WO2023054347A1 - Hydrogen generation system and power generation system - Google Patents

Hydrogen generation system and power generation system Download PDF

Info

Publication number
WO2023054347A1
WO2023054347A1 PCT/JP2022/035905 JP2022035905W WO2023054347A1 WO 2023054347 A1 WO2023054347 A1 WO 2023054347A1 JP 2022035905 W JP2022035905 W JP 2022035905W WO 2023054347 A1 WO2023054347 A1 WO 2023054347A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
generator
generation system
generated
hydrogen peroxide
Prior art date
Application number
PCT/JP2022/035905
Other languages
French (fr)
Japanese (ja)
Inventor
友和 戸澤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023054347A1 publication Critical patent/WO2023054347A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/027Preparation from water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/037Stabilisation by additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte

Definitions

  • the present invention relates to a hydrogen generation system and a power generation system.
  • Patent Document 1 a photocatalyst that decomposes water with sunlight to generate hydrogen is attracting attention.
  • the method of producing hydrogen raw materials using photocatalysts can generate hydrogen without emitting carbon dioxide by receiving sunlight and applying a voltage to the photocatalyst, so it has a lower environmental impact than the conventional method of producing hydrogen using fossil fuels. is small.
  • the amount of hydrogen that can be generated by photocatalysts is not sufficient compared to conventional hydrogen production methods that use fossil fuels, and further improvements in the amount of hydrogen generated have been desired.
  • an object of the present invention is to provide a hydrogen generation system that can generate hydrogen with higher efficiency than before and a power generation system that can reduce the amount of fossil fuel used compared to conventional power generation systems.
  • One aspect of the present invention for solving the above problems is a first hydrogen generator for generating hydrogen and hydrogen peroxide, and a hydrogen peroxide-containing solution containing hydrogen peroxide generated by the first hydrogen generator. and a storage device for storing the hydrogen produced by the first hydrogen generator and the hydrogen produced by the second hydrogen generator.
  • hydrogen and hydrogen peroxide are generated by the first hydrogen generator, and the hydrogen peroxide generated by the first hydrogen generator is decomposed by the second hydrogen generator to generate hydrogen.
  • Hydrogen can be generated more efficiently than when hydrogen is generated only by the hydrogen generator.
  • the first hydrogen generator has a first photocatalyst electrode and includes a first hydrogen generator that photolyzes the first electrolytic solution to generate hydrogen and hydrogen peroxide.
  • hydrogen and hydrogen peroxide can be generated by light energy, so the environmental load can be suppressed.
  • a more preferable aspect is that the first electrolytic solution is water.
  • the first hydrogen generator has a solution generator that adds a stabilizer to the hydrogen peroxide generated in the first hydrogen generator to form the hydrogen peroxide-containing solution. is.
  • hydrogen peroxide is stabilized, making it easier to supply and transport the hydrogen peroxide-containing solution.
  • the stabilizer contains at least one selected from phosphoric acid, calcined sodium phosphate, 8-oxyquinoline, and acetanilide.
  • the stabilizer forms a stabilizing complex with a large stability constant with hydrogen peroxide, so the hydrogen peroxide-containing solution is easily stabilized.
  • the second hydrogen generator has a second photocatalyst electrode and a second hydrogen generator that photolyzes the hydrogen peroxide-containing solution to generate hydrogen.
  • One aspect of the present invention is a power generation system comprising the hydrogen generation system described above and a fuel cell module using hydrogen as a fuel, and supplying hydrogen stored in the hydrogen generation system to a fuel electrode of the fuel cell module. is.
  • One aspect of the present invention includes a first hydrogen generator that generates hydrogen and hydrogen peroxide, and a second hydrogen generator that decomposes a hydrogen peroxide-containing solution containing hydrogen peroxide generated by the first hydrogen generator to generate hydrogen. 2. It has a hydrogen generator, a storage device, and a fuel cell module, and supplies hydrogen generated by the first hydrogen generator and hydrogen generated by the second hydrogen generator to the fuel electrode of the fuel cell module. , is the power generation system.
  • hydrogen generation system of the present invention hydrogen can be generated with higher efficiency than conventional systems. According to the power generation system of the present invention, it is possible to reduce the amount of fossil fuel used compared to the conventional power generation system, and to suppress the environmental load.
  • FIG. 1 is a block diagram conceptually showing a power generation system according to a first embodiment of the present invention
  • FIG. FIG. 2 is an explanatory diagram of the power generation system in FIG. 1, where (a) is a model diagram schematically showing a first hydrogen generating section, and (b) is a model diagram schematically showing a second hydrogen generating section. .
  • the power generation system 1 of the first embodiment of the present invention includes, as main constituent members, a first hydrogen generator 2, a second hydrogen generator 3, a storage device 5, and a fuel cell module 6. , and a gas supply device 7, which are connected by pipes or the like.
  • the first hydrogen generator 2, the second hydrogen generator 3, and the storage device 5 constitute a hydrogen generation system 8, which is capable of generating hydrogen.
  • the first hydrogen generator 2 includes a first hydrogen generator 10 and a solution generator 11, as shown in FIG.
  • the first hydrogen generator 10 is a part that generates hydrogen and hydrogen peroxide from the first electrolytic solution 23 by light energy such as sunlight, supplies the generated hydrogen to the storage device 5, and generates hydrogen peroxide. can be supplied to the solution generation unit 11 .
  • the hydrogen peroxide to be supplied to the solution generation unit 11 may be supplied to the solution generation unit 11 in a liquid state, or may be supplied to the solution generation unit 11 in a gaseous state. As shown in FIG.
  • the first hydrogen generating unit 10 includes, as main constituent members, a first electrolytic cell 20, a first photocatalyst electrode 21, a first counter electrode 22, a first electrolytic solution 23, A first auxiliary power supply 25 is provided.
  • the first hydrogen generating unit 10 has a first photocatalyst electrode 21 and a first counter electrode 22 immersed in a first electrolytic solution 23 in a first electrolytic bath 20 , and the first photocatalyst electrode 21 and the first counter electrode 22 are immersed outside the first electrolytic bath 20 .
  • a first auxiliary power supply 25 is electrically connected between the first counter electrodes 22 .
  • the first photocatalyst electrode 21 is an anode electrode that receives light such as sunlight to oxidize the first electrolytic solution 23 to generate hydrogen peroxide.
  • the first photocatalyst electrode 21 is obtained by laminating a first photocatalyst 31 on a first conductive substrate 30 as shown in FIG. 2(a).
  • the first conductive substrate 30 is not particularly limited as long as it has conductivity.
  • a transparent conductive oxide substrate in which a transparent conductive oxide is laminated on a transparent substrate, a metal substrate, etc. can be used.
  • the first photocatalyst 31 is not particularly limited as long as it has photocatalytic activity in the hydrogen peroxide generation reaction.
  • tungsten trioxide (WO3 ) catalyst a bismuth vanadate ( BiVO4 ) catalyst, a tin oxide ( SnO2 ) catalyst, a titanium oxide ( TiO2 ) catalyst, or the like can be used.
  • BiVO4 bismuth vanadate
  • SnO2 tin oxide
  • TiO2 titanium oxide
  • the first counter electrode 22 is a cathode electrode that forms a pair with the first photocatalyst electrode 21 and reduces the first electrolytic solution 23 to generate hydrogen.
  • the first counter electrode 22 is not particularly limited as long as it has conductivity, and for example, a platinum electrode, a gold electrode, a silver electrode, or the like can be used.
  • the first electrolytic solution 23 is an electrolytic solution that generates hydrogen by reduction and generates hydrogen peroxide by oxidation, and is specifically a solution containing water. Water or the like can be used as the first electrolytic solution 23, and an electrolyte such as sodium bicarbonate may be added to the first electrolytic solution 23 from the viewpoint of promoting the reaction.
  • the first auxiliary power supply 25 applies a voltage so that the potential difference between the first photocatalyst electrode 21 and the first counter electrode 22 generated by light reception by the first photocatalyst electrode 21 falls within a predetermined range. It is an auxiliary power supply.
  • the first auxiliary power supply 25 is not particularly limited as long as it can apply a voltage between the first photocatalyst electrode 21 and the first counter electrode 22, but from the viewpoint of environmental load, it is preferably a solar cell. .
  • the solution generator 11 is a part that adds a stabilizer to the hydrogen peroxide generated in the first hydrogen generator 10 to generate a hydrogen peroxide-containing solution containing hydrogen peroxide.
  • the stabilizer is not particularly limited as long as it forms a compound with hydrogen peroxide that is more stable than hydrogen peroxide.
  • Stabilizers that can be used include, for example, phosphoric acid, calcined sodium phosphate, 8-oxyquinoline, and acetanilide.
  • the solution generator 11 of this embodiment adds phosphoric acid to the hydrogen peroxide generated by the first hydrogen generator 10 to generate a hydrogen peroxide-containing solution.
  • the second hydrogen generator 3 includes a second hydrogen generator 40 as shown in FIG.
  • the second hydrogen generator 40 is a part that generates hydrogen from the second electrolytic solution 53 by light energy such as sunlight, and supplies the generated hydrogen to the storage device 5 .
  • the second hydrogen generating unit 40 includes, as main constituent members, a second electrolytic cell 50, a second photocatalyst electrode 51, a second counter electrode 52, a second electrolytic solution 53, A second auxiliary power supply 55 is provided.
  • the second hydrogen generating part 40 has a second photocatalyst electrode 51 and a second counter electrode 52 immersed in a second electrolytic solution 53 in a second electrolytic bath 50 , and the second photocatalyst electrode 51 and the second counter electrode 52 are immersed in the second electrolytic bath 50 .
  • a second auxiliary power supply 55 is electrically connected between the second counter electrodes 52 .
  • the second photocatalyst electrode 51 is a cathode electrode that reduces the second electrolytic solution 53 by receiving light such as sunlight to generate hydrogen.
  • the second photocatalyst electrode 51 is obtained by laminating the second photocatalyst 61 on the second conductive substrate 60 as shown in FIG. 2(b).
  • the second conductive base material 60 is not particularly limited as long as it has conductivity, and for example, a carbon substrate or the like can be used.
  • the second photocatalyst 61 is not particularly limited as long as it has photocatalytic activity in the decomposition reaction of hydrogen peroxide.
  • a metal-free catalyst supporting (GQDs) can be used.
  • the second counter electrode 52 is an anode electrode that forms a pair with the second photocatalyst electrode 51 and oxidizes the second electrolytic solution 53 .
  • the second counter electrode 52 is not particularly limited as long as it has conductivity, and for example, a platinum electrode, a gold electrode, a silver electrode, or the like can be used.
  • the second electrolytic solution 53 is an electrolytic solution that generates hydrogen by reduction, and is a hydrogen peroxide-containing solution that is generated and supplied by the solution generation unit 11 .
  • the second electrolytic solution 53 of the present embodiment is a hydrogen peroxide-containing solution obtained by adding phosphoric acid to hydrogen peroxide.
  • the second auxiliary power supply 55 is not particularly limited as long as it can apply a voltage between the second photocatalyst electrode 51 and the second counter electrode 52, but from the viewpoint of environmental load, it is preferably a solar cell. .
  • the storage device 5 temporarily stores the hydrogen produced by the first hydrogen generator 2 and the hydrogen produced by the second hydrogen generator 3, as shown in FIG.
  • the storage device 5 has a supply amount adjusting unit that adjusts the amount of hydrogen supplied to the fuel cell module 6, and can supply hydrogen to the fuel electrode of the fuel cell according to the hydrogen demand of the fuel cell module 6. It's becoming
  • the fuel cell module 6 includes a fuel cell having a fuel electrode and an air electrode, and generates electrical energy from hydrogen supplied from the storage device 5 to the fuel electrode and oxygen supplied from the gas supply device 7 to the air electrode. is taken out.
  • a fuel cell for example, a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), a solid oxide fuel cell (SOFC), or the like can be used.
  • PEFC polymer electrolyte fuel cell
  • PAFC phosphoric acid fuel cell
  • SOFC solid oxide fuel cell
  • the gas supply device 7 is a device that supplies an oxidizing gas to the air electrode of the fuel cell module 6, specifically an oxygen supply device that supplies oxygen.
  • the first hydrogen generator 2 when the first photocatalyst electrode 21 of the first hydrogen generating unit 10 is irradiated with light such as sunlight from a light source such as the sun, the light energy causes the first photocatalyst electrode 21 to Hydrogen peroxide is generated from the first electrolytic solution 23 at , and hydrogen is generated from the first electrolytic solution 23 on the first counter electrode 22 .
  • the hydrogen peroxide generated by the first photocatalyst electrode 21 is taken out in a liquid form from the bottom (lower part) of the first electrolytic cell 20 and supplied to the solution generator 11 .
  • a gaseous by-product (for example, oxygen) generated in the first photocatalyst electrode 21 is discharged to the outside of the first electrolytic cell 20 from the top (upper portion) of the first electrolytic cell 20 .
  • the hydrogen generated at the first counter electrode 22 is taken out from the top (upper portion) of the first electrolytic cell 20 and supplied to the storage device 5 where it is stored.
  • the hydrogen peroxide supplied to the solution generation unit 11 is added with phosphoric acid as a stabilizer in the solution generation unit 11, and supplied as a hydrogen peroxide-containing solution to the second hydrogen generation unit 40 of the second hydrogen generation device 3. be.
  • the hydrogen peroxide-containing solution supplied to the second hydrogen generation unit 40 is used as the second electrolytic solution 53 in the second hydrogen generation unit 40, and is used in the second hydrogen generation device 3 as the second electrolyte of the second hydrogen generation unit 40.
  • the photocatalyst electrode 51 is irradiated with light such as sunlight from a light source such as the sun, hydrogen is generated from the hydrogen peroxide-containing solution on the second photocatalyst electrode 51 by the light energy.
  • the hydrogen generated by the second photocatalyst electrode 51 is supplied to the storage device 5 and stored in the storage device 5 .
  • the hydrogen generated by the first hydrogen generator 2 and the second hydrogen generator 3 is mixed in the storage device 5 and supplied to the fuel electrode of the fuel cell module 6 at a constant supply amount.
  • the hydrogen supplied from the storage device 5 reacts with the oxygen supplied from the gas supply device 7 to become water in the fuel cell module 6, and part or all of the reaction energy is taken out as electrical energy.
  • hydrogen and hydrogen peroxide are generated by the first hydrogen generator 2, and the hydrogen peroxide generated by the first hydrogen generator 2 is decomposed by the second hydrogen generator 3. Therefore, hydrogen can be generated more efficiently than when hydrogen is generated only by the first hydrogen generator 2 .
  • the first hydrogen generator 10 photolyzes the first electrolytic solution 23 to generate hydrogen and hydrogen peroxide. That is, since the first electrolyte solution 23 can be decomposed by light energy to generate hydrogen and hydrogen peroxide, environmental load can be suppressed.
  • the hydrogen generation system 8 of the present embodiment since water is used as the first electrolytic solution 23, the amount of impurities mixed in the hydrogen and hydrogen peroxide generated in the first hydrogen generation unit 10 can be suppressed. .
  • the stabilizer is added to the hydrogen peroxide generated in the first hydrogen generation unit 10 in the solution generation unit 11 to form the hydrogen peroxide-containing solution.
  • Hydrogen oxide is stabilized, making it easier to supply and transport hydrogen peroxide-containing solutions. That is, even when the second hydrogen generator 3 is located away from the solution generator 11, hydrogen peroxide can be easily transported as a hydrogen peroxide-containing solution.
  • hydrogen is generated by photolyzing the hydrogen peroxide-containing solution in the second hydrogen generation section 40, so the environmental load can be suppressed.
  • both the first hydrogen generator 2 and the second hydrogen generator 3 generate hydrogen using light energy, hydrogen can be generated without using fossil fuels. , the environmental load can be reduced.
  • the hydrogen stored in the storage device 5 of the hydrogen generation system 8 is supplied to the fuel electrode of the fuel cell module 6, power can be generated without using fossil fuels, and environmental Load can be suppressed.
  • the first hydrogen generator 10 extracts hydrogen peroxide from the bottom of the first electrolytic cell 20 by utilizing the difference between the gaseous state and the liquid state. Therefore, substantially only hydrogen peroxide can be supplied to the solution generator 11 without being mixed with hydrogen without providing a separation membrane or the like for separating hydrogen peroxide from hydrogen. As a result, the device structure can be simplified. Further, according to the hydrogen generation system 8 of the present embodiment, hydrogen peroxide is taken out from the bottom of the first electrolytic cell 20, so even if oxygen is generated as a by-product on the first photocatalyst electrode 21, oxygen Substantially only hydrogen peroxide can be supplied to the solution generator 11 without being mixed with the hydrogen peroxide. As a result, mixing of hydrogen and oxygen in the second hydrogen generator 40 of the second hydrogen generator 3 can be suppressed.
  • the first hydrogen generator 10 of the first hydrogen generator 2 and the storage device 5 are connected by a pipe, and the hydrogen generated in the first hydrogen generator 10 is transferred to the storage device 5 via the pipe.
  • the hydrogen generated in the first hydrogen generation unit 10 is temporarily stored in a storage member such as a hydrogen storage alloy tank or a hydrogen cylinder, the storage member is transported to the storage device 5, and hydrogen is supplied from the storage member to the storage device 5.
  • the solution generator 11 of the first hydrogen generator 2 and the second hydrogen generator 40 of the second hydrogen generator 3 are connected by a pipe, and the hydrogen peroxide-containing solution is supplied via the pipe.
  • the hydrogen peroxide-containing solution may be manually supplied from the solution generator 11 to the second hydrogen generator 40 .
  • the hydrogen peroxide-containing solution is temporarily stored in the transport tank in the solution generation unit 11 of the first hydrogen generator 2, and the transport tank is transported to the second hydrogen generation unit 40 of the second hydrogen generator 3 and transported.
  • the hydrogen peroxide-containing solution may be supplied from the tank to the second hydrogen generator 40 .
  • the second hydrogen generator 40 of the second hydrogen generator 3 and the storage device 5 are connected by a pipe, and the hydrogen generated in the second hydrogen generator 40 is transferred to the storage device 5 via the pipe.
  • the hydrogen generated by the second hydrogen generation unit 40 is temporarily stored in a storage member such as a hydrogen storage alloy tank or a hydrogen cylinder, the storage member is transported to the storage device 5, and hydrogen is supplied from the storage member to the storage device 5.
  • the storage device 5 and the fuel cell module 6 are connected by a pipe, and the hydrogen stored in the storage device 5 is supplied to the fuel electrode of the fuel cell module 6 through the pipe.
  • the invention is not limited to this.
  • Hydrogen generated in the storage device 5 is temporarily stored in a storage member such as a hydrogen storage alloy tank or a hydrogen cylinder, the storage member is transported to the fuel cell module 6, and hydrogen is supplied from the storage member to the fuel cell module 6. good too.
  • the gas supply device 7 supplies oxygen as an oxidizing gas to the air electrode of the fuel cell module 6, but the present invention is not limited to this.
  • the type of oxidizing gas supplied by the gas supply device 7 is not particularly limited as long as it functions in the air electrode of the fuel cell module 6 .
  • all the hydrogen peroxide generated in the first hydrogen generator 10 of the first hydrogen generator 2 is supplied to the solution generator 11, but the present invention is not limited to this. Part of the hydrogen peroxide generated in the first hydrogen generator 10 may be used for other purposes.
  • auxiliary power sources 25 and 55 are used as the auxiliary power sources 25 and 55 in the above-described embodiments, the present invention is not limited to this.
  • the auxiliary power sources 25, 55 may be other power sources.
  • first auxiliary power supply 25 and the second auxiliary power supply 55 are provided separately in the above embodiment, the present invention is not limited to this.
  • the first auxiliary power supply 25 and the second auxiliary power supply 55 may be a shared auxiliary power supply.
  • the hydrogen generated in the first hydrogen generation unit 10 and the hydrogen generated in the second hydrogen generation unit 40 are supplied to the fuel cell module 6 via the storage device 5, but the present invention It is not limited to this.
  • the hydrogen generated by the first hydrogen generator 10 and the hydrogen generated by the second hydrogen generator 40 may be directly supplied to the fuel cell module 6 without going through the storage device 5 .
  • hydrogen peroxide is extracted from the bottom of the first hydrogen generating section 10, but the present invention is not limited to this. Hydrogen peroxide may be extracted from the side portion of the first hydrogen generating portion 10 as long as the first electrolytic solution 23 is filled from the bottom portion of the first hydrogen generating portion 10 .
  • hydrogen and by-product gases such as oxygen are extracted from the top of the first hydrogen generating section 10, but the present invention is not limited to this.
  • By-product gases such as hydrogen and oxygen may be taken out from the side of the first hydrogen generator 10 as long as they are above the liquid surface of the first electrolytic solution 23 .
  • each constituent member can be freely replaced or added between the embodiments.

Abstract

The present invention provides: a hydrogen generation system which can generate hydrogen with higher efficiency than ever before; and a power generation system whereby it becomes possible to reduce the amount of a fossil fuel to be used compared with those in the conventional power generation systems. The hydrogen generation system is provided with: a first hydrogen generation device for generating hydrogen and hydrogen peroxide; a second hydrogen generation device for decomposing a hydrogen peroxide-containing solution produced in the first hydrogen generation device and containing hydrogen peroxide to produce hydrogen; and a storage device, the hydrogen generation system being configured such that hydrogen generated in the first hydrogen generation device and hydrogen generated in the second hydrogen generation device are stored in the storage device.

Description

水素生成システム及び発電システムHydrogen generation system and power generation system
 本発明は、水素生成システム及び発電システムに関する。 The present invention relates to a hydrogen generation system and a power generation system.
 近年、燃料電池モジュールの普及により、水素原料の需要が増えている。
 水素原料の製法として、太陽光によって水を分解し、水素を発生させる光触媒が注目されている(例えば、特許文献1)。
 光触媒による水素原料の製法は、光触媒で太陽光を受光し電圧を印加することで、二酸化炭素を排出させずに水素を発生できるので、従来の化石燃料を用いた水素の製法に比べて環境負荷が小さい。
In recent years, with the spread of fuel cell modules, the demand for hydrogen raw materials is increasing.
As a method for producing a hydrogen raw material, a photocatalyst that decomposes water with sunlight to generate hydrogen is attracting attention (for example, Patent Document 1).
The method of producing hydrogen raw materials using photocatalysts can generate hydrogen without emitting carbon dioxide by receiving sunlight and applying a voltage to the photocatalyst, so it has a lower environmental impact than the conventional method of producing hydrogen using fossil fuels. is small.
国際公開第2019/216284号WO2019/216284
 しかしながら、光触媒によって生成できる水素量は、従来の化石燃料を用いた水素の製法に比べて十分ではなく、更なる水素の生成量の向上が望まれていた。 However, the amount of hydrogen that can be generated by photocatalysts is not sufficient compared to conventional hydrogen production methods that use fossil fuels, and further improvements in the amount of hydrogen generated have been desired.
 そこで、本発明は、従来に比べて高効率で水素を生成できる水素生成システム及び従来の発電システムに比べて化石燃料の使用量を低減できる発電システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a hydrogen generation system that can generate hydrogen with higher efficiency than before and a power generation system that can reduce the amount of fossil fuel used compared to conventional power generation systems.
 上記した課題を解決するための本発明の一つの様相は、水素と過酸化水素を生成する第1水素生成装置と、前記第1水素生成装置で生成した過酸化水素を含む過酸化水素含有溶液を分解し水素を生成する第2水素生成装置と、前記第1水素生成装置で生成した水素と、前記第2水素生成装置で生成した水素を貯蔵する貯蔵装置を備える、水素生成システムである。 One aspect of the present invention for solving the above problems is a first hydrogen generator for generating hydrogen and hydrogen peroxide, and a hydrogen peroxide-containing solution containing hydrogen peroxide generated by the first hydrogen generator. and a storage device for storing the hydrogen produced by the first hydrogen generator and the hydrogen produced by the second hydrogen generator.
 本様相によれば、第1水素生成装置によって水素と過酸化水素を生成し、第1水素生成装置で生成した過酸化水素を第2水素生成装置で分解して水素を生成するので、第1水素生成装置のみで水素を生成した場合に比べて、より効率的に水素を生成できる。 According to this aspect, hydrogen and hydrogen peroxide are generated by the first hydrogen generator, and the hydrogen peroxide generated by the first hydrogen generator is decomposed by the second hydrogen generator to generate hydrogen. Hydrogen can be generated more efficiently than when hydrogen is generated only by the hydrogen generator.
 好ましい様相は、前記第1水素生成装置は、第1光触媒電極を有し、第1電解液を光分解して水素と過酸化水素を発生させる第1水素発生部を備えることである。 A preferred aspect is that the first hydrogen generator has a first photocatalyst electrode and includes a first hydrogen generator that photolyzes the first electrolytic solution to generate hydrogen and hydrogen peroxide.
 本様相によれば、光エネルギーによって水素と過酸化水素を生成できるので環境負荷を抑制できる。 According to this aspect, hydrogen and hydrogen peroxide can be generated by light energy, so the environmental load can be suppressed.
 より好ましい様相は、前記第1電解液は、水である。 A more preferable aspect is that the first electrolytic solution is water.
 本様相によれば、第1水素発生部で生成される水素と過酸化水素への不純物の混入量を抑制できる。 According to this aspect, it is possible to suppress the amount of impurities mixed into the hydrogen and hydrogen peroxide generated in the first hydrogen generating section.
 より好ましい様相は、前記第1水素生成装置は、前記第1水素発生部で発生した過酸化水素に安定剤を添加して前記過酸化水素含有溶液を形成する溶液生成部を有していることである。 In a more preferred aspect, the first hydrogen generator has a solution generator that adds a stabilizer to the hydrogen peroxide generated in the first hydrogen generator to form the hydrogen peroxide-containing solution. is.
 本様相によれば、過酸化水素が安定化し、過酸化水素含有溶液の供給や運搬が容易となる。 According to this aspect, hydrogen peroxide is stabilized, making it easier to supply and transport the hydrogen peroxide-containing solution.
 より好ましい様相は、前記安定剤は、リン酸、焼成リン酸ソーダ、8-オキシキノリン、及びアセトアニリドから選ばれる少なくとも1つを含むことである。 A more preferred aspect is that the stabilizer contains at least one selected from phosphoric acid, calcined sodium phosphate, 8-oxyquinoline, and acetanilide.
 本様相によれば、安定剤が過酸化水素と安定度定数が大きい安定化錯体を形成するので、過酸化水素含有溶液が安定しやすい。 According to this aspect, the stabilizer forms a stabilizing complex with a large stability constant with hydrogen peroxide, so the hydrogen peroxide-containing solution is easily stabilized.
 好ましい様相は、前記第2水素生成装置は、第2光触媒電極を有し、前記過酸化水素含有溶液を光分解して水素を発生させる第2水素発生部を備えることである。 A preferred aspect is that the second hydrogen generator has a second photocatalyst electrode and a second hydrogen generator that photolyzes the hydrogen peroxide-containing solution to generate hydrogen.
 本様相によれば、光分解によって過酸化水素含有溶液から水素を生成できるので、環境負荷が小さい。 According to this aspect, since hydrogen can be generated from the hydrogen peroxide-containing solution by photolysis, the environmental load is small.
 本発明の一つの様相は、上記した水素生成システムと、水素を燃料とする燃料電池モジュールを有し、前記水素生成システムで貯蔵された水素を前記燃料電池モジュールの燃料極に供給する、発電システムである。 One aspect of the present invention is a power generation system comprising the hydrogen generation system described above and a fuel cell module using hydrogen as a fuel, and supplying hydrogen stored in the hydrogen generation system to a fuel electrode of the fuel cell module. is.
 本様相によれば、従来の発電システムに比べて化石燃料の使用量を低減でき、環境負荷を抑制できる。 According to this aspect, it is possible to reduce the amount of fossil fuels used compared to conventional power generation systems and reduce the environmental load.
 本発明の一つの様相は、水素と過酸化水素を生成する第1水素生成装置と、前記第1水素生成装置で生成した過酸化水素を含む過酸化水素含有溶液を分解し水素を生成する第2水素生成装置と、貯蔵装置と、燃料電池モジュールを有し、前記第1水素生成装置で生成した水素と、前記第2水素生成装置で生成した水素を前記燃料電池モジュールの燃料極に供給する、発電システムである。 One aspect of the present invention includes a first hydrogen generator that generates hydrogen and hydrogen peroxide, and a second hydrogen generator that decomposes a hydrogen peroxide-containing solution containing hydrogen peroxide generated by the first hydrogen generator to generate hydrogen. 2. It has a hydrogen generator, a storage device, and a fuel cell module, and supplies hydrogen generated by the first hydrogen generator and hydrogen generated by the second hydrogen generator to the fuel electrode of the fuel cell module. , is the power generation system.
 本様相によれば、従来の発電システムに比べて化石燃料の使用量を低減でき、環境負荷を抑制できる。 According to this aspect, it is possible to reduce the amount of fossil fuels used compared to conventional power generation systems and reduce the environmental load.
 本発明の水素生成システムによれば、従来に比べて高効率で水素を生成できる。
 本発明の発電システムによれば、従来の発電システムに比べて化石燃料の使用量を低減でき、環境負荷を抑制できる。
According to the hydrogen generation system of the present invention, hydrogen can be generated with higher efficiency than conventional systems.
According to the power generation system of the present invention, it is possible to reduce the amount of fossil fuel used compared to the conventional power generation system, and to suppress the environmental load.
本発明の第1実施形態の発電システムを概念的に示したブロック図である。1 is a block diagram conceptually showing a power generation system according to a first embodiment of the present invention; FIG. 図1の発電システムの説明図であり、(a)は第1水素発生部を模式的に示したモデル図であり、(b)は第2水素発生部を模式的に示したモデル図である。FIG. 2 is an explanatory diagram of the power generation system in FIG. 1, where (a) is a model diagram schematically showing a first hydrogen generating section, and (b) is a model diagram schematically showing a second hydrogen generating section. .
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明の第1実施形態の発電システム1は、図1のように、主要構成部材として、第1水素生成装置2と、第2水素生成装置3と、貯蔵装置5と、燃料電池モジュール6と、ガス供給装置7を備えており、これらが配管等によって接続されている。
 また、発電システム1は、第1水素生成装置2と第2水素生成装置3と貯蔵装置5が水素生成システム8を構成しており、水素を生成可能となっている。
As shown in FIG. 1, the power generation system 1 of the first embodiment of the present invention includes, as main constituent members, a first hydrogen generator 2, a second hydrogen generator 3, a storage device 5, and a fuel cell module 6. , and a gas supply device 7, which are connected by pipes or the like.
In the power generation system 1, the first hydrogen generator 2, the second hydrogen generator 3, and the storage device 5 constitute a hydrogen generation system 8, which is capable of generating hydrogen.
(第1水素生成装置2)
 第1水素生成装置2は、図1のように、第1水素発生部10と、溶液生成部11を備えている。
 第1水素発生部10は、太陽光等の光エネルギーによって、第1電解液23から水素と過酸化水素を発生させる部位であり、生成した水素を貯蔵装置5に供給し、生成した過酸化水素を溶液生成部11に供給することが可能となっている。
 なお、溶液生成部11に供給する過酸化水素は、液体状にして溶液生成部11に供給してもよいし、気体状にして溶液生成部11に供給してもよい。
 第1水素発生部10は、図2(a)のように、主要構成部材として、第1電解槽20と、第1光触媒電極21と、第1対電極22と、第1電解液23と、第1補助電源25を備えている。第1水素発生部10は、第1電解槽20内の第1電解液23に第1光触媒電極21と第1対電極22が浸漬され、第1電解槽20の外部で第1光触媒電極21と第1対電極22の間に第1補助電源25が電気的に接続されている。
(First hydrogen generator 2)
The first hydrogen generator 2 includes a first hydrogen generator 10 and a solution generator 11, as shown in FIG.
The first hydrogen generator 10 is a part that generates hydrogen and hydrogen peroxide from the first electrolytic solution 23 by light energy such as sunlight, supplies the generated hydrogen to the storage device 5, and generates hydrogen peroxide. can be supplied to the solution generation unit 11 .
The hydrogen peroxide to be supplied to the solution generation unit 11 may be supplied to the solution generation unit 11 in a liquid state, or may be supplied to the solution generation unit 11 in a gaseous state.
As shown in FIG. 2A, the first hydrogen generating unit 10 includes, as main constituent members, a first electrolytic cell 20, a first photocatalyst electrode 21, a first counter electrode 22, a first electrolytic solution 23, A first auxiliary power supply 25 is provided. The first hydrogen generating unit 10 has a first photocatalyst electrode 21 and a first counter electrode 22 immersed in a first electrolytic solution 23 in a first electrolytic bath 20 , and the first photocatalyst electrode 21 and the first counter electrode 22 are immersed outside the first electrolytic bath 20 . A first auxiliary power supply 25 is electrically connected between the first counter electrodes 22 .
 第1光触媒電極21は、太陽光等の光を受光することで第1電解液23を酸化して過酸化水素を発生させるアノード電極である。
 第1光触媒電極21は、図2(a)のように、第1導電性基材30上に第1光触媒31が積層されたものである。
 第1導電性基材30は、導電性を有するものであれば特に限定されるものではなく、例えば、透明基板上に透明導電性酸化物が積層された透明導電性酸化物基板や金属基板などが使用できる。
 第1光触媒31は、過酸化水素の生成反応における光触媒活性を有するものであれば、特に限定されるものではない。第1光触媒31としては、三酸化タングステン(WO)触媒、バナジン酸ビスマス(BiVO)触媒、酸化スズ(SnO)触媒、酸化チタン(TiO)触媒などが使用できる。
The first photocatalyst electrode 21 is an anode electrode that receives light such as sunlight to oxidize the first electrolytic solution 23 to generate hydrogen peroxide.
The first photocatalyst electrode 21 is obtained by laminating a first photocatalyst 31 on a first conductive substrate 30 as shown in FIG. 2(a).
The first conductive substrate 30 is not particularly limited as long as it has conductivity. For example, a transparent conductive oxide substrate in which a transparent conductive oxide is laminated on a transparent substrate, a metal substrate, etc. can be used.
The first photocatalyst 31 is not particularly limited as long as it has photocatalytic activity in the hydrogen peroxide generation reaction. As the first photocatalyst 31, a tungsten trioxide ( WO3 ) catalyst, a bismuth vanadate ( BiVO4 ) catalyst, a tin oxide ( SnO2 ) catalyst, a titanium oxide ( TiO2 ) catalyst, or the like can be used.
 第1対電極22は、第1光触媒電極21と対をなし、第1電解液23を還元して水素を発生させるカソード電極である。
 第1対電極22は、導電性を有するものであれば、特に限定されるものではなく、例えば、白金電極や金電極、銀電極などが使用できる。
 第1電解液23は、還元することで水素を発生し、酸化することで過酸化水素を発生する電解液であり、具体的には、水を含む溶液である。
 第1電解液23は、例えば、水などが使用でき、反応を促進する観点から、第1電解液23には炭酸水素ナトリウム等の電解質が添加されていてもよい。
The first counter electrode 22 is a cathode electrode that forms a pair with the first photocatalyst electrode 21 and reduces the first electrolytic solution 23 to generate hydrogen.
The first counter electrode 22 is not particularly limited as long as it has conductivity, and for example, a platinum electrode, a gold electrode, a silver electrode, or the like can be used.
The first electrolytic solution 23 is an electrolytic solution that generates hydrogen by reduction and generates hydrogen peroxide by oxidation, and is specifically a solution containing water.
Water or the like can be used as the first electrolytic solution 23, and an electrolyte such as sodium bicarbonate may be added to the first electrolytic solution 23 from the viewpoint of promoting the reaction.
 第1補助電源25は、第1光触媒電極21で光を受光することで発生する第1光触媒電極21と第1対電極22の間の電位差が、所定の範囲になるように電圧を印加して補助する電源装置である。
 第1補助電源25は、第1光触媒電極21と第1対電極22の間に電圧を印加できるものであれば特に限定されるものではないが、環境負荷の観点から太陽電池であることが好ましい。
The first auxiliary power supply 25 applies a voltage so that the potential difference between the first photocatalyst electrode 21 and the first counter electrode 22 generated by light reception by the first photocatalyst electrode 21 falls within a predetermined range. It is an auxiliary power supply.
The first auxiliary power supply 25 is not particularly limited as long as it can apply a voltage between the first photocatalyst electrode 21 and the first counter electrode 22, but from the viewpoint of environmental load, it is preferably a solar cell. .
 溶液生成部11は、第1水素発生部10で発生した過酸化水素に安定剤を添加して過酸化水素を含む過酸化水素含有溶液を生成する部位である。
 安定剤は、過酸化水素とともに過酸化水素よりも安定な化合物を形成するものであれば、特に限定されるものではない。安定剤は、例えば、リン酸や焼成リン酸ソーダ、8-オキシキノリン、アセトアニリドなどの安定剤などが使用できる。
 本実施形態の溶液生成部11は、第1水素発生部10で発生した過酸化水素にリン酸を添加して過酸化水素含有溶液を生成する。
The solution generator 11 is a part that adds a stabilizer to the hydrogen peroxide generated in the first hydrogen generator 10 to generate a hydrogen peroxide-containing solution containing hydrogen peroxide.
The stabilizer is not particularly limited as long as it forms a compound with hydrogen peroxide that is more stable than hydrogen peroxide. Stabilizers that can be used include, for example, phosphoric acid, calcined sodium phosphate, 8-oxyquinoline, and acetanilide.
The solution generator 11 of this embodiment adds phosphoric acid to the hydrogen peroxide generated by the first hydrogen generator 10 to generate a hydrogen peroxide-containing solution.
(第2水素生成装置3)
 第2水素生成装置3は、図1のように、第2水素発生部40を備えている。
 第2水素発生部40は、太陽光等の光エネルギーによって第2電解液53から水素を発生させる部位であり、生成した水素を貯蔵装置5に供給するものである。
 第2水素発生部40は、図2(b)のように、主要構成部材として、第2電解槽50と、第2光触媒電極51と、第2対電極52と、第2電解液53と、第2補助電源55を備えている。第2水素発生部40は、第2電解槽50内の第2電解液53に第2光触媒電極51と第2対電極52が浸漬され、第2電解槽50の外部で第2光触媒電極51と第2対電極52の間に第2補助電源55が電気的に接続されている。
(Second hydrogen generator 3)
The second hydrogen generator 3 includes a second hydrogen generator 40 as shown in FIG.
The second hydrogen generator 40 is a part that generates hydrogen from the second electrolytic solution 53 by light energy such as sunlight, and supplies the generated hydrogen to the storage device 5 .
As shown in FIG. 2B, the second hydrogen generating unit 40 includes, as main constituent members, a second electrolytic cell 50, a second photocatalyst electrode 51, a second counter electrode 52, a second electrolytic solution 53, A second auxiliary power supply 55 is provided. The second hydrogen generating part 40 has a second photocatalyst electrode 51 and a second counter electrode 52 immersed in a second electrolytic solution 53 in a second electrolytic bath 50 , and the second photocatalyst electrode 51 and the second counter electrode 52 are immersed in the second electrolytic bath 50 . A second auxiliary power supply 55 is electrically connected between the second counter electrodes 52 .
 第2光触媒電極51は、太陽光等の光を受光することで第2電解液53を還元して水素を発生させるカソード電極である。
 第2光触媒電極51は、図2(b)のように、第2導電性基材60上に第2光触媒61が積層されたものである。
 第2導電性基材60は、導電性を有するものであれば特に限定されるものではなく、例えば、炭素基板などが使用できる。
 第2光触媒61は、過酸化水素の分解反応における光触媒活性を有するものであれば特に限定されるものではなく、例えば、グラファイト状窒化炭素(g-C)に助触媒としてグラフェン量子ドット(GQDs)を担持したメタルフリー触媒などが使用できる。
The second photocatalyst electrode 51 is a cathode electrode that reduces the second electrolytic solution 53 by receiving light such as sunlight to generate hydrogen.
The second photocatalyst electrode 51 is obtained by laminating the second photocatalyst 61 on the second conductive substrate 60 as shown in FIG. 2(b).
The second conductive base material 60 is not particularly limited as long as it has conductivity, and for example, a carbon substrate or the like can be used.
The second photocatalyst 61 is not particularly limited as long as it has photocatalytic activity in the decomposition reaction of hydrogen peroxide. A metal-free catalyst supporting (GQDs) can be used.
 第2対電極52は、第2光触媒電極51と対をなし、第2電解液53を酸化するアノード電極である。
 第2対電極52は、導電性を有するものであれば、特に限定されるものではなく、例えば、白金電極や金電極、銀電極などが使用できる。
The second counter electrode 52 is an anode electrode that forms a pair with the second photocatalyst electrode 51 and oxidizes the second electrolytic solution 53 .
The second counter electrode 52 is not particularly limited as long as it has conductivity, and for example, a platinum electrode, a gold electrode, a silver electrode, or the like can be used.
 第2電解液53は、還元することで水素を発生する電解液であり、溶液生成部11で生成され供給された過酸化水素含有溶液である。
 本実施形態の第2電解液53は、過酸化水素にリン酸を添加した過酸化水素含有溶液である。
 第2補助電源55は、第2光触媒電極51と第2対電極52の間に電圧を印加できるものであれば特に限定されるものではないが、環境負荷の観点から太陽電池であることが好ましい。
The second electrolytic solution 53 is an electrolytic solution that generates hydrogen by reduction, and is a hydrogen peroxide-containing solution that is generated and supplied by the solution generation unit 11 .
The second electrolytic solution 53 of the present embodiment is a hydrogen peroxide-containing solution obtained by adding phosphoric acid to hydrogen peroxide.
The second auxiliary power supply 55 is not particularly limited as long as it can apply a voltage between the second photocatalyst electrode 51 and the second counter electrode 52, but from the viewpoint of environmental load, it is preferably a solar cell. .
(貯蔵装置5)
 貯蔵装置5は、図1のように、第1水素生成装置2で生成した水素と、第2水素生成装置3で生成した水素を一時的に貯蔵するものである。
 貯蔵装置5は、燃料電池モジュール6への水素の供給量を調整する供給量調整部を有しており、燃料電池モジュール6の水素の要求に応じて水素を燃料電池の燃料極に供給可能となっている。
(Storage device 5)
The storage device 5 temporarily stores the hydrogen produced by the first hydrogen generator 2 and the hydrogen produced by the second hydrogen generator 3, as shown in FIG.
The storage device 5 has a supply amount adjusting unit that adjusts the amount of hydrogen supplied to the fuel cell module 6, and can supply hydrogen to the fuel electrode of the fuel cell according to the hydrogen demand of the fuel cell module 6. It's becoming
(燃料電池モジュール6)
 燃料電池モジュール6は、燃料極と、空気極を有した燃料電池を備えており、貯蔵装置5から燃料極に供給される水素と、ガス供給装置7から空気極に供給される酸素から電気エネルギーを取り出すものである。
 この燃料電池としては、例えば、固体高分子形燃料電池(PEFC)、リン酸形燃料電池(PAFC)、固体酸化物形燃料電池(SOFC)などが使用できる。
(Fuel cell module 6)
The fuel cell module 6 includes a fuel cell having a fuel electrode and an air electrode, and generates electrical energy from hydrogen supplied from the storage device 5 to the fuel electrode and oxygen supplied from the gas supply device 7 to the air electrode. is taken out.
As this fuel cell, for example, a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), a solid oxide fuel cell (SOFC), or the like can be used.
 ガス供給装置7は、燃料電池モジュール6の空気極に酸化ガスを供給する装置であり、具体的には酸素を供給する酸素供給装置である。 The gas supply device 7 is a device that supplies an oxidizing gas to the air electrode of the fuel cell module 6, specifically an oxygen supply device that supplies oxygen.
 続いて、発電システム1の発電時の流れの一例について説明する。 Next, an example of the flow of power generation in the power generation system 1 will be described.
 まず、第1水素生成装置2において、第1水素発生部10の第1光触媒電極21に太陽等の光源から太陽光等の光が照射されると、その光エネルギーによって、第1光触媒電極21上で第1電解液23から過酸化水素が発生し、第1対電極22上で第1電解液23から水素が発生する。
 第1光触媒電極21で発生した過酸化水素は、第1電解槽20の底部(下部)から液体状で取り出し、溶液生成部11に供給される。
 また、第1光触媒電極21で発生した気体状の副生成物(例えば、酸素)は、第1電解槽20の頂部(上部)から第1電解槽20の外部に排出される。
 一方、第1対電極22で発生した水素は、第1電解槽20の頂部(上部)から取り出されて貯蔵装置5に供給され、貯蔵装置5で貯蔵される。
First, in the first hydrogen generator 2, when the first photocatalyst electrode 21 of the first hydrogen generating unit 10 is irradiated with light such as sunlight from a light source such as the sun, the light energy causes the first photocatalyst electrode 21 to Hydrogen peroxide is generated from the first electrolytic solution 23 at , and hydrogen is generated from the first electrolytic solution 23 on the first counter electrode 22 .
The hydrogen peroxide generated by the first photocatalyst electrode 21 is taken out in a liquid form from the bottom (lower part) of the first electrolytic cell 20 and supplied to the solution generator 11 .
A gaseous by-product (for example, oxygen) generated in the first photocatalyst electrode 21 is discharged to the outside of the first electrolytic cell 20 from the top (upper portion) of the first electrolytic cell 20 .
On the other hand, the hydrogen generated at the first counter electrode 22 is taken out from the top (upper portion) of the first electrolytic cell 20 and supplied to the storage device 5 where it is stored.
 溶液生成部11に供給された過酸化水素は、溶液生成部11にて安定剤たるリン酸が添加され、過酸化水素含有溶液として第2水素生成装置3の第2水素発生部40に供給される。 The hydrogen peroxide supplied to the solution generation unit 11 is added with phosphoric acid as a stabilizer in the solution generation unit 11, and supplied as a hydrogen peroxide-containing solution to the second hydrogen generation unit 40 of the second hydrogen generation device 3. be.
 第2水素発生部40に供給された過酸化水素含有溶液は、第2水素発生部40において第2電解液53として使用され、第2水素生成装置3において、第2水素発生部40の第2光触媒電極51に太陽等の光源から太陽光等の光が照射されると、その光エネルギーによって、第2光触媒電極51上で過酸化水素含有溶液から水素が発生する。
 第2光触媒電極51で発生した水素は、貯蔵装置5に供給され、貯蔵装置5で貯蔵される。
The hydrogen peroxide-containing solution supplied to the second hydrogen generation unit 40 is used as the second electrolytic solution 53 in the second hydrogen generation unit 40, and is used in the second hydrogen generation device 3 as the second electrolyte of the second hydrogen generation unit 40. When the photocatalyst electrode 51 is irradiated with light such as sunlight from a light source such as the sun, hydrogen is generated from the hydrogen peroxide-containing solution on the second photocatalyst electrode 51 by the light energy.
The hydrogen generated by the second photocatalyst electrode 51 is supplied to the storage device 5 and stored in the storage device 5 .
 第1水素生成装置2及び第2水素生成装置3で生成された水素は、貯蔵装置5で混合され、一定の供給量で燃料電池モジュール6の燃料極に供給される。 The hydrogen generated by the first hydrogen generator 2 and the second hydrogen generator 3 is mixed in the storage device 5 and supplied to the fuel electrode of the fuel cell module 6 at a constant supply amount.
 貯蔵装置5から供給された水素は、燃料電池モジュール6において、ガス供給装置7から供給された酸素と反応し水となり、その反応エネルギーの一部又は全部が電気エネルギーとして取り出される。 The hydrogen supplied from the storage device 5 reacts with the oxygen supplied from the gas supply device 7 to become water in the fuel cell module 6, and part or all of the reaction energy is taken out as electrical energy.
 本実施形態の水素生成システム8によれば、第1水素生成装置2によって水素と過酸化水素を生成し、第1水素生成装置2で生成した過酸化水素を第2水素生成装置3で分解して水素を生成するので、第1水素生成装置2のみで水素を生成した場合に比べて、より効率的に水素を生成できる。 According to the hydrogen generation system 8 of the present embodiment, hydrogen and hydrogen peroxide are generated by the first hydrogen generator 2, and the hydrogen peroxide generated by the first hydrogen generator 2 is decomposed by the second hydrogen generator 3. Therefore, hydrogen can be generated more efficiently than when hydrogen is generated only by the first hydrogen generator 2 .
 本実施形態の水素生成システム8によれば、第1水素発生部10において第1電解液23を光分解して水素と過酸化水素を発生させる。すなわち、光エネルギーによって第1電解液23を分解して水素と過酸化水素を生成できるので、環境負荷を抑制できる。 According to the hydrogen generation system 8 of the present embodiment, the first hydrogen generator 10 photolyzes the first electrolytic solution 23 to generate hydrogen and hydrogen peroxide. That is, since the first electrolyte solution 23 can be decomposed by light energy to generate hydrogen and hydrogen peroxide, environmental load can be suppressed.
 本実施形態の水素生成システム8によれば、第1電解液23として水を使用しているので、第1水素発生部10で生成される水素と過酸化水素への不純物の混入量を抑制できる。 According to the hydrogen generation system 8 of the present embodiment, since water is used as the first electrolytic solution 23, the amount of impurities mixed in the hydrogen and hydrogen peroxide generated in the first hydrogen generation unit 10 can be suppressed. .
 本実施形態の水素生成システム8によれば、溶液生成部11において第1水素発生部10で発生した過酸化水素に安定剤を添加して過酸化水素含有溶液を形成するので、安定剤によって過酸化水素が安定化し、過酸化水素含有溶液の供給や運搬が容易となる。すなわち、第2水素生成装置3が溶液生成部11から離れた場所にある場合であっても、過酸化水素を過酸化水素含有溶液として簡単に運搬できる。 According to the hydrogen generation system 8 of the present embodiment, the stabilizer is added to the hydrogen peroxide generated in the first hydrogen generation unit 10 in the solution generation unit 11 to form the hydrogen peroxide-containing solution. Hydrogen oxide is stabilized, making it easier to supply and transport hydrogen peroxide-containing solutions. That is, even when the second hydrogen generator 3 is located away from the solution generator 11, hydrogen peroxide can be easily transported as a hydrogen peroxide-containing solution.
 本実施形態の水素生成システム8によれば、第2水素発生部40において過酸化水素含有溶液を光分解して水素を発生させるので、環境負荷を抑制できる。 According to the hydrogen generation system 8 of the present embodiment, hydrogen is generated by photolyzing the hydrogen peroxide-containing solution in the second hydrogen generation section 40, so the environmental load can be suppressed.
 本実施形態の水素生成システム8によれば、第1水素生成装置2と第2水素生成装置3がいずれも光エネルギーによって水素を生成するので、化石燃料によらずに水素を生成することができ、環境負荷を抑制できる。 According to the hydrogen generation system 8 of the present embodiment, since both the first hydrogen generator 2 and the second hydrogen generator 3 generate hydrogen using light energy, hydrogen can be generated without using fossil fuels. , the environmental load can be reduced.
 本実施形態の発電システム1によれば、水素生成システム8の貯蔵装置5で貯蔵された水素を燃料電池モジュール6の燃料極に供給するので、化石燃料によらずに発電することができ、環境負荷を抑制できる。 According to the power generation system 1 of the present embodiment, since the hydrogen stored in the storage device 5 of the hydrogen generation system 8 is supplied to the fuel electrode of the fuel cell module 6, power can be generated without using fossil fuels, and environmental Load can be suppressed.
 本実施形態の水素生成システム8によれば、第1水素発生部10は、気体状態と液体状態との違いを利用し、第1電解槽20の底部から過酸化水素を取り出している。そのため、水素から過酸化水素を分離する分離膜等を設けずとも、水素と混合させずに実質的に過酸化水素のみを溶液生成部11に供給することができる。その結果、装置構造をシンプルにすることができる。
 また、本実施形態の水素生成システム8によれば、第1電解槽20の底部から過酸化水素を取り出しているので、第1光触媒電極21上で副生成物として酸素が生じた場合でも、酸素と混合させずに実質的に過酸化水素のみを溶液生成部11に供給することができる。その結果、第2水素生成装置3の第2水素発生部40での水素と酸素の混合を抑制することができる。
According to the hydrogen generation system 8 of the present embodiment, the first hydrogen generator 10 extracts hydrogen peroxide from the bottom of the first electrolytic cell 20 by utilizing the difference between the gaseous state and the liquid state. Therefore, substantially only hydrogen peroxide can be supplied to the solution generator 11 without being mixed with hydrogen without providing a separation membrane or the like for separating hydrogen peroxide from hydrogen. As a result, the device structure can be simplified.
Further, according to the hydrogen generation system 8 of the present embodiment, hydrogen peroxide is taken out from the bottom of the first electrolytic cell 20, so even if oxygen is generated as a by-product on the first photocatalyst electrode 21, oxygen Substantially only hydrogen peroxide can be supplied to the solution generator 11 without being mixed with the hydrogen peroxide. As a result, mixing of hydrogen and oxygen in the second hydrogen generator 40 of the second hydrogen generator 3 can be suppressed.
 上記した実施形態では、第1水素生成装置2の第1水素発生部10と貯蔵装置5は、配管によって接続されており、第1水素発生部10で発生した水素が配管を介して貯蔵装置5に供給されていたが、本発明はこれに限定されるものではない。
 第1水素発生部10で発生した水素を水素吸蔵合金タンクや水素ボンベ等の貯蔵部材に一時的に貯蔵し、貯蔵部材を貯蔵装置5に運搬し、貯蔵部材から貯蔵装置5に水素を供給してもよい。
In the above-described embodiment, the first hydrogen generator 10 of the first hydrogen generator 2 and the storage device 5 are connected by a pipe, and the hydrogen generated in the first hydrogen generator 10 is transferred to the storage device 5 via the pipe. , but the invention is not so limited.
The hydrogen generated in the first hydrogen generation unit 10 is temporarily stored in a storage member such as a hydrogen storage alloy tank or a hydrogen cylinder, the storage member is transported to the storage device 5, and hydrogen is supplied from the storage member to the storage device 5. may
 上記した実施形態では、第1水素生成装置2の溶液生成部11と第2水素生成装置3の第2水素発生部40は、配管によって接続されており、過酸化水素含有溶液が配管を介して溶液生成部11から第2水素発生部40に供給されていたが、本発明はこれに限定されるものではない。
 過酸化水素含有溶液を手動で溶液生成部11から第2水素発生部40に供給してもよい。例えば、第1水素生成装置2の溶液生成部11において運搬タンクに過酸化水素含有溶液を一時的に貯蔵し、運搬タンクを第2水素生成装置3の第2水素発生部40に運搬し、運搬タンクから第2水素発生部40に過酸化水素含有溶液を供給してもよい。
In the above-described embodiment, the solution generator 11 of the first hydrogen generator 2 and the second hydrogen generator 40 of the second hydrogen generator 3 are connected by a pipe, and the hydrogen peroxide-containing solution is supplied via the pipe. Although it is supplied from the solution generator 11 to the second hydrogen generator 40, the present invention is not limited to this.
The hydrogen peroxide-containing solution may be manually supplied from the solution generator 11 to the second hydrogen generator 40 . For example, the hydrogen peroxide-containing solution is temporarily stored in the transport tank in the solution generation unit 11 of the first hydrogen generator 2, and the transport tank is transported to the second hydrogen generation unit 40 of the second hydrogen generator 3 and transported. The hydrogen peroxide-containing solution may be supplied from the tank to the second hydrogen generator 40 .
 上記した実施形態では、第2水素生成装置3の第2水素発生部40と貯蔵装置5は、配管によって接続されており、第2水素発生部40で発生した水素が配管を介して貯蔵装置5に供給されていたが、本発明はこれに限定されるものではない。
 第2水素発生部40で発生した水素を水素吸蔵合金タンクや水素ボンベ等の貯蔵部材に一時的に貯蔵し、貯蔵部材を貯蔵装置5に運搬し、貯蔵部材から貯蔵装置5に水素を供給してもよい。
In the above-described embodiment, the second hydrogen generator 40 of the second hydrogen generator 3 and the storage device 5 are connected by a pipe, and the hydrogen generated in the second hydrogen generator 40 is transferred to the storage device 5 via the pipe. , but the invention is not so limited.
The hydrogen generated by the second hydrogen generation unit 40 is temporarily stored in a storage member such as a hydrogen storage alloy tank or a hydrogen cylinder, the storage member is transported to the storage device 5, and hydrogen is supplied from the storage member to the storage device 5. may
 上記した実施形態では、貯蔵装置5と燃料電池モジュール6は、配管によって接続されており、貯蔵装置5で貯蔵された水素が配管を介して燃料電池モジュール6の燃料極に供給されていたが、本発明はこれに限定されるものではない。
 貯蔵装置5で発生した水素を水素吸蔵合金タンクや水素ボンベ等の貯蔵部材に一時的に貯蔵し、貯蔵部材を燃料電池モジュール6に運搬し、貯蔵部材から燃料電池モジュール6に水素を供給してもよい。
In the above-described embodiment, the storage device 5 and the fuel cell module 6 are connected by a pipe, and the hydrogen stored in the storage device 5 is supplied to the fuel electrode of the fuel cell module 6 through the pipe. The invention is not limited to this.
Hydrogen generated in the storage device 5 is temporarily stored in a storage member such as a hydrogen storage alloy tank or a hydrogen cylinder, the storage member is transported to the fuel cell module 6, and hydrogen is supplied from the storage member to the fuel cell module 6. good too.
 上記した実施形態では、ガス供給装置7は、燃料電池モジュール6の空気極に酸化ガスとして酸素を供給するものであったが、本発明はこれに限定されるものではない。燃料電池モジュール6の空気極で機能するものであれば、ガス供給装置7で供給する酸化ガスの種類は特に限定されない。 In the embodiment described above, the gas supply device 7 supplies oxygen as an oxidizing gas to the air electrode of the fuel cell module 6, but the present invention is not limited to this. The type of oxidizing gas supplied by the gas supply device 7 is not particularly limited as long as it functions in the air electrode of the fuel cell module 6 .
 上記した実施形態では、第1水素生成装置2の第1水素発生部10で生成した過酸化水素を全て溶液生成部11に供給したが、本発明はこれに限定されるものではない。第1水素発生部10で生成した過酸化水素の一部を他の用途に使用してもよい。 In the above-described embodiment, all the hydrogen peroxide generated in the first hydrogen generator 10 of the first hydrogen generator 2 is supplied to the solution generator 11, but the present invention is not limited to this. Part of the hydrogen peroxide generated in the first hydrogen generator 10 may be used for other purposes.
 上記した実施形態では、補助電源25,55として太陽電池を用いたが、本発明はこれに限定されるものではない。補助電源25,55は、他の電力源であってもよい。 Although solar cells are used as the auxiliary power sources 25 and 55 in the above-described embodiments, the present invention is not limited to this. The auxiliary power sources 25, 55 may be other power sources.
 上記した実施形態では、第1補助電源25と第2補助電源55は、別途設けていたが、本発明はこれに限定されるものではない。第1補助電源25と第2補助電源55は、共有の補助電源であってもよい。 Although the first auxiliary power supply 25 and the second auxiliary power supply 55 are provided separately in the above embodiment, the present invention is not limited to this. The first auxiliary power supply 25 and the second auxiliary power supply 55 may be a shared auxiliary power supply.
 上記した実施形態では、第1水素発生部10で発生した水素や第2水素発生部40で発生した水素を、貯蔵装置5を経由して燃料電池モジュール6に供給していたが、本発明はこれに限定されるものではない。第1水素発生部10で発生した水素や第2水素発生部40で発生した水素を、貯蔵装置5を介さずに直接燃料電池モジュール6に供給してもよい。 In the above-described embodiment, the hydrogen generated in the first hydrogen generation unit 10 and the hydrogen generated in the second hydrogen generation unit 40 are supplied to the fuel cell module 6 via the storage device 5, but the present invention It is not limited to this. The hydrogen generated by the first hydrogen generator 10 and the hydrogen generated by the second hydrogen generator 40 may be directly supplied to the fuel cell module 6 without going through the storage device 5 .
 上記した実施形態では、第1水素発生部10の底部から過酸化水素を取り出していたが、本発明はこれに限定されるものではない。第1水素発生部10の底部から第1電解液23が満たされた範囲であれば、第1水素発生部10の側部から過酸化水素を取り出してもよい。 In the above-described embodiment, hydrogen peroxide is extracted from the bottom of the first hydrogen generating section 10, but the present invention is not limited to this. Hydrogen peroxide may be extracted from the side portion of the first hydrogen generating portion 10 as long as the first electrolytic solution 23 is filled from the bottom portion of the first hydrogen generating portion 10 .
 上記した実施形態では、第1水素発生部10の頂部から水素や、酸素等の副生成ガスを取り出していたが、本発明はこれに限定されるものではない。第1電解液23の液面よりも上方であれば、第1水素発生部10の側部から水素や、酸素等の副生成ガスを取り出してもよい。 In the above-described embodiment, hydrogen and by-product gases such as oxygen are extracted from the top of the first hydrogen generating section 10, but the present invention is not limited to this. By-product gases such as hydrogen and oxygen may be taken out from the side of the first hydrogen generator 10 as long as they are above the liquid surface of the first electrolytic solution 23 .
 上記した実施形態は、本発明の技術的範囲に含まれる限り、各実施形態間で各構成部材を自由に置換や付加できる。 As long as the above-described embodiments are within the technical scope of the present invention, each constituent member can be freely replaced or added between the embodiments.
  1 発電システム
  2 第1水素生成装置
  3 第2水素生成装置
  5 貯蔵装置
  6 燃料電池モジュール
  8 水素生成システム
 10 第1水素発生部
 11 溶液生成部
 21 第1光触媒電極
 23 第1電解液
 40 第2水素発生部
 51 第2光触媒電極
 53 第2電解液
1 power generation system 2 first hydrogen generator 3 second hydrogen generator 5 storage device 6 fuel cell module 8 hydrogen generation system 10 first hydrogen generator 11 solution generator 21 first photocatalyst electrode 23 first electrolytic solution 40 second hydrogen Generator 51 Second photocatalyst electrode 53 Second electrolytic solution

Claims (8)

  1.  水素と過酸化水素を生成する第1水素生成装置と、
     前記第1水素生成装置で生成した過酸化水素を含む過酸化水素含有溶液を分解し水素を生成する第2水素生成装置と、
     前記第1水素生成装置で生成した水素と、前記第2水素生成装置で生成した水素を貯蔵する貯蔵装置を備える、水素生成システム。
    a first hydrogen generator that generates hydrogen and hydrogen peroxide;
    a second hydrogen generator for decomposing a hydrogen peroxide-containing solution containing hydrogen peroxide generated by the first hydrogen generator to generate hydrogen;
    A hydrogen generation system comprising a storage device for storing hydrogen generated by the first hydrogen generator and hydrogen generated by the second hydrogen generator.
  2.  前記第1水素生成装置は、第1光触媒電極を有し、第1電解液を光分解して水素と過酸化水素を発生させる第1水素発生部を備える、請求項1に記載の水素生成システム。 2. The hydrogen generation system according to claim 1, wherein the first hydrogen generator has a first photocatalyst electrode and includes a first hydrogen generator that photolyzes the first electrolytic solution to generate hydrogen and hydrogen peroxide. .
  3.  前記第1電解液は、水である、請求項2に記載の水素生成システム。 The hydrogen generation system according to claim 2, wherein the first electrolytic solution is water.
  4.  前記第1水素生成装置は、前記第1水素発生部で発生した過酸化水素に安定剤を添加して前記過酸化水素含有溶液を形成する溶液生成部を有している、請求項2又は3に記載の水素生成システム。 4. The first hydrogen generator has a solution generator that adds a stabilizer to the hydrogen peroxide generated in the first hydrogen generator to form the hydrogen peroxide-containing solution. The hydrogen generation system according to .
  5.  前記安定剤は、リン酸、焼成リン酸ソーダ、8-オキシキノリン、及びアセトアニリドから選ばれる少なくとも1つを含む、請求項4に記載の水素生成システム。 The hydrogen generation system according to claim 4, wherein the stabilizer contains at least one selected from phosphoric acid, calcined sodium phosphate, 8-oxyquinoline, and acetanilide.
  6.  前記第2水素生成装置は、第2光触媒電極を有し、前記過酸化水素含有溶液を光分解して水素を発生させる第2水素発生部を備える、請求項1~5のいずれか1項に記載の水素生成システム。 The second hydrogen generator according to any one of claims 1 to 5, wherein the second hydrogen generator has a second photocatalyst electrode and includes a second hydrogen generator that photolyzes the hydrogen peroxide-containing solution to generate hydrogen. A hydrogen generation system as described.
  7.  請求項1~6のいずれか1項に記載の水素生成システムと、水素を燃料とする燃料電池モジュールを有し、
     前記水素生成システムで貯蔵された水素を前記燃料電池モジュールの燃料極に供給する、発電システム。
    Having the hydrogen generation system according to any one of claims 1 to 6 and a fuel cell module using hydrogen as fuel,
    A power generation system that supplies the hydrogen stored in the hydrogen generation system to the fuel electrode of the fuel cell module.
  8.  水素と過酸化水素を生成する第1水素生成装置と、前記第1水素生成装置で生成した過酸化水素を含む過酸化水素含有溶液を分解し水素を生成する第2水素生成装置と、貯蔵装置と、燃料電池モジュールを有し、
     前記第1水素生成装置で生成した水素と、前記第2水素生成装置で生成した水素を前記燃料電池モジュールの燃料極に供給する、発電システム。
    A first hydrogen generator for generating hydrogen and hydrogen peroxide; a second hydrogen generator for generating hydrogen by decomposing a hydrogen peroxide-containing solution containing hydrogen peroxide generated by the first hydrogen generator; and a storage device and a fuel cell module,
    A power generation system that supplies hydrogen produced by the first hydrogen generator and hydrogen produced by the second hydrogen generator to the fuel electrode of the fuel cell module.
PCT/JP2022/035905 2021-09-28 2022-09-27 Hydrogen generation system and power generation system WO2023054347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021157598 2021-09-28
JP2021-157598 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023054347A1 true WO2023054347A1 (en) 2023-04-06

Family

ID=85782755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035905 WO2023054347A1 (en) 2021-09-28 2022-09-27 Hydrogen generation system and power generation system

Country Status (1)

Country Link
WO (1) WO2023054347A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105970247A (en) * 2016-07-19 2016-09-28 李国岭 Monocrystal semiconductor oxide anode and electrolytic cell for preparing hydrogen peroxide
JP2017166067A (en) * 2016-03-09 2017-09-21 公立大学法人首都大学東京 Water decomposition optical electrochemical cell, hydrogen manufacturing device and hydrogen peroxide manufacturing device using the same
WO2018074456A1 (en) * 2016-10-20 2018-04-26 国立大学法人大阪大学 Method for producing hydrogen peroxide, kit for hydrogen peroxide production, organic polymer photocatalyst used in said method and kit, and method for producing said organic polymer photocatalyst
CN108591822A (en) * 2018-05-02 2018-09-28 赫普科技发展(北京)有限公司 A kind of distributed electrolysis hydrogen producing hydrogenation station
JP2021522156A (en) * 2018-05-02 2021-08-30 イシラブズ サス Hydrogen carrier compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166067A (en) * 2016-03-09 2017-09-21 公立大学法人首都大学東京 Water decomposition optical electrochemical cell, hydrogen manufacturing device and hydrogen peroxide manufacturing device using the same
CN105970247A (en) * 2016-07-19 2016-09-28 李国岭 Monocrystal semiconductor oxide anode and electrolytic cell for preparing hydrogen peroxide
WO2018074456A1 (en) * 2016-10-20 2018-04-26 国立大学法人大阪大学 Method for producing hydrogen peroxide, kit for hydrogen peroxide production, organic polymer photocatalyst used in said method and kit, and method for producing said organic polymer photocatalyst
CN108591822A (en) * 2018-05-02 2018-09-28 赫普科技发展(北京)有限公司 A kind of distributed electrolysis hydrogen producing hydrogenation station
JP2021522156A (en) * 2018-05-02 2021-08-30 イシラブズ サス Hydrogen carrier compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DISSELKAMP R S: "Energy storage using aqueous hydrogen peroxide", ENERGY STORAGE USING AQUEOUS HYDROGEN PEROXIDE, vol. 22, no. 4, 22 September 2011 (2011-09-22), pages 2771 - 2774, XP002659677, DOI: 10.1021/EF800050T *
SHIRAISHI, Y. ET, NATURE COMMUNICATIONS, vol. 11, no. 3386, 7 July 2020 (2020-07-07), DOI: 10.1038/s411467-020-17216-2 *

Similar Documents

Publication Publication Date Title
Shi et al. Light‐driven BiVO4–C fuel cell with simultaneous production of H2O2
An et al. Direct formate fuel cells: A review
US9217202B2 (en) Membrane reactor
US7833391B2 (en) Solar hydrogen charger
US3992271A (en) Method for gas generation
US20050194041A1 (en) Solar cell electrolysis of water to make hydrogen and oxygen
US20070062820A1 (en) Fuel cell cogeneration system
JPS6380480A (en) Fuel battery and generation therewith
JPS6122036B2 (en)
Hu Membrane-less photoelectrochemical devices for H 2 O 2 production: efficiency limit and operational constraint
JP2006256901A (en) Hydrogen production apparatus, hydrogen production method and hydrogen production system
Tatapudi et al. Simultaneous Synthesis of Ozone and Hydrogen Peroxide in a Proton‐Exchange‐Membrane Electrochemical Reactor
US9145614B2 (en) Membrane reactor
JP2018516428A (en) Treatment method for liquid electrolyte
WO2021160759A1 (en) Electrochemical cell for the synthesis of hydrogen peroxide
Thomassen et al. H 2/Cl 2 fuel cell for co-generation of electricity and HCl
US11050076B1 (en) Flow cell systems, flow cell batteries, and hydrogen production processes
WO2023054347A1 (en) Hydrogen generation system and power generation system
KR100864024B1 (en) Hydrogen generating apparatus and fuel cell system using the same
JP2014093200A (en) Microbial fuel cell
Amano et al. Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding
CN114921799A (en) Method and device for simultaneously synthesizing high-purity chlorine dioxide gas by using single-atom cathode and anode
Wang et al. Recent Progress on the Catalysts and Device Designs for (Photo) Electrochemical On‐Site H2O2 Production
CN108778483B (en) Photocatalytic device for preparing hydrogen
Antoniadou et al. Solar energy conversion using photo-fuel-cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551519

Country of ref document: JP