WO2023056958A1 - 共识方法、区块链系统和共识节点 - Google Patents

共识方法、区块链系统和共识节点 Download PDF

Info

Publication number
WO2023056958A1
WO2023056958A1 PCT/CN2022/123979 CN2022123979W WO2023056958A1 WO 2023056958 A1 WO2023056958 A1 WO 2023056958A1 CN 2022123979 W CN2022123979 W CN 2022123979W WO 2023056958 A1 WO2023056958 A1 WO 2023056958A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
consensus
node
nodes
signature
Prior art date
Application number
PCT/CN2022/123979
Other languages
English (en)
French (fr)
Inventor
刘盛云
邓福喜
闫莺
徐文博
Original Assignee
支付宝(杭州)信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 支付宝(杭州)信息技术有限公司 filed Critical 支付宝(杭州)信息技术有限公司
Publication of WO2023056958A1 publication Critical patent/WO2023056958A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3236Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
    • H04L9/3239Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions involving non-keyed hash functions, e.g. modification detection codes [MDCs], MD5, SHA or RIPEMD

Definitions

  • the embodiments of this specification belong to the field of blockchain technology, and in particular relate to a consensus method, a blockchain system, and consensus nodes.
  • Blockchain is a new application model of computer technologies such as distributed data storage, point-to-point transmission, consensus mechanism, and encryption algorithm.
  • the data blocks are combined into a chained data structure in a sequentially connected manner in chronological order, and a non-tamperable and unforgeable distributed ledger is cryptographically guaranteed. Due to the characteristics of the blockchain such as decentralization, immutable information, and autonomy, the blockchain also has more and more applications.
  • the purpose of the present invention is to provide a consensus method, blockchain system and consensus nodes, including: an embodiment of the consensus method in the blockchain system, including: the first round: the first consensus node broadcasts the first message, the second A message includes the consensus proposed transaction set and the signature of the first consensus node; the second round: the consensus node that received the first message broadcasts the second message, and the second message includes the vote and signature on the transaction set ;
  • the vote includes the summary value of the transaction set;
  • the third round after the consensus node receiving the second message collects at least Quorum unanimous votes from different consensus nodes, if it has not broadcast different vote, the third message is broadcast, and the third message includes the summary value and the collected signature set; after the consensus node collects at least Quorum third messages from different nodes, the transaction set corresponding to the summary value Output as at least part of the consensus outcome.
  • An embodiment of a consensus method in a blockchain system comprising: first round: the first consensus node broadcasts a first message, and the first message includes a consensus proposed transaction set and the signature of the first consensus node; second round: The consensus node that received the first message broadcasts a second message, which includes a vote and signature on the transaction set; the vote includes a value indicating that the transaction set is not approved; the third round: received After the consensus node of the second message collects at least Quorum unanimous votes from different consensus nodes, if it has not broadcast different votes for the proposal, it broadcasts a third message, which includes the said disapproval The value of the transaction set and the collected signature set; after the consensus node collects at least Quorum third messages from different nodes, it will not output the transaction set as part of the consensus result.
  • An embodiment of a block chain system including a consensus node, wherein: the first consensus node broadcasts a first message, the first message includes a consensus proposed transaction set and the signature of the first consensus node; receiving the first message
  • the consensus node broadcasts the second message, which includes votes and signatures on the transaction set; the vote includes the summary value of the transaction set; the consensus node that receives the second message collects at least Quorum from different After the unanimous vote of the consensus node, if it has not broadcast a different vote for the proposal, it will broadcast the third message, the third message includes the summary value and the collected signature set; the consensus node collects at least Quorum from After the third message from different nodes, the transaction set corresponding to the summary value is output as at least a part of the consensus result.
  • An embodiment of a block chain system including a consensus node, wherein: the first consensus node broadcasts a first message, the first message includes a consensus proposed transaction set and the signature of the first consensus node; receiving the first message Consensus node broadcasts a second message, which includes a vote and a signature on the transaction set; the vote includes a value representing disapproval of the transaction set; the consensus node receiving the second message collects at least Quorum from After the unanimous votes of different consensus nodes, if they have not broadcast different votes for the proposal, broadcast a third message, the third message includes the value indicating that the transaction set is not approved and the collected signature set; After the consensus node collects at least Quorum third messages from different nodes, it does not output the transaction set as part of the consensus result.
  • An embodiment of a consensus node in a blockchain system comprising: a first message receiving unit, configured to receive a first message broadcast by the first consensus node, the first message including a consensus proposed transaction set and the first consensus node's signature; the second message broadcasting unit is used to broadcast a second message after the first message receiving unit receives the first message, and the second message includes a vote and a signature on the transaction set; the vote includes the The summary value of the transaction set; the vote collection unit is used to collect votes from the consensus nodes; the third message broadcast unit, when the vote collection unit collects at least Quorum unanimous votes from different consensus nodes, if the proposal itself No different votes have been broadcast, then broadcast a third message, the third message includes the summary value and the collected signature set; the third message collection unit collects the third message from the consensus node; the output unit, when the third After the message collection unit collects at least Quorum third messages from different nodes, it outputs the transaction set corresponding to the summary value as at least a part of the consensus result.
  • An embodiment of a consensus node in a blockchain system comprising: a first message receiving unit, configured to receive a first message broadcast by the first consensus node, the first message including a consensus proposed transaction set and the first consensus node's Signature; the second message broadcasting unit is used to broadcast a second message after the first message receiving unit receives the first message, and the second message includes a vote and a signature on the transaction set; the vote includes an indication that no Approve the value of the transaction set; the vote collection unit is used to collect votes from consensus nodes; the third message broadcast unit, when the vote collection unit collects at least Quorum unanimous votes from different consensus nodes, if itself For the proposal that has not broadcast a different vote, broadcast a third message, the third message includes the value indicating that the transaction set is not approved and the collected signature set; the third message collection unit collects the The third message: the output unit, after the third message collection unit collects at least Quorum third messages from different nodes, does not output the transaction set corresponding to the summary value as at least a part
  • Fig. 1 is a schematic diagram of a conventional stage of a practical Byzantine fault-tolerant algorithm in an embodiment
  • Fig. 2 is a schematic diagram of the view switching stage of the practical Byzantine fault-tolerant algorithm in an embodiment
  • Fig. 3 is a schematic diagram of the honey badger Byzantine fault-tolerant algorithm in an embodiment
  • Fig. 4 is a flowchart of the consensus algorithm in an embodiment of this specification.
  • Fig. 5 is a schematic diagram of a consensus algorithm in an embodiment of this specification.
  • Fig. 6 is a schematic diagram of a consensus algorithm in an embodiment of this specification.
  • Fig. 7 is a schematic diagram of a consensus algorithm in an embodiment of this specification.
  • Fig. 8 is a schematic diagram of a consensus algorithm in an embodiment of this specification.
  • Fig. 9 is a schematic diagram of a consensus algorithm in an embodiment of this specification.
  • Fig. 10 is a flowchart of a consensus algorithm in an embodiment of this specification.
  • Fig. 11 is an architecture diagram of consensus nodes in an embodiment of this specification.
  • nodes In the blockchain system, different participants can establish a distributed blockchain network through the deployed nodes (Nodes).
  • Nodes A decentralized (or multi-centered) distributed ledger constructed using a chained block structure is stored on each node (or most nodes, such as consensus nodes) in the distributed blockchain network.
  • Such a blockchain system needs to solve the problem of the consistency and correctness of the respective ledger data on multiple decentralized (or multi-centered) nodes.
  • Each node runs a blockchain program. Under the design of certain fault-tolerant requirements, the consensus mechanism is used to ensure that all loyal nodes have the same transaction, so as to ensure that all loyal nodes have the same execution results for the same transaction, and will Transactions and execution results are packaged to generate blocks.
  • the current mainstream consensus mechanisms include: Proof of Work (POW), Proof of Stake (POS), Delegated Proof of Stake (DPOS), Practical Byzantine Fault Tolerance (PBFT) ) algorithm, Honey Badger Byzantine Fault Tolerance (HoneyBadgerBFT) algorithm, etc.
  • POW Proof of Work
  • POS Proof of Stake
  • DPOS Delegated Proof of Stake
  • PBFT Practical Byzantine Fault Tolerance
  • HoneyBadgerBFT Honey Badger Byzantine Fault Tolerance
  • the algorithm assumes that when at most f replicas (ie, nodes) fail, if there are at least 3f+1 replicas in total, security and liveness can be guaranteed to be provided in an asynchronous system.
  • a set of a certain number of copies required to ensure the data consistency and fault tolerance requirements of all copies is generally a collection of most nodes in a distributed system, forming a majority (Quorum).
  • the Quorum is 2f+1. In this way, for a distributed system containing four nodes, any three nodes can form a Quorum.
  • PBFT includes two processes, Normal Case Phase and View Change Phase.
  • Figure 1 is a flow chart of the Normal Case Phase (normal phase) process.
  • the Normal Case Phase mainly includes three phases: PRE-PREPARE (pre-preparation), PREPARE (preparation) and COMMIT (commitment).
  • node 3 can represent a downtime node (indicated by ⁇ in Figure 1), for example.
  • FIG. 2 is a schematic diagram of View Change Phase (view switching). If the master node goes offline or does evil and does not broadcast the client's request, etc., the client can set a timeout mechanism. If it times out, the client can broadcast the request message to all replica nodes.
  • the replica node After the replica node detects that the master node is malicious or goes offline, it can also initiate the View Change protocol phase to replace the master node (often referred to as "master change").
  • master change the three-stage consensus process of PRE-PREPARE, PREPARE and COMMIT may fail due to the wrong proposal initiated by the master node, or the PREPARE and COMMIT stages may not reach the number of Quorum (such as 2f+1 of 3f+1 nodes, Also known as the quorum), the consensus cannot be completed. In these cases it is also possible to initiate the View Change protocol phase to replace the master node.
  • the PBFT protocol is a partial synchronous protocol, which is characterized by assuming that the network is asynchronous at the beginning, but it can be synchronized from a certain moment. To allow different nodes to reach a consensus on the same proposal in the network, the easiest way is to set up a master node, and the master node will unify the opinions of each node. By setting the timer, you can prevent the master node from making mistakes. In PBFT, if the Normal Case Phase is not completed within a limited time, Backups will be triggered to initiate the View Change Phase to replace the primary node. PBFT fixes the master node in one position, and all requests can be sent to the master node first, and then broadcast to other consensus nodes by the master node.
  • the HoneyBadgerBFT also often abbreviated as HBBFT
  • HBBFT asynchronous (asynchronous) protocol.
  • Asynchronous protocols are suitable for asynchronous networks, that is, messages between nodes in this network can be delayed arbitrarily, but will eventually arrive. The timer is removed from HoneyBadgerBFT, and the execution of the protocol is driven by messages.
  • all nodes in the HoneyBadgerBFT algorithm are equal, there is no distinction between master nodes and backup nodes, and there is no process of changing masters.
  • Asynchronous network consensus protocols such as HBBFT have no concept of master nodes. Each node can propose a request and try to construct a block. Therefore, asynchronous network protocols alleviate the problems of fairness and single-node bottlenecks to a certain extent.
  • FIG 3 is a flow chart of the single node angle of the HoneyBadgerBFT algorithm.
  • all nodes in the HoneyBadgerBFT algorithm are peers, that is, all nodes can execute the process shown in Figure 3.
  • HoneyBadgerBFT mainly includes two stages, namely Reliable Broadcast (RBC) and Asynchronous Binary Agreement (ABA, asynchronous binary agreement, also known as "01 Asynchronous consensus").
  • RBC Reliable Broadcast
  • ABA Asynchronous Binary Agreement
  • ABA asynchronous binary agreement
  • ACS Asynchronous Common Subset
  • the RBC phase includes at least three rounds of message interaction of Rval, Echo, and Ready
  • the ABA phase includes at least three rounds of message interaction of Bval, Aux, and Coin.
  • RBC uses three rounds of message exchanges to ensure reliable proposal broadcasting. ABA first conducts two rounds of voting (Bval and AUX messages), and then uses Coin toss (Coin) to unify the proposals of each node, thereby bypassing the network synchronization requirements of the semi-synchronous protocol.
  • a HoneyBadgerBFT consensus must go through the RBC phase and at least one ABA phase. In the best case, there is a probability of 1/2 that the HoneyBadgerBFT consensus process can be ended. In this way, it takes 6 rounds to complete a consensus.
  • a node can run an ACS and n RBCs+n ABAs, where n is the number of consensus nodes, and one of the RBCs and ABAs corresponds to the one initiated by itself.
  • Consensus proposal, other (n-1) RBCs and ABAs correspond to consensus proposals initiated by other (n-1) nodes. That is to say, for an epoch, when a node initiates a consensus proposal, it will also cooperate to complete the consensus proposal initiated by other nodes.
  • At least (n-f) nodes will perform the same above-mentioned consensus process (at least (n-f) different nodes initiate the proposal process), and finally the ACS will collect the ABA results of each proposal according to certain rules Output the proposals whose ABA result is 1 after sorting.
  • HoneyBadgerBFT includes at least one RBC (three rounds) and one ABA (three rounds). If the ABA voting result is inconsistent with the coin toss result, the protocol enters a new round of ABA (at least three additional rounds). Tossing coins brings uncertainty to the rounds of consensus and may increase delays.
  • This application provides an embodiment of a consensus algorithm, as shown in Figure 4, specifically including: S41: [First round]
  • the first consensus node broadcasts the first message, and the first message includes the transaction set proposed by the consensus and the first consensus node signature.
  • a consensus algorithm in this application may include 3 rounds of interaction. Similar to HBBFT, the consensus algorithm of the embodiment shown in Figure 5 is also an asynchronous protocol, that is, it is assumed that messages between nodes in the network can be delayed arbitrarily, but will eventually arrive. Similarly, the timer is also removed in the embodiment in Figure 5, and the execution of the protocol is driven by messages; at the same time, all nodes can be peer-to-peer, there is no distinction between the master node and the backup node, and any consensus node can initiate consensus Proposals, each consensus node can also participate in the consensus process where other nodes propose consensus proposals. The result of a consensus can include the sum of the transaction sets in the consensus proposal proposed by all nodes in this consensus and obtained at least the same number of Quorum votes.
  • Node 0 can initiate a consensus proposal, which can include a packaged transaction set, for example, marked as m 0 , m 0 can include a series of transaction sets ⁇ tx 01 , tx 02 , .. .,tx 0n ⁇ . Further, Node 0 may broadcast the first message to other consensus nodes, such as to Node 1 , Node 2 and Node 3 as shown in FIG. 5 .
  • the broadcasted first message may include the transaction set m 0 proposed by the consensus of Node 0 . This message may be called a Val message.
  • this message may also include the signature of the first consensus node on m 0 , for example, denoted as sig 00 .
  • the first consensus node Node 0 can directly sign m 0 with its own private key to obtain sig 00 , or perform hash calculation on m 0 first to obtain the hash value (that is, the digest value), and then use its own The private key signs the hash value to obtain sig 00 , and can also use its own private key to directly sign the data including m 0 and ts 0 or sign the hash value of the data including m 0 and ts 0 .
  • the format of the Val message can be ⁇ r,m 0 ,sig 00 >, where r can represent the rth consensus.
  • the consensus proposal for m 0 here is the rth consensus
  • the transaction set m 1 of the next consensus proposal can correspond to the r+1th consensus.
  • the sig 00 may also be a signature of the data including r and m 0 using its own private key.
  • the consensus nodes that received the first message can verify the correctness of the received first message. For example, Node 1 may use the public key of Node 0 to verify the signature of Node 0 in the first message. If the verification is passed, go to S43.
  • the consensus node that has received the first message may broadcast the second message.
  • Node 1 , Node 2 , and Node 3 respectively broadcast the second message to other consensus nodes.
  • the second message broadcast by the consensus node may include a vote on the consensus proposal initiated by Node 0 .
  • Node 1 , Node 2 , and Node 3 can broadcast the second message to inform other consensus nodes of their vote on the consensus proposal, and the vote can be to express approval or disapproval of the message set in the consensus proposal.
  • the consensus node that receives the Val message can calculate the hash value of the consensus-proposed transaction set in the Val message.
  • the consensus node approves the transaction set proposed by Node 0 in this consensus, it can broadcast the hash value in the second round of message interaction.
  • the consensus node does not approve the transaction set proposed by Node 0 in this consensus, it can broadcast 0 in the second round of message interaction. This broadcasted second message may be denoted as Bval.
  • 1 is used to indicate that the proposal represented by the hash value is approved or approved
  • 0 is used to indicate that the proposal represented by the hash value is not voted. Approved or not, it's just a simple change.
  • Node 0 does not need to participate in the broadcast, because Node 0 initiates a consensus proposal in the first round, which itself can represent Node 0 ’s approval of the message set in the consensus proposal, so that in the second round Node 1 , Node 2 , and Node 3 may respectively broadcast the second message to other consensus nodes.
  • consensus nodes can change their views and vote again, that is, send out multiple different Bval messages.
  • Node 1 can send a Bval message whose content is the hash value of the transaction set for the first time to express approval of the transaction set in the consensus proposal, and then can send a Bval message with a content of 0 again to indicate approval of the transaction set in the consensus proposal.
  • Disapproval of the set of transactions in the consensus proposal can be sent.
  • Node 2 can send a Bval message with content 0 for the first time to indicate disapproval of the transaction set in the consensus proposal, and then send a Bval message with the content of the hash value of the transaction set again to indicate An endorsement of the set of transactions in the consensus proposal.
  • the second message may also include a signature on the set of transactions.
  • the consensus node that receives the first message at the end of the first round can verify the correctness of the received first message, for example, Node 1 verifies whether the signature of Node 0 is correct.
  • the consensus node receiving the first message can use its own private key to sign the transaction set in the first message. For example, Node 1 signs the transaction set m 0 in the first message to obtain sig 10 ; it can also be that Node 1 first performs hash calculation on m 0 to obtain the hash value (ie digest value), and then uses its own private key to pair The hash value is signed, so that sig 10 is obtained.
  • the format of the Bval message can be ⁇ r, hash, sig 10 >, where r can represent the rth consensus, and hash is the hash value of m 0 , indicating that the voting point of view of m 0 is agreed.
  • the sig 10 may also be a signature of the data including r and m 0 using its own private key.
  • Node 2 After receiving the Val message from Node 0 , Node 2 can similarly calculate the hash value of m 0 in the Val message, sign the hash value with its own private key to obtain sig 20 , and then broadcast the Bval message.
  • the Bval message may include the calculated hash value and the signature sig 20 , or may include r, the hash value, and the signature sig 20 .
  • Node 3 After receiving the Val message from Node 0 , Node 3 can similarly calculate the hash value of m 0 in the Val message, sign the hash value with its own private key to obtain sig 30 , and then broadcast the Bval message.
  • the Bval message may include the calculated hash value and the signature sig 30 , or may include r, the hash value, and the signature sig 30 .
  • the consensus nodes in the second round broadcast the second message, so that at the end of the second round, the consensus nodes that received the second message can collect the votes in the second message, and then broadcast the third message.
  • the Val message broadcast by Node 0 can include m 0 , so that at the end of the first round, Node 1 can calculate the hash value of m 0 included in the Val message, so that the statistics can be compared with the second Whether the hash value of m 0 in the Bval message broadcast by Node 1 in the round is the same, and whether it is the same as the hash value of m 0 sent by Node 2 and Node 3 received in the second round, and then whether it is collected At least Quorum of consistent hash values from different consensus nodes.
  • Node 2 and Node 3 are similar to Node 1 and will not be repeated here.
  • the consensus node can also collect the signatures of different nodes at the end of the second round, as mentioned earlier.
  • the number of votes collected up to the second round can be counted by signing. For example, if Node 1 collects the same hash value signed by sig 10 , sig 20 , and sig 30 , it means that there are 3 votes for approval of the hash (in addition, it can also include Val received from Node 0 at the end of the first round). If the signature sig 00 for the same hash value in the message, a total of 4 signatures are collected for the same hash value).
  • Node 1 For Node 1 , if at least Quorum of consistent hash values from different consensus nodes are collected, and it has not broadcast 0 (that is, different votes) for the proposal m 0 , then broadcast the third message.
  • the third message can be recorded as a Prom message, which means that it promises not to change its opinion on the proposal m 0 .
  • the hash value of m 0 can indicate approval, and 0 can indicate disapproval.
  • Node 1 has not broadcast 0 for the proposal m 0 , which means that it has not disapproved the proposal m 0.
  • other forms other than 0 can be used to express this disapproval.
  • Node 2 and Node 3 are also similar.
  • the third broadcast message may include the collected votes for m 0 , such as the hash values and signatures collected in the first and second rounds above.
  • the format of the Prom message can be such as ⁇ r, hash, ⁇ signature set>>.
  • Node 0 assuming that Node 0 collects Node 1 in the second round, and the votes in the Bval messages broadcast by Node 2 and Node 3 respectively are all hash values of the transaction set m 0 , so that Node 1 .
  • the signatures of Node 2 and Node 3 on m 0 are votes of sig 10 , sig 20 , and sig 30 respectively, and the Val message broadcast by Node 0 in the first round also includes its own vote for m 0
  • the signature of 0 (or the hash value of m 0 ) is the hash value of sig 00 .
  • the Prom message broadcast by Node 0 in the third round may include the hash value and the collected hash value and signature set that different nodes express approval for the proposed transaction set m 0 .
  • the signature set is, for example, sig 00 , sig 10 , sig 20 , sig 30 .
  • Node 1 collects in the second round that the votes in the Bval messages broadcast by Node 2 and Node 3 are all the hash values of the transaction set m 0
  • Node 2 and Node 3 respectively collect
  • the signature of m 0 (or the hash value of m 0 ) is the vote of sig 20 and sig 30
  • the Val message broadcast by Node 0 in the first round also includes its signature on m 0 (or the hash value of m 0 ) is a vote of sig 00
  • the Bval message broadcast by Node 1 in the second round also includes the vote that its signature on m 0 (or the hash value of m 0 ) is sig 10 .
  • the Prom message broadcast by Node 1 in the third round may include the hash value and the collected hash value and signature set that different nodes approve of the proposed transaction set m 0
  • the signature set includes, for example, sig 00 , sig 10 , sig 20 , sig 30 .
  • Node 2 and Node 3 are also similar to Node 1 .
  • the above signature set can also be replaced by an aggregate signature or a threshold signature.
  • the consensus node After collecting at least Quorum third messages from different nodes, the consensus node outputs the transaction set corresponding to the digest value as at least a part of the consensus result.
  • consensus nodes that have received Prom messages can count the number of collected Prom messages.
  • the condition for the consensus node to send the Prom message in the third round is that at least Quorum unanimous votes from different consensus nodes have been collected in the second round, and it has not broadcast different votes for the proposal, which is equivalent to the second round
  • the consensus node confirms that a total of at least Quorum number of consensus nodes (including itself) votes for the proposal m 0 .
  • Node 0 collects at least Quorum consistent digest values in the first round and the second round, and then, the Prom message broadcast by Node 0 in the third round may include the hash value and the collected different nodes for the
  • the proposed transaction set m 0 represents the approved hash value and signature set, and the signature set includes, for example, sig 00 , sig 10 , sig 20 , and sig 30 .
  • Node 1 collects at least Quorum consistent digest values in the first round and the second round, and then, the Prom message broadcast by Node 1 in the third round may include the hash value and the collected different nodes for the
  • the proposed transaction set m 0 represents the approved hash value and signature set, and the signature set includes, for example, sig 00 , sig 10 , sig 20 , and sig 30 .
  • Node 2 and Node 3 are also similar to Node 1 .
  • Node 0 can collect at least Quorum Prom messages. Through Quorum Prom messages, Node 0 can confirm that each of at least Quorum consensus nodes has collected at least Quorum number of votes to approve the proposed transaction set m 0 , and each consensus node that sends Prom messages commits to The point of view of voting will not be changed, so that Node 0 can further complete this consensus, that is, output the transaction set m 0 corresponding to the summary value as at least a part of the consensus result. Node 1 , Node 2 and Node 3 are also similar. Similarly, other consensus nodes such as Node 1 , Node 2 , and Node 3 can further complete this consensus, that is, output the transaction set m 0 corresponding to the digest value as at least a part of the consensus result.
  • the third round of Prom messages can add signatures.
  • the Prom message broadcast by Node 1 in the third round may include Node 1's signature of ⁇ r, hash, ⁇ signature set>> in the Prom message.
  • the above embodiment in FIG. 5 can be executed by Node 0 in the figure, and can also be extended to be executed by Node 0 , Node 1 , Node 2 and Node 3 .
  • every consensus node that collects at least Quorum third messages from different nodes can output the transaction set corresponding to the summary value as the entire consensus result, except for Figure 5
  • any one of Fig. 6 , Fig. 7 , and Fig. 8 may be used.
  • Figure 5 is from the perspective of Node 0 , which initiates a consensus proposal.
  • Node 1 , Node 2 , and Node 3 Any one can also initiate a proposal, and other consensus nodes cooperate to complete the above-mentioned similar process, so that the whole is the superposition of Figure 5, Figure 6, Figure 7, and Figure 8.
  • the transaction set of Node 0 initiating the consensus proposal is m 0
  • the transaction set of Node 1 initiating the consensus proposal is m 1
  • the transaction set of Node 2 initiating the consensus proposal is m 2
  • the transaction set of Node 3 initiating the consensus proposal The set is m 3 , so m 0 can correspond to hash 0
  • m 1 can correspond to hash 1
  • m 2 can correspond to hash 2
  • m 3 can correspond to hash 3 .
  • the consensus output of each consensus node is ⁇ m 0 , m 1 , m 2 , m 3 ⁇ with high probability.
  • the order of m 0 , m 1 , m 2 , m 3 in the output results It can be sorted according to certain rules, for example, sorted according to the size order of the corresponding hash values.
  • the results of the above process can be collected by consensus nodes.
  • the results of Node 0 's execution of the above consensus process can be collected, for example, including the final consensus result of 1 for m 0 and the final consensus result for m 1
  • the consensus result is 1
  • the final consensus result for m 2 is 1
  • the final consensus result for m 3 is 1.
  • m 0 is the consensus proposal initiated by Node 0
  • m 1 is the consensus proposal initiated by Node 1
  • m 2 is the consensus proposal initiated by Node 2
  • m 3 is the consensus proposal initiated by Node 3 .
  • the delay caused by the consensus process is greatly reduced.
  • it is equivalent to using forward-looking voting and digital signature technology to combine the last two rounds of the RBC process in HBBFT and the first two rounds of the ABA process, thereby shortening the required rounds.
  • the forward-looking voting refers to voting in the second round of Bval in the above embodiment, while HBBFT needs to vote in the fifth round of Bval in the ABA process.
  • the digital signature refers to the digital signature used in the first round and the second round in the above embodiment.
  • a certain number of error nodes can be tolerated.
  • f error nodes can be tolerated among the consensus nodes whose total n is 3f+1, and the Quorum is 2f+1.
  • Node 0 broadcasts the Val message, and the first message includes the transaction set m 0 proposed by the consensus and the signature sig 00 of Node 0 .
  • m 0 includes a series of transaction sets ⁇ tx 01 , tx 02 , . . . , tx 0n ⁇ .
  • sig 00 is obtained by first performing hash calculation on m 0 by Node 0 to obtain a hash value, and then signing the hash value with its own private key.
  • the format of the Val message can be ⁇ r,m 0 ,sig 00 >, where r can represent the rth consensus.
  • r can represent the rth consensus.
  • the consensus nodes that received the Val message can verify the correctness of the received Val message.
  • Node 1 can use the public key of Node 0 to verify the signature sig 00 of Node 0 in the first message, and if it passes the verification, enter the second round.
  • Node 2 can use the public key of Node 0 to verify the signature sig 00 of Node 0 in the first message, and if it passes the verification, it will enter the second round.
  • Node 3 is the failure node.
  • the consensus node that received the Val message broadcasts a Bval message, which includes the vote and signature for the transaction set m 0 ; the vote includes the hash value of the transaction set m 0 . Since Node 3 is a failed node, it does not respond, that is, it will not broadcast the Bval message, and Node 1 and Node 2 broadcast the Bval message to other consensus nodes respectively.
  • the Bval message broadcast by Node 1 includes, for example, the hash value of m 0 and the signature sig 10 of the hash value of m 0 by Node 1 using its own private key.
  • the Bval message can also be ⁇ r, hash, sig 10 >, where sig 10 can be the signature of Node 1 with its own private key to the data including the hash value of r and m 0 .
  • Node 2 After receiving the Val message from Node 0 , Node 2 can similarly calculate the hash value of m 0 in the Val message, sign the hash value with its own private key to obtain sig 20 , and then broadcast the Bval message.
  • the Bval message may include the hash value of m 0 and the signature sig 20 .
  • the consensus nodes that received the Bval message can collect votes in Bval.
  • the votes in the Bval message are collected at the end of the second round, and the votes in the Bval messages broadcast by Node 1 and Node 2 respectively include the hash value of the transaction set m 0 , and Node 0 is in the first
  • the Val message broadcast in the round is also m 0
  • its corresponding hash is also the hash value of m 0
  • the Bval messages broadcast by Node 1 and Node 2 respectively include their respective signatures sig 10 and sig 20
  • the vote in the Bval message broadcast by Node 2 at the end of the second round is the hash value of m 0 and sig 20
  • the vote in the Bval message broadcast by Node 1 in the second round is also the hash value and sig 10
  • the m 0 in the Val message sent by Node 0 received in the first round also has the same hash value and sig 00
  • Node 1 collects 3 consistent hash values in this round, which satisfies the number of Quorum .
  • the vote in the Bval message broadcast by Node 1 at the end of the second round is the hash value of m 0 and sig 10
  • the vote in the Bval message broadcast by Node 2 in the second round is also the hash value and sig 20
  • the m 0 in the Val message sent by Node 0 received in the first round also has the same hash value and sig 00
  • Node 2 collects 3 consistent hash values in this round, which satisfies the number of Quorum .
  • the consensus node receiving the Bval message collects at least Quorum consistent hash values from different consensus nodes, if it has not broadcast 0 for the proposal, it broadcasts a Prom message, which includes the hash value along with the collected signature.
  • the Prom message broadcast by Node 0 in the third round may include the hash value and the collected hash value and signature set that different nodes approve of the proposed transaction set m 0 , and the signature set is sig 00 , sig 10 , sig 20 .
  • the Prom message broadcast by Node 1 in the third round it may include the hash value and the collected hash value and signature set that different nodes approve of the proposed transaction set m 0 , and the signature set is also sig 00 , sig 10 , sig 20 .
  • the Prom message broadcast by Node 2 in the third round may include the hash value and the collected hash value and signature set that different nodes approve of the proposed transaction set m 0 , and the signature set is also sig 00 , sig 10 , sig 20 .
  • the consensus node that received the Prom message counts the number of collected Prom messages. If at least Quorum Prom messages from different nodes are collected, the transaction set m 0 corresponding to the hash value is taken as the consensus result at least part of the output of .
  • Node 0 collects 3 Proms, and it can be confirmed that each of at least 3 consensus nodes (satisfying Quorum) has collected at least 3 votes (satisfying Quorum) that approve the proposed transaction set m 0 , and each consensus node that sends the Prom message promises not to change the voting point of view, so that Node 0 can further complete this consensus, that is, output the transaction set m 0 corresponding to the hash value as at least part of the consensus result.
  • Node 1 and Node 2 are also similar, that is, Node 1 and Node 2 also output the transaction set m 0 corresponding to the hash value as at least part of the consensus result.
  • Figure 9 above shows the process of Node 0 initiating a consensus proposal.
  • Node 1 and Node 2 can also perform a similar process, that is, Node 1 and Node 2 can also initiate consensus proposals for transaction sets m 1 and m 2 respectively.
  • Node 3 is a failed node, so no consensus proposal will be initiated.
  • the final output result of Nod 0 , Node 1 and Node 2 in this consensus is ⁇ m 0 , m 1 , m 2 ⁇ , that is, the same consensus result is maintained, and the consensus result includes a set of transactions with the same content and order .
  • the output result is ⁇ m 0 , m 2 ⁇ , and m 1 received a negative vote after consensus, so m 1 was not included in the result of this consensus output.
  • This application also provides another consensus algorithm embodiment, as shown in Figure 10, which specifically includes: S101: [First round] The first consensus node broadcasts the first message, which includes the transaction set proposed by the consensus and the first The signature of the consensus node.
  • Node 0 can initiate a consensus proposal, which can include a packaged transaction set, for example, marked as m 0 , m 0 can include a series of transaction sets ⁇ tx 01 , tx 02 , .. .,tx 0n ⁇ . Further, Node 0 may broadcast the first message to other consensus nodes, such as to Node 1 , Node 2 and Node 3 as shown in FIG. 5 .
  • the broadcasted first message may include the transaction set m 0 proposed by the consensus of Node 0 . This message may be called a Val message.
  • this message may also include the signature of the first consensus node on m 0 , for example, denoted as sig 00 .
  • the first consensus node Node 0 can directly sign m 0 with its own private key to obtain sig 00 , or perform hash calculation on m 0 first to obtain the hash value (that is, the digest value), and then use its own The private key signs the hash value, resulting in sig 00 .
  • the format of the Val message can be ⁇ r,m 0 ,sig 00 >, where r can represent the rth consensus.
  • the consensus proposal for m 0 here is the rth consensus
  • the transaction set m 1 of the next consensus proposal can correspond to the r+1th consensus.
  • the sig 00 may also be a signature of the data including r and m 0 using its own private key.
  • S103 [Second round] The consensus node that received the first message broadcasts a second message, the second message includes a vote and signature on the transaction set; the vote includes a value indicating disapproval of the transaction set .
  • the consensus nodes that received the first message can verify the correctness of the received first message.
  • Node 1 may use the public key of Node 0 to verify the signature of Node 0 in the first message. If the verification is not passed, broadcast a vote of not approving the transaction set m 0 at S103, for example, 0 is used to indicate disapproval.
  • the consensus node that receives the first message may broadcast the second message.
  • Node 1 , Node 2 , and Node 3 respectively broadcast the second message to other consensus nodes.
  • the second message broadcast by the consensus node may include a vote for the consensus proposal m 0 initiated by Node 0 , for example, 0 as mentioned above. This broadcasted second message may be denoted as Bval.
  • Node 0 does not need to participate in the broadcast, because Node 0 initiates a consensus proposal in the first round, which itself can represent Node 0 ’s approval of the message set in the consensus proposal, so that in the second round Node 1 , Node 2 , and Node 3 may respectively broadcast the second message to other consensus nodes.
  • consensus nodes can change their views and vote again, that is, send out multiple different Bval messages.
  • Node 1 can send a Bval message whose content is the hash value of the transaction set for the first time to express approval of the transaction set in the consensus proposal, and then can send a Bval message with a content of 0 again to indicate approval of the transaction set in the consensus proposal.
  • Disapproval of the set of transactions in the consensus proposal can be sent.
  • Node 2 can send a Bval message with content 0 for the first time to indicate disapproval of the transaction set in the consensus proposal, and then send a Bval message with the content of the hash value of the transaction set again to indicate An endorsement of the set of transactions in the consensus proposal.
  • the second message may also include a signature on the set of transactions.
  • the consensus node that receives the first message can use its own private key to sign the value indicating that it does not approve the transaction set in the first message. For example, Node 1 uses 0 to indicate that it does not approve the transaction set m 0 in the first message, and then signs 0 with its own private key to obtain sig 10 .
  • the format of the Bval message can be ⁇ r,0,sig 10 >, where r can indicate the rth consensus, and 0 indicates that the value of the transaction set m 0 is not approved.
  • the sig 10 may also be the signature of the data including r and 0 by the consensus node using its own private key.
  • Node 2 and Node 3 are similar to those of Node 1 , and will not be repeated here.
  • S105 [Third round] After the consensus node receiving the second message collects at least Quorum unanimous votes from different consensus nodes, if it has not broadcast different votes for the proposal, it broadcasts the third message, the first The third message includes the value representing disapproval of the set of transactions and the set of collected signatures.
  • the consensus nodes in the second round broadcast the second message, so that at the end of the second round, the consensus nodes that received the second message can collect the votes in the second message, and then broadcast the third message.
  • Node 2 and Node 3 are similar to Node 1 and will not be repeated here.
  • the consensus node can also collect the signatures of different nodes at the end of the second round, as mentioned earlier.
  • the number of votes collected in the second round can be counted by signing. For example, if Node 1 collects 0 values signed by sig 10 , sig 20 , and sig 30 respectively, it means that there are 3 votes expressing disapproval for the proposed transaction set m 0 .
  • the uniqueness of the message can also be determined through the secure transmission channel established between the consensus nodes, and then the number of messages can be determined.
  • the secure transmission channel is established, for example, by technologies such as message authentication code (Message Authentication Code, MAC) and secure transport layer protocol (Transport Layer Security, TTL).
  • Node 1 For Node 1 , if at least Quorum 0 values from different consensus nodes are collected, and it has not broadcast different votes for the proposal m 0 , then broadcast the third message.
  • the third message can be recorded as a Prom message, which means that it promises not to change its opinion on the proposal m 0 .
  • 0 can indicate disapproval.
  • Node 1 has not broadcast other views on the proposal m 0 , which means that it has not held an approved view on the proposal m 0 , and Node 2 and Node 3 are similar.
  • the third broadcast message may include collected votes on m 0 , such as the 0 values and signatures collected in the first and second rounds above.
  • the format of the Prom message can be such as ⁇ r,0, ⁇ signature collection>>.
  • the Bval message broadcast in the round also includes its signature for vote 0 as sig 10 .
  • the Prom message broadcast by Node 1 in the third round may include the 0 value and the collected 0 value and signature set that different nodes express disapproval of the proposed transaction set m 0.
  • the signature set includes, for example, sig 10 , sig 20 , sig 30 .
  • Node 2 and Node 3 are also similar to Node 1 .
  • the above signature set can also be replaced by an aggregate signature or a threshold signature.
  • Node 0 broadcasts the proposed transaction set m 0 in the first round to represent the approval of the proposed transaction set, therefore, Node 0 can not send the Prom message in the third round, or change it after the second round My own opinion, that is, sending Bval messages with different voting content, but it does not affect the execution results of other nodes.
  • consensus nodes that have received Prom messages can count the number of collected Prom messages.
  • the condition for the consensus node to send the Prom message in the third round is that at least Quorum unanimous votes from different consensus nodes have been collected in the second round, and it has not broadcast different votes for the proposal, which is equivalent to the second round
  • the consensus node confirms that the consensus nodes (including itself) with at least the number of Quorum in total disagree with the proposal m 0 .
  • Node 1 collects at least Quorum consistent 0 values in the first round and the second round, and then, in the Prom message broadcast by Node 1 in the third round, it can include the 0 value and the collected different nodes for the
  • the proposed transaction set m 0 represents an unapproved 0 value and a signature set, for example, the signature set includes sig 10 , sig 20 , and sig 30 .
  • Node 2 and Node 3 are also similar to Node 1 .
  • Node 0 since it broadcasts the proposed transaction set m 0 in the first round, it represents the approval of the proposed transaction set, so Node 0 can not send the Prom message in the third round, or Change your opinion after the second round, that is, send out Bval messages with different voting content, but it will not affect the execution results of other nodes.
  • Node 1 can collect at least Quorum Prom messages. Through Quorum Prom messages, Node 1 can confirm that each of at least Quorum consensus nodes has collected at least Quorum votes that express disapproval of the proposed transaction set m 0 , and each consensus node that sends Prom messages has Commitment will no longer change the point of view of the vote, so that Node 1 can further complete this consensus, that is, not output the transaction set m 0 as part of the consensus result.
  • Node 0 even if it outputs the transaction set m 0 as part of the consensus result, it will not affect the overall availability of the blockchain system, because the opinions of the Quorum number of nodes formed by Node 1 , Node 2 and Node 3 are consistent .
  • the third round of Prom messages can add signatures.
  • the Prom message broadcast by Node 1 in the third round may include Node 1 's signature on ⁇ r, 0, ⁇ signature set>> in the Prom message.
  • Fig. 10 can be executed by Node 0 in the figure, and can also be extended to be executed by Node 0 , Node 1 , Node 2 and Node 3 , that is, in addition to Fig. 5, it can also be Fig. 6, Fig. 7. Any one in Figure 8.
  • the situation is executed by Node 0 , Node 1 , Node 2 and Node 3.
  • Figure 5 is from the perspective of Node 0 , which initiates a consensus proposal.
  • any of Node 1 , Node 2 and Node 3 can also initiate It is suggested that other consensus nodes cooperate to complete the above-mentioned similar process, so that the whole is the superposition of Figure 5, Figure 6, Figure 7, and Figure 8.
  • the present application also provides an embodiment of a block chain system, including consensus nodes, wherein: the first consensus node broadcasts a first message, and the first message includes the transaction set proposed by the consensus and the signature of the first consensus node; The consensus node of the first message broadcasts the second message, which includes votes and signatures on the transaction set; the vote includes the digest value of the transaction set; the consensus node that receives the second message collects at least Quorum After unanimous votes from different consensus nodes, if they have not broadcast different votes for the proposal, then broadcast the third message, the third message includes the digest value and the collected signature set; the consensus node collects at least After Quorum third messages from different nodes, the transaction set corresponding to the summary value is output as at least a part of the consensus result.
  • each of at least Quorum consensus nodes in the blockchain system executes the aforementioned method as the first consensus node.
  • the present application also provides an embodiment of a block chain system, including consensus nodes, wherein: the first consensus node broadcasts a first message, and the first message includes the transaction set proposed by the consensus and the signature of the first consensus node; The consensus node of the first message broadcasts the second message, and the second message includes a vote and signature on the transaction set; the vote includes a value indicating that the transaction set is not approved; the consensus node receiving the second message collects After at least Quorum unanimous votes from different consensus nodes, if it has not broadcast different votes for the proposal, broadcast a third message, the third message includes the value indicating that the transaction set is not approved and the collected signature set; after the consensus node collects at least Quorum third messages from different nodes, it does not output the transaction set as part of the consensus result.
  • the first consensus node broadcasts a first message
  • the first message includes the transaction set proposed by the consensus and the signature of the first consensus node
  • the consensus node of the first message broadcasts the second message, and the second message includes
  • each of at least Quorum consensus nodes in the blockchain system executes the aforementioned method as the first consensus node.
  • the present application also provides an embodiment of a consensus node in a blockchain system, as shown in Figure 11, including: a first message receiving unit 111, configured to receive the first message broadcast by the first consensus node, in the first message The transaction set including the consensus proposal and the signature of the first consensus node; the second message broadcasting unit 112, configured to broadcast a second message after the first message receiving unit receives the first message, and the second message includes the The vote and signature of the transaction set; the vote includes the summary value of the transaction set; the vote collection unit 113 is used to collect votes from consensus nodes; the third message broadcast unit 114, when the vote collection unit collects at least Quorum Consistent votes from different consensus nodes, if they have not broadcast different votes for the proposal, broadcast a third message, the third message includes the digest value and the collected signature set; the third message collection unit 115, Collect the third message from the consensus node; the output unit 116, when the third message collection unit collects at least Quorum third messages from different nodes, use the transaction set corresponding to the summary
  • the present application also provides an embodiment of a consensus node in a blockchain system, which may also be shown in Figure 11, including: a first message receiving unit 111, configured to receive the first message broadcast by the first consensus node, the first message Including the consensus proposed transaction set and the signature of the first consensus node; the second message broadcasting unit 112 is used to broadcast the second message after the first message receiving unit receives the first message, and the second message includes the The vote and signature of the transaction set; the vote includes a value indicating that the transaction set is not approved; the vote collection unit 113 is used to collect votes from consensus nodes; the third message broadcast unit 114, when the vote collection unit collects After at least Quorum unanimous votes from different consensus nodes, if it has not broadcast different votes for the proposal, broadcast a third message, the third message includes the value indicating that the transaction set is not approved and the collected signature set; the third message collection unit 115, collects the third message from the consensus node; the output unit 116, when the third message collection unit collects at least Quorum third messages
  • the improvement of a technology can be clearly distinguished as an improvement in hardware (for example, improvements in circuit structures such as diodes, transistors, and switches) or improvements in software (improvement in method flow).
  • improvements in circuit structures such as diodes, transistors, and switches
  • improvements in software improvement in method flow
  • the improvement of many current method flows can be regarded as the direct improvement of the hardware circuit structure.
  • Designers almost always get the corresponding hardware circuit structure by programming the improved method flow into the hardware circuit. Therefore, it cannot be said that the improvement of a method flow cannot be realized by hardware physical modules.
  • a programmable logic device Programmable Logic Device, PLD
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • HDL Hardware Description Language
  • ABEL Advanced Boolean Expression Language
  • AHDL Altera Hardware Description Language
  • HDCal JHDL
  • Lava Lava
  • Lola MyHDL
  • PALASM RHDL
  • VHDL Very-High-Speed Integrated Circuit Hardware Description Language
  • Verilog Verilog
  • the controller may be implemented in any suitable way, for example the controller may take the form of a microprocessor or processor and a computer readable medium storing computer readable program code (such as software or firmware) executable by the (micro)processor , logic gates, switches, application specific integrated circuits (Application Specific Integrated Circuit, ASIC), programmable logic controllers and embedded microcontrollers, examples of controllers include but are not limited to the following microcontrollers: ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicone Labs C8051F320, the memory controller can also be implemented as part of the control logic of the memory.
  • controller in addition to realizing the controller in a purely computer-readable program code mode, it is entirely possible to make the controller use logic gates, switches, application-specific integrated circuits, programmable logic controllers, and embedded The same function can be realized in the form of a microcontroller or the like. Therefore, such a controller can be regarded as a hardware component, and the devices included in it for realizing various functions can also be regarded as structures within the hardware component. Or even, means for realizing various functions can be regarded as a structure within both a software module realizing a method and a hardware component.
  • the systems, devices, modules, or units described in the above embodiments can be specifically implemented by computer chips or entities, or by products with certain functions.
  • a typical implementation device is a server system.
  • the computer that realizes the functions of the above embodiments can be, for example, a personal computer, a laptop computer, a vehicle-mounted human-computer interaction device, a cellular phone, a camera phone, a smart phone, a personal digital assistant , media players, navigation devices, email devices, game consoles, tablet computers, wearable devices, or any combination of these devices.
  • one or more embodiments of the present specification provide the operation steps of the method described in the embodiment or the flowchart, more or fewer operation steps may be included based on conventional or non-inventive means.
  • the sequence of steps enumerated in the embodiments is only one of the execution sequences of many steps, and does not represent the only execution sequence.
  • the methods shown in the embodiments or drawings can be executed sequentially or in parallel (such as a parallel processor or multi-thread processing environment, or even a distributed data processing environment).
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in computer-readable media, in the form of random access memory (RAM) and/or nonvolatile memory such as read-only memory (ROM) or flash RAM. Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash random access memory
  • Computer-readable media including both permanent and non-permanent, removable and non-removable media, may be implemented by any method or technology for storage of information.
  • Information may be computer readable instructions, data structures, modules of a program, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage, graphene storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by computing devices.
  • computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.
  • one or more embodiments of this specification may be provided as a method, system or computer program product. Accordingly, one or more embodiments of the present description may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, one or more embodiments of the present description may employ a computer program embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein. The form of the product.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • program modules may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Hardware Redundancy (AREA)
  • Computer And Data Communications (AREA)

Abstract

一种共识方法、区块链系统和共识节点。其中,所述共识方法包括:第一轮:第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;第二轮:接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括所述交易集合的摘要值;第三轮:接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述摘要值以及收集到的签名集合;共识节点收集到至少Quorum个来自于不同节点的第三消息后,将所述摘要值对应的交易集合作为共识结果的至少一部分输出。

Description

共识方法、区块链系统和共识节点 技术领域
本说明书实施例属于区块链技术领域,尤其涉及一种共识方法、区块链系统和共识节点。
背景技术
区块链(Blockchain)是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。区块链系统中按照时间顺序将数据区块以顺序相连的方式组合成链式数据结构,并以密码学方式保证的不可篡改和不可伪造的分布式账本。由于区块链具有去中心化、信息不可篡改、自治性等特性,区块链也有着越来越多的应用。
发明内容
本发明的目的在于提供一种共识方法、区块链系统和共识节点,包括:一种区块链系统中的共识方法实施例,包括:第一轮:第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;第二轮:接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括所述交易集合的摘要值;第三轮:接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述摘要值以及收集到的签名集合;共识节点收集到至少Quorum个来自于不同节点的第三消息后,将所述摘要值对应的交易集合作为共识结果的至少一部分输出。
一种区块链系统中的共识方法实施例,包括:第一轮:第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;第二轮:接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括表示不认可所述交易集合的值;第三轮:接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述表示不认可所述交易集合的值以及收集到的签名集合;共识节点收集到至少Quorum个来自于不同节点的第三消息后,不将所述交易集合作为共识结果的一部分输出。
一种区块链系统实施例,包括共识节点,其中:第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括所述交易集合的摘要值;接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述摘要值以及收集到的签名集合;共识节点收集到至少Quorum个来自于不同节点的第三消息后,将所述摘要值对应的交易集合作为共识结果的至少一部分输出。
一种区块链系统实施例,包括共识节点,其中:第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括表示不认可所述交易集合的值;接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述表示不认可所述交易集合的值以及收集到的签名集合;共识节点 收集到至少Quorum个来自于不同节点的第三消息后,不将所述交易集合作为共识结果的一部分输出。
一种区块链系统中的共识节点实施例,包括:第一消息接收单元,用于接收第一共识节点广播的第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;第二消息广播单元,用于当第一消息接收单元接收到所述第一消息后广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括所述交易集合的摘要值;投票收集单元,用于收集来自于共识节点的投票;第三消息广播单元,当投票收集单元收集到至少Quorum个来自于不同共识节点的一致的投票,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述摘要值以及收集到的签名集合;第三消息收集单元,收集来自于共识节点的第三消息;输出单元,当第三消息收集单元收集到至少Quorum个来自于不同节点的第三消息后,将所述摘要值对应的交易集合作为共识结果的至少一部分输出。
一种区块链系统中的共识节点实施例,包括:第一消息接收单元,用于接收第一共识节点广播的第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;第二消息广播单元,用于当第一消息接收单元接收到所述第一消息后广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括表示不认可所述交易集合的值;投票收集单元,用于收集来自于共识节点的投票;第三消息广播单元,当投票收集单元收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述表示不认可所述交易集合的值以及收集到的签名集合;第三消息收集单元,收集来自于共识节点的第三消息;输出单元,当第三消息收集单元收集到至少Quorum个来自于不同节点的第三消息后,不将所述摘要值对应的交易集合作为共识结果的至少一部分输出。
上述实施例中,可以在一定前提下缩短至3个轮次完成一次共识,相对于HBBFT中的至少6轮,大大降低了共识过程带来的延迟。本申请实施例中相当于采用前瞻投票和数字签名技术将HBBFT中RBC过程的后两轮和ABA过程的前两轮进行了合并,从而缩短了所需的轮次。
附图说明
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是一实施例中实用拜占庭容错算法常规阶段的示意图;
图2是一实施例中实用拜占庭容错算法视图切换阶段的示意图;
图3是一实施例中蜜獾拜占庭容错算法的示意图;
图4是本说明书一实施例中共识算法的流程图;
图5是本说明书一实施例中共识算法的示意图;
图6是本说明书一实施例中共识算法的示意图;
图7是本说明书一实施例中共识算法的示意图;
图8是本说明书一实施例中共识算法的示意图;
图9是本说明书一实施例中共识算法的示意图;
图10是本说明书一实施例中共识算法的流程图;
图11是本说明书一实施例中共识节点架构图。
具体实施方式
为了使本技术领域的人员更好地理解本说明书中的技术方案,下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本说明书保护的范围。
区块链系统中,不同参与方通过部署的节点(Node)可以建立一个分布式的区块链网络。利用链式区块结构构造的去中心化(或称为多中心化)的分布式账本,保存于分布式的区块链网络中的每个节点(或大多节点上,如共识节点)上。这样的区块链系统需要解决去中心化(或多中心化)的多个节点上各自的账本数据的一致性和正确性的问题。每个节点上都运行着区块链程序,在一定容错需求的设计下,通过共识(consensus)机制保证所有忠诚节点具有相同的交易,从而保证所有忠诚节点对相同交易的执行结果一致,并将交易及执行结果打包生成区块。当前主流的共识机制包括:工作量证明(Proof of Work,POW)、股权证明(Proof of Stake,POS)、委任权益证明(Delegated Proof of Stake,DPOS)、实用拜占庭容错(Practical Byzantine Fault Tolerance,PBFT)算法,蜜獾拜占庭容错(HoneyBadgerBFT)算法等。
以PBFT为例,该算法是Miguel Castro(卡斯特罗)和Barbara Liskov(利斯科夫)在1999年提出来的,解决了原始拜占庭容错算法效率不高的问题,将算法复杂度由指数级降低到多项式级,使得拜占庭容错算法在实际系统应用中变得可行。该论文发表在1999年的操作系统设计与实现国际会议上(OSDI99)。PBFT算法中,所有的副本(replica)在一个被称为视图(View)的轮换过程(succession of configuration)中运行。在某个视图中,一个副本作为主节点(primary),其他的副本作为备份节点(backups)。视图是连续编号的整数。主节点由公式p=v mod|R|计算得到,这里v是视图编号,p是副本编号,|R|是副本集合的个数。该算法中假设,当最多存在f个副本(即节点)失效时,如果存在总数为至少3f+1个副本,就能保证在异步系统中提供安全性和活性。为了能够确保所有副本的数据一致性要求和容错要求而需要的一定数量副本的集合,一般是分布式系统中的大多数节点构成的集合,构成大多数(Quorum)。例如在总节点数n为3f+1(n=3f+2或n=3f的情况一般不会对容错效果带来提升)的情况下,Quorum为2f+1。这样,对于包含四个节点的分布式系统,任意三个节点可以构成一个Quorum。
PBFT包括Normal Case Phase和View Change Phase两个过程,图1为Normal Case Phase(常规阶段)过程的流程图。Normal Case Phase中主要包括PRE-PREPARE(预准备)、PREPARE(准备)和COMMIT(提交)三个阶段,其中3号节点例如可以表示宕机的节点(图1中以×表示)。当主节点失效的时候(图2中以×表示,如更换视图前主节点Primary也就是Replica 0(副本0)失效)就需要启动视图更换(view change)过程,从而在系统存在故障时进行状态调整,更换新的主节点(如更换视图后Replica 1为主节点Primary)。图2为View Change Phase(视图切换)的示意图。如果主节点掉线或者作恶而不广播客户端的请求等,客户端可以设置超时机制。如果超时的话,客户端可以向所有副本节点广播请求消息。副本节点检测出主节点作恶或者下线后,也可以发起View Change协议阶段,以更换主节点(经常简称为“换主”)。此外,也可能由于主节点发起错误的提议导致PRE-PREPARE、PREPARE和COMMIT三阶段共识过程失败,或者,PREPARE、COMMIT阶段可能达不成Quorum数量(如3f+1个节点中 的2f+1个,也称为法定数量)的一致,也都无法完成共识。这些情况下也可能发起View Change协议阶段,以更换主节点。
PBFT协议属于半同步(partial synchronous)协议,其特点是假设网络一开始是异步的,但是能够从某一时刻开始同步。要在网络中让不同节点对同一提议达成共识,最简便的方式是设置主节点,由主节点来统一各个节点的意见。通过设置定时器,可以防止主节点出错。PBFT中,如果在有限时间内没有完成Normal Case Phase,会触发Backups发起View Change Phase,以更换主节点。PBFT将主节点固定在一个位置,所有请求都可以先发送到主节点,再由主节点广播到其他共识节点。除了引入额外的、将请求发送到主节点的延迟之外,主节点的出入口带宽也可能成为性能瓶颈。与此相对的,HoneyBadgerBFT(也常简称为HBBFT)算法属于一种异步(asynchronous)协议。异步协议适用于异步网络,也就是这个网络中节点间的消息可以被任意延迟,但最终会到达。HoneyBadgerBFT中去掉了定时器,而是通过消息来驱动协议的执行。同时,HoneyBadgerBFT算法中所有节点都是对等的,没有主节点和备份节点之分,也就没有换主的过程。HBBFT等异步网络共识协议无主节点的概念,各节点都可提议请求,尝试构造区块,因此异步网络协议在一定程度上缓解了公平性和单节点瓶颈的问题。
图3为HoneyBadgerBFT算法单节点角度的流程图。实际上,如前所述,HoneyBadgerBFT算法中所有节点都是对等的,也就是说,所有节点都可以执行图3所示的流程。如图3所示,从单节点的视角来看,HoneyBadgerBFT主要包括两个阶段,分别为可靠广播(Reliable BroadCast,RBC)和异步共识(Asynchronous Binary Agreement,ABA,异步二进制协议,也称为“01异步共识”)。此外,还有RBC和ABA之上的异步公共子集(Asynchronous Common Subset,ACS)协议。RBC阶段至少包括Rval、Echo、Ready三轮消息交互,ABA阶段至少包括Bval、Aux和Coin三轮消息交互。RBC使用三轮消息交互保证可靠的提议广播。ABA首先进行两轮投票(Bval和AUX消息),然后借助抛硬币(Coin)对各节点的提议统一认识,从而绕开半同步协议对网络同步的要求。一次HoneyBadgerBFT共识,要经过RBC阶段和至少一次ABA阶段。最好的情况下,存在1/2的概率可以结束本次HoneyBadgerBFT共识过程,这样,需要经过6个轮次完成一次共识。此外,有1/4概率会进入再一次的ABA过程,如图3中第二次ABA过程(7、8、9轮次表示的ABA过程),有1/4概率会在第二轮结束,且存在至少1/4的概率可以结束本次HoneyBadgerBFT共识过程,这样,需要经过9个轮次完成一次共识。在第二次ABA过程后,整体上有1/8的概率会进入再一次的ABA过程……以此类推。
另外,对于一个最终生成的区块(对应一个epoch)来说,一个节点可以运行一个ACS和n个RBC+n个ABA,n为共识节点个数,且其中1个RBC和ABA对应自身发起的共识提议,其它(n-1)个RBC和ABA对应其它(n-1)个节点发起的共识提议。也就是说,对于一个epoch来说,一个节点发起共识提议的同时,也会配合完成其它节点发起的共识提议。这样,对于一个节点来说,至少(n-f)个RBC结束后会将这些RBC已经完成的情况(通过Ready消息表示)发至ACS,进而由ACS为对应的ABA赋初值,启动对应的ABA过程。在至少(n-f)个共识提议完成ABA之后如果剩余的共识提议仍未完成RBC,则会被赋初值为0,进而执行该提议对应的ABA过程。从全局的视角来看,至少(n-f)个节点会执行相同的上述共识过程(至少(n-f)个不同节点发起提议的过程),并最终由ACS来收集各个提议的ABA结果后按照某种规则对ABA结果为1的提议排序后输出。
综上所述,HoneyBadgerBFT至少包括一次RBC(三轮)和一次ABA(三轮),如果ABA的投票结果与抛币结果不一致,协议进入新一轮的ABA(至少额外三轮)。抛币给共识的轮次带来不确定性,可能增加延迟。
本申请提供一种共识算法实施例,如图4所示,具体包括:S41:【第一轮】第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名。
本申请一种共识算法实施例中,可以包括3轮的交互。与HBBFT类似的,图5所示实施例的共识算法,也属于一种异步协议,即假设网络中节点间的消息可以被任意延迟,但最终会到达。类似的,图5实施例中也去掉了定时器,通过消息来驱动协议的执行;同时,所有节点可以都是对等的,没有主节点和备份节点之分,任一共识节点都可以发起共识提议,每一个共识节点也都可以参与其他节点提起共识提议的共识过程。一次共识的结果,可以包括本次共识中所有节点提起且获得至少Quorum数量投票一致的共识提议中的交易集合的总和。
以一个节点的视角来看,例如以Node 0发起共识提议的视角来看,交互过程如图5所示。在一次共识中,Node 0可以发起共识提议,这个共识提议中可以包括打包的交易集合,例如标记为m 0,m 0中可以包括一系列的交易构成的集合{tx 01,tx 02,...,tx 0n}。进而,Node 0可以广播第一消息至其它共识节点,如图5中广播至Node 1、Node 2和Node 3。广播的第一消息中可以包括Node 0的共识提议的交易集合m 0。这个消息可以称为Val消息。
此外,这个消息还可以包括第一共识节点对m 0的签名,例如记为sig 00。一般地,第一共识节点Node 0可以用自身的私钥对m 0直接签名,得到sig 00,也可以是先对m 0进行hash计算,得到hash值(即摘要值),进而再用自身的私钥对该hash值签名,从而得到sig 00,还可以是用自身的私钥对m 0和ts 0在内的数据直接进行签名或对m 0和ts 0在内的数据的hash值进行签名。
Val消息的格式可以如<r,m 0,sig 00>,其中r可以表示第r次共识。例如这里对m 0的共识提议是第r次共识,则下一个共识提议的交易集合m 1可以对应第r+1次共识。所述sig 00,也可以是采用自身私钥对包括r和m 0在内的数据的签名。类似的,也可以是先对m 0进行hash计算,得到hash值,进而再用自身的私钥对该hash值和r在内的数据进行签名,从而得到sig 00,还可以是用自身的私钥对该m 0和r在内的数据的hash值进行签名。
S43:【第二轮】接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括所述交易集合m 0的摘要值。
在第一轮的末尾,接收到第一消息的共识节点可以验证接收到的第一消息的正确性。例如,Node 1可以采用Node 0的公钥对第一消息中的Node 0的签名进行验证。如果通过验证,则进入S43。
S43,具体如图5中,接收到第一消息的共识节点可以广播第二消息。第二轮次的消息交互中,Node 1、Node 2、Node 3各自分别广播第二消息至其它共识节点。共识节点广播的第二消息中,可以包括对Node 0发起的共识提议的投票。
例如,Node 1、Node 2、Node 3可以通过广播第二消息来告诉其他共识节点自身对共识提议的投票,投票可以是对共识提议中的消息集合表示认可或者不认可。具体的,在第一轮的末尾,收到Val消息的共识节点,可以计算Val消息中共识提议的交易集合的hash值。进而,如果共识节点认可该次共识中Node 0提议的交易集合,可以在第2轮次的消息交互中广播该hash值。相反的,如果共识节点不认可该次共识中Node 0提议的交易集合,可以在第2轮次的消息交互中广播0。这个广播的第二消息可以记为Bval。此外,也可以是在第2轮次的消息交互中广播该hash值的同时,用1来表示对该hash值代表的提议投票认可或通过,用0来表示对该hash值代表的提议投票不认可或不通过,这只是简单的变化。
本轮次中,Node 0可以不参与广播,这是因为Node 0在第一轮次中发起共识提议,本 身即可以代表Node 0对共识提议中的消息集合是认可的,从而第二轮次中可以由Node 1、Node 2、Node 3分别广播第二消息至其它共识节点。
需要说明的是,共识节点可以更改自己的观点并再次投票,即发出多个不同的Bval消息。例如,Node 1可以首次发出内容是所述交易集合的hash值的Bval消息,以表示对所述共识提议中的交易集合的认可,而后续可以再次发送内容是0的Bval消息,以表示对所述共识提议中的交易集合的不认可。再例如,Node 2可以首次发出内容是0的Bval消息,以表示对所述共识提议中的交易集合的不认可,而后续可以再次发出内容是所述交易集合的hash值的Bval消息,以表示对所述共识提议中的交易集合的认可。
此外,第二消息中还可以包括对所述交易集合的签名。前述提到,在第一轮的末尾接收到第一消息的共识节点可以验证接收到的第一消息的正确性,例如Node 1验证Node 0的签名是否正确。进而,接收到第一消息的共识节点,可以用自己的私钥对第一消息中的交易集合进行签名。例如Node 1对第一消息中的交易集合m 0进行签名,得到sig 10;也可以是Node 1先对m 0进行hash计算,得到hash值(即摘要值),进而再用自身的私钥对该hash值签名,从而得到sig 10
类似的,Bval消息的格式可以如<r,hash,sig 10>,其中r可以表示第r次共识,hash为m 0的hash值,表示对m 0的投票观点是认同。则所述sig 10,也可以是采用自身私钥对包括r和m 0在内的数据的签名。类似的,也可以是先对m 0进行hash计算,得到hash值,进而再用自身的私钥对该hash值和r在内的数据进行签名,从而得到sig 10,还可以是用自身的私钥对r和hash在内的数据的hash值进行签名。
Node 2收到Node 0发来的Val消息后,类似的,也可以计算Val消息中的m 0的hash值,并采用自身私钥对该hash值签名得到sig 20,进而也可以广播Bval消息。Bval消息中可以包括计算得到的hash值以及签名sig 20,也可以是包括r、hash值以及签名sig 20
Node 3收到Node 0发来的Val消息后,类似的,也可以计算Val消息中的m 0的hash值,并采用自身私钥对该hash值签名得到sig 30,进而也可以广播Bval消息。Bval消息中可以包括计算得到的hash值以及签名sig 30,也可以是包括r、hash值以及签名sig 30
S45:【第三轮】接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述摘要值以及收集到的签名。
第二轮中的共识节点广播第二消息,这样,在第二轮的末尾,接收到第二消息的共识节点可以收集第二消息中的投票,进而广播第三消息。
例如Node 0,在第二轮的末尾可以收集Bval消息中的投票。假设Node 0收集到Node 1,Node 2、Node 3分别广播的Bval消息中的投票都是所述交易集合m 0的hash值,且Node 0在第一轮中广播的Val消息中也是m 0,其对应的hash显然也是m 0的hash值,则Node 0在本轮次中收集到至少Quorum个一致的摘要值(例如此时f=1,Quorum=3,实际收集到4)。
例如Node 1,在第二轮的末尾可以收集Bval消息中的投票,假设Node 1收集到Node 2、Node 3分别广播的第二消息中的投票都是所述交易集合m 0的hash值,且Node 1在第二轮中广播的第二消息中的投票如果也是所述交易集合m 0的hash值(也表示对所述交易集合的认可),且在第一轮中接收到的Node 0发出的Val消息中的m 0也是同样的hash值,则Node 1在本轮次中收集到至少Quorum个一致的摘要值(例如此时f=1,Quorum=3,实际收集到4)。需要说明的是,第一轮中,Node 0广播的Val消息中可以包括m 0,这样在第一轮的末尾Node 1可以计算Val消息中包括的m 0的hash值,从而可以统计与第二轮中Node 1广播的Bval消息中的m 0的hash值是否相同,以及是否与第二轮中接收到 的Node 2和Node 3发来的m 0的hash值是否相同,进而得出是否收集到至少Quorum个来自于不同共识节点的一致的hash值。
Node 2和Node 3与Node 1类似,不再赘述。
此外,共识节点还可以在第二轮末尾收集到不同节点的签名,如前所述。通过签名可以统计截止到第二轮所收集到的投票的数量。例如Node 1收集到分别有sig 10、sig 20、sig 30签名的同一hash值,则说明对该hash共有3个表示认可的投票(此外还可以包括在第一轮末尾接收到Node 0发送的Val消息中对同一hash值的签名sig 00,则对同一hash值一共收集到4个签名)。
对于Node 1,如果收集到至少Quorum个来自于不同共识节点的一致的hash值,且自身针对该提议m 0没有广播过0(即不同的投票),则广播第三消息。第三消息可以记为Prom消息,意思是承诺不会对提议m 0更改观点。如前所述,m 0的hash值可以表示认可,0可以表示不认可。Node 1针对该提议m 0没有广播过0,是指没有对提议m 0持有过不认可的观点,当然也可以用0以外的其它形式表示这种不认可。Node 2和Node 3也是类似的。
广播的第三消息中,可以包括收集到的对m 0的投票,例如上述第一轮和第二轮中收集到的hash值和签名。
这样,Prom消息的格式可以如<r,hash,<签名集合>>。
例如Node 0,假设Node 0在第二轮中收集到Node 1,Node 2、Node 3分别广播的Bval消息中的投票都是所述交易集合m 0的hash值,这样也就收集到Node 1、Node 2和Node 3各自分别对m 0(或m 0的hash值)的签名是sig 10、sig 20、sig 30的投票,且Node 0在第一轮中广播的Val消息中也包括自身对m 0(或m 0的hash值)的签名为sig 00的hash值。这样,Node 0在本轮次中收集到至少Quorum个一致的摘要值(例如此时Quorum=3)。进而,Node 0在第三轮中广播的Prom消息中,可以包括该hash值以及收集到的不同节点针对该提议的交易集合m 0表示认可的hash值及签名集合,签名集合例如为sig 00、sig 10、sig 20、sig 30
例如,假设Node 1在第二轮中收集到Node 2、Node 3分别广播的Bval消息中的投票都是所述交易集合m 0的hash值,这样也就收集到Node 2和Node 3各自分别对m 0(或m 0的hash值)的签名是sig 20、sig 30的投票,且Node 0在第一轮中广播的Val消息中也包括其对m 0(或m 0的hash值)的签名是sig 00的投票,且Node 1在第二轮中广播的Bval消息中也包括其对m 0(或m 0的hash值)的签名是sig 10的投票。这样,Node 1在第一轮和第二轮中收集到至少Quorum个一致的摘要值(例如此时Quorum=3)和不同节点的签名。进而,Node 1在第三轮中广播的Prom消息中,可以包括该hash值以及收集到的不同节点针对该提议的交易集合m 0表示认可的hash值及签名集合,签名集合例如包括sig 00、sig 10、sig 20、sig 30
Node 2和Node 3也类似于Node 1
需要说明的是,上述签名集合,也可以用聚合签名或门限签名替代。
S47:共识节点收集到至少Quorum个来自于不同节点的第三消息后,将所述摘要值对应的交易集合作为共识结果的至少一部分输出。
第三轮执行后,接收到Prom消息的共识节点可以统计收集的Prom消息的数量。共识节点在第三轮中发出Prom消息的条件是第二轮中收集到至少Quorum个来自于不同共识节点的一致的投票,且自身针对该提议没有广播过不同的投票,即相当于第二轮末尾该共识节点确认总计至少Quorum数量的共识节点(包括自身)对该提议m 0的投票都 是认同的。但是,第二轮结束之后还不能马上输出共识结果,而是还需要观察其他节点是否也是在第二轮末尾收集到至少Quorum数量的对提议m 0的表示认同的投票,因此需要通过第三轮的Prom消息来确认,并且通过该Prom消息承诺自身不会再针对同一提议m 0的表示不同的观点。
例如Node 0在第一轮和第二轮中收集到至少Quorum个一致的摘要值,进而,Node 0在第三轮中广播的Prom消息中,可以包括该hash值以及收集到的不同节点针对该提议的交易集合m 0表示认可的hash值及签名集合,签名集合例如包括sig 00、sig 10、sig 20、sig 30
例如Node 1在第一轮和第二轮中收集到至少Quorum个一致的摘要值,进而,Node 1在第三轮中广播的Prom消息中,可以包括该hash值以及收集到的不同节点针对该提议的交易集合m 0表示认可的hash值及签名集合,签名集合例如包括sig 00、sig 10、sig 20、sig 30
Node 2和Node 3也类似于Node 1
这样,通过第三轮,例如Node 0可以收集到至少Quorum个Prom消息。通过Quorum个Prom消息,Node 0可以确认至少Quorum个共识节点中的每一个都收集到了对该提议的交易集合m 0表示认可的至少Quorum数量的投票,且发出Prom消息的每一个共识节点都承诺不再会更改投票的观点,这样,Node 0可以进一步完成本次共识,即将所述摘要值对应的交易集合m 0作为共识结果的至少一部分输出。Node 1、Node 2和Node 3也类似。类似的,其它共识节点如Node 1、Node 2和Node 3也可以进一步完成本次共识,即将所述摘要值对应的交易集合m 0作为共识结果的至少一部分输出。
第三轮的Prom消息可以增加签名。例如Node 1在第三轮中广播的Prom消息中可以包括Node 1对Prom消息中<r,hash,<签名集合>>的签名。
上述图5的实施例,可以由如图中的Node 0来执行,也可以扩展到由Node 0、Node 1、Node 2和Node 3均执行。前者的情况,实际上,每一收集到至少Quorum个来自于不同节点的第三消息后的共识节点,各自均可以将所述摘要值对应的交易集合作为共识结果的全部来输出,除了图5以外,也可以是图6、图7、图8中的任一。
对于后者,即由Node 0、Node 1、Node 2和Node 3均执行的情况,图5是以Node 0这一个节点的发起共识提议的视角,实际上Node 1、Node 2和Node 3中的任一也可以发起提议而其它共识节点配合完成上述类似的过程,这样整体上是图5、图6、图7、图8的叠加。
对于后者的情况,例如Node 0发起共识提议的交易集合为m 0,Node 1发起共识提议的交易集合为m 1、Node 2发起共识提议的交易集合为m 2,Node 3发起共识提议的交易集合为m 3,这样,m 0可以对应hash 0,m 1可以对应hash 1,m 2可以对应hash 2,m 3可以对应hash 3。如果正常执行,大概率上每个共识节点本次共识的输出结果为{m 0,m 1,m 2,m 3},至于输出结果中m 0,m 1,m 2,m 3的顺序,可以按照一定规则来排序,例如按照对应hash值的大小顺序来排序。
具体的,可以由共识节点收集上述过程的结果。例如对于图5、图6、图7、图8叠加的情形,对于Node 0,可以收集Node 0执行上述共识过程的结果,例如包括针对m 0的最终为1的共识结果,针对m 1的最终为1的共识结果,针对m 2的最终为1的共识结果,针对m 3的最终为1的共识结果。其中,m 0为由Node 0发起的共识提议,m 1为由Node 1发起的共识提议,m 2为由Node 2发起的共识提议,m 3为由Node 3发起的共识提议。
上述实施例中,可以在一定前提下缩短至3个轮次完成一次共识,相对于HBBFT中的至少6轮,大大降低了共识过程带来的延迟。实际上,本申请实施例中,相当于采用前瞻投票和数字签名技术将HBBFT中RBC过程的后两轮和ABA过程的前两轮进行 了合并,从而缩短了所需的轮次。所述前瞻投票,是指上述实施例中第二轮次的Bval中进行投票,而HBBFT在ABA过程中需要在第五轮次的Bval中才投票。所述数字签名,指上述实施例中第一轮次和第二轮次中采用的数字签名。
本申请实施例中,与PBFT和HBBFT类似,可以容忍一定数量的错误节点,例如是总数n为3f+1的共识节点中可以容错f个错误节点,Quorum为2f+1。以下给出一个存在f(f=1)的失效节点的例子。
在图9所示的例子中,假设Node 3为失效节点的情况,则:第一轮中,Node 0广播Val消息,第一消息中包括共识提议的交易集合m 0和Node 0的签名sig 00。m 0中例如包括一系列的交易构成的集合{tx 01,tx 02,...,tx 0n}。sig 00例如是Node 0先对m 0进行hash计算,得到hash值,进而再用自身的私钥对该hash值签名得到。
Val消息的格式可以如<r,m 0,sig 00>,其中r可以表示第r次共识。这样,也可以是先对m 0进行hash计算,得到hash值,进而再用自身的私钥对该hash值和r在内的数据进行签名,从而得到sig 00,还可以是用自身的私钥对m 0和r在内的数据直接进行签名或对m 0和r在内的数据的hash值进行签名。
第一轮的末尾,接收到Val消息的共识节点可以验证接收到的Val消息的正确性。具体的,Node 1可以采用Node 0的公钥对第一消息中的Node 0的签名sig 00进行验证,如果通过验证,则进入第二轮。类似的,Node 2可以采用Node 0的公钥对第一消息中的Node 0的签名sig 00进行验证,如果通过验证,则进入第二轮。而Node 3为失效节点。
第二轮中,接收到所述Val消息的共识节点广播Bval消息,Bval消息中包括对所述交易集合m 0的投票和签名;所述投票包括所述交易集合m 0的hash值。由于Node 3是失效节点,因此不响应,即不会广播Bval消息,而由Node 1、Node 2分别广播Bval消息至其它共识节点。Node 1广播的Bval消息例如包括m 0的hash值和Node 1采用自身的私钥对m 0的hash值的签名sig 10。此外,Bval消息也可以是如<r,hash,sig 10>,则其中的sig 10可以是Node 1用自身私钥对包括r和m 0的hash值在内的数据的签名。
Node 2收到Node 0发来的Val消息后,类似的,也可以计算Val消息中的m 0的hash值,并采用自身私钥对该hash值签名得到sig 20,进而也可以广播Bval消息。Bval消息中可以包括m 0的hash值以及签名sig 20
第二轮的末尾,接收到Bval消息的共识节点可以收集Bval中的投票。对于Node 0,在第二轮的末尾收集Bval消息中的投票,收集到Node 1,Node 2分别广播的Bval消息中的投票都包括所述交易集合m 0的hash值,且Node 0在第一轮中广播的Val消息中也是m 0,其对应的hash也是m 0的hash值,且Node 1,Node 2分别广播的Bval消息中包括各自的签名sig 10和sig 20,Node 0在第一轮中广播的Val消息中也包括签名sig 00,则Node 0在第二轮末尾收集到总计3个一致的hash值(此时f=1,Quorum=3)。对于Node 1,在第二轮的末尾收集Node 2广播的Bval消息中的投票是m 0的hash值和sig 20,且Node 1在第二轮中广播的Bval消息中的投票也是hash值及sig 10,且在第一轮中接收到的Node 0发出的Val消息中的m 0也是同样的hash值以及sig 00,则Node 1在本轮次中收集到3个一致的hash值,满足Quorum数量。对于Node 2,在第二轮的末尾收集Node 1广播的Bval消息中的投票是m 0的hash值和sig 10,且Node 2在第二轮中广播的Bval消息中的投票也是hash值及sig 20,且在第一轮中接收到的Node 0发出的Val消息中的m 0也是同样的hash值以及sig 00,则Node 2在本轮次中收集到3个一致的hash值,满足Quorum数量。
第三轮中,接收到Bval消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的hash值后,如果自身针对该提议没有广播过0,则广播Prom消息,Prom消息包括所述hash值以及收集到的签名。
例如,Node 0在第三轮中广播的Prom消息中,可以包括该hash值以及收集到的不同节点针对该提议的交易集合m 0表示认可的hash值及签名集合,签名集合为sig 00、sig 10、sig 20。Node 1在第三轮中广播的Prom消息中,可以包括该hash值以及收集到的不同节点针对该提议的交易集合m 0表示认可的hash值及签名集合,签名集合也是sig 00、sig 10、sig 20。Node 2在第三轮中广播的Prom消息中,可以包括该hash值以及收集到的不同节点针对该提议的交易集合m 0表示认可的hash值及签名集合,签名集合也是sig 00、sig 10、sig 20
第三轮执行后,接收到Prom消息的共识节点统计收集的Prom消息的数量,如果收集到至少Quorum个来自于不同节点的Prom消息后,将所述hash值对应的交易集合m 0作为共识结果的至少一部分输出。
对于Node 0,在第三轮结束后收集到Node 1和Node 2广播的Prom消息,且自身也广播过Prom消息,因此总计收集到3个Prom消息。
类似的对于Node 1,在第三轮结束后收集到Node 0和Node 2广播的Prom消息,且自身也广播过Prom消息,因此总计收集到3个Prom消息。
类似的对于Node 2,在第三轮结束后收集到Node 0和Node 1广播的Prom消息,且自身也广播过Prom消息,因此总计收集到3个Prom消息。
通过第三轮,Node 0收集到3个Prom,可以确认至少3个共识节点中的每一个(满足Quorum)都收集到了对该提议的交易集合m 0表示认可的至少3个投票(满足Quorum),且发出Prom消息的每一个共识节点都承诺不再会更改投票的观点,这样,Node 0可以进一步完成本次共识,即将所述hash值对应的交易集合m 0作为共识结果的至少一部分输出。Node 1、Node 2也类似,即Node 1、Node 2也将所述hash值对应的交易集合m 0作为共识结果的至少一部分输出。
上述图9是Node 0发起共识提议的过程,类似的,Node 1和Node 2也可以执行类似的过程,即Node 1和Node 2也可以分别发起针对交易集合m 1和m 2发起共识提议。而Node 3如前所述是失效节点,因此不会发起共识提议。这样,最终Nod 0、Node 1和Node 2在本次共识中输出结果为{m 0,m 1,m 2},即保持了相同的共识结果,其中共识结果中包括相同内容和顺序的交易集合。当然,也有可能是通过上述共识过程,输出结果为{m 0,m 2},而m 1经过共识后收到的是反对的投票,因此m 1并未收入本次共识输出的结果中。
本申请还提供另一种共识算法实施例,如图10所示,具体包括:S101:【第一轮】第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名。
以一个节点的视角来看,例如以Node 0发起共识提议的视角来看,交互过程如图5所示。在一次共识中,Node 0可以发起共识提议,这个共识提议中可以包括打包的交易集合,例如标记为m 0,m 0中可以包括一系列的交易构成的集合{tx 01,tx 02,...,tx 0n}。进而,Node 0可以广播第一消息至其它共识节点,如图5中广播至Node 1、Node 2和Node 3。广播的第一消息中可以包括Node 0的共识提议的交易集合m 0。这个消息可以称为Val消息。
此外,这个消息还可以包括第一共识节点对m 0的签名,例如记为sig 00。一般地,第一共识节点Node 0可以用自身的私钥对m 0直接签名,得到sig 00,也可以是先对m 0进行hash计算,得到hash值(即摘要值),进而再用自身的私钥对该hash值签名,从而得到sig 00
Val消息的格式可以如<r,m 0,sig 00>,其中r可以表示第r次共识。例如这里对m 0的共识提议是第r次共识,则下一个共识提议的交易集合m 1可以对应第r+1次共识。所述 sig 00,也可以是采用自身私钥对包括r和m 0在内的数据的签名。类似的,也可以是先对m 0进行hash计算,得到hash值,进而再用自身的私钥对该hash值和r在内的数据进行签名,从而得到sig 00
S103:【第二轮】接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括表示不认可所述交易集合的值。
在第一轮的末尾,接收到第一消息的共识节点可以验证接收到的第一消息的正确性。例如,Node 1可以采用Node 0的公钥对第一消息中的Node 0的签名进行验证。如果没有通过验证,则在S103广播不认可该交易集合m 0的投票,例如用0来表示不认可。
S103,具体如图5中,接收到第一消息的共识节点可以广播第二消息。第二轮次的消息交互中,Node 1、Node 2、Node 3各自分别广播第二消息至其它共识节点。共识节点广播的第二消息中,可以包括对Node 0发起的共识提议m 0的投票,例如如前所述是0。这个广播的第二消息可以记为Bval。
本轮次中,Node 0可以不参与广播,这是因为Node 0在第一轮次中发起共识提议,本身即可以代表Node 0对共识提议中的消息集合是认可的,从而第二轮次中可以由Node 1、Node 2、Node 3分别广播第二消息至其它共识节点。
需要说明的是,共识节点可以更改自己的观点并再次投票,即发出多个不同的Bval消息。例如,Node 1可以首次发出内容是所述交易集合的hash值的Bval消息,以表示对所述共识提议中的交易集合的认可,而后续可以再次发送内容是0的Bval消息,以表示对所述共识提议中的交易集合的不认可。再例如,Node 2可以首次发出内容是0的Bval消息,以表示对所述共识提议中的交易集合的不认可,而后续可以再次发出内容是所述交易集合的hash值的Bval消息,以表示对所述共识提议中的交易集合的认可。
此外,第二消息中还可以包括对所述交易集合的签名。接收到第一消息的共识节点,可以用自己的私钥对表示不认可所述第一消息中的交易集合的值进行签名。例如Node 1用0表示对第一消息中的交易集合m 0不认可,则用自身私钥对0签名得到sig 10
类似的,Bval消息的格式可以如<r,0,sig 10>,其中r可以表示第r次共识,0表示不认可所述交易集合m 0的值。则所述sig 10,也可以是共识节点采用自身私钥对包括r和0在内的数据的签名。
Node 2和Node 3与Node 1的操作类似,不再赘述。
S105:【第三轮】接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述表示不认可所述交易集合的值以及收集到的签名集合。
第二轮中的共识节点广播第二消息,这样,在第二轮的末尾,接收到第二消息的共识节点可以收集第二消息中的投票,进而广播第三消息。
例如Node 1,在第二轮的末尾可以收集Bval消息中的投票,假设Node 1收集到Node 2、Node 3分别广播的第二消息中的投票都是0值,且Node 1在第二轮中广播的第二消息中的投票也是0值,则Node 1在本轮次中收集到至少Quorum个一致的摘要值(例如此时f=1,Quorum=3,实际收集到3)。
Node 2和Node 3与Node 1类似,不再赘述。
此外,共识节点还可以在第二轮末尾收集到不同节点的签名,如前所述。通过签名可以统计第二轮中收集到的投票的数量。例如Node 1收集到分别有sig 10、sig 20、sig 30签名的0值,则说明对该提议的交易集合m 0共有3个表示不认可的投票。当然,也可以通 过共识节点之间建立的安全传输通道来确定消息的唯一性,进而确定消息的数量。所述安全传输通道例如通过消息认证码(Message Authentication Code,MAC)、安全传输层协议(Transport Layer Security,TTL)之类的技术创建。
对于Node 1,如果收集到至少Quorum个来自于不同共识节点的0值,且自身针对该提议m 0没有广播过不同的投票,则广播第三消息。第三消息可以记为Prom消息,意思是承诺不会对提议m 0更改观点。如前所述,0可以表示不认可。Node 1针对该提议m 0没有广播过其它观点,是指没有对提议m 0持有过认可的观点,Node 2和Node 3也是类似的。
广播的第三消息中,可以包括收集到的对m 0的投票,例如上述第一轮和第二轮中收集到的0值和签名。
这样,Prom消息的格式可以如<r,0,<签名集合>>。
例如,假设Node 1在第二轮中收集到Node 2、Node 3分别广播的Bval消息中的投票都是0值,这样也就收集到Node 2和Node 3各自的签名,且Node 1在第二轮中广播的Bval消息中也包括其对投票0的签名是sig 10。这样,Node 1在第一轮和第二轮中收集到至少Quorum个一致的0值(例如此时Quorum=3)和不同节点的签名。进而,Node 1在第三轮中广播的Prom消息中,可以包括该0值以及收集到的不同节点针对该提议的交易集合m 0表示不认可的0值及签名集合,签名集合例如包括sig 10、sig 20、sig 30
Node 2和Node 3也类似于Node 1
需要说明的是,上述签名集合,也可以用聚合签名或门限签名替代。
此外,由于Node 0在第一轮中广播提议的交易集合m 0代表了对该提议的交易集合的认可,因此,Node 0可以在第三轮中不发Prom消息,或者在第二轮之后更改自己的意见,即发出投票内容不同的Bval消息,不过都不影响其它节点的执行结果。
S107:共识节点收集到至少Quorum个来自于不同节点的第三消息后,不将所述交易集合作为共识结果的一部分输出。
第三轮执行后,接收到Prom消息的共识节点可以统计收集的Prom消息的数量。共识节点在第三轮中发出Prom消息的条件是第二轮中收集到至少Quorum个来自于不同共识节点的一致的投票,且自身针对该提议没有广播过不同的投票,即相当于第二轮末尾该共识节点确认总计至少Quorum数量的共识节点(包括自身)对该提议m 0的投票都是不认同的。但是,第二轮结束之后还不能马上输出共识结果,而是还需要观察其他节点是否也是在第二轮末尾收集到至少Quorum数量的对提议m 0的表示不认同的投票,因此需要通过第三轮的Prom消息来确认,并且通过该Prom消息承诺自身不会再针对同一提议m 0的表示不同的观点。
例如Node 1在第一轮和第二轮中收集到至少Quorum个一致的0值,进而,Node 1在第三轮中广播的Prom消息中,可以包括该0值以及收集到的不同节点针对该提议的交易集合m 0表示不认可的0值及签名集合,签名集合例如包括sig 10、sig 20、sig 30
Node 2和Node 3也类似于Node 1
对于Node 0,如前所述,由于其在第一轮中广播提议的交易集合m 0代表了对该提议的交易集合的认可,因此,Node 0可以在第三轮中不发Prom消息,或者在第二轮之后更改自己的意见,即发出投票内容不同的Bval消息,不过都不影响其它节点的执行结果。
这样,通过第三轮,例如Node 1可以收集到至少Quorum个Prom消息。通过Quorum个Prom消息,Node 1可以确认至少Quorum个共识节点中的每一个都收集到了对该提议 的交易集合m 0表示不认可的至少Quorum数量的投票,且发出Prom消息的每一个共识节点都承诺不再会更改投票的观点,这样,Node 1可以进一步完成本次共识,即不将所述交易集合m 0作为共识结果的一部分输出。至于Node 0,即使其将交易集合m 0作为共识结果的一部分输出,并不会影响区块链系统整体的可用性,因为Node 1、Node 2和Node 3构成的Quorum数量的节点的意见是一致的。
第三轮的Prom消息可以增加签名。例如Node 1在第三轮中广播的Prom消息中可以包括Node 1对Prom消息中<r,0,<签名集合>>的签名。
上述图10的实施例,可以由如图中的Node 0来执行,也可以扩展到由Node 0、Node 1、Node 2和Node 3均执行,即除了图5以外,也可以是图6、图7、图8中的任一。由Node 0、Node 1、Node 2和Node 3均执行的情况,图5是以Node 0这一个节点的发起共识提议的视角,实际上Node 1、Node 2和Node 3中的任一也可以发起提议而其它共识节点配合完成上述类似的过程,这样整体上是图5、图6、图7、图8的叠加。
此外,由Node 0、Node 1、Node 2和Node 3均执行图5的情况,可以是以部分发起共识提议的节点的视角看是图4所示的流程,而以另一部分发起共识提议的节点的视角看是图10所示的流程。
本申请还提供一种区块链系统实施例,包括共识节点,其中:第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括所述交易集合的摘要值;接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述摘要值以及收集到的签名集合;共识节点收集到至少Quorum个来自于不同节点的第三消息后,将所述摘要值对应的交易集合作为共识结果的至少一部分输出。
在同一次共识过程中,所述区块链系统中的至少Quorum数量的共识节点中的每一个作为第一共识节点执行前述方法。
本申请还提供一种区块链系统实施例,包括共识节点,其中:第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括表示不认可所述交易集合的值;接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述表示不认可所述交易集合的值以及收集到的签名集合;共识节点收集到至少Quorum个来自于不同节点的第三消息后,不将所述交易集合作为共识结果的一部分输出。
在同一次共识过程中,所述区块链系统中的至少Quorum数量的共识节点中的每一个作为第一共识节点执行前述方法。
本申请还提供一种区块链系统中的共识节点实施例,可以如图11所示,包括:第一消息接收单元111,用于接收第一共识节点广播的第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;第二消息广播单元112,用于当第一消息接收单元接收到所述第一消息后广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括所述交易集合的摘要值;投票收集单元113,用于收集来自于共识节点的投票;第三消息广播单元114,当投票收集单元收集到至少Quorum个来自于不同共识节点的一致的投票,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述摘要值以及收集到的签名集合;第三消息收集单元115,收集来自于共 识节点的第三消息;输出单元116,当第三消息收集单元收集到至少Quorum个来自于不同节点的第三消息后,将所述摘要值对应的交易集合作为共识结果的至少一部分输出。
本申请还提供一种区块链系统中的共识节点实施例,也可以如图11所示,包括:第一消息接收单元111,用于接收第一共识节点广播的第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;第二消息广播单元112,用于当第一消息接收单元接收到所述第一消息后广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括表示不认可所述交易集合的值;投票收集单元113,用于收集来自于共识节点的投票;第三消息广播单元114,当投票收集单元收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述表示不认可所述交易集合的值以及收集到的签名集合;第三消息收集单元115,收集来自于共识节点的第三消息;输出单元116,当第三消息收集单元收集到至少Quorum个来自于不同节点的第三消息后,不将所述摘要值对应的交易集合作为共识结果的至少一部分输出。
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为服务器系统。当然,本申请 不排除随着未来计算机技术的发展,实现上述实施例功能的计算机例如可以为个人计算机、膝上型计算机、车载人机交互设备、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
虽然本说明书一个或多个实施例提供了如实施例或流程图所述的方法操作步骤,但基于常规或者无创造性的手段可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的装置或终端产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境,甚至为分布式数据处理环境)。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、产品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、产品或者设备所固有的要素。在没有更多限制的情况下,并不排除在包括所述要素的过程、方法、产品或者设备中还存在另外的相同或等同要素。例如若使用到第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
为了描述的方便,描述以上装置时以功能分为各种模块分别描述。当然,在实施本说明书一个或多个时可以把各模块的功能在同一个或多个软件和/或硬件中实现,也可以将实现同一功能的模块由多个子模块或子单元的组合实现等。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本发明是参照根据本发明实施例的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或 技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储、石墨烯存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
本领域技术人员应明白,本说明书一个或多个实施例可提供为方法、系统或计算机程序产品。因此,本说明书一个或多个实施例可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本说明书一个或多个实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书一个或多个实施例可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书一个或多个实施例,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本说明书的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本说明书一个或多个实施例的实施例而已,并不用于限制本说明书一个或多个实施例。对于本领域技术人员来说,本说明书一个或多个实施例可以有各种更改和变化。凡在本说明书的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在权利要求范围之内。

Claims (22)

  1. 一种区块链系统中的共识方法,包括:
    第一轮:第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;
    第二轮:接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括所述交易集合的摘要值;
    第三轮:接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述摘要值以及收集到的签名集合;
    共识节点收集到至少Quorum个来自于不同节点的第三消息后,将所述摘要值对应的交易集合作为共识结果的至少一部分输出。
  2. 如权利要求1所述的方法,第一轮中的签名包括第一共识节点采用自身私钥对包括所述交易集合在内的数据的签名,或对包括所述交易集合的摘要值在内的数据的签名。
  3. 如权利要求1所述的方法,在第一轮的末尾,接收到第一消息的共识节点还验证接收到的第一消息的正确性;验证通过后进入第二轮。
  4. 如权利要求1所述的方法,第二轮中的签名包括广播第二消息的共识节点采用自身私钥对包括所述交易集合的摘要值在内的数据的签名。
  5. 如权利要求2或4所述的方法,所述数据还包括轮次。
  6. 如权利要求1所述的方法,在第三轮的末尾,接收到第三消息的共识节点还验证第三消息的正确性。
  7. 如权利要求6所述的方法,所述验证第三消息的正确性,包括验证第三消息的签名的正确性以及验证第三消息的签名集合中包括至少Quorum个签名。
  8. 如权利要求1所述的方法,广播第三消息的共识节点不再更改针对同一提议的交易集合的投票观点。
  9. 如权利要求1所述的方法,所述签名集合用聚合签名或门限签名替代。
  10. 如权利要求1所述的方法,在同一次共识过程中,所述区块链系统中的至少Quorum数量的共识节点中的每一个作为第一共识节点执行权利要求1的方法。
  11. 一种区块链系统中的共识方法,包括:
    第一轮:第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;
    第二轮:接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括表示不认可所述交易集合的值;
    第三轮:接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述表示不认可所述交易集合的值以及收集到的签名集合;
    共识节点收集到至少Quorum个来自于不同节点的第三消息后,不将所述交易集合作为共识结果的一部分输出。
  12. 如权利要求11所述的方法,第二轮中的签名包括广播第二消息的共识节点采用自身私钥对包括表示不认可所述交易集合的值在内的数据的签名。
  13. 如权利要求11所述的方法,验证第三消息的正确性,包括验证第三消息的签名的正确性以及验证第三消息的签名集合中包括至少Quorum个签名。
  14. 如权利要求11所述的方法,广播第三消息的共识节点不再更改针对同一提议的交易集合的投票观点。
  15. 如权利要求11-14中任一项所述的方法,所述签名集合用聚合签名或门限签名替代。
  16. 如权利要求11所述的方法,在同一次共识过程中,所述区块链系统中的至少Quorum数量的共识节点中的每一个作为第一共识节点执行权利要求11的方法。
  17. 一种区块链系统,包括共识节点,其中:
    第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;
    接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括所述交易集合的摘要值;
    接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述摘要值以及收集到的签名集合;
    共识节点收集到至少Quorum个来自于不同节点的第三消息后,将所述摘要值对应的交易集合作为共识结果的至少一部分输出。
  18. 如权利要求17所述的系统,在同一次共识过程中,所述区块链系统中的至少Quorum数量的共识节点中的每一个作为第一共识节点执行权利要求17的相关操作。
  19. 一种区块链系统,包括共识节点,其中:
    第一共识节点广播第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;
    接收到所述第一消息的共识节点广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括表示不认可所述交易集合的值;
    接收到第二消息的共识节点收集到至少Quorum个来自于不同共识节点的一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述表示不认可所述交易集合的值以及收集到的签名集合;
    共识节点收集到至少Quorum个来自于不同节点的第三消息后,不将所述交易集合作为共识结果的一部分输出。
  20. 如权利要求19所述的系统,在同一次共识过程中,所述区块链系统中的至少Quorum数量的共识节点中的每一个作为第一共识节点执行权利要求19的相关操作。
  21. 一种区块链系统中的共识节点,包括:
    第一消息接收单元,用于接收第一共识节点广播的第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;
    第二消息广播单元,用于当第一消息接收单元接收到所述第一消息后广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括所述交易集合的摘要值;
    投票收集单元,用于收集来自于共识节点的投票;
    第三消息广播单元,当投票收集单元收集到至少Quorum个来自于不同共识节点的一致的投票,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述摘要值以及收集到的签名集合;
    第三消息收集单元,收集来自于共识节点的第三消息;
    输出单元,当第三消息收集单元收集到至少Quorum个来自于不同节点的第三消息后,将所述摘要值对应的交易集合作为共识结果的至少一部分输出。
  22. 一种区块链系统中的共识节点,包括:
    第一消息接收单元,用于接收第一共识节点广播的第一消息,第一消息中包括共识提议的交易集合和第一共识节点的签名;
    第二消息广播单元,用于当第一消息接收单元接收到所述第一消息后广播第二消息,第二消息中包括对所述交易集合的投票和签名;所述投票包括表示不认可所述交易集合的值;
    投票收集单元,用于收集来自于共识节点的投票;
    第三消息广播单元,当投票收集单元收集到至少Quorum个来自于不同共识节点的 一致的投票后,如果自身针对该提议没有广播过不同的投票,则广播第三消息,第三消息包括所述表示不认可所述交易集合的值以及收集到的签名集合;
    第三消息收集单元,收集来自于共识节点的第三消息;
    输出单元,当第三消息收集单元收集到至少Quorum个来自于不同节点的第三消息后,不将所述交易集合作为共识结果的至少一部分输出。
PCT/CN2022/123979 2021-10-09 2022-10-09 共识方法、区块链系统和共识节点 WO2023056958A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111175184.1 2021-10-09
CN202111175184.1A CN113630257B (zh) 2021-10-09 2021-10-09 一种共识方法、区块链系统和共识节点

Publications (1)

Publication Number Publication Date
WO2023056958A1 true WO2023056958A1 (zh) 2023-04-13

Family

ID=78390703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123979 WO2023056958A1 (zh) 2021-10-09 2022-10-09 共识方法、区块链系统和共识节点

Country Status (2)

Country Link
CN (2) CN113630257B (zh)
WO (1) WO2023056958A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117527266A (zh) * 2024-01-05 2024-02-06 杭州趣链科技有限公司 异步网络共识方法、装置、电子设备及可读存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630257B (zh) * 2021-10-09 2022-01-04 支付宝(杭州)信息技术有限公司 一种共识方法、区块链系统和共识节点
CN114782047B (zh) * 2021-12-29 2023-06-30 张海滨 数据共识方法及分布式系统
CN114401271A (zh) * 2022-01-13 2022-04-26 中国人民解放军国防科技大学 一种试验数据防篡改方法、区块链系统及介质
CN115174572B (zh) * 2022-06-30 2024-01-05 蚂蚁区块链科技(上海)有限公司 区块链中的数据组播方法、区块链节点和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526219A (zh) * 2020-07-03 2020-08-11 支付宝(杭州)信息技术有限公司 一种联盟链的共识方法及联盟链系统
CN111522800A (zh) * 2020-07-03 2020-08-11 支付宝(杭州)信息技术有限公司 蜜獾拜占庭容错共识机制的区块链共识方法、节点及系统
CN113204432A (zh) * 2021-02-03 2021-08-03 支付宝(杭州)信息技术有限公司 区块链中的交易处理方法、装置及电子设备
US20210256016A1 (en) * 2018-06-25 2021-08-19 Commonwealth Scientific And Industrial Research Organisation Blockchain system and method
WO2021184878A1 (zh) * 2020-03-16 2021-09-23 支付宝(杭州)信息技术有限公司 用于区块链系统的节点管理的方法、节点和计算设备
CN113630257A (zh) * 2021-10-09 2021-11-09 支付宝(杭州)信息技术有限公司 一种共识方法、区块链系统和共识节点

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108182635A (zh) * 2017-12-18 2018-06-19 深圳前海微众银行股份有限公司 区块链共识方法、系统和计算机可读存储介质
WO2019213867A1 (zh) * 2018-05-09 2019-11-14 合肥达朴汇联科技有限公司 区块链共识达成方法和装置
CN109379397B (zh) * 2018-08-31 2019-12-06 阿里巴巴集团控股有限公司 基于区块链的交易共识处理方法及装置、电子设备
BR112019008172B1 (pt) * 2018-11-07 2022-01-25 Advanced New Technologies Co., Ltd Método implementado por computador para facilitar um processo de consenso em uma rede de protocolo de confiança baseada na tolerância a falhas bizantinas práticas, meio de armazenamento não transitório legível por computador e sistema
CN110113388B (zh) * 2019-04-17 2020-01-14 四川大学 一种基于改进型聚类算法的区块链系统共识的方法和装置
US11343073B2 (en) * 2019-06-18 2022-05-24 Electronics And Telecommunications Research Institute Apparatus and method for achieving distributed consensus based on decentralized byzantine fault tolerance
CN110300172B (zh) * 2019-06-28 2022-06-07 深圳市迅雷网络技术有限公司 一种区块链数据的共识方法及相关设备
CN112689848B (zh) * 2019-06-28 2024-06-11 深圳市网心科技有限公司 一种区块链数据的共识方法及相关设备
CN110247774A (zh) * 2019-06-28 2019-09-17 深圳市网心科技有限公司 一种区块链数据的共识方法及相关设备
CN110570311B (zh) * 2019-09-17 2021-05-25 北京海益同展信息科技有限公司 区块链的共识方法、装置及设备
CN111416708B (zh) * 2020-03-16 2023-01-31 麦希科技(北京)有限公司 一种区块链拜占庭容错共识方法及系统
CN113888168B (zh) * 2020-07-03 2024-07-26 支付宝(杭州)信息技术有限公司 联盟链的共识方法、数据校验方法、装置及系统
CN112532396A (zh) * 2020-12-04 2021-03-19 广东工业大学 一种基于聚合签名的优化拜占庭容错方法及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210256016A1 (en) * 2018-06-25 2021-08-19 Commonwealth Scientific And Industrial Research Organisation Blockchain system and method
WO2021184878A1 (zh) * 2020-03-16 2021-09-23 支付宝(杭州)信息技术有限公司 用于区块链系统的节点管理的方法、节点和计算设备
CN111526219A (zh) * 2020-07-03 2020-08-11 支付宝(杭州)信息技术有限公司 一种联盟链的共识方法及联盟链系统
CN111522800A (zh) * 2020-07-03 2020-08-11 支付宝(杭州)信息技术有限公司 蜜獾拜占庭容错共识机制的区块链共识方法、节点及系统
CN112416905A (zh) * 2020-07-03 2021-02-26 支付宝(杭州)信息技术有限公司 蜜獾拜占庭容错共识机制的区块链共识方法、节点及系统
CN113204432A (zh) * 2021-02-03 2021-08-03 支付宝(杭州)信息技术有限公司 区块链中的交易处理方法、装置及电子设备
CN113630257A (zh) * 2021-10-09 2021-11-09 支付宝(杭州)信息技术有限公司 一种共识方法、区块链系统和共识节点

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117527266A (zh) * 2024-01-05 2024-02-06 杭州趣链科技有限公司 异步网络共识方法、装置、电子设备及可读存储介质
CN117527266B (zh) * 2024-01-05 2024-05-17 杭州趣链科技有限公司 异步网络共识方法、装置、电子设备及可读存储介质

Also Published As

Publication number Publication date
CN113630257A (zh) 2021-11-09
CN113630257B (zh) 2022-01-04
CN114553434A (zh) 2022-05-27
CN114553434B (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2023056958A1 (zh) 共识方法、区块链系统和共识节点
WO2023056974A1 (zh) 共识方法、区块链系统和共识节点
WO2023056964A1 (zh) 共识方法、区块链系统和共识节点
WO2023056976A1 (zh) 共识方法、区块链系统和共识节点
Yin et al. HotStuff: BFT consensus in the lens of blockchain
WO2023056967A1 (zh) 共识方法、区块链系统和共识节点
CN114401150B (zh) 区块链网络中加入节点的方法和区块链系统
WO2023056966A1 (zh) 共识方法、区块链系统和共识节点
WO2023056975A1 (zh) 共识方法和区块链系统
WO2023185051A1 (zh) 一种区块链上产生随机数种子的方法、系统和共识节点
WO2024207765A1 (zh) 区块链系统中的交易提议方法、共识节点和区块链系统
CN114726517A (zh) 一种区块链上产生随机数种子的方法、系统和共识节点
CN118473659A (zh) 区块链上实现分布式密钥生成的方法、系统和共识节点
CN118473658A (zh) 区块链上实现分布式密钥生成的方法、系统和共识节点
CN115174572B (zh) 区块链中的数据组播方法、区块链节点和存储介质
CN116032461A (zh) 一种区块链上实现分布式密钥生成的方法和节点
CN115987528A (zh) 区块链系统中的区块同步方法和区块链节点
KR102652737B1 (ko) 블록체인 네트워크를 위한 효율적인 듀얼모드 합의 프로토콜
CN116846912A (zh) Pbft算法中的视图切换方法、共识节点和区块链系统
CN116846906A (zh) 一种共识方法、区块链节点
CN116846907A (zh) 一种共识方法、区块链节点
CN116527694A (zh) 一种区块链系统中的共识方法和共识节点、区块链系统
CN116823463A (zh) 区块链系统中的交易提议方法、共识节点和区块链系统
Bashir Early Protocols
CN116823466A (zh) 区块链系统中的交易提议方法、共识节点和区块链系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22877972

Country of ref document: EP

Kind code of ref document: A1