WO2023054534A1 - Crane, and dynamic lift-off control device - Google Patents

Crane, and dynamic lift-off control device Download PDF

Info

Publication number
WO2023054534A1
WO2023054534A1 PCT/JP2022/036310 JP2022036310W WO2023054534A1 WO 2023054534 A1 WO2023054534 A1 WO 2023054534A1 JP 2022036310 W JP2022036310 W JP 2022036310W WO 2023054534 A1 WO2023054534 A1 WO 2023054534A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
control
hoisting
load
ground
Prior art date
Application number
PCT/JP2022/036310
Other languages
French (fr)
Japanese (ja)
Inventor
佳成 南
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Publication of WO2023054534A1 publication Critical patent/WO2023054534A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes

Definitions

  • the present invention relates to a crane and a ground-clearing control device.
  • a vertical ground-cutting control device described in Patent Document 1 detects the engine speed with an engine speed sensor and raises and lowers the boom. It is configured to correct the value according to the engine speed. With such a configuration, the invention disclosed in Patent Literature 1 can perform accurate ground-breaking control in consideration of changes in engine speed.
  • Patent Document 1 uses two actuators together for control so that the working radius is kept constant by winding up the wire by the length of the wire stretched with a winch and raising the undulation. . Therefore, there is a problem that it takes time to cut the ground due to complicated control.
  • an object of the present invention is to provide a crane and a ground-clearing control device that can quickly cut a suspended load from the ground while suppressing the swinging of the load.
  • a crane for transporting a suspended load a boom configured to be hoistable; and a control unit that controls the boom hoisting motion,
  • the control unit controls the hoisting motion of the boom by performing feedforward control based on the hoisting angular velocity of the boom and feedback control based on the information on the attitude of the boom during ground-cutting control of the suspended load.
  • a ground breaking control device mounted on a crane that transports a suspended load by a boom
  • a control unit that has a feedforward control unit and a feedback control unit and controls the ground cutting operation of the boom
  • the feedforward control unit generates an FF control signal based on the hoisting angular velocity of the boom during ground-cutting control
  • the feedback control unit generates an FB control signal based on information about the posture of the boom during ground-off control
  • the control unit controls the hoisting motion of the boom based on a control signal obtained by adding the FF control signal and the FB control signal.
  • FIG. 1 is an explanatory diagram for explaining swing of a suspended load.
  • FIG. 2 is a side view of the mobile crane.
  • FIG. 3 is a block diagram of the ground breaking control device.
  • FIG. 4 is a block diagram of the entire ground breaking control device.
  • FIG. 5 is a block diagram of ground clearance control (in the case of FB control based on the undulation angle).
  • FIG. 6 is a block diagram of ground breaking control (in the case of FB control based on working radius).
  • FIG. 7 is a flow chart of ground breaking control.
  • FIG. 8 is a graph for explaining a technique for ground breaking determination.
  • FIG. 9 is a graph showing the relationship between load and hoisting angle.
  • mobile cranes include, for example, rough terrain cranes, all terrain cranes, and truck cranes.
  • a rough terrain crane will be described as an example of a work vehicle according to the present embodiment, but the ground clearance control device (safety device) according to the present invention can also be applied to other mobile cranes.
  • the crane is not limited to a mobile crane, and may be various cranes.
  • the rough terrain crane 1 of the present embodiment includes a vehicle body 10 which is a main body portion of the vehicle having a traveling function, outriggers 11 provided at the four corners of the vehicle body 10, and the vehicle body 10 capable of horizontal turning. It has a mounted swivel base 12 and a boom 14 attached to the rear of the swivel base 12 .
  • the outriggers 11 can be slid outwardly extended/retracted from the vehicle body 10 in the width direction by extending and retracting the slide cylinders. Further, the outrigger 11 can extend/retract the jack vertically from the vehicle body 10 by extending and retracting the jack cylinder.
  • the swivel base 12 has a pinion gear to which the power of the swivel motor 61 is transmitted. This pinion gear engages with a circular gear provided on the vehicle body 10 to rotate about the turning shaft.
  • the swivel base 12 has an operator's seat 18 arranged on the right front side and a counterweight 19 arranged on the rear side.
  • a winch 13 for winding up/lowering the wire 16 is arranged behind the swivel base 12.
  • the winch 13 is configured to rotate in two directions, a winding direction (winding direction) and a winding down direction (unrolling direction), by rotating the winch motor 64 forward/reverse.
  • the boom 14 is telescopically configured with a proximal boom 141 , an intermediate boom(s) 142 and a distal boom 143 .
  • the boom 14 is configured to extend and retract based on the power of the telescopic cylinder 63 arranged inside.
  • a sheave is arranged on the boom head 144 at the tip of the tip boom 143 .
  • a wire 16 is wound around the sheave.
  • a hook 17 is suspended from the tip of the wire 16 .
  • a base portion of the base end boom 141 is rotatably attached to a support shaft installed on the swivel base 12 .
  • the base end boom 141 is configured to be able to move up and down with the support shaft as the center of rotation.
  • a hoisting cylinder 62 is bridged between the swivel base 12 and the lower surface of the base end boom 141 .
  • the boom 14 is configured to be raised and lowered based on the extension and contraction of the raising and lowering cylinders 62 .
  • the ground-breaking control device D is mainly composed of a controller 40 as a control section.
  • the controller 40 is a general-purpose (micro)computer having input ports, output ports, arithmetic units and the like.
  • the controller 40 may have a configuration in which a CPU, a ROM, a RAM, an HDD, and the like are connected via a bus, or may be configured from a one-chip LSI or the like.
  • controller 40 of the present embodiment receives operation signals from the operating levers 51 to 54 (rotating lever 51, hoisting lever 52, telescopic lever 53, and winch lever 54), and controls the actuator 61 via a control valve (not shown). 64 (turning motor 61, hoisting cylinder 62, telescopic cylinder 63, and winch motor 64).
  • the controller 40 of this embodiment includes a ground-off switch 20 for starting/stopping the ground-off control, a winch speed setting means 21 for setting the speed of the winch 13 in the ground-off control, and a A load measuring means 22 for measuring the acting load and an attitude detecting means 23 for detecting the attitude of the boom 14 are connected.
  • the ground breaking switch 20 is an input device for instructing the start or stop of ground breaking control.
  • the ground breaking switch 20 may be configured to be added to the safety device of the rough terrain crane 1, for example.
  • the ground switch 20 is preferably arranged in the cockpit 18 .
  • the winch speed setting means 21 is an input device that sets the speed of the winch 13 in ground clearance control.
  • the winch speed setting means 21 has a method of selecting an appropriate speed from preset speeds, and a method of inputting with a numeric keypad. Further, the winch speed setting means 21 may be configured to be added to the safety device of the rough terrain crane 1, like the ground breaking switch 20.
  • the winch speed setting means 21 is preferably arranged in the cockpit 18 . By adjusting the speed of the winch 13 by the winch speed setting means 21, the time required for the ground breaking control can be adjusted.
  • the load measuring means 22 is a measuring device that measures the load acting on the boom 14 .
  • the load measuring means 22 may be composed of, for example, a pressure gauge 22 that measures the pressure acting on the hoisting cylinder 62 .
  • a pressure signal measured by the pressure gauge 22 is transmitted to the controller 40 .
  • the attitude detection means 23 is a measuring device that detects the attitude of the boom 14.
  • the posture detection means 23 comprises a hoisting angle meter 231 for measuring the hoisting angle of the boom 14, a hoisting angular velocity meter 232 for measuring the hoisting angular velocity, and a length measuring instrument 233 for measuring the length (total length) of the boom 14. Configured.
  • a potentiometer can be used as the undulation angle meter 231 .
  • a stroke sensor attached to the hoisting cylinder 15 can be used as the hoisting angular velocity meter 232 .
  • the length measuring instrument 233 may be composed of a cord, a take-up reel, and a rotary displacement meter. As will be described later, a predicted value calculated based on the load measured by the load measuring means 22 is used for FF control (feedforward control) of the hoisting angular velocity.
  • the hoisting angle signal measured by the hoisting angle meter 231, the hoisting angular velocity signal measured by the hoisting angular velocity meter 232, and the length signal measured by the length measuring instrument 233 are transmitted to the controller 40.
  • the controller 40 is a control unit that controls the operation of the boom 14 and the winch 13.
  • the controller 40 performs feedforward control (FF control) based on the hoisting angular velocity of the boom 14 and hoisting of the boom 14 when the winch 13 is hoisted to lift off the suspended load by turning on the ground-off switch 20 .
  • FF control feedforward control
  • FB control feedback control
  • the hoisting angle of the boom 14 and the working radius of the boom 14 correspond to an example of information regarding the attitude of the boom.
  • the controller 40 corresponds to an example of a ground-breaking control device, and is mounted on a crane that transports a suspended load by means of the boom 14.
  • the controller 40 has a feedforward controller and a feedback controller.
  • the controller 40 as described above is a control unit that controls the ground cutting operation of the boom 14 .
  • the feedforward control section generates an FF control signal (feedforward control signal) based on the hoisting angular velocity of the boom 14 .
  • the feedback control unit generates an FB control signal (feedback control signal) based on information regarding the attitude of the boom 14 .
  • the controller 40 controls the hoisting motion of the boom 14 based on the control signal obtained by adding the FF control signal and the FB control signal. Ground breaking control performed by such a controller 40 will be described later.
  • the FF control of the hoisting angular velocity predicts the amount of change in the hoisting angle of the boom 14 based on the time change of the load measured by the load measuring means 22, and raises the boom 14 so as to compensate for this predicted amount of change.
  • Equation 3 which will be described later, the hoisting angular velocity is calculated (predicted/estimated) as the amount of change in the hoisting angle based on the time change (differential) of the load.
  • the controller 40 calculates the target hoisting angle of the boom 14 based on the load measured by the load measuring means 22 . Then, the controller 40 causes the hoisting angle of the boom 14 to follow the calculated target hoisting angle.
  • the hoisting angle may be converted from the measured hoisting angular velocity.
  • the controller 40 stores the working radius at the start of control (hereinafter also referred to as "target working radius") in a storage unit (not shown).
  • the controller 40 then follows the hoisting angle of the boom 14 so as to keep this working radius constant.
  • the working radius is the hoisting angle of the boom 14 measured by the hoisting angle meter 231, the length of the boom 14 measured by the length measuring device 233, and the pressure measured by the load measuring means (pressure gauge) 22. (used for deflection calculations) and are calculated based on geometric relationships using .
  • the controller 40 includes a combined function unit 40a for FF control and FB control as function units for performing the above-described FF control and FB control, and a function unit 40a for determining whether or not the ground has actually been cut off. and a ground breaking determination function unit 40b that stops the ground breaking control.
  • the combined function section 40a includes the feedforward control section and the feedforward control section described above.
  • the combined function unit 40a receives the input of the initial value of the pressure from the pressure gauge 22 as the load measuring means and the initial value of the hoisting angle from the hoisting angle meter 23 as the posture measuring means, and applies the characteristics table. Or determine the transfer function.
  • a transfer function a relationship using a linear coefficient a can be applied as follows.
  • a is a constant (linear coefficient). That is, the hoisting angle control (FF control of the hoisting angular velocity) is input with the time change (differential) of the load.
  • the estimation formula for the corrected hoisting angle amount is the following formula.
  • W Load L: Boom length R: Working radius - Boom base pin position
  • C BM LA/RA model factor of boom state
  • the ground breaking determination function unit 40b monitors the time-series data of the load value calculated from the pressure signal from the pressure gauge 22 as the load measuring means, and determines the presence or absence of the ground breaking. A ground crossing determination method will be described later with reference to FIG.
  • the load change calculator 71 calculates the load change based on the time-series data of the load measured by the load measuring means 22 .
  • the calculated load change is input to the target shaft speed calculator 72 .
  • the input/output relationship in the target shaft speed calculator 72 will be described later with reference to FIG.
  • the target shaft speed calculation unit 72 calculates the target shaft speed based on the initial value of the hoisting angle, the set winch speed, and the input load change.
  • the target shaft speed is now the target luffing angular speed (and, optionally, the target winch speed).
  • the calculated target shaft speed is input to the shaft speed controller 73 .
  • the first half of the control up to this point is the processing related to the FF control.
  • the operation amount is input to the controlled object 75 through the axis speed controller 73 and the axis speed operation amount conversion processing unit 74 .
  • the latter half of the control is processing related to FB control.
  • FB control the measured hoisting angular velocity is fed back.
  • the hoisting angle is calculated from the hoisting angular velocity fed back.
  • FIG. 4 the measured hoisting angular velocity is fed back.
  • the hoisting angle calculated from the measured hoisting angular velocity may be fed back.
  • the initial crane posture is input to the combined function section 40a (see FIG. 3).
  • the combined function unit 40a selects the most appropriate constant (linear coefficient) a using a characteristic table or a transfer function.
  • the numerical differentiation unit 81 performs numerical differentiation of the load change (differentiation with respect to time), and the conversion unit 82 multiplies the constant a obtained from the initial crane attitude to calculate the target hoisting angular velocity. That is, the calculation of Equation 3 above is executed.
  • the hoisting angle is directly measured, or the hoisting angular velocity is numerically integrated and converted into a hoisting angle to obtain the hoisting angle change amount.
  • the target hoisting angle correction amount is calculated based on the constant a obtained from the initial crane attitude and the time change of the load value. That is, the calculations of formulas (4) and (5) above are executed. Then, the hoisting angle is feedback-controlled based on this target hoisting angle correction amount.
  • this FB control for example, PD control shown in FIG. 5 or PID control is preferable.
  • the target hoisting angular velocity obtained by FF control and the target hoisting angular velocity obtained by FB control are added together and filtered to obtain a hoisting angular velocity control signal. That is, in the processing described above, the calculation of the above equation (6) is performed.
  • the initial crane posture is input to the combined function section 40a (see FIG. 3).
  • the combined function unit 40a selects the most appropriate constant (linear coefficient) a using a characteristic table or a transfer function.
  • the numerical differentiation unit 81 performs numerical differentiation of the load change (differentiation with respect to time), and the conversion unit 82 multiplies the result by the constant a obtained from the initial crane attitude to calculate the target hoisting angular velocity. That is, the calculation of the above formula (3) is executed.
  • the working radius is measured. That is, using the length of the boom 14, the hoisting angle of the boom 14, and the measured values of the load (pressure), the working radius is determined based on the geometric relationship. Then, the calculated working radius is converted into an undulation angle in the undulation angle converting section 83A. On the other hand, the initial value of the working radius (working radius at the start of control) is stored as a target value (also referred to as a target working radius), and is converted into a target hoisting angle in the hoisting angle converter 83B. Then, the hoisting angle is feedback-controlled so as to achieve the target hoisting angle. In this FB control, for example, PD control shown in FIG. 6 or PID control is preferable.
  • FF control signal the target hoisting angular velocity obtained by FF control
  • FB control signal the target hoisting angular velocity obtained by FB control
  • a hoisting angular velocity control signal is obtained by filtering together. That is, in the processing described above, the calculation of the above equation (6) is performed.
  • the "working radius” is not calculated each time, but data created from actual measurements for each individual crane (load in the safety device - deflection (working radius) data (table)) is preferably used.
  • the target speed of the winch 13 is set via the winch speed setting means 21 before or after the start of ground-off control.
  • the controller 40 starts winch control (hoisting) at a constant target speed (step S1).
  • the load measuring means 22 starts measuring the suspended load, and the load value is input to the controller 40 (step S2).
  • the combined function unit 40a receives the input of the initial value of the load and the initial value of the hoisting angle from the hoisting goniometer 23 as the posture measuring means, and determines the characteristic table or transfer function to be applied (step S31).
  • the controller 40 calculates the hoisting angular velocity based on the applied characteristic table or transfer function and the load change (step S32). That is, the hoisting angular velocity is feedforward controlled.
  • the undulation angle is feedback-controlled (step S4). That is, the controller 40 calculates the hoisting angle every moment based on the measured hoisting angular velocity, and calculates the target hoisting angle every moment based on the load value that is measured at the same time. Then, the hoisting cylinder 62 is controlled so that the hoisting angle becomes the target hoisting angle. Alternatively, the controller 40 stores the working radius at the start of control and controls the luffing cylinder 62 so as to keep the stored initial working radius constant.
  • the hoisting angular velocity calculated for the FB control of the hoisting angle and the hoisting angular velocity calculated by the FF control of the hoisting angular velocity are added together to create a control signal for the hoisting cylinder 62, thereby generating an FF
  • the control and the FB control are used together (see Equation 6 above).
  • step S5 the presence or absence of ground breaking is determined based on the time-series data of the measured load. Note that the determination method will be described later. As a result of the determination, if the ground has not been cut off (NO in step S5), the process returns to step S2, and the combination control of feedforward control and feedback control based on the load is repeated (steps S2 to S5).
  • step S5 if the ground has been cut (YES in step S5), the ground cut control is gently stopped (step S6). That is, the ground cutting control is stopped while reducing the rotational drive speed of the winch 13 by the winch motor and the hoisting drive speed of the hoisting cylinder 62 .
  • the controller 40 monitors the time-series data of the load measured while the winch 13 is being hoisted in the ground-breaking control. It is determined that the
  • the ground-clearing control device D of the present embodiment includes the boom 14, the winch 13, the load measuring means 22, and the controller (controller 40), which hoists the winch 13 and lifts the load. and a control unit (controller 40) that performs control based on both feedforward control based on the hoisting angular velocity of the boom 14 and feedback control based on the posture of the boom 14 when cutting off the ground.
  • the ground-off control device D is capable of quickly off-loading the suspended load while suppressing the swinging of the load.
  • FB control together, the robustness of ground breaking control can be improved.
  • feedforward control alone may not be able to deal with the effects of model errors and disturbances.
  • feedback control even if a model error or disturbance occurs, it is possible to immediately respond to the situation and automatically cut off the ground without swinging the load.
  • the hoisting angular velocity is calculated as the amount of change in the hoisting angle based on the time change of the load measured by the load measuring means 22, and the boom is adjusted to compensate for the amount of change. 14 is raised up.
  • the ground-off control device D uses a function in which the load and the hoisting angular velocity correction amount are modeled, the number of man-hours for adjustment and the calculation load are reduced.
  • the target value is clearer than the conventional method of measuring load change and rope length, hook swing (movement) can be further suppressed.
  • Feedback control based on the attitude of the boom 14 is preferably feedback control based on the hoisting angle of the boom 14 . Then, by using the linear coefficients used in the FF control, it is possible to calculate the momentary target hoisting angle in accordance with the load change. Robustness can be enhanced by performing FB control so as to compensate for the deviation from the measured hoisting angle using this target hoisting angle as a target value. It is mainly effective in compensating for response delay of the actuator and disturbance.
  • the target hoisting angle which is the target of the control, is calculated based on the load measured by the load measuring means 22 .
  • the ground breaking control device D uses a function in which the load and the hoisting angle correction amount are modeled, so the number of man-hours for adjustment and the calculation load are reduced.
  • Feedback control based on the attitude of the boom 14 is preferably feedback control based on the working radius of the boom 14 .
  • FB control can be performed using more measured values (parameters) than FF control, so control can be performed with higher accuracy.
  • the FB control based on the undulation angle described above has the advantage of being able to use the functions (including linear coefficients) used in FF control.
  • the function itself contains a model error, it is impossible to completely compensate for the model error of the FF control. It is mainly effective in compensating for response delay of the actuator and disturbance.
  • the FB control based on the working radius eliminates the factor of the model error, it can be said to be an effective control means when the model error is large.
  • the working radius at the start of control is stored and used as the target working radius which is the target of the control.
  • the ground-clearing control device D of the present embodiment monitors the time-series data of the measured load when the winch 13 is hoisted to lift the suspended load, and the first maximum value of the time-series data It is determined that the ground has been cut off by capturing the By performing control based only on the load in this way, ground breaking can be determined easily and quickly.
  • the rough terrain crane 1 which is the mobile crane of the present embodiment, is provided with any of the above-described ground-clearing control devices D, thereby suppressing the swinging of the load and rapidly cutting the suspended load. It becomes the rough terrain crane 1 that can operate.
  • the ground-clearing control device D preferably adjusts the time required for the ground-clearing by adjusting the speed of the winch 13.
  • a mode based on the undulation angle and a mode based on the working radius were described separately, but it is practical to configure one of these modes to be selectable.
  • the ground-breaking control is started by the ground-breaking switch 20 arranged in the cockpit 18, but it is not limited to this, and it is also possible to perform remote control using a tablet or the like. It is possible.
  • the ground-clearing control device D of the present invention can be applied to both cases of ground-clearing using a main winch as a winch and using a sub winch for ground-clearing. can be done.
  • D Ground-off control device a Linear coefficient 1 Rough terrain crane 10 Car body 11 Outrigger 12 Swivel base 13 Winch 14 Boom 141 Proximal boom 142 Intermediate boom 143 Tip boom 144 Boom head 16 Wire 17 Hook 18 Cockpit 19 Counterweight 20 Ground-off switch 21 winch speed setting means 22 pressure gauge (load measuring means) 23 hoist angle meter (posture detection means) 231 hoisting angle meter 232 hoisting angular velocity meter 233 length measuring instrument 40 controller 40a combined function unit 40b ground cutting determination function unit 51 turning lever 52 hoisting lever 53 telescopic lever 54 winch lever 61 turning motor 62 hoisting cylinder 63 telescopic cylinder 64 winch motor 71 Load change calculation unit 72 Target shaft speed calculation unit 73 Axis speed controller 74 Manipulated amount conversion processing unit 75 Controlled object 81 Numerical differentiation unit 82, 83 Conversion unit 83A, 83B Elevation angle conversion unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Jib Cranes (AREA)

Abstract

A crane according the present invention transports a suspension load, said crane comprising: a boom capable of rising/lowering; and a control unit for controlling a rising/lowering motion of the boom, wherein when dynamic lift-off control of the suspension load is performed, the control unit controls the rising/lowering motion of the boom by performing feedback control on the basis of information pertaining to the orientation of the boom together with feed forward control on the basis of the rising/lowering angular velocity of the boom.

Description

クレーン及び地切り制御装置Crane and ground cutting control device
 本発明は、クレーン及び地切り制御装置に関する。 The present invention relates to a crane and a ground-clearing control device.
 従来から、ブームを備えたクレーンにおいて、地面から吊荷を吊り上げる際に、すなわち吊荷を地切りする際に、ブームに生じるたわみによって作業半径が増大することによって、吊荷が水平方向に振れる「荷振れ」が問題となっている(図1参照)。 Conventionally, in a crane equipped with a boom, when a load is lifted from the ground, that is, when the load is cut off from the ground, the deflection of the boom increases the working radius, causing the load to swing horizontally. "Load swing" is a problem (see Fig. 1).
 地切りの際の荷振れを防止することを目的として、例えば、特許文献1に記載された鉛直地切り制御装置は、エンジン回転数センサによってエンジンの回転数を検出し、ブームの起仰作動をエンジン回転数に応じた値に補正するように構成されている。このような構成によって、特許文献1に開示された発明は、エンジン回転数の変化を加味した正確な地切り制御を実施できる。 For the purpose of preventing swinging of a load during ground-cutting, for example, a vertical ground-cutting control device described in Patent Document 1 detects the engine speed with an engine speed sensor and raises and lowers the boom. It is configured to correct the value according to the engine speed. With such a configuration, the invention disclosed in Patent Literature 1 can perform accurate ground-breaking control in consideration of changes in engine speed.
特開平8-188379号公報JP-A-8-188379
 しかしながら、特許文献1を含む従来の地切り制御装置は、ウインチでワイヤが伸びた分だけ巻上げ、起伏を上げることにより作業半径を一定に保つように、2つのアクチュエータを併用して制御していた。そのため、複雑な制御となることで地切りに時間がかかってしまう、という問題があった。 However, conventional ground-breaking control devices including Patent Document 1 use two actuators together for control so that the working radius is kept constant by winding up the wire by the length of the wire stretched with a winch and raising the undulation. . Therefore, there is a problem that it takes time to cut the ground due to complicated control.
 そこで、本発明は、荷振れを抑制しつつ、迅速に吊荷を地切りすることのできるクレーン及び地切り制御装置を提供することを目的としている。 Therefore, an object of the present invention is to provide a crane and a ground-clearing control device that can quickly cut a suspended load from the ground while suppressing the swinging of the load.
 本発明に係るクレーンの一態様は、
 吊荷を搬送するクレーンであって、
 起伏可能に構成されるブームと、
 ブームの起伏動作を制御する制御部と、を備え、
 制御部は、吊荷の地切り制御時に、ブームの起伏角速度に基づくフィードフォワード制御とともに、ブームの姿勢に関する情報に基づくフィードバック制御を実施することにより、ブームの起伏動作を制御する。
One aspect of the crane according to the present invention is
A crane for transporting a suspended load,
a boom configured to be hoistable;
and a control unit that controls the boom hoisting motion,
The control unit controls the hoisting motion of the boom by performing feedforward control based on the hoisting angular velocity of the boom and feedback control based on the information on the attitude of the boom during ground-cutting control of the suspended load.
 本発明に係る地切り制御装置の一態様は、
 ブームにより吊荷を搬送するクレーンに搭載される地切り制御装置であって、
 フィードフォワード制御部及びフィードバック制御部を有し、ブームの地切り動作を制御する制御部を備え、
  フィードフォワード制御部は、地切り制御時に、ブームの起伏角速度に基づいてFF制御信号を生成し、
 フィードバック制御部は、地切り制御時に、ブームの姿勢に関する情報に基づいてFB制御信号を生成し、
 制御部は、FF制御信号とFB制御信号とを足し合わせた制御信号に基づいて、ブームの起伏動作を制御する。
One aspect of the ground breaking control device according to the present invention is
A ground breaking control device mounted on a crane that transports a suspended load by a boom,
A control unit that has a feedforward control unit and a feedback control unit and controls the ground cutting operation of the boom,
The feedforward control unit generates an FF control signal based on the hoisting angular velocity of the boom during ground-cutting control,
The feedback control unit generates an FB control signal based on information about the posture of the boom during ground-off control,
The control unit controls the hoisting motion of the boom based on a control signal obtained by adding the FF control signal and the FB control signal.
 本発明によれば、荷振れを抑制しつつ、迅速に吊荷を地切りすることのできる地切り制御装置、及び、移動式クレーンを提供できる。 According to the present invention, it is possible to provide a ground-clearing control device and a mobile crane that can quickly cut a suspended load from the ground while suppressing swinging of the load.
図1は、吊荷の荷振れについて説明する説明図である。FIG. 1 is an explanatory diagram for explaining swing of a suspended load. 図2は、移動式クレーンの側面図である。FIG. 2 is a side view of the mobile crane. 図3は、地切り制御装置のブロック図である。FIG. 3 is a block diagram of the ground breaking control device. 図4は、地切り制御装置の全体のブロック線図である。FIG. 4 is a block diagram of the entire ground breaking control device. 図5は、地切り制御(起伏角に基づくFB制御の場合)のブロック線図である。FIG. 5 is a block diagram of ground clearance control (in the case of FB control based on the undulation angle). 図6は、地切り制御(作業半径に基づくFB制御の場合)のブロック線図である。FIG. 6 is a block diagram of ground breaking control (in the case of FB control based on working radius). 図7は、地切り制御のフローチャートである。FIG. 7 is a flow chart of ground breaking control. 図8は、地切り判定の手法について説明するグラフである。FIG. 8 is a graph for explaining a technique for ground breaking determination. 図9は、荷重-起伏角の関係を示すグラフである。FIG. 9 is a graph showing the relationship between load and hoisting angle.
 以下、本発明に係る実施形態について図面を参照して説明する。ただし、以下の実施形態に記載されている構成要素は例示であり、本発明の技術範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the constituent elements described in the following embodiments are examples, and are not intended to limit the technical scope of the present invention only to them.
 [実施形態]
 本実施形態では、移動式クレーンとしては、例えば、ラフテレーンクレーン、オールテレーンクレーン、及びトラッククレーン等が挙げられる。以下、本実施形態に係る作業車両としてラフテレーンクレーンを例に説明するが、他の移動式クレーンにも、本発明に係る地切り制御装置(安全装置)を適用することができる。又、クレーンは、移動式クレーンに限定されず、種々のクレーンであってよい。
[Embodiment]
In this embodiment, mobile cranes include, for example, rough terrain cranes, all terrain cranes, and truck cranes. Hereinafter, a rough terrain crane will be described as an example of a work vehicle according to the present embodiment, but the ground clearance control device (safety device) according to the present invention can also be applied to other mobile cranes. Moreover, the crane is not limited to a mobile crane, and may be various cranes.
 (移動式クレーンの構成)
 まず、図2の側面図を用いて、移動式クレーンの構成について説明する。本実施形態のラフテレーンクレーン1は、図2に示すように、走行機能を有する車両の本体部分となる車体10と、車体10の四隅に設けられたアウトリガ11と、車体10に水平旋回可能に取り付けられた旋回台12と、旋回台12の後方に取り付けられたブーム14と、を備えている。
(Configuration of mobile crane)
First, the configuration of the mobile crane will be described with reference to the side view of FIG. As shown in FIG. 2, the rough terrain crane 1 of the present embodiment includes a vehicle body 10 which is a main body portion of the vehicle having a traveling function, outriggers 11 provided at the four corners of the vehicle body 10, and the vehicle body 10 capable of horizontal turning. It has a mounted swivel base 12 and a boom 14 attached to the rear of the swivel base 12 .
 アウトリガ11は、スライドシリンダを伸縮させることによって、車体10から幅方向外側にスライド張出/スライド格納可能である。又、アウトリガ11は、ジャッキシリンダを伸縮させることによって車体10から上下方向にジャッキ張出/ジャッキ格納可能である。 The outriggers 11 can be slid outwardly extended/retracted from the vehicle body 10 in the width direction by extending and retracting the slide cylinders. Further, the outrigger 11 can extend/retract the jack vertically from the vehicle body 10 by extending and retracting the jack cylinder.
 旋回台12は、旋回モータ61の動力が伝達されるピニオンギヤを有している。このピニオンギヤが車体10に設けられた円形状のギヤと噛み合うことで旋回軸を中心に回動する。旋回台12は、右前方に配置された操縦席18と、後方に配置されたカウンタウェイト19と、を有している。 The swivel base 12 has a pinion gear to which the power of the swivel motor 61 is transmitted. This pinion gear engages with a circular gear provided on the vehicle body 10 to rotate about the turning shaft. The swivel base 12 has an operator's seat 18 arranged on the right front side and a counterweight 19 arranged on the rear side.
 さらに、旋回台12の後方には、ワイヤ16を巻上/巻下げるためのウインチ13が配置されている。ウインチ13は、ウインチモータ64を正方向/逆方向に回転させることによって、巻上げ方向(巻き取る方向)/巻下げ方向(繰り出す方向)の2方向に回転するように構成されている。 Furthermore, behind the swivel base 12, a winch 13 for winding up/lowering the wire 16 is arranged. The winch 13 is configured to rotate in two directions, a winding direction (winding direction) and a winding down direction (unrolling direction), by rotating the winch motor 64 forward/reverse.
 ブーム14は、基端ブーム141と(1つ又は複数の)中間ブーム142と先端ブーム143とによって入れ子式に構成されている。ブーム14は、内部に配置された伸縮シリンダ63の動力に基づいて伸縮するように構成されている。先端ブーム143の最先端のブームヘッド144にはシーブが配置されている。シーブには、ワイヤ16が掛け回されてている。又、ワイヤ16の先端には、フック17が吊下げられている。 The boom 14 is telescopically configured with a proximal boom 141 , an intermediate boom(s) 142 and a distal boom 143 . The boom 14 is configured to extend and retract based on the power of the telescopic cylinder 63 arranged inside. A sheave is arranged on the boom head 144 at the tip of the tip boom 143 . A wire 16 is wound around the sheave. A hook 17 is suspended from the tip of the wire 16 .
 基端ブーム141の付け根部は、旋回台12に設置された支持軸に回動自在に取り付けられている。基端ブーム141は、支持軸を回転中心として上下に起伏できるように構成されている。そして、旋回台12と基端ブーム141の下面との間には、起伏シリンダ62が架け渡されている。ブーム14は、起伏シリンダ62の伸縮に基づいて起伏するように構成されている。 A base portion of the base end boom 141 is rotatably attached to a support shaft installed on the swivel base 12 . The base end boom 141 is configured to be able to move up and down with the support shaft as the center of rotation. A hoisting cylinder 62 is bridged between the swivel base 12 and the lower surface of the base end boom 141 . The boom 14 is configured to be raised and lowered based on the extension and contraction of the raising and lowering cylinders 62 .
 (制御系の構成)
 次に、図3のブロック図を用いて、本実施形態の地切り制御装置Dの制御系の構成について説明する。地切り制御装置Dは、制御部としてのコントローラ40を中心として構成されている。コントローラ40は、入力ポート、出力ポート、演算装置などを有する汎用の(マイクロ)コンピュータである。コントローラ40は、実体的には、CPU、ROM、RAM、及びHDD等がバスで接続される構成、又は、ワンチップのLSI等からなる構成であってよい。
(Control system configuration)
Next, the configuration of the control system of the ground breaking control device D of this embodiment will be described using the block diagram of FIG. The ground-breaking control device D is mainly composed of a controller 40 as a control section. The controller 40 is a general-purpose (micro)computer having input ports, output ports, arithmetic units and the like. The controller 40 may have a configuration in which a CPU, a ROM, a RAM, an HDD, and the like are connected via a bus, or may be configured from a one-chip LSI or the like.
 また、本実施形態のコントローラ40は、操作レバー51~54(旋回レバー51、起伏レバー52、伸縮レバー53、及びウインチレバー54)からの操作信号を受けて、図示しない制御バルブを介してアクチュエータ61~64(旋回モータ61、起伏シリンダ62、伸縮シリンダ63、及びウインチモータ64)を制御する。 Further, the controller 40 of the present embodiment receives operation signals from the operating levers 51 to 54 (rotating lever 51, hoisting lever 52, telescopic lever 53, and winch lever 54), and controls the actuator 61 via a control valve (not shown). 64 (turning motor 61, hoisting cylinder 62, telescopic cylinder 63, and winch motor 64).
 さらに、本実施形態のコントローラ40には、地切り制御を開始/停止するための地切りスイッチ20と、地切り制御におけるウインチ13の速度を設定するためのウインチ速度設定手段21と、ブーム14に作用する荷重を計測する荷重計測手段22と、ブーム14の姿勢を検出するための姿勢検出手段23と、が接続されている。 Further, the controller 40 of this embodiment includes a ground-off switch 20 for starting/stopping the ground-off control, a winch speed setting means 21 for setting the speed of the winch 13 in the ground-off control, and a A load measuring means 22 for measuring the acting load and an attitude detecting means 23 for detecting the attitude of the boom 14 are connected.
 地切りスイッチ20は、地切り制御の開始又は停止を指示するための入力機器である。地切りスイッチ20は、例えば、ラフテレーンクレーン1の安全装置に付加される構成であってもよい。地切りスイッチ20は、操縦席18に配置されることが好ましい。 The ground breaking switch 20 is an input device for instructing the start or stop of ground breaking control. The ground breaking switch 20 may be configured to be added to the safety device of the rough terrain crane 1, for example. The ground switch 20 is preferably arranged in the cockpit 18 .
 ウインチ速度設定手段21は、地切り制御におけるウインチ13の速度を設定する入力機器である。ウインチ速度設定手段21は、あらかじめ設定された速度から適切な速度を選択する方式のものや、テンキーによって入力する方式のものがある。さらに、ウインチ速度設定手段21は、地切りスイッチ20と同様に、ラフテレーンクレーン1の安全装置に付加される構成であってもよい。ウインチ速度設定手段21は、操縦席18に配置されることが好ましい。ウインチ速度設定手段21によってウインチ13の速度を調整することで、地切り制御に要する時間を調整することができる。 The winch speed setting means 21 is an input device that sets the speed of the winch 13 in ground clearance control. The winch speed setting means 21 has a method of selecting an appropriate speed from preset speeds, and a method of inputting with a numeric keypad. Further, the winch speed setting means 21 may be configured to be added to the safety device of the rough terrain crane 1, like the ground breaking switch 20. The winch speed setting means 21 is preferably arranged in the cockpit 18 . By adjusting the speed of the winch 13 by the winch speed setting means 21, the time required for the ground breaking control can be adjusted.
 荷重計測手段22は、ブーム14に作用する荷重を計測する計測機器である。荷重計測手段22は、例えば、起伏シリンダ62に作用する圧力を計測する圧力計22により構成されてよい。圧力計22によって計測された圧力信号は、コントローラ40に伝送される。 The load measuring means 22 is a measuring device that measures the load acting on the boom 14 . The load measuring means 22 may be composed of, for example, a pressure gauge 22 that measures the pressure acting on the hoisting cylinder 62 . A pressure signal measured by the pressure gauge 22 is transmitted to the controller 40 .
 姿勢検出手段23は、ブーム14の姿勢を検出する計測機器である。姿勢検出手段23は、ブーム14の起伏角度を計測する起伏角度計231と、起伏角速度を計測する起伏角速度計232と、ブーム14の長さ(全長)を計測する長さ計測器233と、から構成される。 The attitude detection means 23 is a measuring device that detects the attitude of the boom 14. The posture detection means 23 comprises a hoisting angle meter 231 for measuring the hoisting angle of the boom 14, a hoisting angular velocity meter 232 for measuring the hoisting angular velocity, and a length measuring instrument 233 for measuring the length (total length) of the boom 14. Configured.
 具体的には、起伏角度計231としては、ポテンショメータを用いることができる。又、起伏角速度計232としては、起伏シリンダ15に取り付けられたストロークセンサを用いることができる。 Specifically, a potentiometer can be used as the undulation angle meter 231 . A stroke sensor attached to the hoisting cylinder 15 can be used as the hoisting angular velocity meter 232 .
 さらに、長さ計測器233は、コードと巻取リールと回転変位計とから構成されてよい。なお、後述するように、起伏角速度のFF制御(フィードフォワード制御)には、荷重計測手段22によって計測された荷重に基づいて計算された予測値が使用される。 Furthermore, the length measuring instrument 233 may be composed of a cord, a take-up reel, and a rotary displacement meter. As will be described later, a predicted value calculated based on the load measured by the load measuring means 22 is used for FF control (feedforward control) of the hoisting angular velocity.
 起伏角度計231によって計測された起伏角度信号、起伏角速度計232によって計測された起伏角速度信号、及び、長さ計測器233によって計測された長さ信号は、コントローラ40に伝送される。 The hoisting angle signal measured by the hoisting angle meter 231, the hoisting angular velocity signal measured by the hoisting angular velocity meter 232, and the length signal measured by the length measuring instrument 233 are transmitted to the controller 40.
 コントローラ40は、ブーム14及びウインチ13の作動を制御する制御部である。コントローラ40は、地切りスイッチ20がONにされることでウインチ13を巻上げて吊荷を地切りする際に、ブーム14の起伏角速度に基づくフィードフォワード制御(FF制御)、及び、ブーム14の起伏角又は作業半径に基づくフィードバック制御(FB制御)、の両方を同時に実行する。尚ブーム14の起伏角、及び、ブーム14の作業半径は、ブームの姿勢に関する情報の一例に該当する。 The controller 40 is a control unit that controls the operation of the boom 14 and the winch 13. The controller 40 performs feedforward control (FF control) based on the hoisting angular velocity of the boom 14 and hoisting of the boom 14 when the winch 13 is hoisted to lift off the suspended load by turning on the ground-off switch 20 . feedback control (FB control) based on angle or working radius, both are executed simultaneously. Note that the hoisting angle of the boom 14 and the working radius of the boom 14 correspond to an example of information regarding the attitude of the boom.
 換言すれば、コントローラ40は、地切り制御装置の一例に該当し、ブーム14により吊荷を搬送するクレーンに搭載される。コントローラ40は、フィードフォワード制御部及びフィードバック制御部を有する。このようなコントローラ40は、ブーム14の地切り動作を制御する制御部である。上記フィードフォワード制御部は、ブーム14の起伏角速度に基づいてFF制御信号(フィードフォワード制御信号)を生成する。又、フィードバック制御部は、ブーム14の姿勢に関する情報に基づいてFB制御信号(フィードバック制御信号)を生成する。そして、コントローラ40は、FF制御信号とFB制御信号とを足し合わせた制御信号に基づいて、ブーム14の起伏動作を制御する。このようなコントローラ40により実施される地切り制御については、後述する。 In other words, the controller 40 corresponds to an example of a ground-breaking control device, and is mounted on a crane that transports a suspended load by means of the boom 14. The controller 40 has a feedforward controller and a feedback controller. The controller 40 as described above is a control unit that controls the ground cutting operation of the boom 14 . The feedforward control section generates an FF control signal (feedforward control signal) based on the hoisting angular velocity of the boom 14 . Also, the feedback control unit generates an FB control signal (feedback control signal) based on information regarding the attitude of the boom 14 . The controller 40 controls the hoisting motion of the boom 14 based on the control signal obtained by adding the FF control signal and the FB control signal. Ground breaking control performed by such a controller 40 will be described later.
 起伏角速度のFF制御は、荷重計測手段22によって計測された荷重の時間変化に基づいて、ブーム14の起伏角度の変化量を予測し、この予測された変化量を補うようにブーム14を起仰させる。すなわち、後述する式3に示すように、起伏角速度は、起伏角度の変化量として、荷重の時間変化(微分)に基づいて計算(予測・推定)される。 The FF control of the hoisting angular velocity predicts the amount of change in the hoisting angle of the boom 14 based on the time change of the load measured by the load measuring means 22, and raises the boom 14 so as to compensate for this predicted amount of change. Let That is, as shown in Equation 3, which will be described later, the hoisting angular velocity is calculated (predicted/estimated) as the amount of change in the hoisting angle based on the time change (differential) of the load.
 起伏角に基づくFB制御において、コントローラ40は、荷重計測手段22によって計測された荷重に基づいて、ブーム14の目標起伏角を算出する。そして、コントローラ40は、算出した目標起伏角となるように、ブーム14の起伏角を追従させる。起伏角は、計測された起伏角速度から換算されてよい。 In the FB control based on the hoisting angle, the controller 40 calculates the target hoisting angle of the boom 14 based on the load measured by the load measuring means 22 . Then, the controller 40 causes the hoisting angle of the boom 14 to follow the calculated target hoisting angle. The hoisting angle may be converted from the measured hoisting angular velocity.
 作業半径に基づくFB制御において、コントローラ40は、制御開始時の作業半径(以下、「目標作業半径」とも称する。)を記憶部(不図示)に記憶する。そして、コントローラ40は、この作業半径を一定に保持するように、ブーム14の起伏角を追従させる。ここにおいて、作業半径は、起伏角度計231で計測されたブーム14の起伏角度と、長さ計測器233で計測されたブーム14の長さと、荷重計測手段(圧力計)22によって計測された圧力(撓み計算に用いられる)と、を用いて、幾何学的な関係に基づいて計算される。 In the FB control based on the working radius, the controller 40 stores the working radius at the start of control (hereinafter also referred to as "target working radius") in a storage unit (not shown). The controller 40 then follows the hoisting angle of the boom 14 so as to keep this working radius constant. Here, the working radius is the hoisting angle of the boom 14 measured by the hoisting angle meter 231, the length of the boom 14 measured by the length measuring device 233, and the pressure measured by the load measuring means (pressure gauge) 22. (used for deflection calculations) and are calculated based on geometric relationships using .
 より具体的に言うと、コントローラ40は、前述したFF制御及びFB制御を実施するための機能部として、FF制御とFB制御の併用機能部40aと、実際に地切りされたか否かを判定することによって地切り制御を停止させる地切り判定機能部40bと、を有している。併用機能部40aは、上述のフィードフォワード制御部及びフィードフォワード制御部を含む。 More specifically, the controller 40 includes a combined function unit 40a for FF control and FB control as function units for performing the above-described FF control and FB control, and a function unit 40a for determining whether or not the ground has actually been cut off. and a ground breaking determination function unit 40b that stops the ground breaking control. The combined function section 40a includes the feedforward control section and the feedforward control section described above.
 併用機能部40aは、荷重計測手段としての圧力計22からの圧力の初期値と、姿勢計測手段としての起伏角度計23からの起伏角度の初期値と、の入力を受けて、適用する特性テーブル又は伝達関数を決定する。ここにおいて、伝達関数としては、以下のように、線形係数aを用いた関係を適用することができる。 The combined function unit 40a receives the input of the initial value of the pressure from the pressure gauge 22 as the load measuring means and the initial value of the hoisting angle from the hoisting angle meter 23 as the posture measuring means, and applies the characteristics table. Or determine the transfer function. Here, as a transfer function, a relationship using a linear coefficient a can be applied as follows.
(FF制御で用いられる線形係数の導出)
 まず、図9の荷重-起伏角のグラフに示すように、荷振れが生じないようにブーム先端位置が常に吊荷の真上にくるように調整した場合に、荷重と起伏角(先端対地角度)は線形の関係にあることがわかっている。地切り中に、時刻tから時刻tの間に荷重LoadがLoadへ変化したと仮定すると、起伏角と荷重との関係は、下記式1により表される。
(Derivation of linear coefficients used in FF control)
First, as shown in the graph of load vs. hoisting angle in Fig. 9, when the tip of the boom is adjusted so that it is always directly above the suspended load so that the load does not sway, the load and the hoisting angle (tip ground angle ) are known to be linearly related. Assuming that the load Load 1 changes to Load 2 from time t1 to time t2 during ground cutting, the relationship between the hoisting angle and the load is expressed by Equation 1 below.
Figure JPOXMLDOC01-appb-M000001
 2式の差から、θとθとの差分を求めると、下記式2により表される。
Figure JPOXMLDOC01-appb-M000001
When the difference between θ 2 and θ 1 is obtained from the difference in the two expressions, it is expressed by the following expression 2.
Figure JPOXMLDOC01-appb-M000002
 起伏角を制御するためには、起伏角速度を与える必要がある。
Figure JPOXMLDOC01-appb-M000002
In order to control the luffing angle, it is necessary to give the luffing angular velocity.
Figure JPOXMLDOC01-appb-M000003
 ここで、aは定数(線形係数)である。すなわち、起伏角制御(起伏角速度のFF制御)は、荷重の時間変化(微分)が入力になる。
Figure JPOXMLDOC01-appb-M000003
where a is a constant (linear coefficient). That is, the hoisting angle control (FF control of the hoisting angular velocity) is input with the time change (differential) of the load.
(FB制御で用いられる目標起伏角の導出)
 特性計測の結果によれば、たわみ角の変化は梁モデルによって近似できることがわかった。安全装置(制御装置)の荷重と実荷重のずれを考慮すると、たわみ角は以下のように表される。
Figure JPOXMLDOC01-appb-M000004
 W:荷重
 L:ブーム長
 R:作業半径―ブーム根元ピン位置
 K:線形係数(作業半径、長さの関数)
(Derivation of target hoist angle used in FB control)
According to the result of characteristic measurement, it was found that the change of deflection angle can be approximated by the beam model. Considering the difference between the load of the safety device (control device) and the actual load, the deflection angle is expressed as follows.
Figure JPOXMLDOC01-appb-M000004
W: load L: boom length R: working radius - boom base pin position K: linear coefficient (function of working radius and length)
 具体的には、補正起伏角量の推定式は次式となる。
Figure JPOXMLDOC01-appb-M000005
 W:荷重
 L:ブーム長
 R:作業半径―ブーム根元ピン位置
 CBM:ブーム状態のLA/RAモデル係数
Specifically, the estimation formula for the corrected hoisting angle amount is the following formula.
Figure JPOXMLDOC01-appb-M000005
W: Load L: Boom length R: Working radius - Boom base pin position C BM : LA/RA model factor of boom state
(理論のまとめ)
 上述したように、角速度(起伏角速度)を用いたFF制御と、角度(起伏角)を用いたFB制御と、を併用することによって、地切り制御の精度を向上させることができる。すなわち、即応性は角速度情報を用いたFF制御、外乱に対するロバスト性は角度情報を用いたFB制御で担保される。
Figure JPOXMLDOC01-appb-M000006
(Summary of theory)
As described above, it is possible to improve the accuracy of the ground cutting control by using both the FF control using the angular velocity (the hoisting angular velocity) and the FB control using the angle (the hoisting angle). That is, responsiveness is secured by FF control using angular velocity information, and robustness against disturbance is secured by FB control using angular information.
Figure JPOXMLDOC01-appb-M000006
 地切り判定機能部40bは、荷重計測手段としての圧力計22からの圧力信号から計算した荷重の値の時系列データを監視し、地切りの有無を判定する。地切り判定の手法については、図8を用いて後述する。 The ground breaking determination function unit 40b monitors the time-series data of the load value calculated from the pressure signal from the pressure gauge 22 as the load measuring means, and determines the presence or absence of the ground breaking. A ground crossing determination method will be described later with reference to FIG.
(全体のブロック線図)
 次に、図4のブロック線図を用いて、本実施形態の地切り制御を含む全体の要素間の入力・出力関係を説明する。まず、荷重変化算出部71において、荷重計測手段22によって計測された荷重の時系列データに基づいて荷重変化が計算される。計算された荷重変化は、目標軸速度算出部72に入力される。目標軸速度算出部72における入力・出力関係については、図5を用いて後述する。
(Overall block diagram)
Next, using the block diagram of FIG. 4, the input/output relationship between all the elements including the ground breaking control of this embodiment will be described. First, the load change calculator 71 calculates the load change based on the time-series data of the load measured by the load measuring means 22 . The calculated load change is input to the target shaft speed calculator 72 . The input/output relationship in the target shaft speed calculator 72 will be described later with reference to FIG.
 目標軸速度算出部72では、起伏角の初期値と、設定ウインチ速度と、入力された荷重変化と、に基づいて、目標軸速度が算出される。目標軸速度は、ここでは、目標起伏角速度(及び、必須ではないが、目標ウインチ速度)である。算出された目標軸速度は、軸速度コントローラ73に入力される。ここまでの前半部分の制御が、FF制御に関する処理である。 The target shaft speed calculation unit 72 calculates the target shaft speed based on the initial value of the hoisting angle, the set winch speed, and the input load change. The target shaft speed is now the target luffing angular speed (and, optionally, the target winch speed). The calculated target shaft speed is input to the shaft speed controller 73 . The first half of the control up to this point is the processing related to the FF control.
 その後、軸速度コントローラ73、軸速度の操作量変換処理部74を経て操作量が制御対象75に入力される。この後半部分の制御は、FB制御に関する処理である。FB制御において、計測された起伏角速度がフィードバックされる。このようなFB制御において、フィードバックされた起伏角速度から起伏角が算出される。尚、図4では、計測された起伏角速度がフィードバックされている。ただし、計測された起伏角速度から算出された起伏角が、フィードバックされてもよい。 After that, the operation amount is input to the controlled object 75 through the axis speed controller 73 and the axis speed operation amount conversion processing unit 74 . The latter half of the control is processing related to FB control. In FB control, the measured hoisting angular velocity is fed back. In such FB control, the hoisting angle is calculated from the hoisting angular velocity fed back. In FIG. 4, the measured hoisting angular velocity is fed back. However, the hoisting angle calculated from the measured hoisting angular velocity may be fed back.
 (FF制御及びFB制御(起伏角に基づく)のブロック線図)
 次に、図5のブロック線図を用いて、本実施形態のフィードフォワード制御(FF制御)とフィードバック制御(起伏角に基づくFB制御)の並行処理について、より具体的な入出力関係を詳細に説明する。
(Block diagram of FF control and FB control (based on undulation angle))
Next, using the block diagram of FIG. 5, a more specific input/output relationship for parallel processing of feedforward control (FF control) and feedback control (FB control based on undulation angle) in this embodiment will be described in detail. explain.
 FF制御では、図示しないが、初期のクレーン姿勢が、併用機能部40a(図3参照)に入力される。併用機能部40aでは、特性テーブル又は伝達関数を使用して、最も適切な定数(線形係数)aが選択される。その後、数値微分部81において、荷重変化の数値微分(時間に関する微分)が実施されて、換算部82で初期のクレーン姿勢から求められた定数aを乗ずることで、目標起伏角速度が計算される。すなわち、上記式3の計算が実行される。 In the FF control, although not shown, the initial crane posture is input to the combined function section 40a (see FIG. 3). The combined function unit 40a selects the most appropriate constant (linear coefficient) a using a characteristic table or a transfer function. After that, the numerical differentiation unit 81 performs numerical differentiation of the load change (differentiation with respect to time), and the conversion unit 82 multiplies the constant a obtained from the initial crane attitude to calculate the target hoisting angular velocity. That is, the calculation of Equation 3 above is executed.
 FB制御では、起伏角が直接的に計測されるか、又は、起伏角速度の数値積分が実施されて起伏角度に換算されて、起伏角度変化量が求められる。一方で、換算部83において、初期のクレーン姿勢から求められた定数aと荷重値の時間変化に基づいて、目標起伏角補正量が計算される。すなわち、上記式(4)及び式(5)の計算が実行される。そして、この目標起伏角補正量に基づいて、起伏角をフィードバック制御する。このFB制御において、例えば、図5に示すPD制御することや、PID制御することが好ましい。 In the FB control, the hoisting angle is directly measured, or the hoisting angular velocity is numerically integrated and converted into a hoisting angle to obtain the hoisting angle change amount. On the other hand, in the conversion unit 83, the target hoisting angle correction amount is calculated based on the constant a obtained from the initial crane attitude and the time change of the load value. That is, the calculations of formulas (4) and (5) above are executed. Then, the hoisting angle is feedback-controlled based on this target hoisting angle correction amount. In this FB control, for example, PD control shown in FIG. 5 or PID control is preferable.
 その後、FF制御で得られた目標起伏角速度と、FB制御で得られた目標起伏角速度と、を加え合わせてフィルタ処理することで、起伏角速度制御信号とする。すなわち、上述した処理において、上記式(6)の計算が実行される。 After that, the target hoisting angular velocity obtained by FF control and the target hoisting angular velocity obtained by FB control are added together and filtered to obtain a hoisting angular velocity control signal. That is, in the processing described above, the calculation of the above equation (6) is performed.
 (FF制御及びFB制御(作業半径に基づく)のブロック線図)
 同様に、図6のブロック線図を用いて、本実施形態のフィードフォワード制御(FF制御)とフィードバック制御(作業半径に基づくFB制御)の並行処理について、より具体的な入出力関係を詳細に説明する。
(Block diagram of FF control and FB control (based on working radius))
Similarly, using the block diagram of FIG. 6, a more specific input/output relationship for parallel processing of feedforward control (FF control) and feedback control (FB control based on working radius) in this embodiment will be described in detail. explain.
 FF制御では、図示しないが、初期のクレーン姿勢が、併用機能部40a(図3参照)に入力される。併用機能部40aでは、特性テーブル又は伝達関数を使用して、最も適切な定数(線形係数)aが選択される。そして、数値微分部81において、荷重変化の数値微分(時間に関する微分)が実施されて、換算部82で初期のクレーン姿勢から求められた定数aを乗ずることで、目標起伏角速度が計算される。すなわち、上記式(3)の計算が実行される。 In the FF control, although not shown, the initial crane posture is input to the combined function section 40a (see FIG. 3). The combined function unit 40a selects the most appropriate constant (linear coefficient) a using a characteristic table or a transfer function. Then, the numerical differentiation unit 81 performs numerical differentiation of the load change (differentiation with respect to time), and the conversion unit 82 multiplies the result by the constant a obtained from the initial crane attitude to calculate the target hoisting angular velocity. That is, the calculation of the above formula (3) is executed.
 FB制御では、作業半径が計測される。すなわち、ブーム14の長さ、ブーム14の起伏角度、及び荷重(圧力)の計測値を用いて、幾何学的な関係に基づいて作業半径が求められる。そして、求められた作業半径は、起伏角変換部83Aにおいて起伏角に変換される。一方、作業半径の初期値(制御開始時の作業半径)が目標値(目標作業半径とも称する。)として記憶されており、起伏角変換部83Bにおいて目標起伏角に変換される。そして、この目標起伏角となるように、起伏角をフィードバック制御する。このFB制御において、例えば、図6に示すPD制御することや、PID制御することが好ましい。  In FB control, the working radius is measured. That is, using the length of the boom 14, the hoisting angle of the boom 14, and the measured values of the load (pressure), the working radius is determined based on the geometric relationship. Then, the calculated working radius is converted into an undulation angle in the undulation angle converting section 83A. On the other hand, the initial value of the working radius (working radius at the start of control) is stored as a target value (also referred to as a target working radius), and is converted into a target hoisting angle in the hoisting angle converter 83B. Then, the hoisting angle is feedback-controlled so as to achieve the target hoisting angle. In this FB control, for example, PD control shown in FIG. 6 or PID control is preferable.
 その後、FF制御で得られた目標起伏角速度(以下、「FF制御信号」とも称する。)と、FB制御で得られた目標起伏角速度(以下、「FB制御信号」とも称する。)と、を加え合わせてフィルタ処理することで、起伏角速度制御信号とする。すなわち、上述した処理において、上記式(6)の計算が実行される。 After that, the target hoisting angular velocity obtained by FF control (hereinafter also referred to as "FF control signal") and the target hoisting angular velocity obtained by FB control (hereinafter also referred to as "FB control signal") are added. A hoisting angular velocity control signal is obtained by filtering together. That is, in the processing described above, the calculation of the above equation (6) is performed.
 なお、上述した作業半径に基づくフィードバック制御において、「作業半径」は、その都度計算するのではなく、クレーンの個体ごとに実測値から作成されたデータ(安全装置中に荷重―撓み(作業半径)のデータ(テーブル)として保持される)を用いることが好ましい。 In the feedback control based on the working radius described above, the "working radius" is not calculated each time, but data created from actual measurements for each individual crane (load in the safety device - deflection (working radius) data (table)) is preferably used.
 (フローチャート)
 次に、図7のフローチャートを用いて、本実施形態の地切り制御の全体の流れについて説明する。
(flowchart)
Next, the overall flow of ground breaking control according to this embodiment will be described with reference to the flowchart of FIG.
 はじめに、オペレータが地切りスイッチ20を押すことで地切り制御が開始される(START)。このとき、地切り制御の開始前に又は開始後に、ウインチ速度設定手段21を介して、ウインチ13の目標速度が設定される。そうすると、コントローラ40は、一定の目標速度で、ウインチ制御(巻上げ)を開始する(ステップS1)。 First, the operator presses the ground breaking switch 20 to start the ground breaking control (START). At this time, the target speed of the winch 13 is set via the winch speed setting means 21 before or after the start of ground-off control. Then, the controller 40 starts winch control (hoisting) at a constant target speed (step S1).
 次に、ウインチ13が巻上げられると同時に、荷重計測手段22によって吊荷荷重計測が開始されて、コントローラ40に荷重値が入力される(ステップS2)。そうすると、併用機能部40aでは、荷重の初期値と、姿勢計測手段としての起伏角度計23からの起伏角度の初期値と、の入力を受けて、適用する特性テーブル又は伝達関数が決定される(ステップS31)。 Next, at the same time that the winch 13 is hoisted, the load measuring means 22 starts measuring the suspended load, and the load value is input to the controller 40 (step S2). Then, the combined function unit 40a receives the input of the initial value of the load and the initial value of the hoisting angle from the hoisting goniometer 23 as the posture measuring means, and determines the characteristic table or transfer function to be applied ( step S31).
 次に、コントローラ40では、適用される特性テーブル又は伝達関数と、荷重変化と、に基づいて、起伏角速度が算出される(ステップS32)。すなわち、起伏角速度がフィードフォワード制御される。 Next, the controller 40 calculates the hoisting angular velocity based on the applied characteristic table or transfer function and the load change (step S32). That is, the hoisting angular velocity is feedforward controlled.
 このステップS31及びステップS32と並行して、起伏角がフィードバック制御される(ステップS4)。すなわち、コントローラ40は、計測された起伏角速度に基づいて時々刻々の起伏角を算出し、それと同時に計測された荷重値に基づいて時々刻々の目標起伏角を算出する。そして、起伏角が目標起伏角となるように、起伏シリンダ62を制御する。あるいは、コントローラ40は、制御開始時の作業半径を記憶して、記憶された初期作業半径を一定に保つように、起伏シリンダ62を制御する。 In parallel with steps S31 and S32, the undulation angle is feedback-controlled (step S4). That is, the controller 40 calculates the hoisting angle every moment based on the measured hoisting angular velocity, and calculates the target hoisting angle every moment based on the load value that is measured at the same time. Then, the hoisting cylinder 62 is controlled so that the hoisting angle becomes the target hoisting angle. Alternatively, the controller 40 stores the working radius at the start of control and controls the luffing cylinder 62 so as to keep the stored initial working radius constant.
 実際の処理では、起伏角をFB制御しようとして算出された起伏角速度と、起伏角速度のFF制御で算出された起伏角速度と、を足し合わせて、起伏シリンダ62の制御信号を作成することで、FF制御とFB制御を併用するようになっている(上記式6参照)。 In the actual process, the hoisting angular velocity calculated for the FB control of the hoisting angle and the hoisting angular velocity calculated by the FF control of the hoisting angular velocity are added together to create a control signal for the hoisting cylinder 62, thereby generating an FF The control and the FB control are used together (see Equation 6 above).
 そして、計測されている荷重の時系列データに基づいて地切りの有無が判定される(ステップS5)。なお、判定手法については後述する。判定の結果、地切りされていない場合は(ステップS5においてNO)、ステップS2へ戻って、荷重に基づくフィードフォワード制御とフィードバック制御の併用制御を繰り返す(ステップS2~ステップS5)。 Then, the presence or absence of ground breaking is determined based on the time-series data of the measured load (step S5). Note that the determination method will be described later. As a result of the determination, if the ground has not been cut off (NO in step S5), the process returns to step S2, and the combination control of feedforward control and feedback control based on the load is repeated (steps S2 to S5).
 判定の結果、地切りされている場合は(ステップS5においてYES)、地切り制御を緩停止する(ステップS6)。すなわち、ウインチモータによるウインチ13の回転駆動速度を落としつつ、起伏シリンダ62による起伏駆動速度を落としながら、地切り制御を停止する。 As a result of the determination, if the ground has been cut (YES in step S5), the ground cut control is gently stopped (step S6). That is, the ground cutting control is stopped while reducing the rotational drive speed of the winch 13 by the winch motor and the hoisting drive speed of the hoisting cylinder 62 .
 (地切り判定)
 次に、図8のグラフを用いて、本実施形態の地切り判定の手法について説明する。本実施形態では、コントローラ40は、地切り制御においてウインチ13を巻き上げている途中に、計測された荷重の時系列データを監視しており、この時系列データの最初の極大値を捉えて地切りしたものと判定するようにされている。
(ground breaking judgment)
Next, the ground breaking determination method of the present embodiment will be described using the graph of FIG. In this embodiment, the controller 40 monitors the time-series data of the load measured while the winch 13 is being hoisted in the ground-breaking control. It is determined that the
 より具体的に言うと、図8に示すように、一般に、荷重データの時系列をとると、地切りした次の瞬間にオーバーシュートし、さらにアンダーシュートし、その後、振動し続けるように推移する。したがって、振動の最初の山の頂点の時刻、すなわち、最初の極大値、を捉えることで、地切りが完了したことを判定することができる。ただし、実際には、地切りしていると判定した時刻である、最初の極大値を記録した時刻では、慣性力を受けてややオーバーシュートしている状態と考えられる。 More specifically, as shown in FIG. 8, in general, when taking the time series of load data, it overshoots and undershoots at the moment after ground breaking, and then continues to vibrate. . Therefore, it can be determined that the ground breaking is completed by catching the time of the peak of the first peak of the vibration, that is, the first maximum value. However, in reality, at the time when the first maximum value is recorded, which is the time when it is determined that the ground is off, it is considered that there is a slight overshoot due to the inertial force.
 (効果)
 次に、本実施形態の地切り制御装置Dの奏する効果を列挙して説明する。
(effect)
Next, the effects of the ground breaking control device D of the present embodiment will be listed and described.
 (1)上述してきたように、本実施形態の地切り制御装置Dは、ブーム14と、ウインチ13と、荷重計測手段22と、制御部(コントローラ40)であってウインチ13を巻上げて吊荷を地切りする際に、ブーム14の起伏角速度に基づくフィードフォワード制御、及び、ブーム14の姿勢に基づくフィードバック制御、の両方に基づいて制御する、制御部(コントローラ40)と、を備えている。このように、FF制御とFB制御とを併用することによって、荷振れを抑制しつつ、迅速に吊荷を地切りすることのできる地切り制御装置Dとなる。特に、FB制御を併用することによって、地切り制御のロバスト性を向上させることができる。 (1) As described above, the ground-clearing control device D of the present embodiment includes the boom 14, the winch 13, the load measuring means 22, and the controller (controller 40), which hoists the winch 13 and lifts the load. and a control unit (controller 40) that performs control based on both feedforward control based on the hoisting angular velocity of the boom 14 and feedback control based on the posture of the boom 14 when cutting off the ground. In this way, by using both the FF control and the FB control, the ground-off control device D is capable of quickly off-loading the suspended load while suppressing the swinging of the load. In particular, by using FB control together, the robustness of ground breaking control can be improved.
 つまり、フィードフォワード制御のみでは、モデル誤差や外乱の影響に対応できない場合がある。しかしながら、フィードバック制御を併用することで、モデル誤差や外乱が生じた場合でも、状況に即応して荷振れなく自動で地切りすることができる。 In other words, feedforward control alone may not be able to deal with the effects of model errors and disturbances. However, by using feedback control together, even if a model error or disturbance occurs, it is possible to immediately respond to the situation and automatically cut off the ground without swinging the load.
(2)また、起伏角速度に基づくフィードフォワード制御において、起伏角速度は、荷重計測手段22によって計測された荷重の時間変化に基づいて起伏角度の変化量として計算され、該変化量を補うようにブーム14を起仰させるようになっている。このように、地切り制御装置Dは、荷重と起伏角速度補正量がモデル化された関数を用いるため、調整工数や計算負荷が小さくなる。加えて、荷重変化やロープ長などの従来計測していた手法よりも、目標値が明確になるため、フック揺れ(移動)をより抑えられる。 (2) In addition, in the feedforward control based on the hoisting angular velocity, the hoisting angular velocity is calculated as the amount of change in the hoisting angle based on the time change of the load measured by the load measuring means 22, and the boom is adjusted to compensate for the amount of change. 14 is raised up. In this manner, since the ground-off control device D uses a function in which the load and the hoisting angular velocity correction amount are modeled, the number of man-hours for adjustment and the calculation load are reduced. In addition, since the target value is clearer than the conventional method of measuring load change and rope length, hook swing (movement) can be further suppressed.
(3)また、ブーム14の姿勢に基づくフィードバック制御は、ブーム14の起伏角に基づくフィードバック制御であることが好ましい。そうすれば、FF制御で用いられる線形係数を利用して、荷重変化に合わせた時々刻々の目標起伏角を算出できる。この目標起伏角を目標値として、計測された起伏角度とのズレを補償するようにFB制御を実施することでロバスト性を高めることができるのである。主に、アクチュエータの応答遅れ、外乱の補償に効果がある。 (3) Feedback control based on the attitude of the boom 14 is preferably feedback control based on the hoisting angle of the boom 14 . Then, by using the linear coefficients used in the FF control, it is possible to calculate the momentary target hoisting angle in accordance with the load change. Robustness can be enhanced by performing FB control so as to compensate for the deviation from the measured hoisting angle using this target hoisting angle as a target value. It is mainly effective in compensating for response delay of the actuator and disturbance.
(4)さらに、起伏角のフィードバック制御において、制御の目標となる目標起伏角は、荷重計測手段22によって計測された荷重に基づいて計算されるようになっている。このように、地切り制御装置Dは、荷重と起伏角補正量がモデル化された関数を用いるため、調整工数や計算負荷が小さくなる。 (4) Further, in the feedback control of the hoisting angle, the target hoisting angle, which is the target of the control, is calculated based on the load measured by the load measuring means 22 . In this way, the ground breaking control device D uses a function in which the load and the hoisting angle correction amount are modeled, so the number of man-hours for adjustment and the calculation load are reduced.
(5)また、ブーム14の姿勢に基づくフィードバック制御は、ブーム14の作業半径に基づくフィードバック制御であることが好ましい。このように構成すれば、FF制御とは別のより多くの計測値(パラメータ)を用いてFB制御できるため、より精度よく制御することが可能となる。 (5) Feedback control based on the attitude of the boom 14 is preferably feedback control based on the working radius of the boom 14 . With this configuration, FB control can be performed using more measured values (parameters) than FF control, so control can be performed with higher accuracy.
 さらに、上述の起伏角に基づくFB制御では、FF制御で用いられる関数(線形係数を含む)を利用できるメリットがある。一方、関数自体にモデル誤差を含んでいるために、完全にFF制御のモデル誤差を補償することはできない。主に、アクチュエータの応答遅れ、外乱の補償に効果がある。一方で、作業半径に基づくFB制御であれば、モデル誤差の要因がなくなるため、モデル誤差が大きい場合には有効な制御手段といえる。 Furthermore, the FB control based on the undulation angle described above has the advantage of being able to use the functions (including linear coefficients) used in FF control. On the other hand, since the function itself contains a model error, it is impossible to completely compensate for the model error of the FF control. It is mainly effective in compensating for response delay of the actuator and disturbance. On the other hand, since the FB control based on the working radius eliminates the factor of the model error, it can be said to be an effective control means when the model error is large.
(6)また、ブーム14の作業半径に基づくフィードバック制御において、制御の目標となる目標作業半径は、制御開始時の作業半径が記憶されて使用されるようになっていることが好ましい。このように構成すれば、実測値(幾何学的な計算は含む)のみに用いて制御できるため、モデル誤差の影響を排除することができる。 (6) Further, in the feedback control based on the working radius of the boom 14, it is preferable that the working radius at the start of control is stored and used as the target working radius which is the target of the control. With such a configuration, control can be performed using only actual measured values (including geometric calculations), so the influence of model errors can be eliminated.
(7)さらに、本実施形態の地切り制御装置Dは、ウインチ13を巻上げて吊荷を地切りする際に、計測された荷重の時系列データを監視し、時系列データの最初の極大値を捉えて地切りしたと判定するようにされている。このように荷重のみに基づいて制御することによって、簡易かつ迅速に地切りを判定することができる。 (7) Furthermore, the ground-clearing control device D of the present embodiment monitors the time-series data of the measured load when the winch 13 is hoisted to lift the suspended load, and the first maximum value of the time-series data It is determined that the ground has been cut off by capturing the By performing control based only on the load in this way, ground breaking can be determined easily and quickly.
(8)また、本実施形態の移動式クレーンであるラフテレーンクレーン1は、上述したいずれかの地切り制御装置Dを備えることで、荷振れを抑制しつつ、迅速に吊荷を地切りすることのできるラフテレーンクレーン1となる。 (8) In addition, the rough terrain crane 1, which is the mobile crane of the present embodiment, is provided with any of the above-described ground-clearing control devices D, thereby suppressing the swinging of the load and rapidly cutting the suspended load. It becomes the rough terrain crane 1 that can operate.
 また、地切り制御装置Dは、ウインチ13を巻上げて吊荷を地切りする際に、ウインチ13の速度を調整することによって、地切りに要する時間を調整するようにされていることが好ましい。このように構成すれば、吊荷の重量や環境条件に応じて適切なウインチ13の速度を選択することで、安全かつ効率よく作業することができる。 In addition, when the winch 13 is hoisted and the suspended load is cleared, the ground-clearing control device D preferably adjusts the time required for the ground-clearing by adjusting the speed of the winch 13. With this configuration, by selecting an appropriate speed of the winch 13 according to the weight of the suspended load and the environmental conditions, it is possible to work safely and efficiently.
 以上、図面を参照して、本発明の実施形態を詳述してきたが、具体的な構成は、この実施形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment. included.
 例えば、実施形態では、フィードバック制御の例として、起伏角に基づくモードと作業半径に基づくモードとに分けて説明したが、これらはいずれかのモードを選択可能に構成することが実用的である。 For example, in the embodiment, as an example of feedback control, a mode based on the undulation angle and a mode based on the working radius were described separately, but it is practical to configure one of these modes to be selectable.
 また、実施形態では、操縦席18に配置された地切りスイッチ20によって地切り制御が開始されるものとして説明したが、これに限定されるものではなく、タブレット等を用いて遠隔操作することも可能である。 Further, in the embodiment, the ground-breaking control is started by the ground-breaking switch 20 arranged in the cockpit 18, but it is not limited to this, and it is also possible to perform remote control using a tablet or the like. It is possible.
 また、実施形態では説明しなかったが、上述した起伏角速度のFF制御と、起伏角のFB制御と、に加えて、起伏角速度情報を用いた速度フィードバック制御をさらに併用することも可能である。 Also, although not described in the embodiment, in addition to the FF control of the hoisting angular velocity and the FB control of the hoisting angle, it is also possible to further use velocity feedback control using the hoisting angular velocity information.
 その他、実施形態では特に説明しなかったが、ウインチとしてメインウインチを使用して地切りする場合でも、サブウインチを使用して地切りする場合でも、本発明の地切り制御装置Dを適用することができる。 In addition, although not specifically described in the embodiment, the ground-clearing control device D of the present invention can be applied to both cases of ground-clearing using a main winch as a winch and using a sub winch for ground-clearing. can be done.
 2021年10月1日出願の特願2021-162599の日本出願に含まれる明細書、図面、及び要約書の開示内容は、すべて本願に援用される。 The disclosure contents of the specification, drawings, and abstract contained in the Japanese application of Japanese Patent Application No. 2021-162599 filed on October 1, 2021 are incorporated herein by reference.
 D 地切り制御装置
 a 線形係数
 1 ラフテレーンクレーン
 10 車体
 11 アウトリガ
 12 旋回台
 13 ウインチ
 14 ブーム
 141 基端ブーム
 142 中間ブーム
 143 先端ブーム
 144 ブームヘッド
 16 ワイヤ
 17 フック
 18 操縦席
 19 カウンタウェイト
 20 地切りスイッチ
 21 ウインチ速度設定手段
 22 圧力計(荷重計測手段)
 23 起伏角度計(姿勢検出手段)
 231 起伏角度計
 232 起伏角速度計
 233 長さ計測器
 40 コントローラ
 40a 併用機能部
 40b 地切り判定機能部
 51 旋回レバー
 52 起伏レバー
 53 伸縮レバー
 54 ウインチレバー
 61 旋回モータ
 62 起伏シリンダ
 63 伸縮シリンダ
 64 ウインチモータ
 71 荷重変化算出部
 72 目標軸速度算出部
 73 軸速度コントローラ
 74 操作量変換処理部
 75 制御対象
 81 数値微分部
 82、83 換算部
 83A、83B 起伏角変換部
D Ground-off control device a Linear coefficient 1 Rough terrain crane 10 Car body 11 Outrigger 12 Swivel base 13 Winch 14 Boom 141 Proximal boom 142 Intermediate boom 143 Tip boom 144 Boom head 16 Wire 17 Hook 18 Cockpit 19 Counterweight 20 Ground-off switch 21 winch speed setting means 22 pressure gauge (load measuring means)
23 hoist angle meter (posture detection means)
231 hoisting angle meter 232 hoisting angular velocity meter 233 length measuring instrument 40 controller 40a combined function unit 40b ground cutting determination function unit 51 turning lever 52 hoisting lever 53 telescopic lever 54 winch lever 61 turning motor 62 hoisting cylinder 63 telescopic cylinder 64 winch motor 71 Load change calculation unit 72 Target shaft speed calculation unit 73 Axis speed controller 74 Manipulated amount conversion processing unit 75 Controlled object 81 Numerical differentiation unit 82, 83 Conversion unit 83A, 83B Elevation angle conversion unit

Claims (8)

  1.  吊荷を搬送するクレーンであって、
     起伏可能に構成されるブームと、
     前記ブームの起伏動作を制御する制御部と、を備え、
     前記制御部は、前記吊荷の地切り制御時に、前記ブームの起伏角速度に基づくフィードフォワード制御とともに、前記ブームの姿勢に関する情報に基づくフィードバック制御を実施することにより、前記ブームの起伏動作を制御する、
     クレーン。
    A crane for transporting a suspended load,
    a boom configured to be hoistable;
    a control unit that controls the hoisting motion of the boom,
    The control unit controls the hoisting operation of the boom by performing feedforward control based on the hoisting angular velocity of the boom and feedback control based on information on the attitude of the boom when controlling the lifting of the load. ,
    crane.
  2.  前記ブームに作用する荷重を計測する荷重計測手段を、更に備え、
     前記制御部は、
      前記フィードフォワード制御において、前記荷重計測手段によって計測された前記荷重の時間変化に基づいて、前記起伏角速度である起伏角度の変化量を算出し、
      前記起伏角度の変化量を補うように前記ブームの起伏動作を制御する、
     請求項1に記載のクレーン。
    further comprising load measuring means for measuring the load acting on the boom,
    The control unit
    In the feedforward control, calculating the amount of change in the hoisting angle, which is the hoisting angular velocity, based on the time change of the load measured by the load measuring means;
    controlling the hoisting motion of the boom so as to compensate for the amount of change in the hoisting angle;
    A crane according to claim 1.
  3.  前記姿勢に関する情報は、前記ブームの起伏角である、請求項1に記載のクレーン。 The crane according to claim 1, wherein the information about the attitude is the hoisting angle of the boom.
  4.  前記制御部は、
      前記フィードバック制御において、前記ブームに作用する荷重に基づいて目標起伏角を算出し、
      算出した目標起伏角に追従するように前記ブームの起伏動作を制御する、
     請求項3に記載のクレーン。
    The control unit
    In the feedback control, calculating a target hoisting angle based on the load acting on the boom;
    controlling the hoisting motion of the boom so as to follow the calculated target hoisting angle;
    A crane according to claim 3.
  5.  前記姿勢に関する情報は、前記ブームの作業半径である、請求項1に記載のクレーン。 The crane according to claim 1, wherein the information about attitude is the working radius of the boom.
  6.  前記制御部は、
      前記地切り制御を開始した際の前記ブームの作業半径を目標作業半径として記憶し、
      前記地切り制御時に、前記目標作業半径を一定に保持するように前記起伏動作を制御する、請求項5に記載のクレーン。
    The control unit
    storing the working radius of the boom when the ground-breaking control is started as a target working radius;
    6. The crane according to claim 5, wherein the hoisting operation is controlled so as to keep the target working radius constant during the ground-clearing control.
  7.  前記制御部は、
      前記荷重計測手段により計測された荷重の時系列データを監視し、
      前記時系列データの最初の極大値を検知した場合に、地切りが完了したと判定する、
     請求項2に記載のクレーン。
    The control unit
    monitoring the time-series data of the load measured by the load measuring means;
    Determining that the ground breaking is completed when the first local maximum value of the time series data is detected,
    A crane according to claim 2.
  8.  ブームにより吊荷を搬送するクレーンに搭載される地切り制御装置であって、
     フィードフォワード制御部及びフィードバック制御部を有し、前記ブームの地切り動作を制御する制御部を有し、
      前記フィードフォワード制御部は、地切り制御時に、前記ブームの起伏角速度に基づいてFF制御信号を生成し、
     前記フィードバック制御部は、前記地切り制御時に、前記ブームの姿勢に関する情報に基づいてFB制御信号を生成し、
     前記制御部は、前記FF制御信号と前記FB制御信号とを足し合わせた制御信号に基づいて、前記ブームの起伏動作を制御する、地切り制御装置。
     
    A ground breaking control device mounted on a crane that transports a suspended load by a boom,
    Having a feedforward control unit and a feedback control unit, and having a control unit for controlling the ground cutting operation of the boom,
    The feedforward control unit generates an FF control signal based on the hoisting angular velocity of the boom during ground-cutting control,
    The feedback control unit generates an FB control signal based on information about the attitude of the boom during the ground-off control,
    The control unit controls the hoisting operation of the boom based on a control signal obtained by adding the FF control signal and the FB control signal.
PCT/JP2022/036310 2021-10-01 2022-09-28 Crane, and dynamic lift-off control device WO2023054534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162599 2021-10-01
JP2021162599 2021-10-01

Publications (1)

Publication Number Publication Date
WO2023054534A1 true WO2023054534A1 (en) 2023-04-06

Family

ID=85780709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036310 WO2023054534A1 (en) 2021-10-01 2022-09-28 Crane, and dynamic lift-off control device

Country Status (1)

Country Link
WO (1) WO2023054534A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284599A (en) * 1990-03-30 1991-12-16 Kobe Steel Ltd Perpendicular off-ground control device of hanging load on crane
JPH07187568A (en) * 1993-12-28 1995-07-25 Komatsu Ltd Control device for crane
JP2018087069A (en) * 2016-11-29 2018-06-07 株式会社タダノ crane
WO2020166721A1 (en) * 2019-02-14 2020-08-20 株式会社タダノ Dynamic lift-off control device, and crane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284599A (en) * 1990-03-30 1991-12-16 Kobe Steel Ltd Perpendicular off-ground control device of hanging load on crane
JPH07187568A (en) * 1993-12-28 1995-07-25 Komatsu Ltd Control device for crane
JP2018087069A (en) * 2016-11-29 2018-06-07 株式会社タダノ crane
WO2020166721A1 (en) * 2019-02-14 2020-08-20 株式会社タダノ Dynamic lift-off control device, and crane

Similar Documents

Publication Publication Date Title
EP4036045A1 (en) Control system and work machine
JP7484731B2 (en) Ground lift control device and crane
WO2023054534A1 (en) Crane, and dynamic lift-off control device
JP7396495B2 (en) Ground cutting control device and mobile crane
JP7323070B2 (en) Ground-breaking control device and crane
JPH0710469A (en) Control device for vertical dynamic lift-off of crane
JP7428146B2 (en) Ground cut determination device, ground cut control device, mobile crane, and ground cut determination method
JP7322901B2 (en) Ground-breaking control device and mobile crane
JP7435090B2 (en) Boom tip position prediction system
WO2021246491A1 (en) Dynamic lift-off control device, and crane
WO2020166689A1 (en) Dynamic lift-off assessment device, dynamic lift-off control device, and movable crane
JP2021187653A (en) Dynamic lift-off control device and mobile crane
CN111836774B (en) Crane and control method thereof
JP4856812B2 (en) Control device for work equipment
JP2019167166A (en) Winch control method and winch system using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE