WO2023054947A1 - Core-shell α-fe2o3@ws2/wox composition, photocatalyst for photoelectrochemical cell comprising same, and method for manufacturing same - Google Patents

Core-shell α-fe2o3@ws2/wox composition, photocatalyst for photoelectrochemical cell comprising same, and method for manufacturing same Download PDF

Info

Publication number
WO2023054947A1
WO2023054947A1 PCT/KR2022/013831 KR2022013831W WO2023054947A1 WO 2023054947 A1 WO2023054947 A1 WO 2023054947A1 KR 2022013831 W KR2022013831 W KR 2022013831W WO 2023054947 A1 WO2023054947 A1 WO 2023054947A1
Authority
WO
WIPO (PCT)
Prior art keywords
wox
shell
core
nanosheets
nanosheet
Prior art date
Application number
PCT/KR2022/013831
Other languages
French (fr)
Korean (ko)
Inventor
이병규
마소우이조흐레
타예비메이삼
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Publication of WO2023054947A1 publication Critical patent/WO2023054947A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present application relates to a core-shell ⁇ -Fe 2 O 3 @WS 2 /WOx composition, a photocatalyst for a photoelectrochemical cell including the same, and a method for preparing the same.
  • Photoelectrochemical (PEC) water splitting is one of the direct ways to convert solar energy into chemical energy that can be converted into electricity.
  • PEC water splitting is expected to play a remarkable role in sustainable energy production.
  • n-type semiconductors such as TiO 2 , BiVO 4 , ZnO and ⁇ -Fe 2 O 3 have been applied as photoanode materials to improve PEC performance.
  • TMDs transition metal dichalcogenides
  • MoS 2 and WS 2 have excellent catalytic activity as well as stability for energy applications. It has a variety of active sites, both active metal sites (W or Mo) and covalent (S or Se) sites.
  • the exfoliation layer of WS 2 has high thermal and chemical stability, a low coefficient of resistance and an appropriate band edge for enhanced visible light absorption.
  • the electronic properties of 2D TMD materials are highly dependent on their shape and fabrication method.
  • Exfoliated WS 2 in bulk form has an indirect band gap (1.35 eV), and in the form of a single layer or few layers, it becomes a direct band semiconductor (2.05 eV) and exhibits excellent optoelectronic properties. Depending on the type of solvent used, it can be obtained with a yield of 36% by a direct liquid exfoliation method, and research on this is continuously needed.
  • WS 2 is synthesized using a liquid phase exfoliation procedure in a solvent mixture (ethanol/water) with advantages of low toxicity, no additives and biocompatibility.
  • WS 2 nanosheets can be easily deposited on the surface of ⁇ -Fe 2 O 3 electrodes by a simple and inexpensive drop casting process to fabricate core-shell structures. Concentration, length, thickness and other parameters are controlled for the prepared WS 2 nanosheet precursor. The thickness and uniformity of WS 2 as a shell is optimized by the time it takes to drop on the surface of ⁇ -Fe 2 O 3 nanorods, and through this structure, PEC performance can be greatly improved.
  • Vfb flat band potential
  • WSCL space charge layer
  • ND donor concentration
  • Rct charge transfer resistance
  • Time of Flight-secondary ion mass spectrometry (ToF-SIMS)
  • the degree of penetration of WS 2 into the pores of the ⁇ -Fe 2 O 3 film can be investigated, and the depth of heat treatment and its effect on the surface can be confirmed.
  • One aspect of the present application relates to a method for manufacturing an electrode of a photoelectrochemical cell.
  • the manufacturing method includes preparing a substrate; Forming an ⁇ -Fe 2 O 3 nanorod film on the prepared substrate; and drop-casting a WS 2 nanosheet precursor on the formed ⁇ -Fe 2 O 3 nanorod film to heterocouple the core-shell ⁇ -Fe 2 O 3 and WS 2 .
  • forming the ⁇ -Fe 2 O 3 nanorod film may include mixing FeCl 3 .6H 2 O and NaNO 3 ; and calcining at 500 to 600 °C for 3 to 5 hours.
  • the WS 2 nanosheet precursor may be prepared by liquid phase exfoliation (LPE).
  • the WS 2 nanosheet precursor may be prepared by dissolving the WS 2 powder in a mixed solvent of ethanol and water; Sonicating the mixed solution; and centrifuging at 3000 to 4000 rpm for 30 to 90 minutes.
  • the hetero coupling step may include dropping a WS 2 nanosheet precursor onto the ⁇ -Fe 2 O 3 nanorod film; and heat-treating at 400 to 500 °C for 1 to 3 hours.
  • the step of dropping the WS 2 nanosheet precursor on the ⁇ -Fe 2 O 3 nanorod film may be repeated 6 times or less.
  • One aspect of the present application relates to a composition for a photocatalyst.
  • the core may include ⁇ -Fe 2 O 3 nanorods
  • the shell may include mixed nanosheets of WS 2 and WO x .
  • the length of the mixed nanosheet may be 200 nm or less.
  • the average thickness of the mixed nanosheets may be 12 nm or less.
  • Another aspect of the present application relates to an electrode for a photoelectrochemical cell.
  • the electrode may be laminated on a substrate and a composition for photocatalysis of a photoelectrochemical cell in the form of a film on the substrate.
  • Another aspect of the present application relates to photoelectrochemical cells.
  • the photoelectrochemical cell may include a photoelectrochemical cell electrode.
  • a heterojunction is formed with ⁇ -Fe 2 O 3 nanorods using WS 2 nanosheets prepared through a liquid-phase exfoliation process, and the prepared core-shell ⁇ -Fe 2 O 3 @WS 2 /WOx structure has excellent PEC performance. It can be optimized by the concentration, layer and thickness parameters of WS 2 nanosheets using a low-cost and simple synthetic process to improve efficiency. In this core-shell ⁇ -Fe 2 O 3 @WS2/WOx structure, penetration of WS 2 into the pores of the ⁇ -Fe 2 O 3 film can be investigated by TOF-SIMS analysis.
  • the optimal ⁇ -Fe 2 O 3 @4WS 2 /WOx electrode with a 5.7 nm-thick WS 2 shell exhibits a photocurrent density of 0.98 mA.cm ⁇ 2 at 1.23 VRHE, which is 14 times lower than the pure ⁇ -Fe 2 O 3 electrode. times higher than that of the ⁇ -Fe 2 O 3 @4WS 2 /WOx electrode due to the increased efficiency of photogenerated charge carriers, the facile hole extraction through the fabricated core-shell heterojunction, and the reduced resistance due to the reduced recombination rate of electrons. PEC performance can be improved.
  • Figure 1 shows (a) UV-Vis absorption spectrum (inside is a schematic diagram of the ultrasonic effect in the liquid-phase exfoliation method), (b) Raman scattering excitation spectrum, and (c) AFM images and height profiles of exfoliated WS 2 nanosheets. it is a drawing
  • FIG. 2 is a diagram showing AFM images and highest profiles of WS 2 nanosheets doped 2 times, 4 times, and 8 times with WS 2 .
  • Figure 3 is a high-resolution TEM image of the selected area
  • the inset in (c) shows a hexagonal arrangement of atoms with zigzag edges
  • (d) is a TEM image of a typical WS 2 sample and the inset is a WS 2 nanosheet.
  • FFT Fast Fourier Transform
  • FIG. 4 is a plan view FE-SEM image of (a) pure ⁇ -Fe 2 O 3 and (b) ⁇ -Fe 2 O 3 @4WS 2 /WOx, (c) ⁇ -Fe 2 O 3 , (d) ⁇ -Fe 2 O 3 @4WS 2 /WOx cross-sectional FE-SEM images, (e) and (f) ⁇ -Fe 2 O 3 @4WS 2 /WOx HRTEM images of core-shell nanorod structures, (g) ⁇ -Fe HRTEM images of 2 O 3 @2WS 2 /WOx photoanode, (h) ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode, (i) ⁇ -Fe 2 O 3 @8WS 2 /WOx photoanode and (j ) SEM mapping and EDX analysis of the ⁇ -Fe 2 O 3 @4WS 2 /WOx electrode.
  • FIG. 6 shows XPS spectral results for (a) Fe 2p (b) O 1s (c) W 4f and (d) S 2p for pure ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @ 4WS 2 /WOx Graphs, XPS for (e) Fe 2p and (f) O 1 of pure ⁇ -Fe 2 O 3 electrodes, and (g) pure ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WOx electrodes. This is a graph of the survey analysis result.
  • Figure 7 is a time-of-flight secondary ion mass spectrometry (Time-of-Flight Secondary Ion Mass Spectrometry, TOF-SIMS) results, (a) to (d) are ⁇ -Fe 2 O 3 @4WS 2 /WOx electrodes It is a surface analysis result graph for the separation of WS 2 to WOx in , and (e) a depth profile and (f) a 3D image of ions in an ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode.
  • TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry
  • FIG. 13 shows (a) UPS spectra for pure ⁇ -Fe 2 O 3 and WS 2 , schematic diagrams of electronic band structures of ⁇ -Fe 2 O 3 and WS 2 before (b) and after (c) heterojunction, and (d) ) is a schematic diagram of the mechanism and structure for a stable core-shell ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode.
  • nano may refer to a size in a nanometer (nm) unit, for example, from 1 to 1,000 nm, but is not limited thereto.
  • nanoparticle in this specification may mean a particle having an average particle diameter in nanometer (nm) units, for example, may mean a particle having an average particle diameter of 1 to 1,000 nm, but It is not limited.
  • a core-shell ⁇ -Fe 2 O 3 @WS 2 /WOx composition of the present application a photocatalyst for a photoelectrochemical cell including the same, and a manufacturing method thereof will be described in detail with reference to the accompanying drawings.
  • the accompanying drawings are illustrative, and the scope of the core-shell ⁇ -Fe 2 O 3 @WS 2 /WOx composition, photocatalyst for photoelectrochemical cell including the same, and manufacturing method of the present application is limited by the accompanying drawings. It is not.
  • Hematite ( ⁇ -Fe 2 O 3 ) precursor is prepared by mixing 0.15M FeCl 3 .6H 2 O and 1M NaNO 3 . HCl is added dropwise to the mixture to adjust the pH of the mixture to 1.5. After this, 80 mL of the solution-washed FTO is placed in a Teflon container placed on the bottom. The autoclave is set at 100° C. for 6 hours. Thereafter, the surface of the prepared ⁇ -FeOOH sample is washed with deionized water, and finally the electrode is fired at 500 to 600 ° C for 3 to 5 hours, for example, placed in an air furnace at 550 ° C for 4 hours, ⁇ -Manufacture Fe 2 O 3 nanorods.
  • the exfoliated WS 2 nanosheet precursor is prepared through the LPE (liquid phase exfoliation) method.
  • WS 2 bulk powder 300mg
  • a mixed solvent of ethanol 35mL
  • water 55mL
  • the precursor is sonicated continuously for 5 days.
  • the dispersion is centrifuged at 3000 to 4000 rpm for 30 to 90 minutes, for example, 3,500 rpm for 60 minutes. After this, the supernatant containing the thin WS 2 nanosheets is collected from the top of the solution.
  • the core-shell structures of ⁇ -Fe 2 O 3 and WS 2 are fabricated by a convenient and inexpensive drop casting procedure.
  • WS 2 nanosheet precursor 100 ⁇ L
  • the dropping process may be performed 10 times or less, for example, 2, 4, and 8 times, respectively, ⁇ -Fe 2 O 3 @2WS 2 /WOx, ⁇ -Fe 2 O 3 @4WS 2 /WOx, and ⁇ - It is expressed as Fe 2 O 3 @8WS 2 /WOx.
  • all of the prepared ⁇ -Fe 2 O 3 /WS2 samples are subjected to heat treatment at 400 to 500° C. for 1 to 3 hours, for example, in a furnace at 450° C. for 2 hours.
  • Electron paramagnetic resonance (EPR) measurements are performed in the X-band (9.64GHz) using the CW/Pulse EPR System (QM09). 1 mW of power absorbed by the sample is recorded at room temperature. The optical properties of the photoanode are measured by a Perkin Elmer UV-Vis-NIR model Lambda 950. Time-resolved photoluminescence (TRPL) is measured with the second harmonic beam of a Ti:sapphire laser (800 nm wavelength, 100 fs pulse width and 82 MHz repetition rate). The collected luminescence signal is dispersed by a monochromator (MS3504i, SOLAR TII) and then detected by a photomultiplier tube (PMT-100, Becker & Hickl).
  • a monochromator MS3504i, SOLAR TII
  • a standard three-electrode cell is used to measure the PEC performance.
  • ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 @2WS 2 /WOx, ⁇ -Fe 2 O 3 @4WS 2 /WOx and ⁇ -Fe 2 O 3 @8WS 2 /WOx photoanodes are applied as working electrodes.
  • the counter electrode is a platinum wire.
  • Ag / AgCl is used as a reference electrode in 1M NaOH (PH ⁇ 12) electrolyte, and is calculated as RHE through the following relational expression 1.
  • the PEC performance is measured at 100 mW/cm 2 under 300 W Xe lamp illumination on top of the photoelectrode in the voltage range of 0.3 to 1.5 V (vs. RHE).
  • EIS is measured at different potentials (0.9, 1, 1.1 V vs. RHE) by the same electrode formation.
  • ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WOx Total water dissociation at the photoanode is evaluated by measuring H 2 and O 2 evolution at 1.23 V versus RHE under 100 mW.cm ⁇ 2 irradiation in 1 M NaOH electrolyte.
  • the amount of hydrogen and oxygen gas produced is measured using a gas chromatography (GC) system (YL Instrument, 6500GC System). Prior to measurement, the water decomposition reaction nitrogen gas was purged through the cell for 2 hours to remove air remaining in the reaction vessel. Turn on the light source and measure the amount of oxygen and hydrogen released with a sealed syringe every 20 minutes using a gas chromatograph for 2 hours.
  • a gas sample is injected into the GC and the resulting peak areas (AreaH 2 , AreaO 2 ) are recorded, and the emitted hydrogen-oxygen gas is calculated using the following relationship Equation 2.
  • F is the Faraday constant equal to 0.096487 C/ ⁇ mol
  • nH 2 /O 2 ( ⁇ mol) is the amount of H 2 or O 2 generated as determined by gas chromatography
  • N is the electron required to generate one molecule of H 2 or O 2 is the number of Assume that 2 electrons are required to produce 1 molecule of H 2 , and 4 electrons are required for 1 molecule of O 2 .
  • Q is the charge (electricity) in coulombs (C)
  • I is the current (amps, A)
  • t is the time (seconds).
  • Figure 1 shows (a) UV-Vis absorption spectrum (inside is a schematic diagram of the ultrasonic effect in the liquid-phase exfoliation method), (b) Raman scattering excitation spectrum, and (c) AFM images and height profiles of exfoliated WS 2 nanosheets. it is a drawing
  • AFM atomic force microscopy
  • NIR near-infrared
  • UV ultraviolet
  • the light absorption of the nanosheets can be seen at three major excitation points, A ( ⁇ 631 nm), B ( ⁇ 522 nm) and C ( ⁇ 423 nm), corresponding to the electronic band structure, which are observed in the exfoliated WS 2 nanosheets.
  • a and B excitation peaks as shown in FIG. 1A can be shifted by layer accumulation under sonication time and centrifuge speed.
  • the energy change between A and B may increase by enhancing the accumulation of layers.
  • Peak C is due to van der Waals interactions and is related to monolayer or multilayer materials.
  • the values indicated for peaks A, B and C indicate a significant contribution of several layered nanosheets.
  • Raman analysis of the WS 2 nanosheets shows strong signals at around 355 and 425 (cm ⁇ 1 ), which correspond to both in-plane E 1 2g and out-of-plane A 1g vibrations (FIG. 1b). These two peaks coincide with the peaks observed in the exfoliated WS 2 nanosheets.
  • the AFM results indicate three points (P1, P2 and P3) where the highest profile diagram of these three exfoliated WS 2 nanosheets shows a thickness of about 10 nm and a length of 140 nm ( Fig. 1c).
  • the length, thickness, and concentration of the exfoliated WS 2 nanosheets were estimated by the formula.
  • the following relational expression 2 can be used to calculate the thickness of the WS 2 nanosheet.
  • ⁇ A is the wavelength of peak A shown in Fig. 1a.
  • the thickness of the few-layer WS 2 nanosheets was calculated to be about 10 nm, indicating an exfoliated multilayer, and it could be confirmed that the AFM results approached the thickness.
  • the length ( ⁇ 140 nm) and concentration ( ⁇ 0.04 mg.mL -1 ) of the WS 2 nanosheets are calculated by relational expressions 3 and 4.
  • Equation 3 L is the average size of nanosheets and is estimated from the EXT B and EXT 345 values of the UV-Vis data.
  • amount of WS 2 precursor per photoelectrode area is calculated through relational expression 9, which is shown in Table 1.
  • FIG. 1a shows the role of sonication, which applies continuous ultrasound or vibration to an aqueous surfactant solution or organic solvent. This can be used to prevent changes in the electronic and chemical behavior of WS 2 during conversion from bulk to nanosheets.
  • Ultrasonic waves of the LPE method form small bubbles or pores in the solvent.
  • the cavity is continuously imploded to form bursts of energy. This energy generated by the standing wave pattern as organic solvent molecules pass through the cavities can hold the WS 2 nanosheets together to prevent reaggregation. Therefore, the interfacial reaction between the solvent molecules and the WS 2 nanosheets is greater than the interlayer force binding the WS 2 sheets in the bulk crystal.
  • FIG. 2 is a diagram showing AFM images and highest profiles of WS 2 nanosheets doped 2 times, 4 times, and 8 times with WS 2 .
  • AFM analysis of the WS 2 nanosheet precursor dropped 2, 4, and 8 times on a clean surface confirmed the thickness and uniformity of the deposited film. Through this, it can be confirmed that the uniform WS 2 nanosheets on the surface can be stabilized during the 2nd and 4th drop casting. However, in the case of drop casting 8 times, in some parts of the process, the thickness of WS 2 exceeds 10 nm, and it can be seen that the uniformity of the surface is disturbed. This uniformity may be the reason for the reduced PEC performance in the ⁇ -Fe 2 O 3 @8WS 2 /WOx photoanode.
  • Figure 3 is a high-resolution TEM image of the selected area
  • the inset in (c) shows a hexagonal arrangement of atoms with zigzag edges
  • (d) is a TEM image of a typical WS 2 sample and the inset is a WS 2 nanosheet. Shows the Fast Fourier Transform (FFT) pattern for
  • FIG. 3a shows random WS 2 nanosheet structures prepared using continuous sonication in the LPE method.
  • FIG. 3b clearly confirms the existence of a two-dimensional form of WS 2 having a length of (100-200) nm.
  • Figure 3c it can be seen that the hexagonal crystal structure of the WS 2 nanosheets is not damaged during the long-term sonication process.
  • FFT inset of FIG. 3C a hexagonal arrangement of atoms with zigzag edges can be seen.
  • the FFT image and electron diffraction pattern of the inner part of one nanosheet show a hexagonal arrangement with two close lattice distances of (0.27 and 0.16) nm, which are respectively the (100) and the standard interplanar distance of the (110) plane.
  • the structure is due to the uniform distribution of tungsten and sulfur elements in the entire individual WS 2 nanosheets.
  • FIG. 4 is a plan view FE-SEM image of (a) pure ⁇ -Fe 2 O 3 and (b) ⁇ -Fe 2 O 3 @4WS 2 /WOx, (c) ⁇ -Fe 2 O 3 , (d) ⁇ -Fe 2 O 3 @4WS 2 /WOx cross-sectional FE-SEM images, (e) and (f) ⁇ -Fe 2 O 3 @4WS 2 /WOx HRTEM images of core-shell nanorod structures, (g) ⁇ -Fe HRTEM images of 2 O 3 @2WS 2 /WOx photoanode, (h) ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode, (i) ⁇ -Fe 2 O 3 @8WS 2 /WOx photoanode and (j ) SEM mapping and EDX analysis of the ⁇ -Fe 2 O 3 @4WS 2 /WOx electrode.
  • ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WOx structures can be confirmed by SEM analysis.
  • ⁇ -Fe 2 O 3 is a structure of rice-shaped nanorods of random sizes arranged vertically on the FTO substrate.
  • the core-shell ⁇ -Fe 2 O 3 @4WS 2 /WOx nanorods become longer, denser, and wider after being fabricated as a heterojunction.
  • the thickness of the film of ⁇ -Fe 2 O 3 @4WS 2 /WOx increases to about 10 nm.
  • EDAX and elemental mapping are shown, and it can be confirmed that Fe, O, W, and S exist on the surface of the photoelectrode.
  • 4e to 4i show high-resolution TEM images of pure ⁇ -Fe 2 O 3 and core-shell ⁇ -Fe 2 O 3 @WS 2 /WOx nanorods, where the confirmed lattice for ⁇ -Fe 2 O 3
  • the spacing is ⁇ 0.25 nm, which is related to the grating 110; It is also shown in the XRD analysis results (see FIG. 5a).
  • FIG. 4e it can be clearly seen that WS2 completely surrounds the ⁇ -Fe 2 O 3 nanorods and forms a core-shell structure.
  • the exfoliated WS 2 nanosheet concentration value increases by repeating the drop-casting on the ⁇ -Fe 2 O 3 electrode surface 2 to 8 more times with 2WS 2 /WOx, 4WS 2 /WOx, and 8WS 2 /WOx, respectively ( see Table 1).
  • the thickness created by the concentration of the exfoliated WS 2 nanosheets on the surface of the ⁇ -Fe 2 O 3 nanorods affects the light harvesting and charge separation of the PEC performance.
  • increasing the concentration of WS 2 nanosheets on the outer surface of ⁇ -Fe 2 O 3 nanorods has a direct effect on increasing the thickness of the shell. Therefore, high resolution of ⁇ -Fe 2 O 3 @2WS 2 /WOx (Fig.
  • TEM images show different thicknesses of WS 2 nanosheets on ⁇ -Fe 2 O 3 nanorods of about 2.5, 5.7 and 11.8 nm.
  • a shell with an appropriate thickness of about 5.7 nm could be fabricated in the optimal state where the WS 2 nanosheet precursor was dropped onto the ⁇ -Fe 2 O 3 electrode ( ⁇ -Fe 2 O 3 @4WS 2 /WOx) four times. And through this, it can be confirmed that it can be provided with the best PEC performance. Therefore, the ⁇ -Fe 2 O 3 @4WS 2 /WOx photoelectrode can generate more electron-hole pairs, providing a denser core-shell structure for efficient light harvesting, which can increase the PEC performance.
  • XRD X-ray diffraction
  • the diffraction peaks at 33.75° and 13.96° correspond to the (100) and (200) planes, respectively, and may be related to the hexagonal WS 2 structure.
  • the other peaks are attributed to FTO since substrates were detected in all samples.
  • Raman spectra of pure ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode are shown in FIG. 5B.
  • the peaks observed at 221.3, 289.9, 404.2, 607.4, and 1,306.5 cm -1 indicate the Raman active mode of ⁇ -Fe 2 O 3 .
  • the spectrum of the ⁇ -Fe 2 O 3 @4WS 2 /Wox film shifts to higher wavelengths compared to the ⁇ -Fe 2 O 3 sample. compared to the ⁇ -Fe 2 O 3 sample. Shifting to higher wavenumbers indicates improved crystallinity of the material after Z-way heterojunction.
  • UV-vis absorption spectra of pure ⁇ - Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WOx thin films to evaluate the effect of WS 2 shell on the optical effect of ⁇ -Fe 2 O 3 nanorods. is measured (Fig. 5c).
  • the absorbance of the ⁇ -Fe 2 O 3 @4WS 2 /WOx thin film was somewhat improved by loading the WS 2 shell on the ⁇ -Fe 2 O 3 thin film.
  • a slight redshift indicates the presence of WS 2 nanosheets, which means that the absorbance intensity is improved.
  • the absorbance and bandgap energy of the pure ⁇ -Fe 2 O 3 and pure WS 2 photoanode are shown in FIGS. 5E and FI, respectively.
  • the band gap of the prepared ⁇ -Fe 2 O 3 and WS 2 is calculated by the Tauc equation (relational expression 6).
  • h ⁇ is the photon energy
  • Eg and A are proportionality constants.
  • LHE light-harvesting efficiency
  • A( ⁇ ) is the absorbance at different wavelengths.
  • the LHE enhancement is attributed to the fact that the combination of WS 2 nanosheets and ⁇ -Fe 2 O 3 heterojunctions has a notable complementary effect on optical properties, and that WS 2 nanosheets as shells play an important role in light capture efficiency.
  • FIG. 6 shows XPS spectral results for (a) Fe 2p (b) O 1s (c) W 4f and (d) S 2p for pure ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @ 4WS 2 /WOx Graphs, XPS for (e) Fe 2p and (f) O 1 of pure ⁇ -Fe 2 O 3 electrodes, and (g) pure ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WOx electrodes. This is a graph of the survey analysis result.
  • X-ray photoelectron spectroscopy (XPS) spectra were measured for the ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /Wox thin films to confirm the elemental composition of the surface ( FIGS. 6a to 6g ). It can be confirmed that O, Fe, and W elements exist on the surface of the prepared electrode. Carbon contamination and extraneous carbon in the XPS instrument appear as a C1s peak at 289.1 eV (Fig. 6g). The XPS spectrum of Fe 2p shows two peaks at about 710 and 723 eV for ⁇ -Fe 2 O 3 @4WS 2 /Wox thin film (Fig.
  • FIG. 6a shows the binding energies of two distinct diffraction O1 peaks at around 532 and 530 eV of -OH and Fe-O.
  • the area of the deconvoluted O1s peak in the ⁇ -Fe 2 O 3 @4WS 2 /WOx sample is increased compared to that of the pure ⁇ -Fe 2 O 3 electrode (FIG. 6f), which is a product of heat treatment (annealing).
  • Figure 7 is a time-of-flight secondary ion mass spectrometry (Time-of-Flight Secondary Ion Mass Spectrometry, TOF-SIMS) results, (a) to (d) are ⁇ -Fe 2 O 3 @4WS 2 /WOx electrodes It is a surface analysis result graph for the separation of WS 2 to WOx in , and (e) a depth profile and (f) a 3D image of ions in an ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode.
  • TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry
  • 3D three-dimensional
  • EPR electron spin resonance
  • the pore density of pure ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WOx samples was investigated using ESR spectral analysis (FIG. 8).
  • the intensity of the paramagnetic signal increases significantly after making the heterojunction. Therefore, these results indicate that the ⁇ -Fe 2 O 3 @4WS 2 /WOx electrode has more defects than the pure ⁇ -Fe 2 O 3 electrode.
  • g values of pure ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 photoanode are detected at about 2.002 and 1.989, respectively. The g value shifts to lower numbers, which may be related to electron deficient capacitance and high oxidation reaction.
  • the ESR results indicate the presence of sulfur vacancies because anions can donate unpaired electrons, which can enhance the photoelectrochemical performance for hydrogen production. Therefore, the ultra-thin WS 2 shell on the surface of the ⁇ -Fe 2 O 3 nanorods can promote hole migration to the electrode/electrolyte interface and enhance the oxidation reaction.
  • Photocurrent density versus potential for ⁇ -Fe 2 O 3 and all ⁇ -Fe 2 O 3 @4WS 2 /WOx electrodes was measured by linear scanning voltammetry (LSV) between (0.3–1.5) V versus RHE in 1 M NaOH solution as electrolyte. ) and chopping LSV (Fig. 9a and b).
  • the photocurrent density of the pure ⁇ -Fe 2 O 3 electrode was ⁇ 0.07 mA.cm -2 at 1.23 V vs. RHE.
  • the highest photocurrent density at RHE reaches 0.98 mA.cm -2 (FIG. 9a).
  • the photocurrent density of core-shell ⁇ -Fe 2 O 3 @4WS 2 /WOx is increased by a factor of 14 using a heterojunction between ⁇ -Fe 2 O 3 and WS 2 .
  • This structure can simultaneously improve charge separation and reduce recombination of charge carriers.
  • the photocurrent density value is greatly reduced due to WS 2 added to ⁇ -Fe 2 O 3 . This decrease may be due to excessive WS 2 blocking the light absorption of the photoanode (FIGS. 9A-9B).
  • the heterojunction of WS 2 nanosheets on the ⁇ -Fe 2 O 3 photoanode surface significantly reduces the onset potential with a lower applied voltage (0.38 VRHE).
  • Fig. 9e The photocurrent density and onset potential values for all fabricated photoelectrodes can be clearly compared in Fig. 9e.
  • the choking LSV in Fig. 9b was measured at 2 sec light on/off, which is consistent with the LSV result (Fig. 9a).
  • Fig. 9c shows the chronoamperometry scanned for 4 cycles under intermittent light illumination (lighting on/off). Identical responses to light on and off intervals indicate good reproducibility of the ⁇ -Fe 2 O 3 @WS 2 /WOx photoanode.
  • WOx is formed on the upper surface to prevent photocorrosion with a thin protective layer, improve the stability of alkali-weak WS 2 on the surface of ⁇ -Fe 2 O 3 photoanode in alkaline electrolyte (NaOH) solution, and improve alkali-weak MoS 2 and Effective separation between NaOH electrolytes can be achieved.
  • FIG. 9e Comparative results for photocathodes fabricated by different methods are shown in FIG. 9E , which confirms that holes with long lifetime appear at lower bias in the Fe 2 O 3 @4WS 2 /WOx photoanode. The negative shift in onset potential is in good agreement with the TRPL and long-term stability results. Also, referring to FIG. 9F, the ABPE value of the ⁇ -Fe 2 O 3 @WS 2 /WOx electrode is higher than that of pure ⁇ -Fe 2 O 3 in the potential range measured in 1M NaOH (pH ⁇ 14) as an electrolyte.
  • ABSPE applied bias photon-to-current conversion efficiency
  • J is the photocurrent density at various applied potentials
  • Vb means applied bias versus RHE
  • P is the power density of the incident light (100 mW/cm 2 ).
  • the ⁇ -Fe 2 O 3 @4WS 2 /WOx electrode can provide the highest efficiency (0.194%), which is 19.4 times higher than that of 0.01% pure ⁇ -Fe 2 O 3 . Higher. Therefore, the ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode shows the highest PEC water splitting effect among the prepared ⁇ -Fe 2 O 3 based photoelectrodes.
  • the conductivity of the core-shell ⁇ -Fe 2 O 3 @4WS 2 /Wox nanorod structure is due to increased available photogenerated electrons as well as reduced recombination of charge carriers at the ⁇ -Fe 2 O 3 @4WS 2 /Wox photoelectrode. increase due to concentration.
  • Mott-Schottky (MS) plots are shown in FIG. 10B, ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 @2WS 2 /WOx, ⁇ -Fe 2 O 3 @4WS 2 /WOx and ⁇ -Fe 2 O
  • the 3 @8WS 2 /WOx photoanode shows a positive slope before and after the heterojunction, which means the characteristics of an n-type semiconductor with electrons as charge carriers.
  • MS parameters, flat band potential (V fb ), space charge region width (W SCL ) and conduction band electron density (N D ) are calculated by relations 9, 10 and 11, respectively.
  • V is the CB potential (V)
  • V fb is the flat band potential (V)
  • k is the Boltzmann constant
  • T is the temperature (K)
  • e is the charge of electrons (C)
  • is the relative permittivity
  • ND is the donor concentration per unit volume (cm 3 )
  • C sc is the surface charge capacitance (F/cm 2 ).
  • W SCL The width of the space charge layer (W SCL ) can be calculated as shown in Equation 10 by solving Poisson's equation depending on N D and V fb .
  • the slope of the MS curve is greatly reduced, and the applied potential shows a cathodic shift.
  • the highest N D and lowest V fb of the ⁇ -Fe 2 O 3 @4WS 2 /WOx photoelectrode are calculated to be 1.35E+27m 3 and 0.52V, respectively (Fig. 10c), which is attributed to the increased electron density in the conduction band. and charge carrier separation is improved in the ⁇ -Fe 2 O 3 @4WS 2 /WOx thin film by the optimal shell thickness.
  • the highest value of W SCL in the ⁇ -Fe 2 O 3 @4WS 2 /WOx sample is about 54% of pure ⁇ -Fe 2 O 3 (6.86 nm).
  • the PEC performance can be improved by increasing the charge carrier transfer.
  • the photoelectrochemical performances of all samples in the visible light region are investigated using relational equation 12 to determine the incident-photon-to-current-efficiencies (IPCE). ) can be confirmed by measurement.
  • IPCE incident-photon-to-current-efficiencies
  • the highest IPCE values of ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode are 1.65 and 15.5% at 325 nm, respectively (FIG. 10d).
  • the highest IPCE value is the heterojunction effect with WS 2 nanosheets.
  • the IPCE found for ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode is 9.4 times higher than that for pure ⁇ -Fe 2 O 3 .
  • the enhanced IPCE curve corresponds to better results of the optical absorption analysis spectrum for the ⁇ -Fe 2 O 3 @4WS 2 /WOx sample under visible light. Therefore, the ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode can greatly enhance the PEC capacity of the ⁇ -Fe 2 O 3 based photoanode even without removing holes.
  • Photogenerated electron transfer at the ⁇ -Fe 2 O 3 :WS 2 :electrolyte interface by measuring electrochemical impedance spectroscopy (EIS) of ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WO x photoelectrodes.
  • EIS electrochemical impedance spectroscopy
  • 11A-11C show Nyquist plots at different potentials (0.9, 1.1.1 V vs. RHE) for ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WOx photoelectrodes. .
  • the ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode has a 1.1V vs. interfacial charge transfer resistance of the ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode. It shows that the lowest semicircle diameter greatly decreases at the voltage of RHE. This behavior can be attributed to the fabrication of core - shell heterojunctions using WS 2 nanosheets with improved hole extraction from ⁇ -Fe 2 O 3 to WS 2 thin films as shells. As a result, the ⁇ -Fe 2 O 3 @4WS 2 /WOx core-shell can reduce the recombination rate of charge carriers in the ⁇ -Fe 2 O 3 thin film, which is in perfect agreement with the TRPL data.
  • ⁇ 1 and ⁇ 2 are the lifetimes of long and short components, respectively, and A 1 and A 2 are the scaling factors of each component.
  • the average lifetime ( ⁇ ) is calculated through relational expression 14.
  • Table 3 shows the TRPL parameters of the photoanode fitted in the equivalent circuit model.
  • This significantly improved calculation of ⁇ ave shows that the use of WS 2 nanosheets as a heterojunction means that efficient charge transfer occurs between the ⁇ -Fe 2 O 3 and WS 2 semiconductors.
  • electron-hole pairs are better In isolation, better transfer of charge carriers at the ⁇ -Fe 2 O 3 @4WS 2 /WOx electrode can increase the PEC water oxidation efficiency.
  • the reaction barrier can be overcome by loading WS 2 nanosheets onto ⁇ -Fe 2 O 3 nanorods to improve hole transport through the electrode/electrolyte interface.
  • Fig. 12a the photocurrent density and apparent onset potential shift in the presence of H 2 O 2 for ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WOx photoelectrodes due to faster oxidation kinetics. This is greatly improved.
  • Photocurrent is typically generated through light absorption in semiconductors, separation of photogenerated charge carriers, and surface charge injection for PEC performance.
  • the surface charge injection efficiency ( ⁇ inj ) and charge separation efficiency ( ⁇ sep ) of the pure ⁇ -Fe 2 O 3 photoanode and the ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode are shown in FIGS. 12A and 12B .
  • the charge separation efficiency of the photogenerated carriers ( ⁇ sep ) and the charge injection efficiency into the electrolyte ( ⁇ inj ) are calculated by the following relationships 15, 16 and 17 at different applied biases using well-recognized hole removal methods.
  • J H2O and J H2O2 denote photocurrent densities measured in electrolytes of 1M NaOH and 1M NaOH + 0.5MH 2 O 2 , respectively.
  • ⁇ inj of ⁇ -Fe 2 O 3 increases from about 0.15 to 0.88 at 0.6 V RHE (FIG. 12b).
  • ⁇ sep and ⁇ inj are enhanced in ⁇ -Fe 2 O 3 @4WS 2 /WOx nanorod core-shell by fabricating a heterojunction with 2D-WS 2 nanosheets.
  • the value of ⁇ sep is about 0.003 to 0.09 at V RHE (FIG. 12c).
  • the total water dissociation of ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanodes generated H 2 and O 2 at 1.23 V vs RHE under 100 mW.cm -2 irradiation in 1 M NaOH electrolyte. Measure and evaluate.
  • the total H 2 generated after 2 hours of irradiation for the ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanodes was 1.39 and 32 ⁇ mol.cm, respectively.
  • FIG. 13 shows (a) UPS spectra for pure ⁇ -Fe 2 O 3 and WS 2 , schematic diagrams of electronic band structures of ⁇ -Fe 2 O 3 and WS 2 before (b) and after (c) heterojunction, and (d) ) is a schematic diagram of the mechanism and structure for a stable core-shell ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode.
  • 13D shows a schematic diagram of the charge carrier transport pathways in the ⁇ -Fe 2 O 3 @4WS 2 /WOx photoanode.
  • the electrons of VB gained energy from visible light illumination and transferred from the valence band (VB) to the conduction band (CB) in both ⁇ -Fe 2 O 3 and WS 2 semiconductors.
  • Charge separation increases after fabrication of core-shell ⁇ -Fe 2 O 3 @4WS 2 /WOx nanorod structures with improved PEC performance.
  • the recombination rate of electron-hole pairs decreases significantly with decreasing resistance at the interface and increasing charge carrier lifetime. Electrons can also move from the CB of WS 2 to the CB of ⁇ -Fe 2 O 3 at different energy levels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)

Abstract

A heterojunction with an α-Fe2O3 nanorod is formed by using WS2 nanosheets prepared through a liquid phase exfoliation process, and a fabricated core-shell α-Fe2O3@WS2/WOx structure can be optimized by the concentration, layer, and thickness parameters of the WS2 nanosheets by means of simple, low-cost synthesis in order to improve the efficiency of PEC performance. In this core-shell α-Fe2O3@WS2/WOx structure, the penetration of WS2 into the pores of a α-Fe2O3 film can be examined by means of a TOF-SIMS analysis. An optimal α-Fe2O3@4WS2/WOx electrode having a 5.7 nm-thick WS2 shell exhibits a photocurrent density of 0.98 mA.cm-2 at 1.23 VRHE, which is 14 times higher than that of a pure α-Fe2O3 electrode.

Description

코어-쉘 α-FE2O3@WS2/WOX 조성물, 이를 포함하는 광전기화학전지의 광촉매 및 이의 제조 방법Core-shell α-FE2O3@WS2/WOX composition, photocatalyst for photoelectrochemical cell containing the same, and manufacturing method thereof
본 출원은 코어-쉘 α-Fe2O3@WS2/WOx 조성물, 이를 포함하는 광전기화학전지용 광촉매 및 이의 제조 방법에 관한 것이다.The present application relates to a core-shell α-Fe 2 O 3 @WS 2 /WOx composition, a photocatalyst for a photoelectrochemical cell including the same, and a method for preparing the same.
광전기화학(PEC) 물 분해는 태양 에너지를 전기로 변환될 수 있는 화학 에너지로 변환하는 직접적인 방법 중 하나이다. 앞으로 PEC 물 분해는 지속 가능한 에너지 생산에서 놀라운 역할을 할 것으로 예상된다. 이 분야에서 이미 상당한 양의 연구가 수행되었지만, 태양광에서 수소로의 연료 변환을 위한 고효율 물 분해 전지에 대한 연구가 여전히 필요하다. TiO2, BiVO4, ZnO 및 α-Fe2O3와 같은 다양한 n형 반도체가 PEC 성능을 향상시키기 위한 광양극 재료로 적용되어 왔다.Photoelectrochemical (PEC) water splitting is one of the direct ways to convert solar energy into chemical energy that can be converted into electricity. In the future, PEC water splitting is expected to play a remarkable role in sustainable energy production. Although a considerable amount of research has already been done in this field, research on highly efficient water splitting cells for fuel conversion from sunlight to hydrogen is still needed. Various n-type semiconductors such as TiO 2 , BiVO 4 , ZnO and α-Fe 2 O 3 have been applied as photoanode materials to improve PEC performance.
그 중 적철광(α-Fe2O3)은 적당한 밴드갭(2.1eV), 친환경성, 풍부함, ca. 40% 태양 복사의 고 흡수 범위로 인해 많은 관심을 받고 있다. 또한, α-Fe2O3는 AM 1.5 G에서 1.23 V vs. RHE 12에서 약 12.6 mA cm-2 의 광전류 밀도에 해당하는 최대 태양-수소 변환 효율(15.3%)를 가진다. 그러나 α-Fe2O3는 또한 상당한 전하 재결합과 짧은 정공 확산 길이(LD = ~(2-4) nm)의 단점을 가지고 있다. 따라서, PEC 성능을 향상시키기 위한 새롭고 효율적인 방법에 대한 연구는 여전히 요구되는 분야이다. 전하 재결합을 극복하기 위한 가장 효과적인 방법 중 하나는 반도체 표면에 적절한 이종 접합을 형성하는 것이다.Among them, hematite (α-Fe 2 O 3 ) has a suitable band gap (2.1 eV), eco-friendliness, abundance, ca. It is getting a lot of attention due to its high absorption range of 40% solar radiation. Also, α-Fe 2 O 3 is 1.23 V vs. 1.5 G in AM. At RHE 12, it has a maximum solar-to-hydrogen conversion efficiency (15.3%) corresponding to a photocurrent density of about 12.6 mA cm -2 . However, α-Fe 2 O 3 also has the disadvantage of significant charge recombination and short hole diffusion length (LD = ~(2-4) nm). Therefore, research on new and efficient methods for improving PEC performance is still a demanding field. One of the most effective ways to overcome charge recombination is to form an appropriate heterojunction on the semiconductor surface.
현재 2차원 물질은 다양한 응용 분야에서 독점적인 잠재력과 특성을 가지고 있다. 2차원 물질 중에서 전이금속 디칼코게나이드(TMD)는 적절한 밴드 위치와 가시광선 영역에서 (5-10)%의 광 흡수로 인해 주목받고 있다. TMD, 특히 MoS2 및 WS2는 우수한 촉매 활성 뿐만 아니라 에너지 애플리케이션을 위한 안정성을 가진다. 이것은 활성 금속 사이트(W 또는 Mo) 및 공유(S 또는 Se) 사이트 두 가지 다양한 활성 사이트를 가진다. WS2의 박리 층은 높은 열적 안정성 및 화학적 안정성, 낮은 저항 계수 및 향상된 가시광선 흡수를 위한 적절한 밴드 에지를 가진다. 2차원 TMD 재료의 전자적 특성은 형태와 제조 방법에 크게 의존한다. 벌크 형태의 박리된 WS2는 간접밴드갭(1.35 eV)을 가지며, 단층 또는 소수층 형태에서는 직접 밴드 반도체(2.05 eV)가 되어 탁월한 광전자 특성을 나타낸다. 사용된 용매의 유형에 따라 직접 액체 박리 방법으로 36% 수율로 얻을 수 있으며, 이에 대한 연구가 지속적으로 필요하다.Currently, two-dimensional materials have exclusive potential and properties for various applications. Among two-dimensional materials, transition metal dichalcogenides (TMDs) are attracting attention due to their appropriate band positions and light absorption of (5-10)% in the visible region. TMDs, particularly MoS 2 and WS 2 , have excellent catalytic activity as well as stability for energy applications. It has a variety of active sites, both active metal sites (W or Mo) and covalent (S or Se) sites. The exfoliation layer of WS 2 has high thermal and chemical stability, a low coefficient of resistance and an appropriate band edge for enhanced visible light absorption. The electronic properties of 2D TMD materials are highly dependent on their shape and fabrication method. Exfoliated WS 2 in bulk form has an indirect band gap (1.35 eV), and in the form of a single layer or few layers, it becomes a direct band semiconductor (2.05 eV) and exhibits excellent optoelectronic properties. Depending on the type of solvent used, it can be obtained with a yield of 36% by a direct liquid exfoliation method, and research on this is continuously needed.
본 출원에 의하면, WS2는 낮은 독성, 무첨가 및 생체 적합성의 장점을 갖는 용매 혼합물(에탄올/물)에서 액상 박리 절차를 사용하여 합성된다. WS2 나노시트는 코어-쉘 구조를 제조하기 위한 간단하고 저렴한 드롭 캐스팅 공정에 의해, α-Fe2O3 전극 표면에 쉽게 증착될 수 있다. 준비된 WS2 나노시트 전구체에 대해 농도, 길이, 두께 및 기타 매개변수를 제어한다. 쉘로서 WS2의 두께와 균일성은 α-Fe2O3 나노로드의 표면에 적하하는 시간에 의해 최적화되고, 이러한 구조를 통하여 PEC 성능을 크게 향상시킬 수 있다. 본 출원의 조성물에 대한 플랫 밴드 전위(Vfb), 공간 전하 층(WSCL), 도너 농도(ND), 나노로드의 기하학 및 전하 이동 저항(Rct) 값은 Mott-Schottky 및 EIS 분석에 의해 체계적으로 확인할 수 있다. PL 및 TRPL 스펙트럼을 측정하여, 전하 캐리어의 평균 붕괴 시간을 산출하고 코어-쉘 구조의 α-Fe2O3@4WS2/WOx 나노로드에서 재결합 속도의 감소를 확인할 수 있다. 또한 ToF-SIMS(Time of Flight-secondary ion mass spectrometry)를 사용하여 α-Fe2O3 필름의 기공에 WS2 침투 정도를 조사하고 열처리의 깊이와 표면에 미치는 영향을 확인할 수 있다. According to the present application, WS 2 is synthesized using a liquid phase exfoliation procedure in a solvent mixture (ethanol/water) with advantages of low toxicity, no additives and biocompatibility. WS 2 nanosheets can be easily deposited on the surface of α-Fe 2 O 3 electrodes by a simple and inexpensive drop casting process to fabricate core-shell structures. Concentration, length, thickness and other parameters are controlled for the prepared WS 2 nanosheet precursor. The thickness and uniformity of WS 2 as a shell is optimized by the time it takes to drop on the surface of α-Fe 2 O 3 nanorods, and through this structure, PEC performance can be greatly improved. The flat band potential (Vfb), space charge layer (WSCL), donor concentration (ND), geometry of the nanorods and charge transfer resistance (Rct) values for the composition of the present application were systematically confirmed by Mott-Schottky and EIS analyses. can By measuring the PL and TRPL spectra, it is possible to calculate the average decay time of the charge carriers and to confirm the decrease in the recombination rate in the core-shell α-Fe 2 O 3 @4WS 2 /WOx nanorod. In addition, using Time of Flight-secondary ion mass spectrometry (ToF-SIMS), the degree of penetration of WS 2 into the pores of the α-Fe 2 O 3 film can be investigated, and the depth of heat treatment and its effect on the surface can be confirmed.
본 출원의 일 측면은 광전기화학전지의 전극의 제조 방법에 관한 것이다. One aspect of the present application relates to a method for manufacturing an electrode of a photoelectrochemical cell.
일 예시에서, 상기 제조 방법은 기판을 준비하는 단계; 준비된 기판 상에 α-Fe2O3 나노로드 필름을 형성하는 단계; 및 형성된 α-Fe2O3 나노로드 필름에 WS2 나노시트 전구체를 드롭 캐스팅(drop casting)하여 코어-쉘 형상의 α-Fe2O3 및 WS2의 헤테로 결합시키는 단계를 포함할 수 있다.In one example, the manufacturing method includes preparing a substrate; Forming an α-Fe 2 O 3 nanorod film on the prepared substrate; and drop-casting a WS 2 nanosheet precursor on the formed α-Fe 2 O 3 nanorod film to heterocouple the core-shell α-Fe 2 O 3 and WS 2 .
일 예시에서, α-Fe2O3 나노 로드 필름을 형성하는 단계는, FeCl3.6H2O와 NaNO3를 혼합하는 단계; 및 500 내지 600 ℃에서 3 내지 5시간 소성하는 단계를 포함할 수 있다.In one example, forming the α-Fe 2 O 3 nanorod film may include mixing FeCl 3 .6H 2 O and NaNO 3 ; and calcining at 500 to 600 °C for 3 to 5 hours.
일 예시에서, WS2 나노시트 전구체는 액체 상 박리법(liquid phase exfoliation, LPE)에 의해 제조될 수 있다.In one example, the WS 2 nanosheet precursor may be prepared by liquid phase exfoliation (LPE).
일 예시에서, WS2 나노시트 전구체는 WS2 분말을 에탄올 및 물의 혼합용매에 용해하는 단계; 혼합용액을 초음파처리하는 단계; 및 3000 내지 4000 rpm에서 30 내지 90 분 동안 원심분리하는 단계를 포함할 수 있다.In one example, the WS 2 nanosheet precursor may be prepared by dissolving the WS 2 powder in a mixed solvent of ethanol and water; Sonicating the mixed solution; and centrifuging at 3000 to 4000 rpm for 30 to 90 minutes.
일 예시에서, 헤테로 결합시키는 단계는, α-Fe2O3 나노로드 필름에 WS2 나노시트 전구체를 드롭(drop)하는 단계; 및 400 내지 500 ℃에서 1 내지 3 시간 동안 열처리하는 단계를 포함할 수 있다.In one example, the hetero coupling step may include dropping a WS 2 nanosheet precursor onto the α-Fe 2 O 3 nanorod film; and heat-treating at 400 to 500 °C for 1 to 3 hours.
일 예시에서, α-Fe2O3 나노로드 필름에 WS2 나노시트 전구체를 드롭(drop)하는 단계는 6회 이하로 반복될 수 있다.In one example, the step of dropping the WS 2 nanosheet precursor on the α-Fe 2 O 3 nanorod film may be repeated 6 times or less.
본 출원의 일 측면은 광촉매용 조성물에 관한 것이다.One aspect of the present application relates to a composition for a photocatalyst.
일 예시에서, 코어-쉘 형상의 광촉매용 조성물로서, 코어는 α-Fe2O3 나노로드를 포함하고, 쉘은 WS2 및 WOx의 혼합나노시트를 포함할 수 있다.In one example, as a core-shell photocatalyst composition, the core may include α-Fe 2 O 3 nanorods, and the shell may include mixed nanosheets of WS 2 and WO x .
일 예시에서, 혼합나노시트의 길이는 200 nm 이하일 수 있다.In one example, the length of the mixed nanosheet may be 200 nm or less.
일 예시에서, 혼합나노시트의 평균 두께는 12 nm 이하일 수 있다.In one example, the average thickness of the mixed nanosheets may be 12 nm or less.
본 출원의 다른 측면은 광전기화학전지용 전극에 관한 것이다.Another aspect of the present application relates to an electrode for a photoelectrochemical cell.
일 예시에서, 상기 전극은 기판 및 상기 기판 상에 광전기화학전지의 광촉매용 조성물이 필름형태로 적층될 수 있다.In one example, the electrode may be laminated on a substrate and a composition for photocatalysis of a photoelectrochemical cell in the form of a film on the substrate.
본 출원의 다른 측면은 광전기화학전지에 관한 것이다.Another aspect of the present application relates to photoelectrochemical cells.
일 예시에서, 상기 광전기화학전지는 광전기화학전지용 전극을 포함할 수 있다.In one example, the photoelectrochemical cell may include a photoelectrochemical cell electrode.
액상 박리 공정을 통해 제조된 WS2 나노시트를 이용하여 α-Fe2O3 나노로드와 이종접합을 형성하고, 제조된 코어-쉘 α-Fe2O3@WS2/WOx 구조는 PEC 성능의 효율성을 향상시키기 위해 저비용의 간단한 합성 공정을 사용하여 WS2 나노시트의 농도, 층 및 두께 매개변수에 의해 최적화될 수 있다. 이러한 코어쉘 α-Fe2O3@WS2/WOx 구조에서 α-Fe2O3 필름의 기공에 대한 WS2의 침투는 TOF-SIMS 분석에 의해 조사될 수 있다. 5.7 nm 두께의 WS2 쉘을 갖는 최적의 α-Fe2O3@4WS2/WOx 전극은 1.23 VRHE에서 0.98 mA.cm-2의 광전류 밀도를 나타내며, 이는 순수 α-Fe2O3 전극보다 14배 더 높으며, 광생성 전하 캐리어의 효율성 증가, 제조된 코어-쉘 이종 접합을 통한 손쉬운 정공 추출, 전자의 감소된 재결합 속도로 인한 저항 감소로 인하여 α-Fe2O3@4WS2/WOx 전극의 PEC 성능을 향상시킬 수 있다.A heterojunction is formed with α-Fe 2 O 3 nanorods using WS 2 nanosheets prepared through a liquid-phase exfoliation process, and the prepared core-shell α-Fe 2 O 3 @WS 2 /WOx structure has excellent PEC performance. It can be optimized by the concentration, layer and thickness parameters of WS 2 nanosheets using a low-cost and simple synthetic process to improve efficiency. In this core-shell α-Fe 2 O 3 @WS2/WOx structure, penetration of WS 2 into the pores of the α-Fe 2 O 3 film can be investigated by TOF-SIMS analysis. The optimal α-Fe 2 O 3 @4WS 2 /WOx electrode with a 5.7 nm-thick WS 2 shell exhibits a photocurrent density of 0.98 mA.cm −2 at 1.23 VRHE, which is 14 times lower than the pure α-Fe 2 O 3 electrode. times higher than that of the α-Fe 2 O 3 @4WS 2 /WOx electrode due to the increased efficiency of photogenerated charge carriers, the facile hole extraction through the fabricated core-shell heterojunction, and the reduced resistance due to the reduced recombination rate of electrons. PEC performance can be improved.
도 1은 (a) UV-Vis 흡수 스펙트럼(내부는 액상 박리 방법에서 초음파 효과의 개략도), (b) 라만 산란 여기 스펙트럼, 및 (c) 박리된 WS2 나노시트의 AFM 이미지 및 높이 프로파일에 대한 도면이다. Figure 1 shows (a) UV-Vis absorption spectrum (inside is a schematic diagram of the ultrasonic effect in the liquid-phase exfoliation method), (b) Raman scattering excitation spectrum, and (c) AFM images and height profiles of exfoliated WS 2 nanosheets. it is a drawing
도 2는 WS2가 2회, 4회 및 8회 도핑된 WS2 나노 시트에 대한 AFM 이미지 및 가장 높은 프로파일을 나타내는 도면이다. FIG. 2 is a diagram showing AFM images and highest profiles of WS 2 nanosheets doped 2 times, 4 times, and 8 times with WS 2 .
도 3은 선택한 영역에 대한 고해상도 TEM 이미지이고, (c)의 삽입도면은 지그재그 가장자리가 있는 원자의 육각형 배열을 나타내고, (d)는 일반적인 WS2 샘플의 TEM 이미지와 삽입도면은 WS2 나노시트에 대한 고속 푸리에 변환(FFT) 패턴에 대한 도면이다. Figure 3 is a high-resolution TEM image of the selected area, the inset in (c) shows a hexagonal arrangement of atoms with zigzag edges, and (d) is a TEM image of a typical WS 2 sample and the inset is a WS 2 nanosheet. It is a diagram of the Fast Fourier Transform (FFT) pattern for
도 4는 (a) 순수 α-Fe2O3 및 (b) α-Fe2O3@4WS2/WOx의 평면도 FE-SEM 이미지이고, (c) α-Fe2O3, (d) α-Fe2O3@4WS2/WOx의 단면도 FE-SEM 이미지이고 (e) 및 (f) α-Fe2O3@4WS2/WOx 코어 쉘 나노로드 구조체의 HRTEM 이미지, (g)α-Fe2O3@2WS2/WOx 광양극, (h) α-Fe2O3@4WS2/WOx 광양극, (i) α-Fe2O3@8WS2/WOx 광양극의 HRTEM 이미지 및 (j) α-Fe2O3@4WS2/WOx 전극에 대한 SEM 매핑 및 EDX 분석에 대한 도면이다. 4 is a plan view FE-SEM image of (a) pure α-Fe 2 O 3 and (b) α-Fe 2 O 3 @4WS 2 /WOx, (c) α-Fe 2 O 3 , (d) α -Fe 2 O 3 @4WS 2 /WOx cross-sectional FE-SEM images, (e) and (f) α-Fe 2 O 3 @4WS 2 /WOx HRTEM images of core-shell nanorod structures, (g) α-Fe HRTEM images of 2 O 3 @2WS 2 /WOx photoanode, (h) α-Fe 2 O 3 @4WS 2 /WOx photoanode, (i) α-Fe 2 O 3 @8WS 2 /WOx photoanode and (j ) SEM mapping and EDX analysis of the α-Fe 2 O 3 @4WS 2 /WOx electrode.
도 5는 α-Fe2O3 및 α-Fe2O3@4WS2/WOx에 대한 (a)XRD, (b)라만 스펙트럼, (c)UV-vis 흡광도, (d) LHE 결과 그래프이고, (e)α-Fe2O3 및 (f) WS2에 대한 UV-vis 흡광도 스펙트럼 및 밴드 갭 에너지dp 대한 그래프이다.5 is (a) XRD, (b) Raman spectrum, (c) UV-vis absorbance, and (d) LHE result graphs for α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx, (e) α-Fe 2 O 3 and (f) WS 2 It is a graph of UV-vis absorbance spectrum and band gap energy dp.
도 6은 순수 α-Fe2O3 및 α-Fe2O3@4WS2/WOx에 대한 (a) Fe 2p (b) O1s (c) W4f 및 (d) S2p에 대한 XPS 스펙트럼 결과 그래프, 순수 α-Fe2O3전극의 (e) Fe2p 및 (f) O1, 및 (g) 순수 α-Fe2O3및 α-Fe2O3@4WS2/WOx전극에 대한 XPS 조사 분석 결과그래프이다.6 shows XPS spectral results for (a) Fe 2p (b) O 1s (c) W 4f and (d) S 2p for pure α-Fe 2 O 3 and α-Fe 2 O 3 @ 4WS 2 /WOx Graphs, XPS for (e) Fe 2p and (f) O 1 of pure α-Fe 2 O 3 electrodes, and (g) pure α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx electrodes. This is a graph of the survey analysis result.
도 7은 비행시간형 이차이온질량분석(Time-of-Flight Secondary Ion Mass Spectrometry, TOF-SIMS)에 결과 도면으로서, (a) 내지 (d)는 α-Fe2O3@4WS2/WOx전극에서 WS2에서 WOx로의 분리에 대한 표면 분석 결과 그래프 및 α-Fe2O3@4WS2/WOx광양극에서 (e) 깊이 프로파일 및 (f) 이온의 3D 이미지이다. Figure 7 is a time-of-flight secondary ion mass spectrometry (Time-of-Flight Secondary Ion Mass Spectrometry, TOF-SIMS) results, (a) to (d) are α-Fe 2 O 3 @4WS 2 /WOx electrodes It is a surface analysis result graph for the separation of WS 2 to WOx in , and (e) a depth profile and (f) a 3D image of ions in an α-Fe 2 O 3 @4WS 2 /WOx photoanode.
도 8은 순수 α-Fe2O3 및 α-Fe2O3@4WS2/WOx전극에 대한 EPR 스펙트럼 분석 결과 그래프이다.8 is a graph of EPR spectrum analysis results for pure α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx electrodes.
도 9는 α-Fe2O3 및 α-Fe2O3@4WS2 샘플에 대한 0.3 내지 1.5V의 전위에서 (a) 선형 주사 전압전류법(Linear scan voltammetry, LSV) 및 쵸핑된 LSV 대 RHE의 결과 그래프, (c) 광전류 응답, (d) 광전류 안정성(삽입도면은 장시간(24시간)의 α-Fe2O3@4WS2에 대한 광전류 안정성)에 대한 도면이다. 9 shows (a) Linear scan voltammetry (LSV) and chopped LSV versus RHE at potentials from 0.3 to 1.5 V for α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 samples. Graphs of the results, (c) photocurrent response, (d) photocurrent stability (inset shows long-term (24 hours) photocurrent stability for α-Fe 2 O 3 @4WS 2 ).
도 10은 α-Fe2O3 및α-Fe2O3@4WS2/WOx 전극에 대한 (a) OCP, (b) Mott-Schottky, (c) ND와 Vfb 사이의 관계 및 (d) IPCE 플롯에 대한 결과 그래프이다. 10 shows the relationship between (a) OCP, (b) Mott-Schottky, (c) ND and Vfb, and (d) IPCE for α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx electrodes. This is the resulting graph for the plot.
도 11은 전위 0.9, 1, 1.1 V vs RHE에서 (a) α-Fe2O3 및 (b) Fe2O3@4WS2/WOx에 대한 나이퀴스트 플롯, (c) 전위 1.1 V vs RHE에서의 대한 나이퀴스트 플롯 및 (d) α-Fe2O3및 α-Fe2O3@4WS2/WOx전극에 대한 시간분해 형광분광법(Time-Resolved Photoluminescence, TRPL)에 대한 결과 그래프이다.11 shows Nyquist plots for (a) α-Fe 2 O 3 and (b) Fe 2 O 3 @4WS 2 /WOx at potentials of 0.9, 1, and 1.1 V vs. RHE, and (c) at potentials of 1.1 V vs. RHE. Nyquist plot for (d) α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx electrodes for Time-Resolved Photoluminescence (TRPL) results.
도 12는 (a) 1M NaOH 및 1M NaOH + 0.5M H2O2 전해질에서 측정된 선형 주사 전위법(Linear scan voltammetry, LSV), (b) 전하 주입, (c) 전하 분리 효율, 1.23 V vs RHE 전위에서 α-Fe2O3 및 α-Fe2O3@4WS2/WOx 전극에 대한 조명 영역(1cm2)당 반응 시간 대비 (d) H2 및 (e) O2 발생에 대한 결과 그래프이다. 12 shows (a) linear scan voltammetry (LSV), (b) charge injection, (c) charge separation efficiency, 1.23 V vs RHE measured in 1M NaOH and 1M NaOH + 0.5MH 2 O 2 electrolytes. Graphs of the results of (d ) H 2 and (e) O 2 generation versus reaction time per illumination area (1 cm 2 ) for the α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx electrodes at the potential . .
도 13는 (a) 순수 α-Fe2O3 및 WS2에 대한 UPS 스펙트럼, 이종 접합 (b) 전 및 (c) 후의 α-Fe2O3및 WS2의 전자 밴드 구조의 개략도 및 (d) 안정적인 코어-쉘 α-Fe2O3@4WS2/WOx광양극에 대한 메커니즘 및 구조 개략도이다. 13 shows (a) UPS spectra for pure α-Fe 2 O 3 and WS 2 , schematic diagrams of electronic band structures of α-Fe 2 O 3 and WS 2 before (b) and after (c) heterojunction, and (d) ) is a schematic diagram of the mechanism and structure for a stable core-shell α-Fe 2 O 3 @4WS 2 /WOx photoanode.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 구성요소 등이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 구성요소 등이 존재하지 않거나 부가될 수 없음을 의미하는 것은 아니다.Terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as "include" or "have" are intended to designate that the features, components, etc. described in the specification exist, but one or more other features or components may not exist or be added. That doesn't mean there aren't any.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in this application, it should not be interpreted in an ideal or excessively formal meaning. don't
본 출원에서 용어 "나노"는 나노 미터(nm) 단위의 크기를 의미할 수 있고, 예를 들어, 1 내지 1,000 nm의 크기를 의미할 수 있으나, 이에 제한되는 것은 아니다. 또한, 본 명세서에서 용어 "나노 입자"는 나노 미터(nm) 단위의 평균 입경을 갖는 입자를 의미할 수 있고, 예를 들어, 1 내지 1,000 nm의 평균입경을 갖는 입자를 의미할 수 있으나, 이에 제한되는 것은 아니다.In the present application, the term "nano" may refer to a size in a nanometer (nm) unit, for example, from 1 to 1,000 nm, but is not limited thereto. In addition, the term "nanoparticle" in this specification may mean a particle having an average particle diameter in nanometer (nm) units, for example, may mean a particle having an average particle diameter of 1 to 1,000 nm, but It is not limited.
이하, 첨부된 도면을 참조하여 본 출원의 코어-쉘 α-Fe2O3@WS2/WOx 조성물, 이를 포함하는 광전기화학전지용 광촉매 및 이의 제조 방법을 상세히 설명한다. 다만, 첨부된 도면은 예시적인 것으로, 본 출원의 코어-쉘 α-Fe2O3@WS2/WOx 조성물, 이를 포함하는 광전기화학전지용 광촉매 및 이의 제조 방법의 범위가 첨부된 도면에 의해 제한되는 것은 아니다.Hereinafter, a core-shell α-Fe 2 O 3 @WS 2 /WOx composition of the present application, a photocatalyst for a photoelectrochemical cell including the same, and a manufacturing method thereof will be described in detail with reference to the accompanying drawings. However, the accompanying drawings are illustrative, and the scope of the core-shell α-Fe 2 O 3 @WS 2 /WOx composition, photocatalyst for photoelectrochemical cell including the same, and manufacturing method of the present application is limited by the accompanying drawings. It is not.
1. α-Fe2O3@4WS2/WOx 광전극 제조1. Preparation of α-Fe 2 O 3 @4WS 2 /WOx Photoelectrode
적철광(α-Fe2O3) 전구체는 0.15M FeCl3.6H2O와 1M NaNO3를 혼합하여 제조한다. 혼합물의 pH를 1.5로 조정하기 위해, HCl을 혼합물에 적가한다. 이 후, 80mL의 용액을 세척한 FTO를 바닥에 놓여 있는 테플론 용기에 넣는다. 오토클레이브를 100℃에서 6시간 동안 설정한다. 이 후, 준비된 β-FeOOH 샘플의 표면을 탈이온수로 세척하고, 마지막으로 전극을 500 내지 600 ℃에서 3 내지 5시간 소성하고, 예를 들어 550℃, 공기중의 용광로에 4시간 동안 두어, α-Fe2O3 나노로드를 제조한다.Hematite (α-Fe 2 O 3 ) precursor is prepared by mixing 0.15M FeCl 3 .6H 2 O and 1M NaNO 3 . HCl is added dropwise to the mixture to adjust the pH of the mixture to 1.5. After this, 80 mL of the solution-washed FTO is placed in a Teflon container placed on the bottom. The autoclave is set at 100° C. for 6 hours. Thereafter, the surface of the prepared β-FeOOH sample is washed with deionized water, and finally the electrode is fired at 500 to 600 ° C for 3 to 5 hours, for example, placed in an air furnace at 550 ° C for 4 hours, α -Manufacture Fe 2 O 3 nanorods.
박리된 WS2 나노시트 전구체는 LPE(액상 박리) 방법을 통해 제조한다. WS2 벌크 분말(300mg)은 에탄올(35mL)과 물(55mL)의 혼합용매에 혼합한다. 전구체를 5일 동안 연속적으로 초음파 처리한다. WS2나노시트를 분리하기 위해 분산액을 3000 내지 4000 rpm에서 30 내지 90 분 동, 예를 들어 3,500rpm에서 60분 동안 원심분리한다. 이 후, 얇은 WS2 나노시트를 포함하는 상층액을 용액의 상부로부터 수집한다.The exfoliated WS 2 nanosheet precursor is prepared through the LPE (liquid phase exfoliation) method. WS 2 bulk powder (300mg) is mixed with a mixed solvent of ethanol (35mL) and water (55mL). The precursor is sonicated continuously for 5 days. To separate the WS 2 nanosheets, the dispersion is centrifuged at 3000 to 4000 rpm for 30 to 90 minutes, for example, 3,500 rpm for 60 minutes. After this, the supernatant containing the thin WS 2 nanosheets is collected from the top of the solution.
α-Fe2O3 및 WS2의 코어-쉘 구조는 편리하고 저렴한 드롭 캐스팅 절차로 제작된다. WS2 나노시트 전구체(100 μL)를 α-Fe2O3 전극의 상단 표면에 떨어뜨리고 450 °C에서 5분 동안 용광로에 넣는다. 낙하 과정은 10회 이하, 예를 들어 2, 4 및 8회에 걸쳐 수행할 수 있으며, 각각 α-Fe2O3@2WS2/WOx, α-Fe2O3@4WS2/WOx 및 α-Fe2O3@8WS2/WOx로 표시한다. 마지막으로, 제조된 모든 α-Fe2O3/WS2 샘플을 400 내지 500 ℃에서 1 내지 3 시간로 열처리, 예를 들어 450 ℃에서 2시간 동안 용광로에 넣는다.The core-shell structures of α-Fe 2 O 3 and WS 2 are fabricated by a convenient and inexpensive drop casting procedure. WS 2 nanosheet precursor (100 μL) is dropped onto the top surface of the α-Fe 2 O 3 electrode and placed in a furnace at 450 °C for 5 min. The dropping process may be performed 10 times or less, for example, 2, 4, and 8 times, respectively, α-Fe 2 O 3 @2WS 2 /WOx, α-Fe 2 O 3 @4WS 2 /WOx, and α- It is expressed as Fe 2 O 3 @8WS 2 /WOx. Finally, all of the prepared α-Fe 2 O 3 /WS2 samples are subjected to heat treatment at 400 to 500° C. for 1 to 3 hours, for example, in a furnace at 450° C. for 2 hours.
2. 물성 측정 방법2. How to measure physical properties
α-Fe2O3와 α-Fe2O3@4WS2/WOx 박막의 형태학적 조사는 주사전자현미경(SEM, Model Quanta 250 FEG)과 투과전자현미경(TEM, JEOL, JEM- 2100F)를 통하여 조사한다. 제조된 박막의 구조적 및 결정성 특성은 10-55°의 2θ 범위에서 단색 Cu Kα 방사선(λ=1.5406Å)과 레이저를 이용한 라만 스펙트럼을 이용한 Bruker D8Advance인 X선 회절(XRD)과 실온에서 여기 소스로 785 nm의 라인(Bruker, 모델: Senteraa 2009, 독일)을 사용하는 라만 스펙트럼을 통해 조사한다. 화학 성분 및 구성 요소는 단색 AlKα 소스(광자 에너지 1486.6 eV), 스폿 크기 400 μm, 에너지 단계 크기 1.0 eV, 통과 에너지 200 eV를 사용한 Thermo Scientific Sigma Probe 분광계로 분석하고, ToF-SIMS(Time-of-Flight secondary ion mass spectrometry)는 단일 스펙트럼에서 질량 범위가 > 9,000 amu인 분자 이온의 검출을 위해 펄스형 1차 이온 빔과 time-of-flight 질량 분석기에 의해 활용된다. 이 기술은 복잡한 샘플 내에서 측면 분해능이 500nm 미만인 화학 물질의 3차원 이미지를 제공할 수 있다. CW/Pulse EPR System(QM09)을 사용하여 X-band(9.64GHz)에서 전자 상자성 공명(electron paramagnetic resonance, EPR) 측정을 수행한다. 샘플에 의해 흡수된 전력 1mW는 실온에서 기록된다. 광양극의 광학 특성은 Perkin Elmer UV-Vis-NIR 모델 Lambda 950에 의해 측정된다. 시간 분해 광발광(time-resolved photoluminescence, TRPL)은 Ti: 사파이어 레이저(800nm 파장, 100fs 펄스 폭 및 82MHz 반복 속도)의 2차 고조파 빔으로 측정한다. 수집된 발광 신호를 모노크로메이터(MS3504i, SOLAR TII)로 분산시킨 다음 광전 증폭관(photomultiplier tube)(PMT-100, Becker & Hickl)으로 검출한다.Morphological investigations of α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx thin films were conducted using scanning electron microscopy (SEM, Model Quanta 250 FEG) and transmission electron microscopy (TEM, JEOL, JEM- 2100F). investigate The structural and crystalline properties of the fabricated thin films were characterized by X-ray diffraction (XRD), a Bruker D8Advance, using Raman spectra using monochromatic Cu Kα radiation (λ=1.5406 Å) and a laser in the 2θ range of 10–55° and an excitation source at room temperature. with a 785 nm line (Bruker, Model: Senteraa 2009, Germany). Chemical compositions and components were analyzed with a Thermo Scientific Sigma Probe spectrometer using a monochromatic AlKα source (photon energy 1486.6 eV), spot size 400 μm, energy step size 1.0 eV, pass energy 200 eV, and ToF-SIMS (Time-of- Flight secondary ion mass spectrometry is utilized by a pulsed primary ion beam and time-of-flight mass spectrometer for the detection of molecular ions in the mass range > 9,000 amu in a single spectrum. This technique can provide three-dimensional images of chemicals within complex samples with lateral resolution of less than 500 nm. Electron paramagnetic resonance (EPR) measurements are performed in the X-band (9.64GHz) using the CW/Pulse EPR System (QM09). 1 mW of power absorbed by the sample is recorded at room temperature. The optical properties of the photoanode are measured by a Perkin Elmer UV-Vis-NIR model Lambda 950. Time-resolved photoluminescence (TRPL) is measured with the second harmonic beam of a Ti:sapphire laser (800 nm wavelength, 100 fs pulse width and 82 MHz repetition rate). The collected luminescence signal is dispersed by a monochromator (MS3504i, SOLAR TII) and then detected by a photomultiplier tube (PMT-100, Becker & Hickl).
3. 광전기화학 측정3. Photoelectrochemical measurements
PEC 성능을 측정하기 위해 표준 3전극 전지를 사용한다. α-Fe2O3, α-Fe2O3@2WS2/WOx, α-Fe2O3@4WS2/WOx 및 α-Fe2O3@8WS2/WOx 광양극이 작업 전극으로 적용된다. 상대 전극은 백금 와이어이다. Ag/AgCl은 1M NaOH(PH~12) 전해질에서 기준 전극으로 사용되고, 하기 관계식 1을 통해 RHE로 산출된다.A standard three-electrode cell is used to measure the PEC performance. α-Fe 2 O 3 , α-Fe 2 O 3 @2WS 2 /WOx, α-Fe 2 O 3 @4WS 2 /WOx and α-Fe 2 O 3 @8WS 2 /WOx photoanodes are applied as working electrodes. . The counter electrode is a platinum wire. Ag / AgCl is used as a reference electrode in 1M NaOH (PH ~ 12) electrolyte, and is calculated as RHE through the following relational expression 1.
[관계식 1][Relationship 1]
Figure PCTKR2022013831-appb-img-000001
Figure PCTKR2022013831-appb-img-000001
PEC 성능은 0.3 내지 1.5V(vs. RHE) 전압 범위에서 광전극 상단의 300W Xe 램프 조명에서 100mW/cm2 조건에서 측정된다. EIS는 동일한 전극 형성에 의해 다른 전위(0.9, 1, 1.1 V vs. RHE)에서 측정된다.The PEC performance is measured at 100 mW/cm 2 under 300 W Xe lamp illumination on top of the photoelectrode in the voltage range of 0.3 to 1.5 V (vs. RHE). EIS is measured at different potentials (0.9, 1, 1.1 V vs. RHE) by the same electrode formation.
4. 수소 및 산소 발생 측정4. Measurement of hydrogen and oxygen evolution
α-Fe2O3 및 α-Fe2O3@4WS2/WOx 광양극에서의 전체 물 분해는 1M NaOH 전해질에서 100mW.cm-2 조사 하에서 RHE 대 1.23V에서 H2 및 O2 발생을 측정하여 평가된다. 생성된 수소 및 산소 가스의 양은 가스 크로마토그래피(GC) 시스템(YL Instrument, 6500GC System)을 사용하여 측정한다. 측정 전에 물 분해 반응 질소 가스를 2시간 동안 셀로 퍼지하여 반응 용기에 남아 있는 공기를 제거한다. 광원을 켜고 2시간 동안 가스 크로마토그래프를 사용하여 20분마다 밀폐형 주사기로 방출된 산소 및 수소의 양을 측정한다. 가스 샘플을 GC에 주입하고 생성된 피크 면적(AreaH2, AreaO2)을 기록하고, 방출된 수소-산소 가스는 하기 관계식 2를 사용하여 계산한다.α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx Total water dissociation at the photoanode is evaluated by measuring H 2 and O 2 evolution at 1.23 V versus RHE under 100 mW.cm −2 irradiation in 1 M NaOH electrolyte. The amount of hydrogen and oxygen gas produced is measured using a gas chromatography (GC) system (YL Instrument, 6500GC System). Prior to measurement, the water decomposition reaction nitrogen gas was purged through the cell for 2 hours to remove air remaining in the reaction vessel. Turn on the light source and measure the amount of oxygen and hydrogen released with a sealed syringe every 20 minutes using a gas chromatograph for 2 hours. A gas sample is injected into the GC and the resulting peak areas (AreaH 2 , AreaO 2 ) are recorded, and the emitted hydrogen-oxygen gas is calculated using the following relationship Equation 2.
[관계식 2][Relationship 2]
Figure PCTKR2022013831-appb-img-000002
Figure PCTKR2022013831-appb-img-000002
패러데이 효율에 대한 자세한 계산 과정은 다음과 같다.The detailed calculation process for Faraday efficiency is as follows.
패러딕 효율 = 실제 광전류 밀도/이론적 광전류 밀도Faradic Efficiency = Actual Photocurrent Density/Theoretical Photocurrent Density
실제 광전류 밀도 = N×nH2/O2×F Actual photocurrent density = N×nH 2 /O 2 ×F
F는 0.096487C/μmol인 패러데이 상수이고, nH2/O2(μmol)는 기체 크로마토그래피에 의해 결정된 H2 또는 O2 발생량이며, N은 한 분자의 H2 또는 O2를 발생시키는 데 필요한 전자의 수이다. 1분자의 H2를 생성하기 위해서는 2개의 전자가 필요하고, 1분자의 O2에는 4개의 전자가 필요하다고 가정한다.F is the Faraday constant equal to 0.096487 C/μmol, nH 2 /O 2 (μmol) is the amount of H 2 or O 2 generated as determined by gas chromatography, and N is the electron required to generate one molecule of H 2 or O 2 is the number of Assume that 2 electrons are required to produce 1 molecule of H 2 , and 4 electrons are required for 1 molecule of O 2 .
이론적인 광전류 밀도 = Q = I × t (5)Theoretical photocurrent density = Q = I × t (5)
Q는 쿨롱(C) 단위의 전하량(전기)이고, I는 전류(암페어, A)이며 t는 시간(초)이다.Q is the charge (electricity) in coulombs (C), I is the current (amps, A), and t is the time (seconds).
이하, 실험예를 통하여 본 출원을 보다 상세히 설명한다.Hereinafter, the present application will be described in more detail through experimental examples.
[실험예][Experimental Example]
1. 제조된 WS2의 구조적 특성1. Structural characteristics of prepared WS 2
도 1은 (a) UV-Vis 흡수 스펙트럼(내부는 액상 박리 방법에서 초음파 효과의 개략도), (b) 라만 산란 여기 스펙트럼, 및 (c) 박리된 WS2 나노시트의 AFM 이미지 및 높이 프로파일에 대한 도면이다.Figure 1 shows (a) UV-Vis absorption spectrum (inside is a schematic diagram of the ultrasonic effect in the liquid-phase exfoliation method), (b) Raman scattering excitation spectrum, and (c) AFM images and height profiles of exfoliated WS 2 nanosheets. it is a drawing
박리된 WS2 나노시트의 농도, 길이 및 두께를 측정하기 위해 원자간력 현미경(Atomic force microscopy, AFM)과 자외선(UV) 영역에 대한 근적외선(near-infrared, NIR)을 사용한다. 나노시트의 광 흡수는 전자 밴드 구조에 해당하는 A(~631 nm), B(~522 nm) 및 C(~423 nm)의 세 가지 주요 여기점에서 볼 수 있으며, 이는 박리된 WS2 나노시트의 존재를 의미한다(도 1a). 도 1a에 도시한 바와 같은 A 및 B 여기 피크는 초음파 처리 시간 및 원심분리기 속도 하에서 층의 축적에 의해 이동될 수 있다. A와 B 사이의 에너지 변화는 층의 축적을 향상시켜 증가할 수도 있다. 피크 C는 반 데르 발스 상호 작용에 기인하며 단층 또는 다층 재료와 관련이 있다. 피크 A, B 및 C에 표시된 값은 몇 층으로된 나노시트의 상당한 기여를 나타낸다. WS2 나노시트에 대한 라만 분석은 약 355 및 425(cm-1)에서 강한 신호를 나타내며 이는 평면 E1 2g 및 평면 외부 A1g 진동 두 가지 모두에 해당한다(도 1b). 이 두 피크는 박리된 WS2 나노시트에서 관찰된 피크와 일치한다. 도 1b에 도시된 바와 같이, AFM 결과는 이들 3개의 박리된 WS2 나노시트의 가장 높은 프로파일 다이어그램이 두께 약 10 nm, 길이 140 nm을 나타내는 3개 지점(P1, P2 및 P3)을 의미한다(도 1c). 더 많은 실험 결과를 알아보기 위해 박리된 WS2나노시트의 길이, 두께, 농도를 식으로 추정하였다. 하기 관계식 2를 통해 WS2 나노시트의 두께를 계산하는 데 사용할 수 있다.To measure the concentration, length and thickness of the exfoliated WS 2 nanosheets, atomic force microscopy (AFM) and near-infrared (NIR) to ultraviolet (UV) regions are used. The light absorption of the nanosheets can be seen at three major excitation points, A (~631 nm), B (~522 nm) and C (~423 nm), corresponding to the electronic band structure, which are observed in the exfoliated WS 2 nanosheets. means the presence of (Fig. 1a). The A and B excitation peaks as shown in FIG. 1A can be shifted by layer accumulation under sonication time and centrifuge speed. The energy change between A and B may increase by enhancing the accumulation of layers. Peak C is due to van der Waals interactions and is related to monolayer or multilayer materials. The values indicated for peaks A, B and C indicate a significant contribution of several layered nanosheets. Raman analysis of the WS 2 nanosheets shows strong signals at around 355 and 425 (cm −1 ), which correspond to both in-plane E 1 2g and out-of-plane A 1g vibrations (FIG. 1b). These two peaks coincide with the peaks observed in the exfoliated WS 2 nanosheets. As shown in Figure 1b, the AFM results indicate three points (P1, P2 and P3) where the highest profile diagram of these three exfoliated WS 2 nanosheets shows a thickness of about 10 nm and a length of 140 nm ( Fig. 1c). In order to find out more experimental results, the length, thickness, and concentration of the exfoliated WS 2 nanosheets were estimated by the formula. The following relational expression 2 can be used to calculate the thickness of the WS 2 nanosheet.
[관계식 2][Relationship 2]
Figure PCTKR2022013831-appb-img-000003
Figure PCTKR2022013831-appb-img-000003
λA는 도 1a에 표시된 피크 A의 파장이다. 준비된 전구체에서 소수층 WS2 나노시트의 두께는 약 10nm로 산출되어, 박리된 다층을 나타내었고 AFM 결과에서 두께에 접근했음을 확인할 수 있다. 또한, WS2 나노시트의 길이(~140 nm) 및 농도(~0.04 mg.mL-1)는 관계식 3 및 4에 의해 산출된다.λ A is the wavelength of peak A shown in Fig. 1a. In the prepared precursor, the thickness of the few-layer WS 2 nanosheets was calculated to be about 10 nm, indicating an exfoliated multilayer, and it could be confirmed that the AFM results approached the thickness. In addition, the length (~140 nm) and concentration (~0.04 mg.mL -1 ) of the WS 2 nanosheets are calculated by relational expressions 3 and 4.
[관계식 3][Relationship 3]
Figure PCTKR2022013831-appb-img-000004
Figure PCTKR2022013831-appb-img-000004
[관계식 4][Relationship 4]
Figure PCTKR2022013831-appb-img-000005
Figure PCTKR2022013831-appb-img-000005
관계식 3에서, L은 나노시트의 평균 크기이며 UV-Vis 데이터의 EXTB 및 EXT345 값으로 추정된다. 관계식 8에서 나노시트의 농도는 파장 265 nm에서의 흡광도 값과 235 nm에서의 흡광 계수에 따라 달라지며 이는 불변이다(ε235 nm = 47.7 L.g-1cm-1). 또한, 광전극 면적당 WS2 전구체의 양은 관계식 9를 통해 산출되고, 이를 표 1에 도시한다.In Equation 3, L is the average size of nanosheets and is estimated from the EXT B and EXT 345 values of the UV-Vis data. In relational equation 8, the concentration of nanosheets depends on the absorbance value at 265 nm and the extinction coefficient at 235 nm, which are invariant (ε 235 nm = 47.7 Lg -1 cm -1 ). In addition, the amount of WS 2 precursor per photoelectrode area is calculated through relational expression 9, which is shown in Table 1.
[관계식 5][Relationship 5]
Figure PCTKR2022013831-appb-img-000006
Figure PCTKR2022013831-appb-img-000006
Sample's NameSample's Name Time of DropsTime of Drops Volume of WS2 precursor:0.1mlxTimes of dropVolume of WS2 precursor:0.1mlxTimes of drop Concentration of WS2 nanpsheets in precursor (mg.ml)Concentration of WS2 nanpsheets in precursor (mg.ml) Amount of WS2 nanosheets on each photoelectrode (mg)Amount of WS2 nanosheets on each photoelectrode (mg) Amount of nanosheets in photoelectrode's area (mg/cm2)(FTO area=25mmx25mm)Amount of nanosheets in photoelectrode's area (mg/cm2)(FTO area=25mmx25mm)
α-Fe2O3@2WS2/WOXα-Fe2O3@2WS2/WOX 22 2x0.1=0.22x0.1=0.2 0.040.04 0.0080.008 0.00130.0013
α-Fe2O3@4WS2/WOXα-Fe2O3@4WS2/WOX 44 4x0.1=0.44x0.1=0.4 0.040.04 0.0160.016 0.00260.0026
α-Fe2O3@8WS2/WOXα-Fe2O3@8WS2/WOX 88 8x0.1=0.88x0.1=0.8 0.040.04 0.0320.032 0.00510.0051
도 1a의 삽입도면은 수성 계면 활성제 용액 또는 유기 용매에 연속 초음파 또는 진동을 적용하는 초음파 처리의 역할을 나타낸다. 이는 벌크에서 나노시트로로의 변환 과정에서 WS2의 전자 및 화학적 거동의 변화를 방지하는 데 사용할 수 있다. LPE 방식의 초음파는 용매에 작은 기포나 구멍을 형성한다. 초음파 처리 과정에서 공동은 지속적으로 내파되어 에너지 폭발을 형성한다. 공동을 통해 유기 용매 분자가 통과할 때 정상파 패턴에 의해 발생하는 이 에너지는 WS2 나노시트를 유지하여 재응집을 방지할 수 있다. 따라서 용매 분자와 WS2 나노시트 사이의 계면 반응은 벌크 결정에서 WS2 시트를 결합하는 층간 힘보다 크다.The inset of Figure 1a shows the role of sonication, which applies continuous ultrasound or vibration to an aqueous surfactant solution or organic solvent. This can be used to prevent changes in the electronic and chemical behavior of WS 2 during conversion from bulk to nanosheets. Ultrasonic waves of the LPE method form small bubbles or pores in the solvent. During sonication, the cavity is continuously imploded to form bursts of energy. This energy generated by the standing wave pattern as organic solvent molecules pass through the cavities can hold the WS 2 nanosheets together to prevent reaggregation. Therefore, the interfacial reaction between the solvent molecules and the WS 2 nanosheets is greater than the interlayer force binding the WS 2 sheets in the bulk crystal.
도 2는 WS2가 2회, 4회 및 8회 도핑된 WS2 나노 시트에 대한 AFM 이미지 및 가장 높은 프로파일을 나타내는 도면이다. FIG. 2 is a diagram showing AFM images and highest profiles of WS 2 nanosheets doped 2 times, 4 times, and 8 times with WS 2 .
도 2에 도시한 바와 같이, 깨끗한 표면에 2, 4, 및 8번 떨어뜨린 WS2 나노시트 전구체의 AFM 분석을 통해 증착된 필름의 두께와 균일성을 확인할 수 있다. 이를 통해 표면 위의 균일한 WS2 나노시트가 2회 및 4회 드롭 캐스팅 동안 안정화될 수 있음을 확인할 수 있다. 그러나 8회 드롭 캐스팅 하는 경우 공정의 일부에서 WS2의 두께는 10nm를 초과하여 표면의 균일성을 방해하는 것을 확인할 수 있다. 이 균일성은 α-Fe2O3@8WS2/WOx 광양극에서 PEC 성능을 감소시키는 이유가 될 수 있다.As shown in FIG. 2, AFM analysis of the WS 2 nanosheet precursor dropped 2, 4, and 8 times on a clean surface confirmed the thickness and uniformity of the deposited film. Through this, it can be confirmed that the uniform WS 2 nanosheets on the surface can be stabilized during the 2nd and 4th drop casting. However, in the case of drop casting 8 times, in some parts of the process, the thickness of WS 2 exceeds 10 nm, and it can be seen that the uniformity of the surface is disturbed. This uniformity may be the reason for the reduced PEC performance in the α-Fe 2 O 3 @8WS 2 /WOx photoanode.
도 3은 선택한 영역에 대한 고해상도 TEM 이미지이고, (c)의 삽입도면은 지그재그 가장자리가 있는 원자의 육각형 배열을 나타내고, (d)는 일반적인 WS2 샘플의 TEM 이미지와 삽입도면은 WS2 나노시트에 대한 고속 푸리에 변환(FFT) 패턴을 도시한다.Figure 3 is a high-resolution TEM image of the selected area, the inset in (c) shows a hexagonal arrangement of atoms with zigzag edges, and (d) is a TEM image of a typical WS 2 sample and the inset is a WS 2 nanosheet. Shows the Fast Fourier Transform (FFT) pattern for
WS2 나노시트의 격자 구조는 고해상도 TEM(HRTEM) 이미지(도 3a 내지 도 3c)와 2차원 고속 푸리에 변환(FFT) 분석(도 3d)를 통해 확인할 수 있다. 도 3a는 LPE 방법에서 연속 초음파 처리를 사용하여 제조된 WS2 나노시트 구조를 랜덤하게 도시한다. 도 3b는 (100-200) nm 길이의 WS2의 2차원 형태의 존재를 명확하게 확인할 수 있다. 도 3c에 도시한 바와 같이, 장시간 초음파 처리 과정에서 WS2 나노시트의 육각형 결정 구조가 손상되지 않았음을 확인할 수 있다. 도 3c의 FFT 삽입도면을 참조하면, 지그재그 가장자리를 가진 원자의 육각형 배열을 확인할 수 있다. 도 3d에 도시한바 같이, 하나의 나노시트의 내부 부분의 FFT 이미지와 전자 회절 패턴은 (0.27 및 0.16) nm의 2개의 근접한 격자 거리를 갖도록 육각형 배열을 보여주며, 이는 각각 WS2의 (100) 및 (110) 평면의 표준 면간 거리와 잘 일치한다. 제조된 WS2 나노시트의 TEM 이미지에서 확인할 수 있는 바와 같이, 구조체는 전체적인 개별 WS2 나노시트에서 균일한 텅스텐 및 황 원소 분포에 기인하는 것을 확인할 수 있다. The lattice structure of the WS 2 nanosheets can be confirmed through high-resolution TEM (HRTEM) images (FIGS. 3a to 3c) and 2-dimensional fast Fourier transform (FFT) analysis (FIG. 3d). Figure 3a shows random WS 2 nanosheet structures prepared using continuous sonication in the LPE method. 3b clearly confirms the existence of a two-dimensional form of WS 2 having a length of (100-200) nm. As shown in Figure 3c, it can be seen that the hexagonal crystal structure of the WS 2 nanosheets is not damaged during the long-term sonication process. Referring to the FFT inset of FIG. 3C, a hexagonal arrangement of atoms with zigzag edges can be seen. As shown in Fig. 3d, the FFT image and electron diffraction pattern of the inner part of one nanosheet show a hexagonal arrangement with two close lattice distances of (0.27 and 0.16) nm, which are respectively the (100) and the standard interplanar distance of the (110) plane. As can be seen in the TEM images of the prepared WS 2 nanosheets, it can be confirmed that the structure is due to the uniform distribution of tungsten and sulfur elements in the entire individual WS 2 nanosheets.
2. α-Fe2O3@WS2/Wox 광양극의 특징2. Characteristics of α-Fe 2 O 3 @WS 2 /Wox photoanode
도 4는 (a) 순수 α-Fe2O3 및 (b) α-Fe2O3@4WS2/WOx의 평면도 FE-SEM 이미지이고, (c) α-Fe2O3, (d) α-Fe2O3@4WS2/WOx의 단면도 FE-SEM 이미지이고 (e) 및 (f) α-Fe2O3@4WS2/WOx 코어 쉘 나노로드 구조체의 HRTEM 이미지, (g)α-Fe2O3@2WS2/WOx 광양극, (h) α-Fe2O3@4WS2/WOx 광양극, (i) α-Fe2O3@8WS2/WOx 광양극의 HRTEM 이미지 및 (j) α-Fe2O3@4WS2/WOx 전극에 대한 SEM 매핑 및 EDX 분석에 대한 도면이다. 4 is a plan view FE-SEM image of (a) pure α-Fe 2 O 3 and (b) α-Fe 2 O 3 @4WS 2 /WOx, (c) α-Fe 2 O 3 , (d) α -Fe 2 O 3 @4WS 2 /WOx cross-sectional FE-SEM images, (e) and (f) α-Fe 2 O 3 @4WS 2 /WOx HRTEM images of core-shell nanorod structures, (g) α-Fe HRTEM images of 2 O 3 @2WS 2 /WOx photoanode, (h) α-Fe 2 O 3 @4WS 2 /WOx photoanode, (i) α-Fe 2 O 3 @8WS 2 /WOx photoanode and (j ) SEM mapping and EDX analysis of the α-Fe 2 O 3 @4WS 2 /WOx electrode.
도 4a 내지 도 4d에 도시한 바와 같이, α-Fe2O3 및 α-Fe2O3@4WS2/WOx 구조의 형태는 SEM 분석에 의해 확인할 수 있다. 도 4a 및 4c의 SEM 이미지에 도시한 바와 같이, α-Fe2O3는 FTO 기판 상이 수직으로 배열된 랜덤한 크기의 쌀 형상의 나노로드의 구조이다. 이에 반하여, 도 4b 및 4d의 SEM 이미지에 도시한 바와 같이,이종 접합으로 제작된 후 코어-쉘 α-Fe2O3@4WS2/WOx나노로드는 더 길고 밀도가 높으며 넓어진다. 또한, 도 4d에 도시한 바와 같이, α-Fe2O3@4WS2/WOx의 필름의 두께는 약 10 nm로 증가한다. 도 4j에 도시한 바와 같이, EDAX 및 elemental mapping을 나타내고, 광전극 표면에 Fe, O, W, S가 존재함을 확인할 수 있다.As shown in FIGS. 4A to 4D , the morphologies of the α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx structures can be confirmed by SEM analysis. As shown in the SEM images of FIGS. 4a and 4c, α-Fe 2 O 3 is a structure of rice-shaped nanorods of random sizes arranged vertically on the FTO substrate. In contrast, as shown in the SEM images of Figs. 4b and 4d, the core-shell α-Fe 2 O 3 @4WS 2 /WOx nanorods become longer, denser, and wider after being fabricated as a heterojunction. Also, as shown in Fig. 4d, the thickness of the film of α-Fe 2 O 3 @4WS 2 /WOx increases to about 10 nm. As shown in FIG. 4j, EDAX and elemental mapping are shown, and it can be confirmed that Fe, O, W, and S exist on the surface of the photoelectrode.
도 4e 내지 도 4i는 순수α-Fe2O3 및 코어-쉘 α-Fe2O3@WS2/WOx 나노로드의 고해상도 TEM 이미지를 보여주며, 여기서 α-Fe2O3에 대해 확인된 격자 공간은 ~ 0.25nm이며, 이는 격자판(110)과 관련되고; XRD 분석 결과에서도 나타난다(도 5a 참조). 도 4e에 도시한 바와 같이, WS2가 α- Fe2O3 나노로드를 완전히 둘러싸고 코어-쉘 구조를 형성함을 명확하게 확인할 수 있다. 박리된 WS2 나노시트 농도 값은 α-Fe2O3 전극 표면에 드롭-캐스팅을 2WS2/WOx, 4WS2/WOx, 8WS2/WOx로 각각 2회에서 8회로 더 많이 반복함으로써 증가한다(표 1 참조). α-Fe2O3 나노로드 표면의 박리된 WS2 나노시트 농도에 의해 생성된 두께는 PEC 성능의 광 수확 및 전하 분리에 영향을 미친다. 더욱이, α-Fe2O3 나노로드의 외부 표면에서 WS2 나노시트의 농도 증가는 쉘의 두께 증가에 직접적인 영향을 미친다. 따라서 α-Fe2O3@2WS2/WOx(도 4g), α-Fe2O3@4WS2/WOx(도 4h) 및 α-Fe2O3@8WS2/WOx(도 4i)의 고해상도 TEM 이미지는 약 2.5, 5.7 및 11.8 nm의 α-Fe2O3 나노로드에서 WS2 나노시트의 서로 다른 두께를 보여준다. 마지막으로, α-Fe2O3 전극(α-Fe2O3@4WS2/WOx)에 WS2 나노시트 전구체를 4회 반복하여 적하한 최적 상태에서 약 5.7nm의 적절한 두께로 쉘을 제작할 수 있으며, 이를 통하여 최고의 PEC 성능으로 제공할 수 있음을 확인할 수 있다. 따라서 α- Fe2O3@4WS2/WOx 광전극은 더 많은 전자-정공 쌍을 생성하여 PEC 성능을 높일 수 있는 효율적인 광 수확을 위한 더 조밀한 코어-쉘 구조를 제공할 수 있다.4e to 4i show high-resolution TEM images of pure α-Fe 2 O 3 and core-shell α-Fe 2 O 3 @WS 2 /WOx nanorods, where the confirmed lattice for α-Fe 2 O 3 The spacing is ~ 0.25 nm, which is related to the grating 110; It is also shown in the XRD analysis results (see FIG. 5a). As shown in FIG. 4e, it can be clearly seen that WS2 completely surrounds the α-Fe 2 O 3 nanorods and forms a core-shell structure. The exfoliated WS 2 nanosheet concentration value increases by repeating the drop-casting on the α-Fe 2 O 3 electrode surface 2 to 8 more times with 2WS 2 /WOx, 4WS 2 /WOx, and 8WS 2 /WOx, respectively ( see Table 1). The thickness created by the concentration of the exfoliated WS 2 nanosheets on the surface of the α-Fe 2 O 3 nanorods affects the light harvesting and charge separation of the PEC performance. Moreover, increasing the concentration of WS 2 nanosheets on the outer surface of α-Fe 2 O 3 nanorods has a direct effect on increasing the thickness of the shell. Therefore, high resolution of α-Fe 2 O 3 @2WS 2 /WOx (Fig. 4g), α-Fe 2 O 3 @4WS 2 /WOx (Fig. 4h) and α-Fe 2 O 3 @8WS 2 /WOx (Fig. 4i) TEM images show different thicknesses of WS 2 nanosheets on α-Fe 2 O 3 nanorods of about 2.5, 5.7 and 11.8 nm. Finally, a shell with an appropriate thickness of about 5.7 nm could be fabricated in the optimal state where the WS 2 nanosheet precursor was dropped onto the α-Fe 2 O 3 electrode (α-Fe 2 O 3 @4WS 2 /WOx) four times. And through this, it can be confirmed that it can be provided with the best PEC performance. Therefore, the α-Fe 2 O 3 @4WS 2 /WOx photoelectrode can generate more electron-hole pairs, providing a denser core-shell structure for efficient light harvesting, which can increase the PEC performance.
도 5는 α-Fe2O3 및 α-Fe2O3@4WS2/WOx에 대한 (a)XRD, (b)라만 스펙트럼, (c)UV-vis 흡광도, (d) LHE 결과 그래프이고, (e)α-Fe2O3 및 (f) WS2에 대한 UV-vis 흡광도 스펙트럼 및 밴드 갭 에너지dp 대한 그래프이다.5 is (a) XRD, (b) Raman spectrum, (c) UV-vis absorbance, and (d) LHE result graphs for α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx, (e) α-Fe 2 O 3 and (f) WS 2 It is a graph of UV-vis absorbance spectrum and band gap energy dp.
도 5a는 순수 α-Fe2O3 및 α-Fe2O3@4WS2/WOx 전극의 X선 회절(XRD) 분석을 보여준다. 63.96°, 35.78° 및 33.85°에서의 피크는 각각 제조된 두 전극에서 적철광 결정 구조의 (300), (110) 및 (104) 평면에 해당한다. 이는 α-Fe2O3@4WS2/WOx전극에서 적철광의 결정학적 구조가 순수 α-Fe2O3 전극에서와 동일하다는 것을 나타낸다. 33.75° 및 13.96°에서의 회절 피크는 (100) 및 (200) 평면에 각각 해당하며, 육각형 WS2 구조와 관련될 수 있다. 다른 피크는 모든 샘플에서 기판이 검출되었기 때문에, FTO에 기인한다. 순수 α-Fe2O3 및 α-Fe2O3@4WS2/WOx광양극의 라만 스펙트럼은 도 5b에 도시한다. 221.3, 289.9, 404.2, 607.4, 1,306.5 cm-1에서 관찰된 피크를 통해 α-Fe2O3의 라만 활성 모드를 확인할 수 있다. α-Fe2O3@4WS2/Wox 필름의 스펙트럼은 α-Fe2O3 샘플과 비교하여 더 높은 파장으로 이동한다. α-Fe2O3 샘플과 비교하여. 더 높은 파수로 이동하는 것은 Z-방식 이종 접합 후 재료의 향상된 결정도를 나타낸다. 5a shows X-ray diffraction (XRD) analysis of pure α-F e 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx electrodes. The peaks at 63.96°, 35.78° and 33.85° correspond to the (300), (110) and (104) planes of the hematite crystal structure in the two fabricated electrodes, respectively. This indicates that the crystallographic structure of hematite in the α-Fe 2 O 3 @4WS 2 /WOx electrode is the same as that in the pure α-Fe 2 O 3 electrode. The diffraction peaks at 33.75° and 13.96° correspond to the (100) and (200) planes, respectively, and may be related to the hexagonal WS 2 structure. The other peaks are attributed to FTO since substrates were detected in all samples. Raman spectra of pure α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx photoanode are shown in FIG. 5B. The peaks observed at 221.3, 289.9, 404.2, 607.4, and 1,306.5 cm -1 indicate the Raman active mode of α-Fe 2 O 3 . The spectrum of the α-Fe 2 O 3 @4WS 2 /Wox film shifts to higher wavelengths compared to the α-Fe 2 O 3 sample. compared to the α-Fe 2 O 3 sample. Shifting to higher wavenumbers indicates improved crystallinity of the material after Z-way heterojunction.
α-Fe2O3 나노로드의 광학 효과에 대한 WS2 쉘의 영향을 평가하기 위해, 순수 α-Fe2O3 및 α-Fe2O3@4WS2/WOx 박막에 대해 UV-vis 흡수 스펙트럼을 측정한다(도 5c). α-Fe2O3와 비교하여 α-Fe2O3@4WS2/WOx 박막의 흡광도는 α-Fe2O3 박막에 WS2 쉘을 로드함으로써 어느정도 향상됨을 확인할 수 있다. 또한, 약간의 적색편이는 WS2 나노시트의 존재를 나타내며 이는 흡광도 강도가 개선되었음을 의미힌다. 순수 α-Fe2O3와 순수 WS2 광양극의 흡광도와 밴드갭 에너지가 도 5e 및 fㅇ[ 각각 도시한다. 제조된 α-Fe2O3와 WS2의 밴드갭은 Tauc 방정식(관계식 6)에 의해 산출된다.UV-vis absorption spectra of pure α- Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx thin films to evaluate the effect of WS 2 shell on the optical effect of α-Fe 2 O 3 nanorods. is measured (Fig. 5c). Compared to α-Fe 2 O 3 , the absorbance of the α-Fe 2 O 3 @4WS 2 /WOx thin film was somewhat improved by loading the WS 2 shell on the α-Fe 2 O 3 thin film. In addition, a slight redshift indicates the presence of WS 2 nanosheets, which means that the absorbance intensity is improved. The absorbance and bandgap energy of the pure α-Fe 2 O 3 and pure WS 2 photoanode are shown in FIGS. 5E and FI, respectively. The band gap of the prepared α-Fe 2 O 3 and WS 2 is calculated by the Tauc equation (relational expression 6).
[관계식 6][Relationship 6]
Figure PCTKR2022013831-appb-img-000007
Figure PCTKR2022013831-appb-img-000007
hν는 광자 에너지이며, Eg 및 A는 비례 상수이다.hν is the photon energy, and Eg and A are proportionality constants.
α-Fe2O3@4WS2/WOx 박막의 LHE(light-harvesting efficiency)는 더 많은 광자를 포착하고 더 많은 전하 캐리어를 생성하는 데 효과적인 광 흡수의 향상을 나타낸다. 도 4d에 도시된 바와 같이, LHE는 관계식 7로 의한다.The light-harvesting efficiency (LHE) of the α-Fe 2 O 3 @4WS 2 /WOx thin film shows enhancement of light absorption, which is effective to capture more photons and generate more charge carriers. As shown in FIG. 4D, LHE is determined by relation 7.
[관계식 7][Relationship 7]
Figure PCTKR2022013831-appb-img-000008
Figure PCTKR2022013831-appb-img-000008
A(λ)는 다른 파장에서의 흡광도이다. α-Fe2O3@4WS2/WOx전극의 흡광도가 더 높은 경우 LHE 값이 더 높아짐을 나타낸다. LHE 향상은 WS2 나노시트와 α-Fe2O3 이종접합의 조합이 광학 특성에 주목할만한 보완 효과가 있고, 쉘로서의 WS2 나노시트가 광 포착 효율에 중요한 역할을 한다는 사실에 기인한다.A(λ) is the absorbance at different wavelengths. The higher the absorbance of the α-Fe 2 O 3 @4WS 2 /WOx electrode, the higher the LHE value. The LHE enhancement is attributed to the fact that the combination of WS 2 nanosheets and α-Fe 2 O 3 heterojunctions has a notable complementary effect on optical properties, and that WS 2 nanosheets as shells play an important role in light capture efficiency.
도 6은 순수 α-Fe2O3 및 α-Fe2O3@4WS2/WOx에 대한 (a) Fe 2p (b) O1s (c) W4f 및 (d) S2p에 대한 XPS 스펙트럼 결과 그래프, 순수 α-Fe2O3전극의 (e) Fe2p 및 (f) O1, 및 (g) 순수 α-Fe2O3및 α-Fe2O3@4WS2/WOx전극에 대한 XPS 조사 분석 결과그래프이다. 6 shows XPS spectral results for (a) Fe 2p (b) O 1s (c) W 4f and (d) S 2p for pure α-Fe 2 O 3 and α-Fe 2 O 3 @ 4WS 2 /WOx Graphs, XPS for (e) Fe 2p and (f) O 1 of pure α-Fe 2 O 3 electrodes, and (g) pure α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx electrodes. This is a graph of the survey analysis result.
α-Fe2O3 및 α-Fe2O3@4WS2/Wox 박막에 대해 X선 광전자 분광법(XPS) 스펙트럼을 측정하여 표면의 원소 조성을 확인한다(도 6a 내지 도 6g). 제조된 전극 표면에 O, Fe, W 원소가 존재함을 확인할 수 있다. XPS 장비의 탄소 오염 및 외래 탄소는 289.1 eV에서 C1s 피크로 나타난다(도 6g). Fe2p의 XPS 스펙트럼은 α-Fe2O3@4WS2/Wox 박막의 경우 약 710 및 723 eV에서 두 개의 피크를 나타내고(도 6a) 순수 α-Fe2O3의 경우 711 및 724 eV(도 6e)에서 나타나고, 이는 각각 Fe2p1/2 및 Fe2p3/2에 해당하는 것이다. 도 6b는 -OH 및 Fe-O의 약 532 및 530 eV에서 두 개의 명백한 회절 O1 피크의 결합 에너지를 나타낸다. α-Fe2O3@4WS2/WOx샘플에서 deconvoluted O1s 피크의 면적은 순수 α-Fe2O3전극(도 6f)에 비해 증가하며, 이는 열처리(어닐링)에 의한 산물로서, WS2에서 WOx로의 전환에 기인한 것이다. W의 XPS는 α-Fe2O3 /WS2 샘플에 대해 각각 W4f7/2 및 W4f5/2에 대해 약 35 및 37 eV에서 두 개의 피크를 나타낸다(도 6c). α-Fe2O3@4WS2/WOx샘플의 S2p 피크를 통해 황의 존재를 확인할 수 있다. S2p 피크는 각각 S2p1/2 및 S2p3/2를 나타내는 약 161.9 및 163.3 eV에서 나타난다(도 6d). XPS 분석 결과를 통해 모든 박막 구조가 성공적으로 제조되었음을 확인할 수 있다.X-ray photoelectron spectroscopy (XPS) spectra were measured for the α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /Wox thin films to confirm the elemental composition of the surface ( FIGS. 6a to 6g ). It can be confirmed that O, Fe, and W elements exist on the surface of the prepared electrode. Carbon contamination and extraneous carbon in the XPS instrument appear as a C1s peak at 289.1 eV (Fig. 6g). The XPS spectrum of Fe 2p shows two peaks at about 710 and 723 eV for α-Fe 2 O 3 @4WS 2 /Wox thin film (Fig. 6a) and 711 and 724 eV for pure α-Fe 2 O 3 (Fig. 6a). 6e), which correspond to Fe 2p1/2 and Fe 2p3/2 respectively. Figure 6b shows the binding energies of two distinct diffraction O1 peaks at around 532 and 530 eV of -OH and Fe-O. The area of the deconvoluted O1s peak in the α-Fe 2 O 3 @4WS 2 /WOx sample is increased compared to that of the pure α-Fe 2 O 3 electrode (FIG. 6f), which is a product of heat treatment (annealing). It is due to the conversion to The XPS of W shows two peaks at about 35 and 37 eV for W 4f7/2 and W 4f5/2 respectively for the α-Fe 2 O 3 /WS 2 sample (FIG. 6c). The presence of sulfur can be confirmed through the S 2p peak of the α-Fe 2 O 3 @4WS 2 /WOx sample. S 2p peaks appear at about 161.9 and 163.3 eV representing S 2p1/2 and S 2p3/2 respectively (FIG. 6d). XPS analysis results confirm that all thin film structures were successfully fabricated.
도 7은 비행시간형 이차이온질량분석(Time-of-Flight Secondary Ion Mass Spectrometry, TOF-SIMS)에 결과 도면으로서, (a) 내지 (d)는 α-Fe2O3@4WS2/WOx전극에서 WS2에서 WOx로의 분리에 대한 표면 분석 결과 그래프 및 α-Fe2O3@4WS2/WOx광양극에서 (e) 깊이 프로파일 및 (f) 이온의 3D 이미지이다. Figure 7 is a time-of-flight secondary ion mass spectrometry (Time-of-Flight Secondary Ion Mass Spectrometry, TOF-SIMS) results, (a) to (d) are α-Fe 2 O 3 @4WS 2 /WOx electrodes It is a surface analysis result graph for the separation of WS 2 to WOx in , and (e) a depth profile and (f) a 3D image of ions in an α-Fe 2 O 3 @4WS 2 /WOx photoanode.
최적화된 샘플의 TOF-SIMS를 조사하여, 깊이에 따라 발생한 상황에 대한 세부 정보를 얻을 수 있다. 도 7e 내지 도 7f는 각각 TOF-SIMS 스펙트럼의 깊이 프로파일, 3차원 이미지 및 표면 분석을 나타낸다. FeO+, Fe2O3 +, WS2 +, W+, S-, O- 및 Sn+ 이온의 강도는 스퍼터링 시간의 함수로 검출된다. 그 결과는 소성 과정 후 WOx(x=2,3)로의 약간의 WS2 산화를 명확하게 보여준다다. 도 7e의 TOF-SIMS 깊이 프로파일은 표면의 WS2 + , S- 및 W+ 이온과 α-Fe2O3구조를 각각 보여준다. WS2 +, S- 및 W+ 이온 강도는 스퍼터링 시간이 증가함에 따라 점차적으로 감소한다. 이는 WS2가 α-Fe2O3@4WS2/WOx나노로드의 상부 영역에 쉘로 고르게 분포되어 있음을 의미한다. 따라서, TOF-SIMS 깊이 프로파일은 WS2 -, W+ 및 S-(WS2)가 삽입되어, α-Fe2O3 광양극과 화학적으로 결합되었음을 명확하게 확인할 수 있다. 따라서, WS2이 박막에 지배적으로 연결되고, TOF-SIMS 측정의 높은 감도로 인해 감지할 수 있는 전극에서 생성된 소량의 WOx(WS2로부터 산화됨)가 존재함을 확인할 수 있다. α-Fe2O3@4WS2/WOx전극의 TOF-SIMS 스펙트럼은 0-240 질량 범위의 음극 및 양극에서 수집된다. 이를 통해 텅스텐 산화물(WOx, x=2, 3)의 응축된 형태의 존재를 분명히 확인하고, 이 샘플의 W-O-W 브리지는 외부 표면에서 존재한다. 이종 접합의 SIMS 프로파일의 3차원(3D) 시각화를 통해 α-Fe2O3@4WS2/WOx박막에서 균일한 이온의 분포를 확인할 수 있다(도 7f). 형태화학적 응용을 위한 구조에서 Fe3+, Fe2+, O2+, W+, WS2 +, S2- 이온이 검출된다. 이를 통해, 표면에 쉘로 존재하는 WS2 + 및 S2-, 중간층에 W 이온의 침투를 확인하고 α-Fe2O3와 WS2/WOx 사이의 내부 계면에서 Fe2+를 확인할 수 있다.By examining the TOF-SIMS of the optimized sample, it is possible to obtain detailed information about what happened at different depths. 7e to 7f show the depth profile, 3D image and surface analysis of the TOF-SIMS spectrum, respectively. The intensities of FeO + , Fe 2 O 3+ , WS 2+ , W + , S - , O - and Sn + ions were detected as a function of sputtering time. The results clearly show some WS 2 oxidation to WOx (x=2,3) after the calcination process. The TOF-SIMS depth profile in Fig . 7e shows the surface WS 2+ , S - and W + ions and the α-Fe 2 O 3 structure, respectively. The WS 2+ , S and W + ion intensities gradually decrease with increasing sputtering time. This means that WS 2 is evenly distributed as a shell in the upper region of the α-Fe 2 O 3 @4WS 2 /WOx nanorod. Therefore, the TOF-SIMS depth profile clearly confirms that WS 2 , W + , and S (WS 2 ) are intercalated and chemically combined with the α-Fe 2 O 3 photoanode. Therefore, it can be confirmed that WS 2 is predominantly connected to the thin film, and there is a small amount of WOx (oxidized from WS 2 ) generated at the electrode, which can be detected due to the high sensitivity of the TOF-SIMS measurement. TOF-SIMS spectra of α-Fe 2 O 3 @4WS 2 /WOx electrodes were collected from cathode and anode in the 0-240 mass range. This clearly confirms the presence of a condensed form of tungsten oxide (WOx, x = 2, 3), and the WOW bridge in this sample is present at the outer surface. Uniform distribution of ions in the α-Fe 2 O 3 @4WS 2 /WOx thin film can be confirmed through three-dimensional (3D) visualization of the SIMS profile of the heterojunction (FIG. 7f). In structures for morphochemical applications, Fe 3+ , Fe 2+ , O 2+ , W + , WS 2+ , and S 2- ions are detected. Through this, WS 2+ and S 2- existing as shells on the surface, penetration of W ions into the middle layer, and Fe 2+ at the internal interface between α-Fe 2 O 3 and WS 2 /WOx can be confirmed.
도 8은 순수 α-Fe2O3 및 α-Fe2O3@4WS2/WOx전극에 대한 전자스핀공명법(Electron Spin Resonance, EPR) 스펙트럼 분석 결과 그래프이다.8 is a graph of electron spin resonance (EPR) spectral analysis results for pure α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx electrodes.
순수 α-Fe2O3 및 α-Fe2O3@4WS2/WOx샘플의 공극 밀도는 ESR 스펙트럼 분석을 사용하여 조사한다(도 8). 상자성 신호의 강도는 이종접합을 만든 후 크게 증가한다. 따라서 이러한 결과는 α-Fe2O3@4WS2/WOx 전극이 순수 α-Fe2O3 전극보다 결함이 더 많다는 것을 나타낸다. 또한 순수 α-Fe2O3 및 α-Fe2O3@4WS2 광양극의 g 값은 각각 약 2.002 및 1.989에서 감지된다. g 값은 낮은 숫자로 이동하며, 이는 전자가 부족한 정전용량 및 높은 산화 반응과 관련될 수 있다. 특히, ESR 결과는 음이온이 짝을 이루지 않은 전자를 제공할 수 있기 때문에 황 결손이 존재함을 나타내며, 이는 수소 생산을 위한 광전기화학적 성능을 향상할 수 있다. 따라서 α-Fe2O3 나노로드 표면의 초박형 WS2 쉘은 전극/전해질 계면으로의 정공 이동을 촉진하고 산화 반응을 향상시킬 수 있다.The pore density of pure α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx samples was investigated using ESR spectral analysis (FIG. 8). The intensity of the paramagnetic signal increases significantly after making the heterojunction. Therefore, these results indicate that the α-Fe 2 O 3 @4WS 2 /WOx electrode has more defects than the pure α-Fe 2 O 3 electrode. Also, g values of pure α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 photoanode are detected at about 2.002 and 1.989, respectively. The g value shifts to lower numbers, which may be related to electron deficient capacitance and high oxidation reaction. In particular, the ESR results indicate the presence of sulfur vacancies because anions can donate unpaired electrons, which can enhance the photoelectrochemical performance for hydrogen production. Therefore, the ultra-thin WS 2 shell on the surface of the α-Fe 2 O 3 nanorods can promote hole migration to the electrode/electrolyte interface and enhance the oxidation reaction.
3. 광양극의 PEC 성능3. PEC performance of photoanode
도 9는 α-Fe2O3 및 α-Fe2O3@4WS2 샘플에 대한 0.3 내지 1.5V의 전위에서 (a) 선형 주사 전압전류법(Linear scan voltammetry, LSV) 및 쵸핑된 LSV 대 RHE의 결과 그래프, (c) 광전류 응답, (d) 광전류 안정성(삽입도면은 장시간(24시간)의 α-Fe2O3@4WS2에 대한 광전류 안정성)에 대한 도면이다. 9 shows (a) Linear scan voltammetry (LSV) and chopped LSV versus RHE at potentials from 0.3 to 1.5 V for α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 samples. Graphs of the results, (c) photocurrent response, (d) photocurrent stability (inset shows long-term (24 hours) photocurrent stability for α-Fe 2 O 3 @4WS 2 ).
α-Fe2O3및 모든 α-Fe2O3@4WS2/WOx 전극에 대해 광전류 밀도 대 전위를 전해질로서 1M NaOH 용액에서 (0.3~1.5) V 대 RHE 사이에서 선형 주사 전압전류법(LSV)과 쵸핑 LSV를 통해 조사한다(도 9a 및 b). 순수 α-Fe2O3 전극의 광전류 밀도는 1.23V 대 RHE에서 ~0.07mA.cm-2를 얻었다. α-Fe2O3 전극에 WS2 나노시트를 증착한 후, α-Fe2O3@4WS2/WOx 광양극에 대해 1.23V vs. RHE에서 가장 높은 광전류 밀도가 0.98mA.cm-2에 도달한다(도 9a). 코어-쉘 α-Fe2O3@4WS2/WOx의 광전류 밀도는 α-Fe2O3와 WS2 사이의 이종 접합을 사용하여 14배 증가한다. 이 구조는 동시에 전하 분리를 향상시키고 전하 캐리어의 재결합을 감소시킬 수 있다. 그러나 α-Fe2O3에 추가된 WS2으로 인해 광전류 밀도 값을 크게 감소시킨다. 이러한 감소는 과도한 WS2가 광양극의 광 흡수를 차단할 수 있기 때문일 수 있다(도 9a 내지 도 9b). α-Fe2O3 광양극 표면의 WS2 나노시트의 이종 접합이 시작 전위를 더 낮은 인가 전압(0.38 VRHE)으로 상당히 감소시킨다.Photocurrent density versus potential for α-Fe 2 O 3 and all α-Fe 2 O 3 @4WS 2 /WOx electrodes was measured by linear scanning voltammetry (LSV) between (0.3–1.5) V versus RHE in 1 M NaOH solution as electrolyte. ) and chopping LSV (Fig. 9a and b). The photocurrent density of the pure α-Fe 2 O 3 electrode was ~0.07 mA.cm -2 at 1.23 V vs. RHE. After depositing the WS 2 nanosheets on the α-Fe 2 O 3 electrode, 1.23 V vs. 1.23 V vs. The highest photocurrent density at RHE reaches 0.98 mA.cm -2 (FIG. 9a). The photocurrent density of core-shell α-Fe 2 O 3 @4WS 2 /WOx is increased by a factor of 14 using a heterojunction between α-Fe 2 O 3 and WS 2 . This structure can simultaneously improve charge separation and reduce recombination of charge carriers. However, the photocurrent density value is greatly reduced due to WS 2 added to α-Fe 2 O 3 . This decrease may be due to excessive WS 2 blocking the light absorption of the photoanode (FIGS. 9A-9B). The heterojunction of WS 2 nanosheets on the α-Fe 2 O 3 photoanode surface significantly reduces the onset potential with a lower applied voltage (0.38 VRHE).
제조된 모든 광전극에 대한 광전류 밀도 및 시작 전위 값은 도 9e에서 명확하게 비교할 수 있다. 도 9b의 쵸빙 LSV는 2초 조명 켜기/끄기에서 측정되었으며 이는 LSV 결과와 일치한다(도 9a). 이는 우수한 성능의 광양극으로서 코어-쉘 α-Fe2O3@WS2/WOx 나노로드 구조가 광에 빠르게 반응할 수 있고 0에서 평형 값까지 신속하게 광전류를 생성할 수 있음을 확인할 수 있다. 도 9c는 간헐적 광 조사(조명 켜기/끄기) 하에서 4 사이클 동안 스캔한 크로노암페로메트리를 도시한다. 조명 켜기 및 끄기 인터벌에 대한 동일한 응답은 α-Fe2O3@WS2/WOx 광양극의 우수한 재현성을 나타낸다. 다른 α-Fe2O3@WS2/WOx 샘플에 대한 광전류의 안정성은 연속 조명 하에서 측정된다(도 9d). 제조된 모든 광전극은 15분 동안 큰 하락 없이 안정적인 광전류를 보인다. 또한, α-Fe2O3@4WS2/WOx 광양극에 대한 광전류의 긴 안정성은 24시간 동안 연속 조명 하에서 도 9d의 삽입도면에 도시한다. 상부 표면에 WOx가 형성되어 얇은 보호층이 광 부식을 방지하고, 알칼리 전해질(NaOH) 용액에서 α-Fe2O3광양극 표면의 알칼리 약한 WS2의 안정성을 향상시키고, 알칼리에 약한 MoS2와 NaOH 전해질 사이를 효과적인 분리시킬 수 있다.The photocurrent density and onset potential values for all fabricated photoelectrodes can be clearly compared in Fig. 9e. The choking LSV in Fig. 9b was measured at 2 sec light on/off, which is consistent with the LSV result (Fig. 9a). As a photoanode with excellent performance, it can be confirmed that the core-shell α-Fe 2 O 3 @WS 2 /WOx nanorod structure can rapidly respond to light and quickly generate a photocurrent from 0 to an equilibrium value. Fig. 9c shows the chronoamperometry scanned for 4 cycles under intermittent light illumination (lighting on/off). Identical responses to light on and off intervals indicate good reproducibility of the α-Fe 2 O 3 @WS 2 /WOx photoanode. The stability of the photocurrent for different α-Fe 2 O 3 @WS 2 /WOx samples was measured under continuous illumination (FIG. 9d). All fabricated photoelectrodes show stable photocurrent without significant drop for 15 min. Furthermore, the long-term stability of the photocurrent for the α-Fe 2 O 3 @4WS 2 /WOx photoanode is shown in the inset of Fig. 9d under continuous illumination for 24 h. WOx is formed on the upper surface to prevent photocorrosion with a thin protective layer, improve the stability of alkali-weak WS 2 on the surface of α-Fe 2 O 3 photoanode in alkaline electrolyte (NaOH) solution, and improve alkali-weak MoS 2 and Effective separation between NaOH electrolytes can be achieved.
제작된 모든 광전극에 대한 광전류 밀도 및 시작 전위 값을 도 9e에서 비교할 수 있다. 상이한 방법에 의하여 제작된 광양극에 대한 비교 결과가 도 9e에 도시한다, 이는 Fe2O3@4WS2/WOx 광양극에서 더 낮은 바이어스에서 수명이 긴 홀이 나타남을 확인할 수 있다. 발병 잠재력의 음의 이동은 TRPL 및 장기간 안정성 결과와 잘 일치한다. 또한, 도 9f를 참조하면, α-Fe2O3@WS2/WOx 전극의 ABPE 값은 전해질로 1M NaOH(pH≒14)에서 측정된 전위 범위에서 순수한 α-Fe2O3 보다 높다. 가장 낮은 전위(0.9 VRHE)에서 α-Fe2O3@4WS2/WOx 전극(0.194%)에서 가장 높은 효율이 얻어졌으며, 이는 0.01%의 순수한 α-Fe2O3@4WS2/WOx보다 19.4배 더 높다. 따라서 α-Fe2O3@4WS2/WOx광양극은 제작된 α-Fe2O3 기반 광전극 중에서 가장 높은 PEC 수분 분해를 보인다.The photocurrent densities and starting potential values for all the fabricated photoelectrodes can be compared in FIG. 9e. Comparative results for photocathodes fabricated by different methods are shown in FIG. 9E , which confirms that holes with long lifetime appear at lower bias in the Fe 2 O 3 @4WS 2 /WOx photoanode. The negative shift in onset potential is in good agreement with the TRPL and long-term stability results. Also, referring to FIG. 9F, the ABPE value of the α-Fe 2 O 3 @WS 2 /WOx electrode is higher than that of pure α-Fe 2 O 3 in the potential range measured in 1M NaOH (pH≒14) as an electrolyte. The highest efficiency was obtained for the α-Fe 2 O 3 @4WS 2 /WOx electrode (0.194%) at the lowest potential (0.9 VRHE), which was 19.4% higher than that of 0.01% pure α-Fe 2 O 3 @4WS 2 /WOx. times higher Therefore, the α-Fe 2 O 3 @4WS 2 /WOx photoanode shows the highest PEC water breakdown among the fabricated α-Fe 2 O 3 based photoelectrodes.
도 9f에 표시된 다양한 인가 전위에서 적용된 바이어스 광자-전류 변환 효율(applied bias photon-to-current conversion efficiency, ABPE)은 하기 관계식 8에 의해 산출된다.The applied bias photon-to-current conversion efficiency (ABPE) at various applied potentials shown in FIG. 9F is calculated by the following relational expression 8.
[관계식 8][Relationship 8]
Figure PCTKR2022013831-appb-img-000009
Figure PCTKR2022013831-appb-img-000009
J는 다양한 인가 전위에서의 광전류 밀도이고, Vb는 인가된 바이어스 대 RHE를 의미하고, P는 입사광의 전력 밀도(100mW/cm2)이다. α-Fe2O3@WS2/WOx전극의 ABPE 값은 전해질로서 1M NaOH(pH=12)에서 측정된 전위 범위에서 순수 α-Fe2O3보다 높다. 가장 낮은 전위(0.9 VRHE)에서 α-Fe2O3@4WS2/WOx 전극에서 가장 높은 효율(0.194%)을 제공할 수 있으며, 이는 0.01%의 순수 α-Fe2O3의 효율 보다 19.4배 더 높다. 따라서, α-Fe2O3@4WS2/WOx 광양극은 제조된 α-Fe2O3기반 광전극 중에서 가장 높은 PEC 물 분할 효과를 나타낸다.J is the photocurrent density at various applied potentials, Vb means applied bias versus RHE, and P is the power density of the incident light (100 mW/cm 2 ). The ABPE value of the α-Fe 2 O 3 @WS 2 /WOx electrode is higher than pure α-Fe2O3 in the potential range measured in 1M NaOH (pH=12) as an electrolyte. At the lowest potential (0.9 VRHE), the α-Fe 2 O 3 @4WS 2 /WOx electrode can provide the highest efficiency (0.194%), which is 19.4 times higher than that of 0.01% pure α-Fe 2 O 3 . Higher. Therefore, the α-Fe 2 O 3 @4WS 2 /WOx photoanode shows the highest PEC water splitting effect among the prepared α-Fe 2 O 3 based photoelectrodes.
도 10은 α-Fe2O3 및 α-Fe2O3@4WS2/WOx 전극에 대한 (a) 개방 회로 광전압(open circuit photovoltage, OCP), (b) Mott-Schottky, (c) ND와 Vfb 사이의 관계 및 (d) IPCE 플롯에 대한 결과 그래프이다. 10 shows (a) open circuit photovoltage (OCP), (b) Mott-Schottky, (c) ND for α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx electrodes. and Vfb and (d) the resulting graph for the IPCE plot.
광생성 전하 캐리어 거동에 대한 자세한 내용은 개방 회로 광전압(OCP) 측정을 사용하여 조사한다(도 10a). OCP 플롯에서 조명 시간의 더 낮은 전위는 더 많은 광 생성 전자 생성과 더 높은 전도도를 나타낸다. 광전극은 램프를 켠 후 음의 전압을 가지며, 이는 광생성 전자가 FTO로 향하는 방향을 나타내고, 다른 광전기화학적 분석에서 양극 광전류를 확인한다. 또한, α-Fe2O3@4WS2/Wox 광양극은 조명 상태에서 암 평형(dark equilibrium)으로 돌아오는 데 약 44초가 더 걸린다. 이는 이종 접합을 제조한 후 크게 연장되는 광생성 전하 캐리어의 수명에 기인할 수 있다. 따라서, 코어-쉘 α-Fe2O3@4WS2/Wox 나노로드 구조의 전도도는 α-Fe2O3@4WS2/Wox 광전극에서 전하 캐리어의 감소된 재결합뿐만 아니라 증가된 가용 광생성 전자 농도로 인해 증가한다.Details of the photogenerated charge carrier behavior are investigated using open circuit photovoltage (OCP) measurements (Fig. 10a). In the OCP plot, a lower potential at illumination time indicates more photogenerated electron generation and higher conductance. The photoelectrode has a negative voltage after turning on the lamp, indicating the direction of the photogenerated electrons towards the FTO, and another photoelectrochemical analysis confirms the anodic photocurrent. Also, the α-Fe 2 O 3 @4WS 2 /Wox photoanode takes about 44 seconds longer to return to dark equilibrium from the illuminated state. This can be attributed to the greatly extended lifetime of the photogenerated charge carriers after fabrication of the heterojunction. Thus, the conductivity of the core-shell α-Fe 2 O 3 @4WS 2 /Wox nanorod structure is due to increased available photogenerated electrons as well as reduced recombination of charge carriers at the α-Fe 2 O 3 @4WS 2 /Wox photoelectrode. increase due to concentration.
Mott-Schottky(MS) 플롯은 도 10b에 도시하고, α-Fe2O3, α-Fe2O3@2WS2/WOx, α-Fe2O3@4WS2/WOx 및 α-Fe2O3@8WS2/WOx 광양극은 전자를 전하 캐리어로 갖는 n형 반도체의 특성을 의미하는 이종접합 전후의 양의 기울기를 나타낸다. MS 파라미터, 플랫 밴드 전위(Vfb), 공간 전하 영역의 폭(WSCL) 및 전도대 전자 밀도(ND)는 각각 관계식 9, 10 및 11에 의해 산출된다.Mott-Schottky (MS) plots are shown in FIG. 10B, α-Fe 2 O 3 , α-Fe 2 O 3 @2WS 2 /WOx, α-Fe 2 O 3 @4WS 2 /WOx and α-Fe 2 O The 3 @8WS 2 /WOx photoanode shows a positive slope before and after the heterojunction, which means the characteristics of an n-type semiconductor with electrons as charge carriers. MS parameters, flat band potential (V fb ), space charge region width (W SCL ) and conduction band electron density (N D ) are calculated by relations 9, 10 and 11, respectively.
[관계식 9][Relational Expression 9]
Figure PCTKR2022013831-appb-img-000010
Figure PCTKR2022013831-appb-img-000010
여기서 V는 CB 전위(V), Vfb는 플랫 밴드 전위(V), k는 볼츠만 상수, T는 온도(K), e 전자의 전하(C), ε는 비유전율, ε0 유전 상수 , ND는 단위 부피당 도너 농도(cm3), Csc는 표면 전하 커패시턴스(F/cm2)이다. 전극의 양의 기울기가 n형 반도체를 나타내는 Mott-Schottky 플롯을 기반으로 도너 농도에 대한 정성적 정보를 얻을 수 있다. 공간 전하층(WSCL)의 폭은 ND와 Vfb에 의존하는 푸아송 방정식을 풀면 관계식 10과 같이 산출할 수 있다.where V is the CB potential (V), V fb is the flat band potential (V), k is the Boltzmann constant, T is the temperature (K), e is the charge of electrons (C), ε is the relative permittivity, ε 0 dielectric constant, ND is the donor concentration per unit volume (cm 3 ), and C sc is the surface charge capacitance (F/cm 2 ). Qualitative information about the donor concentration can be obtained based on the Mott-Schottky plot, where the positive slope of the electrode indicates an n-type semiconductor. The width of the space charge layer (W SCL ) can be calculated as shown in Equation 10 by solving Poisson's equation depending on N D and V fb .
[관계식 10][Relational Expression 10]
Figure PCTKR2022013831-appb-img-000011
Figure PCTKR2022013831-appb-img-000011
α-Fe2O3 및 α-Fe2O3@WS2/WOx전극에 대한 Mott-Schottky 방정식 및 일정 부피는 하기와 같다:The Mott-Schottky equation and constant volume for α-Fe 2 O 3 and α-Fe 2 O 3 @WS 2 /WOx electrodes are:
[관계식 11][Relationship 11]
Figure PCTKR2022013831-appb-img-000012
Figure PCTKR2022013831-appb-img-000012
α-Fe2O3, α-Fe2O3@2WS2/WOx, α-Fe2O3@4WS2/WOx 및 α-Fe2O3@8WS2/WOx 광양극에 대한 다음 관계를 기반으로, 측정갑을 표 2에 나타낸다.Based on the following relationships for α-Fe 2 O 3, α-Fe 2 O 3 @2WS 2 /WOx, α-Fe 2 O 3 @4WS 2 /WOx, and α-Fe 2 O 3 @8WS 2 /WOx photoanodes , the measurement bag is shown in Table 2.
SampleSample slopeslope Intercept (x-axis)Intercept (x-axis) ND(cm3)ND (cm3) Vfb(v)Vfb(v) W(nm)W(nm)
α-Fe2O3 α-Fe 2 O 3 4.63E+094.63E+09 0.70.7 3.05E+203.05E+20 0.670.67 6.866.86
α-Fe2O3@2WS2/WOx α-Fe 2 O 3 @2WS 2 /WO x 2.11E+092.11E+09 0.630.63 6.70E+206.70E+20 0.600.60 4.544.54
α-Fe2O3@4WS2/WOx α-Fe 2 O 3 @4WS 2 /WO x 1.04E+091.04E+09 0.550.55 1.35E+211.35E+21 0.520.52 3.123.12
α-Fe2O3@8WS2/WOx α-Fe 2 O 3 @8WS 2 /WO x 1.68E+091.68E+09 0.610.61 8.39E+208.39E+20 0.580.58 4.034.03
도 10b에 도시한 바와 같이, MS 곡선의 기울기는 크게 감소하고, 인가된 전위는 음극 이동을 나타낸다. α-Fe2O3@4WS2/WOx 광전극의 가장 높은 ND와 가장 낮은 Vfb는 각각 1.35E+27m3 및 0.52V로 산출되고(도 10c), 이는 전도대에서 증가된 전자 밀도에 기인할 수 있으며, 최적의 쉘 두께에 의해 α-Fe2O3@4WS2/WOx 박막에서 전하 캐리어 분리가 향상된다. α-Fe2O3@4WS2/WOx 샘플에서 WSCL의 최고 값은 순수 α-Fe2O3 (6.86nm)의 약 54%이다. 이를 통해 전하 캐리어 전달을 증가시킴으로써 PEC 성능을 개선할 수 있다.가시광선 영역 조사에서 모든 샘플에 대한 광전기화학적 성능은 관계식 12를 사용하여 입사 광자 전류 효율(incident-photon-to-current-efficiencies, IPCE) 측정에 의해 확인할 수 있다.As shown in FIG. 10B, the slope of the MS curve is greatly reduced, and the applied potential shows a cathodic shift. The highest N D and lowest V fb of the α-Fe 2 O 3 @4WS 2 /WOx photoelectrode are calculated to be 1.35E+27m 3 and 0.52V, respectively (Fig. 10c), which is attributed to the increased electron density in the conduction band. and charge carrier separation is improved in the α-Fe 2 O 3 @4WS 2 /WOx thin film by the optimal shell thickness. The highest value of W SCL in the α-Fe 2 O 3 @4WS 2 /WOx sample is about 54% of pure α-Fe 2 O 3 (6.86 nm). Through this, the PEC performance can be improved by increasing the charge carrier transfer. The photoelectrochemical performances of all samples in the visible light region are investigated using relational equation 12 to determine the incident-photon-to-current-efficiencies (IPCE). ) can be confirmed by measurement.
[관계식 12][Relationship 12]
Figure PCTKR2022013831-appb-img-000013
Figure PCTKR2022013831-appb-img-000013
α-Fe2O3및 α-Fe2O3@4WS2/WOx 광양극의 가장 높은 IPCE 값은 325nm에서 각각 1.65 및 15.5%이다(도 10d). 가장 높은 IPCE 값은 WS2 나노시트와의 이종접합 효과이다. α-Fe2O3@4WS2/WOx 광양극에 대해 확인된 IPCE는 순수 α-Fe2O3에 비해 9.4배 더 높다. 향상된 IPCE 곡선은 가시광선 하에서 α-Fe2O3@4WS2/WOx샘플에 대한 광 흡수 분석 스펙트럼의 보다 나은 결과에 해당한다. 따라서 α-Fe2O3@4WS2/WOx 광양극은 정공을 제거하지 않더라도 α-Fe2O3 기반 광양극의 PEC 용량을 크게 향상시킬 수 있다.The highest IPCE values of α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx photoanode are 1.65 and 15.5% at 325 nm, respectively (FIG. 10d). The highest IPCE value is the heterojunction effect with WS 2 nanosheets. The IPCE found for α-Fe 2 O 3 @4WS 2 /WOx photoanode is 9.4 times higher than that for pure α-Fe 2 O 3 . The enhanced IPCE curve corresponds to better results of the optical absorption analysis spectrum for the α-Fe 2 O 3 @4WS 2 /WOx sample under visible light. Therefore, the α-Fe 2 O 3 @4WS 2 /WOx photoanode can greatly enhance the PEC capacity of the α-Fe 2 O 3 based photoanode even without removing holes.
도 11은 전위 0.9, 1, 1.1 V vs RHE에서 (a) α-Fe2O3 및 (b) Fe2O3@4WS2/WOx에 대한 나이퀴스트 플롯, (c) 전위 1.1 V vs RHE에서의 대한 나이퀴스트 플롯 및 (d) α-Fe2O3및 α-Fe2O3@4WS2/WOx전극에 대한 시간분해 형광분광법(Time-Resolved Photoluminescence, TRPL)에 대한 결과 그래프이다.11 shows Nyquist plots for (a) α-Fe 2 O 3 and (b) Fe 2 O 3 @4WS 2 /WOx at potentials of 0.9, 1, and 1.1 V vs. RHE, and (c) at potentials of 1.1 V vs. RHE. Nyquist plot for (d) α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx electrodes for Time-Resolved Photoluminescence (TRPL) results.
α-Fe2O3 및 α-Fe2O3@4WS2/WO x광전극의 전기화학적 임피던스 분광법(EIS)을 측정하여 α-Fe2O3:WS2:전해질 계면에서 광생성된 전자 전달 과정에서 WS2/WOx 쉘의 역할을 조사한다. 도 11a 내지 도 11c는 α-Fe2O3 및 α-Fe2O3@4WS2/WOx광전극에 대한 서로 다른 전위(0.9, 1.1.1 V vs.RHE)에서 나이퀴스트 플롯을 도시한다. 이들은 본질적으로 일정하고 작은 직렬 저항(Rs), 계면 전하 이동 저항(R) 및 α-Fe2O3:WS2과 전해질 계면의 공간 전하 커패시턴스(C)를 포함하는 Randles 회로 모델(도 11c 삽입도면)에 의해 잘 맞는다. 그래프 내부의 표는 저항과 공간 전하 커패시턴스 값을 보여주며, 이는 α-Fe2O3@4WS2/WOx 광양극에서 가장 낮은 저항과 가장 높은 커패시턴스가 얻어졌음을 나타낸다. 도 11a 및 11b의 내부 표에 도시된 바와 같이, 전하 전달 저항은 전자 전달 속도의 증가로 인한 과전위의 증가에 의해 감소한다. 도 11c에 도시한 바와 같이, α-Fe2O3@4WS2/WOx 광양극은 α-Fe2O3@4WS2/WOx 광전극의 계면 전하 전달 저항에 해당하는 1.1V vs. RHE의 전압에서 가장 낮은 반원 직경이 크게 감소함을 보여준다. 이러한 거동은 α-Fe2O3에서 쉘로서 WS2 박막으로 정공 추출을 개선한 WS2 나노시트를 사용하여 코어-쉘 형태의 이종접합을 제조한데 기인할 수 있다. 결과적으로, α-Fe2O3@4WS2/WOx 코어-쉘은 TRPL 데이터와 완전히 일치하는 α-Fe2O3 박막에서 전하 캐리어의 재결합 속도를 감소시킬 수 있다.Photogenerated electron transfer at the α-Fe 2 O 3 :WS 2 :electrolyte interface by measuring electrochemical impedance spectroscopy (EIS) of α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WO x photoelectrodes. Investigate the role of the WS 2 /WOx shell in the process. 11A-11C show Nyquist plots at different potentials (0.9, 1.1.1 V vs. RHE) for α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx photoelectrodes. . These are essentially constant and small series resistance (Rs), interfacial charge transfer resistance (R) and Randles circuit model including the space charge capacitance (C) of the α-Fe 2 O 3 :WS 2 and electrolyte interface (Fig. 11c inset). ) fits well. The table inside the graph shows the resistance and space charge capacitance values, indicating that the lowest resistance and highest capacitance was obtained for the α-Fe 2 O 3 @4WS 2 /WOx photoanode. As shown in the internal tables of FIGS. 11A and 11B , the charge transfer resistance decreases with an increase in overpotential due to an increase in electron transfer rate. As shown in FIG. 11C, the α-Fe 2 O 3 @4WS 2 /WOx photoanode has a 1.1V vs. interfacial charge transfer resistance of the α-Fe 2 O 3 @4WS 2 /WOx photoanode. It shows that the lowest semicircle diameter greatly decreases at the voltage of RHE. This behavior can be attributed to the fabrication of core - shell heterojunctions using WS 2 nanosheets with improved hole extraction from α-Fe 2 O 3 to WS 2 thin films as shells. As a result, the α-Fe 2 O 3 @4WS 2 /WOx core-shell can reduce the recombination rate of charge carriers in the α-Fe 2 O 3 thin film, which is in perfect agreement with the TRPL data.
전하 이동의 영향에 대한 더 많은 정보를 조사하기 위해, PL 수명을 측정하여, 순수 α-Fe2O3 및 α-Fe2O3@4WS2/WOx의 전자 이동을 조사한다(도 11d). α-Fe2O3 및 α-Fe2O3@4WS2/WOx 광양극 맞춤의 정규화된 TRPL은 연한 회색 곡선으로 표시되는 이중 지수이며, 이는 관계식 13에 의해 산출된다.To investigate more information on the effect of charge transfer, the electron transfer of pure α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx is investigated by measuring the PL lifetime (Fig. 11d). The normalized TRPL of the α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx photoanode fits is a double exponential represented by the light gray curve, which is calculated by relation (13).
[관계식 13][Relational Expression 13]
Figure PCTKR2022013831-appb-img-000014
Figure PCTKR2022013831-appb-img-000014
여기서 τ1 및 τ2는 각각 수명이 긴 구성요소와 짧은 구성요소의 수명이고 A1과 A2는 각 구성 요소의 스케일링 계이다. 평균 수명(τ)은 관계식 14를 통해 산출된다.Here, τ 1 and τ 2 are the lifetimes of long and short components, respectively, and A 1 and A 2 are the scaling factors of each component. The average lifetime (τ) is calculated through relational expression 14.
[관계식 14][Relational Expression 14]
Figure PCTKR2022013831-appb-img-000015
Figure PCTKR2022013831-appb-img-000015
표 3은 등가 회로 모델에서 적합한 광양극의 TRPL 매개변수를 나타낸다.Table 3 shows the TRPL parameters of the photoanode fitted in the equivalent circuit model.
α-Fe2O3 α-Fe 2 O 3 α-Fe2O3@4WS2/WOx α-Fe 2 O 3 @4WS 2 /WO x
A1A1 0.305790.30579 0.127250.12725
t1t1 1.966261.96626 2.815762.81576
A2A2 0.658080.65808 0.301070.30107
t2t2 0.513690.51369 0.502040.50204
TRPL 스펙트럼은 α-Fe2O3@4WS2/WOx 전하 캐리어의 평균 붕괴 시간(τave =2.13 ns)이 순수 α-Fe2O3ave =1.44 ns)보다 더 길다는 것을 확인할 수 있다. 이러한 상당히 향상된 산출 τave은 이종 접합으로서 WS2 나노시트의 사용이 α-Fe2O3와 WS2 반도체 사이에 효율적인 전하 이동이 발생함을 의미하는 것을 보여준다.결과적으로 전자-정공 쌍을 보다 잘 분리하여, α-Fe2O3@4WS2/WOx 전극에서 전하 캐리어를 보다 잘 전달함으로써, PEC 물 산화 효율을 높일 수 있다. 이를 통해, 광전극 표면의 전하 캐리어 트래핑을 효과적으로 억제하고, α-Fe2O3@4WS2/WOx/전해질 계면에서의 전하 재결합을 감소시키며, α-Fe2O3@4WS2/WOx광양극의 전자 주입 효율을 향상시킬 수 있다.도 12는 (a) 1M NaOH 및 1M NaOH + 0.5M H2O2 전해질에서 측정된 선형 주사 전위법(Linear scan voltammetry, LSV), (b) 전하 주입, (c) 전하 분리 효율, 1.23 V vs RHE 전위에서 α-Fe2O3 및 α-Fe2O3@4WS2/WOx 전극에 대한 조명 영역(1cm2)당 반응 시간 대비 (d) H2 및 (e) O2 발생에 대한 결과 그래프이다. The TRPL spectrum confirms that the average decay time of α-Fe 2 O 3 @4WS 2 /WOx charge carriers (τave = 2.13 ns) is longer than pure α-Fe 2 O 3ave = 1.44 ns). This significantly improved calculation of τ ave shows that the use of WS 2 nanosheets as a heterojunction means that efficient charge transfer occurs between the α-Fe 2 O 3 and WS 2 semiconductors. As a result, electron-hole pairs are better In isolation, better transfer of charge carriers at the α-Fe 2 O 3 @4WS 2 /WOx electrode can increase the PEC water oxidation efficiency. This effectively suppresses the trapping of charge carriers on the surface of the photoelectrode, reduces charge recombination at the α-Fe 2 O 3 @4WS 2 /WOx/electrolyte interface, and reduces the α-Fe 2 O 3 @4WS 2 /WOx photoanode. 12 shows (a) linear scan voltammetry (LSV) measured in 1M NaOH and 1M NaOH + 0.5MH 2 O 2 electrolyte, (b) charge injection, ( c) Charge separation efficiency, versus response time per illuminated area (1 cm 2 ) for α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx electrodes at 1.23 V vs. e) This is the result graph for O 2 generation.
WS2 나노시트를 α-Fe2O3 나노로드에 로딩하여, 전극/전해질 계면을 통한 정공 수송을 개선함으로써, 반응 장벽을 극복할 수 있다. 도 12a에 도시한 바와 같이, 더 빠른 산화 동역학으로 인해 α-Fe2O3 및 α-Fe2O3@4WS2/WOx 광전극에 대해 H2O2가 존재할 때 광전류 밀도와 명백한 개시 전위 이동이 크게 향상된다. 광전류는 일반적으로 반도체의 광 흡수, 광생성 전하 캐리어의 분리 및 PEC 성능을 위한 표면 전하 주입을 통해 발생한다. 순수 α-Fe2O3 광양극과 α-Fe2O3@4WS2/WOx 광양극의 표면 전하 주입 효율(ηinj)과 전하 분리 효율(ηsep)을 도 12a 및 도 12b에 도시한다. 광생성 캐리어의 전하 분리 효율(ηsep) 및 전해질에 대한 전하 주입 효율(ηinj)은 널리 인정되는 정공 제거 방법을 사용하여 서로 다른 적용된 바이어스에서 하기 관계식 15, 16 및 17에 의해 산출된다.The reaction barrier can be overcome by loading WS 2 nanosheets onto α-Fe 2 O 3 nanorods to improve hole transport through the electrode/electrolyte interface. As shown in Fig. 12a, the photocurrent density and apparent onset potential shift in the presence of H 2 O 2 for α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx photoelectrodes due to faster oxidation kinetics. This is greatly improved. Photocurrent is typically generated through light absorption in semiconductors, separation of photogenerated charge carriers, and surface charge injection for PEC performance. The surface charge injection efficiency (η inj ) and charge separation efficiency (η sep ) of the pure α-Fe 2 O 3 photoanode and the α-Fe 2 O 3 @4WS 2 /WOx photoanode are shown in FIGS. 12A and 12B . The charge separation efficiency of the photogenerated carriers (η sep ) and the charge injection efficiency into the electrolyte (η inj ) are calculated by the following relationships 15, 16 and 17 at different applied biases using well-recognized hole removal methods.
[관계식 15][Relational Expression 15]
Figure PCTKR2022013831-appb-img-000016
Figure PCTKR2022013831-appb-img-000016
[관계식 16][Relational Expression 16]
Figure PCTKR2022013831-appb-img-000017
Figure PCTKR2022013831-appb-img-000017
[관계식 17][Relational Expression 17]
Figure PCTKR2022013831-appb-img-000018
Figure PCTKR2022013831-appb-img-000018
여기서 JH2O 및 JH2O2는 각각 1M NaOH 및 1M NaOH + 0.5M H2O2의 전해질에서 측정된 광전류 밀도를 나타낸다.Here, J H2O and J H2O2 denote photocurrent densities measured in electrolytes of 1M NaOH and 1M NaOH + 0.5MH 2 O 2 , respectively.
α-Fe2O3 나노로드의 표면에 WS2 나노시트를 쉘로 로드함으로써 α-Fe2O3의 ηinj가 0.6 VRHE에서 약 0.15 내지 0.88 증가한다(도 12b). ηsep 및 ηinj는 2D-WS2 나노시트로 이종접합을 제작하여, α-Fe2O3@4WS2/WOx 나노로드 코어-쉘에서 향상된다. α-Fe2O3 광양극과 α-Fe2O3@4WS2/WOx 광양극에 대해 ηsep의 값은 VRHE에서 약 0.003 내지 0.09이다(도 12c).By loading WS 2 nanosheets on the surface of α-Fe 2 O 3 nanorods as shells, η inj of α-Fe 2 O 3 increases from about 0.15 to 0.88 at 0.6 V RHE (FIG. 12b). η sep and η inj are enhanced in α-Fe 2 O 3 @4WS 2 /WOx nanorod core-shell by fabricating a heterojunction with 2D-WS 2 nanosheets. For α-Fe 2 O 3 photoanode and α-Fe 2 O 3 @4WS 2 /WOx photoanode, the value of ηsep is about 0.003 to 0.09 at V RHE (FIG. 12c).
비교를 위해 α-Fe2O3 및 α-Fe2O3@4WS2/WOx 광양극의 전체 물 분해는 1M NaOH 전해질에서 100mW.cm-2 조사 하에서 1.23 V vs RHE에서 H2 및 O2 발생을 측정하여 평가한다. 도 12c 및 도 12d에서 도시한 바와 같이, α-Fe2O3 및 α-Fe2O3@4WS2/WOx 광양극에 대한 조사 2시간 후 생성된 총 H2는 각각 1.39 및 32 μmol.cm-2이고 생성된 총 O2는 각각 0.69 및 15.3 μmol.cm-2로 물 분해 반응의 2:1 비율을 나타낸다. H2/O2 가스 발생 과정은 도 9d의 크로노암페로메트리에 의해 제시된 안정적인 광전류 밀도를 동반한다. 또한,α-Fe2O3@4WS2/WOx 광양극에 대한 O2 및 H2 발생의 패러데이 효율은 82% 내지 86%로 산출되며, 이는 대부분의 광생성 정공이 물 산화 반응에 사용되었음을 의미한다.For comparison, the total water dissociation of α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx photoanodes generated H 2 and O 2 at 1.23 V vs RHE under 100 mW.cm -2 irradiation in 1 M NaOH electrolyte. Measure and evaluate. As shown in FIGS. 12c and 12d, the total H 2 generated after 2 hours of irradiation for the α-Fe 2 O 3 and α-Fe 2 O 3 @4WS 2 /WOx photoanodes was 1.39 and 32 μmol.cm, respectively. −2 and the total O 2 produced were 0.69 and 15.3 μmol.cm −2 , respectively, indicating a 2:1 ratio of the water splitting reaction. The H 2 /O 2 gas evolution process is accompanied by a stable photocurrent density as shown by chronoamperometry in FIG. 9d . In addition, the Faraday efficiency of O 2 and H 2 generation for the α-Fe 2 O 3 @4WS 2 /WOx photoanode is calculated to be 82% to 86%, which means that most of the photogenerated holes are used for the water oxidation reaction. do.
도 13는 (a) 순수 α-Fe2O3 및 WS2에 대한 UPS 스펙트럼, 이종 접합 (b) 전 및 (c) 후의 α-Fe2O3및 WS2의 전자 밴드 구조의 개략도 및 (d) 안정적인 코어-쉘 α-Fe2O3@4WS2/WOx광양극에 대한 메커니즘 및 구조 개략도이다. 13 shows (a) UPS spectra for pure α-Fe 2 O 3 and WS 2 , schematic diagrams of electronic band structures of α-Fe 2 O 3 and WS 2 before (b) and after (c) heterojunction, and (d) ) is a schematic diagram of the mechanism and structure for a stable core-shell α-Fe 2 O 3 @4WS 2 /WOx photoanode.
α-Fe2O3나노로드의 에너지 밴드 굽힘은 코어-쉘 α-Fe2O3@4WS2/WOx 나노로드 구조에서 평형을 달성했으며, 이는 UPS 분석과 일함수 계산을 사용하여 확인할 수 있다(도 13a). 이종 접합 전후의 α-Fe2O3및 WS2의 개략적인 전자 밴드 구조는 UPS 스펙트럼에 의해 확인할 수 있다(도 13b 및 c). 코어-쉘 α-Fe2O3@4WS2/WOx 구조에서 이러한 밴드 정렬은 전하 분리가 증가하고 전하 이동을 촉진하기 때문에 α-Fe2O3 박막과 비교하여 가시광선에서 더 높은 광 흡광도를 나타낸다. 도 13d는 α-Fe2O3@4WS2/WOx 광양극에서 전하 캐리어 이동 경로의 개략도를 도시한다. 또한, VB의 전자는 가시 광선 조명에서 에너지를 얻었고, α-Fe2O3 및 WS2 반도체 모두에서 가전자대(VB)에서 전도대(CB)로 전달된다. 개선된 PEC 성능에 따라 코어-쉘 α-Fe2O3@4WS2/WOx나노로드 구조체의 제조 후 전하 분리가 증가한다. 전자-정공 쌍의 재결합 속도는 계면에서의 저항 감소와 전하 캐리어 수명 증가에 따라 크게 감소한다. 또한 전자는 WS2의 CB에서 다른 에너지 수준에 있는 α-Fe2O3의 CB로 이동할 수 있다. 같은 이유로 정공은 정전기장에 의해 α-Fe2O3의 VB에서 WS2의 VB로 동시에 이동한다. 이 내부 정전기장은 공간 전하 영역에서 더 많은 전하 캐리어를 추출할 수 있다. 결과적으로 코어-쉘 α-Fe2O3@4WS2/WOx 나노로드 구조체는 광전극 표면에 더 많은 전자와 정공을 생성할 수 있고 전자-정공 분리를 촉진하여, PEC 성능을 향상시킬 수 있다.The energy band bending of α-Fe 2 O 3 nanorods achieved equilibrium in the core-shell α-Fe 2 O 3 @4WS 2 /WOx nanorod structure, which can be confirmed using UPS analysis and work function calculations ( Figure 13a). The schematic electronic band structures of α-Fe 2 O 3 and WS 2 before and after the heterojunction can be confirmed by UPS spectra (FIGS. 13b and c). In the core-shell α-Fe 2 O 3 @4WS 2 /WOx structure, this band alignment results in higher light absorbance in visible light compared to α-Fe 2 O 3 thin films because the charge separation increases and promotes charge transfer. . 13D shows a schematic diagram of the charge carrier transport pathways in the α-Fe 2 O 3 @4WS 2 /WOx photoanode. In addition, the electrons of VB gained energy from visible light illumination and transferred from the valence band (VB) to the conduction band (CB) in both α-Fe 2 O 3 and WS 2 semiconductors. Charge separation increases after fabrication of core-shell α-Fe 2 O 3 @4WS 2 /WOx nanorod structures with improved PEC performance. The recombination rate of electron-hole pairs decreases significantly with decreasing resistance at the interface and increasing charge carrier lifetime. Electrons can also move from the CB of WS 2 to the CB of α-Fe 2 O 3 at different energy levels. For the same reason, holes move simultaneously from VB of α-Fe 2 O 3 to VB of WS 2 by the electrostatic field. This internal electrostatic field can extract more charge carriers from the space charge region. As a result, the core-shell α-Fe 2 O 3 @4WS 2 /WOx nanorod structure can generate more electrons and holes on the surface of the photoelectrode, promote electron-hole separation, and improve PEC performance.
상기에서는 본 출원의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 출원을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiments of the present application, those skilled in the art can variously modify and change the present application within the scope not departing from the spirit and scope of the present invention described in the claims below. You will understand that you can.

Claims (11)

  1. 기판을 준비하는 단계;Preparing a substrate;
    준비된 기판 상에 α-Fe2O3 나노로드 필름을 형성하는 단계; 및Forming an α-Fe 2 O 3 nanorod film on the prepared substrate; and
    형성된 α-Fe2O3 나노로드 필름에 WS2 나노시트 전구체를 드롭 캐스팅(drop casting)하여 코어-쉘 형상의 α-Fe2O3 및 WS2의 헤테로 결합시키는 단계를 포함하는 광전기화학전지의 전극의 제조 방법.A photoelectrochemical cell comprising the step of hetero-bonding core-shell α-Fe 2 O 3 and WS 2 by drop casting a WS 2 nanosheet precursor on the formed α-Fe 2 O 3 nanorod film. Method for manufacturing electrodes.
  2. 제 1 항에 있어서,According to claim 1,
    α-Fe2O3 나노 로드 필름을 형성하는 단계는,The step of forming the α-Fe 2 O 3 nanorod film,
    FeCl3.6H2O와 NaNO3를 혼합하는 단계; 및mixing FeCl 3 .6H 2 O and NaNO 3 ; and
    500 내지 600 ℃에서 3 내지 5시간 소성하는 단계를 포함하는 방법.A method comprising the step of calcining at 500 to 600 ° C. for 3 to 5 hours.
  3. 제 1 항에 있어서,According to claim 1,
    WS2 나노시트 전구체는 액체 상 박리법(liquid phase exfoliation, LPE)에 의해 제조되는 방법.The WS 2 nanosheet precursor is prepared by liquid phase exfoliation (LPE).
  4. 제 1 항에 있어서,According to claim 1,
    WS2 나노시트 전구체는 WS2 분말을 에탄올 및 물의 혼합용매에 용해하는 단계;The WS 2 nanosheet precursor is prepared by dissolving the WS 2 powder in a mixed solvent of ethanol and water;
    혼합용액을 초음파처리하는 단계; 및Sonicating the mixed solution; and
    3000 내지 4000 rpm에서 30 내지 90 분 동안 원심분리하는 단계를 포함하는 방법에 의해 제조되는 방법.A method prepared by a method comprising the step of centrifuging at 3000 to 4000 rpm for 30 to 90 minutes.
  5. 제 1 항에 있어서,According to claim 1,
    헤테로 결합시키는 단계는,The hetero linking step is,
    α-Fe2O3 나노로드 필름에 WS2 나노시트 전구체를 드롭(drop)하는 단계; 및Dropping a WS 2 nanosheet precursor on the α-Fe 2 O 3 nanorod film; and
    400 내지 500 ℃에서 1 내지 3 시간 동안 열처리하는 단계를 포함하는 방법.A method comprising heat treatment at 400 to 500 ° C. for 1 to 3 hours.
  6. 제 5 항에 있어서,According to claim 5,
    α-Fe2O3 나노로드 필름에 WS2 나노시트 전구체를 드롭(drop)하는 단계는 6회 이하로 반복되는 방법.The step of dropping the WS 2 nanosheet precursor on the α-Fe 2 O 3 nanorod film is repeated 6 times or less.
  7. 코어-쉘 형상의 광촉매용 조성물로서,As a core-shell photocatalyst composition,
    코어는 α-Fe2O3 나노로드를 포함하고, 쉘은 WS2 및 WOx의 혼합나노시트를 포함하는 조성물.A composition in which the core includes α-Fe 2 O 3 nanorods, and the shell includes a mixed nanosheet of WS 2 and WO x .
  8. 제 7 항에 있어서,According to claim 7,
    혼합나노시트의 길이는 200 nm 이하인 조성물.A composition in which the length of the mixed nanosheet is 200 nm or less.
  9. 제 7 항에 있어서,According to claim 7,
    혼합나노시트의 평균 두께는 12 nm 이하인 조성물.A composition in which the average thickness of the mixed nanosheet is 12 nm or less.
  10. 기판 및 상기 기판 상에 제 7 항에 따른 광전기화학전지의 광촉매용 조성물이 필름형태로 적층된 광전기화학전지용 전극.An electrode for a photoelectrochemical cell in which a substrate and the composition for photocatalysis of a photoelectrochemical cell according to claim 7 are laminated on the substrate in the form of a film.
  11. 제 10 항에 따른 광전기화학전지용 전극을 포함하는 광전기화학전지.A photoelectrochemical cell comprising the electrode for a photoelectrochemical cell according to claim 10.
PCT/KR2022/013831 2021-09-30 2022-09-15 Core-shell α-fe2o3@ws2/wox composition, photocatalyst for photoelectrochemical cell comprising same, and method for manufacturing same WO2023054947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0129795 2021-09-30
KR1020210129795A KR102627668B1 (en) 2021-09-30 2021-09-30 Core-shell fe2o3@ws2/wox composition, photocatalyst including the composition, and the method of preparing the same

Publications (1)

Publication Number Publication Date
WO2023054947A1 true WO2023054947A1 (en) 2023-04-06

Family

ID=85783104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013831 WO2023054947A1 (en) 2021-09-30 2022-09-15 Core-shell α-fe2o3@ws2/wox composition, photocatalyst for photoelectrochemical cell comprising same, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102627668B1 (en)
WO (1) WO2023054947A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117074503A (en) * 2023-10-16 2023-11-17 成都泰莱医学检验实验室有限公司 Nanocomposite for time-of-flight mass spectrometry detection and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104861971A (en) * 2015-05-17 2015-08-26 福建医科大学 Tungsten oxide quantum dot material and preparation method thereof
KR20170001299A (en) * 2015-06-26 2017-01-04 울산과학기술원 Efficient photocatalytic water splitting using porous meta material photo electrode
CN107416906A (en) * 2017-06-27 2017-12-01 华南农业大学 A kind of solvent-thermal method prepares method and its fluorescence tungsten oxide quantum dot being prepared and the application of fluorescence tungsten oxide quantum dot
US20200181784A1 (en) * 2017-07-11 2020-06-11 University Of South Florida Photoelectrochemical cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104861971A (en) * 2015-05-17 2015-08-26 福建医科大学 Tungsten oxide quantum dot material and preparation method thereof
KR20170001299A (en) * 2015-06-26 2017-01-04 울산과학기술원 Efficient photocatalytic water splitting using porous meta material photo electrode
CN107416906A (en) * 2017-06-27 2017-12-01 华南农业大学 A kind of solvent-thermal method prepares method and its fluorescence tungsten oxide quantum dot being prepared and the application of fluorescence tungsten oxide quantum dot
US20200181784A1 (en) * 2017-07-11 2020-06-11 University Of South Florida Photoelectrochemical cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALGHAZWAT OSAMAH; TALEBZADEH SOMAYEH; OYER JEREMIAH; COPIK ALICJA; LIAO YI: "Ultrasound responsive carbon monoxide releasing micelle", ULTRASONICS SONOCHEMISTRY, BUTTERWORTH-HEINEMANN., GB, vol. 72, 26 December 2020 (2020-12-26), GB , XP086514490, ISSN: 1350-4177, DOI: 10.1016/j.ultsonch.2020.105427 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117074503A (en) * 2023-10-16 2023-11-17 成都泰莱医学检验实验室有限公司 Nanocomposite for time-of-flight mass spectrometry detection and preparation method thereof
CN117074503B (en) * 2023-10-16 2024-01-26 成都泰莱医学检验实验室有限公司 Nanocomposite for time-of-flight mass spectrometry detection and preparation method thereof

Also Published As

Publication number Publication date
KR20230046612A (en) 2023-04-06
KR102627668B1 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
Tavakoli et al. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells
Wang et al. An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation
Benetti et al. Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material
Tavakoli et al. High efficiency and stable perovskite solar cell using ZnO/rGO QDs as an electron transfer layer
Hsu et al. Synthesis of novel Cu2O micro/nanostructural photocathode for solar water splitting
EP3054488B1 (en) Transistor, and transistor manufacturing method
Shankar et al. Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells
Hsu et al. Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation
Manjceevan et al. Systematic stacking of PbS/CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum
Abate et al. Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture
Ma et al. Engineering oxygen vacancies by one-step growth of distributed homojunctions to enhance charge separation for efficient photoelectrochemical water splitting
Pan et al. The photoelectrochemical properties of dye-sensitized solar cells made with TiO2 nanoribbons and nanorods
Ursu et al. Investigation of the p-type dye-sensitized solar cell based on full Cu2O electrodes
Taheri et al. Graphene-engineered automated sprayed mesoscopic structure for perovskite device scaling-up
Ahmad et al. Chemical sintering of TiO2 based photoanode for efficient dye sensitized solar cells using Zn nanoparticles
Liu et al. Electrochemical doping induced in situ homo-species for enhanced photoelectrochemical performance on WO3 nanoparticles film photoelectrodes
Wei et al. Effective solvent-additive enhanced crystallization and coverage of absorber layers for high efficiency formamidinium perovskite solar cells
Mohammadnezhad et al. CuS/graphene nanocomposite as a transparent conducting oxide and pt-free counter electrode for dye-sensitized solar cells
Chen et al. Facile synthesis of ZnO nanoparticles on carol-like Cu2O nanowires for photoelectrochemical hydrogen generation
Su et al. Directed electrochemical synthesis of ZnO/PDMcT core/shell nanorod arrays with enhanced photoelectrochemical properties
WO2023054947A1 (en) Core-shell α-fe2o3@ws2/wox composition, photocatalyst for photoelectrochemical cell comprising same, and method for manufacturing same
Pignanelli et al. Hydrogen titanate nanotubes for dye sensitized solar cells applications: Experimental and theoretical study
Chakraborty et al. Post-treatment with ZnFe2O4 nanoparticles to improve photo-electrochemical performance of ZnO nanorods based photoelectrodes
Abdelkarim et al. Two-dimensional functionalized hexagonal boron nitride for quantum dot photoelectrochemical hydrogen generation
Pang et al. Highly efficient indoline dyes co-sensitized solar cells composed of titania nanorods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876722

Country of ref document: EP

Kind code of ref document: A1