WO2023056827A1 - 一种电流测量器件 - Google Patents

一种电流测量器件 Download PDF

Info

Publication number
WO2023056827A1
WO2023056827A1 PCT/CN2022/118642 CN2022118642W WO2023056827A1 WO 2023056827 A1 WO2023056827 A1 WO 2023056827A1 CN 2022118642 W CN2022118642 W CN 2022118642W WO 2023056827 A1 WO2023056827 A1 WO 2023056827A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
bridge arm
current
electrically connected
magnetoresistance
Prior art date
Application number
PCT/CN2022/118642
Other languages
English (en)
French (fr)
Inventor
郭海平
宋晨
陈晔
沈卫锋
薛松生
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Publication of WO2023056827A1 publication Critical patent/WO2023056827A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Definitions

  • Embodiments of the present invention relate to the technical field of magnetic sensors, and in particular to a current measuring device.
  • the current sensor detects the magnitude of the measured current by detecting the magnitude of the magnetic field generated by the current.
  • an interfering magnetic field in the environment, which makes the current sensor low in sensitivity and unstable in performance.
  • the detection accuracy can be improved by means of magnetic shielding.
  • An embodiment of the current sensor is proposed in the patent application CN109313223A "Current Sensor", which includes at least two magnetic shields around the magnetic detection element, and is configured to sandwich the magnetic detection element and the current path, thereby shielding the outside The influence of the magnetic flux on the magnetic detection element.
  • the processing circuit is connected to the magnetic sensor and determines the current based on the signal difference of the two sensors, making the current sensor insensitive to external disturbance fields.
  • Magnetic shielding often makes the size of the sensor larger, and additional components are introduced through sensor configuration and circuit processing, both of which complicate the test system and increase the cost.
  • the above-mentioned processing circuit can only deal with the case that the interference magnetic field is a uniform external field, but in practical applications, the interference external field is often in various forms, especially the non-uniform external field is the most common.
  • the interference of non-uniform external field affects the accuracy of current detection.
  • An embodiment of the present invention provides a current measuring device to solve the problem that the existing current sensor is interfered by an interfering magnetic field.
  • An embodiment of the present invention provides a current measuring device, including N different positions, each position has at least two magnetoresistances, and N is greater than or equal to 3;
  • the two magnetoresistances at the same position include a magnetoresistance with a first sensitive direction and a magnetoresistance with a second sensitive direction, the first sensitive direction is opposite to the second sensitive direction, and the magnetoresistance
  • the resistance value and the magnetic field at its location have a linear relationship within the set range;
  • the sensitive directions of all the magnetoresistances at the N different positions are the same or opposite, and the magnetic field to be measured has a component in the sensitive directions of the magnetoresistances;
  • the components of the magnetic field to be measured in the sensitive direction at at least one position are different from the components of the magnetic field to be measured in the sensitive direction at other positions;
  • All magnetoresistances are electrically connected to form a resistance network, the output signal of the resistance network contains the signal of the magnetic field to be measured, does not contain or contains an interference magnetic field signal less than the first preset strength, and the interference magnetic field signal includes a uniform interference magnetic field and gradient disturbance magnetic fields.
  • the N different positions are distributed on the same straight line.
  • N different positions are equally spaced.
  • the resistor network has a power supply terminal, a ground terminal and an output terminal.
  • the structure of the resistor network includes at least two half-bridge structures, the half-bridge structures are composed of an upper bridge arm and a lower bridge arm, one terminal of the upper bridge arm is electrically connected to the power supply terminal, and the One terminal of the lower bridge arm is electrically connected to the ground terminal, and the other terminal of the upper bridge arm and the other terminal of the lower bridge arm are both electrically connected to the output terminal;
  • the magnetoresistances in the upper bridge arm include magnetoresistances located at one or more positions, and the magnetoresistances in the upper bridge arm have the same sensitive direction, and the magnetoresistances in the lower bridge arm
  • the magnetoresistors in the arms include magnetoresistances located at one or more positions, and each magnetoresistor in the lower bridge arm has the same sensitive direction, and the sensitive direction of the magnetoresistors in the upper bridge arm is different from that of the lower bridge arm The sensitive direction of the magnetoresistance.
  • a current wire the current wire generates a magnetic field to be measured, and the magnetic field to be measured is used to reflect the magnitude and direction of the current in the current wire;
  • the structure of the resistance network is used to make the output signal of the resistance network contain the signal of the magnetic field to be measured, but not contain or contain an interference magnetic field signal smaller than the first preset strength, so that the current measuring device does not The magnitude and direction of the current in the current conductor is reflected in the influence of the disturbing magnetic field.
  • N is 3, and the N different positions are the first position, the second position and the third position in sequence;
  • a part of the magnetoresistors at the first position and the third position are electrically connected to form an upper bridge arm of the first half-bridge structure
  • Another part of the magnetoresistance at the first position and the third position is electrically connected to form the lower bridge arm of the first half-bridge structure
  • a part of the magnetoresistance at the second position is electrically connected to form an upper bridge arm of a second half-bridge structure
  • Another part of the magnetoresistance at the second position is electrically connected to form the lower bridge arm of the second half-bridge structure
  • the combination of the output terminal signal of the first half-bridge structure and the output terminal signal of the second half-bridge structure is used to reflect the magnitude and direction of the current in the current wire.
  • N is 3, and the N different positions are the first position, the second position and the third position in sequence;
  • a part of the magnetoresistance at the first position is electrically connected to form the upper bridge arm of the first half-bridge structure
  • Another part of the magnetoresistance at the first position is electrically connected to form the lower bridge arm of the first half-bridge structure
  • a part of the magnetoresistance at the second position is electrically connected to form an upper bridge arm of a second half-bridge structure
  • Another part of the magnetoresistance at the second position is electrically connected to form the lower bridge arm of the second half-bridge structure
  • a part of the magnetoresistance at the third position is electrically connected to form an upper bridge arm of a third half-bridge structure
  • Another part of the magnetoresistance at the third position is electrically connected to form the lower bridge arm of the third half-bridge structure
  • the combination of the output terminal signal of the first half-bridge structure, the output terminal signal of the second half-bridge structure and the output terminal signal of the third half-bridge structure is used to reflect the magnitude and direction of the current in the current wire .
  • N is 4, and the N different positions are sequentially the first position, the second position, the third position and the fourth position;
  • the magnetic resistances at the first position and the fourth position are electrically connected to form an upper bridge arm of the first half-bridge structure
  • the magnetoresistances at the first position and the fourth position are electrically connected to form the lower bridge arm of the first half-bridge structure
  • the magnetic resistances at the second position and the third position are electrically connected to form an upper bridge arm of a second half-bridge structure
  • the magnetic resistances at the second position and the third position are electrically connected to form the lower bridge arm of the second half-bridge structure
  • the combination of the output terminal signal of the first half-bridge structure and the output terminal signal of the second half-bridge structure is used to reflect the magnitude and direction of the current in the current wire.
  • the electrical connection form of the magneto-resistive electrical connection forming the half-bridge structure is a series electrical connection and/or a parallel electrical connection.
  • the current measuring device includes N different positions, each position has at least two magnetoresistances, and N is greater than or equal to 3;
  • the two magnetoresistances at the same position include a magnetoresistance with a first sensitive direction With a magnetoresistance with a second sensitive direction, the first sensitive direction is opposite to the second sensitive direction, and the resistance value of the magnetoresistance and the magnetic field at its location are in a linear relationship within a set range; all magnetoresistances at N different positions
  • the sensitive direction of the resistance is the same or opposite, and the magnetic field to be measured has a component in the sensitive direction of the magnetoresistance; the component of the magnetic field to be measured in the sensitive direction at least one position is different from the components of the magnetic field to be measured in the sensitive direction at other positions; all
  • all The magneto-resistors are electrically connected to form a resistance network, and the output signal of the resistance network includes the signal of the magnetic field to be measured, but does not contain or contain an interference magnetic field signal of less than the first prese
  • Fig. 1 is the connection schematic diagram of magnetoresistance in the existing current sensor
  • FIG. 2 is a schematic diagram of the position of the magnetoresistance in a current measuring device provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an anti-interference bridge structure in a current measuring device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an anti-interference bridge structure in another current measuring device provided by an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of another anti-interference bridge structure in a current measuring device provided by an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the position of the magnetoresistance in another current measuring device provided by the embodiment of the present invention.
  • Fig. 7 is a schematic diagram of another anti-interference bridge structure in a current measuring device provided by an embodiment of the present invention.
  • FIG. 1 it is a schematic diagram of connection of a magnetoresistance in an existing current sensor.
  • the optional current sensor is a linear current sensor for current measurement.
  • the current sensor includes at least two half-bridges, one half-bridge includes magnetoresistors R11 and R12, and the other half-bridge includes magnetoresistors R13 and R14.
  • the sensitive directions of magnetoresistors located on the same half bridge are opposite, while the sensitive directions of magnetoresistors located on different half bridges and at diagonal positions are the same.
  • the sensitive directions of the magnetoresistances R11 and R12 are opposite, and the sensitive directions of R13 and R14 are opposite; the sensitive directions of the magnetoresistances R11 and R14 are the same, and the sensitive directions of R13 and R12 are the same.
  • R0 is the magnetoresistance resistance value in the absence of a magnetic field
  • k is a constant.
  • the full-bridge signal output value Vf of the current sensor can be calculated as:
  • Vcc is the power supply voltage.
  • the output signal Vf of the current sensor is positively correlated with the current I of the energized straight wire.
  • the output signal Vf of the current sensor is positively correlated with the magnetic field strength near the current sensor. The signal can get the magnitude of the current intensity.
  • the magnetic field signal detected by the magnetoresistance in the current sensor not only includes the induced magnetic field generated by the current, but also contains the interference magnetic field, so the output signal of the current sensor also includes the noise of the interference field, which affects the test accuracy.
  • the non-uniform interference magnetic field can be approximately regarded as a uniformly changing linear interference field within this small range.
  • the current measuring device provided by the embodiment of the present invention can eliminate the error of the uniformly changing linear interference field in the small range, and reduce the influence of the interference field on the current measurement.
  • the embodiment of the present invention provides an anti-interference bridge structure without introducing other components, and its sensor output simultaneously eliminates the influence of gradient interference magnetic field and uniform interference magnetic field, improves detection accuracy, and is suitable for various applications.
  • the embodiment of the present invention proposes the configuration of the bridge structure and the current wire, which can realize accurate measurement of the current and eliminate the influence of the gradient interference magnetic field and the uniform interference magnetic field.
  • the structure of the current measurement device and its anti-interference will be described in detail below bridge structure.
  • FIG. 2 it is a schematic diagram of a magnetoresistance position in a current measuring device provided by an embodiment of the present invention.
  • the current measuring device provided in this embodiment includes N different positions, each position has at least two magnetoresistances, and N is greater than or equal to 3; the two magnetoresistances at the same position include a magnetoresistance with a first sensitive direction and A magnetoresistance with a second sensitive direction, the first sensitive direction is opposite to the second sensitive direction, the resistance value of the magnetoresistance and the magnetic field at its position have a linear relationship within the set range; all magnetoresistances at N different positions
  • the sensitive direction of the magnetic resistance is the same or opposite, the magnetic field to be measured has a component in the sensitive direction of the magnetoresistance; the component of the magnetic field to be measured in the sensitive direction at least one position is different from the components of the magnetic field to be measured in the sensitive direction at other positions; all magnetic
  • the resistors are electrically connected to form a resistor network, and the output signal of the resist
  • the current measuring device includes at least 3 different positions, each position has at least two magnetoresistances, and N is greater than or equal to 3; the two magnetoresistances at the same position include a magnetoresistance with a first sensitive direction Compared with a magnetoresistance with a second sensitive direction, the first sensitive direction is opposite to the second sensitive direction, and the resistance value of the magnetoresistance has a linear relationship with the magnetic field at its location within a set range. It can be understood that the same position of the current measuring device means that the magnetic field generated by the current at the position is the same.
  • the three different positions of the current measuring device can be marked as L1, L2 and L3 in turn, the position L1 has at least two magnetoresistors R1 and R2, and the position L2 has at least two magnetoresistors R3 and R4 , there are at least two magnetoresistances R5 and R5 at position L3, that is, the magnetic field generated by the current at position L1 is the same, the magnetic field generated by the current at position L2 is the same, the magnetic field generated by the current at position L3 is the same, and the current at different positions The magnetic fields produced are different.
  • the sensitive directions of the magnetic resistances R1 and R2 located at the same position are opposite, the sensitive directions of the magnetic resistances R3 and R4 are opposite, and the sensitive directions of the magnetic resistances R5 and R6 are opposite.
  • the physical location and reference orientation of the magnetoresistors in the current measurement device are shown in Figure 2.
  • the distances between adjacent positions are the same, then the distances between L1 and L2 are the same, and the distances between L2 and L3 are the same, and the distances are all m.
  • the sensitive directions of all magnetoresistances at N different positions are the same or opposite.
  • the sensitive directions of magnetoresistances R1, R3 and R5 at three different positions are the same, and the sensitive directions of magnetoresistors R2, R4 and R6 at three different positions are the same.
  • the directions are the same, but the sensitive directions of all magnetoresistances are parallel to the physical arrangement direction of the magnetoresistances. It should be noted that, in actual design, the sensitive directions of all magnetoresistances and the physical position arrangement directions of magnetoresistances may not be parallel, or they may intersect.
  • the magnetic field to be measured is generated after the current flows into the current measuring device.
  • the magnetic field to be measured has a component in the sensitive direction of each magnetoresistance. It is known that the magnetic field generated by the current at the same position is the same, and the magnetic field generated at different positions is different. At least one position The component of the magnetic field to be measured in the sensitive direction sensed at the location is different from the components of the magnetic field to be measured in the sensitive direction at other positions.
  • All the magnetoresistances in the current measuring device are electrically connected to form a resistance network, and the output signal of the resistance network contains the signal of the magnetic field to be measured, does not contain or contains an interference magnetic field signal smaller than the first preset strength, and the interference magnetic field signal includes a uniform interference magnetic field and a gradient disturbing magnetic field.
  • N different positions are distributed on the same straight line. N different locations can be selected to be equally spaced.
  • the following uses a specific example to illustrate the process of eliminating or reducing the interference magnetic field of the current measuring device. Specifically, magnetoresistances at N different positions in the current measuring device are electrically connected to form a half-bridge structure.
  • the optional resistor network has a power supply terminal Vcc, a ground terminal and an output terminal.
  • the structure of the optional resistor network includes at least two half-bridge structures.
  • the half-bridge structure is composed of an upper bridge arm and a lower bridge arm. One terminal of the upper bridge arm is electrically connected to the power supply terminal, and one terminal of the lower bridge arm is electrically connected to the ground terminal.
  • the other terminal of the high-side arm and the other terminal of the bottom-side arm are both electrically connected to the output; in either half-bridge configuration, the magneto-resistance in the high-side arm consists of a magneto-resistance at one or more locations, and The magnetoresistances in the upper bridge arm have the same sensitive direction, the magnetoresistors in the lower bridge arm include magnetoresistances located at one or more positions, and the magnetoresistances in the lower bridge arm have the same sensitive direction, the magnetoresistances in the upper bridge arm The sensitive direction of the resistance is different from the sensitive direction of the magnetoresistance in the lower bridge arm.
  • the electrical connection form of the optional magnetic resistance electrical connection constituting the half-bridge structure is a series electrical connection and/or a parallel electrical connection.
  • the optional current measurement device also includes: current wire, the current wire generates the magnetic field to be measured, and the magnetic field to be measured is used to reflect the magnitude and direction of the current in the current wire; the resistance network structure is used to make the output signal of the resistance network include the magnetic field to be measured The signal does not contain or contains a disturbing magnetic field signal of less than a first preset strength, so that the current measuring device reflects the magnitude and direction of the current in the current wire without being affected by the disturbing magnetic field.
  • the optional N is 3, and the N different positions are the first position L1, the second position L2 and the third position L3 in turn; a part of the magnetoresistance at the first position L1 and the third position L3 is electrically connected to form a first half-bridge structure
  • the upper bridge arm of the bridge; the other part of the magnetoresistance on the first position L1 and the third position L3 is electrically connected to form the lower bridge arm of the first half-bridge structure; a part of the magnetoresistance on the second position L2 is electrically connected to form the second half
  • the upper bridge arm of the bridge structure; the other part of the magnetoresistance on the second position L2 is electrically connected to the lower bridge arm of the second half bridge structure; the output terminal signal of the first half bridge structure and the output terminal signal of the second half bridge structure
  • FIG. 3 it is a schematic diagram of an anti-interference bridge structure in a current measuring device provided by an embodiment of the present invention.
  • the resistor network has a power supply terminal Vcc, a ground terminal and an output terminal (V+ and V-).
  • Three magnetoresistance groups in the current measurement device that is, six magnetoresistance groups, are connected to form two half-bridge structures.
  • R1 and R5 form the upper bridge arm of the first half-bridge structure
  • R2 and R6 form the lower bridge arm of the first half-bridge structure
  • R3 form the upper bridge arm of the second half-bridge structure
  • R4 form the lower bridge of the second half-bridge structure arm.
  • the sensitive directions of the upper bridge arm of the first half-bridge structure and the upper bridge arm of the second half-bridge structure are the same, the sensitive directions of the lower bridge arm of the first half-bridge structure and the lower bridge arm of the second half-bridge structure are the same, and the upper The sensitive directions of the bridge arm and the lower bridge arm are opposite.
  • the interference field existing in the sensitive direction can be considered as the combined field of the gradient interference magnetic field Hg (changing magnetic field per unit distance) and the uniform interference magnetic field Hu. Based on this, it can be obtained that
  • R3 R0-bI-n(Hu+Hg)
  • R4 R0+bI+n(Hu+Hg)
  • R5 R0-cI-n(Hu+2Hg)
  • R6 R0+cI+n(Hu+2Hg)
  • a is the sensitivity of the magnetoresistance R1 and R2 at the same position to the current intensity
  • b is the sensitivity of the magnetoresistance R3 and R4 at the same position to the current intensity
  • c is the magnetoresistance R5 and R6 at the same position Sensitivity to current strength. Due to the different positions of R1, R3, and R5, the sensitivities of the three magneto-resistance groups to the current intensity are not all the same, that is, a, b, and c are not exactly the same.
  • n is the sensitivity of each magnetoresistance to the disturbance magnetic field.
  • the current measuring device can obtain the output signal V+ of the first half-bridge structure and the output signal V- of the second half-bridge structure, respectively,
  • the output signal V+ of the first half-bridge structure and the output signal V- of the second half-bridge structure are interfered by the gradient disturbance magnetic field Hg and the uniform disturbance magnetic field Hu.
  • the measured current generates a magnetic field component in the sensitive direction of the magnetoresistance, and the resistance value of the magnetoresistance changes with the changes of the induced magnetic field and the disturbing magnetic field of the measured current at each position, and the corresponding output through the half-bridge structure Voltage signal, from which the magnitude of the current can be calculated.
  • the final output signal Vout of the current measuring device eliminates the interference of the gradient disturbance magnetic field Hg and the uniform disturbance magnetic field Hu.
  • the output signal of the resistance network does not contain interference magnetic field signals or only contains very little interference magnetic field signals.
  • the first preset strength is a preset minimum strength value, which is only to illustrate that the output signal of the resistor network does not contain or contain very little interference magnetic field signal, and the interference magnetic field signal includes a uniform interference magnetic field and a gradient interference magnetic field .
  • the sensitive directions of the corresponding positions in the first and second half-bridge structures are not necessarily the same.
  • the current measuring device can obtain the The output signal V+ and the output signal V- of the second half-bridge structure are, respectively,
  • the final output signal Vout of the current measuring device still eliminates the interference of the gradient disturbance magnetic field Hg and the uniform disturbance magnetic field Hu.
  • the distances between the three physical locations may be slightly different, not limited to equidistant distances, as long as the interfering magnetic field can be eliminated, those skilled in the art can reasonably design the three physical locations spacing between.
  • the current measuring device includes N different positions, each position has at least two magnetoresistances, and N is greater than or equal to 3;
  • the two magnetoresistances at the same position include a magnetoresistance with a first sensitive direction With a magnetoresistance with a second sensitive direction, the first sensitive direction is opposite to the second sensitive direction, and the resistance value of the magnetoresistance and the magnetic field at its location are in a linear relationship within a set range; all magnetoresistances at N different positions
  • the sensitive direction of the resistance is the same or opposite, and the magnetic field to be measured has a component in the sensitive direction of the magnetoresistance; the component of the magnetic field to be measured in the sensitive direction at least one position is different from the components of the magnetic field to be measured in the sensitive direction at other positions; all
  • all The magneto-resistors are electrically connected to form a resistance network, and the output signal of the resistance network includes the signal of the magnetic field to be measured, but does not contain or contain an interference magnetic field signal of less than the first prese
  • the optional N is 3, and the N different positions are the first position, the second position and the third position in turn; a part of the magnetoresistance at the first position is electrically connected to form the first half-bridge The upper bridge arm of the structure; another part of the magnetoresistance at the first position is electrically connected to the lower bridge arm of the first half-bridge structure; a part of the magnetoresistance at the second position is electrically connected to the upper bridge arm of the second half-bridge structure ; Another part of the magnetoresistance on the second position is electrically connected to the lower bridge arm of the second half-bridge structure; a part of the magnetoresistance on the third position is electrically connected to the upper bridge arm of the third half-bridge structure; in the third position The other part of the magnetoresistance on the top is electrically connected to the lower bridge arm of the third half-bridge structure; the output signal of the first half-bridge structure, the output signal of the second half-bridge structure and the output signal of the third half-bridge structure
  • FIG. 4 it is a schematic diagram of an anti-interference bridge structure in another current measuring device provided by an embodiment of the present invention.
  • the resistor network has a power supply terminal Vcc, a ground terminal and output terminals (V1, V2 and V3).
  • the positions of the six magnetoresistors are the same as those in Figure 2, but the resistor network is composed of three half-bridge structures, in which R1 and R2 respectively constitute the upper and lower bridge arms of the first half-bridge structure, and R3 and R4 respectively constitute the upper and lower bridge arms of the second half-bridge structure.
  • the upper and lower bridge arms, R5 and R6 respectively constitute the upper and lower bridge arms of the third half bridge structure.
  • the output signal of the first half-bridge structure is V1
  • the output signal of the second half-bridge structure is V2
  • the output signal of the third half-bridge structure is V3.
  • the final output signal Vout of the current measuring device still eliminates the interference of the gradient interference magnetic field Hg and the uniform interference magnetic field Hu.
  • FIG. 5 it is a schematic diagram of another anti-interference bridge structure in a current measuring device provided by an embodiment of the present invention.
  • FIG. 5 is a modification of the three half-bridge structures in FIG. 4, wherein the resistor network has a power supply terminal Vcc, a ground terminal and output terminals (V1, V2, V3 and V4).
  • the resistance network adopts the connection mode of 4 half-bridge structures shown in Figure 5, which is beneficial to connect the bridge to the subsequent operational amplifier circuit.
  • two identical magnetic resistors R3 and two identical magnetic resistors R4 are placed at the position L2.
  • the final output signal Vout of the current measuring device eliminates the interference of the gradient interference magnetic field Hg and the uniform interference magnetic field Hu.
  • the optional N is 4, and the N different positions are the first position, the second position, the third position and the fourth position in turn; the magnetoresistance at the first position and the fourth position
  • the upper bridge arm of the first half-bridge structure is electrically connected; the magnetoresistance at the first position and the fourth position is electrically connected to the lower bridge arm of the first half-bridge structure; the magnetoresistance at the second position and the third position
  • the upper bridge arm of the second half-bridge structure is electrically connected; the magnetoresistance at the second position and the third position are electrically connected to the lower bridge arm of the second half-bridge structure; the output terminal signal of the first half-bridge structure and the second
  • the output signal combination of the half-bridge structure is used to reflect the magnitude and direction of the current in the current wire.
  • FIG. 6 it is a schematic diagram of a magnetoresistance position in another current measuring device provided by an embodiment of the present invention.
  • the four different positions of the current measuring device can be marked as L1, L2, L3 and L4 in sequence, the position L1 has at least two magnetoresistors R1 and R2, and the position L2 has at least two magnetoresistors R3 and R4, there are at least two magnetic resistors R5 and R6 at the position L3, and at least two magnetic resistors R7 and R8 at the position L4.
  • the current generates the same magnetic field at position L1, the current generates the same magnetic field at position L2, the current generates the same magnetic field at position L3, the current generates the same magnetic field at position L4, and the current generates different magnetic fields at different positions.
  • the sensitive directions of the magnetoresistances R1 and R2 located at the same position are opposite, the sensitive directions of the magnetoresistances R3 and R4 are opposite, the sensitive directions of the magnetoresistances R5 and R6 are opposite, and the sensitive directions of the magnetoresistances R7 and R8 are opposite.
  • the optional positions L1 and L2, the positions L2 and L3, and the positions L3 and L4 have the same distance, for example, they are all m.
  • the resistor network composed of 8 magnetoresistances can be selected with 2 half-bridge structures.
  • FIG. 7 it is a schematic diagram of another anti-interference bridge structure in a current measuring device provided by an embodiment of the present invention.
  • the resistor network has a power supply terminal Vcc, a ground terminal and output terminals (V+ and V-).
  • R1 and R7 form the upper bridge arm of the first half-bridge structure
  • R2 and R8 form the lower bridge arm of the first half-bridge structure
  • R3 and R5 form the upper bridge arm of the second half-bridge structure
  • R4 and R6 form the second bridge arm.
  • the output signal of the first half-bridge structure is V+
  • the output signal of the second half-bridge structure is V-.
  • the interference field existing in the sensitive direction can be considered as the resultant field of the gradient interference magnetic field Hg (the changing magnetic field per unit distance) and the uniform interference magnetic field Hu, then it can be obtained,
  • R3 R0-bI-n(Hu+Hg)
  • R4 R0+bI+n(Hu+Hg)
  • R5 R0-cI-n(Hu+2Hg)
  • R6 R0+cI+n(Hu+2Hg)
  • R7 R0-dI-n(Hu+3Hg)
  • R8 R0+dI+n(Hu+3Hg)
  • the final output signal Vout of the current measuring device eliminates the interference of the gradient interference magnetic field Hg and the uniform interference magnetic field Hu.
  • N is an odd number greater than or equal to 5, and for the scheme that the number N of different positions is an odd number, each position is provided with two magnetoresistances, then the number of N positions
  • the resistance value of the magnetic resistance R1 ⁇ R2N is:
  • Position N R(2N-1), R(2N).
  • R1,...,R(4N+1) constitute the upper bridge arm of the first half-bridge structure
  • R2,...,R(4N+2) constitute the lower bridge arm of the first half-bridge structure
  • R3,...,R( 4N-1) constitutes the upper bridge arm of the second half-bridge structure
  • R4,...,R(4N) constitutes the lower bridge arm of the second half-bridge structure
  • the differential output signals of the two half-bridge structures eliminate the gradient interference magnetic field Hg And the signal disturbed by the uniform interference magnetic field Hu.
  • N 7, and there are two magnetic resistances in each position, then the resistance values of the magnetic resistances R1 ⁇ R14 in the seven positions are:
  • R1, R5, R9 and R13 constitute the upper bridge arm of the first half-bridge structure
  • R2, R6, R10 and R14 constitute the lower bridge arm of the first half-bridge structure
  • R3, R7 and R11 constitute the second half-bridge structure
  • the upper bridge arm, R4, R8 and R12 constitute the lower bridge arm of the second half-bridge structure.
  • the final output signal Vout of the current measuring device eliminates the interference of the gradient interference magnetic field Hg and the uniform interference magnetic field Hu.
  • N is an even number greater than or equal to 5
  • the number N of different positions is an even number, and each position is provided with two magnetoresistors.
  • the magnetoresistors R1-R12 at six positions can form half-bridge structures of different schemes.
  • R1, R3, R9, R11 are the upper bridge arms of the first half bridge structure
  • R2, R4, R10, R12 are the lower bridge arms of the first half bridge structure
  • R5, R7 are the bridge arms of the second half bridge structure
  • the upper bridge arm, R6, R8 are the lower bridge arms of the second half bridge structure.
  • R1, R11 are the upper bridge arms of the first half bridge structure
  • R2, R12 are the lower bridge arms of the first half bridge structure
  • R3, R5, R7, R9 are the upper bridge arms of the second half bridge structure
  • R4, R6, R8, and R10 are lower bridge arms of the second half-bridge structure.
  • the magnetoresistors R1-R16 at 8 positions can form 2 half-bridge structures.
  • R1, R3, R13, R15 are the upper bridge arms of the first half bridge structure
  • R2, R4, R14, R16 are the lower bridge arms of the first half bridge structure
  • R5, R7, R9, R11 are the second half bridge structure
  • the upper bridge arm of the structure, R6, R8, R10, R12 are the lower bridge arms of the second half bridge structure.
  • the current measuring device provided by the embodiment of the present invention is equipped with an anti-interference bridge structure, without introducing other components, and the magnetic resistance output simultaneously eliminates the influence of the gradient interference magnetic field and the uniform interference magnetic field, improves the detection accuracy, and is suitable for various applications .
  • the sensitive direction of the magnetoresistance can be in any direction, as long as the magnetic field induced by the current to be measured has a magnetic field component in the selected magnetoresistance sensitive direction.

Abstract

一种电流测量器件,包括3个以上不同位置,每个位置处具有至少两个磁电阻,两个磁电阻包括分别具有第一和相反的第二灵敏方向的两个磁电阻,磁电阻的电阻值与所在位置处的磁场在设定范围内呈线性关系,不同位置处的所有磁电阻的灵敏方向相同或相反,待测磁场在磁电阻的灵敏方向具有分量,至少一个位置处的待测磁场在灵敏方向的分量,不同于其它位置处的待测磁场在灵敏方向的分量,所有磁电阻电连接构成输出信号包含待测磁场的信号、不包含或包含小于第一预设强度的干扰磁场信号的电阻网络。电流测量器件消除了干扰磁场对电流测量的干扰。

Description

一种电流测量器件 技术领域
本发明实施例涉及磁传感器技术领域,尤其涉及一种电流测量器件。
背景技术
电流测量在电力系统、风电、光伏、变频器、轨道交通、工业控制等行业一直是一项普遍且重要的需求,并且现在随着人工智能及智慧物联网的蓬勃发展,对电流测量的需求量将大幅增加,与此同时也对电流测量模块的性能参数等提出了更高的挑战。
电流传感器通过探测电流所产生的磁场大小,检测得到被测电流的大小。但是环境中往往存在着干扰磁场,使得电流传感器灵敏度低、性能不稳定。为了减少干扰磁场的影响,可以通过磁屏蔽的方式来提高检测精度。在专利申请CN109313223A“电流传感器”中提出电流传感器的一种实施例,其中包含了至少两个磁屏蔽在磁检测元件的周围,并以夹着磁检测元件和电流路径方式配置,由此遮蔽外部的磁通对于磁检测元件的影响。在专利申请CN111308154A“电流传感器”中包括处在不同物理位置的两个传感器,该处理电路连接至磁传感器,并且基于两传感器信号差值来确定电流,使得该电流传感器对外部干扰场不敏感。
磁屏蔽往往使得传感器尺寸变大,而通过传感器配置和电路处理也会额外引入多个部件,两者均会使得测试系统复杂,提高成本。同时上述处理电路只能处理干扰磁场是匀强外场的情况,而往往在实际应用中干扰外场形式是多样的,尤其是非均匀外场最为常见。非均匀外场的干扰影响电流检测精度。
发明内容
本发明实施例提供一种电流测量器件,以解决现有电流传感器受干扰磁场干扰的问题。
本发明实施例提供了一种电流测量器件,包括N个不同位置,每个位置处具有至少两个磁电阻,N大于或等于3;
同一位置处的所述两个磁电阻包括一个具有第一灵敏方向的磁电阻和一个具有第二 灵敏方向的磁电阻,所述第一灵敏方向和所述第二灵敏方向相反,所述磁电阻的电阻值与其所在位置处的磁场在设定范围内呈线性关系;
所述N个不同位置处的所有磁电阻的灵敏方向相同或者相反,待测磁场在所述磁电阻的灵敏方向具有分量;
至少一个位置处的待测磁场在灵敏方向的分量,不同于其他位置处的待测磁场在灵敏方向的分量;
所有磁电阻电连接构成电阻网络,所述电阻网络的输出信号包含所述待测磁场的信号,不包含或者包含小于第一预设强度的干扰磁场信号,所述干扰磁场信号包括匀强干扰磁场和梯度干扰磁场。
进一步地,所述N个不同位置分布在同一直线上。
进一步地,所述N个不同位置等间距分布。
进一步地,所述电阻网络具有供电端、接地端和输出端。
进一步地,所述电阻网络的结构至少包含两个半桥结构,所述半桥结构由上桥臂和下桥臂构成,所述上桥臂的一个端子电连接到所述供电端,所述下桥臂的一个端子电连接到所述接地端,所述上桥臂的另一个端子和所述下桥臂的另一个端子均电连接到所述输出端;
在任意一个所述半桥结构中,所述上桥臂中的磁电阻包含位于一个或多个位置的磁电阻,且所述上桥臂中各磁电阻具有相同的灵敏方向,所述下桥臂中的磁电阻包含位于一个或多个位置的磁电阻,且所述下桥臂中各磁电阻具有相同的灵敏方向,所述上桥臂中磁电阻的灵敏方向不同于所述下桥臂中磁电阻的灵敏方向。
进一步地,还包含:电流导线,所述电流导线产生待测磁场,所述待测磁场用于反映所述电流导线中电流的大小和方向;
所述电阻网络的结构用于使所述电阻网络的输出信号中包含所述待测磁场的信号,不包含或者包含小于所述第一预设强度的干扰磁场信号,使所述电流测量器件不受干扰磁场影响地反映所述电流导线中电流的大小和方向。
进一步地,N为3,所述N个不同位置依次为第一位置、第二位置和第三位置;
在所述第一位置和所述第三位置上的一部分磁电阻电连接成第一半桥结构的上桥臂;
在所述第一位置和所述第三位置上的另一部分磁电阻电连接成所述第一半桥结构的下桥臂;
在所述第二位置上的一部分磁电阻电连接成第二半桥结构的上桥臂;
在所述第二位置上的另一部分磁电阻电连接成所述第二半桥结构的下桥臂;
所述第一半桥结构的输出端信号和所述第二半桥结构的输出端信号组合,用于反映所述电流导线中电流的大小和方向。
进一步地,N为3,所述N个不同位置依次为第一位置、第二位置和第三位置;
在所述第一位置上的一部分磁电阻电连接成第一半桥结构的上桥臂;
在所述第一位置上的另一部分磁电阻电连接成所述第一半桥结构的下桥臂;
在所述第二位置上的一部分磁电阻电连接成第二半桥结构的上桥臂;
在所述第二位置上的另一部分磁电阻电连接成所述第二半桥结构的下桥臂;
在所述第三位置上的一部分磁电阻电连接成第三半桥结构的上桥臂;
在所述第三位置上的另一部分磁电阻电连接成所述第三半桥结构的下桥臂;
所述第一半桥结构的输出端信号,所述第二半桥结构的输出端信号以及所述第三半桥结构的输出端信号组合,用于反映所述电流导线中电流的大小和方向。
进一步地,N为4,所述N个不同位置依次为第一位置、第二位置、第三位置和第四位置;
在所述第一位置和所述第四位置上的磁电阻电连接成第一半桥结构的上桥臂;
在所述第一位置和所述第四位置上的磁电阻电连接成所述第一半桥结构的下桥臂;
在所述第二位置和所述第三位置上的磁电阻电连接成第二半桥结构的上桥臂;
在所述第二位置和所述第三位置上的磁电阻电连接成所述第二半桥结构的下桥臂;
所述第一半桥结构的输出端信号和所述第二半桥结构的输出端信号组合,用于反映所述电流导线中电流的大小和方向。
进一步地,所述磁电阻电连接构成半桥结构的电连接形式是串联电连接和/或并联电连接。
本发明实施例中,电流测量器件包括N个不同位置,每个位置处具有至少两个磁电阻,N大于或等于3;同一位置处的两个磁电阻包括一个具有第一灵敏方向的磁电阻和一个具有第二灵敏方向的磁电阻,第一灵敏方向和第二灵敏方向相反,磁电阻的电阻值与其所在位置处的磁场在设定范围内呈线性关系;N个不同位置处的所有磁电阻的灵敏方向相同或者相反,待测磁场在磁电阻的灵敏方向具有分量;至少一个位置处的待测磁场在灵敏方向的分量,不同于其他位置处的待测磁场在灵敏方向的分量;所有磁电阻电连接构成电阻网络,电阻网络的输出信号包含待测磁场的信号,不包含或者包含小于第一预设强度的干扰磁场信号,干扰磁场信号包括匀强干扰磁场和梯度干扰磁场。本发明实施例中,电流测量 器件输出的信号不包含或者包含极少的干扰磁场信号,有效消除或降低了干扰磁场对电流测量的干扰,实现对电流的精确检测。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图虽然是本发明的一些具体的实施例,对于本领域的技术人员来说,可以根据本发明的各种实施例所揭示和提示的器件结构,驱动方法和制造方法的基本概念,拓展和延伸到其它的结构和附图,毋庸置疑这些都应该是在本发明的权利要求范围之内。
图1为现有电流传感器中磁电阻的连接示意图;
图2是本发明实施例提供的一种电流测量器件中磁电阻的位置示意图;
图3是本发明实施例提供的一种电流测量器件中抗干扰电桥结构的示意图;
图4是本发明实施例提供的另一种电流测量器件中抗干扰电桥结构的示意图;
图5是本发明实施例提供的又一种电流测量器件中抗干扰电桥结构的示意图;
图6是本发明实施例提供的又一种电流测量器件中磁电阻的位置示意图;
图7是本发明实施例提供的又一种电流测量器件中抗干扰电桥结构的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下将参照本发明实施例中的附图,通过实施方式清楚、完整地描述本发明的技术方案,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例所揭示和提示的基本概念,本领域的技术人员所获得的所有其他实施例,都属于本发明保护的范围。
参考图1所示,为现有电流传感器中磁电阻的连接示意图。可选电流传感器为线性电流传感器,用于电流测量。如图1所示,电流传感器至少包括两个半桥,一个半桥包括磁电阻R11和R12,另一个半桥包括磁电阻R13和R14。位于同一半桥上的磁电阻的敏感方向相反,而位于不同半桥且处于对角位置的磁电阻的敏感方向相同。显然,磁电阻R11和R12的敏感方向相反,R13和R14的敏感方向相反;磁电阻R11和R14的敏感方向相同,R13和R12的敏感方向相同。
电流传感器利用毕奥-萨伐尔定律测量电流。一般来说,通电直导线电流为I时,于导 线的垂直距离为r处的磁场强度为H,即H=I/(2πr)。电流传感器中磁电阻通过工艺设计使得其在某一范围内的电阻值与其所在位置磁场强度大小正相关,由于同一半桥上的磁电阻R11和R12的敏感轴方向相反,则可计算得到2个磁电阻在距离为r处的磁电阻阻值,分别为:
R11=R0-kH=R0-kI/(2πr),
R12=R0+kH=R0+kI/(2πr),
其中,R0是不存在磁场情况下的磁电阻阻值,k为常数。
此时,可以计算得到电流传感器的全桥信号输出值Vf,为:
Figure PCTCN2022118642-appb-000001
其中,Vcc是供电电压。显然,根据输出信号Vf的公式可知,电流传感器的输出信号Vf与通电直导线电流I正相关,换而言之,电流传感器的输出信号Vf与电流传感器附近磁场强度成正相关,最后根据输出的电压信号可以得到电流强度大小。
然而,在实际应用中,电流传感器中磁电阻检测得到的磁场信号不仅包含了电流产生的感生磁场,还含有干扰磁场,因此电流传感器的输出信号还包含有干扰场的噪声,影响测试精度。而对于电流传感器中包含多个磁电阻而言,由于各磁电阻之间的间距相对较小,非均匀干扰磁场在该小范围内可以近似认为是均匀变化的线性干扰场。
本发明实施例提供的电流测量器件,可以消除该小范围内均匀变化的线性干扰场的误差,降低干扰场对电流测量的影响。尤其的,本发明实施例提供了一种抗干扰电桥结构,无需引入其他部件,且其传感器输出同时消除梯度干扰磁场和匀强干扰磁场的影响,提高检测精度,适用多种应用场合。特别地,本发明实施例提出了电桥结构和电流导线的配置,能实现电流的精确测量,消除梯度干扰磁场和匀强干扰磁场的影响,以下将详细描述电流测量器件的结构及其中抗干扰电桥结构。
参考图2所示,为本发明实施例提供的一种电流测量器件中磁电阻的位置示意图。本实施例提供的电流测量器件包括N个不同位置,每个位置处具有至少两个磁电阻,N大于或等于3;同一位置处的两个磁电阻包括一个具有第一灵敏方向的磁电阻和一个具有第二灵敏方向的磁电阻,第一灵敏方向和第二灵敏方向相反,磁电阻的电阻值与其所在位置处的磁场在设定范围内呈线性关系;N个不同位置处的所有磁电阻的灵敏方向相同或者相 反,待测磁场在磁电阻的灵敏方向具有分量;至少一个位置处的待测磁场在灵敏方向的分量,不同于其他位置处的待测磁场在灵敏方向的分量;所有磁电阻电连接构成电阻网络,电阻网络的输出信号包含待测磁场的信号,不包含或者包含小于第一预设强度的干扰磁场信号,干扰磁场信号包括匀强干扰磁场和梯度干扰磁场。
本实施例中,电流测量器件包括至少3个不同位置,每个位置处具有至少两个磁电阻,N大于或等于3;同一位置处的两个磁电阻包括一个具有第一灵敏方向的磁电阻和一个具有第二灵敏方向的磁电阻,第一灵敏方向和第二灵敏方向相反,磁电阻的电阻值与其所在位置处的磁场在设定范围内呈线性关系。可以理解,电流测量器件的同一位置是指电流在该位置处产生的磁场相同。
可选N=3,则电流测量器件的3个不同位置可以依次标记为L1、L2和L3,位置L1处具有至少两个磁电阻R1和R2,位置L2处具有至少两个磁电阻R3和R4,位置L3处具有至少两个磁电阻R5和R5,即电流在位置L1处产生的磁场相同,电流在位置L2处产生的磁场相同,电流在位置L3处产生的磁场相同,电流在不同位置处产生的磁场不同。位于同一位置处的磁电阻R1和R2的灵敏方向相反,磁电阻R3和R4的灵敏方向相反,磁电阻R5和R6的灵敏方向相反。电流测量器件中磁电阻的物理位置和参考方向见图2。
可选相邻位置之间的间距相同,则L1和L2的间距相同,L2和L3的间距相同,间距均为m。
N个不同位置处的所有磁电阻的灵敏方向相同或者相反,例如3个不同位置处的磁电阻R1、R3和R5的灵敏方向相同,3个不同位置处的磁电阻R2、R4和R6的灵敏方向相同,但所有磁电阻的灵敏方向均与磁电阻的物理位置排布方向平行。需要说明的是,在实际设计中,所有磁电阻的灵敏方向与磁电阻的物理位置排布方向可以不平行,相交也可以。
电流流入电流测量器件后产生待测磁场,待测磁场在每个磁电阻的灵敏方向具有分量,已知电流在同一位置处产生的磁场相同,在不同位置处产生的磁场不同,则至少一个位置处感测到的待测磁场在灵敏方向的分量,不同于其他位置处的待测磁场在灵敏方向的分量。
电流测量器件中所有磁电阻电连接构成电阻网络,电阻网络的输出信号包含待测磁场的信号,不包含或者包含小于第一预设强度的干扰磁场信号,干扰磁场信号包括匀强干扰磁场和梯度干扰磁场。
可选N个不同位置分布在同一直线上。可选N个不同位置等间距分布。
以下采用具体示例说明电流测量器件消除或降低干扰磁场的过程。具体的,电流测量 器件中N个不同位置的磁电阻电连接构成半桥结构。
可选电阻网络具有供电端Vcc、接地端和输出端。可选电阻网络的结构至少包含两个半桥结构,半桥结构由上桥臂和下桥臂构成,上桥臂的一个端子电连接到供电端,下桥臂的一个端子电连接到接地端,上桥臂的另一个端子和下桥臂的另一个端子均电连接到输出端;在任意一个半桥结构中,上桥臂中的磁电阻包含位于一个或多个位置的磁电阻,且上桥臂中各磁电阻具有相同的灵敏方向,下桥臂中的磁电阻包含位于一个或多个位置的磁电阻,且下桥臂中各磁电阻具有相同的灵敏方向,上桥臂中磁电阻的灵敏方向不同于下桥臂中磁电阻的灵敏方向。可选磁电阻电连接构成半桥结构的电连接形式是串联电连接和/或并联电连接。
可选电流测量器件还包含:电流导线,电流导线产生待测磁场,待测磁场用于反映电流导线中电流的大小和方向;电阻网络结构用于使电阻网络的输出信号中包含待测磁场的信号,不包含或者包含小于第一预设强度的干扰磁场信号,使电流测量器件不受干扰磁场影响地反映电流导线中电流的大小和方向。
可选N为3,N个不同位置依次为第一位置L1、第二位置L2和第三位置L3;在第一位置L1和第三位置L3上的一部分磁电阻电连接成第一半桥结构的上桥臂;在第一位置L1和第三位置L3上的另一部分磁电阻电连接成第一半桥结构的下桥臂;在第二位置L2上的一部分磁电阻电连接成第二半桥结构的上桥臂;在第二位置L2上的另一部分磁电阻电连接成第二半桥结构的下桥臂;第一半桥结构的输出端信号和第二半桥结构的输出端信号组合,用于反映电流导线中电流的大小和方向。
参考图3所示,为本发明实施例提供的一种电流测量器件中抗干扰电桥结构的示意图。
如图3所示,电阻网络具有供电端Vcc、接地端和输出端(V+和V-),电流测量器件中3个磁电阻组即6个磁电阻连接成两个半桥结构,。R1和R5构成第一半桥结构的上桥臂,R2和R6构成第一半桥结构的下桥臂,R3构成第二半桥结构的上桥臂,R4构成第二半桥结构的下桥臂。第一半桥结构的上桥臂和第二半桥结构的上桥臂的灵敏方向相同,第一半桥结构的下桥臂和第二半桥结构的下桥臂的灵敏方向相同,且上桥臂和下桥臂的灵敏方向相反。
假设通入电流测量器件中的电流强度为I,在敏感方向上存在的干扰场可以认为是梯度干扰磁场Hg(单位距离的变化磁场)和均匀干扰磁场Hu的合场。基于此,可以得到,
R1=R0-aI-nHu,R2=R0+aI+nHu,
R3=R0-bI-n(Hu+Hg),R4=R0+bI+n(Hu+Hg),
R5=R0-cI-n(Hu+2Hg),R6=R0+cI+n(Hu+2Hg),
其中,a为位于同一位置处的磁电阻R1和R2对电流强度的灵敏度,b为位于同一位置处的磁电阻R3和R4对电流强度的灵敏度,c为位于同一位置处的磁电阻R5和R6对电流强度的灵敏度。由于R1、R3、R5的位置不同,该3个磁电阻组对电流强度的灵敏度也不尽然相同,即a、b、c不完全相同。n是各磁电阻对干扰磁场的灵敏度。
基于此,电流测量器件可以得到第一半桥结构的输出信号V+和第二半桥结构的输出信号V-,分别为,
Figure PCTCN2022118642-appb-000002
如上,第一半桥结构的输出信号V+和第二半桥结构的输出信号V-受到梯度干扰磁场Hg和匀强干扰磁场Hu的干扰。
在此对V+和V-做一次差分,得到最后的输出信号Vout,为,
Figure PCTCN2022118642-appb-000003
如上所述,被测电流在磁电阻的灵敏方向上产生磁场分量,磁电阻的电阻值随着各自位置处被测电流的感生磁场和干扰磁场变化而发生变化,通过半桥结构输出对应的电压信号,由此可计算得到电流大小。显而易见的,电流测量器件最终的输出信号Vout消除了梯度干扰磁场Hg和匀强干扰磁场Hu的干扰。
可以理解,所有磁电阻电连接构成电阻网络后,电阻网络的输出信号不包含干扰磁场信号或者仅包含极少的干扰磁场信号。在此第一预设强度是预先设定的极小强度值,仅是为了说明电阻网络的输出信号不包含或包含极少的干扰磁场信号,该干扰磁场信号包括匀强干扰磁场和梯度干扰磁场。
在其他实施例中,还可选第一和第二半桥结构中对应位置的灵敏方向不一定相同,例如将R3和R4的灵敏方向互换,则电流测量器件可以得到第一半桥结构的输出信号V+和第二半桥结构的输出信号V-,分别为,
Figure PCTCN2022118642-appb-000004
在此配置下,电流测量器件最终的输出信号Vout为,
Figure PCTCN2022118642-appb-000005
显而易见的,电流测量器件最终的输出信号Vout仍旧消除了梯度干扰磁场Hg和匀强干扰磁场Hu的干扰。
需要说明的是,实际的电流测量器件设计时,三个物理位置之间的距离可以是稍有差别的,不限于等间距,只要能消除干扰磁场,本领域技术人员可以合理设计三个物理位置之间的间距。
本发明实施例中,电流测量器件包括N个不同位置,每个位置处具有至少两个磁电阻,N大于或等于3;同一位置处的两个磁电阻包括一个具有第一灵敏方向的磁电阻和一个具有第二灵敏方向的磁电阻,第一灵敏方向和第二灵敏方向相反,磁电阻的电阻值与其所在位置处的磁场在设定范围内呈线性关系;N个不同位置处的所有磁电阻的灵敏方向相同或者相反,待测磁场在磁电阻的灵敏方向具有分量;至少一个位置处的待测磁场在灵敏方向的分量,不同于其他位置处的待测磁场在灵敏方向的分量;所有磁电阻电连接构成电阻网络,电阻网络的输出信号包含待测磁场的信号,不包含或者包含小于第一预设强度的干扰磁场信号,干扰磁场信号包括匀强的干扰磁场和梯度的干扰磁场。本发明实施例中,电流测量器件输出的信号不包含或者包含极少的干扰磁场信号,有效消除或降低了干扰磁场对电流测量的干扰,实现对电流的精确检测。
示例性的,与上述实施例不同,可选N为3,N个不同位置依次为第一位置、第二位置和第三位置;在第一位置上的一部分磁电阻电连接成第一半桥结构的上桥臂;在第一位置上的另一部分磁电阻电连接成第一半桥结构的下桥臂;在第二位置上的一部分磁电阻电连接成第二半桥结构的上桥臂;在第二位置上的另一部分磁电阻电连接成第二半桥结构的下桥臂;在第三位置上的一部分磁电阻电连接成第三半桥结构的上桥臂;在第三位置上的另一部分磁电阻电连接成第三半桥结构的下桥臂;第一半桥结构的输出端信号,第二半桥结构的输出端信号以及第三半桥结构的输出端信号组合,用于反映电流导线中电流的大小 和方向。
参考图4所示,为本发明实施例提供的另一种电流测量器件中抗干扰电桥结构的示意图。
如图4所示,电阻网络具有供电端Vcc、接地端和输出端(V1、V2和V3)。6个磁电阻的位置与图2相同,但是电阻网络由3个半桥结构构成,其中,R1和R2分别构成第一半桥结构的上下桥臂,R3和R4分别构成第二半桥结构的上下桥臂,R5和R6分别构成第三半桥结构的上下桥臂。第一半桥结构的输出信号为V1,第二半桥结构的输出信号为V2,第三半桥结构的输出信号为V3。
3个半桥结构的输出信号V1、V2和V3的表达式如下,
Figure PCTCN2022118642-appb-000006
在此对V1、V2和V3进行一次运算,得到最后的输出信号Vout,为,
Figure PCTCN2022118642-appb-000007
显然,电流测量器件最终的输出信号Vout仍旧消除了梯度干扰磁场Hg和匀强干扰磁场Hu的干扰。
参考图5所示,为本发明实施例提供的又一种电流测量器件中抗干扰电桥结构的示意图。图5是图4中三个半桥结构的变形,其中,电阻网络具有供电端Vcc、接地端和输出端(V1、V2、V3和V4)。电阻网络采用图5所示的4个半桥结构的连接方式,有利于将电桥连接到后续的运放电路。其中,位置L2处放置有两个完全相同的磁电阻R3以及两个完全相同的磁电阻R4。
则4个半桥结构的输出信号V1、V2、V3和V4的表达式如下,
Figure PCTCN2022118642-appb-000008
将四个半桥结构的输出信号输入到两个差分运放,运算结果再进行差分运算,可得电流测量器件最终的输出信号Vout,为,
Figure PCTCN2022118642-appb-000009
显然,电流测量器件最终的输出信号Vout消除了梯度干扰磁场Hg和匀强干扰磁场Hu的干扰。
示例性的,与上述实施例不同,可选N为4,N个不同位置依次为第一位置、第二位置、第三位置和第四位置;在第一位置和第四位置上的磁电阻电连接成第一半桥结构的上桥臂;在第一位置和第四位置上的磁电阻电连接成第一半桥结构的下桥臂;在第二位置和第三位置上的磁电阻电连接成第二半桥结构的上桥臂;在第二位置和第三位置上的磁电阻电连接成第二半桥结构的下桥臂;第一半桥结构的输出端信号和第二半桥结构的输出端信号组合,用于反映电流导线中电流的大小和方向。
参考图6所示,为本发明实施例提供的又一种电流测量器件中磁电阻的位置示意图。
如图6所示,电流测量器件的4个不同位置可以依次标记为L1、L2、L3和L4,位置L1处具有至少两个磁电阻R1和R2,位置L2处具有至少两个磁电阻R3和R4,位置L3处具有至少两个磁电阻R5和R6,位置L4处具有至少两个磁电阻R7和R8。电流在位置L1处产生的磁场相同,电流在位置L2处产生的磁场相同,电流在位置L3处产生的磁场相同,电流在位置L4处产生的磁场相同,电流在不同位置处产生的磁场不同。位于同一位置处的磁电阻R1和R2的灵敏方向相反,磁电阻R3和R4的灵敏方向相反,磁电阻R5和R6的灵敏方向相反,磁电阻R7和R8的灵敏方向相反。
电流测量器件中磁电阻的物理位置和参考方向见图6,其中,磁电阻R1、R3、R5和R7的敏感方向相同,磁电阻R2、R4、R6和R8的敏感方向相同,且R1和R2的敏感方向相反,可以理解,各个磁电阻的敏感方向均与磁电阻的位置排布方向相交。
可选位置L1和L2,位置L2和L3以及位置L3和L4的间距相同,如均为m。
可选8个磁电阻构成的电阻网络具有2个半桥结构。参考图7所示,为本发明实施例提供的又一种电流测量器件中抗干扰电桥结构的示意图。
如图7所示,电阻网络具有供电端Vcc、接地端和输出端(V+和V-)。其中,R1和R7构成第一半桥结构的上桥臂,R2和R8构成第一半桥结构的下桥臂,R3和R5构成第二半桥结构的上桥臂,R4和R6构成第二半桥结构的下桥臂。第一半桥结构的输出信号为V+, 第二半桥结构的输出信号为V-。
同样假设通入电流测量器件的电流强度为I,在敏感方向上存在的干扰场可以认为是梯度干扰磁场Hg(单位距离的变化磁场)和均匀干扰磁场Hu的合场,则可以得到,
R1=R0-aI-nHu,R2=R0+aI+nHu,
R3=R0-bI-n(Hu+Hg),R4=R0+bI+n(Hu+Hg),
R5=R0-cI-n(Hu+2Hg),R6=R0+cI+n(Hu+2Hg),
R7=R0-dI-n(Hu+3Hg),R8=R0+dI+n(Hu+3Hg),
基于此,可以得到2个半桥结构的输出信号V+和V-的表达式,如下,
Figure PCTCN2022118642-appb-000010
在此对V+和V-进行一次差分运算,得到最后的输出信号Vout,为,
Figure PCTCN2022118642-appb-000011
显然,电流测量器件最终的输出信号Vout消除了梯度干扰磁场Hg和匀强干扰磁场Hu的干扰。
在其他实施例中,还可选电流测量器件中,N为大于或等于5的奇数,对于不同位置的个数N为奇数的方案,每个位置设置有两个磁电阻,则N个位置的磁电阻R1~R2N的阻值为:
位置1:R1=R0-aI-nHu,R2=R0+aI+nHu
位置2:R3=R0-bI-n(Hu+Hg),R4=R0+bI+n(Hu+Hg)
位置3:R5=R0-cI-n(Hu+2Hg),R6=R0+cI+n(Hu+2Hg)
...
位置N:R(2N-1),R(2N)。
其中,R1,…,R(4N+1)构成第一半桥结构的上桥臂,R2,…,R(4N+2)构成第一半桥结构的下桥臂;R3,…,R(4N-1)构成第二半桥结构的上桥臂,R4,…,R(4N)构成第二半桥结构的下桥臂,两个半桥结构的差分输出信号是消除了梯度干扰磁场Hg和匀强干扰磁场Hu干扰的信号。
例如N=7,每个位置设置有两个磁电阻,则7个位置的磁电阻R1~R14的阻值为:
位置1:R1=R0-aI-nHu,R2=R0+aI+nHu
位置2:R3=R0-bI-n(Hu+Hg),R4=R0+bI+n(Hu+Hg)
位置3:R5=R0-cI-n(Hu+2Hg),R6=R0+cI+n(Hu+2Hg)
位置4:R7=R0-dI-n(Hu+3Hg),R8=R0+dI+n(Hu+3Hg)
位置5:R9=R0-eI-n(Hu+4Hg),R10=R0+eI+n(Hu+4Hg)
位置6:R11=R0-fI-n(Hu+5Hg),R12=R0+fI+n(Hu+5Hg)
位置7:R13=R0-gI-n(Hu+6Hg),R14=R0+gI+n(Hu+6Hg)。
其中,R1、R5、R9和R13构成第一半桥结构的上桥臂,R2、R6、R10和R14构成第一半桥结构的下桥臂;R3、R7和R11构成第二半桥结构的上桥臂,R4、R8和R12构成第二半桥结构的下桥臂。
则两个半桥结构的输出信号V+和V-的表达式,如下,
Figure PCTCN2022118642-appb-000012
在此对V+和V-进行一次差分运算,得到最后的输出信号Vout,为,
Figure PCTCN2022118642-appb-000013
显然,电流测量器件最终的输出信号Vout消除了梯度干扰磁场Hg和匀强干扰磁场Hu的干扰。
在其他实施例中,还可选电流测量器件中,N为大于或等于5的偶数,对于不同位置的个数N为偶数的方案,每个位置设置有两个磁电阻。
例如N=6,每个位置设置有两个磁电阻,则6个位置的磁电阻R1~R12的阻值为:
位置1:R1=R0-aI-nHu,R2=R0+aI+nHu
位置2:R3=R0-bI-n(Hu+Hg),R4=R0+bI+n(Hu+Hg)
位置3:R5=R0-cI-n(Hu+2Hg),R6=R0+cI+n(Hu+2Hg)
位置4:R7=R0-dI-n(Hu+3Hg),R8=R0+dI+n(Hu+3Hg)
位置5:R9=R0-eI-n(Hu+4Hg),R10=R0+eI+n(Hu+4Hg)
位置6:R11=R0-fI-n(Hu+5Hg),R12=R0+fI+n(Hu+5Hg)。
6个位置的磁电阻R1~R12可以构成不同方案的半桥结构。
方案1中,R1,R3,R9,R11为第一半桥结构的上桥臂,R2,R4,R10,R12为第一半桥结构的下桥臂;R5,R7为第二半桥结构的上桥臂,R6,R8为第二半桥结构的下桥臂。
则两个半桥结构的输出信号V+和V-的表达式,如下,
Figure PCTCN2022118642-appb-000014
在此对V+和V-进行一次差分运算,得到最后的输出信号Vout,消除了梯度干扰磁场Hg和匀强干扰磁场Hu的干扰。
方案2中,R1,R11为第一半桥结构的上桥臂,R2,R12为第一半桥结构的下桥臂;R3,R5,R7,R9为第二半桥结构的上桥臂,R4,R6,R8,R10为第二半桥结构的下桥臂。
则两个半桥结构的输出信号V+和V-的表达式,如下,
Figure PCTCN2022118642-appb-000015
在此对V+和V-进行一次差分运算,得到最后的输出信号Vout,消除了梯度干扰磁场Hg和匀强干扰磁场Hu的干扰。
例如N=8,每个位置设置有两个磁电阻,则8个位置的磁电阻R1~R16的阻值为:
位置1:R1=R0-aI-nHu,R2=R0+aI+nHu
位置2:R3=R0-bI-n(Hu+Hg),R4=R0+bI+n(Hu+Hg)
位置3:R5=R0-cI-n(Hu+2Hg),R6=R0+cI+n(Hu+2Hg)
位置4:R7=R0-dI-n(Hu+3Hg),R8=R0+dI+n(Hu+3Hg)
位置5:R9=R0-eI-n(Hu+4Hg),R10=R0+eI+n(Hu+4Hg)
位置6:R11=R0-fI-n(Hu+5Hg),R12=R0+fI+n(Hu+5Hg)
位置7:R13=R0-gI-n(Hu+6Hg),R14=R0+gI+n(Hu+6Hg)
位置8:R15=R0-hI-n(Hu+7Hg),R16=R0+hI+n(Hu+7Hg)。
8个位置的磁电阻R1~R16可以构成2个半桥结构。其中,R1,R3,R13,R15为第一半桥结构的上桥臂,R2,R4,R14,R16为第一半桥结构的下桥臂;R5,R7,R9,R11为第二半桥结构的上桥臂,R6,R8,R10,R12为第二半桥结构的下桥臂。
则两个半桥结构的输出信号V+和V-的表达式,如下,
Figure PCTCN2022118642-appb-000016
在此对V+和V-进行一次差分运算,得到最后的输出信号Vout,为,
Figure PCTCN2022118642-appb-000017
如此,消除了梯度干扰磁场Hg和匀强干扰磁场Hu的干扰。
对于不同位置的个数N为偶数的情形,没有通用的公式。只要利用多个位置的磁电阻构成至少两个半桥结构,使梯度干扰磁场Hg和匀强干扰磁场Hu的信号分量互相抵消,都落入本发明的保护范围。
本发明实施例提供的电流测量器件,其中设置了抗干扰电桥结构,无需引入其他部件,磁电阻输出同时消除梯度干扰磁场和匀强干扰磁场的影响,提高了检测精度,适用多种应用场合。
可以理解,在本发明的多个实施例中,磁电阻的敏感方向示例性只选择了某一特定方向,如水平方向。但实际生产中,磁电阻的敏感方向可以是任意方向,只需要待测电流感生磁场在选择的磁电阻敏感方向上存在磁场分量即可。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种电流测量器件,其特征在于,包括N个不同位置,每个位置处具有至少两个磁电阻,N大于或等于3;
    同一位置处的所述两个磁电阻包括一个具有第一灵敏方向的磁电阻和一个具有第二灵敏方向的磁电阻,所述第一灵敏方向和所述第二灵敏方向相反,所述磁电阻的电阻值与其所在位置处的磁场在设定范围内呈线性关系;
    所述N个不同位置处的所有磁电阻的灵敏方向相同或者相反,待测磁场在所述磁电阻的灵敏方向具有分量;
    至少一个位置处的待测磁场在灵敏方向的分量,不同于其他位置处的待测磁场在灵敏方向的分量;
    所有磁电阻电连接构成电阻网络,所述电阻网络的输出信号包含所述待测磁场的信号,不包含或者包含小于第一预设强度的干扰磁场信号,所述干扰磁场信号包括匀强干扰磁场和梯度干扰磁场。
  2. 根据权利要求1所述的电流测量器件,其特征在于,所述N个不同位置分布在同一直线上。
  3. 根据权利要求1所述的电流测量器件,其特征在于,所述N个不同位置等间距分布。
  4. 根据权利要求1所述的电流测量器件,其特征在于,所述电阻网络具有供电端、接地端和输出端。
  5. 根据权利要求4所述的电流测量器件,其特征在于,所述电阻网络的结构至少包含两个半桥结构,所述半桥结构由上桥臂和下桥臂构成,所述上桥臂的一个端子电连接到所述供电端,所述下桥臂的一个端子电连接到所述接地端,所述上桥臂的另一个端子和所述下桥臂的另一个端子均电连接到所述输出端;
    在任意一个所述半桥结构中,所述上桥臂中的磁电阻包含位于一个或多个位置的磁电阻,且所述上桥臂中各磁电阻具有相同的灵敏方向,所述下桥臂中的磁电阻包含位于一个或多个位置的磁电阻,且所述下桥臂中各磁电阻具有相同的灵敏方向,所述上桥臂中磁电阻的灵敏方向不同于所述下桥臂中磁电阻的灵敏方向。
  6. 根据权利要求5所述的电流测量器件,其特征在于,所述电流测量器件还包含:电流导线,所述电流导线产生待测磁场,所述待测磁场用于反映所述电流导线中电流的大小和方向;
    所述电阻网络的结构用于使所述电阻网络的输出信号中包含所述待测磁场的信号,不包含或者包含小于所述第一预设强度的干扰磁场信号,使所述电流测量器件不受干扰磁场影响地反映所述电流导线中电流的大小和方向。
  7. 根据权利要求6所述的电流测量器件,其特征在于,N为3,所述N个不同位置依次为第一位置、第二位置和第三位置;
    在所述第一位置和所述第三位置上的一部分磁电阻电连接成第一半桥结构的上桥臂;
    在所述第一位置和所述第三位置上的另一部分磁电阻电连接成所述第一半桥结构的下桥臂;
    在所述第二位置上的一部分磁电阻电连接成第二半桥结构的上桥臂;
    在所述第二位置上的另一部分磁电阻电连接成所述第二半桥结构的下桥臂;
    所述第一半桥结构的输出端信号和所述第二半桥结构的输出端信号组合,用于反映所述电流导线中电流的大小和方向。
  8. 根据权利要求6所述的电流测量器件,其特征在于,N为3,所述N个不同位置依次为第一位置、第二位置和第三位置;
    在所述第一位置上的一部分磁电阻电连接成第一半桥结构的上桥臂;
    在所述第一位置上的另一部分磁电阻电连接成所述第一半桥结构的下桥臂;
    在所述第二位置上的一部分磁电阻电连接成第二半桥结构的上桥臂;
    在所述第二位置上的另一部分磁电阻电连接成所述第二半桥结构的下桥臂;
    在所述第三位置上的一部分磁电阻电连接成第三半桥结构的上桥臂;
    在所述第三位置上的另一部分磁电阻电连接成所述第三半桥结构的下桥臂;
    所述第一半桥结构的输出端信号,所述第二半桥结构的输出端信号以及所述第三半桥结构的输出端信号组合,用于反映所述电流导线中电流的大小和方向。
  9. 根据权利要求6所述的电流测量器件,其特征在于,N为4,所述N个不同位置依次为第一位置、第二位置、第三位置和第四位置;
    在所述第一位置和所述第四位置上的磁电阻电连接成第一半桥结构的上桥臂;
    在所述第一位置和所述第四位置上的磁电阻电连接成所述第一半桥结构的下桥臂;
    在所述第二位置和所述第三位置上的磁电阻电连接成第二半桥结构的上桥臂;
    在所述第二位置和所述第三位置上的磁电阻电连接成所述第二半桥结构的下桥臂;
    所述第一半桥结构的输出端信号和所述第二半桥结构的输出端信号组合,用于反映所述电流导线中电流的大小和方向。
  10. 根据权利要求7~9任一项所述的电流测量器件,其特征在于,所述磁电阻电连接构成半桥结构的电连接形式是串联电连接和/或并联电连接。
PCT/CN2022/118642 2021-10-08 2022-09-14 一种电流测量器件 WO2023056827A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111172335.8 2021-10-08
CN202111172335.8A CN113917216A (zh) 2021-10-08 2021-10-08 一种电流测量器件

Publications (1)

Publication Number Publication Date
WO2023056827A1 true WO2023056827A1 (zh) 2023-04-13

Family

ID=79238402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118642 WO2023056827A1 (zh) 2021-10-08 2022-09-14 一种电流测量器件

Country Status (2)

Country Link
CN (1) CN113917216A (zh)
WO (1) WO2023056827A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117405958A (zh) * 2023-12-14 2024-01-16 江苏多维科技有限公司 电流传感器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113917216A (zh) * 2021-10-08 2022-01-11 江苏多维科技有限公司 一种电流测量器件
CN116087588B (zh) * 2023-04-11 2023-10-13 江苏多维科技有限公司 一种抗外场干扰的电流传感器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274086A (zh) * 1999-12-21 2000-11-22 南京大学 巨磁电阻效应交、直流两用电流检测、控制器件
CN102129053A (zh) * 2011-01-20 2011-07-20 清华大学 一种基于巨磁电阻效应的测量磁场方向和强度的传感器
CN103645369A (zh) * 2013-11-15 2014-03-19 无锡乐尔科技有限公司 一种电流传感装置
JP2015219058A (ja) * 2014-05-15 2015-12-07 旭化成エレクトロニクス株式会社 電流センサ
CN108469594A (zh) * 2018-03-13 2018-08-31 海宁嘉晨汽车电子技术有限公司 一种高精度、闭环式梯度磁阻传感器
CN214335046U (zh) * 2020-10-30 2021-10-01 中光华研电子科技有限公司 一种基于amr传感器阵列的小电流测量装置
CN113917216A (zh) * 2021-10-08 2022-01-11 江苏多维科技有限公司 一种电流测量器件
CN113945873A (zh) * 2021-10-18 2022-01-18 江苏多维科技有限公司 一种磁传感器装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274086A (zh) * 1999-12-21 2000-11-22 南京大学 巨磁电阻效应交、直流两用电流检测、控制器件
CN102129053A (zh) * 2011-01-20 2011-07-20 清华大学 一种基于巨磁电阻效应的测量磁场方向和强度的传感器
CN103645369A (zh) * 2013-11-15 2014-03-19 无锡乐尔科技有限公司 一种电流传感装置
JP2015219058A (ja) * 2014-05-15 2015-12-07 旭化成エレクトロニクス株式会社 電流センサ
CN108469594A (zh) * 2018-03-13 2018-08-31 海宁嘉晨汽车电子技术有限公司 一种高精度、闭环式梯度磁阻传感器
CN214335046U (zh) * 2020-10-30 2021-10-01 中光华研电子科技有限公司 一种基于amr传感器阵列的小电流测量装置
CN113917216A (zh) * 2021-10-08 2022-01-11 江苏多维科技有限公司 一种电流测量器件
CN113945873A (zh) * 2021-10-18 2022-01-18 江苏多维科技有限公司 一种磁传感器装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117405958A (zh) * 2023-12-14 2024-01-16 江苏多维科技有限公司 电流传感器
CN117405958B (zh) * 2023-12-14 2024-02-13 江苏多维科技有限公司 电流传感器

Also Published As

Publication number Publication date
CN113917216A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2023056827A1 (zh) 一种电流测量器件
CN105222812B (zh) 具有三个半桥结构的传感器系统
CN106443063B (zh) 旋转检测装置
JP6773726B2 (ja) 磁界センサー
WO2023065894A1 (zh) 一种磁传感器装置
CN103645369B (zh) 一种电流传感装置
CN110231494A (zh) 具有分布式惠斯通桥的磁性速度传感器
US11346901B2 (en) Anisotropic magnetoresistive (AMR) sensor without set and reset device
CN110494760A (zh) 磁传感器
CN211651638U (zh) 一种磁电阻角度传感器
JP2014199182A (ja) 磁気センサシステム
CN114217114B (zh) 一种电流传感器
CN116087588B (zh) 一种抗外场干扰的电流传感器
CN114264861B (zh) 一种电流传感器
US20220326322A1 (en) Magnetic field sensor with overcurrent detection
CN103528625A (zh) 一种齿轮传感器
CN116148732A (zh) 一种磁栅传感器
CN208172078U (zh) 一种电流传感器
CN205246739U (zh) 一种电流传感器
JP4798191B2 (ja) 磁気センサ装置
WO2019205775A1 (zh) 一种电流传感器
CN215180471U (zh) 一种交直流电流测量装置
CN203981183U (zh) 一种齿轮传感器
CN105353192A (zh) 一种电流传感器
CN113049868A (zh) 一种交直流电流测量装置及测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877847

Country of ref document: EP

Kind code of ref document: A1