WO2023056861A1 - 被动式相变蓄能阳光间与空气源热泵耦合供热系统 - Google Patents

被动式相变蓄能阳光间与空气源热泵耦合供热系统 Download PDF

Info

Publication number
WO2023056861A1
WO2023056861A1 PCT/CN2022/121981 CN2022121981W WO2023056861A1 WO 2023056861 A1 WO2023056861 A1 WO 2023056861A1 CN 2022121981 W CN2022121981 W CN 2022121981W WO 2023056861 A1 WO2023056861 A1 WO 2023056861A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
room
air source
heat pump
source heat
Prior art date
Application number
PCT/CN2022/121981
Other languages
English (en)
French (fr)
Inventor
赵靖
刘德涵
吕石磊
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2023056861A1 publication Critical patent/WO2023056861A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/10Heat storage materials, e.g. phase change materials or static water enclosed in a space
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to the technical field of heat pumps and residential heat supply utilizing heat pumps, in particular to a heat supply system coupled between an air source heat pump and sunlight of passive solar energy storage.
  • the air source heat pump is a clean heating technology that uses a motor-driven vapor compression cycle system to transfer heat from the outdoor low-temperature ambient air to the room. It has been widely promoted and applied in clean heating renovations in rural areas in northern my country. However, due to the low outdoor temperature in winter in the north, the evaporation temperature of the air source heat pump system is often at a relatively unfavorable ambient temperature, which may easily cause the compression ratio of the compressor to be too large during use, the heating capacity is seriously insufficient, and the heating efficiency (COP) of the unit is greatly reduced. attenuation, resulting in a huge increase in power consumption.
  • COP heating efficiency
  • the solar assisted air source heat pump system has become the focus of research.
  • the combination of traditional solar energy and air source heat pumps mostly uses solar hot water to increase the ambient temperature of the evaporation side of the system.
  • the solar water system cannot be directly connected to room heating. The system is connected, so that the room still needs to be heated by an air source heat pump during the day, resulting in a decrease in the utilization rate of solar energy.
  • the passive solar room economically and effectively utilizes solar energy utilization technology, which helps to improve the utilization rate of solar energy and reduce the building heat load.
  • the traditional passive sunlight room is greatly affected by the intensity of solar radiation, it has the characteristics of volatility and intermittent, and the temperature difference between day and night is large, which cannot meet the indoor heating needs around the clock.
  • Combining the air source heat pump with the passive sun room can achieve heating by the passive sun room during the day and by the air source heat pump at night.
  • the heat accumulated in the sun room during the day can increase the COP of the air source heat pump, which can meet the time matching of room heating question.
  • due to the low heat storage capacity of traditional sunlight rooms it is impossible to release heat for a long time at night. Therefore, how to improve the solar heat storage rate and maintain the high-efficiency heating zone combined with the two has become a technical problem that needs to be solved urgently.
  • the present invention proposes a passive phase-change energy storage sunlight room and an air source heat pump coupling heating system, and the air source heat pump system is used to realize the use of phase change energy storage to increase the amount of heat stored in the sunlight room.
  • a heating system that improves the utilization efficiency of solar energy and improves the heating efficiency of air source heat pumps.
  • a passive phase-change energy-storage sunlight room coupled with an air-source heat pump heating system the system includes a passive phase-change energy-storage sunlight room, a phase-change heat storage unit, a required heating room, and a passive phase-change energy-storage sunlight room
  • the air source heat pump fan between the room and the required heating room, the phase change heat storage unit is composed of several phase change heat storage modules.
  • the air source heat pump air blower further includes an air source heat pump evaporator, an air source heat pump compressor, an air source heat pump condenser, and an air source heat pump expansion valve; wherein:
  • phase change heat storage unit and the air source heat pump evaporator are arranged inside the passive phase change energy storage sunshine room; the air exchange port and the air source heat pump condenser are arranged inside the required heating room;
  • the circuit formed by the air source heat pump evaporator and the air source heat pump condenser is provided with an air source heat pump expansion valve and an air source heat pump compressor.
  • the bottom, front, and top of the phase-change thermal storage module are respectively provided with prismatic ventilation ducts of the same size, and vents of the same size as the prismatic ventilation ducts are additionally welded on the top; the phase-change thermal storage module There are ventilation ducts inside.
  • the phase change heat storage module is welded by stainless steel, the outer surface is coated with a heat absorbing coating, and the inside is filled with a phase change material.
  • the phase change material is composed of paraffin and expanded graphite materials, and its phase change temperature is between 20°C and 25°C. between °C.
  • the vents of the phase change heat storage module on the top are spliced with the vents of other phase change heat storage modules to realize the combination of multiple phase change heat storage modules.
  • phase-change thermal storage module faces the interior of the passive phase-change energy-storage solar room to realize heat exchange with the internal air of the passive phase-change energy-storage solar room through natural convection;
  • the phase-change thermal storage modules at the top are spliced horizontally , the vent at the top is connected with the ventilation port of the room, which is convenient for the convective heat exchange between the high-temperature hot air in the passive phase change energy storage sunlight room and the room during the day.
  • the present invention has the following advantages:
  • the componentized phase change heat storage module is easy to assemble and flexible to arrange, and can be freely arranged and combined according to the actual situation.
  • the dark outer surface coating can improve the solar energy collection rate, and the connection between the vents of each module facilitates the transmission of warm air between the passive phase change energy storage solar cells to the room, and at the same time improves the efficiency of the phase change thermal storage modules and the passive phase change energy storage solar cells.
  • the solar energy is collected through the passive phase change energy storage sunshine room, and the heat is stored in the phase change heat storage module and the wall of the passive phase change energy storage sunlight room.
  • the high temperature air inside the passive phase change energy storage sunlight room The indoor heating during the day can be met through the opening of the vents and movable windows of the phase change thermal storage module; due to the storage of part of the heat collected in the passive phase change energy storage sunlight room, the peak value of the internal air temperature in the passive phase change energy storage sunlight room is reduced. , which reduces the fluctuation of room temperature, prolongs the time for passive phase change energy storage sunlight and indoor ventilation and heat exchange, and improves the utilization efficiency of solar energy;
  • Fig. 1 is a schematic structural diagram of a passive phase change energy storage sunlight room and an air source heat pump coupling heating system of the present invention
  • Figure 2 is a schematic diagram of the installation of the passive phase change energy storage sunlight room, the required heating room, the phase change heat storage module and the evaporator of the air source heat pump;
  • Fig. 3 is the front view of the phase change heat storage module
  • Fig. 4 is a sectional view of a phase change heat storage module
  • Figure 5 is a schematic diagram of splicing phase change heat storage modules
  • Phase change heat storage module 2. Air source heat pump evaporator, 3. Air source heat pump compressor, 4. Air source heat pump condenser, 5. Air source heat pump expansion valve, 6. Ventilation port, 7. Passive phase Variable energy storage sunlight room, 8. Required heating room, 9. Prismatic ventilation duct, 10. Air vent, 11. Phase change heat storage unit, 12. Ventilation duct.
  • FIG. 1 a schematic structural diagram of a passive phase-change energy storage solar room and an air source heat pump coupling heating system of the present invention.
  • the passive phase change energy storage sunlight room and air source heat pump coupled heating system of the present invention is mainly composed of a passive phase change energy storage sunlight room, a phase change heat storage module 1 and an air source heat pump fan.
  • the phase change heat storage module 1 and the air source heat pump evaporator 2 are set in the passive phase change energy storage sunlight room 7, and the air source heat pump condenser 4 and the ventilation port 6 are set in the required heating room 8.
  • the circuit formed by the air source heat pump evaporator 2 and the air source heat pump condenser 4 is provided with an air source heat pump expansion valve 5 and an air source heat pump compressor 3 .
  • the air source heat pump condenser 4 is placed at the bottom of the required heating room, and the required heating room 8 is heated by the blower.
  • FIG. 2 it is a schematic diagram of the installation of the passive phase change energy storage solar room, the required heating room, the phase change heat storage module and the evaporator of the air source heat pump.
  • This figure discloses the specific structure and the positional relationship of each part of the passive phase change energy storage solar room, the required heating room, the phase change heat storage unit and the air source heat pump evaporator.
  • the phase change heat storage unit 11 of the passive phase change energy storage sunlight room is formed by adding a phase change heat storage module inside the passive phase change energy storage sunlight room on the south side of the building, wherein the phase change heat storage unit 11 consists of several phase change heat storage Module 1 is composed.
  • the phase change heat storage unit 11 is arranged based on the solid wall of the passive phase change energy storage sunlight room, wherein the phase change heat storage unit 11 near the top of the north side of the passive phase change energy storage sunlight room passes through the ventilation opening on the south wall of the room Connect to room air.
  • the air source heat pump evaporator 2 is surrounded by the phase change heat storage module of the passive phase change energy storage sunshine room 7 .
  • a passive phase-change energy-storage sunlight room is attached to the south side of the required heating room.
  • the passive phase-change energy-storage sunlight room is connected to the south wall of the required heating room.
  • the south wall is the outer wall coated with dark thermal insulation paint
  • the solid wall, in which the broken bridge aluminum high-permeability thermal insulation window with movable windows is set on the south wall.
  • the east and west facades and the bottom of the south facade of the passive phase change energy storage sunlight room are composed of thermal insulation bricks and dark paint on the inner and outer walls.
  • the roof and the upper part of the south facade are composed of high-permeability thermal insulation glass.
  • the south wall of the room is closed and connected by a broken bridge aluminum material.
  • the bottom of the passive phase-change energy-storage sunlight room increases the distance between the passive phase-change energy-storage sunlight room and the ground by building insulation bricks to increase the thermal insulation performance.
  • phase change heat storage module As shown in Figure 3, it is the front view of the phase change heat storage module. As shown in Figure 4, it is a sectional view of the phase change heat storage module. There are prismatic ventilation ducts 9 of the same size at the bottom, front and upper part of the phase change heat storage module respectively, and vents 10 of the same size as the prismatic ventilation ducts are additionally welded on the top. In order to ensure the sealing and heat exchange efficiency of the phase change heat storage module, the phase change heat storage module is welded by stainless steel, the outer surface is coated with heat absorbing coating, and the interior is filled with phase change materials. The phase change materials are made of paraffin and expanded graphite materials.
  • phase transition temperature is between 20°C and 25°C, which is conducive to maintaining the stability of the indoor temperature of the passive phase change energy storage sunlight room during the day and the release of heat at night, so as to achieve the purpose of shaving peaks and filling valleys.
  • the stainless steel is cut into the desired shape of each side of the module, and then the ventilation pipe 12 inside the phase change heat storage module 1 and the vent 10 at the top are welded, and then the steel plates with openings on the front, top and bottom of the module are welded to the On the ventilation duct 12, the steel plates on the back and the left side are welded at last.
  • the molten phase change material is injected into the module through the opening on the right side of the phase change thermal storage module 1. After the phase change material is completely filled inside the module, the right steel plate is welded to complete the construction of the phase change thermal storage module 1.
  • the vents on the top of the phase change heat storage module are spliced with the front and bottom vents of other phase change heat storage modules, and the top vents of the phase change heat storage module can be inserted into the front or bottom openings of other phase change heat storage modules
  • the mortise and tenon connection can realize the combination of multiple phase change heat storage modules.
  • the form of the spliced and combined phase change heat storage modules is shown in Figure 5.
  • the phase change heat storage module should be combined by relying on the internal solid wall of the passive phase change energy storage sunshine room, and the spliced phase change heat storage module is fixed on the solid wall by glue or buckle.
  • the phase change heat storage module should ensure that its front opening faces the interior of the passive phase change energy storage sunlight room, so as to realize heat exchange with the internal air of the passive phase change energy storage sunlight room through natural convection.
  • the phase-change thermal storage modules at the top should be spliced horizontally, and the vents on the top are connected to the ventilation openings of the room, so as to facilitate the convective heat exchange between the high-temperature hot air in the passive phase-change energy storage sunlight room and the room during the day.
  • the working process of the passive phase change energy storage sunshine room and air source heat pump coupling heating system of the present invention is as follows:
  • Daytime energy storage and passive phase change energy storage solar room heating conditions When the weather conditions are good during the day, the internal air temperature of the passive phase change energy storage sunlight room rises, and the phase change heat storage module directly absorbs solar radiation and integrates with the passive type
  • the air inside the solar room with phase change energy storage conducts heat exchange to store energy; at the same time, the ventilation opening in the heating room is opened, and the air inside the passive phase change energy storage sunlight room sends heat into the heating room through the ventilation opening to heat the room.
  • Daytime energy storage and air heat pump heating conditions When the weather conditions are relatively normal during the day, the internal air temperature of the passive phase change energy storage sunshine room is higher than the outdoor temperature but cannot directly heat the room. At this time, the phase change heat storage module can pass It directly absorbs solar radiation to store energy, and at the same time, the internal air temperature of the passive phase change energy storage sunlight room can increase the temperature of the evaporation side of the air source heat pump, reducing the energy consumption of the air source heat pump for indoor heating.
  • Nighttime energy release and air source heat pump heating conditions When the heat of the phase change heat storage module is not enough to directly heat the air in the passive phase change energy storage sunlight room to heat the room, the room is heated by the air source heat pump at this time.
  • the variable heat storage module releases heat, increases the temperature of the evaporation side of the air source heat pump, improves the heating efficiency COP of the air source heat pump unit, and reduces power consumption.

Abstract

本发明公开了一种被动式相变蓄能阳光间与空气源热泵耦合供热系统,包括被动式相变蓄能阳光间(7)、相变蓄热单元、所需供热房间(8)以及设置于被动式相变蓄能阳光间(7)和所需供热房间(8)之间的空气源热泵热风机,所述相变蓄热单元(11)由数个相变蓄热模块(1)组成。与现有技术相比,本发明构件化的蓄热模块组装简单,布置灵活,可根据实际情况自由布置组合;在白天通过阳光间收集太阳能,减小了室温的波动性,延长了阳光间与室内通风换热的时间,提高了太阳能的利用效率;夜间减小了空气源热泵供暖的能耗,解决了太阳能间歇性和不稳定性的问题,达到了充分和全面利用太阳能的目的。

Description

被动式相变蓄能阳光间与空气源热泵耦合供热系统 技术领域
本发明涉及热泵以及利用热泵的住宅供热技术领域,特别是涉及一种空气源热泵与被动式太阳能蓄能的阳光间耦合的供热系统。
背景技术
空气源热泵是一种利用电机驱动的蒸汽压缩循环系统,将室外低温环境空气中的热量转移至室内的清洁采暖技术,在我国北方农村地区清洁取暖改造中得到大范围推广应用。但是由于北方冬季较低的室外温度,空气源热泵的系统蒸发温度往往处于一个较为不利的环境温度,容易造成在使用过程压缩机压缩比过大,制热量严重不足,机组制热效率(COP)大幅衰减,导致耗电量的巨额增加。
为解决空气源热泵的低温适应性问题,太阳能辅助空气源热泵系统成为研究重点。传统太阳能与空气源热泵相结合的方式多为利用太阳能热水提高系统的蒸发侧环境温度,尽管可以克服传统空气源热泵在低温环境运行效果差的问题,但由于太阳能水系统无法直接与房间采暖系统相连接,造成房间在昼间依然需要采用空气源热泵供暖,导致了太阳能利用率的降低。
被动式阳光间经济地、有效地利用太阳能利用技术,有助于提高太阳能利用率,降低建筑热负荷。但是由于传统被动式阳光间受太阳辐射强度影响较大,具有波动性、间歇性的特点,昼夜温差较大,无法满足室内全天候的取暖需求。
将空气源热泵与被动式阳光间相结合可以达到白天由被动式阳光间供暖,夜间由空气源热泵供暖,同时阳光间在白天所积蓄的热量可以提升空气源热泵的COP,可以满足房间供暖的时间匹配问题。但是由于传统阳光间蓄热量较低,无法在夜间长时间释放热量,因此如何提高太阳能蓄热率,维持二者相结合的高效供暖区间,成为当下亟需解决的技术问题。
发明内容
为了弥补和改善现有技术的不足,本发明提出一种被动式相变蓄能阳光间与空气源热 泵耦合供热系统,利用空气源热泵系统实现了利用相变蓄能增加阳光间的蓄热量以提高太阳能利用效率、提升空气源热泵的制热效率的供热系统。
本发明为解决上述问题而采取的技术方案如下:
一种被动式相变蓄能阳光间与空气源热泵耦合供热系统,该系统包括被动式相变蓄能阳光间、相变蓄热单元、所需供热房间以及设置于被动式相变蓄能阳光间和所需供热房间之间的空气源热泵热风机,所述相变蓄热单元由数个相变蓄热模块组成。
所述空气源热泵热风机进一步包括空气源热泵蒸发器、空气源热泵压缩机、空气源热泵冷凝器和空气源热泵膨胀阀;其中:
在所述被动式相变蓄能阳光间内部设置所述相变蓄热单元和所述空气源热泵蒸发器;在所述所需供热房间内部设置换气口和空气源热泵冷凝器;
所述空气源热泵蒸发器和所述空气源热泵冷凝器所构成的回路上设置有空气源热泵膨胀阀与空气源热泵压缩机。
所述相变蓄热模块的底部、前部、上部分别开有大小一致的棱柱形通风管道,并且在其顶部额外焊接与其棱柱形通风管道大小一致的通风口;所述相变蓄热模块的内部设置有通风管道。
所述相变蓄热模块由不锈钢焊接而成,外表面涂有吸热涂层,内部填充相变材料,相变材料由石蜡和膨胀石墨材料复合而成,其相变温度在20℃~25℃之间。
位于顶部的相变蓄热模块的通风口与其他相变蓄热模块的通风口进行拼接,实现多个相变蓄热模块之间的组合。
所述相变蓄热模块的前部开口朝向被动式相变蓄能阳光间内部,以实现通过自然对流与被动式相变蓄能阳光间内部空气进行换热;位于顶部的相变蓄热模块横向拼接,其顶部通风口与房间换气口相连,便于进行白天被动式相变蓄能阳光间内高温热空气与室内的对流换热。
本发明与现有技术相比,具有以下优点:
1)构件化的相变蓄热模块组装简单,布置灵活,可根据实际情况自由布置组合。深色的外表面涂料可提升太阳能收集率,各个模块通风口之间的连接便于向室内输送被动式相变蓄能阳光间的暖风,同时提升了相变蓄热模块与被动式相变蓄能阳光间内部空气的换热效率;
2)空气源热泵的运行时间减少,机组制热效率COP升高,大大降低了运行成本。
3)在白天通过被动式相变蓄能阳光间收集太阳能,并将热量存储在相变蓄热模块内部和被动式相变蓄能阳光间墙体内,同时被动式相变蓄能阳光间内部的高温空气可以通过相变蓄热模块的通风口和活动窗的开启满足室内白天的供暖;由于被动式相变蓄能阳光间收集部分热量的存储,使得被动式相变蓄能阳光间内部空气温度的峰值得到降低,减小了室温的波动性,延长了被动式相变蓄能阳光间与室内通风换热的时间,提高了太阳能的利用效率;
4)夜间被动式相变蓄能阳光间内部空气温度低于室内温度时,关闭活动窗和通风风阀,空气源热泵为室内供暖。被动式相变蓄能阳光间和相变蓄热模块积蓄的热量加热了空气源热泵蒸发器的环境温度,维持其处于高COP工作区间,减小了空气源热泵供暖的能耗,解决了太阳能间歇性和不稳定性的问题,达到了充分和全面利用太阳能的目的。
附图说明
图1为本发明的被动式相变蓄能阳光间与空气源热泵耦合供热系统结构示意图;
图2为被动式相变蓄能阳光间、所需供热房间、相变蓄热模块以及空气源热泵蒸发器安装示意图;
图3为相变蓄热模块主视图;
图4为相变蓄热模块剖视图;
图5为相变蓄热模块拼接示意图;
附图标号说明:
1、相变蓄热模块,2、空气源热泵蒸发器,3、空气源热泵压缩机,4、空气源热泵冷凝器,5、空气源热泵膨胀阀,6、换气口,7、被动式相变蓄能阳光间,8、所需供热房间,9、棱柱形通风管道,10、通风口,11、相变蓄热单元,12、通风管道。
具体实施方式
下面结合附图和具体实施例对本发明技术方案作进一步详细描述。
如图1所示,本发明的被动式相变蓄能阳光间与空气源热泵耦合供暖系统结构示意图。本发明的被动式相变蓄能阳光间与空气源热泵耦合供热系统,主要由被动式相变蓄能阳光间、相变蓄热模块1和空气源热泵热风机组成。其中,相变蓄热模块1和空气源热泵蒸发 器2被设置于被动式相变蓄能阳光间7内,空气源热泵冷凝器4、换气口6被设置于所需供热房间8内。所述空气源热泵蒸发器2和空气源热泵冷凝器4所构成的回路上设置有空气源热泵膨胀阀5与空气源热泵压缩机3。空气源热泵冷凝器4置于所需供热房间室内底部,由送风机为所需供热房间8供暖。
如图2所示,为被动式相变蓄能阳光间、所需供热房间、相变蓄热模块以及空气源热泵蒸发器安装示意图。该图中公开了被动式相变蓄能阳光间、所需供热房间、相变蓄热单元和空气源热泵蒸发器相结合的具体构造和各部分位置关系。被动式相变蓄能阳光间的相变蓄热单元11通过在建筑南侧的被动式相变蓄能阳光间内部增加相变蓄热模块构成,其中相变蓄热单元11由数个相变蓄热模块1组成。相变蓄热单元11基于被动式相变蓄能阳光间的实体墙面进行布置,其中靠近被动式相变蓄能阳光间北侧顶部的相变蓄热单元11通过设置在室内南墙的换气口与室内空气相连接。空气源热泵蒸发器2置于被动式相变蓄能阳光间7的相变蓄热模块包围之中。
在所需供热房间的南侧附建有被动式相变蓄能阳光间,被动式相变蓄能阳光间与所需供热房间南墙相连接,南墙为外墙面涂有深色保温涂料的实体墙,其中南墙上设置带有活动窗的断桥铝高透保温窗。
被动式相变蓄能阳光间的东西立面及南立面底部由保温砖和内外墙面深色涂料构成,屋顶及南立面上部由高透保温玻璃构成,高透保温玻璃与东西立墙和房间南墙通过断桥铝材料封闭连接。被动式相变蓄能阳光间底部通过垒砌保温砖提升被动式相变蓄能阳光间与地面距离,增加保温性能。
如图3所示,为相变蓄热模块主视图。如图4所示,为相变蓄热模块剖视图。在相变蓄热模块底部、前部、上部分别开有大小一致的棱柱形通风管道9,并且在其顶部额外焊接与棱柱形通风管道大小一致的通风口10。为保证相变蓄热模块的密封性以及换热效率,相变蓄热模块由不锈钢焊接而成,外表面涂有吸热涂层,内部填充相变材料,相变材料由石蜡和膨胀石墨材料复合而成,其相变温度在20℃~25℃之间,有利于维持被动式相变蓄能阳光间白天室内温度的稳定以及夜间热量的释放,达到削峰填谷的目的。首先将不锈钢切割为模块各面所需形状,然后将相变蓄热模块1内部的通风管道12以及位于顶部的通风口10进行焊接,再将其前面、上面、下面带有开口的钢板焊接到通风管道12上,最后将其后面以及左面的钢板焊接完成。将熔融态的相变材料通过相变蓄热模块1留的右面开口注入模块内部,待相变材料完全充满模块内部后将其右面钢板进行焊接,从而将相变蓄 热模块1构建完成。
位于相变蓄热模块顶部的通风口与其他相变蓄热模块的前部、底部的通风口进行拼接,相变蓄热模块顶部通风口可插入其他相变蓄热模块的前部或者底部开口进行卯榫连接,可以实现多个相变蓄热模块之间的组合,拼接组合后的相变蓄热模块形式如图5所示。在实际建设中,相变蓄热模块应倚靠被动式相变蓄能阳光间内部实体墙进行组合,拼接好的相变蓄热模块通过胶接或者卡扣等形式固定于实体墙上。如图2所示,相变蓄热模块应保证其前部开口朝向被动式相变蓄能阳光间内部,以实现通过自然对流与被动式相变蓄能阳光间内部空气进行换热。位于顶部的相变蓄热模块应当横向拼接,其顶部通风口与房间换气口相连,便于进行白天被动式相变蓄能阳光间内高温热空气与室内的对流换热。
本发明的被动式相变蓄能阳光间与空气源热泵耦合供暖系统工作过程如下:
昼间储能与被动式相变蓄能阳光间供热工况:当白天气象条件良好时,被动式相变蓄能阳光间内部空气温度升高,相变蓄热模块通过直接吸收太阳辐射以及与被动式相变蓄能阳光间内部空气进行换热储存能量;同时供热室内的换气口打开,被动式相变蓄能阳光间内部空气通过换气口将热量送入供热室内为房间供暖。
昼间储能与空气热泵供热工况:当白天气象条件较为一般时,被动式相变蓄能阳光间内部空气温度高于室外温度但无法为室内直接供暖,此时相变蓄热模块可以通过直接吸收太阳辐射储存能量,同时被动式相变蓄能阳光间内部空气温度可以提高空气源热泵蒸发侧温度,减少空气源热泵为室内的供暖能耗。
夜间释能与被动式相变蓄能阳光间供热工况:当相变蓄热模块白天储存热量充足时,夜间将热量释放至被动式相变蓄能阳光间内,并通过室内换气口为房间供暖。
夜间释能与空气源热泵供热工况:当相变蓄热模块热量不足以将被动式相变蓄能阳光间内空气直接加热到为室内供热时,此时室内由空气源热泵供暖,相变蓄热模块将热量释放,提高空气源热泵蒸发侧温度,提高空气源热泵机组制热效率COP,减少耗电量。

Claims (2)

  1. 一种被动式相变蓄能阳光间与空气源热泵耦合供热系统,其特征在于,该系统包括被动式相变蓄能阳光间(7)、相变蓄热单元(11)、所需供热房间(8)以及设置于被动式相变蓄能阳光间(7)和所需供热房间(8)之间的空气源热泵热风机,所述相变蓄热单元(11)由数个相变蓄热模块(1)组成;
    所述空气源热泵热风机进一步包括空气源热泵蒸发器(2)、空气源热泵压缩机(3)、空气源热泵冷凝器(4)和空气源热泵膨胀阀(5);其中:
    在所述被动式相变蓄能阳光间(7)内部设置所述相变蓄热单元(11)和所述空气源热泵蒸发器(2),空气源热泵蒸发器(2)置于被动式相变蓄能阳光间(7)的相变蓄热模块包围之中;在所述所需供热房间(8)内部设置换气口(6)和空气源热泵冷凝器(4);
    所述空气源热泵蒸发器(2)和所述空气源热泵冷凝器(4)所构成的回路上设置有空气源热泵膨胀阀(5)与空气源热泵压缩机(3);
    所述相变蓄热模块(1)的底部、前部、上部分别开有大小一致的棱柱形通风管道(9),并且在其顶部额外焊接与棱柱形通风管道(9)大小一致的通风口(10);所述相变蓄热模块(1)的内部设置有通风管道(12);
    位于顶部的相变蓄热模块的通风口与其他相变蓄热模块的通风口进行拼接,实现多个相变蓄热模块之间的组合,拼接好的相变蓄热模块通过胶接或卡扣固定于相变蓄能阳光间的实体墙上;
    所述相变蓄热模块的前部开口朝向被动式相变蓄能阳光间内部,以实现通过自然对流与被动式相变蓄能阳光间内部空气进行换热;位于顶部的相变蓄热模块横向拼接,其顶部通风口与房间换气口相连,便于进行白天被动式相变蓄能阳光间内高温热空气与室内的对流换热。
  2. 如权利要求1所述的一种被动式相变蓄能阳光间与空气源热泵耦合供热系统,其特征在于,所述相变蓄热模块(1)由不锈钢焊接而成,外表面涂有吸热涂层,内部填充相变材料,相变材料由石蜡和膨胀石墨材料复合而成,其相变温度在20℃~25℃之间。
PCT/CN2022/121981 2021-10-08 2022-09-28 被动式相变蓄能阳光间与空气源热泵耦合供热系统 WO2023056861A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111168140.6A CN113587190B (zh) 2021-10-08 2021-10-08 被动式相变蓄能阳光间与空气源热泵耦合供热系统
CN202111168140.6 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023056861A1 true WO2023056861A1 (zh) 2023-04-13

Family

ID=78242897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121981 WO2023056861A1 (zh) 2021-10-08 2022-09-28 被动式相变蓄能阳光间与空气源热泵耦合供热系统

Country Status (2)

Country Link
CN (1) CN113587190B (zh)
WO (1) WO2023056861A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113587190B (zh) * 2021-10-08 2022-03-15 天津大学 被动式相变蓄能阳光间与空气源热泵耦合供热系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174272A (ja) * 1992-12-04 1994-06-24 Hitachi Ltd 蓄熱式ヒ−トポンプ暖冷房システム
CN101943481A (zh) * 2010-09-09 2011-01-12 东南大学 相变蓄热型空气源热泵辅助太阳能热水装置
CN104145747A (zh) * 2014-07-07 2014-11-19 兰州交通大学 一种日光温室主被动协同蓄热墙体供热系统
CN110578960A (zh) * 2019-09-12 2019-12-17 天津大学 一种被动式太阳能相变蓄能供暖系统
CN110595244A (zh) * 2019-10-18 2019-12-20 山东双涵石化装备有限公司 一种模块化合金相变蓄放热装置
CN212029682U (zh) * 2020-01-21 2020-11-27 大唐吉林发电有限公司热力分公司 一种采用相变储能的太阳能与空气源热泵复合供热系统
CN112856551A (zh) * 2021-01-18 2021-05-28 北京理工大学 一种太阳能梯级相变蓄热耦合空气源热泵供热系统及方法
CN113587190A (zh) * 2021-10-08 2021-11-02 天津大学 被动式相变蓄能阳光间与空气源热泵耦合供热系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879831B (zh) * 2015-02-18 2018-05-29 西南科技大学 一种太阳能相变墙热泵供热系统
CN212225069U (zh) * 2020-08-06 2020-12-25 大连理工大学 智能感知被动式太阳能窗户系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174272A (ja) * 1992-12-04 1994-06-24 Hitachi Ltd 蓄熱式ヒ−トポンプ暖冷房システム
CN101943481A (zh) * 2010-09-09 2011-01-12 东南大学 相变蓄热型空气源热泵辅助太阳能热水装置
CN104145747A (zh) * 2014-07-07 2014-11-19 兰州交通大学 一种日光温室主被动协同蓄热墙体供热系统
CN110578960A (zh) * 2019-09-12 2019-12-17 天津大学 一种被动式太阳能相变蓄能供暖系统
CN110595244A (zh) * 2019-10-18 2019-12-20 山东双涵石化装备有限公司 一种模块化合金相变蓄放热装置
CN212029682U (zh) * 2020-01-21 2020-11-27 大唐吉林发电有限公司热力分公司 一种采用相变储能的太阳能与空气源热泵复合供热系统
CN112856551A (zh) * 2021-01-18 2021-05-28 北京理工大学 一种太阳能梯级相变蓄热耦合空气源热泵供热系统及方法
CN113587190A (zh) * 2021-10-08 2021-11-02 天津大学 被动式相变蓄能阳光间与空气源热泵耦合供热系统

Also Published As

Publication number Publication date
CN113587190A (zh) 2021-11-02
CN113587190B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
CN104746647A (zh) 主动式与被动式相结合的全年性利用相变储能房
CN204786929U (zh) 一种太阳墙自然通风的室内空气调节系统
CN104879831A (zh) 一种太阳能相变墙热泵供热系统
CN204830575U (zh) 一种太阳能相变墙源热泵系统
CN201119328Y (zh) 具有v型板的太阳能大棚集储热系统
CN102338415A (zh) 自控热风式太阳能地板蓄热系统
CN217441871U (zh) 一种蓄热块与烟囱效应耦合的被动式建筑通风系统
CN105570973A (zh) 一种利用太阳能的墙内壁蓄热采暖系统
WO2023056861A1 (zh) 被动式相变蓄能阳光间与空气源热泵耦合供热系统
CN110779131A (zh) 基于蓄能的Trombe墙与土壤-空气换热系统能源互补被动房
CN109737486B (zh) 一种集热蓄热墙和空气水集热器的组合供暖系统
CN211200699U (zh) 一种节能组合式被动房结构
CN203891495U (zh) 建筑物太阳能采暖结构
CN113503598A (zh) 一种主被动相变蓄热集热墙系统
CN206888173U (zh) 一种被动式供热通风太阳能房
CN210463651U (zh) 光伏发电冷热能回收利用装置
CN111609568A (zh) 一种基于光伏光热组件的建筑热电联产及调湿系统
CN107036214A (zh) 一种太阳能空调系统
CN106677332A (zh) 一种太阳房
CN116538690A (zh) 一种太阳能半透聚光集储热一体窗
CN113137769B (zh) 基于变沸点双向热管的聚光-相变蓄热型建筑围护结构
CN115682790A (zh) 一种热管嵌入式相变控温墙体
CN202281302U (zh) 自控热风式太阳能地板蓄热系统
CN214371009U (zh) 多功能热管式光伏光热高低温相变地板耦合系统
CN114543217A (zh) 利用太阳能和天空辐射冷却的嵌管式相变围护结构系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877880

Country of ref document: EP

Kind code of ref document: A1