b) se conectan entre sí a través de la pluralidad de agujeros pasantes (4) en cada cinta (1, 2) de dicha pareja de cintas (3).
7. El dispositivo de la Reivindicación 6, donde al menos una de las cintas (1, 2) de al menos una pareja de cintas (3) tiene al menos un cirro (6) que se conecta a dicha cinta (1, 2) a través de al menos un agujero de la pluralidad de agujeros pasantes (4) de dicha cinta (1, 2), y donde dicho cirro (6) se selecciona del grupo que comprende materiales: orgánicos, inorgánicos, y combinaciones de los mismos.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CONC2021/0013307 | 2021-10-04 | ||
CONC2021/0013307A CO2021013307A1 (es) | 2021-10-04 | 2021-10-04 | Dispositivo disipador de energía hidrocinética |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023057910A1 true WO2023057910A1 (es) | 2023-04-13 |
Family
ID=85783736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2022/059484 WO2023057910A1 (es) | 2021-10-04 | 2022-10-04 | Dispositivo disipador de energía hidrocinética |
Country Status (2)
Country | Link |
---|---|
CO (1) | CO2021013307A1 (es) |
WO (1) | WO2023057910A1 (es) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0378309A1 (en) * | 1989-01-11 | 1990-07-18 | Reynolds Consumer Products, Inc. | Vented cell material for confinement of concrete and earth materials |
US4947791A (en) * | 1988-08-19 | 1990-08-14 | Laier James E | Artificial reef system |
US4954013A (en) * | 1987-06-12 | 1990-09-04 | Jacquelyn Lamberton | Means and method for stabilizing shorelines |
FR2884839A1 (fr) * | 2005-04-26 | 2006-10-27 | Bidim Geosynthetics Soc Par Ac | Dispositif allonge pour les amenagements maritimes et fluviaux et son procede de fabrication |
US20140010601A1 (en) * | 2012-07-06 | 2014-01-09 | Bradley Industrial Textiles, Inc. | Geotextile tubes with porous internal shelves for inhibiting shear of solid fill material |
KR20150061712A (ko) * | 2013-11-27 | 2015-06-05 | 한국건설기술연구원 | 제방차수구조물 및 이를 이용한 제방축조공법 |
JP2016079646A (ja) * | 2014-10-15 | 2016-05-16 | 株式会社ジオベクトル | 護岸構造 |
WO2017171267A1 (ko) * | 2016-04-01 | 2017-10-05 | 주식회사 한오션 | 해안침식 방지용 파압 및 해빈류 완화 시스템 |
US20190112770A1 (en) * | 2016-04-01 | 2019-04-18 | Han Ocean Co., Ltd | Lost sand collecting apparatus for preventing coastal erosion |
US20200208365A1 (en) * | 2017-12-29 | 2020-07-02 | Roger A. Benham | Removable reef and barricade system, appurtenances, and means of manufacture |
-
2021
- 2021-10-04 CO CONC2021/0013307A patent/CO2021013307A1/es unknown
-
2022
- 2022-10-04 WO PCT/IB2022/059484 patent/WO2023057910A1/es active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4954013A (en) * | 1987-06-12 | 1990-09-04 | Jacquelyn Lamberton | Means and method for stabilizing shorelines |
US4947791A (en) * | 1988-08-19 | 1990-08-14 | Laier James E | Artificial reef system |
EP0378309A1 (en) * | 1989-01-11 | 1990-07-18 | Reynolds Consumer Products, Inc. | Vented cell material for confinement of concrete and earth materials |
FR2884839A1 (fr) * | 2005-04-26 | 2006-10-27 | Bidim Geosynthetics Soc Par Ac | Dispositif allonge pour les amenagements maritimes et fluviaux et son procede de fabrication |
US20140010601A1 (en) * | 2012-07-06 | 2014-01-09 | Bradley Industrial Textiles, Inc. | Geotextile tubes with porous internal shelves for inhibiting shear of solid fill material |
KR20150061712A (ko) * | 2013-11-27 | 2015-06-05 | 한국건설기술연구원 | 제방차수구조물 및 이를 이용한 제방축조공법 |
JP2016079646A (ja) * | 2014-10-15 | 2016-05-16 | 株式会社ジオベクトル | 護岸構造 |
WO2017171267A1 (ko) * | 2016-04-01 | 2017-10-05 | 주식회사 한오션 | 해안침식 방지용 파압 및 해빈류 완화 시스템 |
US20190112770A1 (en) * | 2016-04-01 | 2019-04-18 | Han Ocean Co., Ltd | Lost sand collecting apparatus for preventing coastal erosion |
US20200208365A1 (en) * | 2017-12-29 | 2020-07-02 | Roger A. Benham | Removable reef and barricade system, appurtenances, and means of manufacture |
Also Published As
Publication number | Publication date |
---|---|
CO2021013307A1 (es) | 2023-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3299640A (en) | Means for influencing the sub-marine migration of material | |
ES2260040T3 (es) | Estructura acuatica y metodo. | |
ES2822176T3 (es) | Dispositivo de cría en el mar de animales de acuicultura | |
US11598879B2 (en) | Oyster reef restoration tile | |
KR20190092504A (ko) | 인공 암초를 위한 장치 및 방법 | |
KR20150058161A (ko) | 에너지 소산 장치 | |
EP2925597B1 (en) | A shark barrier | |
BR112014027510B1 (pt) | Dispositivo modular flutuável para absorção de óleo a partir de uma superfície | |
WO2020214090A1 (en) | Submersible device for sediment accumulation | |
CA2339778A1 (en) | Method of forming an artificial reef unit | |
US5871303A (en) | Viscous drag and non-laminar flow component of underwater erosion control system | |
CN104429911A (zh) | 一种自动升降式藻床系统及其人工藻场构建方法 | |
WO2023057910A1 (es) | Dispositivo disipador de energía hidrocinética | |
KR20220092403A (ko) | 부유식 방파제 및 이를 포함하는 수상태양광 발전시스템 | |
CN105941222A (zh) | 一种生态景观人工鱼礁装置 | |
KR20200116661A (ko) | 비비대가 장착된 꽁치 인공산란장 | |
JP2011144589A (ja) | 水中設置構造物およびこれを備える水中設置構造物群 | |
KR100262796B1 (ko) | 인공 어초를 이용한 해양 목장의 조성방법 | |
CN104890828A (zh) | 淡水存储装置 | |
CN204623788U (zh) | 淡水存储装置 | |
RU2406798C1 (ru) | Искусственный субстрат для гашения волн | |
ES2660841A1 (es) | Sistema polimérico flexible flotante modular de usos múltiples | |
WO2017158596A1 (en) | Tuna aquaculture pool | |
Voorde | Contribution to the design of multi-functional artificial reefs | |
AU2015350038B2 (en) | Water conservation using floating optically-reflective devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22878049 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22878049 Country of ref document: EP Kind code of ref document: A1 |