WO2023055129A1 - Pharmaceutical composition comprising magnetic nanoparticle-bearing mesenchymal stem cell for prevention or treatment of nerve disease and use thereof - Google Patents

Pharmaceutical composition comprising magnetic nanoparticle-bearing mesenchymal stem cell for prevention or treatment of nerve disease and use thereof Download PDF

Info

Publication number
WO2023055129A1
WO2023055129A1 PCT/KR2022/014664 KR2022014664W WO2023055129A1 WO 2023055129 A1 WO2023055129 A1 WO 2023055129A1 KR 2022014664 W KR2022014664 W KR 2022014664W WO 2023055129 A1 WO2023055129 A1 WO 2023055129A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
mesenchymal stem
disease
composition
present
Prior art date
Application number
PCT/KR2022/014664
Other languages
French (fr)
Korean (ko)
Inventor
김병수
정문교
나덕렬
장혜민
김형섭
Original Assignee
서울대학교 산학협력단
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단, 사회복지법인 삼성생명공익재단 filed Critical 서울대학교 산학협력단
Publication of WO2023055129A1 publication Critical patent/WO2023055129A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1896Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes not provided for elsewhere, e.g. cells, viruses, ghosts, red blood cells, virus capsides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0085Brain, e.g. brain implants; Spinal cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Definitions

  • the present invention relates to a pharmaceutical composition containing mesenchymal stem cells containing magnetic nanoparticles for preventing or treating neurological diseases and uses thereof.
  • Alzheimer's Disease is a representative neurodegenerative disease related to aging. When Alzheimer's disease develops, the disease progresses, starting in the frontal and temporal lobes and gradually spreading to other parts of the brain.
  • the main pathological features of Alzheimer's disease are amyloid plaques caused by the accumulation of amyloid beta protein and tau protein related to microtubules forming neurofibrillary tangles (NFTs) in nerve cells. is to do The formation of amyloid plaques and neurofibrillary tangles (NFTs) leads to neurodegeneration, synaptic dysfunction and dementia.
  • Amyloid plaques are produced by amyloid precursor protein (APP).
  • Amyloid precursor protein is a transmembrane protein that penetrates the cell membrane of nerve cells and is very important for the growth, survival and recovery of nerve cells after damage.
  • amyloid precursor protein APP
  • APP amyloid precursor protein
  • Amyloid beta is produced, which forms an amyloid plaque, a densely accumulated clump on the outside of nerve cells.
  • ESCs embryonic stem cells
  • iPSCs induced pluripotent stem cells
  • hMSC human mesenchymal stem cells
  • the biggest problem with existing stem cell therapeutics used in Alzheimer's disease is that it is very difficult to pass through the blood-brain barrier and be delivered to the brain. That is, most of the intravenously injected stem cells do not pass through the capillaries of the lungs, so very few reach the brain, and even if they pass through the lungs, they are hardly delivered to the brain parenchyma due to the blood-brain barrier. Therefore, many studies have been conducted to find various administration routes such as arterial administration, intraventricular administration, subventricular administration, and spinal administration. The administration routes that are predicted to be practically effective are intra-parenchymal and intra-cerebroventricular administration. However, damage to the brain region cannot be avoided depending on the administration location.
  • stem cells In the case of intracerebroventricular administration, although the amount of stem cells administered is expected to be higher, brain damage is relatively less and there are advantages in that stem cells can be delivered throughout the brain area.
  • stem cells when stem cells are directly injected into the 'Cerebral ventricle', the stem cells move to the spinal cord by the flow of cerebrospinal fluid (CSF) before moving to the 'Brain Parenchyma', so the remaining amount in the brain is higher than the dose. The ability may fall, so a way to overcome it is needed.
  • CSF cerebrospinal fluid
  • the present inventors have improved the efficiency of stem cell migration to the target site, improved cellular viability and engraftment efficiency, so as to increase brain targeting efficiency while maximizing the therapeutic efficacy of existing Alzheimer's stem cell therapeutics. Efforts were made to develop ways to increase it. As a result, the present inventors contained magnetic iron oxide nanoparticles in Wharton's jelly-derived mesenchymal stem cells and injected them into the ventricle, and then, using a magnetic field outside the body, prevented the stem cells from flowing into the spinal cord by the cerebrospinal fluid flow and It was confirmed that the Alzheimer's treatment effect was doubled by promoting the penetration into the brain parenchyma where the cells are located.
  • Wharton's jelly-derived mesenchymal stem cells containing magnetic iron oxide nanoparticles showed a higher degree of expression of therapeutically effective substances than mesenchymal stem cells that did not contain magnetic iron oxide nanoparticles.
  • Wharton's jelly-derived mesenchymal stem cells of the present invention can be treated immediately, and can also be said to have higher differentiation potential or therapeutic efficacy.
  • the present invention was completed by identifying that the amount can be confirmed, stem cell tracking, stem cell survival evaluation, and the effect of stem cell treatment can be accurately analyzed.
  • one object of the present invention is to provide a pharmaceutical composition for preventing or treating neurological diseases, including mesenchymal stem cells containing magnetic nanoparticles.
  • Another object of the present invention is to provide a cell therapy agent for treating neurological diseases, including mesenchymal stem cells containing magnetic nanoparticles.
  • Another object of the present invention is to provide a method for preparing a pharmaceutical composition for preventing or treating neurological diseases.
  • Another object of the present invention is to provide a composition for transplantation and differentiation tracking of mesenchymal stem cells containing magnetic nanoparticles.
  • another object of the present invention is to provide a method for treating a neurological disease, comprising administering the cell therapy agent to a subject and applying an external magnetic body to position the cell therapy agent in a target tissue.
  • the present invention is a method for preventing neurological diseases, including at least one selected from the group consisting of mesenchymal stem cells containing magnetic nanoparticles, cell-derived exosomes, cell membrane-derived nanoparticles, and cell secretions Or providing a pharmaceutical composition for treatment, wherein the composition is one selected from the group consisting of mesenchymal stem cells containing the magnetic nanoparticles, cell-derived exosomes, cell membrane-derived nanoparticles, and cell secretions by applying an external magnetic body It is characterized by migrating and targeting the abnormality to a treated tissue or organ of the subject.
  • Mesenchymal stem cells containing magnetic nanoparticles mesenchymal stem cells containing magnetic nanoparticles, cell-derived exosomes, cell membrane-derived nanoparticles and At least one selected from the group consisting of cell secretions may be used, preferably mesenchymal stem cells containing magnetic nanoparticles, but not limited thereto.
  • the administration method of the composition of the present application may apply a known inhibitor administration method, and is not particularly limited thereto, and parenteral administration (eg, ventricular, intravenous, subcutaneous, intraperitoneal or local administration) according to the desired method application) or, in particular, administration by intraventricular injection is preferred.
  • parenteral administration eg, ventricular, intravenous, subcutaneous, intraperitoneal or local administration
  • administration by intraventricular injection is preferred.
  • the mesenchymal stem cells containing the magnetic nanoparticles according to the present invention can be administered by an administration route suitable for a subject in need thereof, for example, intraventricular or intravenous administration, preferably containing the magnetic nanoparticles of the present invention. It is administered to the ventricle in consideration of the characteristics of mesenchymal stem cells, and after the administration, appropriate magnetism is applied to the target organ or tissue of the subject to transfer the mesenchymal stem cells containing the administered magnetic nanoparticles to the organ or tissue. It can be positioned (targeted), and also increases the therapeutic efficacy of existing mesenchymal stem cells by containing magnetic nanoparticles.
  • magnetic refers to the magnetic properties exhibited by a material. All materials interact with magnetic fields to generate attractive or repulsive forces. That is, when a magnetic field is applied to a material, it is magnetized, and the object is classified into a ferromagnetic substance, a paramagnetic substance, a diamagnetic substance, a ferrimagnetc substance, etc. according to the magnetization aspect.
  • magnetic nanoparticles refers to nanometer-sized structures or materials that are magnetic.
  • the magnetic nanoparticles may be prepared by solution synthesis, co-precipitation, sol-gel method, high-energy milling, hydrothermal synthesis, microemulsion synthesis, synthesis by thermal decomposition, or sonochemical synthesis, but are not limited thereto.
  • the magnetic nanoparticles may be selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni), manganese (Mn), gadolinium (Gd), oxides thereof, or alloys thereof. It is not limited.
  • the magnetic nanoparticle of the present invention refers to a metal nanocomposite having magnetism, and may be made of a metal, a magnetic material, or a magnetic alloy.
  • any magnetic nanoparticles known in the art may be used as the magnetic nanoparticles as long as they can achieve the object of the present invention, and materials constituting the magnetic nanoparticles may be included without limitation, , for example iron oxides (FeO, Fe 2 O 3 , Fe 3 O 4 ), alloys (FePt, CoPt) and ferrites (MnFe 2 O 4 , CoFe 2 O 4 , NiFe 2 O 4 , ZnFe 2 O 4 ) It may be one or more selected from the group consisting of, but is not limited thereto.
  • the magnetic nanoparticles may be one or more iron oxide nanoparticles selected from the group consisting of FeO, Fe 2 O 3 and Fe 3 O 4 , and in one embodiment of the present invention, Fe 2 O 3 is used, Not limited to this.
  • the iron oxide nanoparticles may be coated with a biocompatible polymer.
  • the biocompatible polymer is dextran, polyethylene glycol, polypropylene glycol, polyoxyethylene, polytrimethylene glycol, polylactic acid, polyacrylic acid, polyamino acid, polyvinyl alcohol, polyurethane, polyphosphazine, poly(L-lysine) , polyalkylene oxide, polysaccharide, polyvinyl pyrrolidone, and may be at least one selected from the group consisting of polyacrylamide, preferably dextran (dextran), but is not limited thereto.
  • magnetic nanoparticles of the present invention may be synthesized or formed through any method known in the art, as long as the object of the present invention can be achieved, and additives may be additionally used for this purpose.
  • the additives include, for example, heparin, protamine, targeting ligand, cell penetrating peptide, albumin, albumin derivative, histone, Cremophor EL, Solutol, cyclodextrin, RGD tripeptide, It may be selected from the group consisting of cholesterol, phospholipids and polyethylene glycol (PEG), but is not limited thereto.
  • the iron oxide nanoparticles further include a shell around them, wherein the shell is selected from the group consisting of proteins or peptides, surfactants, lipids, ligands, amino acids, carbohydrates, nucleic acids, small molecules, and biocompatible polymers. components may be included.
  • the magnetic nanoparticles of the present invention may be used by modifying the surface of the magnetic nanoparticles as long as the object of the present invention can be achieved.
  • a functional group may be introduced, but is not limited thereto.
  • folic acid for example, folic acid, hyaluronic acid, cyclodextrin, imidazole-based compounds, histidine, lysine, arginine, cysteine, thiolalkylamine, spermine, spermidine, polyethyleneimine of various weight average molecular weights, polyhistidine, polylysine, poly
  • One or more functional groups may be further introduced into the nanoparticles by reacting with polymers such as arginine, protamine, heparin, chitosan, and protamine.
  • the protecting group usable in the present invention may be any protecting group commonly used for protection of each functional group, which can be easily selected and used by anyone with ordinary knowledge in the art to which the present invention belongs.
  • the magnetic nanoparticle may have a diameter of 1 nm to 1000 nm, preferably 1 nm to 100 nm, more preferably 1 to 50 nm, but is not limited thereto.
  • the composition of the present invention is directly administered or transplanted into the brain ventricle of a subject, thereby preventing target stem cells from flowing into the spinal cord by the cerebrospinal fluid flow using a magnetic field such as a magnet outside the body, and nerve cells Since it promotes penetration into the 'brain parenchyma' where there is , it is easy to achieve an effective therapeutic effect and apply to biological research, compared to other routes of administration.
  • various embedding materials such as sodium alginate, hyaluronic acid, or collagen, are mixed with cells. It can also be formed and used.
  • Mesenchymal stem cells of the present invention can be mesenchymal stem cells known in the art, regardless of the method of induction, as long as the objects of the present invention can be achieved, and mesenchymal stem cells isolated or isolated from donors Cells or commercially available mesenchymal stem cell lines may be included without limitation.
  • mesenchymal stem cells exist in very small amounts in bone marrow, etc., the process of isolating and culturing them is well known in the art, and they do not lose their differentiation ability after being separated from hematopoietic stem cells in bone marrow by adhesion characteristics according to a known method. It can be obtained by proliferating in an undeveloped state. Identification of these mesenchymal stem cells can be performed, for example, through flow cytometry. This flow cytometric analysis is performed using specific surface markers of mesenchymal stem cells. For example, mesenchymal stem cells are positive for CD44, CD29 and/or MHC class I. As the medium used in the process, any medium generally used for culturing stem cells may be used.
  • the medium is a medium containing serum (eg, fetal bovine serum, horse serum, and human serum).
  • serum eg, fetal bovine serum, horse serum, and human serum.
  • Mediums that can be used in the present invention are, for example, RPMI series, Eagles' MEM (Eagle's minimum essential medium), ⁇ -MEM, Iscove's MEM, 199 medium, CMRL 1066, F12, F10, DMEM (Dulbecco's modifation of Eagle's medium), mixtures of DMEM and F12, Way-mo, h's MB752/1, McCoy's 5A and MCDB series.
  • the medium may contain other components, such as antibiotics or antifungal agents (eg, penicillin, streptomycin, gentamicin) and glutamine.
  • the mesenchymal stem cells of the present invention are derived from one or more selected from the group consisting of Wharton's jelly, umbilical cord, bone marrow, adipose tissue, blood, umbilical cord blood, liver, skin, gastrointestinal tract, placenta and uterus, and more Preferably, it is derived from Wharton's jelly, but is not limited thereto.
  • mesenchymal stem cells of the present invention may be derived from mammals.
  • the mammal may be a human, monkey, chimpanzee, dog, cat, cow, goat, pig, mouse or rat, but is not limited thereto.
  • the neurological disease may include any neurological disease as long as the composition of the present invention achieves an effect, and preferably, the neurological disease is amyloid beta plaque formation in nerve tissue, phosphorylation of tau protein in nerve cells, neurite It is a disease caused by at least one selected from the group consisting of abnormalities of and decreased expression of neprilysin in nerve cells, more preferably selected from the group consisting of Alzheimer's disease, Parkinson's disease, depression, epilepsy, multiple sclerosis, and mania. more than one species, most preferably Alzheimer's disease.
  • MSC-IONP mesenchymal stem cells
  • Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are commonly used in formulation, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia gum, calcium phosphate, alginate, gelatin, including, but not limited to, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil; it is not going to be
  • the pharmaceutical composition of the present invention may further include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, and the like in addition to the above components.
  • a suitable dosage of the pharmaceutical composition of the present invention is variously prescribed depending on factors such as formulation method, administration method, patient's age, weight, sex, pathological condition, food, administration time, administration route, excretion rate and response sensitivity. It can be.
  • the dosage of the pharmaceutical composition of the present invention is preferably 0.001-1000 mg/kg (body weight) per day.
  • the pharmaceutical composition of the present invention is prepared in unit dosage form by formulation using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily performed by those skilled in the art. or it may be prepared by incorporating into a multi-dose container.
  • the formulation may be in the form of a solution, suspension or emulsion in an oil or aqueous medium, or may be in the form of an extract, powder, granule, tablet or capsule, and may additionally contain a dispersing agent or stabilizer.
  • treatment means reversing, alleviating, inhibiting the progression of, or preventing one or more symptoms of a disease or disorder to which the term applies. .
  • composition according to the present invention comprises mesenchymal stem cells containing a therapeutically effective amount of magnetic nanoparticles.
  • therapeutically effective amount is meant the amount necessary to alleviate, ameliorate or beneficially alter one or more symptoms of a neurological disorder.
  • composition of the present invention contains the above-mentioned mesenchymal stem cells containing the magnetic nanoparticles according to the present application as an active ingredient, and in addition to that, one or more active ingredients exhibiting the same or similar functions, or the solubility and /or may further contain a compound that maintains/increases absorbency.
  • composition of the present invention can be used alone or in combination with methods using surgery, drug therapy, and biological response modifiers.
  • the present invention provides a cell therapy agent for the treatment of neurological diseases, including mesenchymal stem cells containing magnetic nanoparticles, wherein the cell therapy agent applies an external magnetic material to the magnetic nanoparticles.
  • the mesenchymal stem cells containing the particles are migrated and targeted to a treated tissue or organ of a subject.
  • cell therapy refers to living cells used for cell therapy in which live cells are directly injected into a patient, and living autologous cells, allogeneic cells, or xenogeneic cells are used in vitro in the safety regulations of pharmaceuticals, etc. It refers to drugs that are manipulated and manufactured by methods such as culture, propagation, or selection.
  • the cell therapy is divided into somatic cell therapy and stem cell therapy depending on whether it is differentiated.
  • stem cells are tissue tissue when stem cells show symptoms related to neuron deterioration in neurodegenerative disorders as a result of genetic symptoms or damage.
  • Neuronal damage or neurological disease as well as brain injury, brain disease, spinal cord injury, peripheral nerve injury, peripheral nerve disease, and amyotrophic lateral sclerosis through the basic characteristics of neuroprotection and immunomodulation (amyotrophic lateral sclerosis).
  • the cells used in the cell therapy agent may be stem cells or cells differentiated from stem cells, more preferably mesenchymal stem cells derived from Wharton's jelly, but are not limited thereto.
  • the present invention contains magnetic nanoparticles comprising the step of treating and culturing magnetic nanoparticles in mesenchymal stem cells to contain the magnetic nanoparticles in the mesenchymal stem cells It provides a method for preparing a pharmaceutical composition for preventing or treating neurological diseases, including mesenchymal stem cells.
  • the culturing process of the present invention may be performed according to media and culture conditions known in the art. This culture process can be easily adjusted and used by those skilled in the art according to the selected cells.
  • the treatment concentration of the magnetic nanoparticles may be 1 to 1000 ⁇ g/ml, preferably 1 to 100 ⁇ g/ml, and the incubation time is 24 hours to 72 hours.
  • the production of mesenchymal stem cells containing the magnetic nanoparticles of the present invention is performed by adding 40 ⁇ g/ml of ferumoxytol Feraheme®, Fe 2 O 3 as iron oxide nanoparticles to Wharton's jelly. It can be obtained by culturing for 72 hours with mesenchymal stem cells derived from.
  • the present invention provides a composition for transplantation and tracking of mesenchymal stem cells containing magnetic nanoparticles, wherein the composition applies an external magnetic material to the medium containing the magnetic nanoparticles. Since mesenchymal stem cells can be targeted and tracked using means known in the art that can analyze them, such as MRI, it is possible to provide an in vitro and in vivo platform capable of verifying the effectiveness and reliability of transplanted stem cell therapeutics in vivo. can
  • the present invention provides a step of administering the above-described cell therapy agent of the present invention to a human or non-human animal as a subject and applying an external magnetic body to position the cell therapy agent to a target tissue Including, it provides a method for treating neurological diseases.
  • the present invention is a cell therapy agent transfer method comprising the steps of injecting the cell therapy agent for treating neurological disorders according to the present invention into a subject and applying an external magnetic field to a target location of the subject to position the cell therapy agent to a target tissue provides
  • the administration is transplantation of a cell therapy agent into a target tissue of a subject, preferably injected into the ventricle of the subject, and subsequent to the administration step, an appropriate magnetic field is applied to the target site of the subject using an external magnetic material to inject the injected cells positioning and engrafting the therapeutic agent into the target tissue.
  • the administration is preferably administered 1 to 5 times.
  • the neurological disease is Alzheimer's disease, and by the administration, the effect of removing amyloid plaques, the effect of significantly improving mobility and anxiety is achieved.
  • An appropriate magnetic field is a magnet capable of inducing an administered composition in a sufficient amount to a target organ, and can be easily determined based on the description of the embodiments herein and the knowledge of a person skilled in the art.
  • the movement to the target location by the magnetic field overcomes the problem that it is difficult to cause cell viability and engraftment due to the poor biological environment in the pathological area, usually transplanted mesenchymal stem cells far from the lesion site.
  • the treatment method of the present invention is applied not only to neurological diseases, but also to nerve damage, brain damage, brain disease, spinal cord injury, peripheral nerve damage, peripheral nerve disease, and amyotrophic lateral sclerosis to enable treatment.
  • Figure 1a schematically shows a method for preparing mesenchymal stem cells (MSC-IONP) containing iron oxide nanoparticles of the present invention for Alzheimer's disease.
  • Figures 1b, 1c, 1d, 1e, 1f and 1g show magnetic results of Wharton's Jelly-derived MSC containing iron oxide nanoparticles according to the present invention.
  • 3a, 3b, 3c, 3d and 3e show the optimal processing conditions of iron oxide nanoparticles.
  • 4a, 4b, 4c, 4d and 4e show the results of analyzing the efficacy of Wharton's jelly-derived MSC (MSC-IONP) containing the iron oxide nanoparticles of the present invention.
  • 5a, 5b, 5c, 5d and 5e show the neuroprotective effect of Wharton's jelly-derived MSC (MSC-IONP) containing the iron oxide nanoparticles of the present invention in an Alzheimer's disease cell model.
  • MSC-IONP Wharton's jelly-derived MSC
  • FIG. 6 shows the migration and engraftment enhancement effects of Wharton's jelly-derived-MSC containing the iron oxide nanoparticles of the present invention through magnetic induction (MSC-IONP+Mag) in an Alzheimer's disease model.
  • FIG. 7a, 7b, and 7c show the therapeutic effect of Wharton's jelly-derived-MSC containing the iron oxide nanoparticles of the present invention through magnetic induction (MSC-IONP+Mag) in Alzheimer's disease models.
  • 8a, 8b, 8c, 8d, and 8e show beneficial effects of multiple administrations of Wharton's jelly-derived-MSC (MSC-IONP+Mag) administration in an Alzheimer's disease model. shows (i) Vehicle, (ii) MSC, (iii) MSC-IONP, (iv) MSC-IONP+Mag.
  • FIG. 9 shows changes in gene expression levels after multiple administration of Wharton's jelly-derived MSC containing iron oxide nanoparticles in an Alzheimer's disease model by magnet induction (MSC-IONP+Mag).
  • the present inventors prepared Wharton's jelly-derived mesenchymal stem cells containing magnetic iron oxide nanoparticles.
  • iron oxide nanoparticles (Ferumoxytol, Feraheme®, Fe 2 O 3 ) When treating iron oxide nanoparticles (Ferumoxytol, Feraheme®, Fe 2 O 3 ), mix them at concentrations of 80 ⁇ g/ml of Ferumoxytol, 1.6 U/ml of heparin, and 32 ⁇ g/ml of Protamine Sulfate in an FBS-free culture medium and treat the cells. , After 4 hours, a culture solution containing the same amount of 20% FBS was added to maintain the final concentration of iron oxide nanoparticles at 40 ⁇ g/ml. After 24 hours, all the iron oxide nanoparticles were washed, replaced with a culture medium containing 10% FBS, and further cultured for 48 hours to complete the stem cell treatment.
  • Feumoxytol Feraheme®, Fe 2 O 3
  • the present inventors measured the iron content of Wharton's jelly-derived mesenchymal stem cells (MSC-IONP) containing the iron oxide nanoparticles of the present invention prepared in Preparation Example 1 by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) did
  • the iron content of MSC-IONP was 272.6 ⁇ 38.7 mg/kg (Fig. 1b), and it was confirmed through scanning electron microscopy (Fig. 1c) and Prussian blue staining (Fig. 1d) that iron oxide nanoparticles were contained in the cells. did
  • the present inventors performed Live/dead imaging assay by treating iron oxide nanoparticles at a concentration of 0 to 100 ⁇ g/ml for 48 hours.
  • CD73 Ecto-5'-nucleotidase
  • CD90 Thy1 known as mesenchymal stem cell markers
  • the present inventors in order to determine the treatment concentration of iron oxide nanoparticles at which the increase in therapeutic efficacy is maximized, treated mesenchymal stem cells with iron oxide nanoparticles at a concentration of 0 to 100 ⁇ g / ml, and then BDNF, a representative nerve growth factor or neurotrophic factor , NGF, NT3 and TGF- ⁇ 1 were quantitatively compared by qRT-PCR.
  • the optimal processing concentration of the iron oxide nanoparticles was 40 ⁇ g/ml.
  • the present inventors in order to determine the appropriate incubation time at the optimal concentration, treated mesenchymal stem cells with 40 ⁇ g/ml iron oxide nanoparticles for 24 hours, and then further cultured them for 24 hours (IONP 48h) or 48 hours.
  • IONP 72h was cultured and quantitatively analyzed for nerve growth factor (NGF), neurotrophic factor (BDNF, NT3), and anti-inflammatory factor (TGF- ⁇ 1) through qRT-PCR.
  • the present inventors treated mesenchymal stem cells with 40 ⁇ g/ml iron oxide nanoparticles for 24 hours and cultured them for an additional 48 hours in order to compare the increase in various therapeutically effective substances at the optimal concentration and incubation time.
  • Quantitative analysis was performed on known Alzheimer's disease therapeutic substances (NGF, BDNF, NT-3, NT-4, TGF- ⁇ 1, AgRP, FGF2, GDF15, Activin A, Ang-1 and Galectin3) through qRT-PCR.
  • the present inventors performed Western blotting to confirm the mechanism of increasing the therapeutic efficacy of mesenchymal stem cells through iron oxide nanoparticles.
  • the present inventors confirmed the up-regulation of therapeutic factors in mesenchymal stem cells (MSC-IONP) containing the iron oxide nanoparticles of the present invention compared to MSC through Western blotting (FIG. 3e).
  • the present inventors co-cultured Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention with HUVEC (vascular endothelial cells), astrocytes (astrocytes), neurons, and microglia (macrophage), respectively, to induce angiogenesis Effects on promotion, inhibition of inflammation, inhibition of cell death, and nerve regeneration were quantitatively analyzed.
  • HUVEC vascular endothelial cells
  • astrocytes astrocytes
  • neurons astrocytes
  • microglia microglia
  • vascular endothelial cells were seeded in a 24-well plate coated with matrigel, and PBS (shown as (i) in FIG. 4), iron oxide nanoparticles (IONP) (shown as (ii) in FIG. 4), iron oxide Mesenchymal stem cells (MSC) not treated with nanoparticles (shown in (iii) in FIG. 4), Wharton's jelly-derived MSC (MSC-IONP) containing iron oxide nanoparticles of the present invention (in (iv) in FIG. 4) ) was co-cultured with HUVECs and quantitatively compared the level of vascular tube production of HUVECs after 18 hours. As shown in FIG. 4a, Wharton's jelly-derived MSC (MSC -IONP) was confirmed to be able to effectively increase the production of vascular tubes.
  • each test substance was co-cultured in LPS-inflammation-induced Raw 264.7 cells, and after 48 hours, the secretion and level of M1 cytokine and M2 cytokine were quantitatively analyzed through qRT-PCR. As shown in FIG. 4c, M1 The expression of cytokine decreased and M2 cytokine increased. Through this, it was confirmed that the MSC-IONP of the present invention can polarize microglia cells into cells having an anti-inflammatory phenotype in the brain.
  • pro-inflammatory factors IL-1 ⁇ , iNOS
  • BDNF neurotrophic factors
  • FGF2 anti-apoptotic factors
  • VEGF angiogenic factors
  • Example 5 Neuroprotective effect of Wharton's jelly-derived MSC (MSC-IONP) containing iron oxide nanoparticles in Alzheimer's disease cell model
  • ROS secreted by neurons by A ⁇ is known to be a major mechanism that exacerbates Alzheimer's disease by inducing neuroinflammation, and scavenging ROS can play a significant role in treating Alzheimer's disease. Accordingly, the present inventors verified the therapeutic efficacy by quantitatively evaluating the ROS inhibition of Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention through a fluorescence microscope and a flow cytometer.
  • Example 6 Confirmation of increased migration and engraftment of Wharton's jelly-derived MSC containing iron oxide nanoparticles through magnetic induction (MSC-IONP+Mag) in Alzheimer's disease model
  • the inventors of the present invention in order to confirm the effect of increasing the targeting efficiency to the target site by magnetism by using a magnet in a non-surgical manner on Wharton's jelly-derived MSC containing iron oxide nanoparticles of the present invention, an Alzheimer's disease transgenic mouse model In (5xFAD), a magnet-induced group (MSC-IONP+Mag) in which a magnet was attached (positioned) to the skull after administration of Wharton's jelly-derived MSC containing iron oxide nanoparticles of the present invention to the right ventricle (MSC-IONP + Mag) and a group without magnet attached ( MSC-IONP) were compared.
  • 5xFAD a magnet-induced group in which a magnet was attached (positioned) to the skull after administration of Wharton's jelly-derived MSC containing iron oxide nanoparticles of the present invention to the right ventricle
  • MSC-IONP + Mag a group without magnet attached
  • Wharton's jelly-derived MSC-administered group (MSC) without iron oxide nanoparticles, Alzheimer's disease transgenic mouse group (TG) not administered with MSC, and Alzheimer's disease transgenic mice were injected with stem cells into the ventricle.
  • Wharton's jelly-derived MSCs or Wharton's jelly-derived MSCs containing the iron oxide nanoparticles of the present invention were administered in a single dose at a dose of 1x10 5 cells/ul to the right ventricle of an Alzheimer's disease transgenic mouse model (5xFAD).
  • a planned autopsy was performed one week after administration, and real-time PCR was performed using an Alu primer to analyze the remaining level of human Wharton's jelly-derived MSCs in the brain.
  • stem cell therapy products In order to evaluate the distribution in the body after administration of stem cell therapy products, it should be evaluated with a sensitive method that can be detected. Since human stem cells are administered to animals, biodistribution can be evaluated by detecting and quantifying human-derived specific DNA sequences in animal tissues. Accordingly, a primer capable of detecting Alu was used as a human-specific DNA sequence.
  • Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention is administered to the ventricle of an Alzheimer's disease model and a magnet is placed on the skull, the remaining amount in the brain, which is the target location of mesenchymal stem cells, is the target cell increase can be seen.
  • Example 7 Therapeutic effect through magnetic induction (MSC-IONP+Mag) of Wharton's jelly-derived MSC containing iron oxide nanoparticles in Alzheimer's disease model
  • the present inventors performed the experiment of FIG. 7a to confirm the treatment effect of Alzheimer's disease according to magnetic induction after administration of MSC derived from Wharton's jelly containing iron oxide nanoparticles of the present invention to the brain, and Amyloid, which is well known as the main cause of Alzheimer's disease Thioflavin S staining, which stains plaques, was performed on histopathology slides.
  • amyloid beta plaque which was not observed in the normal group (WT)
  • WT normal group
  • Wharton's jelly-derived MSC containing iron oxide nanoparticles of the present invention After administration, it was confirmed that the most significant decrease was observed in the magnet-induced group (MSC-IONP+Mag) in which a magnet was attached to the skull.
  • the number of amlyoid plaques and the area occupied by the amyloid plaques (Area fraction) in the whole brain region were analyzed using the fluorescence microscope images.
  • the mesenchymal stem cell administration group (MSC) without iron oxide nanoparticles and the experimental group in which magnets were attached to mesenchymal stem cells containing iron oxide nanoparticles of the present invention MSC-IONP+
  • the number of plaques in Mag and the area occupied by amyloid plaques in the entire brain area were significantly reduced.
  • Example 8 Beneficial effects of multiple administrations of magnet-induced (MSC-IONP+Mag) MSC derived from Wharton's jelly containing iron oxide nanoparticles in Alzheimer's disease model
  • the present inventors investigated the beneficial effect achieved by repeating magnetic induction (MSC-IONP+Mag) after ventricular administration of Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention, 5xFAD mouse brain H&E staining, thioflavin S staining, and behavioral changes (activity and anxiety) were observed.
  • MSC-IONP+Mag magnetic induction
  • the stem cells were administered to Alzheimer's disease mice a total of three times at intervals of one week, and sacrificed one week after each administration (FIG. 8a).
  • Example 9 Confirmation of change in gene expression level after multiple administration of magnetic induction (MSC-IONP+Mag) of Wharton's jelly-derived MSC containing iron oxide nanoparticles in Alzheimer's disease model
  • the present inventors confirmed changes in gene expression levels according to repetition of magnetic induction (MSC-IONP+Mag) after intraventricular administration of Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Nanotechnology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Psychology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to a pharmaceutical composition comprising magnetic nanoparticle-bearing mesenchymal stem cells for preventing or treating nerve diseases and the use thereof. When migrated and engrafted to a target site by an externally induced magnetism, the magnetic nanoparticle-bearing mesenchymal stem cells promote the reduction of amyloid plaques. Thus, the composition can be applied as a therapeutic for incurable nervous system diseases such as Alzheimer's disease and can solve the problems of clinical application through in-vivo monitoring of stem cells.

Description

자성 나노입자를 함유한 중간엽 줄기세포를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물 및 이의 용도Pharmaceutical composition containing mesenchymal stem cells containing magnetic nanoparticles for preventing or treating neurological diseases and uses thereof
본 발명은 자성 나노입자를 함유한 중간엽 줄기세포를 포함하는 신경 질환 예방 또는 치료용 약학적 조성물 및 이의 용도에 관한 것이다.The present invention relates to a pharmaceutical composition containing mesenchymal stem cells containing magnetic nanoparticles for preventing or treating neurological diseases and uses thereof.
알츠하이머 질환(Alzheimer's Disease, AD)은 노화에 관련된 대표적인 신경 퇴행성 질환이다. 알츠하이머 질환이 발병한 경우, 전두엽 및 측두엽에서 시작하여 뇌의 다른 부위로 점차적으로 퍼지며 병이 진행된다. 알츠하이머 질환의 주요한 병리학적 특징은 아밀로이드 베타 단백질의 축적으로 인한 아밀로이드 플라크(amyloid plaque)와 미세소관(microtubule)에 관련된 타우 단백질(tau protein)이 신경세포에서 신경섬유다발(neurofibrillary tangle, NFT)을 형성하는 것이다. 아밀로이드 플라크(amyloid plaque)와 신경섬유다발(neurofibrillary tangle, NFT)의 형성은 신경퇴행, 시냅스 기능 장애 및 치매(dementia)로 이어진다.Alzheimer's Disease (AD) is a representative neurodegenerative disease related to aging. When Alzheimer's disease develops, the disease progresses, starting in the frontal and temporal lobes and gradually spreading to other parts of the brain. The main pathological features of Alzheimer's disease are amyloid plaques caused by the accumulation of amyloid beta protein and tau protein related to microtubules forming neurofibrillary tangles (NFTs) in nerve cells. is to do The formation of amyloid plaques and neurofibrillary tangles (NFTs) leads to neurodegeneration, synaptic dysfunction and dementia.
아밀로이드 플라크(amyloid plaque)는 아밀로이드 전구체 단백질(amyloid precursor protein, APP)에 의해 생성된다. 아밀로이드 전구체 단백질은 신경 세포의 세포막을 관통하는 막전이 단백질로, 신경 세포의 성장, 생존 및 손상 후 복구에 매우 중요하다. 알츠하이머 질환이 발병한 경우, 아밀로이드 전구체 단백질 (amyloid precursor protein, APP)이 γ- 세크레타아제(secretase) 및 β- 세크레타아제(secretase) 효소에 의해 분해, 절단되면서 39~43개의 아미노산으로 이루어진 아밀로이드 베타(amyloid beta)가 생성되고, 이는 신경 세포의 외부에 고밀도로 축적된 덩어리인 아밀로이드 플라크(amyloid plaque)를 형성한다.Amyloid plaques are produced by amyloid precursor protein (APP). Amyloid precursor protein is a transmembrane protein that penetrates the cell membrane of nerve cells and is very important for the growth, survival and recovery of nerve cells after damage. In the case of Alzheimer's disease, amyloid precursor protein (APP) is degraded and cleaved by γ-secretase and β-secretase enzymes, resulting in amyloid composed of 39 to 43 amino acids. Amyloid beta is produced, which forms an amyloid plaque, a densely accumulated clump on the outside of nerve cells.
현재까지 알츠하이머병의 근본적인 치료방법은 개발되지 않았으나, 각국에서 사용되고 있는 치료제로는 아세틸 콜린에스테라아제 억제제가 대부분이며 이는 병의 진행을 완전히 막을 수 없고, 약간의 병리적 증상을 완화시키거나 진행 정도를 늦추는 효과만 있을 뿐이다. 이 계열의 약물로는 도네페질(donepezil), 리바스티그민(rivastingmine), 갈란타민(galantamine), 타크린(tacrine) 등이 있다.Until now, no fundamental treatment method for Alzheimer's disease has been developed, but most of the treatments used in each country are acetylcholinesterase inhibitors, which cannot completely prevent the progression of the disease, but alleviate some pathological symptoms or slow down the progress. There is only effect. Drugs in this class include donepezil, rivastingmine, galantamine, and tacrine.
줄기세포는 신경계에서 손상되거나, 손실된 세포를 대체할 수 있는 능력 때문에 이러한 알츠하이머와 같이 다루기 힘든 신경질환들의 유망한 치료제로 고려된다. 그 동안 배아줄기세포(ESCs)와 유도만능줄기세포(iPSCs)가 다양한 신경세포들로 분화될 수 있고, 손상된 신경계를 대체할 수 있다고 보고되었다. 그러나, 이런 세포들은 원하지 않는 암을 발생시킬 수 있다는 문제 때문에 임상적인 시도가 이루어지지 않았다. 따라서, 현재 진행 중인 임상 시험은 성체 줄기 세포 중 인간 중간엽 줄기세포(human mesenchymal stem cells, hMSC)가 높은 가소성(plasticity)과 낮은 면역 거부 반응 때문에 손상된 신경계를 치료하기 위한 세포치료제로서 연구되고 있다. Stem cells are considered promising treatments for intractable neurological diseases such as Alzheimer's due to their ability to replace damaged or lost cells in the nervous system. In the meantime, it has been reported that embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be differentiated into various nerve cells and can replace the damaged nervous system. However, clinical trials have not been made because these cells can cause unwanted cancer. Therefore, currently ongoing clinical trials are studying human mesenchymal stem cells (hMSC) among adult stem cells as a cell therapy agent for treating the damaged nervous system due to their high plasticity and low immune rejection response.
그러나, 기존 알츠하이머병에서 사용된 줄기세포 치료제의 가장 큰 문제점은 뇌혈관장벽(blood-brain barrier)을 통과하여 뇌로 전달되는 것이 매우 어렵다는 것이다. 즉, 정맥 주사된 줄기세포 대다수가 폐의 모세혈관을 통과하지 못해 뇌로 도달하는 수가 극히 적고 폐를 통과하더라도 뇌혈관장벽으로 인해 뇌실질로의 전달은 거의 되지 않는다. 따라서, 동맥투여, 뇌실질투여, 뇌실투여, 척추투여 등 다양한 투여 경로를 찾는 연구가 많이 진행되었다. 실질적으로 가장 효과가 좋을 것으로 예측되는 투여 경로는 뇌실질투여(intra-parenchymal)와 뇌실투여(intra-cerebroventricular)인데 뇌실질에 직접 줄기세포를 투여하는 경우 적은 양을 투여하는 것만으로도 대상 부위에 줄기세포를 정확히 전달할 수 있다는 장점이 있으나, 투여 위치에 따라 뇌영역이 손상되는 것을 피할 수 없다. 뇌실투여의 경우, 투여되는 줄기세포의 양은 더욱 많이 필요할 것으로 예상되나, 뇌손상이 상대적으로 적고, 뇌영역 전반에 걸쳐 줄기세포를 전달할 수 있다는 장점이 있다. 그러나 줄기세포를 '뇌실(Cerebral ventricle)' 내에 직접 주사하였을 때는 줄기세포가 '뇌실질(Brain Parenchyma)'로 이동하기 전에 뇌척수액(cerebrospinal fluid, CSF) 흐름에 의해 척수로 이동하므로 투여량 대비 뇌 내 잔존 능력이 떨어질 수 있어 이를 극복하기 위한 방법이 필요하다. However, the biggest problem with existing stem cell therapeutics used in Alzheimer's disease is that it is very difficult to pass through the blood-brain barrier and be delivered to the brain. That is, most of the intravenously injected stem cells do not pass through the capillaries of the lungs, so very few reach the brain, and even if they pass through the lungs, they are hardly delivered to the brain parenchyma due to the blood-brain barrier. Therefore, many studies have been conducted to find various administration routes such as arterial administration, intraventricular administration, subventricular administration, and spinal administration. The administration routes that are predicted to be practically effective are intra-parenchymal and intra-cerebroventricular administration. However, damage to the brain region cannot be avoided depending on the administration location. In the case of intracerebroventricular administration, although the amount of stem cells administered is expected to be higher, brain damage is relatively less and there are advantages in that stem cells can be delivered throughout the brain area. However, when stem cells are directly injected into the 'Cerebral ventricle', the stem cells move to the spinal cord by the flow of cerebrospinal fluid (CSF) before moving to the 'Brain Parenchyma', so the remaining amount in the brain is higher than the dose. The ability may fall, so a way to overcome it is needed.
이에, 본 발명자들은 기존 알츠하이머 줄기세포 치료제의 치료 효능을 극대화하면서 뇌 타겟팅 효율을 증대할 수 있도록, 줄기세포의 표적 위치로의 이동 효율을 높이고, 세포 생존률(cellular viability) 및 생착(engraftment) 효율을 증가시키는 방법을 개발하고자 예의연구 노력하였다. 그 결과, 본 발명자들은 자성 산화철 나노입자를 와튼 젤리-유래 중간엽 줄기세포에 함유시켜 뇌실에 주사한 후, 체외에서 자기장을 이용하여, 줄기세포가 뇌척수액 흐름에 의해 척수로 흘러가는 것을 방지하고 신경세포가 있는 뇌실질로의 침투를 촉진함으로써 알츠하이머 치료 효과가 배가됨을 확인하였다. 또한, 자성 산화철 나노입자를 함유한 와튼 젤리-유래 중간엽 줄기세포는 그렇지 않은 중간엽 줄기세포에 비해 치료 효능 물질의 발현 정도가 더 크다는 것을 규명하였다. 자가 유래 중간엽 줄기세포의 경우 알츠하이머 질환 환자의 특성 상 고령인 경우가 많아 그 효능이 높지 않고 환자로부터 세포를 얻은 후 배양 및 정제 과정이 필요하여 환자가 방문한 즉시 치료가 불가능하다는 단점이 있으나, 본 발명의 와튼 젤리-유래 중간엽 줄기세포는 즉시 치료가 가능할 뿐만 아니라 분화능이나 치료 효능 또한 더 높다고 할 수 있다. 뿐만 아니라 기존 줄기세포 치료제의 경우, 환자에게 투여 후 체내에서 그 위치를 추적하는 것이 매우 어려웠으나, 본 발명의 산화철 나노입자를 표지한 줄기세포의 경우, 자기공명 영상촬영을 통해 체내의 위치 및 잔존량을 확인할 수 있어, 줄기세포 추적, 줄기세포 잔존평가, 줄기세포의 치료에 대한 영향을 정확하게 분석할 수 있음을 규명함으로써, 본 발명을 완성하였다.Accordingly, the present inventors have improved the efficiency of stem cell migration to the target site, improved cellular viability and engraftment efficiency, so as to increase brain targeting efficiency while maximizing the therapeutic efficacy of existing Alzheimer's stem cell therapeutics. Efforts were made to develop ways to increase it. As a result, the present inventors contained magnetic iron oxide nanoparticles in Wharton's jelly-derived mesenchymal stem cells and injected them into the ventricle, and then, using a magnetic field outside the body, prevented the stem cells from flowing into the spinal cord by the cerebrospinal fluid flow and It was confirmed that the Alzheimer's treatment effect was doubled by promoting the penetration into the brain parenchyma where the cells are located. In addition, it was found that Wharton's jelly-derived mesenchymal stem cells containing magnetic iron oxide nanoparticles showed a higher degree of expression of therapeutically effective substances than mesenchymal stem cells that did not contain magnetic iron oxide nanoparticles. In the case of autologous mesenchymal stem cells, due to the nature of patients with Alzheimer's disease, they are often elderly, so their efficacy is not high, and they require a culture and purification process after obtaining cells from patients, so they cannot be treated immediately after a patient visits. Wharton's jelly-derived mesenchymal stem cells of the present invention can be treated immediately, and can also be said to have higher differentiation potential or therapeutic efficacy. In addition, in the case of existing stem cell therapeutics, it was very difficult to track their location in the body after administration to a patient. The present invention was completed by identifying that the amount can be confirmed, stem cell tracking, stem cell survival evaluation, and the effect of stem cell treatment can be accurately analyzed.
따라서, 본 발명의 일 목적은, 자성 나노입자를 함유한 중간엽 줄기세포를 포함하는, 신경질환의 예방 또는 치료용 약학적 조성물을 제공하는 데 있다. Accordingly, one object of the present invention is to provide a pharmaceutical composition for preventing or treating neurological diseases, including mesenchymal stem cells containing magnetic nanoparticles.
또한, 본 발명의 다른 목적은, 자성 나노입자를 함유한 중간엽 줄기세포를 포함하는, 신경질환 치료용 세포치료제를 제공하는 데 있다.In addition, another object of the present invention is to provide a cell therapy agent for treating neurological diseases, including mesenchymal stem cells containing magnetic nanoparticles.
또한, 본 발명의 또 다른 목적은, 신경질환의 예방 또는 치료용 약학적 조성물의 제조 방법을 제공하는 데 있다.In addition, another object of the present invention is to provide a method for preparing a pharmaceutical composition for preventing or treating neurological diseases.
또한, 본 발명의 또 다른 목적은, 자성 나노입자를 함유한 중간엽 줄기세포의 이식 및 분화 추적용 조성물을 제공하는 데 있다.Another object of the present invention is to provide a composition for transplantation and differentiation tracking of mesenchymal stem cells containing magnetic nanoparticles.
또한, 본 발명의 또 다른 목적은, 대상에게 상기 세포치료제를 투여하는 단계 및 외부 자성체를 적용하여 상기 세포치료제를 표적 조직으로 위치시키는 단계를 포함하는, 신경질환의 치료 방법을 제공하는 데 있다.In addition, another object of the present invention is to provide a method for treating a neurological disease, comprising administering the cell therapy agent to a subject and applying an external magnetic body to position the cell therapy agent in a target tissue.
본 발명의 다른 목적 및 이점은 하기에 기재된 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.
본 명세서에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are used for descriptive purposes only and should not be construed as limiting. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as "include" or "have" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person of ordinary skill in the art to which the embodiment belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present application, they should not be interpreted in an ideal or excessively formal meaning. don't
또한, 이하, 본원에 기재된 다양한 구체예가 도면을 참조로 기재된다. 하기 설명에서, 본 발명의 완전한 이해를 위해서, 다양한 특이적 상세사항, 예컨대, 특이적 형태, 조성물 및 공정 등이 기재되어 있다. 그러나 특정의 구체예는 이들 특이적 상세 사항 중 하나 이상 없이, 또는 다른 공지된 방법 및 형태와 함께 실행될 수 있다. 다른 예에서, 공지된 공정 및 제조 기술은 본 발명을 불필요하게 모호하게 하지 않게 하기 위해서, 특정의 상세사항으로 기재되지 않는다. "한 가지 구체예" 또는 "구체예"에 대한 본 명세서 전체를 통한 참조는 구체예와 결부되어 기재된 특별한 특징, 형태, 조성 또는 특성이 본 발명의 하나 이상의 구체예에 포함됨을 의미한다. 따라서, 본 명세서 전체에 걸친 다양한 위치에서 표현된 "한 가지 구체예에서" 또는 "구체예"의 상황은 반드시 본 발명의 동일한 구체예를 나타내지는 않는다. 추가로, 특별한 특징, 형태, 조성, 또는 특성은 하나 이상의 구체예에서 어떠한 적합한 방법으로 조합될 수 있다.Further, hereinafter, various embodiments described herein are described with reference to the drawings. In the following description, numerous specific details are set forth, such as specific forms, compositions and processes, etc., in order to provide a thorough understanding of the present invention. However, certain embodiments may be practiced without one or more of these specific details, or with other known methods and forms. In other instances, well known processes and manufacturing techniques have not been described in specific detail in order not to unnecessarily obscure the present invention. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, form, composition or characteristic described in connection with the embodiment is included in one or more embodiments of the invention. Thus, the appearances of "in one embodiment" or "an embodiment" in various places throughout this specification do not necessarily refer to the same embodiment of the invention. Additionally, particular features, forms, compositions, or properties may be combined in one or more embodiments in any suitable way.
이하, 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 양태에 따르면, 본 발명은 자성 나노입자를 함유한 중간엽 줄기세포, 세포 유래 엑소좀, 세포막 유래 나노입자 및 세포 분비물로 이루어진 군으로부터 선택된 1 종 이상을 포함하는, 신경질환의 예방 또는 치료용 약학적 조성물을 제공하며, 상기 조성물은 외부 자성체를 적용하여, 상기 자성 나노입자를 함유한 중간엽 줄기세포, 세포 유래 엑소좀, 세포막 유래 나노입자 및 세포 분비물로 이루어진 군으로부터 선택된 1 종 이상을 대상체의 치료 조직 또는 기관으로 이동시켜 표적화하는 것을 특징을 한다.According to one aspect of the present invention, the present invention is a method for preventing neurological diseases, including at least one selected from the group consisting of mesenchymal stem cells containing magnetic nanoparticles, cell-derived exosomes, cell membrane-derived nanoparticles, and cell secretions Or providing a pharmaceutical composition for treatment, wherein the composition is one selected from the group consisting of mesenchymal stem cells containing the magnetic nanoparticles, cell-derived exosomes, cell membrane-derived nanoparticles, and cell secretions by applying an external magnetic body It is characterized by migrating and targeting the abnormality to a treated tissue or organ of the subject.
본 발명의 목적을 달성할 수 있는 한, 본 발명의 유효성분으로, 자성 나노입자를 함유한 중간엽 줄기세포, 자성 나노입자를 함유한 중간엽 줄기세포, 세포 유래 엑소좀, 세포막 유래 나노입자 및 세포 분비물로 이루어진 군으로부터 선택된 1 종 이상을 이용할 수 있으며, 바람직하게는 자성 나노입자를 함유한 중간엽 줄기세포이나, 이에 한정되지 않는다.Mesenchymal stem cells containing magnetic nanoparticles, mesenchymal stem cells containing magnetic nanoparticles, cell-derived exosomes, cell membrane-derived nanoparticles and At least one selected from the group consisting of cell secretions may be used, preferably mesenchymal stem cells containing magnetic nanoparticles, but not limited thereto.
본원의 조성물의 투여방법은 공지된 억제제의 투여방법을 적용할 수 있고, 특별히 이에 제한되는 것은 아니며, 목적하는 방법에 따라 비경구 투여(예를 들어 뇌실, 정맥 내, 피하, 복강 내 또는 국소에 적용)하거나, 특히 뇌실 주사에 의한 투여가 바람직하다.The administration method of the composition of the present application may apply a known inhibitor administration method, and is not particularly limited thereto, and parenteral administration (eg, ventricular, intravenous, subcutaneous, intraperitoneal or local administration) according to the desired method application) or, in particular, administration by intraventricular injection is preferred.
즉, 본 발명에 따른 자성 나노입자를 함유한 중간엽 줄기세포는 이의 투여가 필요한 대상체에 적합한 투여 경로, 예를 들어, 뇌실 투여 또는 정맥 투여, 바람직하게는, 본 발명의 자성 나노입자를 함유한 중간엽 줄기세포의 특징을 고려하여 뇌실 투여되고, 상기 투여 후, 상기 대상체의 목적하는 기관 또는 조직에 적절한 자성을 적용하여 상기 투여된 자성 나노입자를 함유한 중간엽 줄기세포를 상기 기관 또는 조직에 위치(표적화)시킬 수 있고, 또한, 자성 나노입자를 함유함으로써 기존 중간엽 줄기세포의 치료 효능을 증대시킨다.That is, the mesenchymal stem cells containing the magnetic nanoparticles according to the present invention can be administered by an administration route suitable for a subject in need thereof, for example, intraventricular or intravenous administration, preferably containing the magnetic nanoparticles of the present invention. It is administered to the ventricle in consideration of the characteristics of mesenchymal stem cells, and after the administration, appropriate magnetism is applied to the target organ or tissue of the subject to transfer the mesenchymal stem cells containing the administered magnetic nanoparticles to the organ or tissue. It can be positioned (targeted), and also increases the therapeutic efficacy of existing mesenchymal stem cells by containing magnetic nanoparticles.
본 명세서에서 사용된, 용어 "자성"은 물질이 나타내는 자기적인 성질을 의미한다. 모든 물질은 자기장(magnetic field)과 상호작용하여 인력(attractive force) 또는 척력(repulsive force)이 발생한다. 즉, 물질에 자기장을 가하면 자화(magnetization)되고, 상기 물체가 자화되는 양상에 따라 강자성체 (ferromagnetic substance), 상자성체(paramagnetic substance), 반자성체(diamagnetic substance), 페리자성체(ferrimagnetc substance) 등으로 구분된다.As used herein, the term "magnetic" refers to the magnetic properties exhibited by a material. All materials interact with magnetic fields to generate attractive or repulsive forces. That is, when a magnetic field is applied to a material, it is magnetized, and the object is classified into a ferromagnetic substance, a paramagnetic substance, a diamagnetic substance, a ferrimagnetc substance, etc. according to the magnetization aspect.
본 명세서에 사용된, 용어 "자성 나노입자(magnetic nanoparticles)"는 자성을 띄는 나노미터 크기의 구조 또는 물질을 의미한다. 상기 자성 나노입자는 용액 합성, 공동 침전, 졸-겔 방법, 고 에너지 분쇄, 수열 합성, 마이크로에멀젼 합성, 열분해에 의한 합성 또는 음파 화학적 합성에 의해 제조될 수 있으나, 이에 한정되는 것은 아니다.As used herein, the term “magnetic nanoparticles” refers to nanometer-sized structures or materials that are magnetic. The magnetic nanoparticles may be prepared by solution synthesis, co-precipitation, sol-gel method, high-energy milling, hydrothermal synthesis, microemulsion synthesis, synthesis by thermal decomposition, or sonochemical synthesis, but are not limited thereto.
상기 자성 나노입자는 철(Fe), 코발트(Co), 니켈(Ni), 망간(Mn), 가돌리늄(Gd), 이들의 산화물 또는 이들의 합금(alloy)으로 이루어진 군에서 선택될 수 있으나, 이에 한정되는 것은 아니다.The magnetic nanoparticles may be selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni), manganese (Mn), gadolinium (Gd), oxides thereof, or alloys thereof. It is not limited.
본 발명의 자성 나노입자는 자성을 가진 금속 나노 복합체를 의미하며, 금속, 자성물질, 또는 자성 합금으로 이루어질 수 있다. The magnetic nanoparticle of the present invention refers to a metal nanocomposite having magnetism, and may be made of a metal, a magnetic material, or a magnetic alloy.
상기 자성 나노입자는, 본 발명의 목적을 달성할 수 있는 한, 당업계에 공지된 임의의 자성나노입자를 이용할 수 있고, 또한, 상기 자성 나노입자를 구성할 수 있는 물질은 제한없이 포함될 수 있으며, 예를 들어, 산화철(FeO, Fe2O3, Fe3O4), 합금(FePt, CoPt) 및 페라이트 (MnFe2O4, CoFe2O4, NiFe2O4, ZnFe2O4) 로 이루어진 군으로부터 선택된 1 종 이상일 수 있으나, 이에 한정되지 않는다.Any magnetic nanoparticles known in the art may be used as the magnetic nanoparticles as long as they can achieve the object of the present invention, and materials constituting the magnetic nanoparticles may be included without limitation, , for example iron oxides (FeO, Fe 2 O 3 , Fe 3 O 4 ), alloys (FePt, CoPt) and ferrites (MnFe 2 O 4 , CoFe 2 O 4 , NiFe 2 O 4 , ZnFe 2 O 4 ) It may be one or more selected from the group consisting of, but is not limited thereto.
바람직하게는, 상기 자성 나노입자는 FeO, Fe2O3 및 Fe3O4로 이루어진 군으로부터 선택된 1 종 이상의 산화철 나노입자일 수 있으며, 본 발명의 일 구현예에서 Fe2O3를 이용하나, 이에 한정되지 않는다. Preferably, the magnetic nanoparticles may be one or more iron oxide nanoparticles selected from the group consisting of FeO, Fe 2 O 3 and Fe 3 O 4 , and in one embodiment of the present invention, Fe 2 O 3 is used, Not limited to this.
또한, 상기 산화철 나노입자는 생체적합성 고분자로 코팅될 수 있다. 상기 생체적합성 고분자는 덱스트란, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리옥시에틸렌, 폴리트리메틸렌 글리콜, 폴리락트산, 폴리아크릴산, 폴리아미노산, 폴리비닐 알콜, 폴리우레탄, 폴리포스파진, 폴리(L-라이신), 폴리알킬렌 옥사이드, 폴리사카라이드, 폴리비닐 피롤리돈 및 폴리아크릴아마이드로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 덱스트란(dextran)이나, 이에 제한되는 것은 아니다. 상기와 같이, 생체 고분자로 코팅되는 경우, 자성 나노 입자들의 단점인, 화학적 결합, 조영제 응집에 의한 점도와 면역 그리고 리소자임과 같은 효소작용의 방해 등 생체 내 독성을 유발할 수 있는 문제점을 해결하고, 적은 독성, 높은 효율, 조직 특이성에서의 분산력, 좋은 용해성 등의 생체 적합성을 가질 수 있다.In addition, the iron oxide nanoparticles may be coated with a biocompatible polymer. The biocompatible polymer is dextran, polyethylene glycol, polypropylene glycol, polyoxyethylene, polytrimethylene glycol, polylactic acid, polyacrylic acid, polyamino acid, polyvinyl alcohol, polyurethane, polyphosphazine, poly(L-lysine) , polyalkylene oxide, polysaccharide, polyvinyl pyrrolidone, and may be at least one selected from the group consisting of polyacrylamide, preferably dextran (dextran), but is not limited thereto. As described above, when coated with a biopolymer, problems that can cause toxicity in vivo, such as chemical bonding, viscosity and immunity due to contrast agent aggregation, and interference with enzymes such as lysozyme, which are disadvantages of magnetic nanoparticles, can be solved. It may have biocompatibility such as toxicity, high efficiency, dispersibility in tissue specificity, and good solubility.
또한, 본 발명의 자성 나노입자는, 본 발명의 목적을 달성할 수 있는 한, 당업계에 공지된 임의의 방법을 통해 합성 또는 형성될 수 있으며, 이를 위해 첨가제를 추가로 사용할 수도 있다.In addition, the magnetic nanoparticles of the present invention may be synthesized or formed through any method known in the art, as long as the object of the present invention can be achieved, and additives may be additionally used for this purpose.
상기 첨가제는, 예를 들어, 헤파린, 프로타민(protamine), 표적화 리간드, 세포 침투 펩티드, 알부민, 알부민 유도체, 히스톤, 크레모포르(Cremophor) EL, 솔루톨(Solutol), 사이클로덱스트린, RGD 트리펩티드, 콜레스테롤, 인지질 및 폴리에틸렌 글리콜(PEG)로 구성된 군으로부터 선택될 수 있으나, 이에 제한되지 않는다.The additives include, for example, heparin, protamine, targeting ligand, cell penetrating peptide, albumin, albumin derivative, histone, Cremophor EL, Solutol, cyclodextrin, RGD tripeptide, It may be selected from the group consisting of cholesterol, phospholipids and polyethylene glycol (PEG), but is not limited thereto.
또한, 상기 산화철 나노입자는 주변에 외피(shell)를 추가로 포함하고, 이때 상기 외피는 단백질 또는 펩티드, 계면활성제, 지질, 리간드, 아미노산, 탄수화물, 핵산, 소분자 및 생체적합성 중합체로 구성된 군으로부터 선택된 성분을 포함할 수 있다.In addition, the iron oxide nanoparticles further include a shell around them, wherein the shell is selected from the group consisting of proteins or peptides, surfactants, lipids, ligands, amino acids, carbohydrates, nucleic acids, small molecules, and biocompatible polymers. components may be included.
또한, 본 발명의 자성 나노입자는, 본 발명의 목적을 달성할 수 있는 한, 상기 자성 나노입자의 표면을 개질시켜 이용할 수 있으며, 예를 들어, 관능기가 도입될 수 있으나, 이에 한정되지 않는다.In addition, the magnetic nanoparticles of the present invention may be used by modifying the surface of the magnetic nanoparticles as long as the object of the present invention can be achieved. For example, a functional group may be introduced, but is not limited thereto.
예를 들어, 폴산, 히알루론산, 싸이크로덱스트린, 이미다졸 계열 화합물, 히스티딘, 라이신, 아르기닌, 시스테인, 티올알킬아민, 스퍼민, 스퍼미딘, 다양한 중량평균분자량의 폴리에틸렌이민, 폴리히스티딘, 폴리라이신, 폴리아르기닌, 프로타민, 헤파린, 키토산 및 프로타민 등의 고분자와 반응시켜 나노입자에 추가로 1 종 이상의 관능기를 도입시킬 수 있다.For example, folic acid, hyaluronic acid, cyclodextrin, imidazole-based compounds, histidine, lysine, arginine, cysteine, thiolalkylamine, spermine, spermidine, polyethyleneimine of various weight average molecular weights, polyhistidine, polylysine, poly One or more functional groups may be further introduced into the nanoparticles by reacting with polymers such as arginine, protamine, heparin, chitosan, and protamine.
본 발명에서 사용가능한 보호기는 각 관능기의 보호화에 통상적으로 사용되는 모든 보호기일 수 있으며, 이는 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자라면 누구라도 용이하게 선택하여 사용할 수 있다.The protecting group usable in the present invention may be any protecting group commonly used for protection of each functional group, which can be easily selected and used by anyone with ordinary knowledge in the art to which the present invention belongs.
상기 자성 나노입자는 직경이 1 nm 내지 1000 nm이고, 바람직하게는 1 nm 내지 100 nm, 보다 바람직하게는 1 내지 50 nm일 수 있으나, 이에 한정되지 않는다.The magnetic nanoparticle may have a diameter of 1 nm to 1000 nm, preferably 1 nm to 100 nm, more preferably 1 to 50 nm, but is not limited thereto.
본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물은 대상체에 뇌실에 직접 투여 또는 이식됨으로써, 체외에서 자석 등의 자기장을 이용하여, 목적 줄기세포가 뇌척수액 흐름에 의해 척수로 흘러가는 것을 막고 신경세포가 있는 '뇌실질'로의 침투를 촉진시키므로, 다른 투여 경로에 비하여, 효과적인 치료 효과 달성 및 생물학적 연구에 적용되기 쉽다.According to a preferred embodiment of the present invention, the composition of the present invention is directly administered or transplanted into the brain ventricle of a subject, thereby preventing target stem cells from flowing into the spinal cord by the cerebrospinal fluid flow using a magnetic field such as a magnet outside the body, and nerve cells Since it promotes penetration into the 'brain parenchyma' where there is , it is easy to achieve an effective therapeutic effect and apply to biological research, compared to other routes of administration.
또한, 목적 세포인 자성 나노입자를 함유한 중간엽 줄기세포의 생착율을 증진시키기 위해 다양한 봉매제(embedding materials), 예컨대 소듐 알지네이트(sodium alginate), 히알루론산(hyaluronic acid), 또는 콜라겐을 세포와 복합체로 형성시켜 이를 이용할 수도 있다. In addition, in order to enhance the engraftment rate of mesenchymal stem cells containing magnetic nanoparticles, which are target cells, various embedding materials, such as sodium alginate, hyaluronic acid, or collagen, are mixed with cells. It can also be formed and used.
본 발명의 중간엽 줄기세포는, 본 발명의 목적을 달성할 수 있는 한, 유도되는 방법에 관계없이, 당업계에 공지된 중간엽 줄기세포를 이용할 수 있고, 공여자로부터 분리 또는 단리된 중간엽 줄기세포 또는 상업적으로 판매되는 중간엽 줄기세포주를 제한없이 포함할 수 있다.Mesenchymal stem cells of the present invention can be mesenchymal stem cells known in the art, regardless of the method of induction, as long as the objects of the present invention can be achieved, and mesenchymal stem cells isolated or isolated from donors Cells or commercially available mesenchymal stem cell lines may be included without limitation.
상기 중간엽줄기세포는 골수 등에 매우 적은 양으로 존재하지만, 이를 분리 및 배양하는 과정은 당업계에 잘 알려져 있으며, 공지된 방법에 따라 골수의 조혈모세포로부터 부착특성에 의해 분리한 후 분화능력을 잃지 않은 상태에서 증식시켜 얻을 수 있다. 이러한 중간엽 줄기세포의 확인은, 예컨대, 유세포 분석을 통하여 할 수 있다. 이러한 유세포 분석은, 간엽줄기세포의 특이한 표면 마커를 이용하여 실시된다. 예컨대, 간엽줄기세포는 CD44, CD29 및/또는 MHC 클래스 I에 대하여 양성반응을 나타낸다. 상기 과정에서 이용되는 배지로는, 줄기세포의 배양에 이용되는 일반적인 어떠한 배지도 이용할 수 있다. 바람직하게는, 혈청(예컨대, 우태아 혈청, 말 혈청 및 인간 혈청)이 함유된 배지이다. 본 발명에서 이용될 수 있는 배지는, 예를 들어, RPMI 시리즈, Eagles's MEM (Eagle's minimum essential medium), α-MEM, Iscove's MEM, 199 배지, CMRL 1066, F12, F10, DMEM (Dulbecco's modifA ation of Eagle's medium), DMEM과 F12의 혼합물, Way-mo, h's MB752/1, McCoy's 5A 및 MCDB 시리즈를 포함하나, 이에 한정되는 것은 아니다. 상기 배지에는, 다른 성분, 예를 들어, 항생제 또는 항진균제(예컨대, 페니실린, 스트렙토마이신, 젠타마이신) 및 글루타민 등이 포함될 수 있다. Although the mesenchymal stem cells exist in very small amounts in bone marrow, etc., the process of isolating and culturing them is well known in the art, and they do not lose their differentiation ability after being separated from hematopoietic stem cells in bone marrow by adhesion characteristics according to a known method. It can be obtained by proliferating in an undeveloped state. Identification of these mesenchymal stem cells can be performed, for example, through flow cytometry. This flow cytometric analysis is performed using specific surface markers of mesenchymal stem cells. For example, mesenchymal stem cells are positive for CD44, CD29 and/or MHC class I. As the medium used in the process, any medium generally used for culturing stem cells may be used. Preferably, it is a medium containing serum (eg, fetal bovine serum, horse serum, and human serum). Mediums that can be used in the present invention are, for example, RPMI series, Eagles' MEM (Eagle's minimum essential medium), α-MEM, Iscove's MEM, 199 medium, CMRL 1066, F12, F10, DMEM (Dulbecco's modifation of Eagle's medium), mixtures of DMEM and F12, Way-mo, h's MB752/1, McCoy's 5A and MCDB series. The medium may contain other components, such as antibiotics or antifungal agents (eg, penicillin, streptomycin, gentamicin) and glutamine.
바람직하게는, 본 발명의 중간엽 줄기세포는, 와튼 젤리, 탯줄, 골수, 지방조직, 혈액, 제대혈, 간장, 피부, 위장관, 태반 및 자궁으로 이루어진 군으로부터 선택된 1 종 이상으로부터 유래된 것이고, 보다 바람직하게는, 와튼 젤리로부터 유래된 것이나, 이에 한정되지 않는다.Preferably, the mesenchymal stem cells of the present invention are derived from one or more selected from the group consisting of Wharton's jelly, umbilical cord, bone marrow, adipose tissue, blood, umbilical cord blood, liver, skin, gastrointestinal tract, placenta and uterus, and more Preferably, it is derived from Wharton's jelly, but is not limited thereto.
또한, 본 발명의 중간엽 줄기세포는, 포유동물에서 유래된 것일 수 있다. 상기 포유동물로는 인간, 원숭이, 침팬지, 개, 고양이, 소, 염소, 돼지, 마우스 또는 랫트일 수 있으나, 이에 제한되는 것은 아니다.In addition, the mesenchymal stem cells of the present invention may be derived from mammals. The mammal may be a human, monkey, chimpanzee, dog, cat, cow, goat, pig, mouse or rat, but is not limited thereto.
상기 신경질환은 본 발명의 조성물이 효과를 달성하는 한, 임의의 신경질환을 포함할 수 있으며, 바람직하게는 상기 신경질환은 신경조직 내 아밀로이드 베타 플라크 형성, 신경세포 내 타우 단백질의 인산화, 신경돌기의 이상 및 신경세포 내의 네프릴리신의 발현 감소로 이루어진 군으로부터 선택된 1 종 이상에 의하여 유발되는 질환으로서, 보다 바람직하게는 알츠하이머 병, 파킨슨병, 우울증, 간질, 다발성경화증 및 조증으로 이루어진 군으로부터 선택된 1 종 이상이고, 가장 바람직하게는 알츠하이머 병이다.The neurological disease may include any neurological disease as long as the composition of the present invention achieves an effect, and preferably, the neurological disease is amyloid beta plaque formation in nerve tissue, phosphorylation of tau protein in nerve cells, neurite It is a disease caused by at least one selected from the group consisting of abnormalities of and decreased expression of neprilysin in nerve cells, more preferably selected from the group consisting of Alzheimer's disease, Parkinson's disease, depression, epilepsy, multiple sclerosis, and mania. more than one species, most preferably Alzheimer's disease.
본 발명에 따르면, 알츠하이머 질환 모델에 생체 내 목적 위치에 자성 나노입자를 함유한 중간엽 줄기세포(MSC-IONP)를 이식(뇌실투여) 후 자성-유도로 MSC-IONP 타겟팅을 최대화한 경우, 알츠하이머 병의 주요 병인인 아밀로이드 플라크를 탁월하고 현저하게 감소시키는 효과를 발휘했을 뿐만 아니라, 이의 생존과 분포를 관찰하면서 행동학적인 개선 효과가 달성되었으므로, 이는 본 발명의 조성물이 알츠하이머 병의 치료제로서 적용할 수 있음을 입증한다.According to the present invention, when MSC-IONP targeting is maximized by magnetic induction after transplanting (ventricularly administered) mesenchymal stem cells (MSC-IONP) containing magnetic nanoparticles to an Alzheimer's disease model at a target location in vivo, Alzheimer's disease Not only did it exhibit an excellent and significant reduction effect on amyloid plaques, which are the main cause of the disease, but also a behavioral improvement effect was achieved while observing its survival and distribution, so the composition of the present invention can be applied as a treatment for Alzheimer's disease. prove that there is
본 발명의 약학적 조성물에 포함되는 약학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아고무, 인산 칼슘, 알기네이트, 젤라틴, 규산칼슘, 미세결정성셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are commonly used in formulation, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia gum, calcium phosphate, alginate, gelatin, including, but not limited to, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil; it is not going to be The pharmaceutical composition of the present invention may further include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, and the like in addition to the above components.
본 발명의 약학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 한편, 본 발명의 약학적 조성물의 투여량은 바람직하게는 1일 당 0.001-1000 ㎎/㎏(체중)이다.A suitable dosage of the pharmaceutical composition of the present invention is variously prescribed depending on factors such as formulation method, administration method, patient's age, weight, sex, pathological condition, food, administration time, administration route, excretion rate and response sensitivity. It can be. On the other hand, the dosage of the pharmaceutical composition of the present invention is preferably 0.001-1000 mg/kg (body weight) per day.
본 발명의 약학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical composition of the present invention is prepared in unit dosage form by formulation using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily performed by those skilled in the art. or it may be prepared by incorporating into a multi-dose container. In this case, the formulation may be in the form of a solution, suspension or emulsion in an oil or aqueous medium, or may be in the form of an extract, powder, granule, tablet or capsule, and may additionally contain a dispersing agent or stabilizer.
본원에서 사용된 용어 "치료"란, 달리 언급되지 않는 한, 상기 본 용어가 적용되는 질환 또는 질병의 하나 이상의 증상을 역전시키거나, 완화시키거나, 그 진행을 억제하거나, 또는 예방하는 것을 의미한다.The term "treatment" as used herein, unless stated otherwise, means reversing, alleviating, inhibiting the progression of, or preventing one or more symptoms of a disease or disorder to which the term applies. .
본 발명에 따른 조성물은 치료적으로 유효한 양의 자성 나노입자를 함유한 중간엽 줄기세포를 포함한다. 치료적으로 유효한 양이란 신경질환의 하나 이상의 증상을 경감, 호전시키거나 이롭게 변경하는데 필요한 양을 의미한다.The composition according to the present invention comprises mesenchymal stem cells containing a therapeutically effective amount of magnetic nanoparticles. By therapeutically effective amount is meant the amount necessary to alleviate, ameliorate or beneficially alter one or more symptoms of a neurological disorder.
본 발명의 조성물은 상기 언급한 본원에 따른 자성 나노입자를 함유한 중간엽 줄기세포를 유효성분으로 포함하며, 그 이외에 추가로 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 또는 유효성분의 용해성 및/또는 흡수성을 유지/증가시키는 화합물을 추가로 함유할 수 있다.The composition of the present invention contains the above-mentioned mesenchymal stem cells containing the magnetic nanoparticles according to the present application as an active ingredient, and in addition to that, one or more active ingredients exhibiting the same or similar functions, or the solubility and /or may further contain a compound that maintains/increases absorbency.
또한, 본 발명의 조성물은 단독으로, 또는 수술, 약물치료 및 생물학적 반응조절제를 사용하는 방법들과 병용하여 사용할 수 있다.In addition, the composition of the present invention can be used alone or in combination with methods using surgery, drug therapy, and biological response modifiers.
또한, 본 발명의 또 다른 양태에 따르면, 본 발명은 자성 나노입자를 함유한 중간엽 줄기세포를 포함하는, 신경질환 치료용 세포치료제를 제공하며, 상기 세포치료제는 외부 자성체를 적용하여 상기 자성 나노입자를 함유한 중간엽 줄기세포를 대상체의 치료 조직 또는 기관으로 이동시켜 표적화한다.In addition, according to another aspect of the present invention, the present invention provides a cell therapy agent for the treatment of neurological diseases, including mesenchymal stem cells containing magnetic nanoparticles, wherein the cell therapy agent applies an external magnetic material to the magnetic nanoparticles. The mesenchymal stem cells containing the particles are migrated and targeted to a treated tissue or organ of a subject.
본 발명의 다른 구체 예에서 "세포 치료제"란, 살아있는 세포를 환자에게 직접 주입하는 세포치료에 사용되는 살아있는 세포를 말하며 의약품 등의 안전에 관한 규칙에서 살아있는 자가세포, 동종세포, 또는 이종세포를 체외에서 배양, 증식하거나 선별하는 등의 방법으로 조작 제조하는 의약품을 말한다. 상기 세포 치료는 분화여부에 따라 체세포 치료와 줄기세포 치료로 나뉘는데, 특히 줄기세포는 유전적인 증상 또는 손상의 결과로서 신경퇴행성 장애에서 뉴런 악화와 관련된 증상을 보이는 경우에 줄기세포(stem cells)를 조직 내에 이식하여 신경세포보호(neuroprotection)와 면역제어(immunomodulation)의 기본적인 특징을 통해 신경 손상 또는 신경질환 뿐만 아니라, 뇌손상, 뇌질환, 척수손상, 말초신경손상, 말초신경질환, 및 근위축성 측색 경화증(amyotrophic lateral sclerosis)등의 치료를 위한 치료제를 의미한다.In another embodiment of the present invention, "cell therapy" refers to living cells used for cell therapy in which live cells are directly injected into a patient, and living autologous cells, allogeneic cells, or xenogeneic cells are used in vitro in the safety regulations of pharmaceuticals, etc. It refers to drugs that are manipulated and manufactured by methods such as culture, propagation, or selection. The cell therapy is divided into somatic cell therapy and stem cell therapy depending on whether it is differentiated. In particular, stem cells are tissue tissue when stem cells show symptoms related to neuron deterioration in neurodegenerative disorders as a result of genetic symptoms or damage. Neuronal damage or neurological disease as well as brain injury, brain disease, spinal cord injury, peripheral nerve injury, peripheral nerve disease, and amyotrophic lateral sclerosis through the basic characteristics of neuroprotection and immunomodulation (amyotrophic lateral sclerosis).
바람직하게는, 상기 세포치료제에 이용되는 세포는 줄기세포 또는 줄기세포로부터 분화된 세포일 수 있고, 보다 바람직하게는 와튼 젤리로부터 유래된 중간엽 줄기세포일 수 있으나 이에 제한되는 것은 아니다.Preferably, the cells used in the cell therapy agent may be stem cells or cells differentiated from stem cells, more preferably mesenchymal stem cells derived from Wharton's jelly, but are not limited thereto.
또한, 본 발명의 또 다른 양태에 따르면, 본 발명은 자성 나노입자를 중간엽 줄기세포에 처리 및 배양하여, 상기 중간엽 줄기세포 내에 상기 자성 나노입자를 함유시키는 단계를 포함하는 자성 나노입자를 함유한 중간엽 줄기세포를 포함하는, 신경질환의 예방 또는 치료용 약학적 조성물의 제조 방법을 제공한다.In addition, according to another aspect of the present invention, the present invention contains magnetic nanoparticles comprising the step of treating and culturing magnetic nanoparticles in mesenchymal stem cells to contain the magnetic nanoparticles in the mesenchymal stem cells It provides a method for preparing a pharmaceutical composition for preventing or treating neurological diseases, including mesenchymal stem cells.
상기 본 발명의 배양 과정은 당업계에 알려진 배지와 배양 조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 세포에 따라 당업자가 용이하게 조정하여 사용할 수 있다.The culturing process of the present invention may be performed according to media and culture conditions known in the art. This culture process can be easily adjusted and used by those skilled in the art according to the selected cells.
상기 자성 나노입자의 처리 농도는 1 내지 1000μg/ml일 수 있고, 바람직하게는 1 내지 100μg/ml이며, 상기 배양 시간은 24시간 내지 72시간이다.The treatment concentration of the magnetic nanoparticles may be 1 to 1000 μg/ml, preferably 1 to 100 μg/ml, and the incubation time is 24 hours to 72 hours.
일 구현예에 따르면, 본 발명의 자성 나노입자를 함유한 중간엽 줄기세포의 제조는 본 발명에 산화철 나노입자로서 페루목시톨(Ferumoxytol Feraheme®, Fe2O3) 40 μg/ml을 와튼 젤리로부터 유래된 중간엽 줄기세포와 함께 72시간 동안 배양함으로써 얻을 수 있다.According to one embodiment, the production of mesenchymal stem cells containing the magnetic nanoparticles of the present invention is performed by adding 40 μg/ml of ferumoxytol Feraheme®, Fe 2 O 3 as iron oxide nanoparticles to Wharton's jelly. It can be obtained by culturing for 72 hours with mesenchymal stem cells derived from.
또한, 본 발명의 또 다른 양태에 따르면, 본 발명은 자성 나노입자를 함유한 중간엽 줄기세포의 이식 및 추적용 조성물을 제공하며, 상기 조성물은 외부 자성체를 적용하여 상기 자성 나노입자를 함유한 중간엽 줄기세포를 표적화하고 이를 분석할 수 있는 당업계에 공지된 수단, 예컨대, MRI를 이용하여 추적할 수 있으므로, 생체 내 이식된 줄기세포 치료제의 유효성 및 신뢰성 검증이 가능한 체외 및 체내 플랫폼을 제공할 수 있다.In addition, according to another aspect of the present invention, the present invention provides a composition for transplantation and tracking of mesenchymal stem cells containing magnetic nanoparticles, wherein the composition applies an external magnetic material to the medium containing the magnetic nanoparticles. Since mesenchymal stem cells can be targeted and tracked using means known in the art that can analyze them, such as MRI, it is possible to provide an in vitro and in vivo platform capable of verifying the effectiveness and reliability of transplanted stem cell therapeutics in vivo. can
또한, 본 발명의 또 다른 양태에 따르면, 본 발명은 대상으로서 인간 또는 인간을 제외한 동물에 상술한 본 발명의 세포치료제를 투여하는 단계 및 외부 자성체를 적용하여 상기 세포치료제를 표적 조직으로 위치시키는 단계를 포함하는, 신경질환의 치료 방법을 제공한다. 또한, 본 발명은 본 발명에 따른 신경질환 치료용 세포치료제를 피검체에 주입하는 단계 및 피검체의 표적 위치에 외부 자기장을 가하여 상기 세포치료제를 표적 조직으로 위치시키는 단계를 포함하는 세포치료제 이동 방법을 제공한다.In addition, according to another aspect of the present invention, the present invention provides a step of administering the above-described cell therapy agent of the present invention to a human or non-human animal as a subject and applying an external magnetic body to position the cell therapy agent to a target tissue Including, it provides a method for treating neurological diseases. In addition, the present invention is a cell therapy agent transfer method comprising the steps of injecting the cell therapy agent for treating neurological disorders according to the present invention into a subject and applying an external magnetic field to a target location of the subject to position the cell therapy agent to a target tissue provides
상기 투여는, 세포치료제를 대상의 표적 조직 내에 이식하는 것으로서, 대상의 뇌실에 주입하는 것이 바람직하며, 상기 투여 단계에 후속적으로 대상의 표적 위치에 외부 자성체를 이용하여 적절한 자기장을 가하여 주입된 세포치료제를 표적 조직으로 위치 및 생착시키는 단계를 포함한다. The administration is transplantation of a cell therapy agent into a target tissue of a subject, preferably injected into the ventricle of the subject, and subsequent to the administration step, an appropriate magnetic field is applied to the target site of the subject using an external magnetic material to inject the injected cells positioning and engrafting the therapeutic agent into the target tissue.
또한, 상기 투여는 1회 내지 5회 투여되는 것이 바람직하다. In addition, the administration is preferably administered 1 to 5 times.
본 발명의 일 구현예에 따르면, 상기 신경 질환은 알츠하이머 병이며, 상기 투여에 의하여, 아밀로이드 플라크 제거 효과, 운동성 및 불안감의 현저한 개선 효과가 달성된다.According to one embodiment of the present invention, the neurological disease is Alzheimer's disease, and by the administration, the effect of removing amyloid plaques, the effect of significantly improving mobility and anxiety is achieved.
적절한 자기장이란 투여된 조성물을 충분한 양으로 목적하는 기관으로 유도할 수 있는 자성으로, 본원의 실시예의 기재 및 당업자의 지식을 근거로 용이하게 결정할 수 있다.An appropriate magnetic field is a magnet capable of inducing an administered composition in a sufficient amount to a target organ, and can be easily determined based on the description of the embodiments herein and the knowledge of a person skilled in the art.
상기 자기장에 의한 표적위치로의 이동은 병리영역에서 나쁜 생물학적 환경 때문에, 보통 병변 장소로부터 먼 곳에 중간엽 줄기세포가 이식되어 세포 생존률(cellular viability)과 생착(engraftment)을 야기하기 어렵다는 문제점을 극복할 수 있다.The movement to the target location by the magnetic field overcomes the problem that it is difficult to cause cell viability and engraftment due to the poor biological environment in the pathological area, usually transplanted mesenchymal stem cells far from the lesion site. can
본 발명의 상기 치료 방법은 신경질환 뿐만 아니라, 신경손상, 뇌손상, 뇌질환, 척수손상, 말초신경손상, 말초신경질환, 및 근위축성 측색 경화증(amyotrophic lateral sclerosis)등에 적용되어 치료가 가능하도록 할 수 있다.The treatment method of the present invention is applied not only to neurological diseases, but also to nerve damage, brain damage, brain disease, spinal cord injury, peripheral nerve damage, peripheral nerve disease, and amyotrophic lateral sclerosis to enable treatment. can
본 발명의 방법은 상술한 세포치료제를 이용하므로, 중복된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다.Since the method of the present invention uses the cell therapy agent described above, duplicate descriptions are omitted to avoid excessive complexity of the present specification.
본 발명의 자성 나노입자를 함유한 중간엽 줄기세포를 외부 유도 자성에 의해 표적 위치로의 이동 및 생착시켰을 때 아밀로이드 플라크 감소를 촉진하였으므로, 알츠하이머와 같은 난치성 신경계 질환을 대상으로 하는 효과적인 치료제로서 적용할 수 있을 뿐만 아니라, 줄기세포의 생체 내 모니터링을 통해 임상적용의 문제점들을 해소할 수 있다.When the mesenchymal stem cells containing the magnetic nanoparticles of the present invention were migrated and engrafted to the target position by externally induced magnetism, the reduction of amyloid plaques was promoted, so it can be applied as an effective therapeutic agent for intractable nervous system diseases such as Alzheimer's. In addition, problems in clinical application can be solved through in vivo monitoring of stem cells.
도 1a은 알츠하이머병에 대한 본 발명의 산화철 나노입자가 함유된 중간엽 줄기세포(MSC-IONP) 제조 방법을 대략적으로 보여준다. 도 1b, 도 1c, 도 1d, 도 1e, 도 1f 및 도 1g는 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 자성 결과를 보여준다.Figure 1a schematically shows a method for preparing mesenchymal stem cells (MSC-IONP) containing iron oxide nanoparticles of the present invention for Alzheimer's disease. Figures 1b, 1c, 1d, 1e, 1f and 1g show magnetic results of Wharton's Jelly-derived MSC containing iron oxide nanoparticles according to the present invention.
도 2a 및 2b는 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 세포독성 결과를 보여준다.2a and 2b show the cytotoxicity results of Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention.
도 3a, 도 3b, 도 3c, 도 3d 및 도 3e는 산화철 나노입자의 최적 처리 조건을 보여준다.3a, 3b, 3c, 3d and 3e show the optimal processing conditions of iron oxide nanoparticles.
도 4a, 도 4b, 도 4c, 도 4d 및 도 4e는 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC(MSC-IONP)의 효능 분석 결과를 보여준다.4a, 4b, 4c, 4d and 4e show the results of analyzing the efficacy of Wharton's jelly-derived MSC (MSC-IONP) containing the iron oxide nanoparticles of the present invention.
도 5a, 도 5b, 도 5c, 도 5d 및 도 5e는 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC(MSC-IONP)의 알츠하이머병 세포 모델에서의 신경 보호 효과를 보여준다.5a, 5b, 5c, 5d and 5e show the neuroprotective effect of Wharton's jelly-derived MSC (MSC-IONP) containing the iron oxide nanoparticles of the present invention in an Alzheimer's disease cell model.
도 6은 알츠하이머 질환 모델에서의 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 자석 유도(MSC-IONP+Mag)를 통한 이동 및 생착 증대 효과를 보여준다.FIG. 6 shows the migration and engraftment enhancement effects of Wharton's jelly-derived-MSC containing the iron oxide nanoparticles of the present invention through magnetic induction (MSC-IONP+Mag) in an Alzheimer's disease model.
도 7a, 도 7b 및 도 7c는 알츠하이머 질환 모델에서의 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 자석 유도(MSC-IONP+Mag)를 통한 치료 효과를 보여준다. (i) Wild type, (ii) Vehicle, (iii) MSC, (iv) MSC-IONP, (v) MSC-IONP+Mag.7a, 7b, and 7c show the therapeutic effect of Wharton's jelly-derived-MSC containing the iron oxide nanoparticles of the present invention through magnetic induction (MSC-IONP+Mag) in Alzheimer's disease models. (i) Wild type, (ii) Vehicle, (iii) MSC, (iv) MSC-IONP, (v) MSC-IONP+Mag.
도 8a, 도 8b, 도 8c, 도 8d 및 도 8e는 알츠하이머 질환 모델에서의 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 자석 유도(MSC-IONP+Mag) 다중 투여에 따른 유리한 효과를 보여준다. (i) Vehicle, (ii) MSC, (iii) MSC-IONP, (iv) MSC-IONP+Mag.8a, 8b, 8c, 8d, and 8e show beneficial effects of multiple administrations of Wharton's jelly-derived-MSC (MSC-IONP+Mag) administration in an Alzheimer's disease model. shows (i) Vehicle, (ii) MSC, (iii) MSC-IONP, (iv) MSC-IONP+Mag.
도 9는 알츠하이머 질환 모델에서의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 자석 유도(MSC-IONP+Mag) 다중 투여 후 유전자 발현 수준 변화를 보여준다.FIG. 9 shows changes in gene expression levels after multiple administration of Wharton's jelly-derived MSC containing iron oxide nanoparticles in an Alzheimer's disease model by magnet induction (MSC-IONP+Mag).
이하, 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the examples are only for explaining the present invention in more detail, and those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention It will be self-evident for
제조예 1. 산화철 나노입자가 도입된 와튼 젤리 유래-MSC의 제조Preparation Example 1. Preparation of Wharton's Jelly-derived MSC Incorporated with Iron Oxide Nanoparticles
본 발명자들은 자성 산화철 나노입자를 함유한 와튼 젤리 유래-중간엽 줄기세포를 제작하였다. The present inventors prepared Wharton's jelly-derived mesenchymal stem cells containing magnetic iron oxide nanoparticles.
간략하게는 다음과 같다: 먼저, 삼성서울병원에서 GMP 등급으로 생산된 와튼 젤리 유래 중간엽 줄기세포를, MEM alpha (L-glutamine, phenol red, Sodium pyruvate, low glucose, HEPES-비첨가) 배지에 10% Fetal Bovine Serum (FBS), 50μg/ml gentamicin를 혼합하여 배양하였다. 산화철 나노입자(Ferumoxytol, Feraheme®, Fe2O3)를 처리할 때에는 FBS가 없는 배양액에 Ferumoxytol 80 μg/ml, heparin 1.6 U/ml, Protamine Sulfate 32 μg/ml의 농도로 혼합하여 세포에 처리하고, 4시간 후 동량의 20% FBS를 함유한 배양액을 추가하여 산화철 나노입자의 최종 농도를 40μg/ml로 유지하였다. 24시간이 지난 후 산화철 나노입자를 모두 세척하고 10% FBS가 함유된 배양액으로 교체하여 48시간을 추가로 배양하여 줄기세포 치료제를 완성하였다.Briefly, it is as follows: First, Wharton's jelly-derived mesenchymal stem cells produced in GMP grade at Samsung Seoul Hospital were cultured in MEM alpha (L-glutamine, phenol red, sodium pyruvate, low glucose, HEPES-non-added) medium. 10% Fetal Bovine Serum (FBS) and 50 μg/ml gentamicin were mixed and cultured. When treating iron oxide nanoparticles (Ferumoxytol, Feraheme®, Fe 2 O 3 ), mix them at concentrations of 80 μg/ml of Ferumoxytol, 1.6 U/ml of heparin, and 32 μg/ml of Protamine Sulfate in an FBS-free culture medium and treat the cells. , After 4 hours, a culture solution containing the same amount of 20% FBS was added to maintain the final concentration of iron oxide nanoparticles at 40 μg/ml. After 24 hours, all the iron oxide nanoparticles were washed, replaced with a culture medium containing 10% FBS, and further cultured for 48 hours to complete the stem cell treatment.
실시예 1. 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 자성 확인Example 1. Magnetic confirmation of Wharton's jelly-derived MSC containing iron oxide nanoparticles
본 발명자들은, 상기 제조예 1에서 제조된 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-중간엽 줄기세포(MSC-IONP)의 철 함유량을 Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)로 측정하였다.The present inventors measured the iron content of Wharton's jelly-derived mesenchymal stem cells (MSC-IONP) containing the iron oxide nanoparticles of the present invention prepared in Preparation Example 1 by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) did
그 결과, MSC-IONP의 철 함유량은 272.6±38.7 mg/kg이었고(도 1b), 주사전자현미경(도 1c) 및 Prussian blue 염색(도 1d)을 통해 세포 내에 산화철 나노입자가 함유되어 있음을 확인하였다.As a result, the iron content of MSC-IONP was 272.6 ± 38.7 mg/kg (Fig. 1b), and it was confirmed through scanning electron microscopy (Fig. 1c) and Prussian blue staining (Fig. 1d) that iron oxide nanoparticles were contained in the cells. did
또한, 본 발명자들은, 외부에서 자석을 부착(위치)시켜 자석에 의해 세포가 포집되는 것을 시간대 별로 관찰하였다(도 1e). In addition, the inventors attached (positioned) a magnet from the outside and observed that the cells were collected by the magnet at different times (FIG. 1e).
또한, 뇌척수액 흐름이 있을 때에도 자석에 의한 잔존 증대 효능이 있음을 확인하기 위하여 peristaltic pump를 이용하여 세포가 포함된 액체를 흐르게 하고 자석에 의해 포집되는 정도를 세포 계수를 통해 확인하였다(도 1f 및 도 1g).In addition, in order to confirm that there is an effect of increasing the residual by the magnet even when there is a flow of cerebrospinal fluid, a peristaltic pump was used to flow the liquid containing the cells, and the degree of capture by the magnet was confirmed through cell counting (FIG. 1f and FIG. 1g).
상기 결과들은, 비 수술적 방법으로 자석을 이용하여 자성에 의한 표적 위치로의 이동 효과를 달성할 수 있음을 보여준다.The above results show that a movement effect to a target position by magnetism can be achieved by using a magnet in a non-surgical way.
실시예 2. 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 세포독성 확인Example 2. Confirmation of Cytotoxicity of Wharton's Jelly-derived MSC Containing Iron Oxide Nanoparticles
본 발명자들은 산화철 나노입자의 중간엽 줄기세포에 대한 세포 독성을 확인하기 위하여, 산화철 나노입자를 0~100μg/ml 농도로 48시간 동안 처리하여 Live/dead imaging assay을 실시하였다.In order to confirm the cytotoxicity of iron oxide nanoparticles to mesenchymal stem cells, the present inventors performed Live/dead imaging assay by treating iron oxide nanoparticles at a concentration of 0 to 100 μg/ml for 48 hours.
그 결과, 도 2a에 나타낸 바와 같이, 산화철 나노입자의 중간엽 줄기세포에 대한 세포 독성이 거의 없음을 확인하였다.As a result, as shown in FIG. 2a, it was confirmed that the iron oxide nanoparticles had little cytotoxicity to mesenchymal stem cells.
또한, 산화철 나노입자 처리가 중간엽 줄기세포의 성질에 미치는 영향을 확인하기 위하여 중간엽 줄기세포 marker로 알려진 CD73 (Ecto-5'-nucleotidase)와 CD90 (Thy1)를 Flow cytometry로 정량하였다. In addition, CD73 (Ecto-5'-nucleotidase) and CD90 (Thy1) known as mesenchymal stem cell markers were quantified by flow cytometry to confirm the effect of iron oxide nanoparticle treatment on the properties of mesenchymal stem cells.
그 결과, 도 2b에 나타낸 바와 같이, 산화철 나노입자를 처리하여도 중간엽 줄기세포의 성질이 변하지 않음을 확인하였다.As a result, as shown in FIG. 2B, it was confirmed that the properties of mesenchymal stem cells did not change even when treated with iron oxide nanoparticles.
실시예 3. 산화철 나노입자의 최적 처리 조건 확인Example 3. Confirmation of Optimal Processing Conditions for Iron Oxide Nanoparticles
본 발명자들은, 치료 효능 증대가 극대화되는 산화철 나노입자의 처리 농도를 결정하기 위하여, 산화철 나노입자를 0~100μg/ml 농도로 중간엽 줄기세포에 처리한 후 대표적인 신경성장인자 또는 신경영양성 인자인 BDNF, NGF, NT3 및 TGF-β1에 대해 qRT-PCR로 정량 비교하였다. The present inventors, in order to determine the treatment concentration of iron oxide nanoparticles at which the increase in therapeutic efficacy is maximized, treated mesenchymal stem cells with iron oxide nanoparticles at a concentration of 0 to 100 μg / ml, and then BDNF, a representative nerve growth factor or neurotrophic factor , NGF, NT3 and TGF-β1 were quantitatively compared by qRT-PCR.
그 결과, 도 3a에 나타낸 바와 같이, 산화철 나노입자의 최적 처리 농도가 40μg/ml임을 확인하였다.As a result, as shown in FIG. 3A, it was confirmed that the optimal processing concentration of the iron oxide nanoparticles was 40 μg/ml.
또한, 본 발명자들은, 상기 최적 농도에서 적정 배양 시간을 결정하기 위하여, 40 μg/ml의 산화철 나노입자를 중간엽 줄기세포에 24시간 동안 처리한 후, 추가로 24시간(IONP 48h) 또는 48시간(IONP 72h)을 배양한 후 qRT-PCR을 통해 신경성장인자(NGF), 신경영양성인자(BDNF, NT3), 항염증 인자(TGF-β1)에 대해 정량 분석하였다. In addition, the present inventors, in order to determine the appropriate incubation time at the optimal concentration, treated mesenchymal stem cells with 40 μg/ml iron oxide nanoparticles for 24 hours, and then further cultured them for 24 hours (IONP 48h) or 48 hours. (IONP 72h) was cultured and quantitatively analyzed for nerve growth factor (NGF), neurotrophic factor (BDNF, NT3), and anti-inflammatory factor (TGF-β1) through qRT-PCR.
그 결과, 도 3b에 나타낸 바와 같이, 48시간을 추가로 배양(IONP 72h)했을 때 해당 인자들의 mRNA 발현 수준이 증가함을 확인하였다.As a result, as shown in Figure 3b, it was confirmed that the mRNA expression level of the corresponding factors increased when additionally cultured for 48 hours (IONP 72h).
또한, 본 발명자들은 최적 농도와 배양 시간에서 다양한 치료 효능 물질의 증가 정도를 비교하기 위해, 40 μg/ml의 산화철 나노입자를 중간엽 줄기세포에 24시간 동안 처리하고 추가로 48시간을 배양한 후 qRT-PCR을 통해 공지된 알츠하이머병 치료 효능 물질(NGF, BDNF, NT-3, NT-4, TGF-β1, AgRP, FGF2, GDF15, Activin A, Ang-1 및 Galectin3)에 대해 정량 분석하였다. In addition, the present inventors treated mesenchymal stem cells with 40 μg/ml iron oxide nanoparticles for 24 hours and cultured them for an additional 48 hours in order to compare the increase in various therapeutically effective substances at the optimal concentration and incubation time. Quantitative analysis was performed on known Alzheimer's disease therapeutic substances (NGF, BDNF, NT-3, NT-4, TGF-β1, AgRP, FGF2, GDF15, Activin A, Ang-1 and Galectin3) through qRT-PCR.
그 결과, 도 3c에 나타낸 바와 같이, 본 발명의 최적 조건에 따른 MSC-IONP 군에서 NGF, BDNF, NT-3, NT-4, TGF-β1, AgRP, FGF2, GDF15, Activin A, Ang-1, Galectin3의 mRNA 발현 수준이 높게 증가하였음을 확인하였다.As a result, as shown in Figure 3c, NGF, BDNF, NT-3, NT-4, TGF-β1, AgRP, FGF2, GDF15, Activin A, Ang-1 in the MSC-IONP group according to the optimal conditions of the present invention , it was confirmed that the mRNA expression level of Galectin3 was highly increased.
또한, 본 발명자들은 산화철 나노입자를 통한 중간엽줄기세포의 치료 효능 물질 증대의 기전을 확인하기 위하여, 웨스턴 블롯을 실시하였다. In addition, the present inventors performed Western blotting to confirm the mechanism of increasing the therapeutic efficacy of mesenchymal stem cells through iron oxide nanoparticles.
그 결과, 도 3d에 나타낸 바와 같이, 상기 최적 조건으로 산화철 나노입자를 중간엽 줄기세포에 처리했을 때, p-JNK/JNK 비율과 p-c-Jun/c-Jun 비율이 증가하는 것을 확인하였다. 이를 통해 산화철 나노입자를 uptake한 중간엽줄기세포 내에서 산화철 나노입자가 이온화되어 해당 pathway를 자극하는 것을 알 수 있다. As a result, as shown in FIG. 3D, it was confirmed that the p-JNK/JNK ratio and the p-c-Jun/c-Jun ratio increased when the iron oxide nanoparticles were treated with the mesenchymal stem cells under the optimal conditions. Through this, it can be seen that the iron oxide nanoparticles are ionized in the mesenchymal stem cells that have uptaken the iron oxide nanoparticles to stimulate the corresponding pathway.
또한, 본 발명자들은 MSC와 비교하여 본 발명의 산화철 나노입자를 함유한 중간엽줄기세포(MSC-IONP)에서의 치료 인자의 상향 조절을 웨스턴 블롯을 통해 확인하였다(도 3e).In addition, the present inventors confirmed the up-regulation of therapeutic factors in mesenchymal stem cells (MSC-IONP) containing the iron oxide nanoparticles of the present invention compared to MSC through Western blotting (FIG. 3e).
실시예 4. 산화철 나노입자가 함유된 와튼 젤리 유래-MSC(MSC-IONP)의 효능 분석Example 4. Efficacy Analysis of Wharton's Jelly-derived MSC (MSC-IONP) Containing Iron Oxide Nanoparticles
본 발명자들은, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC와, HUVEC(혈관내피세포), astrocytes(성상세포), neuron 및 microglia (macrophage)를 각각 공배양하여, 혈관신생(angiogenesis) 촉진, 염증 억제, 세포사 억제, 신경 재생에 대한 효능을 정량 분석하였다. The present inventors co-cultured Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention with HUVEC (vascular endothelial cells), astrocytes (astrocytes), neurons, and microglia (macrophage), respectively, to induce angiogenesis Effects on promotion, inhibition of inflammation, inhibition of cell death, and nerve regeneration were quantitatively analyzed.
먼저 혈관 내피세포를 매트리겔(matrigel)이 코팅된 24-웰 플레이트에 seeding하고 PBS (도 4 내 (i)로 표시), 산화철 나노입자(IONP) (도 4 내 (ii)로 표시), 산화철 나노입자를 처리하지 않은 중간엽줄기세포(MSC) (도 4 내 (iii)로 표시), 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC(MSC-IONP) (도 4 내 (iv)로 표시)를 HUVEC과 공배양하고 18시간 후 HUVEC의 혈관 튜브(tube) 생성 수준을 정량 비교한 결과, 도 4a에 나타낸 바와 같이, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC(MSC-IONP)가 혈관 튜브의 생성을 효과적으로 증가시킬 수 있음을 확인하였다. First, vascular endothelial cells were seeded in a 24-well plate coated with matrigel, and PBS (shown as (i) in FIG. 4), iron oxide nanoparticles (IONP) (shown as (ii) in FIG. 4), iron oxide Mesenchymal stem cells (MSC) not treated with nanoparticles (shown in (iii) in FIG. 4), Wharton's jelly-derived MSC (MSC-IONP) containing iron oxide nanoparticles of the present invention (in (iv) in FIG. 4) ) was co-cultured with HUVECs and quantitatively compared the level of vascular tube production of HUVECs after 18 hours. As shown in FIG. 4a, Wharton's jelly-derived MSC (MSC -IONP) was confirmed to be able to effectively increase the production of vascular tubes.
또한, PBS, IONP, MSC, 본 발명의 MSC-IONP와 공배양한 HUVEC의 증식을 CCK-8 어세이로 분석한 결과, 도 4b에 나타낸 바와 같이, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC(MSC-IONP)가 HUVEC의 증식효과가 가장 우수함을 확인하였다. In addition, as a result of analyzing the proliferation of HUVECs co-cultured with PBS, IONP, MSC, and MSC-IONP of the present invention with a CCK-8 assay, as shown in FIG. 4b, Wharton's jelly containing iron oxide nanoparticles of the present invention It was confirmed that derived-MSC (MSC-IONP) had the best proliferation effect of HUVEC.
또한, LPS-염증 유도된 Raw 264.7 세포에 각 실험 물질을 공배양하고 48시간 후에 M1 cytokine과 M2 cytokine의 분비 여부 및 수준을 qRT-PCR를 통해 정량 분석한 결과, 도 4c에 나타낸 바와 같이, M1 cytokine의 발현은 감소하고 M2 cytokine은 증가하는 경향을 보였다. 이를 통해 본 발명의 MSC-IONP가 뇌 내에서 microglia 세포를 항염증성 표현형을 가진 세포로 분극화할 수 있음을 확인하였다.In addition, each test substance was co-cultured in LPS-inflammation-induced Raw 264.7 cells, and after 48 hours, the secretion and level of M1 cytokine and M2 cytokine were quantitatively analyzed through qRT-PCR. As shown in FIG. 4c, M1 The expression of cytokine decreased and M2 cytokine increased. Through this, it was confirmed that the MSC-IONP of the present invention can polarize microglia cells into cells having an anti-inflammatory phenotype in the brain.
또한, 성상세포에 실험군과 대조군의 줄기세포를 공배양하고 48시간 후에 전염증 인자(IL-1β, iNOS), 신경영양성(BDNF), 항세포자멸사(FGF2) 및 혈관신생 인자(VEGF)의 발현 수준을 qRT-PCR을 통해 분석한 결과, 도 4d에 나타낸 바와 같이, 전염증인자는 감소하고 신경영양성, 항세포자멸사, 혈관신생인자의 발현량은 증가하였다. 이를 통해 MSC-IONP는 뇌 내에서 성상세포의 활성을 낮추어 염증을 완화할 수 있음을 확인하였다.In addition, the expression of pro-inflammatory factors (IL-1β, iNOS), neurotrophic factors (BDNF), anti-apoptotic factors (FGF2) and angiogenic factors (VEGF) 48 hours after co-culture of the stem cells of the experimental and control groups in astrocytes. As a result of analyzing the level through qRT-PCR, as shown in Fig. 4d, pro-inflammatory factors decreased and the expression levels of neurotrophic, anti-apoptotic, and angiogenic factors increased. Through this, it was confirmed that MSC-IONP can alleviate inflammation by lowering the activity of astrocytes in the brain.
또한, 신경세포(Neuro-2a, PC12)와 각 실험 물질을 공배양하고 LPS-염증을 유발함과 동시에 저산소(2% O2) 조건에서 24시간 배양 후, 신경세포의 Bcl-2/BAX 비율을 qRT-PCR을 통해 정량한 결과, 도 4e에 나타낸 바와 같이, MSC-IONP는 신경세포의 세포 자멸사를 억제하는 효능이 있음을 확인하였다.In addition, after co-cultivating neurons (Neuro-2a, PC12) and each test substance, inducing LPS-inflammation and culturing for 24 hours under hypoxic (2% O 2 ) conditions, the Bcl-2/BAX ratio of neurons As a result of quantification through qRT-PCR, as shown in Figure 4e, it was confirmed that MSC-IONP has the effect of inhibiting apoptosis of neurons.
실시예 5. 산화철 나노입자가 함유된 와튼 젤리 유래-MSC(MSC-IONP)의 알츠하이머병 세포 모델에서의 신경 보호 효과Example 5. Neuroprotective effect of Wharton's jelly-derived MSC (MSC-IONP) containing iron oxide nanoparticles in Alzheimer's disease cell model
본 발명자들은, Neuro-2a 세포에 25μM의 Aβ25-35를 처리한 후 PBS (도 5 내 (i)로 표시), 산화철 나노입자(IONP) (도 5 내 (ii)로 표시), 산화철 나노입자를 처리하지 않은 중간엽줄기세포(MSC) (도 5 내 (iii)로 표시), 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC(MSC-IONP) (도 5 내 (iv)로 표시)를 각각 24시간 동안 공배양하여, 그 변화를 CCK-8 Assay, LDH Assay, Annexin V Assay, ROS scavenging assay, qRT-PCR 등의 방법으로 확인하였다. After the present inventors treated Neuro-2a cells with 25 μM of Aβ 25-35 , PBS (shown as (i) in FIG. 5), iron oxide nanoparticles (IONP) (shown as (ii) in FIG. 5), and iron oxide nanoparticles Mesenchymal stem cells (MSC) not treated with particles (shown in (iii) in FIG. 5), Wharton's jelly-derived MSC (MSC-IONP) containing iron oxide nanoparticles of the present invention (shown in (iv) in FIG. 5) mark) were co-cultured for 24 hours, respectively, and the changes were confirmed by methods such as CCK-8 Assay, LDH Assay, Annexin V Assay, ROS scavenging assay, and qRT-PCR.
그 결과, 도 5a에 나타낸 바와 같이, CCK-8 Assay를 통해 산화철 나노입자를 처리한 중간엽줄기세포가 Aβ25-35에 의한 세포 독성을 얼마나 억제하는지 정량 평가했을 때, 산화철 나노입자를 처리하지 않은 중간엽줄기세포가 세포 독성을 억제하지 못한 반면, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC는 Aβ 그룹과 비교하여 유의하게 세포 독성을 억제하였다. As a result, as shown in FIG. 5a, when the mesenchymal stem cells treated with iron oxide nanoparticles quantitatively evaluated how much the cytotoxicity by Aβ 25-35 was inhibited through the CCK-8 Assay, iron oxide nanoparticles were not treated. While untreated mesenchymal stem cells did not inhibit cytotoxicity, Wharton's jelly-derived MSC containing iron oxide nanoparticles of the present invention significantly inhibited cytotoxicity compared to the Aβ group.
또한, 동일한 조건에서 실시한 LDH assay를 통해 Aβ25-35에 의한 세포 독성 억제 효능을 분석한 결과, 도 5b에 나타낸 바와 같이, 산화철 나노입자를 처리하지 않은 중간엽줄기세포보다 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC가 세포 독성을 더욱 억제하는 것을 확인하였다(*p < 0.05 vs (i), †p < 0.05 vs (ii), ¶p < 0.05 vs (iii)). In addition, as a result of analyzing the cytotoxicity inhibitory effect by Aβ 25-35 through the LDH assay conducted under the same conditions, as shown in FIG. 5B, the iron oxide nanoparticles of the present invention were more It was confirmed that Wharton's jelly-derived-MSC containing cytotoxicity was further suppressed (*p < 0.05 vs (i), †p < 0.05 vs (ii), ¶p < 0.05 vs (iii)).
또한, Annexin V assay를 통해 세포 apoptosis 정도를 정량 평가한 결과, 도 5c에 나타낸 바와 같이, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC와 공배양한 그룹에서 효과적으로 Aβ에 의한 세포 apoptosis를 억제함을 확인하였다.In addition, as a result of quantitatively evaluating the degree of cell apoptosis through the Annexin V assay, as shown in FIG. 5c, in the group co-cultured with Wharton's jelly-derived-MSC containing the iron oxide nanoparticles of the present invention, cell apoptosis by Aβ was effectively inhibited. inhibition was confirmed.
Aβ에 의해 신경세포가 분비하는 ROS는 신경염증을 유발하여 알츠하이머병을 악화시키는 주요 기전으로 알려져 있어, ROS 소거(scavenging)는 알츠하이머병 치료에 큰 역할을 할 수 있다. 이에, 본 발명자들은 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 ROS 억제를 형광 현미경과 flow cytometer를 통해 정량 평가하여 그 치료 효능을 검증하였다. ROS secreted by neurons by Aβ is known to be a major mechanism that exacerbates Alzheimer's disease by inducing neuroinflammation, and scavenging ROS can play a significant role in treating Alzheimer's disease. Accordingly, the present inventors verified the therapeutic efficacy by quantitatively evaluating the ROS inhibition of Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention through a fluorescence microscope and a flow cytometer.
그 결과, 도 5d에 나타낸 바와 같이, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC가 그렇지 않은 중간엽줄기세포에 비해 ROS를 더 현저하게 억제함을 확인하였다. As a result, as shown in FIG. 5d, it was confirmed that Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention inhibited ROS more significantly than mesenchymal stem cells without it.
또한, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC와 공배양한 Neuro-2a에서 mRNA를 추출하여 qRT-PCR를 통해 유전자 발현을 분석한 결과, 도 5e에 나타낸 바와 같이, Aβ에 의해 증가한 신경세포의 세포 사멸 관련 유전자 발현 수준이, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC에 의해 감소하는 것을 확인하였다.In addition, as a result of extracting mRNA from Neuro-2a co-cultured with Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention and analyzing gene expression through qRT-PCR, as shown in FIG. 5e, Aβ It was confirmed that the increased expression level of apoptosis-related genes in nerve cells was decreased by Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention.
실시예 6. 알츠하이머 질환 모델에서의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 자석 유도(MSC-IONP+Mag)를 통한 이동 및 생착 증대 확인Example 6. Confirmation of increased migration and engraftment of Wharton's jelly-derived MSC containing iron oxide nanoparticles through magnetic induction (MSC-IONP+Mag) in Alzheimer's disease model
본 발명자들은, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC에 비 수술적 방법으로 자석을 이용하여 자성에 의한 표적 위치로의 타겟팅 효율 증대 효과를 확인하기 위하여, 알츠하이머 병 형질전환 마우스 모델(5xFAD)에서 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC를 우측 뇌실 투여 후 두개골에 자석을 부착(위치)시킨 자석 유도군(MSC-IONP+Mag) 및 자석을 부착시키지 않은 군(MSC-IONP)을 비교하였다.The inventors of the present invention, in order to confirm the effect of increasing the targeting efficiency to the target site by magnetism by using a magnet in a non-surgical manner on Wharton's jelly-derived MSC containing iron oxide nanoparticles of the present invention, an Alzheimer's disease transgenic mouse model In (5xFAD), a magnet-induced group (MSC-IONP+Mag) in which a magnet was attached (positioned) to the skull after administration of Wharton's jelly-derived MSC containing iron oxide nanoparticles of the present invention to the right ventricle (MSC-IONP + Mag) and a group without magnet attached ( MSC-IONP) were compared.
이때, 다른 비교 대조군으로, 산화철 나노입자가 함유되지 않은 와튼 젤리 유래-MSC 투여군(MSC), MSC를 투여하지 않은 알츠하이머 병 형질 전환 마우스군(TG), 알츠하이머 병 형질 전환 마우스에 줄기세포를 뇌실 투여한 직후 희생한 실험군(Positive)을 이용하였다. At this time, as another comparative control group, Wharton's jelly-derived MSC-administered group (MSC) without iron oxide nanoparticles, Alzheimer's disease transgenic mouse group (TG) not administered with MSC, and Alzheimer's disease transgenic mice were injected with stem cells into the ventricle. The experimental group (Positive) sacrificed immediately after treatment was used.
간략하게는, 와튼 젤리 유래-MSC 또는 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC를, 알츠하이머 병 형질전환 마우스 모델(5xFAD)의 우측 뇌실에 1x105cells/ul의 용량으로 단회 투여하였다. 투여 일주일 후 계획 부검하고 뇌 안에 있는 인간 와튼 젤리 유래-MSC의 잔존 수준을 분석하기 위하여, Alu primer를 이용하여 real-time PCR을 실시하였다.Briefly, Wharton's jelly-derived MSCs or Wharton's jelly-derived MSCs containing the iron oxide nanoparticles of the present invention were administered in a single dose at a dose of 1x10 5 cells/ul to the right ventricle of an Alzheimer's disease transgenic mouse model (5xFAD). . A planned autopsy was performed one week after administration, and real-time PCR was performed using an Alu primer to analyze the remaining level of human Wharton's jelly-derived MSCs in the brain.
줄기세포치료제의 투여 후 체내분포를 평가하기 위해서는 검출할 수 있는 민감한 방법으로 평가하여야 한다. 인간 줄기세포를 동물에 투여하므로 동물 조직 중의 인간 유래 특이적인 DNA 서열을 검출 정량하여 생체분포를 평가할 수 있다. 이에, 인간 특이적 DNA 서열로서 Alu를 검출할 수 있는 primer를 이용하였다.In order to evaluate the distribution in the body after administration of stem cell therapy products, it should be evaluated with a sensitive method that can be detected. Since human stem cells are administered to animals, biodistribution can be evaluated by detecting and quantifying human-derived specific DNA sequences in animal tissues. Accordingly, a primer capable of detecting Alu was used as a human-specific DNA sequence.
그 결과, 도 6에 나타낸 바와 같이, 다른 대조군들에 비해, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC 투여 후 두개골에 자석을 부착시킨 군(MSC-IONP+Mag)에서 가장 현저하고 유의하게 많은 수의 줄기세포가 검출되었다. As a result, as shown in FIG. 6, compared to other control groups, the most remarkable and A significant number of stem cells were detected.
이를 통하여 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC를 알츠하이머 질환 모델의 뇌실에 투여한 후 두개골 부위에 자석을 위치시켰을 때, 목적 세포인 중간엽 줄기세포의 목적 위치인 뇌 내 잔존량이 증가함을 확인할 수 있다.Through this, when Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention is administered to the ventricle of an Alzheimer's disease model and a magnet is placed on the skull, the remaining amount in the brain, which is the target location of mesenchymal stem cells, is the target cell increase can be seen.
따라서, 외부 자성에 의한 표적 위치로의 이동 및 생착이 증가되어 생체 내 시스템에서도 효과가 있는 것으로 평가되었다.Therefore, it was evaluated that the migration and engraftment to the target site by external magnetism are increased and thus effective in an in vivo system.
실시예 7. 알츠하이머 질환 모델에서의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 자석 유도(MSC-IONP+Mag)를 통한 치료 효과Example 7. Therapeutic effect through magnetic induction (MSC-IONP+Mag) of Wharton's jelly-derived MSC containing iron oxide nanoparticles in Alzheimer's disease model
본 발명자들은 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 뇌실 투여 후 자석 유도에 따른 알츠하이머 병 치료 효과를 확인하고자, 도 7a의 실험을 수행하였으며, 알츠하이머 병의 주요 병인으로 잘 알려진 Amyloid plaque를 염색하는 thioflavin S 염색을 조직병리 슬라이드에서 진행하였다. The present inventors performed the experiment of FIG. 7a to confirm the treatment effect of Alzheimer's disease according to magnetic induction after administration of MSC derived from Wharton's jelly containing iron oxide nanoparticles of the present invention to the brain, and Amyloid, which is well known as the main cause of Alzheimer's disease Thioflavin S staining, which stains plaques, was performed on histopathology slides.
그 결과, 도 7b에 나타낸 바와 같이, 정상군(WT)에서는 관찰되지 않았던 아밀로이드 베타 플라크(amyloid beta plaque, Aβ)가 TG 실험군에서 관찰되었으며, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC 투여 후 두개골에 자석을 부착시킨 자석 유도군(MSC-IONP+Mag)에서 가장 현저하게 감소하는 것을 확인하였다. As a result, as shown in FIG. 7B, amyloid beta plaque (Aβ), which was not observed in the normal group (WT), was observed in the TG experimental group, and Wharton's jelly-derived MSC containing iron oxide nanoparticles of the present invention After administration, it was confirmed that the most significant decrease was observed in the magnet-induced group (MSC-IONP+Mag) in which a magnet was attached to the skull.
또한, 촬영된 형광 현미경 이미지를 이용하여 전체 뇌 영역에서의 amlyoid plaque의 개수 및 amyloid plaque가 차지하고 있는 영역 (Area fraction)을 분석하였다. In addition, the number of amlyoid plaques and the area occupied by the amyloid plaques (Area fraction) in the whole brain region were analyzed using the fluorescence microscope images.
그 결과, 도 7c에 나타낸 바와 같이, 산화철 나노입자가 함유되지 않은 중간엽 줄기세포 투여군(MSC)과 본 발명의 산화철 나노입자가 함유된 중간엽 줄기세포에 자석을 부착한 실험군(MSC-IONP+Mag)에서 plaque 개수 및 전체 뇌 영역에서 amyloid plaque가 차지하고 있는 영역이 현저하게 감소하였다. As a result, as shown in FIG. 7c, the mesenchymal stem cell administration group (MSC) without iron oxide nanoparticles and the experimental group in which magnets were attached to mesenchymal stem cells containing iron oxide nanoparticles of the present invention (MSC-IONP+ The number of plaques in Mag) and the area occupied by amyloid plaques in the entire brain area were significantly reduced.
상기 결과들을 바탕으로, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC를 알츠하이머 질환 모델의 뇌실에 투여한 후 두개골 부위에 자석을 위치시켰을 때, 알츠하이머 병의 원인인 아밀로이드 플라크 제거 효과가 높게 나타나는 것을 확인하였다.Based on the above results, when Wharton's jelly-derived MSC containing iron oxide nanoparticles of the present invention was administered to the ventricle of an Alzheimer's disease model and then a magnet was placed on the skull, the effect of removing amyloid plaques, which is the cause of Alzheimer's disease, was high. confirmed to appear.
실시예 8. 알츠하이머 질환 모델에서의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 자석 유도(MSC-IONP+Mag) 다중 투여에 따른 유리한 효과Example 8. Beneficial effects of multiple administrations of magnet-induced (MSC-IONP+Mag) MSC derived from Wharton's jelly containing iron oxide nanoparticles in Alzheimer's disease model
본 발명자들은 알츠하이머 질환 모델에서 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 뇌실 투여 후 자석 유도(MSC-IONP+Mag)의 반복에 따라 달성되는 유리한 효과를 확인하기 위하여, 5xFAD 마우스 뇌의 H&E 염색, thioflavin S 염색 및 행동학적 변화(activity 및 anxiety)를 관찰하였다. In an Alzheimer's disease model, the present inventors investigated the beneficial effect achieved by repeating magnetic induction (MSC-IONP+Mag) after ventricular administration of Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention, 5xFAD mouse brain H&E staining, thioflavin S staining, and behavioral changes (activity and anxiety) were observed.
이때, 알츠하이머 질환 마우스에게, 1주 간격으로 총 3회 줄기세포 투여하였고, 각 투여 1주일 후 희생하였다(도 8a).At this time, the stem cells were administered to Alzheimer's disease mice a total of three times at intervals of one week, and sacrificed one week after each administration (FIG. 8a).
그 결과, 도 8b에 나타낸 바와 같이, MSC-IONP+Mag 3회 반복한 5xFAD 마우스 뇌를 H&E 염색했을 때 본 발명의 MSC-IONP+Mag군에서, 주입됐던 와튼 젤리 유래-MSC가 응집되어 측뇌실에 가장 많이 잔존하고 있음을 확인할 수 있었다.As a result, as shown in FIG. 8B, when H&E staining of 5xFAD mouse brains repeated three times with MSC-IONP+Mag, in the MSC-IONP+Mag group of the present invention, Wharton's jelly-derived-MSCs that had been injected aggregated in the lateral ventricle. It was found that most of them remained.
또한, 도 8c에 나타낸 바와 같이, MSC-IONP+Mag 3회 반복한 5xFAD 마우스 뇌를 thioflavin S 염색했을 때, 본 발명의 MSC-IONP+Mag군에서, 알츠하이머 병의 원인인 아밀로이드 플라크 제거 효과가 가장 높게 나타나는 것을 확인하였다. 또한, 촬영된 형광 현미경 이미지를 이용하여 전체 뇌 영역에서의 amlyoid plaque의 개수 및 amyloid plaque가 차지하고 있는 영역 (Area fraction)을 분석했을 때, 도 8d에 나타낸 바와 같이, 본 발명의 MSC-IONP+Mag군에서, plaque 개수 및 전체 뇌 영역에서 amyloid plaque가 차지하고 있는 영역이 현저하게 감소하였다. In addition, as shown in FIG. 8c, when thioflavin S staining of 5xFAD mouse brains repeated three times with MSC-IONP+Mag, the amyloid plaque removal effect, which is the cause of Alzheimer's disease, was the highest in the MSC-IONP+Mag group of the present invention. It was confirmed that it appeared high. In addition, when the number of amlyoid plaques and the area occupied by amyloid plaques (Area fraction) in the whole brain area were analyzed using the fluorescence microscopy images taken, as shown in FIG. 8d, the MSC-IONP+Mag of the present invention In the group, the number of plaques and the area occupied by amyloid plaques in the whole brain area were significantly reduced.
또한, 실험 동물의 행동(activity) 및 불안(anxiety)을 확인할 수 있는 open field 행동 평가 결과, 도 8e에 나타낸 바와 같이, 투여 2회차부터 행동학적 변화가 나타나기 시작하였다. 산화철 나노입자가 함유된 중간엽 줄기세포 2회 투여 직후부터 open field의 중앙에 머무는 시간, 진입 횟수, 움직인 거리가 증가하였다. In addition, as a result of open field behavioral evaluation that can confirm the activity and anxiety of the experimental animals, behavioral changes began to appear from the second administration, as shown in FIG. 8e. Immediately after the second administration of mesenchymal stem cells containing iron oxide nanoparticles, the time to stay in the center of the open field, the number of entries, and the distance moved increased.
이 결과를 바탕으로, 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC를 알츠하이머 질환 모델의 뇌실에 투여한 후 두개골 부위에 자석을 위치시키는 과정을 3회 이상 실시하는 경우, 생착(engraft)된 와튼 젤리 유래-MSC 안에 산화철 나노입자가 계속하여 잔존하는 것을 확인했을 뿐만 아니라, 알츠하이머 질환으로 인해 감소됐던 운동성(activity)이 증가하고 불안감(anxiety)은 개선된 것으로 확인되었다.Based on this result, after administering Wharton's jelly-derived MSCs containing iron oxide nanoparticles of the present invention to the ventricle of an Alzheimer's disease model, engraftment occurs when the process of placing magnets on the skull is performed three or more times. It was confirmed that iron oxide nanoparticles continued to remain in Wharton's jelly-derived MSC, and that activity, which had been reduced due to Alzheimer's disease, increased and anxiety was improved.
실시예 9. 알츠하이머 질환 모델에서의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 자석 유도(MSC-IONP+Mag) 다중 투여 후 유전자 발현 수준 변화 확인Example 9. Confirmation of change in gene expression level after multiple administration of magnetic induction (MSC-IONP+Mag) of Wharton's jelly-derived MSC containing iron oxide nanoparticles in Alzheimer's disease model
본 발명자들은, 알츠하이머 질환 모델에서 본 발명의 산화철 나노입자가 함유된 와튼 젤리 유래-MSC의 뇌실 투여 후 자석 유도(MSC-IONP+Mag)의 반복에 따른 유전자 발현 수준 변화를 확인하였다.In the Alzheimer's disease model, the present inventors confirmed changes in gene expression levels according to repetition of magnetic induction (MSC-IONP+Mag) after intraventricular administration of Wharton's jelly-derived MSC containing the iron oxide nanoparticles of the present invention.
그 결과, 도 9에 나타낸 바와 같이, 알츠하이머병 패널에서 실험 그룹 간의 유클리드 클러스터링(n=3)(도 9A); 신경염 패널에서 실험 그룹 간의 유클리드 클러스터링(n=3)(도 9B); TG와 비교하여 줄기세포 치료 후 알츠하이머병 패널에서 증가 또는 감소(밑줄)한 유전자의 수(도 9C); TG와 비교하여 줄기세포 처리 후 신경염 패널에서 증가 또는 감소(밑줄)한 유전자의 수(도 9D); 5xFAD 마우스 뇌에서 알츠하이머병 관련 유전자 발현(TG, MSC, MSC-IONP, MSC-IONP+Mag)의 점진적인 증가 및 감소를 나타내는 히트 맵(도 9E); 및 5xFAD 마우스 뇌에서 신경 염증 관련 유전자 발현(TG, MSC, MSC-IONP, MSC-IONP+Mag)의 연속 증가 및 감소를 나타내는 히트 맵(도 9F)이 확인되었다.As a result, as shown in Fig. 9, Euclidean clustering between the experimental groups in the Alzheimer's disease panel (n = 3) (Fig. 9A); Euclidean clustering between experimental groups in the neuritis panel (n=3) (FIG. 9B); Number of genes increased or decreased (underlined) in the Alzheimer's disease panel after stem cell treatment compared to TG (FIG. 9C); Number of genes increased or decreased (underlined) in the neuritis panel after stem cell treatment compared to TG (FIG. 9D); Heat map showing progressive increase and decrease of Alzheimer's disease-related gene expression (TG, MSC, MSC-IONP, MSC-IONP+Mag) in 5xFAD mouse brain (FIG. 9E); And a heat map (FIG. 9F) showing sequential increases and decreases in neuroinflammation-related gene expression (TG, MSC, MSC-IONP, MSC-IONP+Mag) in the 5xFAD mouse brain.
상기 결과들은, 와튼 젤리 유래-MSC 투여에 따라 5xFAD 마우스 뇌에서 알츠하이머병 및 신경염증 관련 유전자 발현이 정상적으로 회복되고 있음을 시사한다. 더하여 이런 경향성은 산화철 나노입자가 함유된 와튼 젤리 유래-MSC를 투여하였을 때 더욱 두드러지게 나타나며, 특히 산화철 나노입자가 함유된 와튼 젤리 유래-MSC를 투여한 뒤 자석 유도한 경우 가장 변화의 폭이 크게 나타나는 것을 관찰하였다. 이를 통하여 와튼 젤리 유래-MSC 또는 산화철 나노입자가 함유된 와튼 젤리 유래-MSC가 5xFAD 형질전환 마우스의 뇌실에 투여되었을 때, 영향을 미치는 대상 유전자를 선별할 수 있으며 구체적인 치료 기전을 밝히는 후속 연구가 필요함을 시사한다.The above results suggest that the expression of Alzheimer's disease and neuroinflammation-related genes is normally restored in the brain of 5xFAD mice according to Wharton's jelly-derived MSC administration. In addition, this tendency is more pronounced when Wharton's jelly-derived MSC containing iron oxide nanoparticles is administered, and in particular, when magnetic induction is performed after administration of Wharton's jelly-derived MSC containing iron oxide nanoparticles, the change is the greatest. observed to appear. Through this, when Wharton's jelly-derived MSC or Wharton's jelly-derived MSC containing iron oxide nanoparticles are administered to the ventricles of 5xFAD transgenic mice, it is possible to select target genes that affect it, and follow-up studies are needed to identify specific treatment mechanisms. suggests
진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.The description of the present invention described above is for illustrative purposes, and those skilled in the art can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (16)

  1. 자성 나노입자를 함유한 중간엽 줄기세포, 세포 유래 엑소좀, 세포막 유래 나노입자 및 세포 분비물로 이루어진 군으로부터 선택된 1 종 이상을 포함하는, 신경질환의 예방 또는 치료용 약학적 조성물로서,A pharmaceutical composition for preventing or treating neurological diseases, comprising at least one selected from the group consisting of mesenchymal stem cells containing magnetic nanoparticles, cell-derived exosomes, cell membrane-derived nanoparticles, and cell secretions,
    상기 조성물은 외부 자성체를 적용하여, 상기 자성 나노입자를 함유한 중간엽 줄기세포, 세포 유래 엑소좀, 세포막 유래 나노입자 및 세포 분비물로 이루어진 군으로부터 선택된 1 종 이상을 대상체의 치료 조직 또는 기관으로 이동시켜 표적화하는 것인, 조성물.The composition applies an external magnetic substance to move at least one selected from the group consisting of mesenchymal stem cells containing the magnetic nanoparticles, cell-derived exosomes, cell membrane-derived nanoparticles, and cell secretions to a tissue or organ to be treated To target by, the composition.
  2. 제1항에 있어서,According to claim 1,
    상기 자성 나노입자는 FeO, Fe2O3, Fe3O4, FePt, CoPt, MnFe2O4, CoFe2O4, NiFe2O4 및 ZnFe2O4로 이루어진 군으로부터 선택된 1 종 이상인 것인, 조성물. Wherein the magnetic nanoparticles are at least one selected from the group consisting of FeO, Fe 2 O 3 , Fe 3 O 4 , FePt, CoPt, MnFe 2 O4, CoFe 2 O4, NiFe 2 O 4 and ZnFe 2 O 4 , a composition .
  3. 제2항에 있어서,According to claim 2,
    상기 자성 나노입자는 FeO, Fe2O3 및 Fe3O4로 이루어진 군으로부터 선택된 1 종 이상의 산화철인 것인, 조성물.The magnetic nanoparticles are FeO, Fe 2 O 3 And Fe 3 O 4 Of one or more types of iron oxide selected from the group consisting of, the composition.
  4. 제1항에 있어서,According to claim 1,
    상기 조성물은 뇌실 투여용 또는 정맥 투여용인 것인, 조성물.Wherein the composition is for ventricular administration or intravenous administration.
  5. 제1항에 있어서,According to claim 1,
    상기 중간엽 줄기세포는 와튼 젤리, 탯줄, 골수, 지방조직, 혈액, 제대혈, 간장, 피부, 위장관, 태반 및 자궁으로 이루어진 군으로부터 선택된 1 종 이상으로부터 유래된 것인, 조성물.The mesenchymal stem cells are derived from one or more selected from the group consisting of Wharton's jelly, umbilical cord, bone marrow, adipose tissue, blood, cord blood, liver, skin, gastrointestinal tract, placenta and uterus, composition.
  6. 제5항에 있어서,According to claim 5,
    상기 중간엽 줄기세포는 와튼 젤리로부터 유래된 것인, 조성물.The composition, wherein the mesenchymal stem cells are derived from Wharton's jelly.
  7. 제1항에 있어서, According to claim 1,
    상기 신경질환은 신경조직 내 아밀로이드 베타 플라크 형성, 신경세포 내 타우 단백질의 인산화, 신경돌기의 이상, 신경세포 내의 네프릴리신의 발현 감소 및 이들의 조합으로 이루어진 군으로부터 선택된 1 종 이상에 의하여 유발되는 질환인 것인, 조성물.The neurological disease is a disease caused by at least one selected from the group consisting of amyloid beta plaque formation in nerve tissue, phosphorylation of tau protein in nerve cells, abnormality of neurites, decreased expression of neprilysin in nerve cells, and combinations thereof. which is, the composition.
  8. 제7항에 있어서, According to claim 7,
    상기 신경질환은 알츠하이머 병, 파킨슨병, 우울증, 간질, 다발성경화증 및 조증으로 이루어진 군으로부터 선택된 1 종 이상인 것인, 조성물.The neurological disease is at least one selected from the group consisting of Alzheimer's disease, Parkinson's disease, depression, epilepsy, multiple sclerosis and mania, the composition.
  9. 자성 나노입자를 함유한 중간엽 줄기세포를 포함하는, 신경질환 치료용 세포치료제로서,As a cell therapy agent for the treatment of neurological diseases, including mesenchymal stem cells containing magnetic nanoparticles,
    상기 세포치료제는 외부 자성체를 적용하여 상기 자성 나노입자를 함유한 중간엽 줄기세포를 대상체의 치료 조직 또는 기관으로 이동시켜 표적화하는 것인, 세포치료제.The cell therapy agent is a cell therapy agent that targets mesenchymal stem cells containing the magnetic nanoparticles by applying an external magnetic material to a target tissue or organ to be treated.
  10. 자성 나노입자를 중간엽 줄기세포에 처리 및 배양하여, 상기 중간엽 줄기세포 내에 상기 자성 나노입자를 함유시키는 단계를 포함하는 자성 나노입자를 함유한 중간엽 줄기세포를 포함하는, 신경질환의 예방 또는 치료용 약학적 조성물의 제조 방법.Prevention or prevention of neurological diseases, including mesenchymal stem cells containing magnetic nanoparticles, comprising treating and culturing magnetic nanoparticles in mesenchymal stem cells to contain the magnetic nanoparticles in the mesenchymal stem cells; A method for preparing a therapeutic pharmaceutical composition.
  11. 제10항에 있어서,According to claim 10,
    상기 자성 나노입자의 처리 농도는 1 내지 1000μg/ml인 것인, 방법.The treatment concentration of the magnetic nanoparticles is 1 to 1000 μg / ml, the method.
  12. 제10항에 있어서,According to claim 10,
    상기 배양 시간은 24시간 내지 72시간인 것인, 방법.The culture time is 24 hours to 72 hours, the method.
  13. 자성 나노입자를 함유한 중간엽 줄기세포의 이식 및 분화 추적용 조성물로서,A composition for transplantation and differentiation tracking of mesenchymal stem cells containing magnetic nanoparticles,
    상기 조성물은 외부 자성체를 적용하여 상기 자성 나노입자를 함유한 중간엽 줄기세포를 표적화하는 것인, 조성물.Wherein the composition targets mesenchymal stem cells containing the magnetic nanoparticles by applying an external magnetic material.
  14. 대상(subject)에게 제9항의 세포치료제를 투여하는 단계 및 외부 자성체를 적용하여 상기 세포치료제를 표적 조직으로 위치시키는 단계를 포함하는, 신경질환의 치료 방법.A method for treating a neurological disorder, comprising administering the cell therapy agent of claim 9 to a subject and applying an external magnetic body to position the cell therapy agent to a target tissue.
  15. 제14항에 있어서, According to claim 14,
    상기 투여는 1회 내지 5회 투여되는 것인, 치료 방법.The treatment method, wherein the administration is administered 1 to 5 times.
  16. 제14항에 있어서, According to claim 14,
    상기 신경 질환은 알츠하이머 병이며, 상기 투여에 의하여 아밀로이드 플라크 제거 효과, 운동성 및 불안감이 개선되는 것인, 치료 방법.The neurological disease is Alzheimer's disease, and the amyloid plaque removal effect, mobility and anxiety are improved by the administration, the treatment method.
PCT/KR2022/014664 2021-09-29 2022-09-29 Pharmaceutical composition comprising magnetic nanoparticle-bearing mesenchymal stem cell for prevention or treatment of nerve disease and use thereof WO2023055129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210129145 2021-09-29
KR10-2021-0129145 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023055129A1 true WO2023055129A1 (en) 2023-04-06

Family

ID=85783250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014664 WO2023055129A1 (en) 2021-09-29 2022-09-29 Pharmaceutical composition comprising magnetic nanoparticle-bearing mesenchymal stem cell for prevention or treatment of nerve disease and use thereof

Country Status (2)

Country Link
KR (1) KR20230046267A (en)
WO (1) WO2023055129A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070202A1 (en) * 2009-09-18 2011-03-24 Paul Yarowsky Targeted delivery to the brain of magnetically labeled stem cells
KR20170048111A (en) * 2015-10-26 2017-05-08 동국대학교 산학협력단 Method of direct lineage reprogramming for generating neurons using electromagnetic-induced metalilic nanoparticle
KR20170084956A (en) * 2016-01-13 2017-07-21 연세대학교 산학협력단 Composition contationg of magnetic nanoparticles for stimulating differentiation of neural stem cell
KR20200128501A (en) * 2018-01-31 2020-11-13 서울대학교산학협력단 Nanovesicles from Adult Stem Cells and its use for targeted therapy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070202A1 (en) * 2009-09-18 2011-03-24 Paul Yarowsky Targeted delivery to the brain of magnetically labeled stem cells
KR20170048111A (en) * 2015-10-26 2017-05-08 동국대학교 산학협력단 Method of direct lineage reprogramming for generating neurons using electromagnetic-induced metalilic nanoparticle
KR20170084956A (en) * 2016-01-13 2017-07-21 연세대학교 산학협력단 Composition contationg of magnetic nanoparticles for stimulating differentiation of neural stem cell
KR20200128501A (en) * 2018-01-31 2020-11-13 서울대학교산학협력단 Nanovesicles from Adult Stem Cells and its use for targeted therapy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOUR FARSHID QIYAMI; MOGHADAM AMIR JOHARI; SHAKERI-ZADEH ALI; BAKHTIYARI MEHRDAD; SHABANI RONAK; MEHDIZADEH MEHDI: "Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton's jelly in Alzheimer's rat models", JOURNAL OF CONTROLLED RELEASE, ELSEVIER, AMSTERDAM, NL, vol. 321, 22 February 2020 (2020-02-22), AMSTERDAM, NL , pages 430 - 441, XP086135640, ISSN: 0168-3659, DOI: 10.1016/j.jconrel.2020.02.035 *

Also Published As

Publication number Publication date
KR20230046267A (en) 2023-04-05

Similar Documents

Publication Publication Date Title
Moraes et al. Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington's disease
Li et al. Silica-coated superparamagnetic iron oxide nanoparticles targeting of EPCs in ischemic brain injury
KR102184722B1 (en) Nanovesicles from Adult Stem Cells and its use for targeted therapy
Chen et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats
Nakajima et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury
Gu et al. Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord
ES2688945T3 (en) Mesenchymal stem cells for the treatment of CNS diseases
WO2015088286A1 (en) Pharmaceutical composition for treating cerebrovascular diseases, containing stem cell-derived exosome as active ingredient
US7968088B2 (en) Internally administered therapeutic agents for cranial nerve diseases comprising mesenchymal cells as an active ingredient
US20080131405A1 (en) Composition for treating a disease caused by neuronal insult comprising a human umbilical cord blood-derived mesenchymal stem cell as an active ingredient
Hour et al. Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton's jelly in Alzheimer's rat models
Zhang et al. The application of nanomaterials in stem cell therapy for some neurological diseases
Das et al. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury
WO2015005614A1 (en) Composition for preventing and treating liver fibrosis or liver cirrhosis, containing, as active ingredient, mesenchymal stem cells derived from human embryonic stem cells
US20110070202A1 (en) Targeted delivery to the brain of magnetically labeled stem cells
WO2021086139A1 (en) Method for promoting stem cell-derived exosome production by means of magnetic nanoparticle cluster
EP3403658A1 (en) Composition for treating ischemic diseases or neuroinflammatory diseases containing neural progenitor cells or secretome thereof as active ingredient
Egawa et al. A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation
WO2012156968A2 (en) Use of mesenchymal stem cells for the improvement of affective and cognitive function
WO2019151744A1 (en) Adult stem cell-derived nanovesicles and use thereof for targeted therapy
Ito et al. Validity of bone marrow stromal cell expansion by animal serum-free medium for cell transplantation therapy of cerebral infarct in rats—a serial MRI study
WO2021034164A1 (en) Pharmaceutical composition for alzheimer&#39;s treatment containing as active ingredient late-stage human mesenchymal stem cells induced to differentiate into glia-like cells
Doshmanziari et al. Mesenchymal stem cells act as stimulators of neurogenesis and synaptic function in a rat model of Alzheimer's disease
García-Belda et al. Intravenous SPION-labeled adipocyte-derived stem cells targeted to the brain by magnetic attraction in a rat stroke model: An ultrastructural insight into cell fate within the brain
WO2023055129A1 (en) Pharmaceutical composition comprising magnetic nanoparticle-bearing mesenchymal stem cell for prevention or treatment of nerve disease and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876901

Country of ref document: EP

Kind code of ref document: A1