WO2023054612A1 - Ophthalmic device - Google Patents

Ophthalmic device Download PDF

Info

Publication number
WO2023054612A1
WO2023054612A1 PCT/JP2022/036514 JP2022036514W WO2023054612A1 WO 2023054612 A1 WO2023054612 A1 WO 2023054612A1 JP 2022036514 W JP2022036514 W JP 2022036514W WO 2023054612 A1 WO2023054612 A1 WO 2023054612A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
optical system
axial length
light
measurement
Prior art date
Application number
PCT/JP2022/036514
Other languages
French (fr)
Japanese (ja)
Inventor
健志 中村
浩二 濱口
城久 小林
祐輝 小嶋
健治 青木
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Publication of WO2023054612A1 publication Critical patent/WO2023054612A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/18Arrangement of plural eye-testing or -examining apparatus

Definitions

  • the present disclosure relates to an ophthalmic apparatus for examining an eye to be examined.
  • Known conventional ophthalmic devices include an ophthalmic device that measures eye refractive power and intraocular pressure, and an ophthalmic device that measures eye refractive power and eye axial length.
  • An ophthalmic device that measures eye refractive power and intraocular pressure is used for screening such as health checkups.
  • the results of measuring the axial length of the eye are often used to calculate the IOL power during cataract surgery. Measurements of ocular refractive power and axial length are increasingly being performed.
  • the technical problem of the present disclosure is to provide an ophthalmologic apparatus capable of efficiently measuring eye refractive power, intraocular pressure, and axial length.
  • An ophthalmologic apparatus for examining an eye to be inspected comprising eye refractive power measuring means for measuring the eye refractive power of the eye to be inspected, intraocular pressure measuring means for measuring the intraocular pressure of the eye to be inspected, and an axial length measuring means for measuring the axial length of the eye to be examined.
  • FIG. 1 is an external view of an ophthalmologic apparatus;
  • FIG. 3 is a block diagram showing a control system;
  • FIG. It is a schematic diagram showing the optical system of the first measurement unit.
  • It is a schematic diagram showing an internal configuration of a second measurement unit.
  • It is a schematic diagram showing the optical system of the second measurement unit.
  • 4 is a flow chart showing the control operation of the ophthalmologic apparatus;
  • It is a schematic diagram showing the optical system of the first measurement unit in the second embodiment.
  • 9 is a flow chart showing the control operation of the ophthalmologic apparatus in the second embodiment;
  • It is a figure which shows an example of an anterior-segment cross-sectional image.
  • It is a schematic diagram for demonstrating the derivation
  • An ophthalmologic apparatus (for example, an ophthalmologic apparatus 1) of this embodiment is an apparatus for examining an eye to be examined.
  • the ophthalmologic apparatus includes, for example, an eye refractive power measurement unit (e.g., first measurement optical system 100), an intraocular pressure measurement unit (e.g., fluid ejection unit 200, deformation detection optical system 350, etc.), and an eye axial length measurement unit ( For example, an axial length measuring optical system 310) is provided.
  • the eye refractive power measuring unit measures the eye refractive power of the subject's eye.
  • the intraocular pressure measurement unit measures the intraocular pressure of the subject's eye.
  • the axial length measuring unit measures the axial length of the eye to be examined.
  • the ophthalmologic apparatus of this embodiment can efficiently measure the refractive power of the eye, the intraocular pressure, and the axial length of the eye by providing the configuration described above.
  • the intraocular pressure measurement unit and the axial length measurement unit may share a part of the optical system.
  • the tonometry section and the axial length measurement section may share an observation optical system (for example, the second observation optical system 340) for observing the anterior segment.
  • an optical system such as an observation optical system is provided in each of the intraocular pressure measurement unit and the axial length measurement unit.
  • the working distances of the intraocular pressure measuring unit and the axial length measuring unit may be different.
  • the working distance of the axial length measuring unit may be longer than the working distance of the tonometry unit. That is, the working distance of the intraocular pressure measuring unit may be shorter than the working distance of the axial length measuring unit.
  • the ophthalmologic apparatus may further include a drive section (eg, drive section 5) and a control section (eg, control section 70).
  • the drive unit three-dimensionally drives the intraocular pressure measurement unit and the axial length measurement unit.
  • the control section controls driving of the driving section. For example, when measuring the intraocular pressure after performing the axial length measurement, the control unit moves the second measuring unit to the eye to be examined so that the working distance of the intraocular pressure measuring unit is reached after the axial length measurement is completed.
  • the driving unit may be controlled so that the intraocular pressure measurement is performed after approaching in the working distance direction. As a result, it is possible to reduce the feeling of fear or oppression given to the subject when performing eye axial length measurement and intraocular pressure measurement in succession.
  • control unit may measure the axial length of the eye by the axial length measurement unit after measuring the eye refractive power by the eye refractive power measurement unit. That is, measurements may be performed in order of eye refractive power measurement, eye axial length measurement, and intraocular pressure measurement.
  • eye refractive power, axial length, and intraocular pressure can be measured more efficiently by performing eye refractive power measurement and eye axial length measurement before intraocular pressure measurement, which tends to cause misalignment due to movement of the subject after measurement. can be measured.
  • the ophthalmologic apparatus may include a corneal shape measuring unit (eg, first observation optical system 150, first target optical system 160, etc.) that measures the corneal shape of the subject's eye.
  • a corneal shape measuring unit eg, first observation optical system 150, first target optical system 160, etc.
  • corneal shape measurement of the subject's eye can also be efficiently performed.
  • An ophthalmologic apparatus 1 of this embodiment is an apparatus for measuring an eye to be examined. As shown in FIG. 1, the ophthalmologic apparatus 1 includes, for example, a measurement unit 3 that measures an eye to be examined.
  • the measurement unit 3 includes a first measurement unit 3a and a second measurement unit 3b.
  • the first measuring unit 3a functions, for example, as eye refractive power measuring means for measuring the eye refractive power of the subject's eye.
  • the second measuring unit 3b functions, for example, as an axial length measuring device for measuring the axial length of the subject's eye and an intraocular pressure measuring device for measuring the intraocular pressure of the subject's eye.
  • the optical system for measuring the axial length and the optical system for measuring the intraocular pressure are partly shared (shared).
  • the first measurement unit 3a may include corneal shape measurement means. In this case, the measurement result of the corneal shape measured by the corneal shape measuring means of the first measuring unit 3a may be used for the eye axial length measurement by the second measuring unit 3b.
  • the ophthalmologic apparatus 1 includes a base 2, a drive section 5, a face support section 4, a display section 75, an operation section 76, a control section 70, and the like.
  • the base 2 supports each part of the ophthalmologic apparatus 1 .
  • the drive unit 5 integrally drives the first measurement unit 3a and the second measurement unit 3b.
  • the driving unit 5 moves the first measuring unit 3a and the second measuring unit 3b in three-dimensional directions, up, down, left, right, front and back, with respect to the base.
  • the face support section 4 is used to fix the subject's face in front of the measurement section 3 .
  • the face support part 4 is fixed to the base 2 and supports the subject's face.
  • the display unit 75 is controlled by the control unit 70 and displays measurement results and the like. For example, the display unit 75 displays the ocular refractive power of the subject's eye, the front image of the anterior segment, the axial length of the eye, the intraocular pressure, and the like on the screen.
  • the operation unit 76 accepts the operations of the examiner.
  • the display unit 75 may function as the operation unit 76 .
  • a control unit (also called a processor) 70 controls various controls of the ophthalmologic apparatus 1 . It also processes various measurement results obtained by the measurement unit 3 .
  • the control unit 70 includes, for example, a general CPU (Central Processing Unit) 71, ROM 72, RAM 73, etc., as shown in FIG.
  • the ROM 72 stores an ophthalmologic apparatus control program for controlling the ophthalmologic apparatus 1, initial values, and the like.
  • the RAM 73 temporarily stores various information.
  • the control unit 70 is connected to each unit of the ophthalmologic apparatus 1 such as the first measurement unit 3a, the second measurement unit 3b, the drive unit 5, the display unit 75, the operation unit 76, the storage unit (for example, nonvolatile memory) 74, and the like.
  • the storage unit 74 is, for example, a non-transitory storage medium that can retain stored content even when power supply is interrupted.
  • a hard disk drive, a detachable USB flash memory, or the like may be used as the storage unit 74 .
  • the first measurement unit 3 a includes a first measurement optical system 100 , a first fixation target optical system 130 , a first observation optical system 150 , a first index optical system 160 and a first index optical system 170 . It also has half mirrors 501 and 502, an objective lens 505, etc. for branching and combining the optical paths of the respective optical systems.
  • the first measurement optical system 100 objectively measures the eye refractive power of the eye E to be examined.
  • the first measurement optical system 100 has a light projecting optical system 100a and a light receiving optical system 100b.
  • the projection optical system 100a has a measurement light source 111, and projects a spot-shaped measurement light onto the fundus of the eye E to be examined via the center of the pupil or the apex of the cornea of the eye E to be examined.
  • the measurement light source 111 may be an SLD light source, an LED light source, or other light sources.
  • infrared light is used as the measurement light.
  • near-infrared light with a peak wavelength between 800 nm and 900 nm may be used.
  • near-infrared light with a peak wavelength of 870 nm may be used.
  • light of other wavelengths may be used.
  • a prism 115 is arranged on the common path of the light projecting optical system 100a and the light receiving optical system 100b. By rotating the prism 115 around the optical axis, the projection light flux on the pupil is eccentrically rotated at high speed. As an example, in this embodiment, the projection light flux is eccentrically rotated in a region of ⁇ 2 mm to ⁇ 4 mm on the pupil. This area is the eye refractive power measurement area in this embodiment.
  • the light receiving optical system 100b has at least a ring lens 123 and an imaging element 124.
  • the light-receiving optical system 100b takes out the reflected light flux of the measurement light flux reflected from the fundus in a ring shape through the periphery of the pupil.
  • the ring lens 123 is arranged at a pupil conjugate position
  • the imaging element 124 is arranged at a fundus conjugate position.
  • the measurement light is eccentrically rotated at high speed on the pupil.
  • Analysis processing is performed on an added image of image data that is sequentially output, and an eye refractive power is derived.
  • values such as SPH: spherical power, CYL: cylindrical power, and AXIS: astigmatic axis angle are obtained as a result of analysis processing.
  • the first measurement optical system 100 may have optical elements such as lenses and diaphragms in addition to the measurement light source 111, the prism 115, the ring lens 123, and the imaging element 124.
  • the measurement light flux from the measurement light source 111 passes through the hole portion of the hole mirror 114 and the prism 115, is reflected by the half mirror 116 and the half mirror 117 respectively, becomes coaxial with the optical axis L11, and further passes through the objective lens 118. and reach the fundus.
  • the reflected light flux which is the measurement light flux reflected by the fundus, passes through the optical path through which the measurement light flux has passed, is reflected by the mirror portion of the hole mirror 114 , and reaches the imaging device 124 via the ring lens 123 .
  • the first fixation target optical system 130 presents the eye E to be examined with a fixation target.
  • the first fixation target optical system 130 causes the subject's eye to fixate, and applies fog and accommodation load to the subject's eye.
  • the first fixation target optical system 130 includes at least a light source 131 and a fixation target plate 132 .
  • the fixation target plate 132 may be placed at a fundus conjugate position.
  • a fixation light beam from the light source 131 passes through the fixation target plate 132 on the optical axis L12, the lens 133, the lens 134, and the half mirror 116, and is reflected by the half mirror 117 to be coaxial with the optical axis L11. .
  • the fixation luminous flux further passes through the objective lens 118 and reaches the fundus.
  • the measurement light source 111, the ring lens 123, and the imaging element 124 in the first measurement optical system 100, and the light source 131 and the fixation target plate 132 in the first fixation target optical system 130 are the drive unit 140, and the drive unit 141 can move integrally along the optical axis.
  • the focal length within the drive unit 140 in the first measurement optical system 100 and the focal length within the drive unit 140 in the first fixation target optical system 130 are in a predetermined relationship.
  • the presentation distance of the fixation target plate 132 with respect to the eye E to be examined that is, the presentation position of the fixation target
  • the imaging device 124 are optically conjugated to the fundus.
  • the hole mirror 114 and the ring lens 123 are pupil conjugate at a constant magnification.
  • the first observation optical system 150 captures a front image of the anterior segment of the eye E to be examined.
  • the first observation optical system 150 includes an imaging device 151 and the like.
  • the imaging device 151 may be arranged at a pupil conjugate position.
  • the front image is used for alignment and the like.
  • a target image (point image) projected onto the cornea from the first target optical system 160 and a target image (Meyerling image) are captured by the first observation optical system 150 .
  • the first index optical system 160 projects an index onto the subject's eye.
  • the first target optical system 160 is used, for example, for measurement of the corneal shape of the subject's eye, alignment with the subject's eye E, and the like.
  • the first target optical system 160 has a plurality of point light sources 161 and a light source 162 .
  • the point light source 161 projects an infinity index by irradiating the cornea with parallel light.
  • the point light source 161 emits infrared light. However, it may be visible light.
  • the point light sources 161 are arranged vertically and horizontally symmetrically about the optical axis L11. For example, in this embodiment, two point light sources are provided on each side. This projects four point image indices onto the cornea.
  • the shape of the index is not limited to this, and a linear index or the like may be included.
  • the number of indices is not limited to this, and may be composed of three or more point image indices.
  • the light source 162 projects a finite distance index by irradiating the cornea with diffused light.
  • Light source 162 emits infrared light. However, it may be visible light.
  • the light source 162 is arranged in a ring shape around the optical axis L11. Thereby, in this embodiment, a ring index (so-called Mayer ring) is projected onto the cornea.
  • the working distance is adjusted by moving the measurement unit 3 in the front-rear direction so that the Purkinje image by the point light source 161 and the ring index by the light source 162 are photographed at a predetermined ratio.
  • the second measurement section 3b includes a fluid ejection section 200 and a second measurement optical system 300.
  • the fluid ejection unit 200 generates compressed air for measuring intraocular pressure.
  • the second measurement optical system 300 includes an optical system for measuring intraocular pressure and axial length.
  • the fluid ejector 200 ejects fluid onto the cornea of the eye E to be examined.
  • the fluid ejection unit 200 includes, for example, a cylinder 201, a piston 202, a solenoid actuator (hereinafter also referred to as a solenoid) 203, a nozzle 206, a vent pipe 220, a glass plate 208, a glass plate 209, a pressure sensor 212, and the like.
  • the cylinder 201 and the piston 202 are used as a fluid compression mechanism for compressing fluid such as air to be discharged to the eye to be examined.
  • the cylinder 201 is cylindrical, for example, and is divided into a compression chamber 234 and an intake chamber 235 inside.
  • An intake port 213 is provided on a side surface of the intake chamber 235 .
  • the piston 202 slides along the axial direction (longitudinal direction) of the cylinder 201 . Piston 202 compresses air in compression chamber 234 within cylinder 201 .
  • the solenoid 203 is, for example, a linear solenoid and operates linearly.
  • the solenoid 203 has a movable body 204 and a coil 205 .
  • a magnetic body such as a permanent magnet is used for the movable body 204, for example.
  • the coil 205 is energized, a magnetic field is generated inside the coil 205 .
  • the movable body 204 is axially moved by the electromagnetic force received from the magnetic field. Since the piston 202 is fixed to the movable body 204 , it moves axially with the movable body 204 .
  • the moving direction of the movable body 204 can be changed. For example, when the current is passed through the coil 205 in the forward direction, the movable body 204 moves in the compression direction (forward direction, direction A in FIG. 4). , direction B in FIG. 4). Therefore, by switching the direction of the current flowing through the coil 205, the moving direction of the piston 202 that moves together with the movable body 204 can be changed. For example, a forward current is applied to the coil 205 to move the piston 202 in the A direction to compress the fluid in the compression chamber 234, and then a reverse current is applied to the coil 205 to move the piston 202 in the B direction. can be returned to the initial position.
  • the solenoid 203 is not limited to a linear solenoid, and may be a rotary solenoid or other drive source.
  • the nozzle 206 discharges compressed air to the outside of the device.
  • the glass plate 208 is transparent, holds the nozzle 206, and transmits observation light and alignment light.
  • the glass plate 209 constitutes the rear wall of the airtight chamber 221 and transmits observation light and alignment light.
  • the pressure sensor 212 detects the pressure in the airtight chamber 221, for example.
  • the fluid compressed in the compression chamber 234 in the cylinder 201 by the movement of the piston 202 passes through the vent tube 220 connected to the tip of the cylinder 201 and the airtight chamber 221 that stores the compressed fluid, and flows out from the nozzle 206 to the eye to be examined. E is discharged toward the cornea of E.
  • the second measurement optical system 300 measures the axial length and intraocular pressure of the subject's eye.
  • the second measurement optical system 300 includes an axial length measurement optical system 310, a second fixation target optical system 330, a second observation optical system 340, a second target optical system 390, a deformation detection optical system 350, and a corneal thickness measurement system.
  • An optical system 370 and the like are provided.
  • the axial length measuring optical system 310 measures, for example, the axial length of the subject's eye.
  • the axial length measurement optical system 310 of this embodiment is, for example, a time domain type interference optical system.
  • TD-OCT Time-domain OCT
  • SD-OCT Spectral-domain OCT
  • SS-OCT Swept-source OCT
  • the axial length measurement optical system 310 includes, for example, a light source 311 (eg, SLD), a collimator lens 312, a beam splitter 313, a first triangular prism (corner cube) 314, a second triangular prism 315, and a polarizing beam splitter 316. , a quarter-wave plate 317, a condenser lens 318, a light-receiving element 319, a driving section 320, and the like.
  • the light source 311 may emit low coherence light, for example.
  • the collimator lens 312 converts the light flux emitted from the light source 311 into a parallel light flux.
  • the beam splitter 313 splits the light emitted from the light source 311 into first split light and second split light.
  • the first triangular prism 314 is arranged in the transmission direction of the beam splitter 313 .
  • a second triangular prism 315 is arranged in the reflection direction of the beam splitter 313 .
  • the condensing lens 318 condenses the measurement light from the subject's eye onto the light receiving element.
  • the light receiving element 319 synthesizes and receives, for example, the first split light reflected by the fundus of the subject's eye and the second split light.
  • the axial length of the subject's eye is measured based on the light receiving signal output from the light receiving element 319 .
  • the first triangular prism 314 is used as an optical path length changing member for changing the optical path length, and is linearly moved in the optical axis direction with respect to the beam splitter 313 by driving the driving section 320 (for example, motor).
  • the drive position of the first triangular prism 314 is detected by a position detection sensor (eg, potentiometer, encoder, etc.).
  • the light (linearly polarized light) emitted from the light source 311 is collimated by the collimator lens 312 and then split by the beam splitter 313 into the first measurement light (reference light) and the second measurement light. Then, the first measurement light (second split light) is reflected by the first triangular prism 314, and the second measurement light (first split light) is reflected by the second triangular prism 315, and after being folded back , are combined by the beam splitter 313 .
  • the combined light is reflected by the polarizing beam splitter 316 and converted into circularly polarized light by the quarter-wave plate 317 , and then irradiated at least to the cornea and fundus of the subject's eye through the objective lens 302 . At this time, when the measurement light flux is reflected by the cornea and the fundus of the eye to be examined, the phase is converted by 1/2 wavelength.
  • the cornea-reflected light and fundus-reflected light are converted into linearly polarized light by the quarter-wave plate 317 via the objective lens 302 . After that, the reflected light transmitted through the polarizing beam splitter 316 is condensed by the condensing lens 318 and then received by the light receiving element 319 .
  • the second measurement optical system 300 is provided under the piston 202.
  • the time domain type axial length measurement optical system 310 as shown in FIG. 5, it is possible to secure a driving space for the moving first triangular prism 314, and the axial length can be disturbed in the same way as with a single device. can be measured without Further, when the second measuring optical system 300 is arranged below the piston 202, the height of the optical axis L21 of the second measuring unit 3b is aligned with the optical axis L11 of the first measuring unit 3a. can get closer. Therefore, the vertical stroke can be made smaller.
  • the second fixation target optical system 330 presents the fixation target to the subject's eye E from the front direction.
  • the second fixation target optical system 330 has, for example, a visible light source (fixation lamp) 331, a projection lens 332, and a dichroic mirror 333. project to A light source such as an LED or a laser is used for the light source 331 .
  • a pattern light source such as a point light source, a slit light source, a ring light source, or a two-dimensional display such as a liquid crystal display is used.
  • the visible light emitted from the light source 331 passes through the projection lens 332, is reflected by the dichroic mirror 333, passes through the objective lens 302, and is projected onto the fundus of the eye E to be examined.
  • the subject's eye E is fixated on the fixation point in the front direction, and the line-of-sight direction is fixed.
  • the visible light emitted from the light source 331 passes through the projection lens 332 and the objective lens 302 and is converted into a parallel light flux.
  • the second observation optical system 340 is arranged to image the anterior segment of the subject's eye.
  • a second observation optical system 340 is provided in the reflection direction of the dichroic mirror 333 and the beam splitter 341 .
  • the dichroic mirror 333 has a characteristic of transmitting the light emitted from the light source 311 and reflecting the infrared light emitted from the light source 381 for illuminating the anterior segment.
  • the second observation optical system 340 includes an imaging lens 342 , a filter 343 and an imaging device (such as a CCD) 344 .
  • the imaging lens 342 converges the reflected light from the subject's eye onto the imaging device 344 .
  • the filter 343 has characteristics of, for example, transmitting light from the light sources 381 and 391 and not transmitting light from a light source 351 for corneal deformation detection and visible light, which will be described later.
  • the imaging device 344 receives reflected light from the subject's eye.
  • the imaging element 344 outputs the acquired light receiving signal to the control section 70 .
  • the illumination light from the light source 381 reflected by the eye to be examined passes through the nozzle 206, passes through the objective lens 302, is reflected by the dichroic mirror 333 and the beam splitter 341, and is focused on the imaging device 344 via the imaging lens 342 and filter 343. image.
  • the axial length measurement optical system 310 and the second observation optical system 340 are coaxial with the nozzle 206 of the fluid ejection unit, the observation optical system for measuring the axial length and the observation optical system for measuring the intraocular pressure A common system can be used. As a result, the size of the apparatus can be reduced more than when an observation optical system is provided separately.
  • a second target optical system 390 projects a target onto the eye to be inspected.
  • the second index optical system 390 includes a light source 391, a projection lens 392, and a beam splitter 393, for example.
  • Infrared light projected from a light source 391 through a projection lens 392 is reflected by a beam splitter 393 and projected onto the subject's eye from the front.
  • a corneal bright spot formed at the corneal vertex by the light source 391 forms an image on the imaging device 344 of the second observation optical system 340 and is used for alignment detection in the vertical and horizontal directions.
  • the deformation detection optical system 350 includes a light projection optical system 350a and a light reception optical system 350b, and is used to detect the deformation state of the cornea Ec.
  • the light projecting optical system 350a has an optical axis L23 as a light projecting optical axis, and irradiates the cornea Ec of the eye E with illumination light from an oblique direction.
  • the projection optical system 350a has a light source 351, a collimator lens 352, and a beam splitter 353, for example.
  • the light receiving optical system 350b has a photodetector 357 and receives the reflected light of the illumination light from the cornea Ec of the eye E.
  • the light receiving optical system 350b is arranged substantially symmetrically with the light projecting optical system 350a with respect to the optical axis L21.
  • the light receiving optical system 350b has, for example, a lens 354, a beam splitter 355, a pinhole plate 356, and a photodetector 357, and forms an optical axis L22 as a light receiving optical axis.
  • Light for example, infrared light
  • emitted from the light source 351 is collimated by the collimator lens 352 and reflected by the beam splitter 353. After being reflected by the beam splitter 353, it becomes coaxial (matches) with the optical axis L23 of the light receiving optical system 370b, which will be described later.
  • the light is projected onto the cornea Ec of the eye to be examined.
  • the light reflected by the cornea Ec becomes coaxial (matches) with the optical axis L22 of the projection optical system 370a, which will be described later.
  • Received at 357 The lens 354 is coated with a coating that is opaque to the light from the light sources 381 and 391 .
  • the deformation detection optical system 350 is arranged so that the amount of light received by the photodetector 357 is maximized when the subject's eye is in a predetermined deformation state (for example, an applanation state).
  • the deformation detection optical system 350 also serves as a part of the first working distance detection system 360b, and the projection optical system of the first working distance detection system also serves as the projection optical system 350a of the deformation detection optical system 350. do.
  • the first working distance detection system 360b for receiving the light reflected by the cornea Ec from the light source 351 has, for example, the lens 354 of the projection optical system 350a, the beam splitter 358, the condenser lens 359, and the position detection element 360.
  • An optical axis L22 is formed as an optical axis.
  • Illumination light projected from the light source 351 and reflected by the cornea Ec forms a target image, which is a virtual image of the light source 351 .
  • the light of the target image passes through a lens 354 and a beam splitter 355, is reflected by a beam splitter 358, passes through a condenser lens 359, and enters a one-dimensional or two-dimensional position detection element 360 such as a PSD or line sensor. do.
  • the position detection element 360 moves the target image from the light source 351 on the position detection element 360 .
  • Working distance information is obtained based on the output signal of .
  • the output signal from the position detection element 360 of this embodiment is used for alignment (coarse adjustment) in the working distance direction (Z direction).
  • the magnification of the first working distance detection system 360b is not as large as that of the light receiving optical system 370b, which will be described later. Therefore, the distance detection range in the Z direction of the position detection element 360 is wider than that of the light receiving element 377 .
  • the corneal thickness measuring optical system 370 includes a light projecting optical system 370a and a light receiving optical system 370b, and is used to measure the corneal thickness of the eye E to be examined.
  • the projection optical system 370a also serves as part of the deformation detection optical system 350 and the first working distance detection system 360b.
  • the light projecting optical system 370a has an optical axis L22 as a light projecting optical axis, and irradiates the cornea Ec of the eye E to be examined with illumination light (measurement light) from an oblique direction.
  • the projection optical system 370a has, for example, a light source 371, a condenser lens 372, a light limiting member 373, a concave lens 374, and a lens 354 that also serves as a deformation detection optical system.
  • a visible light source or an infrared light source (including near-infrared) is used for the light source 371, and for example, a light source such as an LED or a laser is used.
  • the condenser lens 372 collects the light emitted from the light source 371 .
  • the light limiting member 373 is arranged on the optical path of the light projection optical system 370 a and limits the light emitted from the light source 371 .
  • the light restricting member 373 is arranged at a substantially conjugate position with respect to the cornea Ec.
  • As the light restricting member 373 for example, a pinhole plate, a slit plate, or the like is used.
  • the light restricting member 373 is used as an aperture that allows part of the light emitted from the light source 371 to pass therethrough and blocks other light.
  • the projection optical system 370a forms a predetermined pattern light flux (for example, a spot light flux, a slit light flux) on the cornea of the eye E to be examined.
  • the light-receiving optical system 370b has a light-receiving element 377, and receives the reflected light of the illumination light from the corneal surface and back surface of the eye E to be examined.
  • the light receiving optical system 370b is arranged substantially symmetrically with the light projecting optical system 370a with respect to the optical axis L21.
  • the light-receiving optical system 370b has, for example, a light-receiving lens 375, a concave lens 376, and a light-receiving element 377, and forms an optical axis L23 as a light-receiving optical axis.
  • the light-receiving optical system 370b in FIG. 5 also serves as a second working distance detection system for detecting the alignment state of the eye E in the Z direction.
  • the light receiving element 377 has a plurality of photoelectric conversion elements and receives reflected light from the front and back surfaces of the cornea.
  • a photodetection device such as a one-dimensional line sensor, a two-dimensional area sensor, or the like is used for the light receiving element 377, for example.
  • the corneal thickness measurement optical system and the light receiving optical system 370b of the second working distance detection system increase the magnification for observation. Therefore, the distance detection range in the Z direction of the light receiving element 377 is narrower than that of the position detection element 360 .
  • the reflected light from the light source 371 on the cornea Ec also moves on the light receiving element 377.
  • Working distance information is obtained based on the output signal from the light receiving element 377 .
  • the light emitted from the light source 371 is condensed by the condensing lens 372 and illuminates the light restricting member 373 from behind.
  • the light from the light source 371 is imaged (focused) near the cornea Ec by the lens 354 after being restricted by the light restricting member 373 .
  • a pinhole image when using a pinhole plate
  • a slit image when using a slit plate
  • the light from the light source 371 forms an image near the intersection with the visual axis on the cornea Ec.
  • the reflected light of the illumination light from the cornea Ec travels in a direction symmetrical to the projected light flux with respect to the optical axis L21.
  • the reflected light is imaged on the light receiving surface of the light receiving element 377 by the light receiving lens 375 .
  • the control unit 70 aligns the first measurement unit 3a with respect to the eye E to be examined in order to measure the refractive power of the eye. For example, in a state where the first fixation target optical system 130 presents the fixation target to the subject's eye E, the control unit 70 can perform , the eye to be examined E and the first measuring unit 3a are adjusted to a predetermined positional relationship. More specifically, the controller 70 performs alignment in the XY directions such that the optical axis L11 coincides with the corneal vertex of the eye E to be examined. Further, the control unit 70 performs alignment in the Z direction so that the distance between the subject's eye E and the first measuring unit 3a is a predetermined working distance. At this time, the control unit 70 projects an alignment index onto the cornea and adjusts the alignment based on the alignment index detected in the observed image.
  • the control unit 70 projects a point image index from the first index optical system 160 and captures a corneal Purkinje image of the point image index using the first observation optical system 150 .
  • the control unit 70 also acquires corneal shape information based on the corneal Purkinje image.
  • the corneal shape information is derived based on the image height of the corneal Purkinje image.
  • at least each value of the corneal curvature, the astigmatic power, and the astigmatic axis angle is acquired as the corneal shape information.
  • the ocular refractive power of the subject's eye E is measured.
  • preliminary measurement may be performed first, and main measurement may be performed later.
  • the ocular refractive power of the subject's eye E is measured with the fixation target placed at a predetermined presentation distance.
  • the fixation target plate 132 may be placed at an initial position that is optically sufficiently far away from the subject's eye E and that corresponds to the far point of the 0D eye.
  • a ring image captured by the imaging device 124 based on the measurement light irradiated in this state is image-analyzed by the control unit 70 .
  • the refractive power value in each meridian direction is obtained.
  • At least the spherical power in the preliminary measurement is obtained by subjecting the refractive power in each meridional direction to a predetermined process.
  • control unit 70 moves the fixation target plate 132 to the fog start position where the subject's eye E is focused, according to the pre-measured spherical power of the subject's eye.
  • the control unit 70 adds fog to the subject's eye E by moving the fixation target from the fog start position. This cancels the adjustment of the eye E to be examined.
  • the main measurement is performed with fog added to the subject's eye E.
  • SPSH of the subject's eye E spherical power
  • CYL cylindrical power
  • AXIS astigmatism axis angle objective value is retrieved.
  • the control unit 70 aligns the second measurement unit 3b.
  • the control unit 70 causes the driving unit 5 to move the measuring unit 3 downward from the measurement completion position of the first measuring unit 3a so that the optical axis L21 of the second measuring unit 3b is aligned with the height of the eye to be examined.
  • the control unit 70 turns on the light sources 331, 381, and 391 to turn on the light source 331, the light source 381, and the light source 391, and based on the observation image obtained by the second observation optical system 340 in a state in which the subject is fixated, performs the first observation of the subject's eye. 2 Perform XY alignment of the measuring section 3b.
  • the control unit 70 turns on the light sources 351 and 371 and performs Z alignment based on the light receiving results of the position detection element 360 and the light receiving element 377 .
  • the control unit 70 turns on the light source 311 to irradiate the subject's eye with measurement light. The measurement light is reflected by the subject's eye and enters the light receiving element 319 . Further, the control section 70 controls the driving section 320 to reciprocate the first triangular prism 314 . Then, the control unit 70 calculates the eye axial length based on the timing at which the light receiving element 319 detects the interference light.
  • the movement position of the first triangular prism 314 when the interference signal is output from the light receiving element 319 as described above differs according to the axial length of the subject's eye.
  • the movement position of the first triangular prism 314 when the interference signal is output can be detected based on a signal output from a position detection sensor (not shown). Therefore, the axial length value can be calculated by obtaining in advance the relationship between the moving position of the first triangular prism 314 and the axial length of the subject's eye using a predetermined arithmetic expression, table, or the like.
  • the configuration is not limited to that described above, and the eye size may be measured based on the time at which the interference signal is detected while the first triangular prism 314 is moving.
  • the control unit 70 switches the working distance for measuring the axial length to the working distance for measuring the intraocular pressure. That is, the control unit 70 is aligned from the working distance of the axial length measuring optical system 310 to the working distance of the intraocular pressure measuring optical system (the deformation detecting optical system 350, the corneal thickness measuring optical system 370, etc.). state. For example, in this embodiment, the working distance when measuring the axial length is set longer than the working distance when measuring the intraocular pressure. Therefore, when the axial length measurement is completed, the control unit 70 causes the driving unit 5 to move the second measuring unit 3b forward (toward the subject's eye).
  • the axial length measurement optical system 310 is an optical system that irradiates the eye to be inspected with parallel light, the distance relationship between the apparatus and the eye to be inspected can be set arbitrarily.
  • the second fixation target optical system 330 and the second observation optical system 340 can be adjusted in focus so that the subject's eye can be focused even if the working distance differs between the axial length measurement and the intraocular pressure measurement.
  • a lens may be provided. This enables stable alignment even at an arbitrary working distance.
  • the control unit 70 measures the intraocular pressure of the subject's eye.
  • the controller 70 drives the solenoid 203 .
  • the solenoid 203 is driven to move the piston 202, the air in the cylinder 201 is compressed and the compressed air is blown from the nozzle 206 toward the cornea Ec.
  • the cornea Ec is gradually deformed by the blowing of compressed air, and the maximum amount of light is incident on the photodetector 357 when the cornea Ec reaches a flattened state.
  • the controller 70 obtains the intraocular pressure value based on the output signal from the pressure sensor 210 and the output signal from the photodetector 357 .
  • the control unit 70 causes the display unit 75 or the like to display the measurement result.
  • the control unit 70 causes the display unit 75 to display corneal shape information, eye refractive power (SPH, CYL, AXIS), axial length, intraocular pressure, etc. of the eye E to be examined.
  • the current measurement result may be displayed together with the past measurement result.
  • the measurement results may be displayed as a trend graph in which the horizontal axis is age (measurement date) and the vertical axis is eye refractive power, eye axial length, and intraocular pressure.
  • the ophthalmologic apparatus 1 of the present embodiment can measure the eye refractive power, the intraocular pressure, and the axial length of the eye with a single apparatus. , efficient inspection can be performed.
  • the space of the second measurement unit 3b can be effectively used and the second measurement unit 3b can be used. Further space saving can be achieved by sharing the observation optical system 340 .
  • each measurement unit functions independently, so if the axial length measurement optical system 310 is removed, the composite device capable of measuring the refractive power and the intraocular pressure, the piston 202 and the nozzle 206 can be used. It becomes a combined device capable of measuring refractive power and axial length by detaching it, and becomes a combined device capable of measuring intraocular pressure and axial length by removing the first measuring unit 3a. .
  • the axial length measurement optical system is provided with an interference optical system to measure the axial length, but the present invention is not limited to this.
  • a cross-sectional image of the anterior segment of the eye is acquired using a Scheimpflug camera or the like, and the positions and curvatures of the anterior corneal surface, posterior corneal surface, anterior lens surface, and posterior lens surface detected from the tomographic image are obtained.
  • the axial length may be calculated from the relationship with the refractive power of the eye to be examined as a whole.
  • the ophthalmologic apparatus 1a of the second embodiment includes a Scheimpflug camera (sectional imaging optical system 400) and an eye refractive power measuring unit (first measurement The axial length of the eye is measured by the optical system 100).
  • the ophthalmologic apparatus 1a of the second embodiment includes a first measuring section 3a and a second measuring section 3b, like the first embodiment.
  • the first measuring unit 3a of the second embodiment includes a first measuring optical system 100 for measuring eye refractive power, a cross-sectional imaging optical system 400 for acquiring an anterior segment cross-sectional image, and the like.
  • the first measurement optical system 100 and the cross-sectional imaging optical system 400 share a part of the optical system such as the objective lens.
  • the second measuring section 3b of the second embodiment is similar to the second measuring section 3b of the first embodiment except that the axial length measuring optical system 310 and the corneal thickness measuring optical system 370 are removed. Therefore, the description is omitted.
  • FIG. 7 is a schematic diagram showing the optical system of the first measuring section 3a of the ophthalmologic apparatus 1a.
  • the ophthalmologic apparatus 1 a includes a first measurement optical system 100 , a first fixation target presentation optical system 130 , a first observation optical system 150 , a first target optical system 160 and a cross-section imaging optical system 400 . It also has half mirrors 116 and 117, a dichroic mirror 503, an objective lens 118, etc. for branching and coupling the optical paths of the respective optical systems. Since the configuration other than the cross-sectional imaging optical system 400 is the same as that of the first embodiment, description thereof is omitted.
  • the cross-sectional imaging optical system 400 is used to capture a cross-sectional image of the anterior segment.
  • the cross-section imaging optical system 400 includes an irradiation optical system 400a and a light receiving optical system 400b.
  • the irradiation optical system 400a is coaxial with the projection optical axis (optical axis L11) of the measurement light in the first measurement optical system 100, and irradiates the anterior segment with slit light (illumination light).
  • the irradiation optical system 400a has a light source 411, a slit 412, and the like.
  • the light source 411 may be an SLD light source, an LED light source, or other light sources.
  • red visible light or near-infrared light is used as illumination light.
  • red visible light or near-infrared light with peak wavelengths between 650 nm and 800 nm may be utilized.
  • red visible light with a peak wavelength of 730 nm may be used.
  • near-infrared light with a predetermined wavelength as a peak wavelength may also be used.
  • the slit 412 may be placed at a pupil conjugate position.
  • the passage cross section of the slit light in the anterior segment is referred to as a "cut plane".
  • the cut plane becomes the object plane of the cross-section imaging optical system.
  • the opening of the slit 412 has a horizontal direction (the depth direction of the paper surface) as its longitudinal direction. Therefore, in this embodiment, the horizontal plane (XZ section) including the optical axis L1 is set as the cutting plane.
  • a cut surface is formed at least between the anterior corneal surface and the posterior surface of the lens.
  • the irradiation optical system 400 a is arranged in the reflection direction of the dichroic mirror 503 arranged on the optical axis L 12 of the first fixation target optical system 130 . At this time, by arranging the irradiation optical system 400a below the first measurement optical system 100, an increase in the height or width of the ophthalmologic apparatus 1a can be suppressed. Of course, the irradiation optical system 400a may be arranged in any direction if there is a margin in height or width.
  • the light receiving optical system 400b has a lens system 422, an imaging device 421, and the like.
  • the lens system 422 and the imaging device 421 are arranged in a Scheimpflug relationship with the cutting plane set in the anterior segment. That is, the optical arrangement is such that the extension planes of the cut plane, the principal plane of the lens system 422, and the imaging surface of the imaging element 421 intersect at one line of intersection (one axis). A cross-sectional image of the anterior segment is acquired based on the signal from the imaging element 421 .
  • the light receiving optical system 400b of this embodiment is arranged obliquely below the eye E to be examined.
  • the light-receiving optical system 400b is easily affected by disturbance, but since the second measurement section 3b is located above the first measurement section 3a, the influence of disturbance light can be suppressed by arranging the second measurement section 3b. have a nature.
  • the light receiving optical system 300b is arranged on the lower side in order to avoid interference with the first target optical system 160. good.
  • the illumination light flux from the light source 411 passes through the slit 412 on the optical axis L15 and becomes a slit light flux. It is coaxial with the axis L12. Further, the light passes through the lens 504, passes through the half mirror 502, and is reflected by the half mirror 501, so that the light becomes coaxial with the optical axis L1. The illumination luminous flux further passes through the objective lens 505 and reaches the anterior segment of the eye. Return light from the cut surface formed in the anterior segment reaches the imaging device 321 via the lens 322 .
  • ⁇ Control operation> The control operation of the ophthalmologic apparatus 1a will be described with reference to the flowchart shown in FIG.
  • the ophthalmologic apparatus 1a sequentially performs corneal curvature measurement, eye refractive power measurement, and photographing of an anterior segment cross-sectional image, and the axial length is obtained based on the results of the measurements and photographing. be. A tonometry is then performed.
  • a cross-sectional image (Scheimpflug image) of the anterior segment of the subject's eye E is captured.
  • the cross-sectional image P includes, for example, the cornea, the iris, the lens, and the like.
  • the control unit 70 captures a cross-sectional image of the anterior segment of the eye.
  • the operation of capturing a cross-sectional image may be performed using the completion of the main measurement of the eye refractive power as a trigger.
  • illumination light is emitted from the illumination optical system 400a, and the scattered light scattered by the cornea and lens is imaged on the imaging device 421 to form an image of the anterior segment cross section. Get an image. This reduces misalignment between the measurement of the eye refractive power and the imaging of the cross-sectional image.
  • the control unit 70 acquires anterior segment shape information regarding the shape of the anterior segment.
  • the anterior segment shape information includes the radius of curvature of the anterior corneal surface (Ra), the radius of curvature of the posterior corneal surface (Rp), the corneal thickness (CT), the depth of the anterior chamber (ACD), the radius of curvature of the anterior lens surface (ra), A plurality of parameter information may be included that are measurements such as the radius of curvature of the posterior lens surface (rp), lens thickness (LT), and the like.
  • the corneal shape information acquired in step S202 can also be used as the anterior segment shape information.
  • the control unit 70 performs image processing on the cross-sectional image P to detect each translucent body (for example, the cornea, aqueous humor, crystalline lens, etc.) and acquire anterior segment shape information.
  • the brightness information of the cross-sectional image P may be used to detect pixel positions corresponding to tissue boundaries (corneal anterior and posterior surfaces, lens anterior and posterior surfaces, iris, etc.) and acquire information such as the radius of curvature.
  • the distance between the pixel positions corresponding to the boundary of the tissue may be obtained, and information such as the thickness and depth of the tissue may be obtained.
  • the control unit 70 calculates the axial length based on the refractive power of the eye E to be examined and a plurality of parameter information in the anterior segment shape information of the eye E to be examined.
  • the eye axial length may be derived based on the ray tracing calculation on the cut plane of the anterior segment.
  • the control unit 70 performs ray tracing calculation based on the position of the far point FP, the refractive index of each translucent body, and the parameter information in the anterior segment shape information.
  • the control unit 70 traces a light ray (e.g., light ray Lx in FIG. 10) incident from the far point FP toward the eye E to be examined, refracts the light ray by each translucent body of the eye E to be examined, and aligns the light ray with the optical axis. Find the position of the crossing point. For example, the position of the fundus oculi Ef is obtained by such ray tracing calculation.
  • the control unit 50 derives the distance between the corneal vertex C and the fundus Ef as the axial length AL.
  • At least the anterior surface of the cornea, the posterior surface of the cornea, and the anterior surface of the crystalline lens should be captured in the cross-sectional image P, and the parameters of other parts may be determined by interpolation. See Japanese Patent Application No. 2021-061511 for the method of calculating the axial length.
  • the control unit 70 measures the intraocular pressure of the subject's eye using the second measurement unit 3b.
  • the measuring method is the same as in the first embodiment.
  • the control unit 70 functions as correction means for correcting the measured value, and corrects (the measured value of) the intraocular pressure acquired in step S208.
  • the control unit 70 corrects the intraocular pressure based on the cross-sectional image P acquired by the cross-sectional imaging optical system 400 of the first measuring unit 3a.
  • the control unit 70 corrects the intraocular pressure based on the corneal thickness obtained from the cross-sectional image P. In this manner, even if the second measuring unit 3b is not provided with a corneal thickness measuring means, the intraocular pressure can be corrected by the measurement value obtained by the first measuring unit 3a, so that the configuration of the second measuring unit 3b is not increased. Measurement accuracy can be improved.
  • the measured value obtained in step S205 may be used as it is as the measured value used for correcting the intraocular pressure.
  • a cross-sectional image P for correcting the intraocular pressure may be acquired by taking an image with the cross-sectional imaging optical system 400 separately from that for measuring the axial length of the eye.
  • control unit 70 may correct other measured values based on the cross-sectional image P, not limited to the intraocular pressure.
  • the control unit 70 may correct the corneal shape or eye refractive power obtained in steps S202 and S203 based on the anterior segment shape information obtained from the cross-sectional image P. This makes it possible to further improve the measurement accuracy.
  • the control unit 70 causes the display unit 75 or the like to display the measurement result.
  • the control unit 70 causes the display unit 75 to display corneal shape information, eye refractive power, eye axial length, corrected intraocular pressure value, etc. of the eye E to be examined.
  • the ophthalmologic apparatus 1a of the second embodiment can measure the eye refractive power, the intraocular pressure, and the axial length of the eye with a single apparatus. can be reduced and an efficient examination can be performed. Further, the ophthalmologic apparatus 1a of the second embodiment can measure the axial length of the eye with a simple configuration by using a cross-sectional image based on the Scheimpflug principle, and also acquires anterior segment shape information such as corneal thickness from the cross-sectional image. Therefore, measurement values such as eye refractive power, corneal shape, and intraocular pressure value can be corrected from the anterior segment shape information, and more accurate examination can be performed.
  • the ophthalmologic apparatus 1a of the second embodiment eliminates the need to dispose the corneal thickness measuring optical system 370 in the second measuring section 3b as in the first embodiment, and also has more ( shape information (other than corneal thickness) can be obtained. If the cross-section imaging optical system 400 is arranged in the second measuring unit 3b, only the corneal thickness and the corneal front curvature can be obtained because the working distance between the eye to be examined E and the second measuring unit 3b is short. By arranging the cross-sectional imaging optical system 400 in the first measuring section 3a where a sufficient working distance to the eye to be examined E is ensured, as in the embodiment, a wider range of cross-sectional images can be obtained, and more shape information can be obtained. can be obtained and used for axial length measurement and intraocular pressure correction.

Abstract

The present invention addresses the technical problem of providing an ophthalmic device that is capable of efficiently measuring ocular refractive power, intraocular pressure, and ocular axial length. The present disclosure relates to an ophthalmic device that examines an eye, said ophthalmic device being characterized by comprising: an ocular refractive power measurement means for measuring the ocular refractive power of the eye being examined; an intraocular pressure measurement means for measuring the intraocular pressure of the eye being examined; and an ocular axial length measurement means for measuring the ocular axial length of the eye being examined. Thus, it is possible to provide an ophthalmic device that is capable of efficiently measuring ocular refractive power, intraocular pressure, and ocular axial length.

Description

眼科装置ophthalmic equipment
 本開示は、被検眼を検査するための眼科装置に関する。 The present disclosure relates to an ophthalmic apparatus for examining an eye to be examined.
 従来の眼科装置としては、眼屈折力と眼圧を測定する眼科装置、眼屈折力と眼軸長を測定する眼科装置などが知られている。眼屈折力と眼圧を測定する眼科装置は、健康診断などのスクリーニングに用いられる。 Known conventional ophthalmic devices include an ophthalmic device that measures eye refractive power and intraocular pressure, and an ophthalmic device that measures eye refractive power and eye axial length. An ophthalmic device that measures eye refractive power and intraocular pressure is used for screening such as health checkups.
特開2008-99968号公報JP-A-2008-99968
 一般的に眼軸長の測定結果は白内障手術時のIOL度数計算に用いられることが多いが、近年では近視進行度合いを測定するためにも用いられてきており、白内障手術を実施しない施設においても眼屈折力と眼軸長の測定が行われること増えてきた。 In general, the results of measuring the axial length of the eye are often used to calculate the IOL power during cataract surgery. Measurements of ocular refractive power and axial length are increasingly being performed.
 しかしながら、従来の眼科装置において、眼屈折力と眼圧を測定する装置と、眼屈折力と眼軸長を測定する装置は別々に存在しており、眼屈折力と眼圧と眼軸長を効率的に測定することはできなかった。 However, in the conventional ophthalmologic apparatus, a device for measuring eye refractive power and intraocular pressure and a device for measuring eye refractive power and eye axial length exist separately. could not be measured effectively.
 本開示は、上記の事情に鑑み、眼屈折力と眼圧と眼軸長を効率的に測定できる眼科装置を提供することを技術課題とする。 In view of the above circumstances, the technical problem of the present disclosure is to provide an ophthalmologic apparatus capable of efficiently measuring eye refractive power, intraocular pressure, and axial length.
 (1) 被検眼を検査する眼科装置であって、前記被検眼の眼屈折力を測定するための眼屈折力測定手段と、前記被検眼の眼圧を測定するための眼圧測定手段と、前記被検眼の眼軸長を測定するための眼軸長測定手段と、を備えることを特徴とする。 (1) An ophthalmologic apparatus for examining an eye to be inspected, comprising eye refractive power measuring means for measuring the eye refractive power of the eye to be inspected, intraocular pressure measuring means for measuring the intraocular pressure of the eye to be inspected, and an axial length measuring means for measuring the axial length of the eye to be examined.
眼科装置の外観図である。1 is an external view of an ophthalmologic apparatus; FIG. 制御系を示すブロック図である。3 is a block diagram showing a control system; FIG. 第1測定部の光学系を示す概略図である。It is a schematic diagram showing the optical system of the first measurement unit. 第2測定部の内部構成を示す概略図である。It is a schematic diagram showing an internal configuration of a second measurement unit. 第2測定部の光学系を示す概略図である。It is a schematic diagram showing the optical system of the second measurement unit. 眼科装置の制御動作を示すフローチャートである。4 is a flow chart showing the control operation of the ophthalmologic apparatus; 第2実施例における第1測定部の光学系を示す概略図である。It is a schematic diagram showing the optical system of the first measurement unit in the second embodiment. 第2実施例における眼科装置の制御動作を示すフローチャートである。9 is a flow chart showing the control operation of the ophthalmologic apparatus in the second embodiment; 前眼部断面画像の一例を示す図である。It is a figure which shows an example of an anterior-segment cross-sectional image. 眼軸長の導出手法を説明するための模式図である。It is a schematic diagram for demonstrating the derivation|leading-out method of eye axial length.
<実施形態>
 本開示の実施形態について説明する。本実施形態の眼科装置(例えば、眼科装置1)は、被検眼を検査する装置である。眼科装置は、例えば、眼屈折力測定部(例えば、第1測定光学系100)と、眼圧測定部(例えば、流体吐出部200、変形検出光学系350など)と、眼軸長測定部(例えば、眼軸長測定光学系310)を備える。眼屈折力測定部は、被検眼の眼屈折力を測定する。眼圧測定部は、被検眼の眼圧を測定する。眼軸長測定部は、被検眼の眼軸長を測定する。本実施形態の眼科装置は、上記のような構成を備えることによって、眼屈折力と眼圧と眼軸長を効率的に測定することができる。
<Embodiment>
Embodiments of the present disclosure will be described. An ophthalmologic apparatus (for example, an ophthalmologic apparatus 1) of this embodiment is an apparatus for examining an eye to be examined. The ophthalmologic apparatus includes, for example, an eye refractive power measurement unit (e.g., first measurement optical system 100), an intraocular pressure measurement unit (e.g., fluid ejection unit 200, deformation detection optical system 350, etc.), and an eye axial length measurement unit ( For example, an axial length measuring optical system 310) is provided. The eye refractive power measuring unit measures the eye refractive power of the subject's eye. The intraocular pressure measurement unit measures the intraocular pressure of the subject's eye. The axial length measuring unit measures the axial length of the eye to be examined. The ophthalmologic apparatus of this embodiment can efficiently measure the refractive power of the eye, the intraocular pressure, and the axial length of the eye by providing the configuration described above.
 なお、眼圧測定部および眼軸長測定部は、光学系の一部を共有していてもよい。例えば、眼圧測定部と眼軸長測定部は、前眼部を観察するための観察光学系(例えば、第2観察光学系340)を共有していてもよい。これによって、眼圧測定部と眼軸長測定部にそれぞれ観察光学系などの光学系を設ける場合よりも、装置の小型化およびコストダウンを図れる。 Note that the intraocular pressure measurement unit and the axial length measurement unit may share a part of the optical system. For example, the tonometry section and the axial length measurement section may share an observation optical system (for example, the second observation optical system 340) for observing the anterior segment. As a result, the size and cost of the apparatus can be reduced compared to the case where an optical system such as an observation optical system is provided in each of the intraocular pressure measurement unit and the axial length measurement unit.
 なお、眼圧測定部と眼軸長測定部とは作動距離が異なっていてもよい。例えば、眼軸長測定部の作動距離は、眼圧測定部の作動距離よりも長くてもよい。つまり、眼圧測定部の作動距離は、眼軸長測定部の作動距離よりも短くてもよい。これによって、眼軸長測定と眼圧測定を続けて行ったときに被検者に与える恐怖感または圧迫感を低減できる。 The working distances of the intraocular pressure measuring unit and the axial length measuring unit may be different. For example, the working distance of the axial length measuring unit may be longer than the working distance of the tonometry unit. That is, the working distance of the intraocular pressure measuring unit may be shorter than the working distance of the axial length measuring unit. As a result, it is possible to reduce the feeling of fear or oppression given to the subject when performing eye axial length measurement and intraocular pressure measurement in succession.
 なお、眼科装置は、駆動部(例えば、駆動部5)と、制御部(例えば、制御部70)をさらに備えてもよい。駆動部は、眼圧測定部と眼軸長測定部を3次元的に駆動させる。制御部は、駆動部の駆動を制御する。例えば、制御部は、眼軸長測定を行った後に眼圧測定を行う場合、眼軸長測定が終了した後に、眼圧測定部の作動距離となるように、第2測定部を被検眼に作動距離方向に近づけてから眼圧測定を行うように駆動部を制御してもよい。これによって、眼軸長測定と眼圧測定を続けて行ったときに被検者に与える恐怖感または圧迫感を低減できる。 The ophthalmologic apparatus may further include a drive section (eg, drive section 5) and a control section (eg, control section 70). The drive unit three-dimensionally drives the intraocular pressure measurement unit and the axial length measurement unit. The control section controls driving of the driving section. For example, when measuring the intraocular pressure after performing the axial length measurement, the control unit moves the second measuring unit to the eye to be examined so that the working distance of the intraocular pressure measuring unit is reached after the axial length measurement is completed. The driving unit may be controlled so that the intraocular pressure measurement is performed after approaching in the working distance direction. As a result, it is possible to reduce the feeling of fear or oppression given to the subject when performing eye axial length measurement and intraocular pressure measurement in succession.
 なお、制御部は、眼屈折力測定部によって眼屈折力を測定した後に、眼軸長測定部による眼軸長測定を行ってもよい。つまり、眼屈折力測定、眼軸長測定、眼圧測定の順で測定を行ってもよい。これによって、測定後に被検者が動いてアライメントがずれ易い眼圧測定の前に、眼屈折力測定と眼軸長測定を行うことで、より効率的に眼屈折力と眼軸長と眼圧の測定を行うことができる。 Note that the control unit may measure the axial length of the eye by the axial length measurement unit after measuring the eye refractive power by the eye refractive power measurement unit. That is, measurements may be performed in order of eye refractive power measurement, eye axial length measurement, and intraocular pressure measurement. As a result, eye refractive power, axial length, and intraocular pressure can be measured more efficiently by performing eye refractive power measurement and eye axial length measurement before intraocular pressure measurement, which tends to cause misalignment due to movement of the subject after measurement. can be measured.
 なお、眼科装置は、被検眼の角膜形状を測定する角膜形状測定部(例えば、第1観察光学系150、第1指標光学系160など)を備えていてもよい。これによって、眼屈折力測定、眼圧測定、眼軸長測定に加えて、被検眼の角膜形状測定も効率的に行うことができる。 The ophthalmologic apparatus may include a corneal shape measuring unit (eg, first observation optical system 150, first target optical system 160, etc.) that measures the corneal shape of the subject's eye. As a result, in addition to eye refractive power measurement, intraocular pressure measurement, and eye axial length measurement, corneal shape measurement of the subject's eye can also be efficiently performed.
<実施例>
[外観]
 本開示の一実施例について説明する。本実施例の眼科装置1は、被検眼を測定するための装置である。図1に示すように、眼科装置1は、例えば、被検眼を測定する測定部3を備える。測定部3は、第1測定部3a、第2測定部3bを備える。
<Example>
[exterior]
An embodiment of the present disclosure will be described. An ophthalmologic apparatus 1 of this embodiment is an apparatus for measuring an eye to be examined. As shown in FIG. 1, the ophthalmologic apparatus 1 includes, for example, a measurement unit 3 that measures an eye to be examined. The measurement unit 3 includes a first measurement unit 3a and a second measurement unit 3b.
 第1測定部3aは、例えば、被検眼の眼屈折力を測定する眼屈折力測定手段として機能する。第2測定部3bは、例えば、被検眼の眼軸長を測定する眼軸長測定手段と、被検眼の眼圧を測定する眼圧測定手段として機能する。第2測定部3bにおいて、眼軸長を測定するための光学系と、眼圧を測定するための光学系は、一部が共通化(共有)されている。なお、第1測定部3aは角膜形状測定手段を備えてもよい。この場合、第1測定部3aの角膜形状測定手段によって測定された角膜形状の測定結果を第2測定部3bによる眼軸長測定に用いてもよい。 The first measuring unit 3a functions, for example, as eye refractive power measuring means for measuring the eye refractive power of the subject's eye. The second measuring unit 3b functions, for example, as an axial length measuring device for measuring the axial length of the subject's eye and an intraocular pressure measuring device for measuring the intraocular pressure of the subject's eye. In the second measurement unit 3b, the optical system for measuring the axial length and the optical system for measuring the intraocular pressure are partly shared (shared). Note that the first measurement unit 3a may include corneal shape measurement means. In this case, the measurement result of the corneal shape measured by the corneal shape measuring means of the first measuring unit 3a may be used for the eye axial length measurement by the second measuring unit 3b.
 また、眼科装置1は、基台2、駆動部5、顔支持部4、表示部75、操作部76、制御部70などを備える。基台2は、眼科装置1の各部を支持する。駆動部5は、第1測定部3aと第2測定部3bを一体的に駆動させる。例えば、駆動部5は、第1測定部3aと第2測定部3bを基台に対して上下左右前後の3次元方向に移動させる。顔支持部4は、測定部3の正面において被検者の顔を固定するために利用される。顔支持部4は、基台2に対して固定されており、被検者の顔を支持する。 In addition, the ophthalmologic apparatus 1 includes a base 2, a drive section 5, a face support section 4, a display section 75, an operation section 76, a control section 70, and the like. The base 2 supports each part of the ophthalmologic apparatus 1 . The drive unit 5 integrally drives the first measurement unit 3a and the second measurement unit 3b. For example, the driving unit 5 moves the first measuring unit 3a and the second measuring unit 3b in three-dimensional directions, up, down, left, right, front and back, with respect to the base. The face support section 4 is used to fix the subject's face in front of the measurement section 3 . The face support part 4 is fixed to the base 2 and supports the subject's face.
 表示部75は、制御部70によって制御され測定結果などを表示する。例えば、表示部75は、被検眼の眼屈折力、前眼部正面画像、眼軸長、眼圧などを画面に表示する。 The display unit 75 is controlled by the control unit 70 and displays measurement results and the like. For example, the display unit 75 displays the ocular refractive power of the subject's eye, the front image of the anterior segment, the axial length of the eye, the intraocular pressure, and the like on the screen.
 操作部76は、検者の操作を受け付ける。なお、表示部75がタッチパネルを有する場合は、表示部75が操作部76として機能してもよい。 The operation unit 76 accepts the operations of the examiner. In addition, when the display unit 75 has a touch panel, the display unit 75 may function as the operation unit 76 .
 制御部(プロセッサともいう)70は、眼科装置1の各種制御を司る。また、測定部3によって取得した各種の測定結果を処理する。制御部70は、図2に示すように、例えば、一般的なCPU(Central Processing Unit)71、ROM72、RAM73等を備える。例えば、ROM72には、眼科装置1を制御するための眼科装置制御プログラム、初期値等が記憶されている。例えば、RAM73は、各種情報を一時的に記憶する。制御部70は、第1測定部3a、第2測定部3b、駆動部5、表示部75、操作部76、記憶部(例えば、不揮発性メモリ)74等の眼科装置1の各部と接続されている。記憶部74は、例えば、電源の供給が遮断されても記憶内容を保持できる非一過性の記憶媒体である。例えば、ハードディスクドライブ、着脱可能なUSBフラッシュメモリ等を記憶部74として使用してもよい。 A control unit (also called a processor) 70 controls various controls of the ophthalmologic apparatus 1 . It also processes various measurement results obtained by the measurement unit 3 . The control unit 70 includes, for example, a general CPU (Central Processing Unit) 71, ROM 72, RAM 73, etc., as shown in FIG. For example, the ROM 72 stores an ophthalmologic apparatus control program for controlling the ophthalmologic apparatus 1, initial values, and the like. For example, the RAM 73 temporarily stores various information. The control unit 70 is connected to each unit of the ophthalmologic apparatus 1 such as the first measurement unit 3a, the second measurement unit 3b, the drive unit 5, the display unit 75, the operation unit 76, the storage unit (for example, nonvolatile memory) 74, and the like. there is The storage unit 74 is, for example, a non-transitory storage medium that can retain stored content even when power supply is interrupted. For example, a hard disk drive, a detachable USB flash memory, or the like may be used as the storage unit 74 .
[第1測定部]
 第1測定部3aは、第1測定光学系100、第1固視標光学系130、第1観察光学系150、第1指標光学系160、及び第1指標光学系170を備える。また、各光学系の光路を分岐及び結合するハーフミラー501,502、対物レンズ505等を有する。
[First measurement part]
The first measurement unit 3 a includes a first measurement optical system 100 , a first fixation target optical system 130 , a first observation optical system 150 , a first index optical system 160 and a first index optical system 170 . It also has half mirrors 501 and 502, an objective lens 505, etc. for branching and combining the optical paths of the respective optical systems.
(第1測定光学系)
 第1測定光学系100は、被検眼Eの眼屈折力を他覚的に測定する。第1測定光学系100は、投光光学系100a、及び、受光光学系100bを有する。
(First measurement optical system)
The first measurement optical system 100 objectively measures the eye refractive power of the eye E to be examined. The first measurement optical system 100 has a light projecting optical system 100a and a light receiving optical system 100b.
 投光光学系100aは、測定光源111を有し、被検眼Eにおける瞳孔の中心部又は角膜頂点を介して、被検眼Eの眼底にスポット状の測定光を投光する。測定光源111は、SLD光源であってもよいし、LED光源であってもよいし、その他の光源であってもよい。本実施例では、測定光として赤外光が利用される。例えば、800nm~900nmの間にピーク波長をもつ近赤外光が利用されてもよい。一例としては、870nmをピーク波長とする近赤外光が利用されてもよい。もちろん、それ以外の波長の光が利用されてもよい。 The projection optical system 100a has a measurement light source 111, and projects a spot-shaped measurement light onto the fundus of the eye E to be examined via the center of the pupil or the apex of the cornea of the eye E to be examined. The measurement light source 111 may be an SLD light source, an LED light source, or other light sources. In this embodiment, infrared light is used as the measurement light. For example, near-infrared light with a peak wavelength between 800 nm and 900 nm may be used. As an example, near-infrared light with a peak wavelength of 870 nm may be used. Of course, light of other wavelengths may be used.
 本実施例では、投光光学系100a及び受光光学系100bの共通経路上にプリズム115が配置される。プリズム115が光軸周りに回転されることによって、瞳上での投光光束が高速に偏心回転される。一例として、本実施例では、瞳上のφ2mm~φ4mmの領域で、投光光束が偏心回転される。この領域が、本実施例における眼屈折力の測定領域となる。 In this embodiment, a prism 115 is arranged on the common path of the light projecting optical system 100a and the light receiving optical system 100b. By rotating the prism 115 around the optical axis, the projection light flux on the pupil is eccentrically rotated at high speed. As an example, in this embodiment, the projection light flux is eccentrically rotated in a region of φ2 mm to φ4 mm on the pupil. This area is the eye refractive power measurement area in this embodiment.
 受光光学系100bは、少なくともリングレンズ123と、撮像素子124と、を有する。受光光学系100bは、眼底から反射された測定光束の反射光束を、瞳孔の周辺部を介してリング状に取り出す。リングレンズ123は、瞳共役位置に配置されており、撮像素子124は、眼底共役位置に配置されている。リングレンズ123を介して撮像素子124上に形成されるリング像を解析することによって、眼屈折力が導出される。 The light receiving optical system 100b has at least a ring lens 123 and an imaging element 124. The light-receiving optical system 100b takes out the reflected light flux of the measurement light flux reflected from the fundus in a ring shape through the periphery of the pupil. The ring lens 123 is arranged at a pupil conjugate position, and the imaging element 124 is arranged at a fundus conjugate position. By analyzing the ring image formed on the image sensor 124 via the ring lens 123, the eye refractive power is derived.
 前述の通り、本実施例では、瞳上で測定光が高速に偏心回転されているので、回転周期に対して十分長い時間の露光に基づく撮像素子124からの出力画像、或いは、撮像素子124から逐次出力される画像データの加算画像、に対して解析処理が行われ、眼屈折力が導出される。本実施例では、SPH:球面度数、CYL:柱面度数、AXIS:乱視軸角度等の値が解析処理の結果として取得される。 As described above, in this embodiment, the measurement light is eccentrically rotated at high speed on the pupil. Analysis processing is performed on an added image of image data that is sequentially output, and an eye refractive power is derived. In this embodiment, values such as SPH: spherical power, CYL: cylindrical power, and AXIS: astigmatic axis angle are obtained as a result of analysis processing.
 なお、第1測定光学系100は、測定光源111、プリズム115、リングレンズ123、及び撮像素子124の他にも、レンズや絞り等の光学素子を有していてもよい。測定光源111からの測定光束は、ホールミラー114のホール部とプリズム115を通過し、ハーフミラー116及びハーフミラー117にそれぞれ反射されることで、光軸L11と同軸となり、更に対物レンズ118を介して、眼底に到達する。測定光束が眼底にて反射された反射光束は、測定光束が通過した光路を経由し、ホールミラー114のミラー部に反射され、リングレンズ123を介して撮像素子124に到達する。 It should be noted that the first measurement optical system 100 may have optical elements such as lenses and diaphragms in addition to the measurement light source 111, the prism 115, the ring lens 123, and the imaging element 124. The measurement light flux from the measurement light source 111 passes through the hole portion of the hole mirror 114 and the prism 115, is reflected by the half mirror 116 and the half mirror 117 respectively, becomes coaxial with the optical axis L11, and further passes through the objective lens 118. and reach the fundus. The reflected light flux, which is the measurement light flux reflected by the fundus, passes through the optical path through which the measurement light flux has passed, is reflected by the mirror portion of the hole mirror 114 , and reaches the imaging device 124 via the ring lens 123 .
(第1固視標光学系)
 第1固視標光学系130は、被検眼Eに対して固視標を呈示する。第1固視標光学系130は、被検眼を固視させたり、被検眼に雲霧及び調節負荷を与えたりする。例えば、第1固視標光学系130は、光源131、及び、固視標板132を少なくとも備える。固視標板132は、眼底共役位置に配置されてもよい。光源131からの固視光束は、光軸L12上の固視標板132とレンズ133、レンズ134、ハーフミラー116を透過し、ハーフミラー117に反射されることで、光軸L11と同軸となる。固視光束は、更に対物レンズ118を介すことで、眼底に到達する。
(First fixation target optical system)
The first fixation target optical system 130 presents the eye E to be examined with a fixation target. The first fixation target optical system 130 causes the subject's eye to fixate, and applies fog and accommodation load to the subject's eye. For example, the first fixation target optical system 130 includes at least a light source 131 and a fixation target plate 132 . The fixation target plate 132 may be placed at a fundus conjugate position. A fixation light beam from the light source 131 passes through the fixation target plate 132 on the optical axis L12, the lens 133, the lens 134, and the half mirror 116, and is reflected by the half mirror 117 to be coaxial with the optical axis L11. . The fixation luminous flux further passes through the objective lens 118 and reaches the fundus.
 なお、第1測定光学系100における測定光源111、リングレンズ123、及び撮像素子124と、第1固視標光学系130における光源131及び固視標板132は、駆動ユニット140として、駆動部141により光軸に沿って一体的に移動可能である。例えば、第1測定光学系100における駆動ユニット140内の焦点距離と、第1固視標光学系130における駆動ユニット140内の焦点距離は、所定の関係とされる。例えば、被検眼Eの眼屈折力に応じて駆動ユニットを移動させることで、被検眼Eに対する固視標板132の呈示距離(すなわち、固視標の呈示位置)を変更でき、さらに、測定光源111及び撮像素子124が光学的に眼底共役となる。このとき、駆動ユニットの移動に関わらず、ホールミラー114とリングレンズ123は一定の倍率で瞳共役となる。 Note that the measurement light source 111, the ring lens 123, and the imaging element 124 in the first measurement optical system 100, and the light source 131 and the fixation target plate 132 in the first fixation target optical system 130 are the drive unit 140, and the drive unit 141 can move integrally along the optical axis. For example, the focal length within the drive unit 140 in the first measurement optical system 100 and the focal length within the drive unit 140 in the first fixation target optical system 130 are in a predetermined relationship. For example, by moving the drive unit according to the eye refractive power of the eye E to be examined, the presentation distance of the fixation target plate 132 with respect to the eye E to be examined (that is, the presentation position of the fixation target) can be changed. 111 and the imaging device 124 are optically conjugated to the fundus. At this time, regardless of the movement of the driving unit, the hole mirror 114 and the ring lens 123 are pupil conjugate at a constant magnification.
(第1観察光学系)
 第1観察光学系150は、被検眼Eの前眼部の正面画像を撮像する。例えば、第1観察光学系150は、撮像素子151等を備える。撮像素子151は、瞳共役位置に配置されてもよい。正面画像は、アライメント等に利用される。また、第1指標光学系160から角膜に投影される指標像(点像)、及び指標像(マイヤーリング像)が、第1観察光学系150によって撮影される。
(First observation optical system)
The first observation optical system 150 captures a front image of the anterior segment of the eye E to be examined. For example, the first observation optical system 150 includes an imaging device 151 and the like. The imaging device 151 may be arranged at a pupil conjugate position. The front image is used for alignment and the like. Also, a target image (point image) projected onto the cornea from the first target optical system 160 and a target image (Meyerling image) are captured by the first observation optical system 150 .
(第1指標光学系)
 第1指標光学系160は、被検眼に指標を投影する。第1指標光学系160は、例えば、被検眼の角膜形状の測定、被検眼Eに対するアライメント(位置合わせ)などに利用される。第1指標光学系160は、複数の点光源161と、光源162を備える。点光源161は、角膜に平行光を照射することで、無限遠指標を投影する。点光源161は、赤外光を発する。但し、可視光であってもよい。点光源161は、光軸L11を中心として、上下対称及び左右対称に配置される。例えば、本実施例では、点光源が左右に2つずつ設けられる。これによって、角膜に対して4つの点像指標が投影される。なお、指標の形状はこれに限られたものでは無く、線状等の指標が含まれてもよい。また、指標の数はこれに限られたものでは無く、3つ以上の点像指標によって構成されてもよい。
(First index optical system)
The first index optical system 160 projects an index onto the subject's eye. The first target optical system 160 is used, for example, for measurement of the corneal shape of the subject's eye, alignment with the subject's eye E, and the like. The first target optical system 160 has a plurality of point light sources 161 and a light source 162 . The point light source 161 projects an infinity index by irradiating the cornea with parallel light. The point light source 161 emits infrared light. However, it may be visible light. The point light sources 161 are arranged vertically and horizontally symmetrically about the optical axis L11. For example, in this embodiment, two point light sources are provided on each side. This projects four point image indices onto the cornea. Note that the shape of the index is not limited to this, and a linear index or the like may be included. Also, the number of indices is not limited to this, and may be composed of three or more point image indices.
 光源162は、角膜に拡散光を照射することで、有限遠指標を投影する。光源162は、赤外光を発する。但し、可視光であってもよい。光源162は、光軸L11を中心として、リング状に配置される。これによって、本実施例では、角膜に対してリング指標(いわゆるマイヤーリング)が、投影される。 The light source 162 projects a finite distance index by irradiating the cornea with diffused light. Light source 162 emits infrared light. However, it may be visible light. The light source 162 is arranged in a ring shape around the optical axis L11. Thereby, in this embodiment, a ring index (so-called Mayer ring) is projected onto the cornea.
 本実施例では、点光源161によるプルキンエ像と、光源162によるリング指標が所定の比率で撮影されるように、測定部3を前後方向に移動させることで、作動距離調整が行われる。 In this embodiment, the working distance is adjusted by moving the measurement unit 3 in the front-rear direction so that the Purkinje image by the point light source 161 and the ring index by the light source 162 are photographed at a predetermined ratio.
[第2測定部]
 図4に示すように、第2測定部3bは、流体吐出部200と第2測定光学系300を備える。流体吐出部200は、眼圧測定用の圧縮空気を生成する。第2測定光学系300は、眼圧および眼軸長を測定するための光学系を備える。
[Second measurement unit]
As shown in FIG. 4, the second measurement section 3b includes a fluid ejection section 200 and a second measurement optical system 300. As shown in FIG. The fluid ejection unit 200 generates compressed air for measuring intraocular pressure. The second measurement optical system 300 includes an optical system for measuring intraocular pressure and axial length.
{流体吐出部}
 流体吐出部200は、被検眼Eの角膜に流体を吐出する。流体吐出部200は、例えば、シリンダ201、ピストン202、ソレノイドアクチュエータ(以下、ソレノイドともいう)203、ノズル206、通気管220、ガラス板208、ガラス板209、および圧力センサ212等を備える。
{Fluid discharge part}
The fluid ejector 200 ejects fluid onto the cornea of the eye E to be examined. The fluid ejection unit 200 includes, for example, a cylinder 201, a piston 202, a solenoid actuator (hereinafter also referred to as a solenoid) 203, a nozzle 206, a vent pipe 220, a glass plate 208, a glass plate 209, a pressure sensor 212, and the like.
 シリンダ201とピストン202は、被検眼に吐出する空気などの流体を圧縮するための流体圧縮機構として用いられる。シリンダ201は、例えば円筒状であり、内部は圧縮室234と吸気室235に分けられる。吸気室235の側面には吸気口213が設けられる。ピストン202は、シリンダ201の軸方向(長手方向)に沿って摺動する。ピストン202は、シリンダ201内の圧縮室234の空気を圧縮する。 The cylinder 201 and the piston 202 are used as a fluid compression mechanism for compressing fluid such as air to be discharged to the eye to be examined. The cylinder 201 is cylindrical, for example, and is divided into a compression chamber 234 and an intake chamber 235 inside. An intake port 213 is provided on a side surface of the intake chamber 235 . The piston 202 slides along the axial direction (longitudinal direction) of the cylinder 201 . Piston 202 compresses air in compression chamber 234 within cylinder 201 .
 ソレノイド203は、例えば、直動ソレノイドであり、直線的に作動する。ソレノイド203は、可動体204とコイル205を備える。可動体204には、例えば、永久磁石等の磁性体が用いられる。コイル205に電流が流れると、コイル205の内側に磁界が生じる。可動体204は、磁界から受けた電磁力によって軸方向に移動される。ピストン202は、可動体204に固定されているため、可動体204とともに軸方向に移動する。 The solenoid 203 is, for example, a linear solenoid and operates linearly. The solenoid 203 has a movable body 204 and a coil 205 . A magnetic body such as a permanent magnet is used for the movable body 204, for example. When the coil 205 is energized, a magnetic field is generated inside the coil 205 . The movable body 204 is axially moved by the electromagnetic force received from the magnetic field. Since the piston 202 is fixed to the movable body 204 , it moves axially with the movable body 204 .
 また、コイル205に流す電流の方向を変えることで、可動体204の移動方向を変更することができる。例えば、コイル205に順方向に電流を流すときに可動体204が圧縮方向(前進方向、図4のA方向)に移動し、逆方向に電流を流すときは可動体204が反対方向(後退方向、図4のB方向)に移動する。したがって、コイル205に流す電流の向きを切り換えることによって、可動体204とともに移動するピストン202の移動方向を変更できる。例えば、コイル205に順方向の電流を流し、ピストン202をA方向に移動させて圧縮室234の流体を圧縮した後、コイル205に逆方向の電流を流すことによって、ピストン202をB方向に移動させて初期位置に戻すことができる。なお、ソレノイド203は直動ソレノイドに限らず、ロータリーソレノイドであってもよいし、他の駆動源であってもよい。 Also, by changing the direction of the current flowing through the coil 205, the moving direction of the movable body 204 can be changed. For example, when the current is passed through the coil 205 in the forward direction, the movable body 204 moves in the compression direction (forward direction, direction A in FIG. 4). , direction B in FIG. 4). Therefore, by switching the direction of the current flowing through the coil 205, the moving direction of the piston 202 that moves together with the movable body 204 can be changed. For example, a forward current is applied to the coil 205 to move the piston 202 in the A direction to compress the fluid in the compression chamber 234, and then a reverse current is applied to the coil 205 to move the piston 202 in the B direction. can be returned to the initial position. Note that the solenoid 203 is not limited to a linear solenoid, and may be a rotary solenoid or other drive source.
 ノズル206は、圧縮された空気を装置外部に吐出する。ガラス板208は、透明であり、ノズル206を保持するとともに、観察光やアライメント光を透過させる。ガラス板209は、気密室221の後壁を構成するとともに、観察光やアライメント光を透過させる。圧力センサ212は、例えば、気密室221の圧力を検出する。 The nozzle 206 discharges compressed air to the outside of the device. The glass plate 208 is transparent, holds the nozzle 206, and transmits observation light and alignment light. The glass plate 209 constitutes the rear wall of the airtight chamber 221 and transmits observation light and alignment light. The pressure sensor 212 detects the pressure in the airtight chamber 221, for example.
 ピストン202の移動によりシリンダ201内の圧縮室234で圧縮された流体は、シリンダ201の先端に連結される通気管220、圧縮された流体を収容する気密室221を介して、ノズル206から被検眼Eの角膜に向けて吐出される。 The fluid compressed in the compression chamber 234 in the cylinder 201 by the movement of the piston 202 passes through the vent tube 220 connected to the tip of the cylinder 201 and the airtight chamber 221 that stores the compressed fluid, and flows out from the nozzle 206 to the eye to be examined. E is discharged toward the cornea of E.
{第2測定光学系}
 第2測定光学系300は、被検眼の眼軸長および眼圧を測定する。例えば、第2測定光学系300は、眼軸長測定光学系310、第2固視標光学系330、第2観察光学系340、第2指標光学系390、変形検出光学系350、角膜厚測定光学系370などを備える。
{Second measurement optical system}
The second measurement optical system 300 measures the axial length and intraocular pressure of the subject's eye. For example, the second measurement optical system 300 includes an axial length measurement optical system 310, a second fixation target optical system 330, a second observation optical system 340, a second target optical system 390, a deformation detection optical system 350, and a corneal thickness measurement system. An optical system 370 and the like are provided.
(眼軸長測定光学系)
 眼軸長測定光学系310は、例えば、被検眼の眼軸長を測定する。本実施例の眼軸長測定光学系310は、例えば、タイムドメイン方式の干渉光学系である。もちろん、Time-domain OCT(TD-OCT)に限らず、Spectral-domain OCT(SD-OCT)、Swept-source OCT(SS-OCT)等のフーリエドメイン方式の干渉光学系であってもよい。
(Axial length measurement optical system)
The axial length measuring optical system 310 measures, for example, the axial length of the subject's eye. The axial length measurement optical system 310 of this embodiment is, for example, a time domain type interference optical system. Of course, not only Time-domain OCT (TD-OCT), but also Fourier domain interference optical systems such as Spectral-domain OCT (SD-OCT) and Swept-source OCT (SS-OCT) may be used.
 眼軸長測定光学系310は、例えば、光源311(例えば、、SLD)と、コリメータレンズ312、ビームスプリッタ313と、第1三角プリズム(コーナーキューブ)314、第2三角プリズム315、偏光ビームスプリッタ316、1/4波長板317、集光レンズ318、受光素子319、駆動部320などを有する。 The axial length measurement optical system 310 includes, for example, a light source 311 (eg, SLD), a collimator lens 312, a beam splitter 313, a first triangular prism (corner cube) 314, a second triangular prism 315, and a polarizing beam splitter 316. , a quarter-wave plate 317, a condenser lens 318, a light-receiving element 319, a driving section 320, and the like.
 光源311は、例えば、低コヒーレント光を出射してもよい。コリメータレンズ312は、光源311から出射された光束を平行光束とする。ビームスプリッタ313は、光源311から出射された光を第1分割光と第2分割光に分割する。第1三角プリズム314は、ビームスプリッタ313の透過方向に配置される。第2三角プリズム315は、ビームスプリッタ313の反射方向に配置される。集光レンズ318は、被検眼からの測定光を受光素子に集光させる。受光素子319は、例えば、被検眼の眼底で反射された第1分割光と、第2分割光を合成して受光する。受光素子319から出力される受光信号に基づいて被検眼の眼軸長が測定される。 The light source 311 may emit low coherence light, for example. The collimator lens 312 converts the light flux emitted from the light source 311 into a parallel light flux. The beam splitter 313 splits the light emitted from the light source 311 into first split light and second split light. The first triangular prism 314 is arranged in the transmission direction of the beam splitter 313 . A second triangular prism 315 is arranged in the reflection direction of the beam splitter 313 . The condensing lens 318 condenses the measurement light from the subject's eye onto the light receiving element. The light receiving element 319 synthesizes and receives, for example, the first split light reflected by the fundus of the subject's eye and the second split light. The axial length of the subject's eye is measured based on the light receiving signal output from the light receiving element 319 .
 第1三角プリズム314は、光路長を変更させるための光路長変更部材として用いられ、駆動部320(例えば、モータ)の駆動によってビームスプリッタ313に対して光軸方向に直線的に移動される。第1三角プリズム314の駆動位置は、位置検出センサ(例えば、ポテンショメータ、エンコーダ、等)によって検出される。 The first triangular prism 314 is used as an optical path length changing member for changing the optical path length, and is linearly moved in the optical axis direction with respect to the beam splitter 313 by driving the driving section 320 (for example, motor). The drive position of the first triangular prism 314 is detected by a position detection sensor (eg, potentiometer, encoder, etc.).
 光源311から出射された光(直線偏光)は、コリメータレンズ312によってコリメートされた後、ビームスプリッタ313によって第1測定光(参照光)と第2測定光とに分割される。そして、第1測定光(第2分割光)は、第1三角プリズム314によって反射され、また第2測定光(第1分割光)は、第2三角プリズム315によって反射され、各々折り返された後、ビームスプリッタ313によって合成される。そして、合成された光は、偏光ビームスプリッタ316によって反射され、1/4波長板317によって円偏光に変換された後、対物レンズ302を介して少なくとも被検眼角膜と眼底に照射される。このとき、測定光束は、被検眼の角膜と眼底にて反射されると、1/2波長分位相が変換される。 The light (linearly polarized light) emitted from the light source 311 is collimated by the collimator lens 312 and then split by the beam splitter 313 into the first measurement light (reference light) and the second measurement light. Then, the first measurement light (second split light) is reflected by the first triangular prism 314, and the second measurement light (first split light) is reflected by the second triangular prism 315, and after being folded back , are combined by the beam splitter 313 . The combined light is reflected by the polarizing beam splitter 316 and converted into circularly polarized light by the quarter-wave plate 317 , and then irradiated at least to the cornea and fundus of the subject's eye through the objective lens 302 . At this time, when the measurement light flux is reflected by the cornea and the fundus of the eye to be examined, the phase is converted by 1/2 wavelength.
 角膜反射光及び眼底反射光は、対物レンズ302を介して、1/4波長板317によって直線偏光に変換される。その後、偏光ビームスプリッタ316を透過した反射光は、集光レンズ318によって集光された後、受光素子319によって受光される。 The cornea-reflected light and fundus-reflected light are converted into linearly polarized light by the quarter-wave plate 317 via the objective lens 302 . After that, the reflected light transmitted through the polarizing beam splitter 316 is condensed by the condensing lens 318 and then received by the light receiving element 319 .
 また、図4に示すように、第2測定光学系300は、ピストン202の下に設けられる。これによって、図5に示すようなタイムドメイン方式の眼軸長測定光学系310であっても、移動する第1三角プリズム314の駆動スペースを確保でき、単独の装置と同様に眼軸長を支障なく測定することができる。また、第2測定光学系300がピストン202の上に配置されるよりも下に配置された方が、第2測定部3bの光軸L21の高さを第1測定部3aの光軸L11に近づけることができる。したがって、上下のストロークをより小さくできる。 In addition, as shown in FIG. 4, the second measurement optical system 300 is provided under the piston 202. As a result, even with the time domain type axial length measurement optical system 310 as shown in FIG. 5, it is possible to secure a driving space for the moving first triangular prism 314, and the axial length can be disturbed in the same way as with a single device. can be measured without Further, when the second measuring optical system 300 is arranged below the piston 202, the height of the optical axis L21 of the second measuring unit 3b is aligned with the optical axis L11 of the first measuring unit 3a. can get closer. Therefore, the vertical stroke can be made smaller.
(第2固視標光学系)
 第2固視標光学系330は、被検眼Eに対して正面方向から固視標を呈示する。第2固視標光学系330は、例えば、可視の光源(固視灯)331、投影レンズ332、ダイクロイックミラー333を有し、被検眼Eを正面方向に固視させるための光を被検眼Eに投影する。光源331には、LED、レーザなどの光源が用いられる。また、光源331には、例えば、点光源、スリット光源、リング光源などのパターン光源の他、液晶ディスプレイなどの二次元表示器が用いられる。
(Second fixation target optical system)
The second fixation target optical system 330 presents the fixation target to the subject's eye E from the front direction. The second fixation target optical system 330 has, for example, a visible light source (fixation lamp) 331, a projection lens 332, and a dichroic mirror 333. project to A light source such as an LED or a laser is used for the light source 331 . For the light source 331, for example, a pattern light source such as a point light source, a slit light source, a ring light source, or a two-dimensional display such as a liquid crystal display is used.
 光源331から発せられた可視光は、投影レンズ332を通過し、ダイクロイックミラー333で反射され、対物レンズ302を通過した後、被検眼Eの眼底に投影される。これにより、被検眼Eは、正面方向の固視点を固視した状態となり、視線方向が固定される。なお、光源331から発せられた可視光は投影レンズ332及び対物レンズ302を通過することで、平行光束に変換される。 The visible light emitted from the light source 331 passes through the projection lens 332, is reflected by the dichroic mirror 333, passes through the objective lens 302, and is projected onto the fundus of the eye E to be examined. As a result, the subject's eye E is fixated on the fixation point in the front direction, and the line-of-sight direction is fixed. The visible light emitted from the light source 331 passes through the projection lens 332 and the objective lens 302 and is converted into a parallel light flux.
(第2観察光学系)
 第2観察光学系340は、被検眼の前眼部を撮像するために配置される。第2観察光学系340は、ダイクロイックミラー333およびビームスプリッタ341の反射方向に設けられる。ダイクロイックミラー333は、光源311から出射された光を透過し前眼部照明用の光源381から出射された赤外光を反射する特性を有する。第2観察光学系340は、撮像レンズ342、フィルタ343、撮像素子(CCDなど)344を備える。撮像レンズ342は、被検眼からの反射光を撮像素子344に集光させる。フィルタ343は、例えば、光源381及び光源391の光を透過し、後述する角膜変形検出用の光源351の光及び可視光に対して不透過の特性を持つ。撮像素子344は、被検眼からの反射光を受光する。撮像素子344は、取得した受光信号を制御部70に出力する。
(Second observation optical system)
The second observation optical system 340 is arranged to image the anterior segment of the subject's eye. A second observation optical system 340 is provided in the reflection direction of the dichroic mirror 333 and the beam splitter 341 . The dichroic mirror 333 has a characteristic of transmitting the light emitted from the light source 311 and reflecting the infrared light emitted from the light source 381 for illuminating the anterior segment. The second observation optical system 340 includes an imaging lens 342 , a filter 343 and an imaging device (such as a CCD) 344 . The imaging lens 342 converges the reflected light from the subject's eye onto the imaging device 344 . The filter 343 has characteristics of, for example, transmitting light from the light sources 381 and 391 and not transmitting light from a light source 351 for corneal deformation detection and visible light, which will be described later. The imaging device 344 receives reflected light from the subject's eye. The imaging element 344 outputs the acquired light receiving signal to the control section 70 .
 被検眼によって反射した光源381の照明光は、ノズル206を通り、対物レンズ302を透過し、ダイクロイックミラー333およびビームスプリッタ341によって反射され、撮像レンズ342、及びフィルタ343を介して撮像素子344に結像する。このように、眼軸長測定光学系310と、第2観察光学系340は、流体吐出部のノズル206と同軸となるため、眼軸長測定時の観察光学系と眼圧測定時の観察光学系を共通化することができる。これによって、個別に観察光学系を設けるよりも装置を小型化することができる。 The illumination light from the light source 381 reflected by the eye to be examined passes through the nozzle 206, passes through the objective lens 302, is reflected by the dichroic mirror 333 and the beam splitter 341, and is focused on the imaging device 344 via the imaging lens 342 and filter 343. image. In this way, since the axial length measurement optical system 310 and the second observation optical system 340 are coaxial with the nozzle 206 of the fluid ejection unit, the observation optical system for measuring the axial length and the observation optical system for measuring the intraocular pressure A common system can be used. As a result, the size of the apparatus can be reduced more than when an observation optical system is provided separately.
(第2指標光学系)
 第2指標光学系390は、被検眼に指標を投影する。第2指標光学系390は、例えば、光源391、投影レンズ392、ビームスプリッタ393を備える。光源391から投影レンズ392を介して投影された赤外光はビームスプリッタ393により反射され、被検眼に正面より投影される。光源391により角膜頂点に形成された角膜輝点は、第2観察光学系340の撮像素子344に結像し、上下左右方向のアライメント検出に利用される。
(Second index optical system)
A second target optical system 390 projects a target onto the eye to be inspected. The second index optical system 390 includes a light source 391, a projection lens 392, and a beam splitter 393, for example. Infrared light projected from a light source 391 through a projection lens 392 is reflected by a beam splitter 393 and projected onto the subject's eye from the front. A corneal bright spot formed at the corneal vertex by the light source 391 forms an image on the imaging device 344 of the second observation optical system 340 and is used for alignment detection in the vertical and horizontal directions.
(変形検出光学系)
 変形検出光学系350は、投光光学系350aと、受光光学系350bと、を含み、角膜Ecの変形状態を検出するために用いられる。
(Deformation detection optical system)
The deformation detection optical system 350 includes a light projection optical system 350a and a light reception optical system 350b, and is used to detect the deformation state of the cornea Ec.
 投光光学系350aは、投光光軸として光軸L23を有し、眼Eの角膜Ecに向けて斜め方向から照明光を照射する。投光光学系350aは、例えば、光源351、コリメータレンズ352、ビームスプリッタ353、を有する。受光光学系350bは光検出器357を有し、眼Eの角膜Ecでの照明光の反射光を受光する。受光光学系350bは、光軸L21に関して投光光学系350aと略対称的に配置されている。受光光学系350bは、例えば、レンズ354、ビームスプリッタ355、ピンホール板356、光検出器357、を有し、受光光軸として光軸L22を形成する。 The light projecting optical system 350a has an optical axis L23 as a light projecting optical axis, and irradiates the cornea Ec of the eye E with illumination light from an oblique direction. The projection optical system 350a has a light source 351, a collimator lens 352, and a beam splitter 353, for example. The light receiving optical system 350b has a photodetector 357 and receives the reflected light of the illumination light from the cornea Ec of the eye E. FIG. The light receiving optical system 350b is arranged substantially symmetrically with the light projecting optical system 350a with respect to the optical axis L21. The light receiving optical system 350b has, for example, a lens 354, a beam splitter 355, a pinhole plate 356, and a photodetector 357, and forms an optical axis L22 as a light receiving optical axis.
 光源351を出射した光(例えば、赤外光)はコリメータレンズ352により略平行光束とされ、ビームスプリッタ353で反射された後、後述する受光光学系370bの光軸L23と同軸(一致)となり、被検眼の角膜Ecに投光される。角膜Ecで反射した光は後述する投光光学系370aの光軸L22と同軸(一致)となり、レンズ354を通過した後、ビームスプリッタ355で反射し、ピンホール板356を通過して光検出器357に受光される。レンズ354には、光源381及び光源391の光に対して不透過の特性を持つコーティングが施される。また、変形検出光学系350は、被検眼が所定の変形状態(例えば、圧平状態)のときに光検出器357の受光量が最大になるように配置されている。 Light (for example, infrared light) emitted from the light source 351 is collimated by the collimator lens 352 and reflected by the beam splitter 353. After being reflected by the beam splitter 353, it becomes coaxial (matches) with the optical axis L23 of the light receiving optical system 370b, which will be described later. The light is projected onto the cornea Ec of the eye to be examined. The light reflected by the cornea Ec becomes coaxial (matches) with the optical axis L22 of the projection optical system 370a, which will be described later. Received at 357 . The lens 354 is coated with a coating that is opaque to the light from the light sources 381 and 391 . The deformation detection optical system 350 is arranged so that the amount of light received by the photodetector 357 is maximized when the subject's eye is in a predetermined deformation state (for example, an applanation state).
 また、この変形検出光学系350は第1作動距離検出系360bの一部を兼ねており、第1作動距離検出系の投光光学系は、変形検出光学系350の投光光学系350aを兼用する。光源351による角膜Ecでの反射光を受光する第1作動距離検出系360bは、例えば、投光光学系350aのレンズ354、ビームスプリッタ358、集光レンズ359、位置検出素子360を有し、受光光軸として光軸L22を形成する。 The deformation detection optical system 350 also serves as a part of the first working distance detection system 360b, and the projection optical system of the first working distance detection system also serves as the projection optical system 350a of the deformation detection optical system 350. do. The first working distance detection system 360b for receiving the light reflected by the cornea Ec from the light source 351 has, for example, the lens 354 of the projection optical system 350a, the beam splitter 358, the condenser lens 359, and the position detection element 360. An optical axis L22 is formed as an optical axis.
 光源351より投光され、角膜Ecで反射した照明光は光源351の虚像である指標像を形成する。その指標像の光は、レンズ354、ビームスプリッタ355を通過してビームスプリッタ358で反射され、集光レンズ359を通過してPSDやラインセンサ等の一次元または二次元の位置検出素子360に入射する。位置検出素子360は、被検眼E(角膜Ec)が作動距離方向(Z方向)に移動すると、光源351による指標像も位置検出素子360上を移動するため、制御部70は位置検出素子360からの出力信号に基づいて作動距離情報を得る。なお、本実施例の位置検出素子360からの出力信号は、作動距離方向(Z方向)のアライメント(粗調整)に利用される。第1作動距離検出系360bは後述する受光光学系370bほど倍率が大きくない。そのため、位置検出素子360のZ方向の距離検出範囲は受光素子377より広くなる。 Illumination light projected from the light source 351 and reflected by the cornea Ec forms a target image, which is a virtual image of the light source 351 . The light of the target image passes through a lens 354 and a beam splitter 355, is reflected by a beam splitter 358, passes through a condenser lens 359, and enters a one-dimensional or two-dimensional position detection element 360 such as a PSD or line sensor. do. When the eye E (cornea Ec) moves in the working distance direction (Z direction), the position detection element 360 moves the target image from the light source 351 on the position detection element 360 . Working distance information is obtained based on the output signal of . The output signal from the position detection element 360 of this embodiment is used for alignment (coarse adjustment) in the working distance direction (Z direction). The magnification of the first working distance detection system 360b is not as large as that of the light receiving optical system 370b, which will be described later. Therefore, the distance detection range in the Z direction of the position detection element 360 is wider than that of the light receiving element 377 .
(角膜厚測定光学系)
 角膜厚測定光学系370は、投光光学系370aと、受光光学系370bと、を含み、被検眼Eの角膜厚を測定するために用いられる。また、投光光学系370aは、変形検出光学系350及び第1作動距離検出系360bの一部が兼用される。
(corneal thickness measurement optical system)
The corneal thickness measuring optical system 370 includes a light projecting optical system 370a and a light receiving optical system 370b, and is used to measure the corneal thickness of the eye E to be examined. The projection optical system 370a also serves as part of the deformation detection optical system 350 and the first working distance detection system 360b.
 投光光学系370aは、投光光軸として光軸L22を有し、被検眼Eの角膜Ecに向けて斜め方向から照明光(測定光)を照射する。投光光学系370aは、例えば、光源371、集光レンズ372、光制限部材373、凹レンズ374、変形検出光学系と兼用されるレンズ354、を有する。光源371には、可視光源若しくは赤外光源(近赤外を含む)が用いられ、例えば、LED、レーザなどの光源が用いられる。集光レンズ372は、光源371から出射された光を集光する。 The light projecting optical system 370a has an optical axis L22 as a light projecting optical axis, and irradiates the cornea Ec of the eye E to be examined with illumination light (measurement light) from an oblique direction. The projection optical system 370a has, for example, a light source 371, a condenser lens 372, a light limiting member 373, a concave lens 374, and a lens 354 that also serves as a deformation detection optical system. A visible light source or an infrared light source (including near-infrared) is used for the light source 371, and for example, a light source such as an LED or a laser is used. The condenser lens 372 collects the light emitted from the light source 371 .
 光制限部材373は、投光光学系370aの光路に配置され、光源371から出射された光を制限する。光制限部材373は、角膜Ecに対して略共役な位置に配置される。光制限部材373としては、例えば、ピンホール板、スリット板などが用いられる。光制限部材373は、光源371から出射された一部の光を通過させ、他の光を遮断するアパーチャーとして用いられる。そして、投光光学系370aは、被検眼Eの角膜上において所定のパターン光束(例えば、スポット光束、スリット光束)を形成する。 The light limiting member 373 is arranged on the optical path of the light projection optical system 370 a and limits the light emitted from the light source 371 . The light restricting member 373 is arranged at a substantially conjugate position with respect to the cornea Ec. As the light restricting member 373, for example, a pinhole plate, a slit plate, or the like is used. The light restricting member 373 is used as an aperture that allows part of the light emitted from the light source 371 to pass therethrough and blocks other light. Then, the projection optical system 370a forms a predetermined pattern light flux (for example, a spot light flux, a slit light flux) on the cornea of the eye E to be examined.
 受光光学系370bは、受光素子377を有し、被検眼Eの角膜表面及び裏面での照明光の反射光を受光する。受光光学系370bは、光軸L21に関して投光光学系370aと略対称に配置されている。受光光学系370bは、例えば、受光レンズ375、凹レンズ376、受光素子377、を有し、受光光軸として光軸L23を形成する。なお、図5の受光光学系370bは、被検眼Eに対するZ方向のアライメント状態を検出する第2作動距離検出系を兼用する。 The light-receiving optical system 370b has a light-receiving element 377, and receives the reflected light of the illumination light from the corneal surface and back surface of the eye E to be examined. The light receiving optical system 370b is arranged substantially symmetrically with the light projecting optical system 370a with respect to the optical axis L21. The light-receiving optical system 370b has, for example, a light-receiving lens 375, a concave lens 376, and a light-receiving element 377, and forms an optical axis L23 as a light-receiving optical axis. The light-receiving optical system 370b in FIG. 5 also serves as a second working distance detection system for detecting the alignment state of the eye E in the Z direction.
 受光素子377は、複数の光電変換素子を有し、角膜表面及び裏面からの反射光をそれぞれ受光する。受光素子377には、例えば、一次元ラインセンサ、二次元エリアセンサなどの光検出デバイスが用いられる。角膜厚測定光学系及び第2作動距離検出系の受光光学系370bは倍率を大きくして観察を行う。そのため、受光素子377のZ方向の距離検出範囲は位置検出素子360より狭くなる。 The light receiving element 377 has a plurality of photoelectric conversion elements and receives reflected light from the front and back surfaces of the cornea. A photodetection device such as a one-dimensional line sensor, a two-dimensional area sensor, or the like is used for the light receiving element 377, for example. The corneal thickness measurement optical system and the light receiving optical system 370b of the second working distance detection system increase the magnification for observation. Therefore, the distance detection range in the Z direction of the light receiving element 377 is narrower than that of the position detection element 360 .
 被検眼E(角膜Ec)が作動距離方向(Z方向)に移動すると、角膜Ecでの光源371の反射光も受光素子377上を移動するため、制御部70は、第2作動距離検出系の受光素子377からの出力信号に基づいて作動距離情報を得る。 When the subject's eye E (cornea Ec) moves in the working distance direction (Z direction), the reflected light from the light source 371 on the cornea Ec also moves on the light receiving element 377. Working distance information is obtained based on the output signal from the light receiving element 377 .
 光源371から出射された光は、集光レンズ372によって集光され、光制限部材373を背後から照明する。そして、光源371からの光は、光制限部材373によって制限された後、レンズ354によって角膜Ec付近で結像(集光)される。角膜Ec付近において、例えば、ピンホール像(ピンホール板を使用の場合)、スリット像(スリット板を使用の場合)が結像される。このとき、光源371からの光は、角膜Ec上における視軸との交差部分の近傍で結像される。 The light emitted from the light source 371 is condensed by the condensing lens 372 and illuminates the light restricting member 373 from behind. The light from the light source 371 is imaged (focused) near the cornea Ec by the lens 354 after being restricted by the light restricting member 373 . For example, a pinhole image (when using a pinhole plate) and a slit image (when using a slit plate) are formed near the cornea Ec. At this time, the light from the light source 371 forms an image near the intersection with the visual axis on the cornea Ec.
 投光光学系370aによって角膜Ecに照明光が投光されると、角膜Ecでの照明光の反射光は、光軸L21に関して投光光束とは対称な方向に進行する。そして、反射光は、受光レンズ375によって受光素子377上の受光面上で結像される。 When the illumination light is projected onto the cornea Ec by the projection optical system 370a, the reflected light of the illumination light from the cornea Ec travels in a direction symmetrical to the projected light flux with respect to the optical axis L21. The reflected light is imaged on the light receiving surface of the light receiving element 377 by the light receiving lens 375 .
[制御動作]
 以上のような眼科装置1において、測定時の制御動作を図6のフローチャートに基づいて説明する。
[Control action]
In the ophthalmologic apparatus 1 as described above, the control operation during measurement will be described based on the flowchart of FIG.
(S1:第1アライメント)
 まず、制御部70は、眼屈折力を測定するために、被検眼Eに対する第1測定部3aのアライメントを行う。例えば、制御部70は、第1固視標光学系130によって被検眼Eに固視標を呈示した状態において、第1観察光学系150を介して取得される前眼部の観察画像に基づいて、被検眼Eと第1測定部3aとを、所定の位置関係へと調整する。より詳細には、制御部70は、被検眼Eの角膜頂点に光軸L11が一致するように、XY方向に関するアライメントを行う。また、制御部70は、被検眼Eと第1測定部3aとの間隔が所定の作動距離となるように、Z方向に関するアライメントを行う。このとき、制御部70は、角膜にアライメント指標を投影し、観察画像にて検出されるアライメント指標に基づいて、アライメントを調整する。
(S1: first alignment)
First, the control unit 70 aligns the first measurement unit 3a with respect to the eye E to be examined in order to measure the refractive power of the eye. For example, in a state where the first fixation target optical system 130 presents the fixation target to the subject's eye E, the control unit 70 can perform , the eye to be examined E and the first measuring unit 3a are adjusted to a predetermined positional relationship. More specifically, the controller 70 performs alignment in the XY directions such that the optical axis L11 coincides with the corneal vertex of the eye E to be examined. Further, the control unit 70 performs alignment in the Z direction so that the distance between the subject's eye E and the first measuring unit 3a is a predetermined working distance. At this time, the control unit 70 projects an alignment index onto the cornea and adjusts the alignment based on the alignment index detected in the observed image.
(S2:角膜形状測定)
 次に、被検眼Eの角膜形状が測定される。制御部70は、第1指標光学系160から点像指標を投影し、点像指標の角膜プルキンエ像を、第1観察光学系150によって撮影する。また、制御部70は、角膜プルキンエ像に基づいて、角膜形状情報を取得する。例えば、角膜プルキンエ像の像高に基づいて、角膜形状情報を導出する。本実施例では、角膜形状情報として、角膜曲率、乱視度数、及び乱視軸角度、の各値が少なくとも取得される。
(S2: Corneal shape measurement)
Next, the corneal shape of the subject's eye E is measured. The control unit 70 projects a point image index from the first index optical system 160 and captures a corneal Purkinje image of the point image index using the first observation optical system 150 . The control unit 70 also acquires corneal shape information based on the corneal Purkinje image. For example, the corneal shape information is derived based on the image height of the corneal Purkinje image. In this embodiment, at least each value of the corneal curvature, the astigmatic power, and the astigmatic axis angle is acquired as the corneal shape information.
(S3:眼屈折力測定)
 次に、被検眼Eの眼屈折力が測定される。例えば、眼屈折力の測定では、先に予備測定が実施され、後に本測定が実施されてもよい。予備測定では、固視標が所定の呈示距離に配置された状態で、被検眼Eの眼屈折力が測定される。測定時において、被検眼Eに対して光学的に十分な遠方の距離であり、0D眼の遠点に相当する初期位置に、固視標板132が配置されてもよい。この状態で照射された測定光に基づいて撮像素子124により撮像されるリング像が、制御部70によって画像解析される。解析結果として、各経線方向の屈折力の値が求められる。各経線方向の屈折力に所定の処理を施すことによって、少なくとも、予備測定における球面度数を取得する。
(S3: eye refractive power measurement)
Next, the ocular refractive power of the subject's eye E is measured. For example, in eye refractive power measurement, preliminary measurement may be performed first, and main measurement may be performed later. In the preliminary measurement, the ocular refractive power of the subject's eye E is measured with the fixation target placed at a predetermined presentation distance. At the time of measurement, the fixation target plate 132 may be placed at an initial position that is optically sufficiently far away from the subject's eye E and that corresponds to the far point of the 0D eye. A ring image captured by the imaging device 124 based on the measurement light irradiated in this state is image-analyzed by the control unit 70 . As an analysis result, the refractive power value in each meridian direction is obtained. At least the spherical power in the preliminary measurement is obtained by subjecting the refractive power in each meridional direction to a predetermined process.
 続いて、制御部70は、被検眼Eの予備測定の球面度数に応じて、被検眼Eの焦点が合う雲霧開始位置に、固視標板132を移動させる。これによって、被検眼Eには固視標がはっきりと観察されるようになる。その後、制御部70は、雲霧開始位置から固視標を移動させることで、被検眼Eに対して雲霧を付加する。これによって、被検眼Eの調節を解除させる。 Subsequently, the control unit 70 moves the fixation target plate 132 to the fog start position where the subject's eye E is focused, according to the pre-measured spherical power of the subject's eye. As a result, the eye E to be examined can clearly observe the fixation target. Thereafter, the control unit 70 adds fog to the subject's eye E by moving the fixation target from the fog start position. This cancels the adjustment of the eye E to be examined.
 被検眼Eに雲霧を付加した状態で、本測定が行われる。雲霧が付加された被検眼Eについて撮像されたリング像に対し、所定の解析処理が行われることで、被検眼EのSPSH:球面度数、CYL:柱面度数、AXIS:乱視軸角度の他覚値が取得される。 The main measurement is performed with fog added to the subject's eye E. By performing a predetermined analysis process on the ring image captured for the subject's eye E to which fog is added, SPSH of the subject's eye E: spherical power, CYL: cylindrical power, AXIS: astigmatism axis angle objective value is retrieved.
(S4:第2アライメント)
 制御部70は、第1測定部3aの測定が完了すると、第2測定部3bのアライメントを行う。例えば、制御部70は、第1測定部3aの測定完了位置から、駆動部5によって測定部3を下方向に移動させ、第2測定部3bの光軸L21が被検眼の高さに合うように調整する。そして、制御部70は、光源331、光源381、光源391を点灯させ、被検者を固視させた状態で、第2観察光学系340によって得られた観察画像に基づいて、被検眼に対する第2測定部3bのXYアライメントを行う。また、制御部70は、光源351、光源371を点灯させ、位置検出素子360、受光素子377の受光結果からZアライメントを行う。
(S4: second alignment)
When the measurement by the first measurement unit 3a is completed, the control unit 70 aligns the second measurement unit 3b. For example, the control unit 70 causes the driving unit 5 to move the measuring unit 3 downward from the measurement completion position of the first measuring unit 3a so that the optical axis L21 of the second measuring unit 3b is aligned with the height of the eye to be examined. adjust to Then, the control unit 70 turns on the light sources 331, 381, and 391 to turn on the light source 331, the light source 381, and the light source 391, and based on the observation image obtained by the second observation optical system 340 in a state in which the subject is fixated, performs the first observation of the subject's eye. 2 Perform XY alignment of the measuring section 3b. Further, the control unit 70 turns on the light sources 351 and 371 and performs Z alignment based on the light receiving results of the position detection element 360 and the light receiving element 377 .
(S5:眼軸長測定)
 制御部70は、光源311を点灯し、測定光を被検眼に照射する。測定光は被検眼によって反射し、受光素子319に入射する。また、制御部70は、駆動部320を制御し、第1三角プリズム314を往復移動させる。そして、制御部70は、受光素子319によって干渉光が検出されたタイミングを元に、眼軸長を算出する。
(S5: Axial length measurement)
The control unit 70 turns on the light source 311 to irradiate the subject's eye with measurement light. The measurement light is reflected by the subject's eye and enters the light receiving element 319 . Further, the control section 70 controls the driving section 320 to reciprocate the first triangular prism 314 . Then, the control unit 70 calculates the eye axial length based on the timing at which the light receiving element 319 detects the interference light.
 上記のように受光素子319から干渉信号が出力されるときの第1三角プリズム314の移動位置は、被検眼の眼軸長に応じて異なる。そして、干渉信号が出力されたときの第1三角プリズム314の移動位置は、図示無き位置検出センサから出力される信号に基づいて検出可能である。したがって、眼軸長値は、例えば、所定の演算式又はテーブル表等を用いて第1三角プリズム314の移動位置と被検眼の眼軸長との関係を予め求めておくことにより算出できる。なお、上記構成に限るものではなく、第1三角プリズム314の移動中において干渉信号が検出された時間に基づいて眼寸法を測定するようにしてもよい。 The movement position of the first triangular prism 314 when the interference signal is output from the light receiving element 319 as described above differs according to the axial length of the subject's eye. The movement position of the first triangular prism 314 when the interference signal is output can be detected based on a signal output from a position detection sensor (not shown). Therefore, the axial length value can be calculated by obtaining in advance the relationship between the moving position of the first triangular prism 314 and the axial length of the subject's eye using a predetermined arithmetic expression, table, or the like. The configuration is not limited to that described above, and the eye size may be measured based on the time at which the interference signal is detected while the first triangular prism 314 is moving.
(S6:作動距離調整)
 制御部70は、眼軸長測定時の作動距離から眼圧測定時の作動距離に切り換える。つまり、制御部70は、眼軸長測定光学系310の作動距離にアライメントされた状態から眼圧測定光学系(変形検出光学系350、角膜厚測定光学系370など)の作動距離にアライメントされた状態とする。例えば、本実施例では、眼軸長測定時における作動距離は、眼圧測定時の作動距離よりも長く設定される。したがって、制御部70は、眼軸長測定が終了すると、駆動部5によって第2測定部3bを前方(被検眼に近づく方向)に移動させる。これによって、眼軸長測定時は、眼圧測定時に比べて被検眼と装置との距離を十分確保して測定を行うことができ、被検者が圧迫感、恐怖感を感じることを抑制できる。眼軸長測定光学系310は平行光で被検眼に照射される光学系であるため、装置と被検眼との距離関係は任意に設定できる。
(S6: working distance adjustment)
The control unit 70 switches the working distance for measuring the axial length to the working distance for measuring the intraocular pressure. That is, the control unit 70 is aligned from the working distance of the axial length measuring optical system 310 to the working distance of the intraocular pressure measuring optical system (the deformation detecting optical system 350, the corneal thickness measuring optical system 370, etc.). state. For example, in this embodiment, the working distance when measuring the axial length is set longer than the working distance when measuring the intraocular pressure. Therefore, when the axial length measurement is completed, the control unit 70 causes the driving unit 5 to move the second measuring unit 3b forward (toward the subject's eye). As a result, when measuring the axial length of the eye, it is possible to secure a sufficient distance between the eye to be examined and the device compared to when measuring the intraocular pressure, and it is possible to prevent the subject from feeling oppressive or fearful. . Since the axial length measurement optical system 310 is an optical system that irradiates the eye to be inspected with parallel light, the distance relationship between the apparatus and the eye to be inspected can be set arbitrarily.
 なお、眼軸長測定と眼圧測定とで作動距離が異なっても被検眼にピントが合わせられるように、第2固視標光学系330と第2観察光学系340にフォーカスを調整可能なフォーカスレンズを設けてもよい。これによって、任意の作動距離でも安定してアライメントを合わせることができる。 Note that the second fixation target optical system 330 and the second observation optical system 340 can be adjusted in focus so that the subject's eye can be focused even if the working distance differs between the axial length measurement and the intraocular pressure measurement. A lens may be provided. This enables stable alignment even at an arbitrary working distance.
(S7:眼圧測定)
 制御部70は、被検眼の眼圧を測定する。例えば、制御部70は、ソレノイド203を駆動させる。ソレノイド203の駆動によりピストン202が移動されると、シリンダ201内の空気が圧縮され、圧縮空気がノズル206から角膜Ecに向けて吹き付けられる。角膜Ecは、圧縮空気の吹き付けにより徐々に変形し、扁平状態に達したときに光検出器357に最大光量が入射される。制御部70は、圧力センサ210からの出力信号と光検出器357からの出力信号とに基づき眼圧値を求める。
(S7: intraocular pressure measurement)
The control unit 70 measures the intraocular pressure of the subject's eye. For example, the controller 70 drives the solenoid 203 . When the solenoid 203 is driven to move the piston 202, the air in the cylinder 201 is compressed and the compressed air is blown from the nozzle 206 toward the cornea Ec. The cornea Ec is gradually deformed by the blowing of compressed air, and the maximum amount of light is incident on the photodetector 357 when the cornea Ec reaches a flattened state. The controller 70 obtains the intraocular pressure value based on the output signal from the pressure sensor 210 and the output signal from the photodetector 357 .
(S8:測定結果出力)
 制御部70は、測定結果を表示部75などに表示させる。例えば、制御部70は、被検眼Eの角膜形状情報、眼屈折力(SPH、CYL、AXIS)、眼軸長、眼圧などを表示部75に表示させる。なお、被検眼Eに対する過去の測定結果が存在する場合、過去の測定結果と共に、今回の測定結果が表示されてもよい。例えば、横軸を年齢(測定日)とし、縦軸を眼屈折力、眼軸長、眼圧としたトレンドグラフによって、測定結果が表示されてもよい。
(S8: Measurement result output)
The control unit 70 causes the display unit 75 or the like to display the measurement result. For example, the control unit 70 causes the display unit 75 to display corneal shape information, eye refractive power (SPH, CYL, AXIS), axial length, intraocular pressure, etc. of the eye E to be examined. In addition, when there is a past measurement result for the subject's eye E, the current measurement result may be displayed together with the past measurement result. For example, the measurement results may be displayed as a trend graph in which the horizontal axis is age (measurement date) and the vertical axis is eye refractive power, eye axial length, and intraocular pressure.
 以上のように、本実施例の眼科装置1は、眼屈折力と眼圧と眼軸長を1つの装置で測定することができるため、検者および被検者の移動または操作の手間が減り、効率的な検査を行うことができる。 As described above, the ophthalmologic apparatus 1 of the present embodiment can measure the eye refractive power, the intraocular pressure, and the axial length of the eye with a single apparatus. , efficient inspection can be performed.
 また、眼軸長測定光学系310を眼圧測定光学系(変形検出光学系350など)と同じ第2測定部3bに設けることで、第2測定部3bのスペースを有効活用できるとともに、第2観察光学系340を共有化することでさらなる省スペース化を実現できる。 In addition, by providing the axial length measurement optical system 310 in the same second measurement unit 3b as the intraocular pressure measurement optical system (deformation detection optical system 350, etc.), the space of the second measurement unit 3b can be effectively used and the second measurement unit 3b can be used. Further space saving can be achieved by sharing the observation optical system 340 .
 また、上記のような構造であれば、各測定部が独立に機能するため、眼軸長測定光学系310を取り外せば屈折力測定と眼圧測定が可能な複合装置、ピストン202とノズル206を取り外せば屈折力測定と眼軸長測定が可能な複合装置、第1測定部3aを取り外せば眼圧測定と眼軸長測定が可能な複合装置となり、検者に合わせた組み合わせを容易に実現できる。 In addition, with the above structure, each measurement unit functions independently, so if the axial length measurement optical system 310 is removed, the composite device capable of measuring the refractive power and the intraocular pressure, the piston 202 and the nozzle 206 can be used. It becomes a combined device capable of measuring refractive power and axial length by detaching it, and becomes a combined device capable of measuring intraocular pressure and axial length by removing the first measuring unit 3a. .
<変容例>
 なお、以上の実施例において、眼軸長測定光学系は干渉光学系を備えることで眼軸長を測定したが、これに限らない。例えば、シャインプルーフカメラなどによって前眼部断面画像を取得し、断層画像から検出した角膜前面、角膜後面、水晶体前面、水晶体後面のそれぞれの位置と曲率を求め、眼屈折力測定部によって得られた被検眼全体の眼屈折力との関係から眼軸長を算出するものであってもよい。
<transformation example>
In the above examples, the axial length measurement optical system is provided with an interference optical system to measure the axial length, but the present invention is not limited to this. For example, a cross-sectional image of the anterior segment of the eye is acquired using a Scheimpflug camera or the like, and the positions and curvatures of the anterior corneal surface, posterior corneal surface, anterior lens surface, and posterior lens surface detected from the tomographic image are obtained. The axial length may be calculated from the relationship with the refractive power of the eye to be examined as a whole.
<第2実施例>
 以下、第2実施例の眼科装置1aについて説明する。第2実施例の眼科装置1aは、第1実施例の干渉光学系(眼軸長測定光学系310)の代わりにシャインプルーフカメラ(断面撮影光学系400)と眼屈折力測定部(第1測定光学系100)によって眼軸長を測定する。第2実施例の眼科装置1aは、第1実施例と同様に第1測定部3aと第2測定部3bを備える。第2実施例の第1測定部3aは、眼屈折力を測定する第1測定光学系100と、前眼部断面画像を取得する断面撮影光学系400などを備える。第1測定光学系100と断面撮影光学系400は、対物レンズ等の一部の光学系を共有する。第2実施例の第2測定部3bは、第1実施例の第2測定部3bの眼軸長測定光学系310および角膜厚測定光学系370等を取り除いたものであり、その他の構成は同様であるため説明を省略する。
<Second embodiment>
The ophthalmologic apparatus 1a of the second embodiment will be described below. The ophthalmologic apparatus 1a of the second embodiment includes a Scheimpflug camera (sectional imaging optical system 400) and an eye refractive power measuring unit (first measurement The axial length of the eye is measured by the optical system 100). The ophthalmologic apparatus 1a of the second embodiment includes a first measuring section 3a and a second measuring section 3b, like the first embodiment. The first measuring unit 3a of the second embodiment includes a first measuring optical system 100 for measuring eye refractive power, a cross-sectional imaging optical system 400 for acquiring an anterior segment cross-sectional image, and the like. The first measurement optical system 100 and the cross-sectional imaging optical system 400 share a part of the optical system such as the objective lens. The second measuring section 3b of the second embodiment is similar to the second measuring section 3b of the first embodiment except that the axial length measuring optical system 310 and the corneal thickness measuring optical system 370 are removed. Therefore, the description is omitted.
 図7は、眼科装置1aの第1測定部3aの光学系を示す概略図である。一例として、眼科装置1aは、第1測定光学系100、第1固視標呈示光学系130、第1観察光学系150、第1指標光学系160、断面撮影光学系400を備える。また、各光学系の光路を分岐及び結合するハーフミラー116,117、ダイクロイックミラー503、対物レンズ118、等を有する。なお、断面撮影光学系400以外の構成は第1実施例と同様であるため説明を省略する。 FIG. 7 is a schematic diagram showing the optical system of the first measuring section 3a of the ophthalmologic apparatus 1a. As an example, the ophthalmologic apparatus 1 a includes a first measurement optical system 100 , a first fixation target presentation optical system 130 , a first observation optical system 150 , a first target optical system 160 and a cross-section imaging optical system 400 . It also has half mirrors 116 and 117, a dichroic mirror 503, an objective lens 118, etc. for branching and coupling the optical paths of the respective optical systems. Since the configuration other than the cross-sectional imaging optical system 400 is the same as that of the first embodiment, description thereof is omitted.
(断面撮影光学系)
 断面撮影光学系400は、前眼部の断面画像を撮影するために利用される。断面撮影光学系400は、照射光学系400aと受光光学系400bと、を備える。
(cross-section imaging optical system)
The cross-sectional imaging optical system 400 is used to capture a cross-sectional image of the anterior segment. The cross-section imaging optical system 400 includes an irradiation optical system 400a and a light receiving optical system 400b.
 照射光学系400aは、第1測定光学系100における測定光の投光光軸(光軸L11)と同軸であり、前眼部に対してスリット光(照明光)を照射する。照射光学系400aは、光源411及びスリット412等を有する。光源411は、SLD光源であってもよいし、LED光源であってもよいし、その他の光源であってもよい。本実施例では、照明光として赤色可視光又は近赤外光が利用される。例えば、650nm~800nmの間にピーク波長をもつ赤色可視光又は近赤外光が利用されてもよい。一例としては、730nmをピーク波長とする赤色可視光が利用されてもよい。もちろん、所定の波長をピーク波長とする近赤外光が利用されてもよい。スリット412は、瞳共役位置に配置されてもよい。 The irradiation optical system 400a is coaxial with the projection optical axis (optical axis L11) of the measurement light in the first measurement optical system 100, and irradiates the anterior segment with slit light (illumination light). The irradiation optical system 400a has a light source 411, a slit 412, and the like. The light source 411 may be an SLD light source, an LED light source, or other light sources. In this embodiment, red visible light or near-infrared light is used as illumination light. For example, red visible light or near-infrared light with peak wavelengths between 650 nm and 800 nm may be utilized. As an example, red visible light with a peak wavelength of 730 nm may be used. Of course, near-infrared light with a predetermined wavelength as a peak wavelength may also be used. The slit 412 may be placed at a pupil conjugate position.
 本実施例では、前眼部におけるスリット光の通過断面を「切断面」と称する。切断面は、断面撮影光学系の物面となる。図7において、スリット412の開口は、水平方向(紙面奥行き方向)を長手方向とする。よって、本実施例では、光軸L1を含む水平面(XZ断面)が切断面として設定される。本実施例では、少なくとも、角膜前面から水晶体後面までの間に切断面が形成される。 In this embodiment, the passage cross section of the slit light in the anterior segment is referred to as a "cut plane". The cut plane becomes the object plane of the cross-section imaging optical system. In FIG. 7, the opening of the slit 412 has a horizontal direction (the depth direction of the paper surface) as its longitudinal direction. Therefore, in this embodiment, the horizontal plane (XZ section) including the optical axis L1 is set as the cutting plane. In this embodiment, a cut surface is formed at least between the anterior corneal surface and the posterior surface of the lens.
 照射光学系400aは、第1固視標光学系130の光軸L12に配置されたダイクロイックミラー503の反射方向に配置される。このとき、照射光学系400aを第1測定光学系100の下側へ配置することで、眼科装置1aの高さまたは幅の増加を抑制できる。もちろん、高さまたは幅に余裕がある場合は、どの方向に照射光学系400aを配置してもよい。 The irradiation optical system 400 a is arranged in the reflection direction of the dichroic mirror 503 arranged on the optical axis L 12 of the first fixation target optical system 130 . At this time, by arranging the irradiation optical system 400a below the first measurement optical system 100, an increase in the height or width of the ophthalmologic apparatus 1a can be suppressed. Of course, the irradiation optical system 400a may be arranged in any direction if there is a margin in height or width.
 受光光学系400bは、レンズ系422及び撮像素子421等を有する。受光光学系400bにおいて、レンズ系422及び撮像素子421は、前眼部に設定される切断面とシャインプルーフの関係に配置される。すなわち、切断面とレンズ系422の主平面と、撮像素子421の撮像面と、の各延長面が、1本の交線(一軸)で交わるような光学配置となっている。撮像素子421からの信号に基づいて、前眼部の断面画像が取得される。 The light receiving optical system 400b has a lens system 422, an imaging device 421, and the like. In the light-receiving optical system 400b, the lens system 422 and the imaging device 421 are arranged in a Scheimpflug relationship with the cutting plane set in the anterior segment. That is, the optical arrangement is such that the extension planes of the cut plane, the principal plane of the lens system 422, and the imaging surface of the imaging element 421 intersect at one line of intersection (one axis). A cross-sectional image of the anterior segment is acquired based on the signal from the imaging element 421 .
 なお、本実施例の受光光学系400bは、被検眼Eの斜め下側に配置される。この場合、受光光学系400bは外乱の影響を受け易くなるが、第1測定部3aの上側に第2測定部3bがあるため、第2測定部3bの配置によって外乱光の影響を抑制できる可能性がある。また本実施例の場合、第1指標光学系160との干渉を避けるため、受光光学系300bを下側に配置しているが、他の測定系との干渉が無ければ、どこに配置してもよい。 Note that the light receiving optical system 400b of this embodiment is arranged obliquely below the eye E to be examined. In this case, the light-receiving optical system 400b is easily affected by disturbance, but since the second measurement section 3b is located above the first measurement section 3a, the influence of disturbance light can be suppressed by arranging the second measurement section 3b. have a nature. In the case of this embodiment, the light receiving optical system 300b is arranged on the lower side in order to avoid interference with the first target optical system 160. good.
 このような断面撮影光学系400において、光源411からの照明光束は、光軸L15上のスリット412を介してスリット光束となり、レンズ413を通過した後、ダイクロイックミラー503に反射されることで、光軸L12と同軸となる。また、レンズ504を通過し、ハーフミラー502を透過し、ハーフミラー501に反射されることで、光軸L1と同軸となる。照明光束は、更に対物レンズ505を介すことで、前眼部に到達する。前眼部に形成された切断面からの戻り光は、レンズ322を介して撮像素子321に到達する。 In the cross-sectional imaging optical system 400, the illumination light flux from the light source 411 passes through the slit 412 on the optical axis L15 and becomes a slit light flux. It is coaxial with the axis L12. Further, the light passes through the lens 504, passes through the half mirror 502, and is reflected by the half mirror 501, so that the light becomes coaxial with the optical axis L1. The illumination luminous flux further passes through the objective lens 505 and reaches the anterior segment of the eye. Return light from the cut surface formed in the anterior segment reaches the imaging device 321 via the lens 322 .
 <制御動作>
 眼科装置1aの制御動作を、図8に示すフローチャートを参照しつつ説明する。本実施例では、眼科装置1aによって、角膜曲率測定、眼屈折力測定、及び、前眼部断面画像の撮影、が順番に実行され、測定及び撮影の結果に基づいて、眼軸長が取得される。その後、眼圧測定が実行される。
<Control operation>
The control operation of the ophthalmologic apparatus 1a will be described with reference to the flowchart shown in FIG. In this embodiment, the ophthalmologic apparatus 1a sequentially performs corneal curvature measurement, eye refractive power measurement, and photographing of an anterior segment cross-sectional image, and the axial length is obtained based on the results of the measurements and photographing. be. A tonometry is then performed.
(S201:第1アライメント)
 まず、被検眼Eに対する第1測定部3aのアライメントが行われる。アライメント方法は第1実施例と同様である。
(S201: first alignment)
First, alignment of the first measurement unit 3a with respect to the eye E to be examined is performed. The alignment method is the same as in the first embodiment.
(S202:角膜形状測定)
 次に、被検眼Eの角膜形状が測定される。測定方法は第1実施例と同様である。
(S202: Corneal shape measurement)
Next, the corneal shape of the subject's eye E is measured. The measuring method is the same as in the first embodiment.
(S203:眼屈折力測定)
 次に、被検眼Eの眼屈折力が測定される。測定方法は第1実施例と同様である。
(S203: eye refractive power measurement)
Next, the ocular refractive power of the subject's eye E is measured. The measuring method is the same as in the first embodiment.
(S204:前眼部断面画像の撮影)
 次に、被検眼Eの前眼部における断面画像(シャインプルーフ画像)が撮影される。図9に示すように、断面画像Pには、例えば、角膜、虹彩、水晶体等が写る。制御部70は、眼屈折力の本測定の完了後、直ちに前眼部の断面画像の撮影を実行する。例えば、眼屈折力の本測定の完了をトリガとして、断面画像の撮影動作が実行されてもよい。つまり、本測定の完了後、直ちに、照射光学系400aから照明光を照射すると共に、照明光が角膜及び水晶体にて散乱した散乱光が撮像素子421に結像されることによる前眼部の断面画像を取得する。これによって、眼屈折力の測定時と断面画像の撮影時との間で、アライメントずれが軽減される。
(S204: Capturing an anterior segment cross-sectional image)
Next, a cross-sectional image (Scheimpflug image) of the anterior segment of the subject's eye E is captured. As shown in FIG. 9, the cross-sectional image P includes, for example, the cornea, the iris, the lens, and the like. Immediately after the main measurement of the eye refractive power is completed, the control unit 70 captures a cross-sectional image of the anterior segment of the eye. For example, the operation of capturing a cross-sectional image may be performed using the completion of the main measurement of the eye refractive power as a trigger. That is, immediately after the completion of the main measurement, illumination light is emitted from the illumination optical system 400a, and the scattered light scattered by the cornea and lens is imaged on the imaging device 421 to form an image of the anterior segment cross section. Get an image. This reduces misalignment between the measurement of the eye refractive power and the imaging of the cross-sectional image.
(S205:前眼部断面画像の解析)
 制御部70は、被検眼Eの前眼部の断面画像Pに基づき、前眼部の形状に関する前眼部形状情報を取得する。例えば、前眼部形状情報には、角膜前面の曲率半径(Ra)、角膜後面の曲率半径(Rp)、角膜厚(CT)、前房深度(ACD)、水晶体前面の曲率半径(ra)、水晶体後面の曲率半径(rp)、水晶体厚(LT)、等の測定値である複数のパラメータ情報が含まれてもよい。なお、前眼部形状情報としては、ステップS202にて取得された角膜形状情報を用いることも可能である。
(S205: Analysis of cross-sectional image of anterior segment)
Based on the cross-sectional image P of the anterior segment of the eye E to be examined, the control unit 70 acquires anterior segment shape information regarding the shape of the anterior segment. For example, the anterior segment shape information includes the radius of curvature of the anterior corneal surface (Ra), the radius of curvature of the posterior corneal surface (Rp), the corneal thickness (CT), the depth of the anterior chamber (ACD), the radius of curvature of the anterior lens surface (ra), A plurality of parameter information may be included that are measurements such as the radius of curvature of the posterior lens surface (rp), lens thickness (LT), and the like. The corneal shape information acquired in step S202 can also be used as the anterior segment shape information.
 制御部70は、断面画像Pを画像処理することによって、各透光体(一例として、角膜、房水、水晶体、等)を検出し、前眼部形状情報を取得する。例えば、断面画像Pの輝度情報を利用して、組織の境界(角膜前後面、水晶体前後面、虹彩、等)に相当する画素位置を検出し、曲率半径等の情報を取得してもよい。また、例えば、組織の境界に相当する画素位置の距離を求め、組織の厚みや深度等の情報を取得してもよい。 The control unit 70 performs image processing on the cross-sectional image P to detect each translucent body (for example, the cornea, aqueous humor, crystalline lens, etc.) and acquire anterior segment shape information. For example, the brightness information of the cross-sectional image P may be used to detect pixel positions corresponding to tissue boundaries (corneal anterior and posterior surfaces, lens anterior and posterior surfaces, iris, etc.) and acquire information such as the radius of curvature. Further, for example, the distance between the pixel positions corresponding to the boundary of the tissue may be obtained, and information such as the thickness and depth of the tissue may be obtained.
(S206:眼軸長演算)
 次に、被検眼Eの眼軸長が演算される。制御部70は、被検眼Eの眼屈折力と、被検眼Eの前眼部形状情報における複数のパラメータ情報に基づいて、眼軸長を演算する。
(S206: Axial length calculation)
Next, the axial length of the eye E to be examined is calculated. The control unit 70 calculates the axial length based on the refractive power of the eye E to be examined and a plurality of parameter information in the anterior segment shape information of the eye E to be examined.
 まず、制御部70は、被検眼Eの眼屈折力の測定結果に基づいて、角膜頂点Cに対する遠点FP(図10参照)の位置を求める。例えば、被検眼Eに乱視が無く、SPH=-5Dであり、VD=12mmであれば、12+1000/5=212mmが、角膜頂点Cから遠点FPまでの距離となる。遠点FPからの光線が、眼底に結像すると考えられる。なお、VD=12mmは、眼鏡レンズの装用を前提とした角膜頂点間距離を示す一定値である。VDは、装置によって異なり得る。 First, the control unit 70 obtains the position of the far point FP (see FIG. 10) with respect to the corneal vertex C based on the measurement result of the eye refractive power of the eye E to be examined. For example, if the subject's eye E has no astigmatism, SPH=−5D, and VD=12 mm, the distance from the corneal vertex C to the far point FP is 12+1000/5=212 mm. Light rays from the far point FP are considered to be imaged on the fundus. Note that VD=12 mm is a constant value indicating the distance between the corneal vertices on the premise of wearing spectacle lenses. VD may vary from device to device.
 本実施例では、前眼部の切断面上での光線追跡演算に基づいて、眼軸長が導出されてもよい。例えば、制御部70は、遠点FPの位置と、各透光体の屈折率と、前眼部形状情報におけるパラメータ情報と、に基づいて、光線追跡演算を行う。 In this embodiment, the eye axial length may be derived based on the ray tracing calculation on the cut plane of the anterior segment. For example, the control unit 70 performs ray tracing calculation based on the position of the far point FP, the refractive index of each translucent body, and the parameter information in the anterior segment shape information.
 制御部70は、被検眼Eに向かって遠点FPから入射する光線(例えば、図10の光線Lx)を追跡し、被検眼Eの各透光体によって光線が屈折され、光線が光軸と交わる交点の位置を求める。例えば、このような光線追跡演算によって、眼底Efの位置が求められる。制御部50は、角膜頂点Cと眼底Efとの距離を、眼軸長ALとして導出する。なお、眼軸長ALを導出するにあたって断面画像Pには少なくとも角膜前面と角膜後面と水晶体前面が写ればよく、他の部位のパラメータは補間して求めてもよい。眼軸長の算出方法は特願2021-061511を参照されたい。 The control unit 70 traces a light ray (e.g., light ray Lx in FIG. 10) incident from the far point FP toward the eye E to be examined, refracts the light ray by each translucent body of the eye E to be examined, and aligns the light ray with the optical axis. Find the position of the crossing point. For example, the position of the fundus oculi Ef is obtained by such ray tracing calculation. The control unit 50 derives the distance between the corneal vertex C and the fundus Ef as the axial length AL. In deriving the axial length AL, at least the anterior surface of the cornea, the posterior surface of the cornea, and the anterior surface of the crystalline lens should be captured in the cross-sectional image P, and the parameters of other parts may be determined by interpolation. See Japanese Patent Application No. 2021-061511 for the method of calculating the axial length.
(S207:第2アライメント)
 制御部70は、第1測定部3aの測定が完了すると、第2測定部3bのアライメントを行う。アライメント方法は第1実施例と同様である。
(S207: second alignment)
When the measurement by the first measurement unit 3a is completed, the control unit 70 aligns the second measurement unit 3b. The alignment method is the same as in the first embodiment.
(S208:眼圧測定)
 制御部70は、第2測定部3bによって被検眼の眼圧を測定する。測定方法は第1実施例と同様である。
(S208: intraocular pressure measurement)
The control unit 70 measures the intraocular pressure of the subject's eye using the second measurement unit 3b. The measuring method is the same as in the first embodiment.
(S209:眼圧補正)
 制御部70は、測定値を補正する補正手段として機能し、ステップS208で取得された眼圧(の測定値)を補正する。例えば、制御部70は、第1測定部3aの断面撮影光学系400によって取得された断面画像Pに基づいて眼圧を補正する。例えば、制御部70は、断面画像Pから取得された角膜厚に基づいて眼圧を補正する。このように、第2測定部3bに角膜厚測定手段を設けなくとも、第1測定部3aで取得された測定値によって眼圧を補正することで、第2測定部3bの構成を増やさずに測定精度を高めることができる。
(S209: intraocular pressure correction)
The control unit 70 functions as correction means for correcting the measured value, and corrects (the measured value of) the intraocular pressure acquired in step S208. For example, the control unit 70 corrects the intraocular pressure based on the cross-sectional image P acquired by the cross-sectional imaging optical system 400 of the first measuring unit 3a. For example, the control unit 70 corrects the intraocular pressure based on the corneal thickness obtained from the cross-sectional image P. In this manner, even if the second measuring unit 3b is not provided with a corneal thickness measuring means, the intraocular pressure can be corrected by the measurement value obtained by the first measuring unit 3a, so that the configuration of the second measuring unit 3b is not increased. Measurement accuracy can be improved.
 なお、眼圧補正に用いる測定値は、ステップS205で取得された測定値をそのまま用いてもよい。これによって、眼圧を補正するために改めて前眼部断面画像を撮影する必要がないため、効率的に眼圧を補正できる。もちろん、眼軸長測定用とは別に断面撮影光学系400による撮影を行い、眼圧補正用の断面画像Pを取得してもよい。 Note that the measured value obtained in step S205 may be used as it is as the measured value used for correcting the intraocular pressure. As a result, there is no need to take another cross-sectional image of the anterior segment to correct the intraocular pressure, so the intraocular pressure can be corrected efficiently. Of course, a cross-sectional image P for correcting the intraocular pressure may be acquired by taking an image with the cross-sectional imaging optical system 400 separately from that for measuring the axial length of the eye.
 なお、制御部70は、眼圧に限らず他の測定値を断面画像Pに基づいて補正してもよい。例えば、制御部70は、断面画像Pによって取得された前眼部形状情報に基づいて、ステップS202,S203で取得された角膜形状または眼屈折力を補正してもよい。これによって、より測定精度を高めることができる。 Note that the control unit 70 may correct other measured values based on the cross-sectional image P, not limited to the intraocular pressure. For example, the control unit 70 may correct the corneal shape or eye refractive power obtained in steps S202 and S203 based on the anterior segment shape information obtained from the cross-sectional image P. This makes it possible to further improve the measurement accuracy.
(S210:測定結果出力)
 制御部70は、測定結果を表示部75などに表示させる。例えば、制御部70は、被検眼Eの角膜形状情報、眼屈折力、眼軸長、補正された眼圧値などを表示部75に表示させる。
(S210: Measurement result output)
The control unit 70 causes the display unit 75 or the like to display the measurement result. For example, the control unit 70 causes the display unit 75 to display corneal shape information, eye refractive power, eye axial length, corrected intraocular pressure value, etc. of the eye E to be examined.
 以上のように、第2実施例の眼科装置1aは、眼屈折力と眼圧と眼軸長を1つの装置で測定することができるため、検者および被検者の移動または操作の手間が減り、効率的な検査を行うことができる。また、第2実施例の眼科装置1aは、シャインプルーフの原理による断面画像を用いることで簡易的な構成で眼軸長を測定できる他、断面画像から角膜厚などの前眼部形状情報を取得できるため、前眼部形状情報から眼屈折力、角膜形状、眼圧値といった測定値を補正し、より精確な検査を行うことができる。 As described above, the ophthalmologic apparatus 1a of the second embodiment can measure the eye refractive power, the intraocular pressure, and the axial length of the eye with a single apparatus. can be reduced and an efficient examination can be performed. Further, the ophthalmologic apparatus 1a of the second embodiment can measure the axial length of the eye with a simple configuration by using a cross-sectional image based on the Scheimpflug principle, and also acquires anterior segment shape information such as corneal thickness from the cross-sectional image. Therefore, measurement values such as eye refractive power, corneal shape, and intraocular pressure value can be corrected from the anterior segment shape information, and more accurate examination can be performed.
 また、第2実施例の眼科装置1aは、第1実施例のように第2測定部3bに角膜厚測定光学系370を配置する必要がなくなる他、角膜厚測定光学系370よりも多くの(角膜厚以外の)形状情報を取得できる。なお、仮に断面撮影光学系400を第2測定部3bに配置したとすると、被検眼Eと第2測定部3bの作動距離が短いことから角膜厚と角膜前後面曲率しか得られないが、本実施例のように、被検眼Eとの作動距離が十分に確保される第1測定部3aに断面撮影光学系400を配置することによって、より広範囲の断面画像が得られ、より多くの形状情報を取得でき、眼軸長測定と眼圧補正に活用することができる。 Further, the ophthalmologic apparatus 1a of the second embodiment eliminates the need to dispose the corneal thickness measuring optical system 370 in the second measuring section 3b as in the first embodiment, and also has more ( shape information (other than corneal thickness) can be obtained. If the cross-section imaging optical system 400 is arranged in the second measuring unit 3b, only the corneal thickness and the corneal front curvature can be obtained because the working distance between the eye to be examined E and the second measuring unit 3b is short. By arranging the cross-sectional imaging optical system 400 in the first measuring section 3a where a sufficient working distance to the eye to be examined E is ensured, as in the embodiment, a wider range of cross-sectional images can be obtained, and more shape information can be obtained. can be obtained and used for axial length measurement and intraocular pressure correction.
1    眼科装置
1a   眼科装置
3    測定部
3a   第1測定部
3b   第2測定部
70   制御部
100  第1測定光学系
200  流体吐出部
300  第2測定光学系
400  断面撮影光学系
 
1 Ophthalmic Apparatus 1a Ophthalmic Apparatus 3 Measuring Unit 3a First Measuring Unit 3b Second Measuring Unit 70 Control Unit 100 First Measuring Optical System 200 Fluid Ejecting Unit 300 Second Measuring Optical System 400 Cross-sectional Imaging Optical System

Claims (11)

  1.  被検眼を検査する眼科装置であって、
     前記被検眼の眼屈折力を測定するための眼屈折力測定手段と、
     前記被検眼の眼圧を測定するための眼圧測定手段と、
     前記被検眼の眼軸長を測定するための眼軸長測定手段と、
    を備えることを特徴とする眼科装置。
    An ophthalmic device for examining an eye to be examined,
    eye refractive power measuring means for measuring the eye refractive power of the eye to be examined;
    intraocular pressure measuring means for measuring the intraocular pressure of the eye to be examined;
    Axial length measuring means for measuring the axial length of the eye to be examined;
    An ophthalmic device comprising:
  2.  前記眼圧測定手段および前記眼軸長測定手段は、光学系の一部を共有していることを特徴とする請求項1の眼科装置。 The ophthalmologic apparatus according to claim 1, wherein said intraocular pressure measuring means and said axial length measuring means share a part of an optical system.
  3.  前記眼圧測定手段および前記眼軸長測定手段は、観察光学系を共有していることを特徴とする請求項2の眼科装置。 The ophthalmologic apparatus according to claim 2, wherein said intraocular pressure measuring means and said axial length measuring means share an observation optical system.
  4.  前記眼圧測定手段と前記眼軸長測定手段とは作動距離が異なることを特徴とする請求項1~3のいずれかの眼科装置。 The ophthalmologic apparatus according to any one of claims 1 to 3, wherein the intraocular pressure measuring means and the axial length measuring means have different working distances.
  5.  前記眼圧測定手段と前記眼軸長測定手段とを3次元的に駆動させる駆動手段と、
     前記駆動手段の駆動を制御する制御手段と、をさらに備え、
     前記眼圧測定手段の作動距離は、前記眼軸長測定手段の作動距離よりも短く、
     前記制御手段は、前記眼軸長測定を行った後に前記眼圧測定を行う場合、前記眼軸長測定が終了した後に、前記眼圧測定手段の作動距離となるように、作動距離方向に前記眼圧測定手段を前記被検眼に近づけてから前記眼圧測定を行うように前記駆動手段を制御することを特徴とする請求項1~4のいずれかの眼科装置。
    driving means for three-dimensionally driving the intraocular pressure measuring means and the axial length measuring means;
    and a control means for controlling driving of the driving means,
    the working distance of the intraocular pressure measuring means is shorter than the working distance of the axial length measuring means;
    When the intraocular pressure measurement is performed after the axial length measurement is performed, the control means adjusts the distance in the working distance direction so as to be the working distance of the intraocular pressure measuring means after the completion of the axial length measurement. The ophthalmologic apparatus according to any one of claims 1 to 4, wherein said driving means is controlled so that said intraocular pressure measurement is performed after said intraocular pressure measuring means is brought close to said eye to be examined.
  6.  前記制御手段は、前記眼屈折力測定手段によって眼屈折力を測定した後に、前記眼軸長測定手段による眼軸長測定を行うことを特徴とする請求項1~5のいずれかの眼科装置。 The ophthalmologic apparatus according to any one of claims 1 to 5, wherein said control means measures the eye axial length by said eye axial length measuring means after measuring eye refractive power by said eye refractive power measuring means.
  7.  前記被検眼の角膜形状を測定する角膜形状測定手段を備えることを特徴とする請求項1~6のいずれかの眼科装置。 The ophthalmologic apparatus according to any one of claims 1 to 6, further comprising corneal shape measuring means for measuring the corneal shape of the eye to be examined.
  8.  前記眼軸長測定手段は、前記被検眼の前眼部に対して測定光を投光し、前記眼屈折力測定手段の光軸を通る光切断面を前記前眼部に形成させると共に、前記測定光の前記光切断面からの戻り光に基づいて、前記被検眼の前眼部断面画像を取得するための断面画像撮影光学系を有し、前記眼屈折力と前記前眼部断面画像とに基づいて、前記眼軸長を算出することを特徴とする請求項1の眼科装置。 The axial length measuring means projects measurement light onto the anterior segment of the eye to be inspected to form a light section passing through the optical axis of the eye refractive power measuring means in the anterior segment. a cross-sectional image capturing optical system for acquiring an anterior segment cross-sectional image of the subject eye based on light returned from the light-section plane of the measuring light, wherein the eye refractive power and the anterior segment cross-sectional image are obtained; 2. The ophthalmologic apparatus according to claim 1, wherein said axial length is calculated based on .
  9.  前記眼屈折力測定手段および前記眼軸長測定手段は、光学系の一部を共有していることを特徴とする請求項8の眼科装置。 The ophthalmologic apparatus according to claim 8, wherein said eye refractive power measuring means and said eye axial length measuring means share a part of an optical system.
  10.  前記断面画像撮影光学系によって取得された前記前眼部断面画像に基づいて、前記眼圧、前記眼屈折力、または角膜形状測定手段によって測定された前記被検眼の角膜形状を補正する補正手段をさらに備えることを特徴とする請求項8または9の眼科装置。 correction means for correcting the intraocular pressure, the eye refractive power, or the corneal shape of the subject's eye measured by the corneal shape measuring means, based on the anterior segment cross-sectional image acquired by the cross-sectional image capturing optical system; 10. An ophthalmic device according to claim 8 or 9, further comprising.
  11.  前記補正手段は、前記前眼部断面画像から取得された角膜厚に基づいて、前記眼圧を補正することを特徴とする請求項8~10のいずれかの眼科装置。
     
    11. The ophthalmologic apparatus according to any one of claims 8 to 10, wherein said correction means corrects said intraocular pressure based on corneal thickness obtained from said anterior segment cross-sectional image.
PCT/JP2022/036514 2021-09-30 2022-09-29 Ophthalmic device WO2023054612A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161499 2021-09-30
JP2021-161499 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054612A1 true WO2023054612A1 (en) 2023-04-06

Family

ID=85782938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036514 WO2023054612A1 (en) 2021-09-30 2022-09-29 Ophthalmic device

Country Status (1)

Country Link
WO (1) WO2023054612A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313758A (en) * 2003-03-31 2004-11-11 Nidek Co Ltd Ophthalmic apparatus
JP2007144128A (en) * 2005-11-01 2007-06-14 Nidek Co Ltd Ophthalmic apparatus
JP2012152469A (en) * 2011-01-27 2012-08-16 Nidek Co Ltd Ophthalmic surgical microscope
JP2017051213A (en) * 2015-09-07 2017-03-16 株式会社トーメーコーポレーション Ophthalmologic apparatus
JP2017176545A (en) * 2016-03-30 2017-10-05 株式会社ニデック Ophthalmologic apparatus, and ophthalmologic apparatus control program
JP2019013391A (en) * 2017-07-05 2019-01-31 株式会社ニデック Ophthalmologic device and ophthalmologic device control program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313758A (en) * 2003-03-31 2004-11-11 Nidek Co Ltd Ophthalmic apparatus
JP2007144128A (en) * 2005-11-01 2007-06-14 Nidek Co Ltd Ophthalmic apparatus
JP2012152469A (en) * 2011-01-27 2012-08-16 Nidek Co Ltd Ophthalmic surgical microscope
JP2017051213A (en) * 2015-09-07 2017-03-16 株式会社トーメーコーポレーション Ophthalmologic apparatus
JP2017176545A (en) * 2016-03-30 2017-10-05 株式会社ニデック Ophthalmologic apparatus, and ophthalmologic apparatus control program
JP2019013391A (en) * 2017-07-05 2019-01-31 株式会社ニデック Ophthalmologic device and ophthalmologic device control program

Similar Documents

Publication Publication Date Title
US10123700B2 (en) Ophthalmic apparatus and alignment method for ophthalmic apparatus
US9408531B2 (en) Ophthalmologic apparatus
JP6685151B2 (en) Ophthalmic equipment
CN110916611B (en) Ophthalmologic apparatus, control method thereof, program, and storage medium
JP6899632B2 (en) Ophthalmologic imaging equipment
JP2022040372A (en) Ophthalmologic apparatus
JP2022075772A (en) Ophthalmologic apparatus
JP7181135B2 (en) ophthalmic equipment
JP6934747B2 (en) Ophthalmic device and its control method
WO2023054612A1 (en) Ophthalmic device
US20210298599A1 (en) Ophthalmic apparatus
JP6634765B2 (en) Ophthalmic apparatus and ophthalmic apparatus control program
JP7288110B2 (en) ophthalmic equipment
WO2022209991A1 (en) Ophthalmologic device
WO2022186115A1 (en) Oct device, and ophthalmic image processing program
JP7447619B2 (en) ophthalmology equipment
WO2022030202A1 (en) Ophthalmic device and ophthalmic device control program
JP7412170B2 (en) Ophthalmological equipment, its evaluation method, program, and recording medium
JP6959158B2 (en) Ophthalmic equipment
JP2023010416A (en) Ophthalmologic measuring device
JP2022157346A (en) Ophthalmologic apparatus and ophthalmology program
JP2022157345A (en) Ophthalmologic apparatus
JP2022157347A (en) Ophthalmologic apparatus
JP2022119038A (en) Eye refraction measurement device and eye refraction measurement program
JP2022031533A (en) Ophthalmology imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551861

Country of ref document: JP