WO2023054317A1 - Cell preparation used for treatment of neuropathy due to radiation - Google Patents

Cell preparation used for treatment of neuropathy due to radiation Download PDF

Info

Publication number
WO2023054317A1
WO2023054317A1 PCT/JP2022/035846 JP2022035846W WO2023054317A1 WO 2023054317 A1 WO2023054317 A1 WO 2023054317A1 JP 2022035846 W JP2022035846 W JP 2022035846W WO 2023054317 A1 WO2023054317 A1 WO 2023054317A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
radiation
cell preparation
umbilical cord
cell
Prior art date
Application number
PCT/JP2022/035846
Other languages
French (fr)
Japanese (ja)
Inventor
登紀子 長村
雅充 原田
トラン タイ ビン パム
Original Assignee
国立大学法人東京大学
ヒューマンライフコード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, ヒューマンライフコード株式会社 filed Critical 国立大学法人東京大学
Publication of WO2023054317A1 publication Critical patent/WO2023054317A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/51Umbilical cord; Umbilical cord blood; Umbilical stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present disclosure relates to cell preparations for use in the treatment of radiation-induced neuropathy.
  • Radioactive materials are used in various fields such as medicine, agriculture, industry, and energy generation.
  • the operator may be exposed to radiation, resulting in health hazards. Therefore, establishment of an effective treatment method for radiation exposure is desired.
  • Non-Patent Documents 1 and 2 Non-Patent Documents 1 and 2.
  • Neuropathy is known as radiation injury.
  • the symptoms can be alleviated by administering steroids, there is no therapeutic method that can be expected to have a sufficient therapeutic effect on the neuropathy.
  • the present disclosure aims to provide a cell preparation that can treat radiation-induced neuropathy.
  • the present disclosure is a cell preparation (hereinafter also referred to as “cell preparation”) used for treatment of radiation-induced neuropathy, wherein the cell preparation contains umbilical cord-derived cells.
  • radiation-induced neuropathy can be treated.
  • FIG. 1 is a graph showing the ratio of GAP43-positive cells in Example 1.
  • FIG. 2 is a photograph showing an immunostained image of cortical neuron cells in Example 1.
  • FIG. 3 is a graph showing the length of neurites in Example 1.
  • FIG. 4 is a photograph showing an immunostained image of cortical neuron cells in Example 1.
  • FIG. 5 is a photograph showing a fluorescent image and a bright field image of cortical neuron cells in Example 1.
  • FIG. 6 is a graph showing the ratio of fluorescence-positive cells due to active oxygen in Example 1.
  • FIG. 7 is a photograph showing a fluorescence image and a bright field image of necrosis in Example 1.
  • FIG. 8 is a graph showing the ratio of viable cells, apoptotic cells and necrotic cells in Example 1.
  • FIG. 9 is a graph showing the expression level of each gene in Example 1.
  • FIG. FIG. 10 is a photograph showing a histologically stained image of the mouse brain tissue in Example 1, showing the thickness
  • radiation neuropathy means a state in which normal nerve cells (neuron cells) and/or nerve tissue are damaged by radiation exposure such as radiation therapy.
  • the neuropathy includes, for example, neuronal and/or neurological tissue disorders associated with demyelination, axonal degeneration, coagulative necrosis, and the like.
  • the neuropathy caused by radiation includes, for example, radiation encephalopathy, radiation neuritis, radiation myelopathy, radiation brain necrosis, radiation neurosis, leukoencephalopathy, hypoglossal nerve palsy, facial nerve palsy, trigeminal neuropathy, and radiation-induced brachial plexopathy. etc.
  • radiation means particle beams or electromagnetic waves emitted when an unstable atomic nucleus structure changes to a stable atomic nucleus structure.
  • the radiation includes, for example, ionizing radiation or non-ionizing radiation.
  • the ionizing radiation include particle beams and electromagnetic waves.
  • the particle beam include ⁇ -rays, ⁇ -rays, proton beams, deuteron beams, triple proton beams, heavy ion beams, charged meson beams, uncharged meson beams, neutrinos, and neutron beams.
  • the electromagnetic waves include X-rays and ⁇ -rays.
  • the non-ionizing radiation include radio waves, microwaves, infrared rays, visible rays, and ultraviolet rays.
  • nerve means a tissue that transmits information.
  • the nerves include central nerves and peripheral nerves.
  • the central nervous system includes the cerebrum; brain stems such as the diencephalon, midbrain, pons, and medulla oblongata; the cerebellum; the brain; and the spinal cord.
  • the peripheral nerves include motor nerves, sensory nerves, and autonomic nerves.
  • treatment means therapeutic treatment and/or prophylactic treatment.
  • treatment means treating, curing, preventing, arresting, ameliorating, ameliorating a disease, condition, or disorder, or halting, arresting, reducing, or delaying the progression of a disease, condition, or disorder. do.
  • prevention means reducing the likelihood of developing a disease or condition or delaying the onset of a disease or condition.
  • the “treatment” may be, for example, treatment of a subject (patient) who develops the target disease, or treatment of a model animal of the target disease.
  • cell preparation means a cell population containing desired cells or a composition containing desired cells.
  • a cell preparation can also be referred to herein, for example, as a cell population or composition.
  • the ratio of desired cells to all cells can be quantified, for example, as the ratio of cells expressing one or more markers that desired cells express.
  • the purity is, for example, the percentage in viable cells.
  • the purity can be measured, for example, by flow cytometry, immunohistochemistry, in situ hybridization, and the like.
  • the purity of the cell preparation is, for example, 50% or higher, 55% or higher, 60% or higher, 65% or higher, 70% or higher, 75% or higher, 80% or higher, 85% or higher, 90% or higher , 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • mesenchymal cell means a cell that constitutes connective tissue derived from mesoderm or neural crest and/or a cell that has the potential to differentiate into said cell.
  • the mesenchymal cells can also be called mesenchymal stem cells (MSCs).
  • Said mesenchymal cells are usually present in blood vessels; in and around organs such as liver or pancreas; fat; bone marrow or umbilical cord;
  • the mesenchymal stem cells are one of multipotent stem cells, and mean cells that have the potential to differentiate into adipocytes, osteocytes, chondrocytes, muscle cells, hepatocytes, tendon cells, and/or nerve cells. do.
  • the mesenchymal stem cells are, for example, adipose tissue-derived mesenchymal stem cells, bone marrow-derived mesenchymal stem cells, placenta-derived mesenchymal stem cells, dental pulp-derived mesenchymal stem cells, and umbilical cord-derived mesenchymal stem cells. They are called stem cells.
  • positive is defined as a negative control reaction using negative control cells that do not express the antigen or an antibody that does not react with the antigen by an analysis method such as flow cytometry that is detected using an antigen-antibody reaction. By comparison, it means that a higher signal or the like is detected.
  • negative means that a signal or the like that is equal to or lower than that in a negative control reaction using a negative control cell that does not express the antigen or an antibody that does not react with the antigen is detected. means.
  • under inflammatory conditions refers to conditions in which inflammatory cytokines such as interferon ⁇ are contacted or added.
  • neuron cell or “neuron cell” means a cell composed of dendrites that receive information and axons (neurites) that transmit information.
  • the neuron cells include mature neuron cells and immature neuron cells.
  • the mature neuron cells are morphologically cells with well-developed dendrites.
  • the mature neuron cells can be identified by expression of mature neuron marker genes such as MAP2.
  • the immature neuronal cells are morphologically simple cells with dendrites compared to the mature neuronal cells.
  • the immature neuron cells can be identified by expression of immature neuron marker genes such as GAP43.
  • active oxygen species means atoms, molecules, radicals, compounds, etc. containing oxygen atoms in a chemically activated state.
  • the radical means an atom, molecule or ion having an unpaired electron.
  • Said active oxygen is, for example, non-radical species such as singlet oxygen ( 1 O 2 ), ozone (O 3 ), and hydrogen peroxide (H 2 O 2 ); ), peroxy radicals (LOO.), hydroperoxy radicals (HOO.), nitric oxide (NO.), nitrogen dioxide ( NO.sub.2 .), superoxide anions ( O.sub.2- ), radical species such as lipid radicals; is given.
  • cell death means the death of cells that are constituents of living organisms.
  • the cell death includes, for example, apoptosis and necrosis.
  • Said apoptosis refers to programmed cell death controlled by molecular mechanisms.
  • Said necrosis refers to passive cell death caused when cells are physically and/or chemically damaged.
  • isolated or “isolated” means the state of being identified and separated, and/or the state of being recovered from components in their natural state. Said “isolation” or “isolated” can be carried out, for example, by going through at least one purification step.
  • the "isolated” or “isolated” refers to a state in which the cells of interest are separated and/or purified from tissue. may mean. Examples of the tissue include organs such as blood vessels, liver, and pancreas; fat; bone marrow; umbilical cord; Examples of the cells include mesenchymal cells.
  • the description provides a cell preparation for use in treating radiation-induced neuropathy.
  • the cell preparation of the present disclosure as described above, is a cell preparation for use in the treatment of radiation-induced neuropathy, said cell preparation comprising umbilical cord-derived cells.
  • the cell preparation of the present disclosure is characterized by containing umbilical cord-derived cells, and other configurations and conditions are not particularly limited.
  • the therapeutic agent for radiation neuropathy of the present invention is characterized by containing the cell preparation of the present disclosure.
  • the umbilical cord-derived cells suppress neurite retraction of mature neuron cells caused by irradiation, suppress cell death of immature neuron cells caused by irradiation, We have found that it suppresses the generation of reactive oxygen in neuronal cells caused by irradiation, suppresses necrosis of neuronal cells caused by irradiation, and suppresses inflammation in the nervous system caused by irradiation.
  • the present inventors have found that demyelination in radiation-induced neuropathy patients can be suppressed by using umbilical cord-derived cells exhibiting one or more of these activities, and have established the present disclosure. .
  • the umbilical cord-derived cells are presumed to suppress symptoms of radiation-induced neuropathy by suppressing damage to neuronal cells caused by radiation and/or promoting recovery from damage caused by radiation. Therefore, it can be said that the cell preparation of the present disclosure can suitably treat radiation-induced neuropathy by containing the umbilical cord-derived cells.
  • umbilical cord is a white tubular tissue that connects the fetus and placenta, and means tissue that does not contain placenta and cord blood.
  • the origin of the "umbilical cord” is not particularly limited. is the umbilical cord of a primate mammal, more preferably a human umbilical cord.
  • the umbilical cord may be an umbilical cord collected from a subject for administration, treatment, or treatment (hereinafter collectively referred to as "administration subject"), or an umbilical cord collected from a subject other than the administration subject. There may be. It is preferable to use an umbilical cord collected from a person other than the subject of administration from the viewpoint of not being subject to restrictions during preparation.
  • the umbilical cord-derived cells of the present disclosure may be umbilical cord-derived cells (autologous cells) collected from an administration subject, or umbilical cord-derived cells collected from a non-administration subject, as shown in Examples described later. (allogeneic cells). It has been confirmed that the umbilical cord-derived cells have therapeutic effects without being eliminated by immune rejection or the like, for example.
  • the umbilical cord can be collected by appropriately removing the placenta from, for example, postpartum tissue containing the placenta and/or umbilical cord delivered by vaginal delivery or cesarean section.
  • the umbilical cord may be one obtained by removing cord blood from the collected umbilical cord, and may be one subjected to aseptic or bacteriostatic treatment. Removal of the cord blood can be performed, for example, by rinsing or perfusion with a solution containing an anticoagulant such as heparin.
  • Said aseptic or bactericidal treatment is not particularly limited, for example, application of disinfectants such as povidone-iodine; addition of antibiotics such as penicillin, streptomycin, amphotericin B, gentamicin, and/or nystatin, and/or antimycotics immersion in a medium or buffer;
  • the umbilical cord may also selectively lyse red blood cells, for example, if desired.
  • methods well known in the art can be used, such as incubation in hypertonic or hypotonic medium by lysis with ammonium chloride.
  • the term "umbilical cord-derived cells” means a cell population prepared using umbilical cord as a raw material.
  • the "umbilical cord-derived cells” may be composed of a single type of cell, or may be composed of a plurality of types of cells.
  • the umbilical cord-derived cells preferably contain umbilical cord-derived mesenchymal cells.
  • the umbilical cord-derived cells may be a cell population composed of multiple types of cells including the umbilical cord-derived mesenchymal cells.
  • the umbilical cord-derived cells of the present disclosure may be, for example, a cell population having any one or more characteristics and/or markers of (a) to (c) below, preferably a cell population having all characteristics is.
  • (a) shows adhesion (adherence) to plastic in culture in the presence of a medium;
  • (b) CD105, CD73, CD90, CD44, HLA-classI, HLA-G5 and PD-L (Programmed cell death 1 ligand) 2 positive, CD45, CD34, CD11b, CD19 and HLA-ClassII negative ;
  • IDO indoleamine 2,3-dioxygenase
  • PGE 2 prostaglandin E2
  • PD-L1 genes and/or proteins is induced under inflammatory conditions;
  • HLA-class I means HLA-A, B, or C.
  • HLA-Class II means HLA-DR, DQ, or DP.
  • the umbilical cord-derived cells may be extracts and/or secretions of the umbilical cord-derived cells.
  • the umbilical cord-derived cell extract can be obtained by, for example, subjecting the umbilical cord-derived cells to concentration treatment, centrifugation treatment, drying treatment, freeze-drying treatment, solvent treatment, surfactant treatment, protease, glycolytic enzyme, or the like. processed products obtained by enzymatic treatment, protein extraction treatment, ultrasonic treatment and/or grinding treatment, or processed products obtained by a combination of these treatments, and the like.
  • the secretions of the umbilical cord-derived cells include exosomes and cell culture supernatants of umbilical cord-derived cells.
  • the cell preparation preferably exhibits an inhibitory effect on neurite retraction of mature neuron cells caused by irradiation.
  • the mature neuron cells are, for example, central nerve neuron cells, preferably cerebral mature neuron cells.
  • the neurite retraction inhibitory action of the mature neuron cells is, for example, when the irradiated mature neuron cells and the subject coexist, compared to the absence of the subject, the mature neuron It can be evaluated by whether it can suppress retraction of neurites of cells. Specifically, the neurite retraction inhibitory action can be evaluated based on the rate of inhibition of neurite length retraction. The inhibition rate was calculated by comparing the neurite length (L nc ) of non-irradiated mature neuronal cells with that of irradiated mature neurons treated identically but cultured in the absence of the specimen.
  • Length of neurites of mature neuron cells irradiated and cultured in the presence of the subject, with reference to the difference (L nc ⁇ L c ) from the neurite length (L c ) of the cells The ratio of the difference (L e ⁇ L c ) between the length (L e ) and the length (L c ) of the neurite ((L e ⁇ L c )/(L nc ⁇ L c ) ⁇ 100(%) ) can be calculated as
  • the type and irradiation dose of radiation used to calculate the inhibition rate, mature neuron cells, and the length of each neurite can be measured according to Example 1 (7) described below, and more specifically, the radiation
  • the mature neuron cells mouse fetal-derived mature neuron cells can be used for measurement.
  • the suppression rate is 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more % or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99%
  • the test object can be evaluated as having an inhibitory effect on neurite retraction.
  • the cell preparation preferably exhibits an inhibitory effect on cell death of immature neuronal cells caused by irradiation.
  • the immature neuron cell is, for example, a central nervous immature neuron cell, preferably a brain immature neuron cell.
  • the effect of suppressing cell death of the immature neuron cells is, for example, when the irradiated immature neuron cells and the test object coexist, compared to the absence of the test object, the immature neuron cell It can be evaluated by whether it can suppress cell death of mature neuron cells. Specifically, the cell death inhibitory action can be evaluated based on the cell death inhibition rate of the immature neuron cells. The inhibition rate was calculated by comparing the number of surviving immature neuronal cells (C nc ) that were not irradiated and the immature neurons that were irradiated and treated in the same manner except that they were cultured in the absence of the test substance.
  • C nc surviving immature neuronal cells
  • C e Surviving cell number (C e ) of immature neuron cells that have been irradiated and cultured in the presence of the subject, and the surviving cells, based on the difference from the surviving cell number (C c ) of the cells It can be calculated as the ratio of the difference (C e ⁇ C c ) from the number (C c ) ((C e ⁇ C c )/(C nc ⁇ C c ) ⁇ 100(%)).
  • the viable cell count the ratio of the viable cell count to the total cell count may be used.
  • the type and irradiation dose of radiation, the number of immature neuron cells, and the number of viable cells used for calculating the inhibition rate can be measured according to Example 1 (9) described later.
  • the suppression rate is 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more % or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99%
  • the test substance can be evaluated as having an effect of suppressing cell death.
  • the cell preparation exhibits an action of suppressing the generation of reactive oxygen in neuronal cells caused by irradiation.
  • the neuron cells are, for example, central nerve neuron cells, preferably brain neuron cells.
  • the effect of suppressing the generation of reactive oxygen in the neuron cells is, for example, when the irradiated neuron cells and the test object are allowed to coexist, compared to the absence of the test object, in the neuron cells It can be evaluated by whether or not generation of active oxygen can be suppressed. Specifically, the inhibitory effect on the generation of reactive oxygen can be evaluated based on the rate of inhibition of the generation of reactive oxygen in the neuron cells. The inhibition rate is calculated by comparing the number of reactive oxygen marker-positive cells (R nc ) of non-irradiated neuronal cells and neurons that have been irradiated and treated in the same manner except that they were cultured in the absence of the test substance.
  • R nc reactive oxygen marker-positive cells
  • the number of reactive oxygen marker-positive cells ( Re ) and the ratio of the difference (R e -R c ) between the number of reactive oxygen marker-positive cells (R c ) ((R e -R c )/(R nc -R c ) ⁇ 100 (%)) can be calculated.
  • the ratio of the number of reactive oxygen marker-positive cells to the total number of cells may be used.
  • the type and irradiation dose of radiation used to calculate the inhibition rate, neuron cells, the reactive oxygen marker to be used, and the number of cells positive for each reactive oxygen marker can be measured according to Example 1 (8) described below.
  • gamma rays can be used as the radiation
  • mouse fetal neuron cells can be used as the neuron cells.
  • the suppression rate is 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more % or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99%
  • the test object can be evaluated as having an effect of suppressing the generation of active oxygen.
  • the cell preparation preferably exhibits an inhibitory effect on necrosis of neuronal cells caused by irradiation.
  • the neuron cells are, for example, central nerve neuron cells, preferably brain neuron cells.
  • the effect of suppressing necrosis in neuronal cells is, for example, when the irradiated neuronal cells and the test substance are allowed to coexist, compared to the absence of the test substance, suppresses necrosis in the neuronal cells. It can be evaluated according to whether it can be done. Specifically, the necrosis-suppressing action can be evaluated based on the necrosis-suppressing rate of the neuronal cell. The inhibition rate was calculated by comparing the number of necrotic cells (N nc ) in non-irradiated neuronal cells and the number of irradiated neuronal cells treated in the same manner but cultured in the absence of the test substance.
  • the number of necrotic cells (N e ) of irradiated neuronal cells cultured in the presence of the subject, and the necrotic cells, based on the difference from the number of necrotic cells (N c ) can be calculated as a ratio ((N e -N c )/(N nc -N c ) ⁇ 100(%)) of the difference (N e ⁇ N c ) from the number of cells (N c ) of the cell number (N c ).
  • the ratio of the number of necrotic cells to the total number of cells may be used.
  • the type and irradiation dose of radiation used to calculate the inhibition rate, the detection of neuronal cells, and each necrotic cell can be measured according to Example 1 (9) described below, and more specifically, the radiation It can be measured using ⁇ -rays and mouse embryo-derived neuron cells as the neuron cells.
  • the suppression rate is 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more % or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99%
  • the test object can be evaluated as having an inhibitory effect on necrosis.
  • the method for producing (preparing) umbilical cord-derived cells includes, for example, a step of isolating cells from the umbilical cord, and optionally a step of subculturing the isolated cells.
  • the preparation method includes, for example, (1) cutting the umbilical cord, (2) culturing the umbilical cord segment, and (3) subculturing.
  • the preparation method includes, for example, (A) a step of cutting the umbilical cord, a step of enzymatic treatment, or a step of dissociating the tissue by both, (B) a step of culturing the umbilical cord tissue, and ( C) including the step of passaging.
  • the umbilical cord-derived cells may be a uniform cell population or a heterogeneous cell population.
  • the umbilical cord-derived cells are prepared by the method including the steps (1) to (3) or the method including the steps (A) to (C), an example can be carried out as follows.
  • the method for preparing the umbilical cord-derived cells is not limited to the following example.
  • the method including the steps (1) to (3) will be described.
  • the umbilical cord obtained by the above method is subjected to mechanical force (shredding force or shear force) in a state containing amniotic membrane, blood vessels, perivascular tissue and/or Walton's jelly. It can be implemented by cutting.
  • the size of the umbilical cord segment obtained by cutting is not particularly limited, and examples thereof include 1 to 10 mm 3 , 1 to 5 mm 3 , 1 to 4 mm 3 , 1 to 3 mm 3 and 1 to 2 mm 3 .
  • the cut umbilical cord segment is seeded in an incubator such as a Petri dish, dish, or flask, and cultured in a culture medium suitable for umbilical cord-derived cells. .
  • the umbilical cord segment is not treated with a digestive enzyme.
  • the "incubator” may be, for example, an incubator having a solid surface.
  • an incubator used for culturing cells, tissues, and/or organs can be used.
  • Said “solid surface” means, for example, any material capable of binding with said umbilical cord-derived cells.
  • the material includes, for example, a plastic material that has been treated (eg, hydrophilicity-enhancing treatment) to promote binding of mammalian cells to its surface.
  • the type of culture vessel having the solid surface is not particularly limited, and examples thereof include petri dishes, dishes, flasks, and the like.
  • the "culture medium suitable for umbilical cord-derived cells” can be prepared, for example, by adding additives such as serum to the basal medium.
  • additives are, for example, serum and/or one or more of albumin, transferrin, fatty acids, insulin, sodium selenite, cholesterol, collagen precursors, trace elements, 2-mercaptoethanol, 3′-thiolglycerol, etc. of serum replacement.
  • the culture solution further contains lipids, amino acids, proteins, polysaccharides, vitamins, growth factors, low-molecular-weight compounds, antibiotics, antifungal agents, antioxidants, pyruvic acid, buffers, and inorganic salts. You may add substances, such as.
  • the basal medium is not particularly limited.
  • Ham's F10 Medium F10
  • Ham's F-12 Medium F12
  • Iscove's Modified Dulbecco's (IMDM) Medium Fischer's Medium
  • Mesenchymal Stem Cell Growth Medium MSCGM
  • DMEM/F12 RPMI 1640
  • CELL-GRO-FREE CELL-GRO-FREE
  • serum examples include animal-derived serum such as human serum, fetal bovine serum (FBS), bovine serum, calf serum, goat serum, horse serum, pig serum, sheep serum, rabbit serum and rat serum.
  • the amount of serum added to the basal medium is, for example, 5 v/v % to 15 v/v %, preferably about 10 v/v %.
  • the fatty acid is not particularly limited, and examples thereof include linoleic acid, oleic acid, linoleic acid, arachidonic acid, myristic acid, palmitoic acid, palmitic acid, and stearic acid.
  • the lipid is not particularly limited, and examples thereof include phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine and the like.
  • the amino acid is not particularly limited, and examples thereof include amino acids such as L-alanine, L-arginine, L-aspartic acid, L-asparagine, L-cysteine, L-cystine, L-glutamic acid, L-glutamine, and L-glycine.
  • the protein is not particularly limited, and examples thereof include ecotin, reduced glutathione, fibronectin, ⁇ 2-microglobulin and the like.
  • the polysaccharide is not particularly limited, and examples thereof include glycosaminoglycans such as hyaluronic acid and heparan sulfate.
  • the growth factor is not particularly limited, and examples include platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), leukocyte inhibitory factor (LIF), basic fibroblast growth factor (bFGF), transforming growth factor beta (TGF- ⁇ ), hepatocyte growth factor (HGF), connective tissue growth factor (CTGF) , erythropoietin (EPO) and the like.
  • the antibiotic and/or antifungal agent is not particularly limited, and examples thereof include penicillin G, streptomycin sulfate, amphotericin B, gentamicin, nystatin, and mixtures thereof.
  • step (2) in order to prevent the seeded umbilical cord segments from floating in the culture medium, it is preferable to hold down the umbilical cord segments using a plate or the like during the culture period.
  • the plate include plates described in JP-A-2015-70824.
  • culture conditions are not particularly limited, and for example, general culture conditions for cells, tissues, organs, etc. can be referred to.
  • the CO 2 concentration in the step (2) is, for example, 0 to 5%.
  • the O 2 concentration in the step (2) is, for example, 2 to 25%, preferably 5 to 20%.
  • the culture temperature in the step (2) is, for example, 25 to 40°C, preferably about 37°C (35 to 39°C).
  • the culture period is not particularly limited. It is preferable to culture until the cells become confluent.
  • the cells are washed and treated with a solution containing a chelating agent such as EDTA, trypsin, collagenase, dispase, or the like. protease, sugar chain degrading enzyme such as hyaluronidase, or a stripping agent containing a mixture thereof.
  • a chelating agent such as EDTA, trypsin, collagenase, dispase, or the like.
  • protease sugar chain degrading enzyme such as hyaluronidase, or a stripping agent containing a mixture thereof.
  • the step (2) for example, by filtering the detachment solution containing the cells and the umbilical cord segment using a cell strainer or the like, only cells can be obtained as umbilical cord-derived cells.
  • the obtained umbilical cord-derived cells can be seeded, for example, in the culture vessel described above and cultured using the culture medium described above.
  • the umbilical cord-derived cells can be appropriately grown to the required number by subculturing.
  • the cells in the subculture, the cells may be detached with the detachment agent, seeded at an appropriate cell density in a separately prepared culture vessel, and culture continued.
  • the cell density (seeding density) when seeding the cells is, for example, 1 ⁇ 10 2 to 1 ⁇ 10 5 cells/cm 2 , 5 ⁇ 10 2 to 5 ⁇ 10 4 cells/cm 2 , 1 ⁇ 10 3 1 ⁇ 10 4 cells/cm 2 , 2 ⁇ 10 3 to 1 ⁇ 10 4 cells/cm 2 and the like, preferably 2 ⁇ 10 3 to 1 ⁇ 10 4 cells/cm 2 .
  • the seeding density is preferably adjusted, for example, so that the period to reach a suitable confluency is 3 to 7 days.
  • the medium may be changed as appropriate, if necessary.
  • the number of passages in the step (3) is not particularly limited, and may be performed, for example, until senescence, when cell division stops.
  • it is preferably subcultured 3 to 25 times, more preferably subcultured 4 to 12 times.
  • the umbilical cord obtained by the method described above is enzymatically treated in a state containing amniotic membrane, blood vessels, perivascular tissue and/or Walton's Jelly to dissociate the tissues.
  • the enzyme used for the enzymatic treatment is not particularly limited, and examples thereof include proteases such as collagenase and dispase; glycolytic enzymes such as hyaluronidase; and the like.
  • step of (B) culturing the umbilical cord tissue and the step of (C) subculturing are, for example, the same as the step of (2) culturing the umbilical cord tissue and the step of (3) subculturing, respectively. can be implemented as
  • the umbilical cord-derived cells can be obtained after the step (3) or (C).
  • the cells obtained by the method for preparing umbilical cord-derived cells are umbilical cord-derived cells
  • surface antigens and the like may be analyzed by conventional methods using flow cytometry and the like.
  • whether or not the cells obtained by the method for preparing umbilical cord-derived cells are umbilical cord-derived cells may be evaluated by measuring the amounts of various proteins produced from the cells.
  • the cells obtained by the method for preparing umbilical cord-derived cells may be directly prepared for treatment or may be cryopreserved.
  • the cryopreservation is performed, for example, by suspending the cells in a cryopreservation solution capable of preserving the umbilical cord-derived cells and storing the cells at -80°C to -180°C.
  • the cryopreservation solution is not particularly limited, and examples thereof include an aqueous solution containing a cryoprotectant and glucose.
  • the antifreeze agent include dimethyl sulfoxide (hereinafter also referred to as "DMSO"), dextran, glycerol, propylene glycol, and 1-methyl-2-pyrrolidone, preferably DMSO and/or propylene glycol.
  • the cryoprotectant is contained, for example, in the cryopreservation solution at 1 to 15 v/v%, preferably 5 to 15 v/v%, more preferably 5 to 12v/v%, More preferably, it is contained in an amount of 8 to 11 v/v%.
  • Glucose contained in the cryopreservation solution is, for example, 0.5 to 10 w/v%, preferably 1 to 10 w/v%, more preferably 2 to 10 w/v% in the cryopreservation solution. 8 w/v %, more preferably 2 to 5 w/v %.
  • the cryopreservation solution may further contain other components.
  • Other components include, for example, pH adjusters and thickeners.
  • the pH adjuster include sodium hydrogen carbonate, HEPES, and phosphate buffer.
  • BSS basic stock solution
  • a phosphate buffer is preferably used as the pH adjuster.
  • the pH adjuster is preferably used to adjust the pH in the cryopreservation solution to, for example, about 6.5-9, preferably 7-8.5.
  • the "phosphate buffer” includes, for example, sodium chloride, monosodium phosphate (anhydrous), monopotassium phosphate (anhydrous), disodium phosphate (anhydrous), trisodium phosphate ( Anhydrous), potassium chloride, and potassium dihydrogen phosphate (anhydrous), etc., especially sodium chloride, monosodium phosphate (anhydrous), potassium chloride, or potassium dihydrogen phosphate (anhydrous).
  • a buffer containing The pH adjuster is contained, for example, in the cryopreservation solution at 0.01 to 1 w/v%, preferably 0.05 to 0.5 w/v%.
  • the cryopreservation solution may or may not contain natural animal-derived components.
  • the natural animal-derived components include the aforementioned serum and basal medium.
  • the cryopreservation solution does not contain natural animal-derived components.
  • the cryopreservation solution that does not contain the natural animal-derived components does not cause quality differences between lots of natural animal-derived components, and components such as various cytokines, growth factors, and hormones contained in serum. It is possible to suppress the possibility of changes in the properties of the cells in the umbilical cord tissue caused by , and also to suppress the influence of components of unknown origin contained in the basal medium. Therefore, cryopreservation solutions free of said natural animal-derived components are very useful, especially in clinical use.
  • the cryopreservation solution may further contain a thickening agent.
  • the thickening agent is not particularly limited, and examples thereof include those capable of constituting a cryopreservation solution capable of sufficiently preserving the umbilical cord tissue.
  • the thickener include carboxymethyl cellulose (hereinafter also referred to as "CMC"), carboxymethyl cellulose sodium (hereinafter also referred to as "CMC-Na”), organic acid polymers, propylene glycol alginate, sodium alginate and the like.
  • CMC and CMC-Na are preferred, and CMC-Na is particularly preferred.
  • the organic acid polymer is preferably sodium polyacrylate.
  • the thickening agent is contained, for example, in the cryopreservation solution at 0.1 to 1 w/v%, preferably 0.1 to 0.5 w/v%, more preferably 0.2 Contains ⁇ 0.4 w/v%.
  • the cryopreservation solution is preferably an aqueous solution.
  • the osmotic pressure of the cryopreservation solution is, for example, preferably 1000 mOsm or more, more preferably 1000 to 2700 mOsm, in order to maintain performance as a preservation solution.
  • the cryopreservation solution is preferably an aqueous solution that contains a thickener, a cryoprotectant, and glucose, and does not contain natural animal-derived components.
  • the cryopreservation solution is more preferably an aqueous solution containing CMC-Na, DMSO, and glucose and free of natural animal-derived components.
  • the cryopreservation solution more preferably contains 0.1 to 1 w/v% CMC-Na, 1 to 15 v/v% DMSO, 0.5 to 10 w/v% glucose, and natural It is an aqueous solution containing no animal-derived components.
  • the cells obtained by the method for preparing umbilical cord-derived cells may be used as cell preparations for various applications, for example, by mixing with infusion preparations.
  • the cryopreserved umbilical cord-derived cells may be suspended in the cryopreservation solution, and after thawing, may be used directly as a cell preparation for various purposes, or may be used after thawing. It may be mixed with an infusion formulation and the resulting mixture used as a cell preparation for various uses.
  • the culture medium or cryopreservation solution in which the umbilical cord-derived cells are suspended may be mixed with the infusion preparation or the like, and the culture medium or cryopreservation solution may be separated by centrifugation or the like. After separating the cells from the solvent, the cells alone may be mixed with the infusion formulation.
  • the preparation method for example, in order to avoid the complexity of the procedure, the step of culturing the frozen cells after thawing is not included, or the cryopreservation solution in which the thawed cells are suspended is directly used as an infusion preparation. Mixing is preferred.
  • the above-mentioned "infusion preparation” includes, for example, solutions such as infusion solutions used for human treatment, and specific examples include physiological saline, 5% glucose solution, Ringer's solution, lactated Ringer's solution, and acetated Ringer's solution. , No. 1 liquid, No. 2 liquid, No. 3 liquid, No. 4 liquid, and the like.
  • the cell preparation of the present disclosure may be a kit containing the infusion preparation in addition to the umbilical cord-derived cells.
  • the cell preparation of the present disclosure may contain a pharmaceutically acceptable carrier in addition to or instead of the infusion preparation.
  • the carrier includes suspending agents, solubilizers, stabilizers, tonicity agents, preservatives, antiadsorption agents, surfactants, diluents, vehicles, pH adjusters, Examples include soothing agents, buffering agents, sulfur-containing reducing agents, antioxidants, and the like, and can be added appropriately within a range that does not interfere with the effects of the present disclosure.
  • the suspending agent is not particularly limited, and examples thereof include methylcellulose, polysorbate 80, hydroxyethylcellulose, gum arabic (gum arabic), tragacanth powder, carboxymethylcellulose sodium, polyoxyethylene sorbitan monolaurate, and the like.
  • the solution adjuvant is not particularly limited, and examples thereof include polyoxyethylene hydrogenated castor oil, polysorbate 80, nicotinic acid amide, polyoxyethylene sorbitan monolaurate, macrogol, castor oil fatty acid ethyl ester, and the like.
  • the stabilizer is not particularly limited, and examples include dextran 40, methylcellulose, gelatin, sodium sulfite, sodium metasulfate, and the like.
  • the tonicity agent is not particularly limited, and examples thereof include D-mannitol and sorbitol.
  • the preservative is not particularly limited, and examples thereof include methyl paraoxybenzoate, ethyl parahydroxybenzoate, sorbic acid, phenol, cresol, and chlorocresol.
  • the antiadsorption agent is not particularly limited, and examples thereof include human serum albumin, lecithin, dextran, ethylene oxide propylene oxide copolymer, hydroxypropyl cellulose, methyl cellulose, hydrogenated castor oil, and polyethylene glycol.
  • the sulfur-containing reducing agent is not particularly limited. Those having a sulfhydryl group such as sodium sulfate, glutathione, and thioalkanoic acids having 1 to 7 carbon atoms are included.
  • the antioxidant is not particularly limited, and examples thereof include erythorbic acid, dibutylhydroxytoluene, butylhydroxyanisole, ⁇ -tocopherol, tocopherol acetate, L-ascorbic acid and its salts, L-ascorbic acid palmitate, L-ascorbic acid stear. sodium bisulfite, sodium sulfite, triamyl gallate, propyl gallate or sodium ethylenediaminetetraacetate (EDTA), sodium pyrophosphate, sodium metaphosphate and the like.
  • erythorbic acid dibutylhydroxytoluene, butylhydroxyanisole, ⁇ -tocopherol, tocopherol acetate, L-ascorbic acid and its salts, L-ascorbic acid palmitate, L-ascorbic acid stear.
  • Cell preparations of the present disclosure may further include inorganic salts such as sodium chloride, potassium chloride, calcium chloride, sodium phosphate, potassium phosphate, sodium bicarbonate; organic salts such as sodium citrate, potassium citrate, sodium acetate; Saccharides such as glucose; and other commonly added components may be added as appropriate.
  • inorganic salts such as sodium chloride, potassium chloride, calcium chloride, sodium phosphate, potassium phosphate, sodium bicarbonate
  • organic salts such as sodium citrate, potassium citrate, sodium acetate
  • Saccharides such as glucose
  • ACD-A solution composition composed of sodium citrate hydrate, citric acid hydrate, glucose, etc.
  • Cellular preparations of the present disclosure may be mixed with, for example, for topical administration, organics such as biopolymers; inorganics such as hydroxyapatite; specific examples include collagen matrices, polylactic polymers or copolymers, polyethylene It may be mixed with glycol polymers or copolymers and chemical derivatives thereof.
  • organics such as biopolymers
  • inorganics such as hydroxyapatite
  • specific examples include collagen matrices, polylactic polymers or copolymers, polyethylene It may be mixed with glycol polymers or copolymers and chemical derivatives thereof.
  • a cell preparation of the present disclosure may be used, for example, in vitro or in vivo.
  • the cell preparations of the present disclosure can be used, for example, as research reagents and can be used as pharmaceuticals.
  • the subject of administration of the cell preparation of the present disclosure is not particularly limited.
  • the administration subject includes, for example, humans or non-human animals other than humans.
  • non-human animals include mammals such as mice, rats, rabbits, dogs, cats, cows, horses, pigs, monkeys, dolphins, and sea lions; birds; fish;
  • the subject of administration includes, for example, cells, tissues, organs, and the like, and the cells include, for example, cells collected from living organisms, cultured cells, and the like.
  • the tissue or organ includes, for example, a tissue (living tissue) or organ collected from a living body.
  • the administration subject is, for example, a subject diagnosed as having neuropathy due to radiation, a subject suspected of having neuropathy due to radiation, or a subject having neuropathy due to radiation.
  • the neuropathy includes, for example, radiation encephalopathy, radiation neuritis, radiation myelopathy, radiation brain necrosis, radiation neurosis, leukoencephalopathy, hypoglossal nerve palsy, facial nerve palsy, trigeminal neuropathy, and radiation-induced brachial plexopathy. is given.
  • the administration subject may be a subject whose administration has been determined based on the radiation exposure dose.
  • the exposure dose of the radiation to be administered may be the exposure dose that causes neuropathy or the exposure dose that is predicted to cause neuropathy.
  • the lower limit of the exposure dose is, for example, 0.1 Gy or more, 1 Gy or more, 2 Gy or more, 3 Gy or more, 4 Gy or more, 5 Gy or more, 6 Gy or more, 7 Gy or more, 8 Gy or more, 9 Gy or more, or 10 Gy or more.
  • the upper limit of the exposure dose is, for example, 100 Gy or less, 50 Gy or less, 40 Gy or less, 30 Gy or less, 20 Gy or less, or 15 Gy or less.
  • the numerical range of the exposure dose can be, for example, any combination of the upper limit and the lower limit, and specific examples are 0.1 to 100 Gy, 1 to 100 Gy, 2 to 100 Gy, 3 to 50 Gy, 4 to 50 Gy, 6-40 Gy, 7-40 Gy, 8-30 Gy, 9-20 Gy, or 10-15 Gy.
  • the exposure dose may be an actually measured value or an estimated value.
  • the radiation exposure dose may be the total amount of radiation exposure dose in a predetermined period. In this case, the total radiation exposure dose may be a single radiation exposure dose or a total radiation exposure dose for a plurality of times.
  • the predetermined period is preferably a period during which acute radiation-induced symptoms occur, for example, up to 6 weeks before the determination of administration (for example, Non-Patent Document 1).
  • the radiation exposure may be, for example, radiation therapy exposure, occupational accident exposure, accident exposure, terrorism exposure, or the like.
  • the site of radiation exposure in the administration subject may be a part of the body or the whole body.
  • the part of the body is, for example, a part containing nerves, preferably the head containing the brain, the back containing the spinal cord, and the like.
  • the usage conditions (administration conditions) of the cell preparation of the present disclosure are not particularly limited, and for example, the dosage form, administration period, dosage, etc. can be appropriately set according to the type of administration subject.
  • Examples of administration methods of the cell preparation of the present disclosure include intracerebral administration, intrathecal administration, intramuscular administration, subcutaneous administration, and intravenous administration. Intravenous administration is preferred because it can be administered rapidly and stably.
  • the dosage of the cell preparation of the present disclosure is such that when the cell preparation is administered to the administration subject, compared to when the cell preparation is not administered to the administration subject, the therapeutic effect of neuropathy, the nerve of mature neuron cells It is the amount of cells (therapeutically effective amount) capable of obtaining the effect of suppressing process regression, the effect of suppressing cell death of immature neuronal cells, the effect of suppressing the generation of reactive oxygen in neuronal cells, or the effect of suppressing necrosis of neuronal cells.
  • the dosage can be appropriately determined according to, for example, the age, body weight, symptoms, etc. of the subject.
  • the dose is, for example, 10 4 to 10 9 cells/kg body weight, 10 4 to 10 8 cells/kg body weight, 10 4 to 10 7 cells/kg as the number of umbilical cord-derived cells per administration.
  • body weight preferably 10 4 to 10 8 cells/kg body weight, 10 4 to 10 7 cells/kg body weight.
  • the number of administrations of the cell preparation of the present disclosure is one or more.
  • the plurality of times is, for example, 2 times, 3 times, 4 times, 5 times or more.
  • the frequency of administration may be determined as appropriate while confirming the effect of treatment on the subject.
  • the administration interval can be determined appropriately while confirming the therapeutic effect of the subject, for example, once a day, once a week, once every two weeks, once a month, once every three months. , once every six months, etc.
  • the cell preparations of the present disclosure may be used in combination with agents and/or methods used for other neurological disorders, for example.
  • drugs used for the neuropathy include steroids such as dexamethasone; osmotic diuretics such as glyceol; anticonvulsants; Methods used for the neuropathy include, for example, hyperbaric oxygen therapy.
  • the cell preparations of the present disclosure can treat radiation-induced neuropathy, as described above.
  • the present disclosure may include methods of treating a subject with radiation-induced neuropathy.
  • the present disclosure is a method of treating a subject with radiation-induced neuropathy using the cell preparation of the present disclosure in the subject.
  • a method of treating a subject with radiation neuropathy of the present disclosure comprises, for example, administering to the subject the cell preparation of the present disclosure. The above description can be used for the administration conditions in the administration step.
  • the present disclosure provides a cell preparation for use in inhibiting radiation-induced neurite retraction of mature neuronal cells or a method for inhibiting radiation-induced neurite retraction of mature neuronal cells.
  • the present disclosure is a cell preparation for use in inhibiting radiation-induced neurite retraction of mature neuronal cells, wherein the cell preparation comprises umbilical cord-derived cells.
  • the present disclosure also provides a method for suppressing neurite retraction of mature neuron cells caused by radiation, wherein a cell preparation used in the method for suppressing neurite retraction of mature neuron cells caused by radiation of the present disclosure is used as a subject. .
  • the present disclosure can incorporate the description of the cell preparation of the present disclosure above.
  • the present disclosure provides a cell preparation for use in inhibiting radiation-induced immature neuronal cell death or a method for inhibiting radiation-induced immature neuronal cell death.
  • the disclosure is a cell preparation for use in inhibiting radiation-induced cell death of immature neuronal cells, said cell preparation comprising umbilical cord-derived cells.
  • the present disclosure also provides a method for suppressing radiation-induced immature neuronal cell death, wherein a cell preparation used in the method for suppressing radiation-induced immature neuronal cell death of the present disclosure is used as a subject. .
  • the present disclosure can incorporate the description of the cell preparation of the present disclosure above.
  • the present disclosure provides a cell preparation for use in suppressing generation of reactive oxygen species in neuronal cells caused by radiation or a method for suppressing generation of reactive oxygen species in neuronal cells caused by radiation.
  • the present disclosure is a cell preparation used for suppressing generation of reactive oxygen in neuronal cells caused by radiation, wherein the cell preparation contains umbilical cord-derived cells.
  • the present disclosure also provides a method for suppressing the generation of reactive oxygen in neuronal cells caused by radiation, and uses a cell preparation used in the method for suppressing the generation of reactive oxygen in neuronal cells caused by radiation of the present disclosure as an object.
  • the present disclosure can incorporate the description of the cell preparation of the present disclosure above.
  • the present disclosure provides a cell preparation for use in inhibiting radiation-induced necrosis of neuronal cells or a method of inhibiting radiation-induced neuronal cell necrosis.
  • the present disclosure is a cell preparation for use in inhibiting radiation-induced necrosis of neuronal cells, said cell preparation comprising umbilical cord-derived cells.
  • the present disclosure also provides a method of inhibiting radiation-induced necrosis of neuronal cells, wherein the cell preparation used in the method of inhibiting radiation-induced necrosis of neuronal cells of the present disclosure is used as a subject.
  • the present disclosure can incorporate the description of the cell preparation of the present disclosure above.
  • the present disclosure provides cell preparations for use in suppressing radiation-induced nervous system inflammation or methods of suppressing radiation-induced nervous system inflammation.
  • the disclosure is a cell preparation for use in suppressing radiation-induced nervous system inflammation, wherein the cell preparation comprises umbilical cord-derived cells.
  • the present disclosure also provides a method of suppressing inflammation of the nervous system caused by radiation, wherein the cell preparation used in the method of suppressing inflammation of the nervous system caused by radiation of the present disclosure is used as a subject.
  • the present disclosure can incorporate the description of the cell preparation of the present disclosure above.
  • Each of the above-described aspects can be preferably applied to, for example, human nervous system or human central nervous system neuronal cells, immature neuronal cells, or mature neuronal cells.
  • the present disclosure provides a treatable method of radiation neuropathy.
  • the method of treating neuropathy by radiation according to the present disclosure includes an administration step of administering the cell preparation of the present disclosure to a subject (administration subject).
  • the treatment method of the present disclosure is characterized by administering the cell preparation of the present disclosure, and other steps and conditions are not particularly limited. Since the treatment method of the present disclosure uses the cell preparation of the present disclosure, suppression of neurite retraction of mature neuron cells caused by radiation, suppression of cell death of immature neuron cells caused by radiation, and suppression of cell death of immature neuron cells caused by radiation and/or suppress necrosis of neuronal cells caused by radiation.
  • the treatment method of the present disclosure can be suitably used for treatment of radiation-induced neuropathy.
  • the method for treating radiation neuropathy of the present invention is a treatment method for prophylactic or therapeutic treatment of radiation neuropathy, comprising the step of administering the therapeutic agent for radiation neuropathy of the present invention to an administration subject.
  • the administration subject may be an administration subject including humans or an administration subject other than humans.
  • the present disclosure provides treatment of neuropathy by radiation, suppression of neurite retraction of mature neuron cells caused by radiation, suppression of cell death of immature neuron cells caused by radiation, suppression of generation of active oxygen in neuronal cells caused by radiation, and A cell preparation for use in inhibiting radiation-induced necrosis of neuronal cells, said cell preparation comprising umbilical cord-derived cells.
  • the present disclosure provides treatment of neuropathy by radiation, suppression of neurite retraction of mature neuron cells caused by radiation, suppression of cell death of immature neuron cells caused by radiation, suppression of generation of active oxygen in neuronal cells caused by radiation, and and/or the use of umbilical cord-derived cells to manufacture cell preparations for use in inhibiting radiation-induced necrosis of neuronal cells.
  • the present disclosure can incorporate the description of the cell preparation of the present disclosure above.
  • a use of the present invention is also the use of a cell preparation of the present disclosure for use in treating radiation-induced neuropathy.
  • Umbilical cord mesenchymal stem cells were collected by the method described in Cytotherapy, 18, 229-241, 2016. Specifically, with the approval of the ethics committee of the Institute of Medical Science, the University of Tokyo, all tissue elements of the umbilical cord (amniotic membrane, blood vessels, perivascular tissue, and Walton's jelly) collected with the consent of the donor. ) were chopped into 1-2 mm 3 pieces and seeded onto culture dishes.
  • UC-MSCs were obtained by a modified explant method of culturing. The property of the obtained UC-MSCs cells is that they adhere to plastic.
  • UC-MSCs highly express the HGF (Hepatic Growth Factor) gene under normal conditions, and the IDO (Indoleamine 2,3-dioxygenase) gene under inflammatory conditions (IFN- ⁇ 100 ng/ml). Induction of expression was confirmed by Realtime PCR. In particular, HGF expression was found to be higher in UC-MSCs than in bone marrow-derived mesenchymal stem cells. In addition, it was confirmed by ELISA that PGE2 secretion was induced by co-culturing UC-MSCs with MLR (mixed allogeneic lymphocyte reaction).
  • HGF Hepatic Growth Factor
  • IDO Indoleamine 2,3-dioxygenase
  • Cortical neuron cells were prepared from an albino strain of B6 strain background mice (B6N-Tyr c-Brd /BrdCrCrl, manufactured by Charles River Japan). Specifically, a 17-day-embryonic fetal mouse was obtained from a pregnant mouse, and the brain and cerebral cortex of the fetal mouse were removed under a microscope (manufactured by Olympus). The removed brain and cortex were used for cortical neuron cell primary culture using a nerve cell dispersion (manufactured by Wako Pure Chemical Industries, Ltd.).
  • cortical neuron cells After isolation of cortical neuron cells, the cortical neuron cells were resuspended in Neurobasal medium supplemented with 2% B27 and seeded in Poly-D-Lysine Culture Dishes (BioCoatTM, Corning). The cortical neuron cells were cultured at 37° C. and 5% CO 2 , and half of the medium was replaced with fresh medium on day 3-5 of culture.
  • Cortical Neuron Cells for Radiation Injury were prepared using the cortical neuron cells obtained in Example 1(4). Specifically, the cortical neuron cells in the dish were irradiated with radiation. Using a ⁇ -ray irradiation apparatus (IBL 437C III, manufactured by Cis Bio International) using cesium 137 as a radiation source, the cortical neuron cells were irradiated with a set dose of 12 Gy.
  • IBL 437C III manufactured by Cis Bio International
  • the UC-MSCs were seeded at 1.5 ⁇ 10 4 cells/well in the upper chamber. After the seeding, the 24-well chambers were incubated at 37°C, 5% CO2 for 72 hours. Neurobasal medium was used as the medium for the co-culture.
  • the cortical neuron cells were allowed to react with the primary antibody at 4° C. overnight, and stained with the secondary antibody at room temperature for 1 hour.
  • 4',6-diamidino-2-phenylindole (DAPI, manufactured by Sigma-Aldrich) was used and added to the secondary antibody solution.
  • DAPI 4',6-diamidino-2-phenylindole
  • mouse anti-human MAP2 antibody 1000-fold dilution, Cat.No: MA5-12826, Thermo Fisher Scientific
  • rabbit anti-GAP43 antibody 200-fold dilution, Cat.No: 8945S , Cell Signaling Technology
  • the secondary antibodies included Alexa Fluor R 488-labeled donkey anti-mouse IgG (H + L) (1000-fold dilution, Abcam) and Alexa Fluor R 594-labeled donkey anti-rabbit IgG (H + L) antibody (1000-fold dilution). Dilution, Abcam) and were used.
  • cortical neuron cells were observed using a fluorescence microscope (Nikon Eclipse Ti, manufactured by Nikon Solutions) and microscope image integrated software (NIS-Elements software version 4.10). Under observation with a fluorescence microscope set at a magnification of 200, the number of immature neuron cell marker-positive cells and all cells present in 10 randomly selected fields (view fields) were counted. Then, the ratio of the immature neuron cell marker-positive cells to the total number of cells was calculated. Neurite length was measured using ImageJ. MAP2-positive neurites were measured for length in at least 10 randomly selected fields. The negative control group (NC) was performed in the same manner, except that cortical neuron cells that were not irradiated were used.
  • NNS-Elements software version 4.10 microscope image integrated software
  • Figure 1 is a graph showing the percentage of GAP43-positive cells.
  • the vertical axis indicates the percentage of GAP43-positive cells
  • the horizontal axis indicates the type of sample.
  • the percentage of immature neuronal cells in the radiation group was significantly decreased compared to the negative control group (NC).
  • the co-culture group with UC-MSCs co-culture
  • the percentage of immature neuron cells was significantly higher than in the radiation group. From these results, it was found that immature neuronal cells are damaged by irradiation, but co-culture with UC-MSCs can reduce radiation damage to immature neuronal cells.
  • Figure 2 is a photograph showing an immunostained image of cortical neuron cells.
  • the scale bar indicates 100 ⁇ m.
  • the radiation group had reduced expression of immature neuronal cell markers.
  • expression of immature neuron cell markers was observed as in the control group.
  • Fig. 3 is a graph showing the length of neurites.
  • the vertical axis indicates the length of neurites
  • the horizontal axis indicates the type of sample.
  • the neurite length of mature neuronal cells in the radiation group was significantly reduced compared to the negative control group.
  • the neurite length of mature neuron cells was significantly longer in the co-culture group with UC-MSCs than in the radiation group. From these results, it was found that radiation injury to mature neuron cells is caused by irradiation, and that radiation injury to mature neuron cells can be alleviated by co-culturing with UC-MSCs.
  • Fig. 4 is a photograph showing an immunostained image of cortical neuron cells.
  • the upper photograph shows a stained image of MAP2 (MAP-2)
  • the middle photograph shows a stained image of GAP43 (GAP43)
  • the lower photograph shows a stained image of GAP43. and a stained image of MAP2 are superimposed (Merged).
  • the photographs in the left column show the results of the negative control group (NC)
  • the photographs in the middle row show the results of the radiation group (radiation)
  • the photographs in the right column show The results of the co-culture group (co-culture) are shown.
  • the scale bar indicates 100 ⁇ m.
  • the radiation group had reduced expression of immature neuronal cell markers and mature neuronal cell markers.
  • the co-culture group with UC-MSCs expression of immature neuron cell markers and mature neuron cell markers was observed as in the negative control group.
  • DCFDA cell-permeable fluorescent probe 2',7'-Dichlorodihydrofluorescin diacetate, also referred to as "H2DCFDA", “DCFH-DA” or “DCFH”
  • H2DCFDA cell-permeable fluorescent probe
  • DCFH-DA cell-permeable fluorescent probe
  • DCFH cell-permeable fluorescent probe
  • 20 mmol/l DCFDA was diluted to a final concentration of 20 ⁇ mol/l with 1 ⁇ buffer from the kit.
  • the cortical neuron cells obtained in Example 1(6) were cultured in the presence of the diluted DCFDA solution at 37° C. for 45 minutes in the dark. After the culture, the DCFDA solution was removed, and the 1 ⁇ buffer was added at 20 ⁇ l/well.
  • the cortical neuron cells were washed two more times with the 1 ⁇ buffer. After the washing, cortical neuron cells were observed using the fluorescence microscope and the integrated software for microscopic images. The number of fluorescent probe-positive cells and the total number of cells were counted in 10 randomly selected fields (fields of view) under observation with a fluorescence microscope set at a magnification of 200 times. Then, the ratio of the fluorescent probe-positive cells to the total number of cells was calculated.
  • the negative control group (NC) cortical neuron cells that were not irradiated were used in the same manner, and for the comparative example, the radiation group (radiation) was co-cultured with UC-MSCs after irradiation. The percentage of fluorescent probe-positive cells was calculated in the same manner, except that cortical neuron cells without cytotoxicity were used. These results are shown in FIGS. 5-6.
  • FIG. 5 is a photograph showing a fluorescent image and a bright field image of cortical neuron cells.
  • the upper photograph shows the fluorescence image
  • the lower photograph shows the bright field image.
  • the scale bar indicates 100 ⁇ m.
  • FIG. 6 is a graph showing the ratio of fluorescent probe-positive cells, which is an index of active oxygen.
  • the vertical axis indicates the percentage of fluorescent probe-positive cells
  • the horizontal axis indicates the type of sample.
  • the proportion of fluorescent probe-positive cells in the radiation group was significantly higher than that in the negative control group.
  • the percentage of fluorescent probe-positive cells was significantly lower than in the radiation group. From these results, it was found that the generation of reactive oxygen increased in irradiated cortical neuron cells, whereas the generation of reactive oxygen could be suppressed by co-culturing with UC-MSCs.
  • Necrotic and late apoptotic (secondary necrotic) cells of the cortical neuronal cells were distinguished by ethidium homodimer III staining. Hoechst33342 was used for nuclear staining.
  • the 5x binding buffer of the kit was diluted with distilled water to 1x binding buffer, and the cortical neuron cells obtained in Example 1(6) were washed with the 1x binding buffer. After the washing, 5 ⁇ l of FITC-annexin V, 5 ⁇ l of ethidium homodimer III, and 100 ⁇ l of the 1 ⁇ Binding buffer were added to the cortical neuron cells. The cortical neuron cells were then incubated at room temperature for 15 minutes in the dark.
  • cortical neuron cells were observed using the fluorescence microscope and the integrated software for microscopic images.
  • the number of viable cells, the number of apoptotic cells, and the number of necrotic cells were counted in 10 randomly selected fields (fields of view) under observation with a fluorescence microscope set at 200x magnification.
  • the percentages of viable, apoptotic, and necrotic cells were then calculated.
  • the control group cortical neuron cells that were not irradiated were used in the same manner, and in the comparative radiation group (radiation), co-culture with UC-MSCs was not performed after irradiation. Percentages of viable, apoptotic, and necrotic cells were calculated in the same manner, except cortical neuronal cells were used.
  • FIG. 7 is a photograph showing a fluorescent image and a bright field image of cortical neuron cells.
  • the upper photographs show fluorescence images, and the lower photographs show bright field images.
  • the scale bar indicates 100 ⁇ m. Arrows in the figure indicate necrotic cells.
  • the number of fluorescent probe-positive cells which is an indicator of necrosis, was smaller than in the radiation group. Therefore, it was found that UC-MSCs can suppress cell death of cortical neuron cells.
  • FIG. 8 is a graph showing the percentage of viable cells, apoptotic cells, and necrotic cells.
  • the vertical axis indicates the type of sample, and the horizontal axis indicates the ratio of viable cells, apoptotic cells, and necrotic cells.
  • the ratio of surviving cells was significantly lower in the radiation group and co-culture group than in the negative control group (NC).
  • the percentage of viable cells was significantly higher in the co-culture group compared to the radiation group.
  • the proportion of necrotic cells was significantly higher in the radiation group and co-culture group than in the negative control group.
  • the percentage of viable cells was significantly lower in the co-culture group than in the radiation group. From these results, it was found that irradiated cortical neuron cells decreased viable cells due to necrosis, whereas co-culture with UC-MSCs could suppress necrosis and suppress the decrease in viable cells. .
  • mice Upon injection of the mice, anesthesia used medetomidine in the amount of 0.75 mg/kg, midazolam in the amount of 4.0 mg/kg, and butorphanol in the amount of 5.0 mg/kg. The mice were used 3 weeks after injection of the UC-MSCs.
  • Example 12 Evaluation of Cortical Neuron Cells by Gene Expression Whether administration of UC-MSCs to radiation-damaged mice alleviates radiation injury in brain tissue was examined by expression of inflammatory cytokine genes. Specifically, the brain tissue of each group of mice obtained in Example 1 (11) was collected, and TRI Reagent (manufactured by Invitrogen) and chloroform (manufactured by Wako Pure Chemical Industries, Ltd.) were used to treat the brain tissue. Total RNA was extracted. Using the obtained total RNA and SYBR (registered trademark) Green PCR Mix (manufactured by Takara Bio Inc.), cDNA was synthesized.
  • SYBR registered trademark Green PCR Mix
  • FIG. 9 is a graph showing the expression level of each gene.
  • (A) shows the results of IFN- ⁇
  • (B) shows the results of IL-12
  • (C) shows the results of IL-1 ⁇
  • (D) shows the results of IL- 6
  • (E) shows the results for TNF ⁇ .
  • the vertical axis indicates the expression level of each gene
  • the horizontal axis indicates the type of sample.
  • gene expression levels of inflammatory cytokines in the radiation group (radiation) were significantly increased compared to the negative control group (NC).
  • the treated mouse group (radiation + MSCs) injected with UC-MSCs had significantly lower gene expression levels of inflammatory cytokines compared to the radiation group.
  • Example 3 Evaluation of cortical neuron cells by tissue staining Examination of whether radiation injury of brain tissue is reduced by administering UC-MSCs to radiation-damaged mice, and the presence or absence of demyelination of myelin marrow by tissue staining with KB staining bottom.
  • brain tissue was collected from each group of mice obtained in Example 1 (11) and fixed with 10% or 20% formalin. After the fixation, the brain tissue was embedded in paraffin to prepare 6 ⁇ m-thick paraffin-embedded sections. The sections were deparaffinized and hydrated with 95% alcohol. After the hydration, the sections were stained in Luxol fast blue solution (manufactured by CHROMA) at 75° C. for 5 minutes.
  • FIG. 10 is a photograph showing a histological staining image of mouse brain tissue, showing the thickness of the myelin sheath (myelin sheath).
  • the upper photograph shows a stained image at a magnification of 40 times
  • the lower photograph shows a stained image at a magnification of 200 times.
  • the radiation group had demyelinating myelin sheaths compared to the negative control group (NC).
  • the umbilical cord-derived cells can reduce brain radiation damage such as demyelination.
  • the umbilical cord-derived cells suppress neurite retraction of the neuronal cells, suppress generation of reactive oxygen in the neuronal cells, suppress cell death of the immature neuronal cells, and suppress the neuron cells after the irradiation. It was presumed that this was due to suppression of necrosis, etc.
  • the present disclosure is in no way limited by the presumption.
  • ⁇ Cell preparation used for treatment of radiation-induced neuropathy> (Appendix 1) A cell preparation for the treatment of radiation neuropathy, comprising: A cell preparation, wherein the cell preparation comprises umbilical cord-derived cells. (Appendix 2) The cell preparation of paragraph 1, wherein the umbilical cord-derived cells are umbilical cord-derived mesenchymal cells. (Appendix 3) The umbilical cord-derived cells are (i) positive for CD105, CD73, CD90, CD44, HLA-class I, HLA-G5 and PD-L2; 2. Cell preparation according to 2.
  • the umbilical cord-derived cells are (iii) A cell preparation according to any one of Appendices 1 to 3, wherein the expression of the gene and/or protein of any one of IDO, PGE2, PD-L1 is induced under conditions of inflammation. (Appendix 5) 5. A cell preparation according to any one of Appendices 1 to 4, wherein the umbilical cord-derived cells are cells prepared from umbilical cord tissue comprising amnion, blood vessels, perivascular tissue and/or Walton's Jelly. (Appendix 6) 6.
  • the cell preparation of Appendix 5, wherein the umbilical cord-derived cells are cells prepared from the umbilical cord tissue substantially free of proteases (e.g., collagenase, dispase, etc.) (without degradation by proteases).
  • Appendix 7 The cell preparation according to appendix 5 or 6, wherein the umbilical cord-derived cells are adherent cells obtained by cutting the umbilical cord tissue into pieces and culturing the pieces.
  • Appendix 8) 8.
  • Appendix 10 10. A cell preparation according to any one of Appendices 1 to 9, which is for intravenous administration.
  • Appendix 11 A cell preparation according to any one of Appendices 1 to 10, which inhibits neurite retraction of mature neuronal cells caused by irradiation.
  • Appendix 12 12.
  • Appendix 13 13.
  • Appendix 14 14.
  • Appendix 15 15.
  • Appendix 16 16.
  • the radiation-induced neuropathy consists of radiation encephalopathy, radiation neuritis, radiation myelopathy, radiation brain necrosis, radiation optic nerve, leukoencephalopathy, hypoglossal nerve palsy, facial nerve palsy, trigeminal neuropathy, and radiation-induced brachial plexopathy. 17.
  • a cell preparation according to any one of appendices 1 to 16, selected from the group. ⁇ Application of cell preparation> (Appendix 18) A cell preparation for suppressing neurite retraction of mature neuronal cells caused by radiation, 18.
  • a cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
  • (Appendix 19) A method for suppressing neurite retraction of mature neuron cells caused by radiation, comprising: 19. A method of using the cell preparation of Supplementary Note 18 in a subject. (Appendix 20) 20. The method of paragraph 19, comprising administering said cell preparation to said subject. (Appendix 21) 21. The method of paragraphs 19 or 20, wherein said cell preparation is used in vitro or in vivo. (Appendix 22) A cell preparation for use in suppressing radiation-induced cell death of immature neuronal cells, comprising: 18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
  • (Appendix 23) A method for suppressing cell death of immature neuronal cells caused by radiation, comprising: A method of using the cell preparation of Supplementary Note 22 in a subject. (Appendix 24) 24. The method of Clause 23, comprising administering said cell preparation to said subject. (Appendix 25) 25. The method of paragraphs 23 or 24, wherein said cell preparation is used in vitro or in vivo. (Appendix 26) A cell preparation used to suppress the generation of reactive oxygen in neuronal cells caused by radiation, 18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
  • (Appendix 27) A method for suppressing the generation of reactive oxygen in neuronal cells caused by radiation, comprising: A method of using the cell preparation of Supplementary Note 26 in a subject. (Appendix 28) 28. The method of Clause 27, comprising administering said cell preparation to said subject. (Appendix 29) 29. The method of paragraphs 27 or 28, wherein said cell preparation is used in vitro or in vivo.
  • (Appendix 30) A cell preparation for use in inhibiting radiation-induced necrosis of neuronal cells, comprising: 18.
  • a cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
  • (Appendix 31) A method for suppressing the occurrence of neuronal necrosis caused by radiation, comprising: A method of using the cell preparation of Supplementary Note 30 in a subject. (Appendix 32) 32. The method of paragraph 31, comprising administering said cell preparation to said subject. (Appendix 33) 33. The method of paragraphs 31 or 32, wherein said cell preparation is used in vitro or in vivo.
  • (Appendix 34) A cell preparation for use in suppressing radiation-induced nervous system inflammation, comprising: 18.
  • a cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
  • (Appendix 35) A method of inhibiting inflammation of the nervous system caused by radiation, comprising: A method of using the cell preparation of Supplementary Note 34 in a subject. (Appendix 36) 36. The method of paragraph 35, comprising administering said cell preparation to said subject. (Appendix 37) 37. The method of paragraphs 35 or 36, wherein said cell preparation is used in vitro or in vivo.
  • ⁇ Treatment method> A method of treating neuropathy with radiation, comprising: 18.
  • a method, wherein the subject uses a cell preparation according to any one of Appendices 1-17 and/or an umbilical cord-derived cell according to any one of Appendices 1-17. (Appendix 39) 385.
  • the method of Clause 384 comprising administering said cell preparation and/or umbilical cord-derived cells to said subject.
  • Appendix 40 40.
  • ⁇ Use of cell preparation> (Appendix 41) A cell preparation for use in the treatment of radiation neuropathy, 18.
  • a cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
  • Appendix 42 A cell preparation for use in inhibiting neurite retraction of mature neuronal cells caused by radiation, 18.
  • a cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
  • Appendix 43 A cell preparation for use in suppressing radiation-induced cell death of immature neuronal cells, 18.
  • a cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
  • Appendix 44 A cell preparation for use in suppressing generation of reactive oxygen species in neuronal cells caused by radiation, 18.
  • a cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
  • Appendix 45 A cell preparation for use in inhibiting necrosis of neuronal cells caused by radiation, 18.
  • a cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
  • Appendix 46 A cell preparation for use in suppressing radiation-induced nervous system inflammation, 18.
  • a cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
  • the present invention it is possible to suppress neurite retraction of mature neuron cells caused by irradiation, suppress cell death of immature neuronal cells caused by irradiation, and reduce active oxygen in neuronal cells caused by irradiation. It can suppress development, suppress necrosis of neuronal cells caused by irradiation, and suppress inflammation of the nervous system caused by irradiation. Therefore, according to the present invention, it can be said that radiation-induced neuropathy can be treated. Therefore, the present invention is extremely useful in, for example, the medical field.

Abstract

Provided is a cell preparation that can treat neuropathy due to radiation. The present invention is a cell preparation used for treatment of neuropathy due to radiation, the cell preparation comprising umbilical cord-derived cells.

Description

放射線による神経障害の処置に用いる細胞調製物Cell preparation for treatment of radiation-induced neuropathy
 本開示は、放射線による神経障害の処置に用いる細胞調製物に関する。 The present disclosure relates to cell preparations for use in the treatment of radiation-induced neuropathy.
 放射性物質は、医療、農業、工業、およびエネルギー発電等の様々な分野で利用されている。一方で、前記放射線物質の取扱いにおいて、取扱者に放射線の被曝が生じ、健康被害が生じることがある。このため、放射線を被曝した際の有効な治療方法の確立が望まれている。 Radioactive materials are used in various fields such as medicine, agriculture, industry, and energy generation. On the other hand, in handling the radioactive materials, the operator may be exposed to radiation, resulting in health hazards. Therefore, establishment of an effective treatment method for radiation exposure is desired.
 医療分野において、放射線の被曝は、放射線治療の際に生じる。前記放射線治療は、手術および薬物療法と並ぶ、癌の治療法の1つであり、脳腫瘍等の癌治療に対して、適用されている治療法である。前記放射線治療は、病巣部に放射線を照射することで、癌を根治あるいは症状緩和することに使用されている(非特許文献1、2)。 In the medical field, radiation exposure occurs during radiotherapy. The radiotherapy is one of cancer treatment methods along with surgery and drug therapy, and is a treatment method applied to cancer treatment such as brain tumors. The radiation therapy is used to completely cure cancer or alleviate symptoms by irradiating a lesion site with radiation (Non-Patent Documents 1 and 2).
 しかしながら、前記放射線治療において、正常組織に対する放射線障害が生じるという問題がある。前記放射線障害としては、神経障害が知られている。前記放射線照射による神経障害に対する治療方法としては、ステロイドの投与が行なわれている。しかしながら、ステロイドの投与によって、症状を緩和することは可能であるが、前記神経障害に対して十分な治療効果を期待できる治療方法は存在しない。 However, there is a problem that the radiation therapy causes radiation injury to normal tissues. Neuropathy is known as radiation injury. As a treatment method for neuropathy caused by irradiation, administration of steroids is performed. However, although the symptoms can be alleviated by administering steroids, there is no therapeutic method that can be expected to have a sufficient therapeutic effect on the neuropathy.
 そこで、本開示は、放射線による神経障害を処置しうる細胞調製物の提供を目的とする。 Therefore, the present disclosure aims to provide a cell preparation that can treat radiation-induced neuropathy.
 前記目的を達成するため、本開示は、放射線による神経障害の処置に用いる細胞調製物(以下、「細胞調製物」ともいう)であって、前記細胞調製物は、臍帯由来細胞を含む。 In order to achieve the above object, the present disclosure is a cell preparation (hereinafter also referred to as "cell preparation") used for treatment of radiation-induced neuropathy, wherein the cell preparation contains umbilical cord-derived cells.
 本開示によれば、放射線による神経障害を処置しうる。 According to the present disclosure, radiation-induced neuropathy can be treated.
図1は、実施例1におけるGAP43陽性細胞の細胞の割合を示すグラフである。1 is a graph showing the ratio of GAP43-positive cells in Example 1. FIG. 図2は、実施例1における皮質ニューロン細胞の免疫染色像を示す写真である。2 is a photograph showing an immunostained image of cortical neuron cells in Example 1. FIG. 図3は、実施例1における神経突起の長さを示すグラフである。3 is a graph showing the length of neurites in Example 1. FIG. 図4は、実施例1における皮質ニューロン細胞の免疫染色像を示す写真である。4 is a photograph showing an immunostained image of cortical neuron cells in Example 1. FIG. 図5は、実施例1における皮質ニューロン細胞の蛍光像および明視野像を示す写真である。5 is a photograph showing a fluorescent image and a bright field image of cortical neuron cells in Example 1. FIG. 図6は、実施例1における活性酸素による蛍光陽性細胞の割合を示すグラフである。6 is a graph showing the ratio of fluorescence-positive cells due to active oxygen in Example 1. FIG. 図7は、実施例1におけるネクローシスによる蛍光像および明視野像を示す写真である。7 is a photograph showing a fluorescence image and a bright field image of necrosis in Example 1. FIG. 図8は、実施例1における生存細胞、アポトーシス細胞およびネクローシス細胞の割合を示すグラフである。8 is a graph showing the ratio of viable cells, apoptotic cells and necrotic cells in Example 1. FIG. 図9は、実施例1における各遺伝子の発現量を示すグラフである。9 is a graph showing the expression level of each gene in Example 1. FIG. 図10は、実施例1におけるマウス脳組織の組織染色像を示し、ミエリン鞘(髄鞘)の厚さを示す写真である。FIG. 10 is a photograph showing a histologically stained image of the mouse brain tissue in Example 1, showing the thickness of the myelin sheath (myelin sheath).
<定義>
 本明細書において、「放射線による神経障害」は、放射線治療等の放射線被曝により、正常な神経細胞(ニューロン細胞)および/または神経組織が損傷を受けている状態を意味する。前記神経障害は、例えば、脱髄、軸索変性、凝固壊死等を伴う神経細胞および/または神経組織の障害があげられる。前記放射線による神経障害は、例えば、放射線脳症、放射線神経炎、放射線脊髄症、放射線脳壊死、放射線神経症、白質脳症、舌下神経麻痺、顔面神経麻痺、三叉神経障害、放射線誘発腕神経叢障害等があげられる。
<Definition>
As used herein, “radiation neuropathy” means a state in which normal nerve cells (neuron cells) and/or nerve tissue are damaged by radiation exposure such as radiation therapy. The neuropathy includes, for example, neuronal and/or neurological tissue disorders associated with demyelination, axonal degeneration, coagulative necrosis, and the like. The neuropathy caused by radiation includes, for example, radiation encephalopathy, radiation neuritis, radiation myelopathy, radiation brain necrosis, radiation neurosis, leukoencephalopathy, hypoglossal nerve palsy, facial nerve palsy, trigeminal neuropathy, and radiation-induced brachial plexopathy. etc.
 本明細書において、「放射線」は、不安定な原子核の構造から安定な原子核の構造に変化する際に放出される粒子線または電磁波を意味する。前記放射線は、例えば、電離放射線または非電離放射線があげられる。前記電離放射線は、例えば、粒子線および電磁波等があげられる。前記粒子線は、例えば、α線、β線、陽子線、重陽子線、三重陽子線、重イオン線、荷電中間子線、非荷電中間子線、ニュートリノ、および中性子線等があげられる。前記電磁波は、例えば、X線、およびγ線等があげられる。前記非電離放射線は、例えば、電波、マイクロ派、赤外線、可視光線、および紫外線等があげられる。 As used herein, "radiation" means particle beams or electromagnetic waves emitted when an unstable atomic nucleus structure changes to a stable atomic nucleus structure. The radiation includes, for example, ionizing radiation or non-ionizing radiation. Examples of the ionizing radiation include particle beams and electromagnetic waves. Examples of the particle beam include α-rays, β-rays, proton beams, deuteron beams, triple proton beams, heavy ion beams, charged meson beams, uncharged meson beams, neutrinos, and neutron beams. Examples of the electromagnetic waves include X-rays and γ-rays. Examples of the non-ionizing radiation include radio waves, microwaves, infrared rays, visible rays, and ultraviolet rays.
 本明細書において、「神経」は、情報伝達を行う組織を意味する。前記神経は、例えば、中枢神経または末梢神経があげられる。前記中枢神経は、大脳;間脳、中脳、橋、延髄等の脳幹;小脳;脳;および脊髄;があげられる。前記末梢神経は、例えば、運動神経、感覚神経、および自律神経があげられる。 As used herein, "nerve" means a tissue that transmits information. Examples of the nerves include central nerves and peripheral nerves. The central nervous system includes the cerebrum; brain stems such as the diencephalon, midbrain, pons, and medulla oblongata; the cerebellum; the brain; and the spinal cord. Examples of the peripheral nerves include motor nerves, sensory nerves, and autonomic nerves.
 本明細書において、「処置」は、治療的処置および/または予防的処置を意味する。本明細書において、「治療」は、疾患、病態、もしくは障害の治療、治癒、防止、抑止、寛解、改善、または、疾患、病態、もしくは障害の進行の停止、抑止、低減、もしくは遅延を意味する。本明細書において、「予防」は、疾患もしくは病態の発症の可能性の低下、または疾患もしくは病態の発症の遅延を意味する。前記「治療」は、例えば、対象疾患を発病する対象(患者)に対する治療でもよいし、対象疾患のモデル動物の治療でもよい。 As used herein, "treatment" means therapeutic treatment and/or prophylactic treatment. As used herein, "treatment" means treating, curing, preventing, arresting, ameliorating, ameliorating a disease, condition, or disorder, or halting, arresting, reducing, or delaying the progression of a disease, condition, or disorder. do. As used herein, "prevention" means reducing the likelihood of developing a disease or condition or delaying the onset of a disease or condition. The “treatment” may be, for example, treatment of a subject (patient) who develops the target disease, or treatment of a model animal of the target disease.
 本明細書において、「細胞調製物」は、所望の細胞を含む細胞集団または所望の細胞を含む組成物を意味する。このため、本明細書において、細胞調製物は、例えば、細胞集団または組成物ということもできる。前記細胞調製物において、全細胞に占める所望の細胞の割合(「純度」ともいう)は、例えば、所望の細胞が発現する1以上のマーカー発現する細胞の割合として定量できる。前記純度は、例えば、生細胞中の割合である。前記純度は、例えば、フローサイトメトリー、免疫組織化学的手法、インサイチュハイブリダイゼーション等の方法により測定できる。 As used herein, "cell preparation" means a cell population containing desired cells or a composition containing desired cells. As such, a cell preparation can also be referred to herein, for example, as a cell population or composition. In the cell preparation, the ratio of desired cells to all cells (also referred to as “purity”) can be quantified, for example, as the ratio of cells expressing one or more markers that desired cells express. The purity is, for example, the percentage in viable cells. The purity can be measured, for example, by flow cytometry, immunohistochemistry, in situ hybridization, and the like.
 本明細書において、前記細胞調製物の純度は、例えば、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である。 As used herein, the purity of the cell preparation is, for example, 50% or higher, 55% or higher, 60% or higher, 65% or higher, 70% or higher, 75% or higher, 80% or higher, 85% or higher, 90% or higher , 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
本明細書において、「間葉系細胞」は、中胚葉または神経堤に由来する結合組織を構成する細胞および/または前記細胞への分化能を有する細胞を意味する。前記間葉系細胞が自己複製能を有する場合、前記間葉系細胞は、間葉系幹細胞(mesenchymal stem cell:MSC)ということもできる。前記間葉系細胞は、通常、血管;肝臓、または膵臓等の臓器の内部および周囲;脂肪;骨髄または臍帯;等に存在する。前記間葉系幹細胞は、複能性幹細胞の1つであり、脂肪細胞、骨細胞、軟骨細胞、筋細胞、肝細胞、腱細胞、および/または神経細胞等への分化能を有する細胞を意味する。前記間葉系幹細胞は、採取する組織毎に、例えば、脂肪組織由来間葉系幹細胞、骨髄由来間葉系幹細胞、胎盤由来間葉系幹細胞、歯髄由来間葉系幹細胞、および臍帯由来間葉系幹細胞等と呼称される。 As used herein, the term “mesenchymal cell” means a cell that constitutes connective tissue derived from mesoderm or neural crest and/or a cell that has the potential to differentiate into said cell. When the mesenchymal cells have self-renewal ability, the mesenchymal cells can also be called mesenchymal stem cells (MSCs). Said mesenchymal cells are usually present in blood vessels; in and around organs such as liver or pancreas; fat; bone marrow or umbilical cord; The mesenchymal stem cells are one of multipotent stem cells, and mean cells that have the potential to differentiate into adipocytes, osteocytes, chondrocytes, muscle cells, hepatocytes, tendon cells, and/or nerve cells. do. For each tissue to be collected, the mesenchymal stem cells are, for example, adipose tissue-derived mesenchymal stem cells, bone marrow-derived mesenchymal stem cells, placenta-derived mesenchymal stem cells, dental pulp-derived mesenchymal stem cells, and umbilical cord-derived mesenchymal stem cells. They are called stem cells.
 本明細書において、「陽性」は、抗原抗体反応を利用して検出されるフローサイトメトリー等の解析方法により、前記抗原を発現しない陰性対照細胞または前記抗原と反応しない抗体を用いる陰性対照反応と比較して、高いシグナル等が検出されることを意味する。また、本明細書において、「陰性」は、前記抗原を発現しない陰性対照細胞または前記抗原と反応しない抗体を用いる陰性対照反応と比較して、同等またはそれ以下のシグナル等が検出されることを意味する。 As used herein, "positive" is defined as a negative control reaction using negative control cells that do not express the antigen or an antibody that does not react with the antigen by an analysis method such as flow cytometry that is detected using an antigen-antibody reaction. By comparison, it means that a higher signal or the like is detected. As used herein, "negative" means that a signal or the like that is equal to or lower than that in a negative control reaction using a negative control cell that does not express the antigen or an antibody that does not react with the antigen is detected. means.
 本明細書において、「炎症の条件下」は、インターフェロンγ等の炎症性サイトカインと接触させる条件、または添加された条件をいう。 As used herein, "under inflammatory conditions" refers to conditions in which inflammatory cytokines such as interferon γ are contacted or added.
 本明細書において、「神経細胞」または「ニューロン細胞」は、情報を受け取る樹状突起、および情報を送り出す軸索(神経突起)等から構成される細胞を意味する。前記ニューロン細胞は、例えば、成熟ニューロン細胞または未成熟ニューロン細胞があげられる。前記成熟ニューロン細胞は、形態として、発達した樹状突起を有する細胞である。前記成熟ニューロン細胞は、MAP2等の成熟ニューロンマーカー遺伝子の発現により特定できる。前記未成熟ニューロン細胞は、前記成熟ニューロン細胞と比べて、形態として、単純な樹状突起を有する細胞である。前記未成熟ニューロン細胞は、GAP43等の未成熟ニューロンマーカー遺伝子の発現により特定できる。 As used herein, "nerve cell" or "neuron cell" means a cell composed of dendrites that receive information and axons (neurites) that transmit information. Examples of the neuron cells include mature neuron cells and immature neuron cells. The mature neuron cells are morphologically cells with well-developed dendrites. The mature neuron cells can be identified by expression of mature neuron marker genes such as MAP2. The immature neuronal cells are morphologically simple cells with dendrites compared to the mature neuronal cells. The immature neuron cells can be identified by expression of immature neuron marker genes such as GAP43.
 本明細書において、「活性酸素種」(以下、「活性酸素」という。)は、化学的に活性化状態の酸素原子を含む原子、分子、ラジカル、または化合物等を意味する。前記ラジカルは、不対電子を有する原子、分子、またはイオンを意味する。前記活性酸素は、例えば、一重項酸素()、オゾン(O)、および過酸化水素(H)等の非ラジカル種;ヒドロキシラジカル(・OH)、アルコキシラジカル(LO・)、ペルオキシラジカル(LOO・)、ヒドロペルオキシラジカル(HOO・)、一酸化窒素(NO・)、二酸化窒素(NO・)、スーパーオキサイドアニオン(O-)、脂質ラジカル等のラジカル種;等があげられる。 As used herein, "reactive oxygen species" (hereinafter referred to as "active oxygen") means atoms, molecules, radicals, compounds, etc. containing oxygen atoms in a chemically activated state. The radical means an atom, molecule or ion having an unpaired electron. Said active oxygen is, for example, non-radical species such as singlet oxygen ( 1 O 2 ), ozone (O 3 ), and hydrogen peroxide (H 2 O 2 ); ), peroxy radicals (LOO.), hydroperoxy radicals (HOO.), nitric oxide (NO.), nitrogen dioxide ( NO.sub.2 .), superoxide anions ( O.sub.2- ), radical species such as lipid radicals; is given.
 本明細書において、「細胞死」は、生体の構成要素である細胞の死を意味する。前記細胞死は、例えば、アポトーシスおよびネクローシス等があげられる。前記アポトーシスは、分子機構によって制御された細胞のプログラム死を意味する。前記ネクローシスは、物理的および/または化学的に細胞が損傷を受けた際に引き起こされる、受動的な細胞死を意味する。 As used herein, "cell death" means the death of cells that are constituents of living organisms. The cell death includes, for example, apoptosis and necrosis. Said apoptosis refers to programmed cell death controlled by molecular mechanisms. Said necrosis refers to passive cell death caused when cells are physically and/or chemically damaged.
 本明細書において、「単離」または「単離された」は、同定され、かつ分離された状態、および/または自然状態での成分から回収された状態を意味する。前記「単離」または「単離された」は、例えば、少なくとも1つの精製工程を経ることにより実施できる。前記「単離」または「単離された」が細胞と組合せて用いられる場合、前記「単離」または「単離された」は、組織から目的の細胞が分離および/または精製された状態を意味してもよい。前記組織は、例えば、血管、肝臓、または膵臓等の臓器;脂肪;骨髄;臍帯;等があげられる。前記細胞は、間葉系細胞等があげられる。 As used herein, "isolated" or "isolated" means the state of being identified and separated, and/or the state of being recovered from components in their natural state. Said "isolation" or "isolated" can be carried out, for example, by going through at least one purification step. When the "isolated" or "isolated" is used in combination with cells, the "isolated" or "isolated" refers to a state in which the cells of interest are separated and/or purified from tissue. may mean. Examples of the tissue include organs such as blood vessels, liver, and pancreas; fat; bone marrow; umbilical cord; Examples of the cells include mesenchymal cells.
<放射線による神経障害の処置用調製物>
 ある態様において、本明細書は、放射線による神経障害の処置に用いる細胞調製物を提供する。本開示の細胞調製物は、前述のように、放射線による神経障害の処置に用いる細胞調製物であって、前記細胞調製物は、臍帯由来細胞を含む。本開示の細胞調製物は、臍帯由来細胞を含むことが特徴であり、その他の構成および条件は、特に制限されない。また、本発明の放射線神経障害用処置剤は、本開示の細胞調製物を含むことを特徴とする。
<Preparation for treating neuropathy caused by radiation>
In one aspect, the description provides a cell preparation for use in treating radiation-induced neuropathy. The cell preparation of the present disclosure, as described above, is a cell preparation for use in the treatment of radiation-induced neuropathy, said cell preparation comprising umbilical cord-derived cells. The cell preparation of the present disclosure is characterized by containing umbilical cord-derived cells, and other configurations and conditions are not particularly limited. Further, the therapeutic agent for radiation neuropathy of the present invention is characterized by containing the cell preparation of the present disclosure.
 本発明者らは鋭意研究の結果、前記臍帯由来細胞が、放射線照射により生じる成熟ニューロン細胞の神経突起の退縮を抑制すること、放射線照射により生じる未成熟ニューロン細胞の細胞死を抑制すること、放射線照射により生じるニューロン細胞における活性酸素の発生を抑制すること、放射線照射により生じるニューロン細胞のネクローシスを抑制すること、および放射線照射により生じる神経系の炎症を抑制することを見出した。そして、本発明者らは、これらのいずれか1つ以上の活性を奏する臍帯由来細胞を用いることにより、放射線による神経障害患者で生じる脱髄を抑制できることを見出し、本開示を確立するに至った。前記臍帯由来細胞によれば、放射線によるニューロン細胞への障害を抑制する、および/または、放射線により生じた障害の回復を促進することにより、放射線による神経障害の症状を抑制すると推定される。このため、本開示の細胞調製物は、前記臍帯由来細胞を含むことにより、放射線による神経障害を好適に処置できるといえる。 As a result of extensive research, the present inventors have found that the umbilical cord-derived cells suppress neurite retraction of mature neuron cells caused by irradiation, suppress cell death of immature neuron cells caused by irradiation, We have found that it suppresses the generation of reactive oxygen in neuronal cells caused by irradiation, suppresses necrosis of neuronal cells caused by irradiation, and suppresses inflammation in the nervous system caused by irradiation. The present inventors have found that demyelination in radiation-induced neuropathy patients can be suppressed by using umbilical cord-derived cells exhibiting one or more of these activities, and have established the present disclosure. . The umbilical cord-derived cells are presumed to suppress symptoms of radiation-induced neuropathy by suppressing damage to neuronal cells caused by radiation and/or promoting recovery from damage caused by radiation. Therefore, it can be said that the cell preparation of the present disclosure can suitably treat radiation-induced neuropathy by containing the umbilical cord-derived cells.
 本明細書において、「臍帯」は、胎児と胎盤を繋ぐ白色の管状組織であり、胎盤および臍帯血を含まない組織を意味する。本明細書において、「臍帯」の由来は、特に制限されず、例えば、マウス、ラット、ウサギ、イヌ、ネコ、ウシ、ウマ、ブタ、サル、イルカ、アシカ等の哺乳類の臍帯があげられ、好ましくは、霊長類哺乳動物の臍帯であり、より好ましくは、ヒトの臍帯である。 As used herein, "umbilical cord" is a white tubular tissue that connects the fetus and placenta, and means tissue that does not contain placenta and cord blood. In the present specification, the origin of the "umbilical cord" is not particularly limited. is the umbilical cord of a primate mammal, more preferably a human umbilical cord.
 本明細書において、前記臍帯は、投与、治療、または処置対象(以下、あわせて「投与対象」という)から採取された臍帯であってもよいし、投与対象以外の対象から採取された臍帯であってもよい。調製時に制限を受けないとの観点から、投与対象以外から採取された臍帯を用いることが望ましい。なお、本開示の臍帯由来細胞は、後述する実施例において示されているとおり、投与対象から採取された臍帯由来の細胞(自家細胞)でもよいし、投与対象以外から採取された臍帯由来の細胞(他家細胞)であってもよい。前記臍帯由来細胞は、例えば、免疫拒絶等により排除されることなく治療効果を奏することが確認されている。 As used herein, the umbilical cord may be an umbilical cord collected from a subject for administration, treatment, or treatment (hereinafter collectively referred to as "administration subject"), or an umbilical cord collected from a subject other than the administration subject. There may be. It is preferable to use an umbilical cord collected from a person other than the subject of administration from the viewpoint of not being subject to restrictions during preparation. The umbilical cord-derived cells of the present disclosure may be umbilical cord-derived cells (autologous cells) collected from an administration subject, or umbilical cord-derived cells collected from a non-administration subject, as shown in Examples described later. (allogeneic cells). It has been confirmed that the umbilical cord-derived cells have therapeutic effects without being eliminated by immune rejection or the like, for example.
 本明細書において、前記臍帯は、例えば、経膣分娩または帝王切開にて娩出された胎盤および/または臍帯を含む産褥組織から適宜胎盤を取り除き回収することができる。本開示において、前記臍帯は、回収された臍帯から臍帯血を除去したものでもよく、さらに、無菌または制菌処理を行なったものでもよい。前記臍帯血の除去は、例えば、ヘパリン等の抗凝固剤を含む溶液ですすぐ、または灌流することによって実施できる。前記無菌または制菌処理は、特に制限されず、例えば、ポピドンヨード等の消毒剤の塗布;ペニシリン、ストレプトマイシン、アムホテリシンB、ゲンタマイシン、および/またはナイスタチン等の抗生剤、および/または抗真菌剤を添加した培地またはバッファー中への浸漬;等により実施できる。また、前記臍帯は、例えば、必要に応じて、赤血球を選択的に溶解してもよい。前記赤血球を選択的に溶解する方法としては、例えば、塩化アンモニウムによる溶解による高張培地または低張培地中でのインキュベーション等の当技術分野で周知の方法を使用することができる。 In the present specification, the umbilical cord can be collected by appropriately removing the placenta from, for example, postpartum tissue containing the placenta and/or umbilical cord delivered by vaginal delivery or cesarean section. In the present disclosure, the umbilical cord may be one obtained by removing cord blood from the collected umbilical cord, and may be one subjected to aseptic or bacteriostatic treatment. Removal of the cord blood can be performed, for example, by rinsing or perfusion with a solution containing an anticoagulant such as heparin. Said aseptic or bactericidal treatment is not particularly limited, for example, application of disinfectants such as povidone-iodine; addition of antibiotics such as penicillin, streptomycin, amphotericin B, gentamicin, and/or nystatin, and/or antimycotics immersion in a medium or buffer; The umbilical cord may also selectively lyse red blood cells, for example, if desired. As a method for selectively lysing the red blood cells, methods well known in the art can be used, such as incubation in hypertonic or hypotonic medium by lysis with ammonium chloride.
 本明細書において、前記「臍帯由来細胞」とは、臍帯を原材料として、調製された細胞集団を意味する。前記「臍帯由来細胞」は、単一の種類の細胞から構成されてもよいし、複数の種類の細胞から構成されてもよい。前記臍帯由来細胞は、臍帯由来間葉系細胞を含むことが好ましい。前記臍帯由来細胞は、前記臍帯由来間葉系細胞を含む複数種類の細胞から構成される細胞集団であってもよい。 As used herein, the term "umbilical cord-derived cells" means a cell population prepared using umbilical cord as a raw material. The "umbilical cord-derived cells" may be composed of a single type of cell, or may be composed of a plurality of types of cells. The umbilical cord-derived cells preferably contain umbilical cord-derived mesenchymal cells. The umbilical cord-derived cells may be a cell population composed of multiple types of cells including the umbilical cord-derived mesenchymal cells.
 本開示の臍帯由来細胞は、例えば、下記(a)~(c)のいずれか1つまたは複数の特性および/またはマーカーを有する細胞集団であってもよく、好ましくは全ての特性を有する細胞集団である。
(a)培地存在下の培養において、プラスチックに接着(付着)性を示す;
(b)CD105、CD73、CD90、CD44、HLA-classI、HLA-G5およびPD-L(Programmed cell death 1 ligand)2が陽性であり、CD45、CD34、CD11b、CD19およびHLA-ClassIIが陰性である;
(c)炎症の条件下でIDO(indoleamine 2,3-dioxygenase)、PGE(Prostaglandin E2)、PD-L1の遺伝子および/またはタンパクの発現が誘導される。
The umbilical cord-derived cells of the present disclosure may be, for example, a cell population having any one or more characteristics and/or markers of (a) to (c) below, preferably a cell population having all characteristics is.
(a) shows adhesion (adherence) to plastic in culture in the presence of a medium;
(b) CD105, CD73, CD90, CD44, HLA-classI, HLA-G5 and PD-L (Programmed cell death 1 ligand) 2 positive, CD45, CD34, CD11b, CD19 and HLA-ClassII negative ;
(c) expression of IDO (indoleamine 2,3-dioxygenase), PGE 2 (prostaglandin E2) and PD-L1 genes and/or proteins is induced under inflammatory conditions;
 本明細書において、前記「HLA-class I」とは、HLA-A、B、またはCを意味する。本明細書において、前記「HLA-Class II」は、HLA-DR、DQ、またはDPを意味する。 As used herein, the "HLA-class I" means HLA-A, B, or C. As used herein, the "HLA-Class II" means HLA-DR, DQ, or DP.
 本明細書において、前記臍帯由来細胞は、前記臍帯由来細胞の抽出物および/または分泌物であってもよい。前記臍帯由来細胞の抽出物は、例えば、前記臍帯由来細胞に対して、濃縮処理、遠心分離処理、乾燥処理、凍結乾燥処理、溶媒処理、界面活性剤処理、プロテアーゼ、糖鎖分解酵素等を用いた酵素処理、タンパク質抽出処理、超音波処理、および/または磨砕処理により得られる処理物、またはこれらの処理の組合せにより得られる処理物等があげられる。前記臍帯由来細胞の分泌物は、例えば、エクソソーム、臍帯由来細胞の細胞培養上清等があげられる。 In the present specification, the umbilical cord-derived cells may be extracts and/or secretions of the umbilical cord-derived cells. The umbilical cord-derived cell extract can be obtained by, for example, subjecting the umbilical cord-derived cells to concentration treatment, centrifugation treatment, drying treatment, freeze-drying treatment, solvent treatment, surfactant treatment, protease, glycolytic enzyme, or the like. processed products obtained by enzymatic treatment, protein extraction treatment, ultrasonic treatment and/or grinding treatment, or processed products obtained by a combination of these treatments, and the like. Examples of the secretions of the umbilical cord-derived cells include exosomes and cell culture supernatants of umbilical cord-derived cells.
 本明細書において、前記細胞調製物は、放射線照射により生じる成熟ニューロン細胞の神経突起の退縮抑制作用を示すことが好ましい。前記成熟ニューロン細胞は、例えば、中枢神経のニューロン細胞であり、好ましくは、脳の成熟ニューロン細胞である。 In the present specification, the cell preparation preferably exhibits an inhibitory effect on neurite retraction of mature neuron cells caused by irradiation. The mature neuron cells are, for example, central nerve neuron cells, preferably cerebral mature neuron cells.
 前記成熟ニューロン細胞の神経突起の退縮抑制作用は、例えば、放射線照射された成熟ニューロン細胞と被検物とを共存させた際に、前記被検物の非存在下と比較して、前記成熟ニューロン細胞の神経突起の退縮を抑制できるかにより評価できる。具体的には、前記神経突起の退縮抑制作用は、前記神経突起の長さの退縮の抑制率に基づき、評価できる。前記抑制率は、放射線照射を行なっていない成熟ニューロン細胞の神経突起の長さ(Lnc)と、放射線照射され、かつ前記被検物非存在下で培養した以外は同様に処理された成熟ニューロン細胞の神経突起の長さ(L)との差(Lnc-L)を基準とした際の、放射線照射され、かつ前記被検物共存下で培養した成熟ニューロン細胞の神経突起の長さ(L)と、前記神経突起の長さ(L)との差(L-L)の割合((L-L)/(Lnc-L)×100(%))として、算出できる。前記抑制率の算出に用いる放射線の種類および照射線量、成熟ニューロン細胞、ならびに各神経突起の長さは、後述の実施例1(7)に準じて、測定でき、より具体的には、前記放射線としてγ線を用い、前記成熟ニューロン細胞としてマウス胎児由来成熟ニューロン細胞を用いて測定できる。そして、前記評価では、例えば、前記抑制率が、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上、45%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である場合、前記被検物は、神経突起の退縮抑制作用があると評価できる。 The neurite retraction inhibitory action of the mature neuron cells is, for example, when the irradiated mature neuron cells and the subject coexist, compared to the absence of the subject, the mature neuron It can be evaluated by whether it can suppress retraction of neurites of cells. Specifically, the neurite retraction inhibitory action can be evaluated based on the rate of inhibition of neurite length retraction. The inhibition rate was calculated by comparing the neurite length (L nc ) of non-irradiated mature neuronal cells with that of irradiated mature neurons treated identically but cultured in the absence of the specimen. Length of neurites of mature neuron cells irradiated and cultured in the presence of the subject, with reference to the difference (L nc −L c ) from the neurite length (L c ) of the cells The ratio of the difference (L e −L c ) between the length (L e ) and the length (L c ) of the neurite ((L e −L c )/(L nc −L c )×100(%) ) can be calculated as The type and irradiation dose of radiation used to calculate the inhibition rate, mature neuron cells, and the length of each neurite can be measured according to Example 1 (7) described below, and more specifically, the radiation As the mature neuron cells, mouse fetal-derived mature neuron cells can be used for measurement. In the evaluation, for example, the suppression rate is 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more % or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% In the case of the above, the test object can be evaluated as having an inhibitory effect on neurite retraction.
 本明細書において、前記細胞調製物は、放射線照射により生じる未成熟ニューロン細胞の細胞死の抑制作用を示すことが好ましい。前記未成熟ニューロン細胞は、例えば、中枢神経の未成熟ニューロン細胞であり、好ましくは、脳の未成熟ニューロン細胞である。 In the present specification, the cell preparation preferably exhibits an inhibitory effect on cell death of immature neuronal cells caused by irradiation. The immature neuron cell is, for example, a central nervous immature neuron cell, preferably a brain immature neuron cell.
 前記未成熟ニューロン細胞の細胞死の抑制作用は、例えば、放射線照射された未成熟ニューロン細胞と被検物とを共存させた際に、前記被検物の非存在下と比較して、前記未成熟ニューロン細胞の細胞死を抑制できるかにより評価できる。具体的には、前記細胞死の抑制作用は、前記未成熟ニューロン細胞の細胞死の抑制率に基づき、評価できる。前記抑制率は、放射線照射を行なっていない未成熟ニューロン細胞の生存細胞数(Cnc)と、放射線照射され、かつ前記被検物非存在下で培養した以外は同様に処理された未成熟ニューロン細胞の生存細胞数(C)との差を基準とした際の、放射線照射され、かつ前記被検物共存下で培養した未成熟ニューロン細胞の生存細胞数(C)と、前記生存細胞数(C)との差(C-C)の割合((C-C)/(Cnc-C)×100(%))として、算出できる。前記細胞生存数は、全細胞数に対する生存細胞数の割合を用いてもよい。前記抑制率の算出に用いる放射線の種類および照射線量、未成熟ニューロン細胞、ならびに各生存細胞数は、後述の実施例1(9)に準じて、測定でき、より具体的には、前記放射線としてγ線を用い、前記未成熟ニューロン細胞としてマウス胎児由来未成熟ニューロン細胞を用いて測定できる。そして、前記評価では、例えば、前記抑制率が、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上、45%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である場合、前記被検物は、細胞死の抑制作用があると評価できる。 The effect of suppressing cell death of the immature neuron cells is, for example, when the irradiated immature neuron cells and the test object coexist, compared to the absence of the test object, the immature neuron cell It can be evaluated by whether it can suppress cell death of mature neuron cells. Specifically, the cell death inhibitory action can be evaluated based on the cell death inhibition rate of the immature neuron cells. The inhibition rate was calculated by comparing the number of surviving immature neuronal cells (C nc ) that were not irradiated and the immature neurons that were irradiated and treated in the same manner except that they were cultured in the absence of the test substance. Surviving cell number (C e ) of immature neuron cells that have been irradiated and cultured in the presence of the subject, and the surviving cells, based on the difference from the surviving cell number (C c ) of the cells It can be calculated as the ratio of the difference (C e −C c ) from the number (C c ) ((C e −C c )/(C nc −C c )×100(%)). As the viable cell count, the ratio of the viable cell count to the total cell count may be used. The type and irradiation dose of radiation, the number of immature neuron cells, and the number of viable cells used for calculating the inhibition rate can be measured according to Example 1 (9) described later. It can be measured using γ-rays and immature neuron cells derived from mouse embryos as the immature neuron cells. In the evaluation, for example, the suppression rate is 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more % or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% In the above case, the test substance can be evaluated as having an effect of suppressing cell death.
 本明細書において、前記細胞調製物は、放射線照射により生じるニューロン細胞における活性酸素の発生抑制作用を示すことが好ましい。前記ニューロン細胞は、例えば、中枢神経のニューロン細胞であり、好ましくは、脳のニューロン細胞である。 In the present specification, it is preferable that the cell preparation exhibits an action of suppressing the generation of reactive oxygen in neuronal cells caused by irradiation. The neuron cells are, for example, central nerve neuron cells, preferably brain neuron cells.
 前記ニューロン細胞における活性酸素の発生の抑制作用は、例えば、放射線照射されたニューロン細胞と被検物とを共存させた際に、前記被検物の非存在下と比較して、前記ニューロン細胞における活性酸素の発生を抑制できるかにより評価できる。具体的には、前記活性酸素の発生の抑制作用は、前記ニューロン細胞の活性酸素の発生の抑制率に基づき、評価できる。前記抑制率は、放射線照射を行なっていないニューロン細胞の活性酸素マーカー陽性の細胞数(Rnc)と、放射線照射され、かつ前記被検物非存在下で培養した以外は同様に処理されたニューロン細胞の活性酸素マーカー陽性の細胞数(R)との差を基準とした際の、放射線照射され、かつ前記被検物共存下で培養したニューロン細胞の活性酸素マーカー陽性の細胞数(R)と、前記活性酸素マーカー陽性の細胞数(R)との差(R-R)の割合((R-R)/(Rnc-R)×100(%))として、算出できる。前記活性酸素マーカー陽性の細胞数は、全細胞数に対する活性酸素マーカー陽性の細胞数の割合を用いてもよい。前記抑制率の算出に用いる放射線の種類および照射線量、ニューロン細胞、使用する活性酸素マーカー、ならびに各活性酸素マーカー陽性の細胞数は、後述の実施例1(8)に準じて、測定でき、より具体的には、前記放射線としてγ線を用い、前記ニューロン細胞としてマウス胎児由来ニューロン細胞を用いて測定できる。そして、前記評価では、例えば、前記抑制率が、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上、45%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である場合、前記被検物は、活性酸素の発生の抑制作用があると評価できる。 The effect of suppressing the generation of reactive oxygen in the neuron cells is, for example, when the irradiated neuron cells and the test object are allowed to coexist, compared to the absence of the test object, in the neuron cells It can be evaluated by whether or not generation of active oxygen can be suppressed. Specifically, the inhibitory effect on the generation of reactive oxygen can be evaluated based on the rate of inhibition of the generation of reactive oxygen in the neuron cells. The inhibition rate is calculated by comparing the number of reactive oxygen marker-positive cells (R nc ) of non-irradiated neuronal cells and neurons that have been irradiated and treated in the same manner except that they were cultured in the absence of the test substance. The number of reactive oxygen marker-positive cells ( Re ) and the ratio of the difference (R e -R c ) between the number of reactive oxygen marker-positive cells (R c ) ((R e -R c )/(R nc -R c ) × 100 (%)) , can be calculated. As the number of reactive oxygen marker-positive cells, the ratio of the number of reactive oxygen marker-positive cells to the total number of cells may be used. The type and irradiation dose of radiation used to calculate the inhibition rate, neuron cells, the reactive oxygen marker to be used, and the number of cells positive for each reactive oxygen marker can be measured according to Example 1 (8) described below. Specifically, gamma rays can be used as the radiation, and mouse fetal neuron cells can be used as the neuron cells. In the evaluation, for example, the suppression rate is 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more % or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% In the above case, the test object can be evaluated as having an effect of suppressing the generation of active oxygen.
 本明細書において、前記細胞調製物は、放射線照射により生じるニューロン細胞のネクローシスの抑制作用を示すことが好ましい。前記ニューロン細胞は、例えば、中枢神経のニューロン細胞であり、好ましくは、脳のニューロン細胞である。 In the present specification, the cell preparation preferably exhibits an inhibitory effect on necrosis of neuronal cells caused by irradiation. The neuron cells are, for example, central nerve neuron cells, preferably brain neuron cells.
 前記ニューロン細胞におけるネクローシスの抑制作用は、例えば、放射線照射されたニューロン細胞と被検物とを共存させた際に、前記被検物の非存在下と比較して、前記ニューロン細胞におけるネクローシスを抑制できるかにより評価できる。具体的には、前記ネクローシスの抑制作用は、前記ニューロン細胞のネクローシスの抑制率に基づき、評価できる。前記抑制率は、放射線照射を行なっていないニューロン細胞のネクローシス細胞の細胞数(Nnc)と、放射線照射され、かつ前記被検物非存在下で培養した以外は同様に処理されたニューロン細胞のネクローシス細胞の細胞数(N)との差を基準とした際の、放射線照射され、かつ前記被検物共存下で培養したニューロン細胞のネクローシス細胞の細胞数(N)と、前記ネクローシス細胞の細胞数(N)との差(N-N)の割合((N-N)/(Nnc-N)×100(%))として、算出できる。前記ネクローシス細胞の細胞数としては、全細胞数に対するネクローシスした細胞数の割合を用いてもよい。前記抑制率の算出に用いる放射線の種類および照射線量、ニューロン細胞、ならびに各ネクローシスした細胞の検出は、後述の実施例1(9)に準じて、測定でき、より具体的には、前記放射線としてγ線を用い、前記ニューロン細胞としてマウス胎児由来ニューロン細胞を用いて測定できる。そして、前記評価では、例えば、前記抑制率が、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上、45%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である場合、前記被検物は、ネクローシスの抑制作用があると評価できる。 The effect of suppressing necrosis in neuronal cells is, for example, when the irradiated neuronal cells and the test substance are allowed to coexist, compared to the absence of the test substance, suppresses necrosis in the neuronal cells. It can be evaluated according to whether it can be done. Specifically, the necrosis-suppressing action can be evaluated based on the necrosis-suppressing rate of the neuronal cell. The inhibition rate was calculated by comparing the number of necrotic cells (N nc ) in non-irradiated neuronal cells and the number of irradiated neuronal cells treated in the same manner but cultured in the absence of the test substance. The number of necrotic cells (N e ) of irradiated neuronal cells cultured in the presence of the subject, and the necrotic cells, based on the difference from the number of necrotic cells (N c ) can be calculated as a ratio ((N e -N c )/(N nc -N c )×100(%)) of the difference (N e −N c ) from the number of cells (N c ) of the cell number (N c ). As the number of necrotic cells, the ratio of the number of necrotic cells to the total number of cells may be used. The type and irradiation dose of radiation used to calculate the inhibition rate, the detection of neuronal cells, and each necrotic cell can be measured according to Example 1 (9) described below, and more specifically, the radiation It can be measured using γ-rays and mouse embryo-derived neuron cells as the neuron cells. In the evaluation, for example, the suppression rate is 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more % or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% In the case of the above, the test object can be evaluated as having an inhibitory effect on necrosis.
 本明細書において、前記臍帯由来細胞の生産(調製)方法は、例えば、前記臍帯から細胞を単離する工程を含み、任意に、単離された細胞を継代する工程を含んでもよい。具体例として、前記調製方法は、例えば、(1)臍帯を切断する工程、(2)臍帯切片を培養する工程、および(3)継代する工程を含む。また、他の例として、前記調製方法は、例えば、(A)臍帯を切断する工程もしくは酵素処理する工程、またはその双方により組織を解離させる工程、(B)臍帯組織を培養する工程、および(C)継代する工程を含む。なお、前記臍帯由来細胞は、一様の細胞による集団であってもよいし、不均一な細胞集団であってよい。 As used herein, the method for producing (preparing) umbilical cord-derived cells includes, for example, a step of isolating cells from the umbilical cord, and optionally a step of subculturing the isolated cells. As a specific example, the preparation method includes, for example, (1) cutting the umbilical cord, (2) culturing the umbilical cord segment, and (3) subculturing. As another example, the preparation method includes, for example, (A) a step of cutting the umbilical cord, a step of enzymatic treatment, or a step of dissociating the tissue by both, (B) a step of culturing the umbilical cord tissue, and ( C) including the step of passaging. The umbilical cord-derived cells may be a uniform cell population or a heterogeneous cell population.
 前記(1)~(3)工程を含む方法、または前記(A)~(C)工程を含む方法により、前記臍帯由来細胞を調製する場合、一例として以下のように実施できる。なお、前記臍帯由来細胞の調製方法は、以下の例に限定されない。 When the umbilical cord-derived cells are prepared by the method including the steps (1) to (3) or the method including the steps (A) to (C), an example can be carried out as follows. The method for preparing the umbilical cord-derived cells is not limited to the following example.
 まず、前記(1)~(3)工程を含む方法について説明する。前記(1)臍帯を切断する工程では、例えば、前述の方法で入手した臍帯を、羊膜、血管、血管周囲組織および/またはワルトンジェリーを含む状態にて機械力(細断力または剪断力)によって切断することにより実施できる。切断により得られる臍帯切片の大きさは、特に制限されず、例えば、1~10mm、1~5mm、1~4mm、1~3mmまたは1~2mm等があげられる。 First, the method including the steps (1) to (3) will be described. In the (1) step of cutting the umbilical cord, for example, the umbilical cord obtained by the above method is subjected to mechanical force (shredding force or shear force) in a state containing amniotic membrane, blood vessels, perivascular tissue and/or Walton's jelly. It can be implemented by cutting. The size of the umbilical cord segment obtained by cutting is not particularly limited, and examples thereof include 1 to 10 mm 3 , 1 to 5 mm 3 , 1 to 4 mm 3 , 1 to 3 mm 3 and 1 to 2 mm 3 .
 つぎに、前記(2)臍帯切片を培養する工程では、例えば、切断された臍帯切片を、シャーレ、ディッシュ、フラスコ等の培養器に播種し、臍帯由来細胞に適した培養液中にて培養する。前記(2)工程では、前記臍帯切片に対して消化酵素処理を行わないことが好ましい。 Next, in the step (2) of culturing the umbilical cord segment, for example, the cut umbilical cord segment is seeded in an incubator such as a Petri dish, dish, or flask, and cultured in a culture medium suitable for umbilical cord-derived cells. . In the step (2), it is preferred that the umbilical cord segment is not treated with a digestive enzyme.
 本明細書において、前記「培養器」は、例えば、固体表面を有する培養器であればよい。前記培養器としては、例えば、細胞、組織、および/または臓器の培養に用いられる培養器を使用できる。前記「固体表面」は、例えば、前記臍帯由来細胞との結合を可能とする任意の材料を意味する。具体的には、前記材料は、例えば、その表面への哺乳類細胞の結合を促すように処理(例えば、親水性増加処理)されたプラスチック材料等があげられる。前記固体表面を有する培養容器の種類は、特に制限されず、例えば、シャーレ、ディッシュ、フラスコ等があげられる。 In this specification, the "incubator" may be, for example, an incubator having a solid surface. As the incubator, for example, an incubator used for culturing cells, tissues, and/or organs can be used. Said "solid surface" means, for example, any material capable of binding with said umbilical cord-derived cells. Specifically, the material includes, for example, a plastic material that has been treated (eg, hydrophilicity-enhancing treatment) to promote binding of mammalian cells to its surface. The type of culture vessel having the solid surface is not particularly limited, and examples thereof include petri dishes, dishes, flasks, and the like.
 本明細書において、前記「臍帯由来細胞に適した培養液」は、例えば、基礎培地に、血清等の添加剤を添加することにより調製できる。前記添加剤は、例えば、血清、および/または、アルブミン、トランスフェリン、脂肪酸、インスリン、亜セレン酸ナトリウム、コレステロール、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロール等の1つ以上の血清代替物があげられる。前記培養液は、例えば、必要に応じて、さらに、脂質、アミノ酸、タンパク質、多糖、ビタミン、増殖因子、低分子化合物、抗生剤、抗真菌剤、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの物質を添加してもよい。前記基礎培地は、特に制限されず、例えば、Minimum Essential Medium Eagle, Alpha Modification (αMEM)、Dulbecco’s Modified Eagle’s Medium(DMEM)(高グルコースまたは低グルコース)、改良DMEM、DMEM/MCDB 201、Eagle’s 基本培地、Ham’s F10培地(F10)、Ham’s F-12培地(F12)、イスコーブの改変ダルベッコ(IMDM)培地、Fischer’s培地、間葉幹細胞増殖培地(MSCGM)、DMEM/F12、RPMI 1640、CELL-GRO-FREE、およびこれらの混合培地等があげられる。前記血清は、例えば、ヒト血清、ウシ胎児血清(FBS)、ウシ血清、仔ウシ血清、ヤギ血清、ウマ血清、ブタ血清、ヒツジ血清、ウサギ血清、ラット血清等の動物由来の血清があげられる。前記基礎培地に対する血清の添加量は、例えば、5 v/v%~15 v/v%であり、好ましくは、約10v/v%である。前記脂肪酸は、特に制限されず、例えば、リノール酸、オレイン酸、リノレイン酸、アラキドン酸、ミリスチン酸、パルミトイル酸、パルミチン酸、およびステアリン酸等があげられる。前記脂質は、特に制限されず、例えば、フォスファチジルセリン、フォスファチジルエタノールアミン、フォスファチジルコリン等があげられる。前記アミノ酸は、特に制限されず、例えば、L-アラニン、L-アルギニン、L-アスパラギン酸、L-アスパラギン、L-システイン、L-シスチン、L-グルタミン酸、L-グルタミン、L-グリシン等のアミノ酸のL体、これらのD体、またはこれらの混合物(DL体)等があげられる。前記タンパク質は、特に制限されず、例えば、エコチン、還元型グルタチオン、フィブロネクチン、β2-ミクログロブリン等があげられる。前記多糖は、特に制限されず、例えば、ヒアルロン酸、ヘパラン硫酸等のグリコサミノグリカン等があげられる。前記増殖因子は、特に制限されず、例えば、血小板由来増殖因子(PDGF)、上皮増殖因子(EGF)、線維芽細胞増殖因子(FGF)、血管内皮増殖因子(VEGF)、インスリン様増殖因子-1(IGF-1)、白血球阻害因子(LIF)、塩基性線維芽細胞成長因子(bFGF)、トランスフォーミング増殖因子ベータ(TGF-β)、肝細胞増殖因子(HGF)、結合組織増殖因子(CTGF)、エリスロポエチン(EPO)等があげられる。前記抗生剤および/または抗真菌剤は、特に制限されず、例えば、ペニシリンG、ストレプトマイシン硫酸塩、アムホテリシンB、ゲンタマイシン、ナイスタチン、およびこれらの混合等があげられる。 As used herein, the "culture medium suitable for umbilical cord-derived cells" can be prepared, for example, by adding additives such as serum to the basal medium. Said additives are, for example, serum and/or one or more of albumin, transferrin, fatty acids, insulin, sodium selenite, cholesterol, collagen precursors, trace elements, 2-mercaptoethanol, 3′-thiolglycerol, etc. of serum replacement. For example, if necessary, the culture solution further contains lipids, amino acids, proteins, polysaccharides, vitamins, growth factors, low-molecular-weight compounds, antibiotics, antifungal agents, antioxidants, pyruvic acid, buffers, and inorganic salts. You may add substances, such as. The basal medium is not particularly limited. Ham's F10 Medium (F10), Ham's F-12 Medium (F12), Iscove's Modified Dulbecco's (IMDM) Medium, Fischer's Medium, Mesenchymal Stem Cell Growth Medium (MSCGM), DMEM/F12, RPMI 1640, CELL-GRO-FREE, and mixed media of these. Examples of the serum include animal-derived serum such as human serum, fetal bovine serum (FBS), bovine serum, calf serum, goat serum, horse serum, pig serum, sheep serum, rabbit serum and rat serum. The amount of serum added to the basal medium is, for example, 5 v/v % to 15 v/v %, preferably about 10 v/v %. The fatty acid is not particularly limited, and examples thereof include linoleic acid, oleic acid, linoleic acid, arachidonic acid, myristic acid, palmitoic acid, palmitic acid, and stearic acid. The lipid is not particularly limited, and examples thereof include phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine and the like. The amino acid is not particularly limited, and examples thereof include amino acids such as L-alanine, L-arginine, L-aspartic acid, L-asparagine, L-cysteine, L-cystine, L-glutamic acid, L-glutamine, and L-glycine. L-isomers, D-isomers thereof, or mixtures thereof (DL-isomers). The protein is not particularly limited, and examples thereof include ecotin, reduced glutathione, fibronectin, β2-microglobulin and the like. The polysaccharide is not particularly limited, and examples thereof include glycosaminoglycans such as hyaluronic acid and heparan sulfate. The growth factor is not particularly limited, and examples include platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), leukocyte inhibitory factor (LIF), basic fibroblast growth factor (bFGF), transforming growth factor beta (TGF-β), hepatocyte growth factor (HGF), connective tissue growth factor (CTGF) , erythropoietin (EPO) and the like. The antibiotic and/or antifungal agent is not particularly limited, and examples thereof include penicillin G, streptomycin sulfate, amphotericin B, gentamicin, nystatin, and mixtures thereof.
 前記(2)工程において、播種した臍帯切片が培養液中に浮遊することを防ぐため、培養期間中プレート等を用いて前記臍帯切片を押さえることが好ましい。前記プレートは、例えば、特開2015-70824に記載のプレートが例示できる。 In the above step (2), in order to prevent the seeded umbilical cord segments from floating in the culture medium, it is preferable to hold down the umbilical cord segments using a plate or the like during the culture period. Examples of the plate include plates described in JP-A-2015-70824.
 前記(2)工程において、培養条件は、特に制限されず、例えば、細胞、組織、臓器等の一般的な培養条件を参照できる。具体例として、前記(2)工程におけるCO濃度は、例えば、0~5%である。前記(2)工程におけるO濃度は、例えば、2~25%であり、好ましくは、5~20%である。前記(2)工程における培養温度は、例えば、25~40℃であり、好ましくは、約37℃(35~39℃)である。 In the step (2), culture conditions are not particularly limited, and for example, general culture conditions for cells, tissues, organs, etc. can be referred to. As a specific example, the CO 2 concentration in the step (2) is, for example, 0 to 5%. The O 2 concentration in the step (2) is, for example, 2 to 25%, preferably 5 to 20%. The culture temperature in the step (2) is, for example, 25 to 40°C, preferably about 37°C (35 to 39°C).
 前記(2)工程において、前記培養期間は、特に制限されず、例えば、前記臍帯切片から細胞が遊走し、細胞が、培養器に対して50%、60%、70%、80%またはそれ以上のコンフルエントになるまで培養することが好ましい。 In the step (2), the culture period is not particularly limited. It is preferable to culture until the cells become confluent.
 そして、前記(2)工程では、例えば、前記培養後、非結合状態の細胞および細胞の破片を除去するために、細胞を洗浄し、EDTA等のキレート剤を含む溶液、トリプシン、コラゲナーゼ、ディスパーゼ等のプロテアーゼ、ヒアルロニダーゼ等の糖鎖分解酵素、またはこれらの混合物を含む剥離剤によって剥離する。そして、前記(2)工程では、例えば、前記細胞および前記臍帯切片を含む剥離溶液を、セルストレーナー等を用いてろ過することで、臍帯由来細胞として細胞のみを入手することができる。得られた臍帯由来細胞は、例えば、前述の培養器へ播種し、前述の培養液を用いて培養できる。 In the step (2), for example, in order to remove unbound cells and cell debris after the culture, the cells are washed and treated with a solution containing a chelating agent such as EDTA, trypsin, collagenase, dispase, or the like. protease, sugar chain degrading enzyme such as hyaluronidase, or a stripping agent containing a mixture thereof. Then, in the step (2), for example, by filtering the detachment solution containing the cells and the umbilical cord segment using a cell strainer or the like, only cells can be obtained as umbilical cord-derived cells. The obtained umbilical cord-derived cells can be seeded, for example, in the culture vessel described above and cultured using the culture medium described above.
 前記(3)工程では、継代培養することで、適宜、必要数まで臍帯由来細胞を増殖することができる。前記(3)工程では、前記継代培養において、前記剥離剤によって剥離し、別途用意した培養器に適切な細胞密度で播種して培養を継続してもよい。前記細胞を播種する際の、細胞密度(播種密度)は、例えば、1×10~1×10細胞/cm、5×10~5×10細胞/cm、1×10~1×10細胞/cm、2×10~1×10細胞/cm等があげられ、好ましくは、2×10~1×10細胞/cmである。前記播種密度は、例えば、適切なコンフルエンシーに達するまでの期間が、3~7日間となるように調整することが好ましい。前記(3)工程の継代培養では、必要に応じて、適宜、培地を交換してもよい。 In the step (3), the umbilical cord-derived cells can be appropriately grown to the required number by subculturing. In the step (3), in the subculture, the cells may be detached with the detachment agent, seeded at an appropriate cell density in a separately prepared culture vessel, and culture continued. The cell density (seeding density) when seeding the cells is, for example, 1×10 2 to 1×10 5 cells/cm 2 , 5×10 2 to 5×10 4 cells/cm 2 , 1×10 3 1×10 4 cells/cm 2 , 2×10 3 to 1×10 4 cells/cm 2 and the like, preferably 2×10 3 to 1×10 4 cells/cm 2 . The seeding density is preferably adjusted, for example, so that the period to reach a suitable confluency is 3 to 7 days. In the subculture of the step (3), the medium may be changed as appropriate, if necessary.
 前記(3)工程の継代回数は、特に制限されず、例えば、細胞分裂の停止する老化まで行われてもよい。前記(3)工程の継代回数は、例えば、処置に用いるとの観点から、好ましくは、3~25回継代培養され、より好ましくは、4~12回継代培養される。 The number of passages in the step (3) is not particularly limited, and may be performed, for example, until senescence, when cell division stops. Regarding the number of passages in the step (3), for example, from the viewpoint of use for treatment, it is preferably subcultured 3 to 25 times, more preferably subcultured 4 to 12 times.
 つぎに、前記(A)~(C)工程を含む方法について説明する。前記(A)酵素処理する工程では、前述の方法で入手した臍帯を、羊膜、血管、血管周囲組織および/またはワルトンジェリーを含む状態にて酵素処理にて、組織を解離させる工程により実施できる。前記酵素処理に用いる酵素は、特に制限されず、例えば、コラゲナーゼ、ディスパーゼ等のプロテアーゼ;ヒアルロニダーゼ等の糖鎖分解酵素;等があげられる。 Next, a method including the steps (A) to (C) will be described. In the step of (A) enzymatic treatment, the umbilical cord obtained by the method described above is enzymatically treated in a state containing amniotic membrane, blood vessels, perivascular tissue and/or Walton's Jelly to dissociate the tissues. The enzyme used for the enzymatic treatment is not particularly limited, and examples thereof include proteases such as collagenase and dispase; glycolytic enzymes such as hyaluronidase; and the like.
 つぎに、前記(B)臍帯組織を培養する工程、および(C)継代する工程は、例えば、それぞれ、前記(2)臍帯組織を培養する工程、および前記(3)継代する工程と同様にして実施できる。 Next, the step of (B) culturing the umbilical cord tissue and the step of (C) subculturing are, for example, the same as the step of (2) culturing the umbilical cord tissue and the step of (3) subculturing, respectively. can be implemented as
 これにより、前記(3)または(C)工程後、前記臍帯由来細胞を取得できる。 As a result, the umbilical cord-derived cells can be obtained after the step (3) or (C).
 前記臍帯由来細胞の調製方法で得られた細胞は、前記臍帯由来細胞であることを確認するために、表面抗原等についてフローサイトメトリー等を用いて従来の方法で解析してもよい。また、前記臍帯由来細胞の調製方法で得られた細胞は、前記細胞より産生される各種タンパク質量を測定することで、前記臍帯由来細胞であるかを評価してもよい。 In order to confirm that the cells obtained by the method for preparing umbilical cord-derived cells are umbilical cord-derived cells, surface antigens and the like may be analyzed by conventional methods using flow cytometry and the like. In addition, whether or not the cells obtained by the method for preparing umbilical cord-derived cells are umbilical cord-derived cells may be evaluated by measuring the amounts of various proteins produced from the cells.
 前記臍帯由来細胞の調製方法で得られた細胞は、そのまま、処置用に調製されてもよいし、凍結保存してもよい。前記凍結保存は、例えば、臍帯由来細胞を保存可能な凍結保存用溶液中に細胞を懸濁させ、-80℃~-180℃で保存することによって行われる。前記凍結保存用溶液は、特に制限されず、例えば、凍害防御剤およびグルコースを含む水溶液があげられる。前記凍害防御剤は、例えば、ジメチルスルホキシド(以下、「DMSO」ともいう)、デキストラン、グリセロール、プロピレングリコール、および1-メチル-2-ピロリドン等があげられ、好ましくは、DMSOおよび/またはプロピレングリコールであり、より好ましくは、DMSOである。前記凍害防御剤は、例えば、前記凍結保存用溶液中に、1~15v/v%含まれ、好ましくは、5~15v/v%含まれ、より好ましくは、5~12v/v%含まれ、さらに好ましくは、8~11v/v%含まれる。 The cells obtained by the method for preparing umbilical cord-derived cells may be directly prepared for treatment or may be cryopreserved. The cryopreservation is performed, for example, by suspending the cells in a cryopreservation solution capable of preserving the umbilical cord-derived cells and storing the cells at -80°C to -180°C. The cryopreservation solution is not particularly limited, and examples thereof include an aqueous solution containing a cryoprotectant and glucose. Examples of the antifreeze agent include dimethyl sulfoxide (hereinafter also referred to as "DMSO"), dextran, glycerol, propylene glycol, and 1-methyl-2-pyrrolidone, preferably DMSO and/or propylene glycol. Yes, more preferably DMSO. The cryoprotectant is contained, for example, in the cryopreservation solution at 1 to 15 v/v%, preferably 5 to 15 v/v%, more preferably 5 to 12v/v%, More preferably, it is contained in an amount of 8 to 11 v/v%.
 前記凍結保存用溶液に含まれるグルコースは、例えば、前記凍結保存用溶液中に、0.5~10w/v%含まれ、好ましくは、1~10w/v%含まれ、より好ましくは、2~8w/v%含まれ、さらに好ましくは、2~5w/v%含まれる。 Glucose contained in the cryopreservation solution is, for example, 0.5 to 10 w/v%, preferably 1 to 10 w/v%, more preferably 2 to 10 w/v% in the cryopreservation solution. 8 w/v %, more preferably 2 to 5 w/v %.
 前記凍結保存用溶液は、さらに、他の成分を含んでいてもよい。他の成分としては、例えば、pH調整剤、増粘剤等が挙げられる。前記pH調整剤は、例えば、炭酸水素ナトリウム、HEPES、リン酸緩衝液等があげられる。また、basic Stock Solution(BSS)にリン酸緩衝液を添加しない場合、前記pH調整剤としては、例えば、前記臍帯由来細胞に適したpH付近で緩衝能を持たせる働きを有する塩化ナトリウムを添加したものも用いることもできる。前記pH調整剤としては、リン酸緩衝液を用いることが好ましい。前記pH調整剤は、前記凍結保存用溶液中のpHを、例えば、約6.5~9、好ましくは、7~8.5に調整するように用いられることが好ましい。なお、本明細書において、前記「リン酸緩衝液」は、例えば、塩化ナトリウム、リン酸一ナトリウム(無水)、リン酸一カリウム(無水)、リン酸二ナトリウム(無水)、リン酸三ナトリウム(無水)、塩化カリウム、およびリン酸二水素カリウム(無水)等を含む緩衝液のことをいい、特に塩化ナトリウム、リン酸一ナトリウム(無水)、塩化カリウム、またはリン酸二水素カリウム(無水)を含む緩衝液が好ましい。前記pH調整剤は、例えば、前記凍結保存用溶液中に、0.01~1w/v%含まれ、好ましくは、0.05~0.5w/v%含まれる。 The cryopreservation solution may further contain other components. Other components include, for example, pH adjusters and thickeners. Examples of the pH adjuster include sodium hydrogen carbonate, HEPES, and phosphate buffer. In addition, when no phosphate buffer is added to the basic stock solution (BSS), as the pH adjuster, for example, sodium chloride having a function of imparting a buffering capacity around a pH suitable for the umbilical cord-derived cells was added. can also be used. A phosphate buffer is preferably used as the pH adjuster. The pH adjuster is preferably used to adjust the pH in the cryopreservation solution to, for example, about 6.5-9, preferably 7-8.5. In the present specification, the "phosphate buffer" includes, for example, sodium chloride, monosodium phosphate (anhydrous), monopotassium phosphate (anhydrous), disodium phosphate (anhydrous), trisodium phosphate ( Anhydrous), potassium chloride, and potassium dihydrogen phosphate (anhydrous), etc., especially sodium chloride, monosodium phosphate (anhydrous), potassium chloride, or potassium dihydrogen phosphate (anhydrous). A buffer containing The pH adjuster is contained, for example, in the cryopreservation solution at 0.01 to 1 w/v%, preferably 0.05 to 0.5 w/v%.
 前記凍結保存用溶液は、天然の動物由来成分を含んでいてもよいし、含んでいなくてもよい。前記天然の動物由来成分としては、例えば、前述の血清および基礎培地等があげられる。前記凍結保存用溶液は、天然の動物由来成分を含まないことが好ましい。前記天然の動物由来成分を含まない凍結保存用溶液では、天然の動物由来成分のロット間での品質の違いの問題を生じることがなく、血清に含まれる各種サイトカイン、増殖因子およびホルモン等の成分による臍帯組織中の細胞の性質の変化の可能性を抑制でき、さらに、基礎培地に含まれる由来が不明な成分による影響も抑制できる。このため、前記天然の動物由来成分を含まない凍結保存用溶液は、特に臨床使用において非常に有用である。 The cryopreservation solution may or may not contain natural animal-derived components. Examples of the natural animal-derived components include the aforementioned serum and basal medium. Preferably, the cryopreservation solution does not contain natural animal-derived components. The cryopreservation solution that does not contain the natural animal-derived components does not cause quality differences between lots of natural animal-derived components, and components such as various cytokines, growth factors, and hormones contained in serum. It is possible to suppress the possibility of changes in the properties of the cells in the umbilical cord tissue caused by , and also to suppress the influence of components of unknown origin contained in the basal medium. Therefore, cryopreservation solutions free of said natural animal-derived components are very useful, especially in clinical use.
 前記凍結保存用溶液は、さらに、増粘剤を含んでいてもよい。前記増粘剤は、特に制限されず、例えば、前記臍帯組織を十分に保存できる凍結保存用溶液を構成し得るものがあげられる。前記増粘剤は、例えば、カルボキシメチルセルロース(以下、「CMC」ともいう)、カルボキシメチルセルロースナトリウム(以下、「CMC-Na」ともいう)、有機酸ポリマー、アルギン酸プロピレングリコール、アルギン酸ナトリウム等があげられる。前記増粘剤としては、CMCおよびCMC-Naが好ましく、CMC-Naが特に好ましい。前記有機酸ポリマーは、ポリアクリル酸ナトリウムが好ましい。前記増粘剤は、例えば、前記凍結保存用溶液中に、0.1~1w/v%含まれ、好ましくは、0.1~0.5w/v%含まれ、より好ましくは、0.2~0.4w/v%含まれる。 The cryopreservation solution may further contain a thickening agent. The thickening agent is not particularly limited, and examples thereof include those capable of constituting a cryopreservation solution capable of sufficiently preserving the umbilical cord tissue. Examples of the thickener include carboxymethyl cellulose (hereinafter also referred to as "CMC"), carboxymethyl cellulose sodium (hereinafter also referred to as "CMC-Na"), organic acid polymers, propylene glycol alginate, sodium alginate and the like. As the thickening agent, CMC and CMC-Na are preferred, and CMC-Na is particularly preferred. The organic acid polymer is preferably sodium polyacrylate. The thickening agent is contained, for example, in the cryopreservation solution at 0.1 to 1 w/v%, preferably 0.1 to 0.5 w/v%, more preferably 0.2 Contains ~0.4 w/v%.
 前記凍結保存用溶液は、水溶液であることが好ましい。前記凍結保存用溶液の浸透圧は、例えば、保存液としての性能を保持するために、好ましくは、1000mOsm以上であり、より好ましくは、1000~2700mOsmである。 The cryopreservation solution is preferably an aqueous solution. The osmotic pressure of the cryopreservation solution is, for example, preferably 1000 mOsm or more, more preferably 1000 to 2700 mOsm, in order to maintain performance as a preservation solution.
 前記凍結保存用溶液は、好ましくは、増粘剤、凍害防御剤、およびグルコースを含み、かつ天然の動物由来成分を含まない水溶液である。前記凍結保存用溶液は、より好ましくは、CMC-Na、DMSO、およびグルコースを含み、かつ天然の動物由来成分を含まない水溶液である。前記凍結保存用溶液は、さらに好ましくは、CMC-Naを0.1~1w/v%含み、DMSOを1~15v/v%含み、グルコースを0.5~10w/v%含み、かつ天然の動物由来成分を含まない水溶液である。 The cryopreservation solution is preferably an aqueous solution that contains a thickener, a cryoprotectant, and glucose, and does not contain natural animal-derived components. The cryopreservation solution is more preferably an aqueous solution containing CMC-Na, DMSO, and glucose and free of natural animal-derived components. The cryopreservation solution more preferably contains 0.1 to 1 w/v% CMC-Na, 1 to 15 v/v% DMSO, 0.5 to 10 w/v% glucose, and natural It is an aqueous solution containing no animal-derived components.
 前記臍帯由来細胞の調製方法で得られた細胞は、例えば、輸液製剤と混合することで、各種用途の細胞調製物として使用してもよい。また、前記臍帯由来細胞を凍結保存する場合、凍結保存された臍帯由来細胞は、前記凍結保存用溶液に懸濁され、解凍後にそのまま各種用途の細胞調製物として使用してもよいし、解凍後に輸液製剤と混合し、得られた混合物を各種用途の細胞調製物として使用してもよい。前記輸液製剤と混合する場合、前記臍帯由来細胞が懸濁された培養液または凍結保存用溶液を輸液製剤等と混合してもよいし、前記培養液または凍結保存用溶液について、遠心分離等により細胞を溶媒と分離した後、細胞のみを輸液製剤と混合してもよい。前記調製方法では、例えば、手技の煩雑さを回避するため、前記凍結した細胞を解凍後、培養する工程を含まないこと、または融解後の細胞が懸濁された凍結保存液を直接輸液製剤と混合することが好ましい。 The cells obtained by the method for preparing umbilical cord-derived cells may be used as cell preparations for various applications, for example, by mixing with infusion preparations. In addition, when the umbilical cord-derived cells are cryopreserved, the cryopreserved umbilical cord-derived cells may be suspended in the cryopreservation solution, and after thawing, may be used directly as a cell preparation for various purposes, or may be used after thawing. It may be mixed with an infusion formulation and the resulting mixture used as a cell preparation for various uses. When mixed with the infusion preparation, the culture medium or cryopreservation solution in which the umbilical cord-derived cells are suspended may be mixed with the infusion preparation or the like, and the culture medium or cryopreservation solution may be separated by centrifugation or the like. After separating the cells from the solvent, the cells alone may be mixed with the infusion formulation. In the preparation method, for example, in order to avoid the complexity of the procedure, the step of culturing the frozen cells after thawing is not included, or the cryopreservation solution in which the thawed cells are suspended is directly used as an infusion preparation. Mixing is preferred.
 本明細書において、前記「輸液製剤」は、例えば、ヒトの治療の際に用いられる輸液等の溶液があげられ、具体例として、生理食塩水、5%ブドウ糖液、リンゲル液、乳酸リンゲル液、酢酸リンゲル液、1号液、2号液、3号液、4号液等があげられる。 In the present specification, the above-mentioned "infusion preparation" includes, for example, solutions such as infusion solutions used for human treatment, and specific examples include physiological saline, 5% glucose solution, Ringer's solution, lactated Ringer's solution, and acetated Ringer's solution. , No. 1 liquid, No. 2 liquid, No. 3 liquid, No. 4 liquid, and the like.
 本開示の細胞調製物は、前記臍帯由来細胞に加えて、前記輸液製剤を含むキットであってもよい。 The cell preparation of the present disclosure may be a kit containing the infusion preparation in addition to the umbilical cord-derived cells.
 本開示の細胞調製物は、前記輸液製剤に加えて、または代えて、薬学的に許容される担体を含んでもよい。前記担体は、前記細胞調製物を投与するための懸濁剤、溶解補助剤、安定化剤、等張化剤、保存剤、吸着防止剤、界面活性剤、希釈剤、媒体、pH調整剤、無痛化剤、緩衝剤、含硫還元剤、酸化防止剤等があげられ、本開示の効果を妨げない範囲で適切に添加することができる。 The cell preparation of the present disclosure may contain a pharmaceutically acceptable carrier in addition to or instead of the infusion preparation. The carrier includes suspending agents, solubilizers, stabilizers, tonicity agents, preservatives, antiadsorption agents, surfactants, diluents, vehicles, pH adjusters, Examples include soothing agents, buffering agents, sulfur-containing reducing agents, antioxidants, and the like, and can be added appropriately within a range that does not interfere with the effects of the present disclosure.
 前記懸濁剤は、特に制限されず、例えば、メチルセルロース、ポリソルベート80、ヒドロキシエチルセルロース、アラビアゴム(アラビアガム)、トラガント末、カルボキシメチルセルロースナトリウム、ポリオキシエチレンソルビタンモノラウレート等があげられる。 The suspending agent is not particularly limited, and examples thereof include methylcellulose, polysorbate 80, hydroxyethylcellulose, gum arabic (gum arabic), tragacanth powder, carboxymethylcellulose sodium, polyoxyethylene sorbitan monolaurate, and the like.
 前記溶液補助剤は、特に制限されず、例えば、ポリオキシエチレン硬化ヒマシ油、ポリソルベート80、ニコチン酸アミド、ポリオキシエチレンソルビタンモノラウレート、マクロゴール、ヒマシ油脂肪酸エチルエステル等があげられる。 The solution adjuvant is not particularly limited, and examples thereof include polyoxyethylene hydrogenated castor oil, polysorbate 80, nicotinic acid amide, polyoxyethylene sorbitan monolaurate, macrogol, castor oil fatty acid ethyl ester, and the like.
 前記安定化剤は、特に制限されず、例えば、デキストラン40、メチルセルロース、ゼラチン、亜硫酸ナトリウム、メタ硫酸ナトリウム等があげられる。 The stabilizer is not particularly limited, and examples include dextran 40, methylcellulose, gelatin, sodium sulfite, sodium metasulfate, and the like.
 前記等張化剤は、特に制限されず、例えば、D-マンニトール、ソルビトール等があげられる。 The tonicity agent is not particularly limited, and examples thereof include D-mannitol and sorbitol.
 前記保存剤は、特に制限されず、例えば、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、ソルビン酸、フェノール、クレゾール、クロロクレゾール等があげられる。 The preservative is not particularly limited, and examples thereof include methyl paraoxybenzoate, ethyl parahydroxybenzoate, sorbic acid, phenol, cresol, and chlorocresol.
 前記吸着防止剤は、特に制限されず、例えば、ヒト血清アルブミン、レシチン、デキストラン、エチレンオキシドプロピレンオキシド共重合体、ヒドロキシプロピルセルロース、メチルセルロース、硬化ヒマシ油、ポリエチレングリコール等があげられる。 The antiadsorption agent is not particularly limited, and examples thereof include human serum albumin, lecithin, dextran, ethylene oxide propylene oxide copolymer, hydroxypropyl cellulose, methyl cellulose, hydrogenated castor oil, and polyethylene glycol.
 前記含硫還元剤は、特に制限されず、例えば、N-アセチルシステイン、N-アセチルホモシステイン、チオキト酸、チオジグリコール、チオエタノールアミン、チオグリセロール、チオソルビトール、チオグリコール酸およびその塩、チオ硫酸ナトリウム、グルタチオン、炭素原子数1~7のチオアルカン酸等のスルホヒドリル基を有するもの等があげられる。 The sulfur-containing reducing agent is not particularly limited. Those having a sulfhydryl group such as sodium sulfate, glutathione, and thioalkanoic acids having 1 to 7 carbon atoms are included.
 前記酸化防止剤は、特に制限されず、例えば、エリソルビン酸、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、α-トコフェロール、酢酸トコフェロール、L-アスコルビン酸およびその塩、L-アスコルビン酸パルミテート、L-アスコルビン酸ステアレート、亜硫酸水素ナトリウム、亜硫酸ナトリウム、没食子酸トリアミル、没食子酸プロピルまたはエチレンジアミン4酢酸ナトリウム(EDTA)、ピロリン酸ナトリウム、メタリン酸ナトリウム等のキレート剤等があげられる。 The antioxidant is not particularly limited, and examples thereof include erythorbic acid, dibutylhydroxytoluene, butylhydroxyanisole, α-tocopherol, tocopherol acetate, L-ascorbic acid and its salts, L-ascorbic acid palmitate, L-ascorbic acid stear. sodium bisulfite, sodium sulfite, triamyl gallate, propyl gallate or sodium ethylenediaminetetraacetate (EDTA), sodium pyrophosphate, sodium metaphosphate and the like.
 本開示の細胞調製物は、さらに、塩化ナトリウム、塩化カリウム、塩化カルシウム、リン酸ナトリウム、リン酸カリウム、炭酸水素ナトリウム等の無機塩;クエン酸ナトリウム、クエン酸カリウム、酢酸ナトリウム等の有機塩;グルコース等の糖類;等の一般的に添加される成分を適宜添加していてもよい。また、抗凝固剤および/または前記pH調整剤として、例えば、ACD-A液(クエン酸Na水和物クエン酸水和物、ブドウ糖等からなる組成物)を添加してもよい。 Cell preparations of the present disclosure may further include inorganic salts such as sodium chloride, potassium chloride, calcium chloride, sodium phosphate, potassium phosphate, sodium bicarbonate; organic salts such as sodium citrate, potassium citrate, sodium acetate; Saccharides such as glucose; and other commonly added components may be added as appropriate. Further, as an anticoagulant and/or pH adjuster, for example, ACD-A solution (composition composed of sodium citrate hydrate, citric acid hydrate, glucose, etc.) may be added.
 本開示の細胞調製物は、例えば、局所投与のために、バイオポリマー等の有機物;ハイドロキシアパタイト等の無機物;等と混合してもよく、具体例として、コラーゲンマトリックス、ポリ乳酸ポリマーまたはコポリマー、ポリエチレングリコールポリマーまたはコポリマーおよびその化学的誘導体と混合してもよい。 Cellular preparations of the present disclosure may be mixed with, for example, for topical administration, organics such as biopolymers; inorganics such as hydroxyapatite; specific examples include collagen matrices, polylactic polymers or copolymers, polyethylene It may be mixed with glycol polymers or copolymers and chemical derivatives thereof.
 本開示の細胞調製物は、例えば、in vitroで用いてもよいし、in vivoで用いてもよい。本開示の細胞調製物は、例えば、研究用試薬として使用することもでき、医薬品として使用することもできる。 A cell preparation of the present disclosure may be used, for example, in vitro or in vivo. The cell preparations of the present disclosure can be used, for example, as research reagents and can be used as pharmaceuticals.
 本開示の細胞調製物の投与対象は、特に制限されない。本開示の細胞調製物をin vivoで使用する場合、前記投与対象は、例えば、ヒト、またはヒトを除く非ヒト動物があげられる。前記非ヒト動物としては、例えばマウス、ラット、ウサギ、イヌ、ネコ、ウシ、ウマ、ブタ、サル、イルカ、アシカ等の哺乳類;鳥類;魚類;等があげられる。前記本開示の細胞調製物をin vitroで使用する場合、前記投与対象は、例えば、細胞、組織、器官等があげられ、前記細胞は、例えば、生体から採取した細胞、培養細胞等があげられ、前記組織または器官は、例えば、生体から採取した組織(生体組織)または器官等があげられる。 The subject of administration of the cell preparation of the present disclosure is not particularly limited. When the cell preparation of the present disclosure is used in vivo, the administration subject includes, for example, humans or non-human animals other than humans. Examples of non-human animals include mammals such as mice, rats, rabbits, dogs, cats, cows, horses, pigs, monkeys, dolphins, and sea lions; birds; fish; When the cell preparation of the present disclosure is used in vitro, the subject of administration includes, for example, cells, tissues, organs, and the like, and the cells include, for example, cells collected from living organisms, cultured cells, and the like. The tissue or organ includes, for example, a tissue (living tissue) or organ collected from a living body.
 本開示の細胞調製物をin vivoで使用する場合、前記投与対象は、例えば、放射線照射により神経障害であると診断された対象、放射線照射により神経障害の疑いがある対象、放射線照射により神経障害を引き起こす可能性がある対象等があげられる。前記神経障害は、例えば、放射線脳症、放射線神経炎、放射線脊髄症、放射線脳壊死、放射線神経症、白質脳症、舌下神経麻痺、顔面神経麻痺、三叉神経障害、および放射線誘発腕神経叢障害等があげられる。 When the cell preparation of the present disclosure is used in vivo, the administration subject is, for example, a subject diagnosed as having neuropathy due to radiation, a subject suspected of having neuropathy due to radiation, or a subject having neuropathy due to radiation. There are targets that may cause The neuropathy includes, for example, radiation encephalopathy, radiation neuritis, radiation myelopathy, radiation brain necrosis, radiation neurosis, leukoencephalopathy, hypoglossal nerve palsy, facial nerve palsy, trigeminal neuropathy, and radiation-induced brachial plexopathy. is given.
 前記投与対象は、放射線の被曝線量により基づき、投与が決定された対象でもよい。この場合、前記投与対象の放射線の被曝線量は、神経障害が生じる被曝線量または神経障害が生じると予測される被曝線量であればよい。具体的には、前記被曝線量の下限値は、例えば、0.1Gy以上、1Gy以上、2Gy以上、3Gy以上、4Gy以上、5Gy以上、6Gy以上、7Gy以上、8Gy以上、9Gy以上、または10Gy以上である。前記被曝線量の上限値は、例えば、100Gy以下、50Gy以下、40Gy以下、30Gy以下、20Gy以下、または15Gy以下である。前記被曝線量の数値範囲は、例えば、前記上限値および前記下限値の任意の組合せとでき、具体例として、0.1~100Gy、1~100Gy、2~100Gy、3~50Gy、4~50Gy、6~40Gy、7~40Gy、8~30Gy、9~20Gy、または10~15Gyがあげられる。前記被曝線量は、実測値でもよいし、推測値でもよい。前記放射線被曝線量は、所定期間における放射線被曝線量の総量でもよい。この場合、前記放射線被曝線量の総量は、1回の放射線被曝線量でもよいし、複数回の放射線被曝線量の合計量でもよい。前記所定期間は、放射線による急性症状が生じる期間であることが好ましく、例えば、投与判断時を基準として、6週間前までがあげられる(例えば、非特許文献1)。前記放射線被曝は、例えば、放射線治療による被曝、職業災害による被曝、事故による被曝、テロによる被曝等であってもよい。前記投与対象における、放射線被曝の部位は、身体の一部であってもよいし、全身であってもよい。前記身体の一部は、例えば、神経を含む部位であり、好ましくは、脳を含む頭部、脊髄を含む背部等があげられる。 The administration subject may be a subject whose administration has been determined based on the radiation exposure dose. In this case, the exposure dose of the radiation to be administered may be the exposure dose that causes neuropathy or the exposure dose that is predicted to cause neuropathy. Specifically, the lower limit of the exposure dose is, for example, 0.1 Gy or more, 1 Gy or more, 2 Gy or more, 3 Gy or more, 4 Gy or more, 5 Gy or more, 6 Gy or more, 7 Gy or more, 8 Gy or more, 9 Gy or more, or 10 Gy or more. is. The upper limit of the exposure dose is, for example, 100 Gy or less, 50 Gy or less, 40 Gy or less, 30 Gy or less, 20 Gy or less, or 15 Gy or less. The numerical range of the exposure dose can be, for example, any combination of the upper limit and the lower limit, and specific examples are 0.1 to 100 Gy, 1 to 100 Gy, 2 to 100 Gy, 3 to 50 Gy, 4 to 50 Gy, 6-40 Gy, 7-40 Gy, 8-30 Gy, 9-20 Gy, or 10-15 Gy. The exposure dose may be an actually measured value or an estimated value. The radiation exposure dose may be the total amount of radiation exposure dose in a predetermined period. In this case, the total radiation exposure dose may be a single radiation exposure dose or a total radiation exposure dose for a plurality of times. The predetermined period is preferably a period during which acute radiation-induced symptoms occur, for example, up to 6 weeks before the determination of administration (for example, Non-Patent Document 1). The radiation exposure may be, for example, radiation therapy exposure, occupational accident exposure, accident exposure, terrorism exposure, or the like. The site of radiation exposure in the administration subject may be a part of the body or the whole body. The part of the body is, for example, a part containing nerves, preferably the head containing the brain, the back containing the spinal cord, and the like.
 本開示の細胞調製物の使用条件(投与条件)は、特に制限されず、例えば、投与対象の種類等に応じて、投与形態、投与時期、投与量等を適宜設定できる。 The usage conditions (administration conditions) of the cell preparation of the present disclosure are not particularly limited, and for example, the dosage form, administration period, dosage, etc. can be appropriately set according to the type of administration subject.
 本開示の細胞調製物の投与方法は、例えば、脳内投与、髄腔内投与、筋肉内投与、皮下投与、静脈内投与等が例示されるが、例えば、投与者の技術によらず、安全におよび安定的に投与できることから、静脈内投与が好ましい。 Examples of administration methods of the cell preparation of the present disclosure include intracerebral administration, intrathecal administration, intramuscular administration, subcutaneous administration, and intravenous administration. Intravenous administration is preferred because it can be administered rapidly and stably.
 本開示の細胞調製物の投与量は、前記投与対象に前記細胞調製物を投与した場合に、前記投与対象に投与していない場合と比較して、神経障害の処置効果、成熟ニューロン細胞の神経突起の退縮抑制効果、未成熟ニューロン細胞の細胞死の抑制効果、ニューロン細胞の活性酸素の発生抑制効果、またはニューロン細胞のネクローシスの抑制効果を得ることができる細胞量(処置有効量)である。前記投与量は、例えば、被験者の年齢、体重、症状等によって適宜決定することができる。具体例として、前記投与量は、例えば、臍帯由来細胞数として、1回の投与当たり10~10個/kg体重、10~10個/kg体重、10~10個/kg体重があげられ、好ましくは、10~10個/kg体重、10~10個/kg体重である。 The dosage of the cell preparation of the present disclosure is such that when the cell preparation is administered to the administration subject, compared to when the cell preparation is not administered to the administration subject, the therapeutic effect of neuropathy, the nerve of mature neuron cells It is the amount of cells (therapeutically effective amount) capable of obtaining the effect of suppressing process regression, the effect of suppressing cell death of immature neuronal cells, the effect of suppressing the generation of reactive oxygen in neuronal cells, or the effect of suppressing necrosis of neuronal cells. The dosage can be appropriately determined according to, for example, the age, body weight, symptoms, etc. of the subject. As a specific example, the dose is, for example, 10 4 to 10 9 cells/kg body weight, 10 4 to 10 8 cells/kg body weight, 10 4 to 10 7 cells/kg as the number of umbilical cord-derived cells per administration. body weight, preferably 10 4 to 10 8 cells/kg body weight, 10 4 to 10 7 cells/kg body weight.
 本開示の細胞調製物の投与回数は、1または複数回である。前記複数回は、例えば、2回、3回、4回、5回またはそれ以上である。前記投与回数は、対象の処置効果を確認しながら、適宜決定されてもよい。前記複数回投与する場合、投与間隔は、対象の処置効果を確認しながら、適宜決定でき、例えば、1日1回、1週1回、2週1回、1ヶ月1回、3ヶ月1回、6か月1回等があげられる。 The number of administrations of the cell preparation of the present disclosure is one or more. The plurality of times is, for example, 2 times, 3 times, 4 times, 5 times or more. The frequency of administration may be determined as appropriate while confirming the effect of treatment on the subject. When administering multiple times, the administration interval can be determined appropriately while confirming the therapeutic effect of the subject, for example, once a day, once a week, once every two weeks, once a month, once every three months. , once every six months, etc.
 本開示の細胞調製物は、例えば、他の神経障害に用いられる薬剤および/または方法と併用してもよい。前記神経障害に用いられる薬剤としては、例えば、デキサメタゾン等のステロイド;グリセオール等の浸透圧利尿薬;抗けいれん薬;等があげられる。前記神経障害に用いられる方法としては、例えば、高圧酸素療法等があげられる。 The cell preparations of the present disclosure may be used in combination with agents and/or methods used for other neurological disorders, for example. Examples of drugs used for the neuropathy include steroids such as dexamethasone; osmotic diuretics such as glyceol; anticonvulsants; Methods used for the neuropathy include, for example, hyperbaric oxygen therapy.
 本開示の細胞調製物は、前述のように、放射線による神経障害を処置しうる。このため、本開示は、放射線による神経障害の対象の処置方法を含んでもよい。この場合、本開示は、放射線による神経障害の対象の処置方法であって、対象に、前記本開示の細胞調製物を用いる。本開示の放射線による神経障害の対象の処置方法は、例えば、前記対象に、前記本開示の細胞調製物を投与する工程を含む。前記投与工程における投与条件は、前述の説明を援用できる。 The cell preparations of the present disclosure can treat radiation-induced neuropathy, as described above. As such, the present disclosure may include methods of treating a subject with radiation-induced neuropathy. In this case, the present disclosure is a method of treating a subject with radiation-induced neuropathy using the cell preparation of the present disclosure in the subject. A method of treating a subject with radiation neuropathy of the present disclosure comprises, for example, administering to the subject the cell preparation of the present disclosure. The above description can be used for the administration conditions in the administration step.
<細胞調製物の用途>
 別の態様において、本開示は、放射線により生じる成熟ニューロン細胞の神経突起の退縮抑制に用いる細胞調製物、または放射線により生じる成熟ニューロン細胞の神経突起の退縮抑制方法を提供する。この場合、本開示は、放射線により生じる成熟ニューロン細胞の神経突起の退縮抑制に用いる細胞調製物であって、前記細胞調製物は、臍帯由来細胞を含む。また、本開示は、放射線により生じる成熟ニューロン細胞の神経突起の退縮抑制方法であって、対象に、前記本開示の放射線により生じる成熟ニューロン細胞の神経突起の退縮抑制方法に用いる細胞調製物を用いる。本開示は、前記本開示の細胞調製物の説明を援用できる。
<Application of cell preparation>
In another aspect, the present disclosure provides a cell preparation for use in inhibiting radiation-induced neurite retraction of mature neuronal cells or a method for inhibiting radiation-induced neurite retraction of mature neuronal cells. In this case, the present disclosure is a cell preparation for use in inhibiting radiation-induced neurite retraction of mature neuronal cells, wherein the cell preparation comprises umbilical cord-derived cells. The present disclosure also provides a method for suppressing neurite retraction of mature neuron cells caused by radiation, wherein a cell preparation used in the method for suppressing neurite retraction of mature neuron cells caused by radiation of the present disclosure is used as a subject. . The present disclosure can incorporate the description of the cell preparation of the present disclosure above.
 別の態様において、本開示は、放射線により生じる未成熟ニューロン細胞の細胞死の抑制に用いる細胞調製物、または放射線により生じる未成熟ニューロン細胞の細胞死の抑制方法を提供する。この場合、本開示は、放射線により生じる未成熟ニューロン細胞の細胞死の抑制に用いる細胞調製物であって、前記細胞調製物は、臍帯由来細胞を含む。また、本開示は、放射線により生じる未成熟ニューロン細胞の細胞死の抑制方法であって、対象に、前記本開示の放射線により生じる未成熟ニューロン細胞の細胞死の抑制方法に用いる細胞調製物を用いる。本開示は、前記本開示の細胞調製物の説明を援用できる。 In another aspect, the present disclosure provides a cell preparation for use in inhibiting radiation-induced immature neuronal cell death or a method for inhibiting radiation-induced immature neuronal cell death. In this case, the disclosure is a cell preparation for use in inhibiting radiation-induced cell death of immature neuronal cells, said cell preparation comprising umbilical cord-derived cells. The present disclosure also provides a method for suppressing radiation-induced immature neuronal cell death, wherein a cell preparation used in the method for suppressing radiation-induced immature neuronal cell death of the present disclosure is used as a subject. . The present disclosure can incorporate the description of the cell preparation of the present disclosure above.
 別の態様において、本開示は、放射線により生じるニューロン細胞の活性酸素の発生抑制に用いる細胞調製物、または放射線により生じるニューロン細胞の活性酸素の発生抑制方法を提供する。この場合、本開示は、放射線により生じるニューロン細胞の活性酸素の発生抑制に用いる細胞調製物であって、前記細胞調製物は、臍帯由来細胞を含む。また、本開示は、放射線により生じるニューロン細胞の活性酸素の発生抑制方法であって、対象に、前記本開示の放射線により生じるニューロン細胞の活性酸素の発生抑制方法に用いる細胞調製物を用いる。本開示は、前記本開示の細胞調製物の説明を援用できる。 In another aspect, the present disclosure provides a cell preparation for use in suppressing generation of reactive oxygen species in neuronal cells caused by radiation or a method for suppressing generation of reactive oxygen species in neuronal cells caused by radiation. In this case, the present disclosure is a cell preparation used for suppressing generation of reactive oxygen in neuronal cells caused by radiation, wherein the cell preparation contains umbilical cord-derived cells. The present disclosure also provides a method for suppressing the generation of reactive oxygen in neuronal cells caused by radiation, and uses a cell preparation used in the method for suppressing the generation of reactive oxygen in neuronal cells caused by radiation of the present disclosure as an object. The present disclosure can incorporate the description of the cell preparation of the present disclosure above.
 別の態様において、本開示は、放射線により生じるニューロン細胞のネクローシスの抑制に用いる細胞調製物、または放射線により生じるニューロン細胞のネクローシスの抑制方法を提供する。この場合、本開示は、放射線により生じるニューロン細胞のネクローシスの抑制に用いる細胞調製物であって、前記細胞調製物は、臍帯由来細胞を含む。また、本開示は、放射線により生じるニューロン細胞のネクローシスの抑制方法であって、対象に、前記本開示の放射線により生じるニューロン細胞のネクローシスの抑制方法に用いる細胞調製物を用いる。本開示は、前記本開示の細胞調製物の説明を援用できる。 In another aspect, the present disclosure provides a cell preparation for use in inhibiting radiation-induced necrosis of neuronal cells or a method of inhibiting radiation-induced neuronal cell necrosis. In this case, the present disclosure is a cell preparation for use in inhibiting radiation-induced necrosis of neuronal cells, said cell preparation comprising umbilical cord-derived cells. The present disclosure also provides a method of inhibiting radiation-induced necrosis of neuronal cells, wherein the cell preparation used in the method of inhibiting radiation-induced necrosis of neuronal cells of the present disclosure is used as a subject. The present disclosure can incorporate the description of the cell preparation of the present disclosure above.
 別の態様において、本開示は、放射線により生じる神経系の炎症抑制に用いる細胞調製物、または放射線により生じる神経系の炎症の抑制方法を提供する。この場合、本開示は、放射線により生じる神経系の炎症抑制に用いる細胞調製物であって、前記細胞調製物は、臍帯由来細胞を含む。また、本開示は、放射線により生じる神経系の炎症の抑制方法であって、対象に、前記本開示の放射線により生じる神経系の炎症抑制方法に用いる細胞調製物を用いる。本開示は、前記本開示の細胞調製物の説明を援用できる。 In another aspect, the present disclosure provides cell preparations for use in suppressing radiation-induced nervous system inflammation or methods of suppressing radiation-induced nervous system inflammation. In this case, the disclosure is a cell preparation for use in suppressing radiation-induced nervous system inflammation, wherein the cell preparation comprises umbilical cord-derived cells. The present disclosure also provides a method of suppressing inflammation of the nervous system caused by radiation, wherein the cell preparation used in the method of suppressing inflammation of the nervous system caused by radiation of the present disclosure is used as a subject. The present disclosure can incorporate the description of the cell preparation of the present disclosure above.
 上述の各態様は、例えば、ヒトの神経系、またはヒトの中枢神経系のニューロン細胞、未成熟ニューロン細胞、もしくは成熟ニューロン細胞に対して好適に適用できる。 Each of the above-described aspects can be preferably applied to, for example, human nervous system or human central nervous system neuronal cells, immature neuronal cells, or mature neuronal cells.
<処置方法>
 別の態様において、本開示は、放射線による神経障害の処置可能な方法を提供する。本開示の放射線による神経障害の処置方法(以下、「処置方法」ともいう)は、対象(投与対象)に、前記本開示の細胞調製物を投与する投与工程を含む。本開示の処置方法は、前記本開示の細胞調製物を投与することが特徴であり、その他の工程および条件は、特に制限されない。本開示の治療方法は、前記本開示の細胞調製物を使用するため、放射線により生じる成熟ニューロン細胞の神経突起の退縮抑制、放射線により生じる未成熟ニューロン細胞の細胞死の抑制、放射線により生じるニューロン細胞の活性酸素の発生抑制、および/または放射線により生じるニューロン細胞のネクローシスの抑制ができる。このため、本開示の処置方法は、放射線による神経障害の処置に好適に使用できる。また、本発明の放射線神経障害の処置方法は、放射線神経障害の予防的処置又は治療的処置のための処置方法であって、本発明の放射線神経障害用処置剤を投与対象に投与する工程を含む。前記投与対象は、ヒトを含む投与対象であってもよいし、又は、ヒトを除く投与対象であってもよい。
<Treatment method>
In another aspect, the present disclosure provides a treatable method of radiation neuropathy. The method of treating neuropathy by radiation according to the present disclosure (hereinafter also referred to as "treatment method") includes an administration step of administering the cell preparation of the present disclosure to a subject (administration subject). The treatment method of the present disclosure is characterized by administering the cell preparation of the present disclosure, and other steps and conditions are not particularly limited. Since the treatment method of the present disclosure uses the cell preparation of the present disclosure, suppression of neurite retraction of mature neuron cells caused by radiation, suppression of cell death of immature neuron cells caused by radiation, and suppression of cell death of immature neuron cells caused by radiation and/or suppress necrosis of neuronal cells caused by radiation. Therefore, the treatment method of the present disclosure can be suitably used for treatment of radiation-induced neuropathy. Further, the method for treating radiation neuropathy of the present invention is a treatment method for prophylactic or therapeutic treatment of radiation neuropathy, comprising the step of administering the therapeutic agent for radiation neuropathy of the present invention to an administration subject. include. The administration subject may be an administration subject including humans or an administration subject other than humans.
<細胞調製物の使用>
 本開示は、放射線による神経障害の処置、放射線により生じる成熟ニューロン細胞の神経突起の退縮抑制、放射線により生じる未成熟ニューロン細胞の細胞死の抑制、放射線により生じるニューロン細胞の活性酸素の発生抑制、および/または放射線により生じるニューロン細胞のネクローシスの抑制に用いるための、細胞調製物であり、前記細胞調製物は、臍帯由来細胞を含む。本開示は、放射線による神経障害の処置、放射線により生じる成熟ニューロン細胞の神経突起の退縮抑制、放射線により生じる未成熟ニューロン細胞の細胞死の抑制、放射線により生じるニューロン細胞の活性酸素の発生抑制、および/または放射線により生じるニューロン細胞のネクローシスの抑制に用いるための、細胞調製物を製造するための、臍帯由来細胞の使用である。本開示は、前記本開示の細胞調製物の説明を援用できる。また、本発明の使用は、放射線による神経障害の処置に用いるための本開示の細胞調製物の使用である。
<Use of cell preparation>
The present disclosure provides treatment of neuropathy by radiation, suppression of neurite retraction of mature neuron cells caused by radiation, suppression of cell death of immature neuron cells caused by radiation, suppression of generation of active oxygen in neuronal cells caused by radiation, and A cell preparation for use in inhibiting radiation-induced necrosis of neuronal cells, said cell preparation comprising umbilical cord-derived cells. The present disclosure provides treatment of neuropathy by radiation, suppression of neurite retraction of mature neuron cells caused by radiation, suppression of cell death of immature neuron cells caused by radiation, suppression of generation of active oxygen in neuronal cells caused by radiation, and and/or the use of umbilical cord-derived cells to manufacture cell preparations for use in inhibiting radiation-induced necrosis of neuronal cells. The present disclosure can incorporate the description of the cell preparation of the present disclosure above. A use of the present invention is also the use of a cell preparation of the present disclosure for use in treating radiation-induced neuropathy.
 以下、実施例を用いて本発明を詳細に説明するが、本発明は実施例に記載された態様に限定されるものではない。なお、特に示さない限り、市販の試薬およびキット等は、そのプロトコルに従い使用した。 The present invention will be described in detail below using examples, but the present invention is not limited to the embodiments described in the examples. Unless otherwise indicated, commercially available reagents, kits, etc. were used according to their protocols.
[実施例1]
 本発明の臍帯由来細胞が、脳の放射線障害を軽減できることを確認した。
[Example 1]
It was confirmed that the umbilical cord-derived cells of the present invention can reduce radiation damage to the brain.
(1)臍帯由来間葉系幹細胞の調製
 臍帯由来間葉系幹細胞(Umbilical cord mesenchymal stem cells:UC-MSCs)は、Cytotherapy,18,229-241,2016に記載の方法で採取した。具体的には、東京大学医科学研究所の倫理委員会の承認を得た上で、提供者の同意を得て採取された臍帯の組織要素すべて(羊膜、血管、血管周囲組織およびワルトンジェリーを含む)を1~2mmの断片に細断し、培養皿上へ播種した。そして、セルアミーゴ(株式会社椿本チエイン製)を被せ、10% fetal bovine serum (FBS)(Gibco社製)と抗生物質とを添加したα-minimal essential medium(αMEM)(富士フィルム社製)中で培養する改良エクスプラント法により、UC-MSCsを得た。なお、得られたUC-MSCsの細胞の性状はプラスチック接着(付着)性である。
(1) Preparation of umbilical cord-derived mesenchymal stem cells Umbilical cord mesenchymal stem cells (UC-MSCs) were collected by the method described in Cytotherapy, 18, 229-241, 2016. Specifically, with the approval of the ethics committee of the Institute of Medical Science, the University of Tokyo, all tissue elements of the umbilical cord (amniotic membrane, blood vessels, perivascular tissue, and Walton's jelly) collected with the consent of the donor. ) were chopped into 1-2 mm 3 pieces and seeded onto culture dishes. Then, it was covered with cell amigo (manufactured by Tsubakimoto Chain Co., Ltd.) and placed in α-minimal essential medium (αMEM) (manufactured by Fuji Film Co., Ltd.) to which 10% fetal bovine serum (FBS) (manufactured by Gibco) and an antibiotic were added. UC-MSCs were obtained by a modified explant method of culturing. The property of the obtained UC-MSCs cells is that they adhere to plastic.
(2)表面抗原の確認
 つぎに、得られたUC-MSCsについて、表面抗原の発現の有無を確認した、前記表面抗原の発現の有無は、それぞれの抗原に対する特異抗体を用いたFACS解析により確認した。UC-MSCsの表面抗原としては、CD73、CD105、CD90、CD44およびHLA-classIが陽性、HLA-ClassII、CD34、CD45、CD19、CD80、CD86、CD40およびCD11bが、陰性を呈した。さらに、HLA-G5およびPD-L2が、陽性を呈した。また、HLA-Gは、弱陽性、CD49d(ITGA4)およびCD184(CXCR4)は、陰性~弱陽性、CD29(ITGB1)は、陽性を呈した。
(2) Confirmation of surface antigen Next, the presence or absence of surface antigen expression was confirmed for the obtained UC-MSCs. The presence or absence of expression of the surface antigen was confirmed by FACS analysis using a specific antibody against each antigen. bottom. As surface antigens of UC-MSCs, CD73, CD105, CD90, CD44 and HLA-class I were positive, and HLA-Class II, CD34, CD45, CD19, CD80, CD86, CD40 and CD11b were negative. In addition, HLA-G5 and PD-L2 were positive. In addition, HLA-G was weakly positive, CD49d (ITGA4) and CD184 (CXCR4) were negative to weakly positive, and CD29 (ITGB1) was positive.
 なお、UC-MSCsは、平常状態においてHGF(Hepatic Growth Factor)の遺伝子を高発現していること、炎症の条件下(IFN-γ 100ng/ml)においてIDO(Indoleamine 2,3-dioxygenase)の遺伝子発現が誘導されることを、Realtime PCRによって確認した。特にHGFの発現は、骨髄由来間葉系幹細胞に比べて、UC-MSCsでより高いことがわかった。また、UC-MSCsを、MLR(同種リンパ球混合反応)と共培養することにより、PGE2の分泌が誘導されることを、ELISAにより確認した。 In addition, UC-MSCs highly express the HGF (Hepatic Growth Factor) gene under normal conditions, and the IDO (Indoleamine 2,3-dioxygenase) gene under inflammatory conditions (IFN-γ 100 ng/ml). Induction of expression was confirmed by Realtime PCR. In particular, HGF expression was found to be higher in UC-MSCs than in bone marrow-derived mesenchymal stem cells. In addition, it was confirmed by ELISA that PGE2 secretion was induced by co-culturing UC-MSCs with MLR (mixed allogeneic lymphocyte reaction).
(3)細胞調製物の調製
 得られたUC-MSCsを、Corning(登録商標) CellBIND(登録商標) 表面100mm ディッシュ(コーニング社製、Product Number:#3292)に播種し、Passage 1からPassage 4まで継代し、増殖させた。なお、前記継代培養中の培養液は、ヒト間葉系幹細胞用基礎培養液である、CiMS(商標)-BM(ニプロ株式会社、製品コード:87-070)に、ヒト間葉系幹細胞用基礎培養液アニマルフリー添加剤であるCiMS(商標)-sAF(ニプロ株式会社、製品コード:87-072)を、添付文書に従った割合で添加したものを用いた。その後、TrypLE(商標) Select Enzyme(1X), no phenol red(ThermoFisher社、製品番号:12563011)を用いて前記細胞を剥離し、1×10cell/150μlとなるように調製し、細胞調製物とした。
(3) Preparation of Cell Preparation The obtained UC-MSCs were seeded on a Corning (registered trademark) CellBIND (registered trademark) surface 100 mm dish (manufactured by Corning, Product Number: #3292) and subjected to Passage 1 to Passage 4. Passed and propagated. In addition, the culture medium during the subculture is CiMS (trademark)-BM (Nipro Co., Ltd., product code: 87-070), which is a basic culture medium for human mesenchymal stem cells. CiMS (trademark)-sAF (Nipro Co., Ltd., product code: 87-072), which is an animal-free additive to the basal culture medium, was added at a ratio according to the package insert. Thereafter, TrypLE (trademark) Select Enzyme (1X), no phenol red (ThermoFisher, product number: 12563011 ) was used to detach the cells, and the cell preparation and
(4)皮質ニューロン細胞の初代培養
 皮質ニューロン細胞は、B6系統バックグラウンドマウスのアルビノ系統(B6N-Tyrc-Brd/BrdCrCrl、日本チャールズリバー社製)から作製した。具体的には、妊娠したマウスから17日胚の胎児マウスを取得し、前記胎児マウスの脳および大脳皮質を、顕微鏡(オリンパス社製)下で取り出した。取り出した前記脳および前記皮質は、神経細胞用分散液(和光純薬社製)を用いて皮質ニューロン細胞初代培養に用いた。皮質ニューロン細胞の単離後、2%のB27を添加したNeurobasal mediumに前記皮質ニューロン細胞を再懸濁し、Poly-D-Lysine Culture Dishes(BioCoat(商標)、Corning社製)に播種した。前記皮質ニューロン細胞は、37℃、5%COの条件下で培養し、培養3~5日目に、培地の半量を新しい培地に交換した。
(4) Primary Culture of Cortical Neuron Cells Cortical neuron cells were prepared from an albino strain of B6 strain background mice (B6N-Tyr c-Brd /BrdCrCrl, manufactured by Charles River Japan). Specifically, a 17-day-embryonic fetal mouse was obtained from a pregnant mouse, and the brain and cerebral cortex of the fetal mouse were removed under a microscope (manufactured by Olympus). The removed brain and cortex were used for cortical neuron cell primary culture using a nerve cell dispersion (manufactured by Wako Pure Chemical Industries, Ltd.). After isolation of cortical neuron cells, the cortical neuron cells were resuspended in Neurobasal medium supplemented with 2% B27 and seeded in Poly-D-Lysine Culture Dishes (BioCoat™, Corning). The cortical neuron cells were cultured at 37° C. and 5% CO 2 , and half of the medium was replaced with fresh medium on day 3-5 of culture.
(5)放射線障害の皮質ニューロン細胞の作製
 脳の放射線障害のモデル細胞を、実施例1(4)で得た皮質ニューロン細胞を用いて作製した。具体的には、前記ディッシュ内の皮質ニューロン細胞に放射線照射を行った。セシウム137を線源にしたγ線照射装置(IBL 437C III、Cis Bio international社製)を用いて、前記皮質ニューロン細胞に、12Gyの設定線量の放射線照射を行った。
(5) Preparation of Cortical Neuron Cells for Radiation Injury Model cells for brain radiation injury were prepared using the cortical neuron cells obtained in Example 1(4). Specifically, the cortical neuron cells in the dish were irradiated with radiation. Using a γ-ray irradiation apparatus (IBL 437C III, manufactured by Cis Bio International) using cesium 137 as a radiation source, the cortical neuron cells were irradiated with a set dose of 12 Gy.
(6)放射線照射皮質ニューロン細胞とUC-MSCsの共培養
 前記細胞調製物(UC-MSCs)によって、皮質ニューロン細胞の放射線障害が軽減されるか検討した。具体的には、実施例1(5)の皮質ニューロン細胞の放射線照射後、即座に、前記皮質ニューロン細胞と、実施例1(3)で得た細胞調製物(UC-MSCs)とを共培養した。前記共培養には、トップに3μmフィルターメンブレンが付属した24ウェルチャンバー(Corning社製)を使用した。前記皮質ニューロン細胞は、前記24ウェルチャンバーのボトム側のディッシュに播種した。前記UC-MSCsは、上部チャンバーに1.5×10細胞/ウェルになるように播種した。前記播種後、前記24ウェルチャンバーは、37℃、5%COの条件下で、72時間培養した。前記共培養の培地には、Neurobasal mediumを使用した。
(6) Co-Culture of Irradiated Cortical Neuron Cells and UC-MSCs It was examined whether the above-mentioned cell preparation (UC-MSCs) reduces radiation damage to cortical neuron cells. Specifically, immediately after irradiation of the cortical neuron cells of Example 1 (5), the cortical neuron cells and the cell preparation (UC-MSCs) obtained in Example 1 (3) are co-cultured. bottom. A 24-well chamber (manufactured by Corning) with a 3 μm filter membrane attached to the top was used for the co-culture. The cortical neuron cells were seeded in the bottom dish of the 24-well chamber. The UC-MSCs were seeded at 1.5×10 4 cells/well in the upper chamber. After the seeding, the 24-well chambers were incubated at 37°C, 5% CO2 for 72 hours. Neurobasal medium was used as the medium for the co-culture.
(7)免疫細胞染色による皮質ニューロン細胞の評価
 UC-MSCsと共培養することにより、前記皮質ニューロン細胞の放射線障害が軽減されるか、皮質ニューロン細胞の形態を観察して検討した。前記実施例1(6)で得られた皮質ニューロンの形態の観察には、神経マーカーを用いて免疫細胞染色を用いた。具体的には、前記皮質ニューロン細胞は、室温(約25℃、以下、同様)で20分の条件下で、4%パラホルムアルデヒドを用いて固定した。前記固定後、前記皮質ニューロン細胞は、0.3%Triton-X100を用いて透過処理を行い、その後、室温で60分の条件下で、5%ヤギ血清を用いてブロッキングした。前記ブロッキング後、前記皮質ニューロン細胞は、4℃で一晩の条件下で、1次抗体を反応させ、室温で1時間の条件下で、2次抗体で染色を行った。核の染色は、4’,6-diamidino-2-phenylindole(DAPI、Sigma-Aldrich社製)を使用し、2次抗体液に添加した。前記1次抗体として、MAP2(microtubule-associated protein 2:微小管結合タンパク質2、(成熟)ニューロン細胞マーカー)の染色には、マウス抗ヒトMAP2抗体(1000倍希釈、Cat.No:MA5-12826、Thermo Fisher Scientific社製)を用い、GAP43(growth associated protein 43:神経成長関連タンパク質-43kDa、(未成熟)ニューロン細胞マーカー)の染色には、ウサギ抗GAP43抗体(200倍希釈、Cat.No:8945S、Cell Signaling Technology社製)を用いた。前記2次抗体には、Alexa Fluor R 488標識ロバ抗マウス IgG(H + L)(1000倍希釈、Abcam社製)と、Alexa Fluor R 594標識ロバ抗ウサギ IgG(H + L) 抗体(1000倍希釈、Abcam社製)とを用いた。
(7) Evaluation of Cortical Neuron Cells by Immune Cell Staining It was examined by observing the morphology of cortical neuron cells whether co-culturing with UC-MSCs alleviates radiation damage to the cortical neuron cells. For the observation of the cortical neuron morphology obtained in Example 1(6), immune cell staining was used using nerve markers. Specifically, the cortical neuron cells were fixed with 4% paraformaldehyde at room temperature (approximately 25° C., hereinafter the same) for 20 minutes. After the fixation, the cortical neuron cells were permeabilized with 0.3% Triton-X100 and then blocked with 5% goat serum at room temperature for 60 minutes. After the blocking, the cortical neuron cells were allowed to react with the primary antibody at 4° C. overnight, and stained with the secondary antibody at room temperature for 1 hour. For nuclear staining, 4',6-diamidino-2-phenylindole (DAPI, manufactured by Sigma-Aldrich) was used and added to the secondary antibody solution. As the primary antibody, mouse anti-human MAP2 antibody (1000-fold dilution, Cat.No: MA5-12826, Thermo Fisher Scientific), rabbit anti-GAP43 antibody (200-fold dilution, Cat.No: 8945S , Cell Signaling Technology) was used. The secondary antibodies included Alexa Fluor R 488-labeled donkey anti-mouse IgG (H + L) (1000-fold dilution, Abcam) and Alexa Fluor R 594-labeled donkey anti-rabbit IgG (H + L) antibody (1000-fold dilution). Dilution, Abcam) and were used.
 前記染色後、蛍光顕微鏡(Nikon Eclipse Ti、ニコンソリューションズ社製)と、顕微鏡画像用統合ソフトウェア(NIS-Elements software version 4.10)とを用いて、皮質ニューロン細胞を観察した。倍率200倍に設定した蛍光顕微鏡の観察下で、ランダムに選択した10フィールド(視野)中に存在する前記未成熟ニューロン細胞マーカー陽性細胞の細胞数および全細胞の細胞数をカウントした。そして、全細胞数に占める前記未成熟ニューロン細胞マーカー陽性細胞の割合を算出した。神経突起の長さは、Image Jを用いて測定した。MAP2陽性の神経突起は、少なくともランダムに選択した10フィールド中で長さを測定した。ネガティブコントロール群(NC)は、放射線照射を行っていない皮質ニューロン細胞を用いた以外は同様にして、比較例の放射線群(放射線)は、放射線照射後にUC-MSCsと共培養を行っていない皮質ニューロン細胞を用いた以外は同様にして、免疫細胞染色および細胞数のカウントを行い、前記未成熟ニューロン細胞マーカー陽性細胞の細胞数の割合を算出し、前記MAP2陽性細胞の神経突起の長さを測定した。前記神経突起の長さの測定は、神経突起の根元から先端までの長さを測定した。前記神経突起が複数あった場合、最も長い神経突起を神経突起の長さの測定に用いた。これらの結果を図1~図4に示す。 After the staining, cortical neuron cells were observed using a fluorescence microscope (Nikon Eclipse Ti, manufactured by Nikon Solutions) and microscope image integrated software (NIS-Elements software version 4.10). Under observation with a fluorescence microscope set at a magnification of 200, the number of immature neuron cell marker-positive cells and all cells present in 10 randomly selected fields (view fields) were counted. Then, the ratio of the immature neuron cell marker-positive cells to the total number of cells was calculated. Neurite length was measured using ImageJ. MAP2-positive neurites were measured for length in at least 10 randomly selected fields. The negative control group (NC) was performed in the same manner, except that cortical neuron cells that were not irradiated were used. Immunocyte staining and cell count were performed in the same manner except that neuron cells were used, the percentage of immature neuron cell marker-positive cells was calculated, and the neurite length of the MAP2-positive cells was calculated. It was measured. The length of the neurite was measured from the root to the tip of the neurite. If there were multiple such neurites, the longest neurite was used to measure neurite length. These results are shown in FIGS. 1-4.
 図1は、GAP43陽性細胞の割合を示すグラフである。図1において、縦軸は、GAP43陽性細胞の割合を示し、横軸は、サンプルの種類を示す。図1に示すように、ネガティブコントロール群(NC)と比較して、放射線群(放射線)の未成熟ニューロン細胞の細胞数の割合は有意に減少した。これに対して、UC-MSCsとの共培養群(共培養)では、放射線群と比較して、未成熟ニューロン細胞の細胞数の割合は有意に多かった。これらの結果から、放射線照射によって、未成熟ニューロン細胞は、放射線障害を受けるが、UC-MSCsと共培養することで、未成熟ニューロン細胞の放射線障害を軽減できることがわかった。 Figure 1 is a graph showing the percentage of GAP43-positive cells. In FIG. 1, the vertical axis indicates the percentage of GAP43-positive cells, and the horizontal axis indicates the type of sample. As shown in FIG. 1, the percentage of immature neuronal cells in the radiation group (radiation) was significantly decreased compared to the negative control group (NC). In contrast, in the co-culture group with UC-MSCs (co-culture), the percentage of immature neuron cells was significantly higher than in the radiation group. From these results, it was found that immature neuronal cells are damaged by irradiation, but co-culture with UC-MSCs can reduce radiation damage to immature neuronal cells.
 図2は、皮質ニューロン細胞の免疫染色像を示す写真である。図2において、スケールバーは、100μmを示す。図2に示すように、放射線群では未成熟ニューロン細胞マーカーの発現が減少していた。これに対して、UC-MSCsとの共培養群では、コントロール群と同様に、未成熟ニューロン細胞マーカーの発現が見られた。 Figure 2 is a photograph showing an immunostained image of cortical neuron cells. In FIG. 2, the scale bar indicates 100 μm. As shown in Figure 2, the radiation group had reduced expression of immature neuronal cell markers. On the other hand, in the co-culture group with UC-MSCs, expression of immature neuron cell markers was observed as in the control group.
 図3は、神経突起の長さを示すグラフである。図3において、縦軸は、神経突起の長さを示し、横軸はサンプルの種類を示す。図3に示すように、ネガティブコントロール群と比較して、放射線群の成熟ニューロン細胞の神経突起の長さは有意に減少した。これに対して、UC-MSCsとの共培養群では、放射線群と比較して、成熟ニューロン細胞の神経突起の長さは有意に長かった。これらの結果から、放射線照射によって成熟ニューロン細胞は放射線障害を受けるが、UC-MSCsと共培養することで、成熟ニューロン細胞の放射線障害を軽減できることがわかった。 Fig. 3 is a graph showing the length of neurites. In FIG. 3, the vertical axis indicates the length of neurites, and the horizontal axis indicates the type of sample. As shown in Figure 3, the neurite length of mature neuronal cells in the radiation group was significantly reduced compared to the negative control group. In contrast, the neurite length of mature neuron cells was significantly longer in the co-culture group with UC-MSCs than in the radiation group. From these results, it was found that radiation injury to mature neuron cells is caused by irradiation, and that radiation injury to mature neuron cells can be alleviated by co-culturing with UC-MSCs.
 図4は、皮質ニューロン細胞の免疫染色像を示す写真である。図4の各段の写真において、上段の写真は、MAP2の染色像(MAP-2)を示し、中段の写真は、GAP43の染色像(GAP43)を示し、下段の写真は、GAP43の染色像とMAP2の染色像とを重畳した染色像(Merged)を示す。また、図4の各列の写真において、左列の写真は、ネガティブコントロール群(NC)の結果を示し、中列の写真は、放射線群(放射線)の結果を示し、右列の写真は、共培養群(共培養)の結果を示す。図4において、スケールバーは、100μmを示す。図4に示すように、放射線群では、未成熟ニューロン細胞マーカーおよび成熟ニューロン細胞マーカーの発現が減少していた。これに対して、UC-MSCsとの共培養群では、ネガティブコントロール群と同様に、未成熟ニューロン細胞マーカーおよび成熟ニューロン細胞マーカーの発現が見られた。 Fig. 4 is a photograph showing an immunostained image of cortical neuron cells. In the photographs in each row in FIG. 4, the upper photograph shows a stained image of MAP2 (MAP-2), the middle photograph shows a stained image of GAP43 (GAP43), and the lower photograph shows a stained image of GAP43. and a stained image of MAP2 are superimposed (Merged). In addition, in the photographs of each column in FIG. 4, the photographs in the left column show the results of the negative control group (NC), the photographs in the middle row show the results of the radiation group (radiation), and the photographs in the right column show The results of the co-culture group (co-culture) are shown. In FIG. 4, the scale bar indicates 100 μm. As shown in FIG. 4, the radiation group had reduced expression of immature neuronal cell markers and mature neuronal cell markers. On the other hand, in the co-culture group with UC-MSCs, expression of immature neuron cell markers and mature neuron cell markers was observed as in the negative control group.
 以上のことから、皮質ニューロン細胞は、放射線照射を受けると、未成熟ニューロン細胞の減少、および成熟ニューロン細胞の神経突起の退縮等の放射線障害が誘導される。これに対して、放射線照射を受けた皮質ニューロン細胞を、UC-MSCsと共培養すると、前記放射線障害が軽減できることがわかった。 From the above, when cortical neuron cells are exposed to radiation, radiation damage such as reduction of immature neuron cells and retraction of neurites of mature neuron cells is induced. In contrast, co-culture of irradiated cortical neuron cells with UC-MSCs was found to alleviate the radiation injury.
(8)活性酸素量測定による皮質ニューロン細胞の評価
 UC-MSCsと共培養することにより、皮質ニューロン細胞の放射線障害が軽減される。前記放射線障害の軽減が、活性酸素量の低減によるものか検討するために、活性酸素量を測定した。具体的には、前記実施例1(6)で得られた皮質ニューロン細胞の活性酸素は、DCFDA-Cellular ROS Detection Assay kit(Cat No. ab113851、Abcam社製)を用いて測定した。細胞浸透性蛍光プローブDCFDA(2’, 7’-Dichlorodihydrofluorescin diacetate、「H2DCFDA」、「DCFH-DA」または「DCFH」ともいう)は、活性酸素と反応すると、蛍光観察可能となる。前記キットの1×bufferで20mmol/lのDCFDAを最終濃度20μmol/lに希釈した。前記実施例1(6)で得た皮質ニューロン細胞は、希釈した前記DCFDA液の存在下、37℃、45分、遮光の条件下で、培養した。前記培養後、前記DCFDA液を取り除き、前記1×bufferを20μl/ウェルで添加した。前記添加後、前記1×bufferを用いて、前記皮質ニューロン細胞をさらに2回洗浄した。前記洗浄後、前記蛍光顕微鏡と、前記顕微鏡画像用統合ソフトウェアとを用いて、皮質ニューロン細胞を観察した。倍率200倍に設定した蛍光顕微鏡の観察下でランダムに選択した10フィールド(視野)で、蛍光プローブ陽性細胞数および全細胞数をカウントした。そして、全細胞数に占める前記蛍光プローブ陽性細胞の割合を算出した。ネガティブコントロール群(NC)には、放射線照射を行っていない皮質ニューロン細胞を用いた以外は同様にして、比較例の放射線群(放射線)には、放射線照射後にUC-MSCsと共培養を行っていない皮質ニューロン細胞を用いた以外は同様にして、蛍光プローブ陽性細胞の割合を算出した。これらの結果を図5~図6に示す。
(8) Evaluation of Cortical Neuron Cells by Measurement of Active Oxygen Content Radiation damage to cortical neuron cells is reduced by co-culturing with UC-MSCs. In order to examine whether the reduction in the radiation injury is due to the reduction in the amount of active oxygen, the amount of active oxygen was measured. Specifically, the active oxygen in cortical neuron cells obtained in Example 1(6) was measured using the DCFDA-Cellular ROS Detection Assay kit (Cat No. ab113851, manufactured by Abcam). When the cell-permeable fluorescent probe DCFDA (2',7'-Dichlorodihydrofluorescin diacetate, also referred to as "H2DCFDA", "DCFH-DA" or "DCFH") reacts with active oxygen, fluorescence observation becomes possible. 20 mmol/l DCFDA was diluted to a final concentration of 20 μmol/l with 1×buffer from the kit. The cortical neuron cells obtained in Example 1(6) were cultured in the presence of the diluted DCFDA solution at 37° C. for 45 minutes in the dark. After the culture, the DCFDA solution was removed, and the 1×buffer was added at 20 μl/well. After the addition, the cortical neuron cells were washed two more times with the 1×buffer. After the washing, cortical neuron cells were observed using the fluorescence microscope and the integrated software for microscopic images. The number of fluorescent probe-positive cells and the total number of cells were counted in 10 randomly selected fields (fields of view) under observation with a fluorescence microscope set at a magnification of 200 times. Then, the ratio of the fluorescent probe-positive cells to the total number of cells was calculated. For the negative control group (NC), cortical neuron cells that were not irradiated were used in the same manner, and for the comparative example, the radiation group (radiation) was co-cultured with UC-MSCs after irradiation. The percentage of fluorescent probe-positive cells was calculated in the same manner, except that cortical neuron cells without cytotoxicity were used. These results are shown in FIGS. 5-6.
 図5は、皮質ニューロン細胞の蛍光像および明視野像を示す写真である。図5において、上段の写真は、蛍光像を示し、下段の写真は、明視野像を示す。図5において、スケールバーは、100μmを示す。図5に示すように、放射線群では、ネガティブコントロール群と比べて、活性酸素の指標である蛍光プローブ陽性の細胞数が多かった。これに対して、UC-MSCsとの共培養群とネガティブコントロール群とは、活性酸素の指標である蛍光プローブ陽性の細胞数は変わらなかった。また、UC-MSCsとの共培養群では、放射線群と比べて、蛍光プローブ陽性の細胞は少なかった。 FIG. 5 is a photograph showing a fluorescent image and a bright field image of cortical neuron cells. In FIG. 5, the upper photograph shows the fluorescence image, and the lower photograph shows the bright field image. In FIG. 5, the scale bar indicates 100 μm. As shown in FIG. 5, in the radiation group, the number of fluorescent probe-positive cells, which is an indicator of active oxygen, was greater than in the negative control group. In contrast, there was no difference in the number of fluorescent probe-positive cells, which is an indicator of active oxygen, between the co-culture group with UC-MSCs and the negative control group. Also, in the co-culture group with UC-MSCs, there were fewer fluorescent probe-positive cells than in the radiation group.
 図6は、活性酸素の指標である蛍光プローブ陽性細胞の割合を示すグラフである。図6において、縦軸は、蛍光プローブ陽性の細胞の割合を示し、横軸は、サンプルの種類を示す。図6に示すように、ネガティブコントロール群と比較して、放射線群の蛍光プローブ陽性の細胞の割合は、有意に多かった。これに対して、UC-MSCsとの共培養群では、放射線群と比較して、蛍光プローブ陽性の細胞の割合は、有意に低かった。これらの結果から、放射線照射された皮質ニューロン細胞では、活性酸素の発生が増加するのに対し、UC-MSCsと共培養することで、活性酸素の発生を抑制できることがわかった。 FIG. 6 is a graph showing the ratio of fluorescent probe-positive cells, which is an index of active oxygen. In FIG. 6, the vertical axis indicates the percentage of fluorescent probe-positive cells, and the horizontal axis indicates the type of sample. As shown in FIG. 6, the proportion of fluorescent probe-positive cells in the radiation group was significantly higher than that in the negative control group. In contrast, in the co-culture group with UC-MSCs, the percentage of fluorescent probe-positive cells was significantly lower than in the radiation group. From these results, it was found that the generation of reactive oxygen increased in irradiated cortical neuron cells, whereas the generation of reactive oxygen could be suppressed by co-culturing with UC-MSCs.
(9)皮質ニューロン細胞の細胞死の評価
 UC-MSCsと共培養することにより、皮質ニューロン細胞の放射線障害が軽減される。前記放射線障害の軽減が、皮質ニューロン細胞の細胞死の低減によるものか検討するために、細胞死を測定した。具体的には、前記実施例1(6)で得られた皮質ニューロン細胞の生存細胞、アポトーシス細胞、およびネクローシス細胞を、Apoptotic/Necrotic/Healthy Cells Detection Kit (Promokine社製)を用いて分別し、上記細胞の割合を算出した。前記皮質ニューロン細胞のアポトーシス細胞は、アネキシンV染色によって、識別した。前記皮質ニューロン細胞のネクローシス細胞および後期アポトーシス(2次的ネクローシス)細胞は、エチジウムホモダイマーIII染色によって、識別した。核の染色は、Hoechst33342を使用した。前記キットの5×Binding bufferを蒸留水で1×Binding bufferに希釈し、実施例1(6)で得た皮質ニューロン細胞を、前記1×Binding bufferで洗浄した。前記洗浄後、前記皮質ニューロン細胞に、5μlのFITC-アネキシンV、5μlのエチジウムホモダイマーIII、および100μlの前記1×Binding bufferを添加した。その後、前記皮質ニューロン細胞は、室温、15分、遮光の条件下で、培養した。前記培養後、前記蛍光顕微鏡と、前記顕微鏡画像用統合ソフトウェアとを用いて、皮質ニューロン細胞を観察した。200倍に設定した蛍光顕微鏡の観察下で、ランダムに選択した10フィールド(視野)で、生存細胞数、アポトーシス細胞数、およびネクローシス細胞数をカウントした。そして、生存細胞、アポトーシス細胞、およびネクローシス細胞の割合を算出した。コントロール群(NC)には、放射線照射を行っていない皮質ニューロン細胞を用いた以外は同様にして、比較例の放射線群(放射線)には、放射線照射後にUC-MSCsと共培養を行っていない皮質ニューロン細胞を用いた以外は同様にして、生存細胞、アポトーシス細胞、およびネクローシス細胞の割合を算出した。これらの結果を図7~図8に示す。
(9) Evaluation of cell death of cortical neuron cells Radiation injury of cortical neuron cells is reduced by co-culturing with UC-MSCs. Cell death was measured to determine whether the reduction in radiation injury was due to reduced cell death of cortical neuronal cells. Specifically, viable cortical neuron cells, apoptotic cells, and necrotic cells obtained in Example 1 (6) were separated using an Apoptotic/Necrotic/Healthy Cells Detection Kit (manufactured by Promokine), The percentage of the above cells was calculated. Apoptotic cells of the cortical neuron cells were identified by Annexin V staining. Necrotic and late apoptotic (secondary necrotic) cells of the cortical neuronal cells were distinguished by ethidium homodimer III staining. Hoechst33342 was used for nuclear staining. The 5x binding buffer of the kit was diluted with distilled water to 1x binding buffer, and the cortical neuron cells obtained in Example 1(6) were washed with the 1x binding buffer. After the washing, 5 μl of FITC-annexin V, 5 μl of ethidium homodimer III, and 100 μl of the 1×Binding buffer were added to the cortical neuron cells. The cortical neuron cells were then incubated at room temperature for 15 minutes in the dark. After the culture, cortical neuron cells were observed using the fluorescence microscope and the integrated software for microscopic images. The number of viable cells, the number of apoptotic cells, and the number of necrotic cells were counted in 10 randomly selected fields (fields of view) under observation with a fluorescence microscope set at 200x magnification. The percentages of viable, apoptotic, and necrotic cells were then calculated. In the control group (NC), cortical neuron cells that were not irradiated were used in the same manner, and in the comparative radiation group (radiation), co-culture with UC-MSCs was not performed after irradiation. Percentages of viable, apoptotic, and necrotic cells were calculated in the same manner, except cortical neuronal cells were used. These results are shown in FIGS. 7-8.
 図7は、皮質ニューロン細胞の蛍光像および明視野像を示す写真である。上段の写真は、蛍光像を示し、下段の写真は、明視野像を示す。図7において、スケールバーは、100μmを示す。図中の矢印は、ネクローシス細胞を示す。図7に示すように、放射線群では、ネガティブコントロール群(NC)と比べて、ネクローシスの指標である蛍光プローブ陽性の細胞が多かった。これに対して、UC-MSCsとの共培養群では、放射線群と比べて、ネクローシスの指標である蛍光プローブ陽性の細胞は少なかった。このため、UC-MSCsにより、皮質ニューロン細胞の細胞死が抑制できることがわかった。 FIG. 7 is a photograph showing a fluorescent image and a bright field image of cortical neuron cells. The upper photographs show fluorescence images, and the lower photographs show bright field images. In FIG. 7, the scale bar indicates 100 μm. Arrows in the figure indicate necrotic cells. As shown in FIG. 7, in the radiation group, there were more fluorescent probe-positive cells, which are indicators of necrosis, compared to the negative control group (NC). On the other hand, in the co-culture group with UC-MSCs, the number of fluorescent probe-positive cells, which is an indicator of necrosis, was smaller than in the radiation group. Therefore, it was found that UC-MSCs can suppress cell death of cortical neuron cells.
 図8は、生存細胞、アポトーシス細胞、およびネクローシス細胞の割合を示すグラフである。図8において、縦軸は、サンプルの種類を示し、横軸は、生存細胞、アポトーシス細胞、およびネクローシス細胞の割合を示す。図8に示すように、放射線群、および共培養群では、ネガティブコントロール群(NC)と比較して、生存細胞の割合は、有意に低かった。しかし、共培養群では、放射線群と比較して、生存細胞の割合は、有意に高かった。さらに、放射線群、および共培養群では、ネガティブコントロール群と比較して、ネクローシス細胞の割合は、有意に高かった。しかし、共培養群では、放射線群と比較して、生存細胞の割合は、有意に低かった。これらの結果から、放射線照射された皮質ニューロン細胞では、ネクローシスにより生存細胞が減少するのに対し、UC-MSCsと共培養することで、ネクローシスを抑制でき、生存細胞の減少を抑制できることがわかった。 FIG. 8 is a graph showing the percentage of viable cells, apoptotic cells, and necrotic cells. In FIG. 8, the vertical axis indicates the type of sample, and the horizontal axis indicates the ratio of viable cells, apoptotic cells, and necrotic cells. As shown in FIG. 8, the ratio of surviving cells was significantly lower in the radiation group and co-culture group than in the negative control group (NC). However, the percentage of viable cells was significantly higher in the co-culture group compared to the radiation group. Furthermore, the proportion of necrotic cells was significantly higher in the radiation group and co-culture group than in the negative control group. However, the percentage of viable cells was significantly lower in the co-culture group than in the radiation group. From these results, it was found that irradiated cortical neuron cells decreased viable cells due to necrosis, whereas co-culture with UC-MSCs could suppress necrosis and suppress the decrease in viable cells. .
(10)放射線障害モデルマウスの作製
 放射線障害モデルマウスの作製には、9週齢のB6系統バックグラウンドマウスのアルビノ系統(B6N-Tyrc-Brd/BrdCrCrl、日本チャールズリバー社製)を使用した。具体的には、放射線障害モデルマウスは、前記マウスに放射線照射を行うことにより作製した。X線照射装置(MBR-1520R-3、日立製作所社製)を用いて、6Gyの設定線量で、放射線照射を前記マウスに3回行うことにより、合計18Gyの放射線照射を行った。
(10) Generation of Radiation Injury Model Mice For generation of radiation injury model mice, 9-week-old albino strains of B6 strain background mice (B6N-Tyr c-Brd /BrdCrCrl, manufactured by Charles River Japan) were used. Specifically, a radiation injury model mouse was prepared by irradiating the mouse. Using an X-ray irradiator (MBR-1520R-3, manufactured by Hitachi, Ltd.), the mice were irradiated three times at a set dose of 6 Gy to give a total radiation dose of 18 Gy.
(11)UC-MSCsによる放射線障害の治療モデルマウスの作製
 US-MSCsにより、放射線障害のモデルマウスにおける放射線傷害を抑制できるかを確認した。具体的には、実施例1(10)の放射線照射の24時間後に、1×10細胞/マウスとなるように、UC-MSCsを前記マウスに静脈注射した。前記UC-MSCsは、凍害保護液としてアゾジカルボン酸ジベンジルを含む。このため、ネガティブコントロール群(NC)には、放射線照射を行わず、滅菌したアゾジカルボン酸ジベンジルを注射した。比較例の放射線群(放射線)には、実施例1(10)の放射線照射の24時間後に、滅菌したアゾジカルボン酸ジベンジルを注射した。前記マウスの注射の際、麻酔には、0.75mg/kgの量のメデトミジン、4.0mg/kgの量のミダゾラム、および5.0mg/kgの量のブトルファノールを使用した。前記マウスは、前記UC-MSCsの注射の3週間後に使用した。
(11) Preparation of mouse model for treatment of radiation injury by UC-MSCs It was confirmed whether US-MSCs could suppress radiation injury in a mouse model of radiation injury. Specifically, UC-MSCs were intravenously injected into the mice at 1×10 6 cells/mouse 24 hours after irradiation in Example 1 (10). The UC-MSCs contain dibenzyl azodicarboxylate as a cryoprotectant. For this reason, the negative control group (NC) was not irradiated and was injected with sterile dibenzyl azodicarboxylate. The comparative radiation group (Radiation) received an injection of sterile dibenzyl azodicarboxylate 24 hours after the irradiation of Example 1 (10). Upon injection of the mice, anesthesia used medetomidine in the amount of 0.75 mg/kg, midazolam in the amount of 4.0 mg/kg, and butorphanol in the amount of 5.0 mg/kg. The mice were used 3 weeks after injection of the UC-MSCs.
(12)遺伝子発現による皮質ニューロン細胞の評価
 UC-MSCsを放射線障害マウスに投与することにより、脳組織の放射線障害が軽減されるか、炎症性サイトカイン遺伝子の発現により検討した。具体的には、実施例1(11)で得た各群のマウスの脳組織を採取し、TRI Reagent(Invitrogen社製)、およびクロロホルム(和光純薬社製)を用いて、前記脳組織からTotal RNAを抽出した。得られたTotal RNAとSYBR(登録商標)Green PCR Mix(タカラバイオ社製)とを用いて、cDNAを合成した。そして、前記cDNAと、下記プライマーセットと、RT-PCRキット(タカラバイオ社製)とから調製した反応液について、リアルタイムPCR測定装置(PIKOREAL96、Thermo Fisher Scientific社製)を用いて、IFN-γ、IL-12、IL-1β、IL-6、およびTNFαの遺伝子発現量を測定した。また、内部標準遺伝子としては、GAPDHを用い、各遺伝子の発現量は、前記内部標準遺伝子の発現量に対する相対発現量として算出した。これらの結果を図9に示す。
(12) Evaluation of Cortical Neuron Cells by Gene Expression Whether administration of UC-MSCs to radiation-damaged mice alleviates radiation injury in brain tissue was examined by expression of inflammatory cytokine genes. Specifically, the brain tissue of each group of mice obtained in Example 1 (11) was collected, and TRI Reagent (manufactured by Invitrogen) and chloroform (manufactured by Wako Pure Chemical Industries, Ltd.) were used to treat the brain tissue. Total RNA was extracted. Using the obtained total RNA and SYBR (registered trademark) Green PCR Mix (manufactured by Takara Bio Inc.), cDNA was synthesized. Then, a reaction solution prepared from the cDNA, the following primer set, and an RT-PCR kit (manufactured by Takara Bio Inc.) was measured using a real-time PCR measuring device (PIKOREAL96, manufactured by Thermo Fisher Scientific) to measure IFN-γ, Gene expression levels of IL-12, IL-1β, IL-6, and TNFα were measured. GAPDH was used as an internal standard gene, and the expression level of each gene was calculated as a relative expression level with respect to the expression level of the internal standard gene. These results are shown in FIG.
・IFN-γ用プライマーセット
 フォワードプライマー(配列番号1)
  5’-AGGAACTGGCAAAAGGATGGT-3’
 リバースプライマー(配列番号2)
  5’-ACGCTTATGTTGTTGCTGATGG-3’
・IL-12用プライマーセット
 フォワードプライマー(配列番号3)
  5’-GGAAGCACGGCAGCAGAATA-3’
 リバースプライマー(配列番号4)
  5’-AACTTGAGGGAGAAGTAGGAATGG-3’
・IL-1β用プライマーセット
 フォワードプライマー(配列番号5)
  5’-GCCCATCCTCTGTGACTCAT-3’
 リバースプライマー(配列番号6)
  5’-AGGCCACAGGTATTTTGTCG-3’
・IL-6用プライマーセット
 フォワードプライマー(配列番号7)
  5’-AGTTGCCTTCTTGGGACTGA-3’
 リバースプライマー(配列番号8)
  5’-TCCACGATTTCCCAGAGAAC-3’
・TNFα用プライマーセット
 フォワードプライマー(配列番号9)
  5’-CGTCAGCCGATTTGCTATCT-3’
 リバースプライマー(配列番号10)
  5’-CGGACTCCGCAAAGTCTAAG-3’
・GAPDH用プライマーセット
 フォワードプライマー(配列番号11)
  5’-CACTGAGCATCTCCCTCACA-3’
 リバースプライマー(配列番号12)
  5’-GTGGGTGCAGCGAACTTTAT-3’
・ IFN-γ primer set Forward primer (SEQ ID NO: 1)
5'-AGGAACTGGCAAAAGGATGGT-3'
Reverse primer (SEQ ID NO: 2)
5'-ACGCTTATGTTGTTGCTGATGG-3'
・ Primer set for IL-12 forward primer (SEQ ID NO: 3)
5'-GGAAGCACGGCAGCAGAATA-3'
Reverse primer (SEQ ID NO: 4)
5'-AACTTGAGGGAGAAGTAGGAATGG-3'
・ Primer set for IL-1β Forward primer (SEQ ID NO: 5)
5'-GCCCATCCTCTGTGACTCAT-3'
Reverse primer (SEQ ID NO: 6)
5'-AGGCCACAGGTATTTTGTCG-3'
・ Primer set for IL-6 forward primer (SEQ ID NO: 7)
5'-AGTTGCCTTCTTGGGACTGA-3'
Reverse primer (SEQ ID NO: 8)
5'-TCCACGATTTCCCAGAGAAC-3'
・Primer set for TNFα Forward primer (SEQ ID NO: 9)
5'-CGTCAGCCGATTTGCTATCT-3'
Reverse primer (SEQ ID NO: 10)
5'-CGGACTCCGCAAAGTCTAAG-3'
・ GAPDH primer set Forward primer (SEQ ID NO: 11)
5'-CACTGAGCATCTCCCTCACA-3'
Reverse primer (SEQ ID NO: 12)
5'-GTGGGTGCAGCGAACTTTAT-3'
 図9は、各遺伝子の発現量を示すグラフである。図9において、(A)は、IFN-γの結果を示し、(B)は、IL-12の結果を示し、(C)は、IL-1βの結果を示し、(D)は、IL-6の結果を示し、(E)は、TNFαの結果を示す。図9(A)~(E)において、縦軸は、各遺伝子の発現量を示し、横軸は、サンプルの種類を示す。図9に示すように、ネガティブコントロール群(NC)と比較して、放射線群(放射線)の炎症性サイトカインの遺伝子発現量は、有意に増加した。これに対して、UC-MSCsを注射した治療マウス群(放射線+MSC)では、放射線群と比較して、炎症性サイトカインの遺伝子発現量は、有意に低かった。これらの結果から、放射線照射されたマウスの脳組織では、炎症性サイトカインの遺伝子発現が増強されるのに対し、UC-MSCsを投与することで、炎症性サイトカインの遺伝子発現を抑制できることがわかった。 FIG. 9 is a graph showing the expression level of each gene. In FIG. 9, (A) shows the results of IFN-γ, (B) shows the results of IL-12, (C) shows the results of IL-1β, and (D) shows the results of IL- 6, and (E) shows the results for TNFα. In FIGS. 9A to 9E, the vertical axis indicates the expression level of each gene, and the horizontal axis indicates the type of sample. As shown in FIG. 9, gene expression levels of inflammatory cytokines in the radiation group (radiation) were significantly increased compared to the negative control group (NC). In contrast, the treated mouse group (radiation + MSCs) injected with UC-MSCs had significantly lower gene expression levels of inflammatory cytokines compared to the radiation group. These results show that the gene expression of inflammatory cytokines is enhanced in irradiated mouse brain tissue, whereas the administration of UC-MSCs can suppress the gene expression of inflammatory cytokines. .
(13)組織染色による皮質ニューロン細胞の評価
 UC-MSCsを放射線障害マウスに投与することによって、脳組織の放射線障害が軽減されるか、KB染色による組織染色によりミエリン髄の脱髄の有無を検討した。具体的には、実施例1(11)で得た各群のマウスの脳組織を採取し、10%または20%のホルマリンを用いて前記脳組織を固定した。前記固定後、前記脳組織をパラフィン包埋し、厚さ6μmのパラフィン包埋切片を調製した。前記切片を脱パラフィンし、95%のアルコールで水和させた。前記水和後、前記切片は、ルクソールファストブルー液(CHROMA社製)内で75℃、5分の条件下で染色した。前記染色後、95%のアルコールを用いて余分な染色を洗浄し、さらに、滅菌水で洗浄した。前記洗浄後、前記切片は、炭酸リチウム水溶液(Cat.No:122-01132、和光純薬社製)で分別し、70%のアルコールでさらに分別し、滅菌水内に配置した。その後、前記切片は、酢酸クレシルバイオレット(CHROMA社製)を用いて対比染色を行った。前記対比染色後、95%アルコールで3回洗浄し、素早く100%エタノールで洗浄した。その後、前記蛍光顕微鏡と、前記顕微鏡画像用統合ソフトウェアとを用いて、マウスの脳組織を観察した。これらの結果を図10に示す。
(13) Evaluation of cortical neuron cells by tissue staining Examination of whether radiation injury of brain tissue is reduced by administering UC-MSCs to radiation-damaged mice, and the presence or absence of demyelination of myelin marrow by tissue staining with KB staining bottom. Specifically, brain tissue was collected from each group of mice obtained in Example 1 (11) and fixed with 10% or 20% formalin. After the fixation, the brain tissue was embedded in paraffin to prepare 6 μm-thick paraffin-embedded sections. The sections were deparaffinized and hydrated with 95% alcohol. After the hydration, the sections were stained in Luxol fast blue solution (manufactured by CHROMA) at 75° C. for 5 minutes. After the staining, excess staining was washed off using 95% alcohol and then washed with sterilized water. After the washing, the sections were fractionated with an aqueous lithium carbonate solution (Cat. No: 122-01132, Wako Pure Chemical Industries, Ltd.), further fractionated with 70% alcohol, and placed in sterile water. After that, the sections were counterstained with cresyl violet acetate (manufactured by CHROMA). After the counterstaining, the cells were washed three times with 95% alcohol and quickly washed with 100% ethanol. Thereafter, mouse brain tissue was observed using the fluorescence microscope and the integrated software for microscopic images. These results are shown in FIG.
 図10は、マウス脳組織の組織染色像を示し、ミエリン鞘(髄鞘)の厚さを示す写真である。図10において、各列の写真において、上段の写真は、倍率40倍の染色像を示し、下段の写真は、倍率200倍の染色像を示す。図10に示すように、放射線群(放射線)では、ネガティブコントロール群(NC)と比べて、ミエリン鞘が脱髄していた。これに対して、UC-MSCsを注射した治療マウス群(放射線+MSC)では、放射線群のようなミエリン鞘の脱髄は見られず、ネガティブコントロール群と同様のミエリン鞘の厚みであった。これらの結果から、放射線照射されたマウスの脳組織では、ミエリン鞘が脱髄しているのに対し、UC-MSCsを投与することで、ミエリン鞘の脱髄を抑制できることがわかった。 FIG. 10 is a photograph showing a histological staining image of mouse brain tissue, showing the thickness of the myelin sheath (myelin sheath). In FIG. 10, in each row of photographs, the upper photograph shows a stained image at a magnification of 40 times, and the lower photograph shows a stained image at a magnification of 200 times. As shown in FIG. 10, the radiation group (radiation) had demyelinating myelin sheaths compared to the negative control group (NC). In contrast, in the group of treated mice injected with UC-MSCs (radiation + MSCs), demyelination of the myelin sheath as in the radiation group was not observed, and the thickness of the myelin sheath was similar to that of the negative control group. From these results, it was found that the demyelination of the myelin sheath is suppressed in the irradiated mouse brain tissue, whereas the administration of UC-MSCs can suppress the demyelination of the myelin sheath.
 以上のことから、前記臍帯由来細胞が、脱髄等の脳の放射線障害を軽減できることがわかった。また、前記臍帯由来細胞は、前記放射線照射後における、前記ニューロン細胞の神経突起の退縮の抑制、前記ニューロン細胞における活性酸素の発生の抑制、前記未成熟ニューロン細胞の細胞死の抑制、前記ニューロン細胞のネクローシスの抑制等によると推定された。ただし、本開示は、前記推定により何ら制限されない。 From the above, it was found that the umbilical cord-derived cells can reduce brain radiation damage such as demyelination. In addition, the umbilical cord-derived cells suppress neurite retraction of the neuronal cells, suppress generation of reactive oxygen in the neuronal cells, suppress cell death of the immature neuronal cells, and suppress the neuron cells after the irradiation. It was presumed that this was due to suppression of necrosis, etc. However, the present disclosure is in no way limited by the presumption.
 以上、実施形態を参照して本発明を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。 Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
<付記>
 上記の実施形態および実施例の一部または全部は、以下の付記のように記載されうるが、以下には限られない。
<放射線による神経障害の処置に用いる細胞調製物>
(付記1)
放射線による神経障害の処置に用いる細胞調製物であって、
前記細胞調製物は、臍帯由来細胞を含む、細胞調製物。
(付記2)
前記臍帯由来細胞は、臍帯由来間葉系細胞である、付記1に記載の細胞調製物。
(付記3)
前記臍帯由来細胞は、
 (i)CD105、CD73、CD90、CD44、HLA-classI、HLA-G5およびPD-L2が陽性であり、かつ
 (ii)CD45、CD34、CD11b、CD19およびHLA-ClassIIが陰性である、付記1または2に記載の細胞調製物。
(付記4)
前記臍帯由来細胞は、
 (iii)炎症の条件下でIDO、PGE2、PD-L1のいずれか1つの遺伝子および/またはタンパクの発現が誘導される、付記1から3のいずれかに記載の細胞調製物。
(付記5)
前記臍帯由来細胞が、羊膜、血管、血管周囲組織および/またはワルトンジェリーを含む臍帯組織から調製された細胞である、付記1から4のいずれかに記載の細胞調製物。
(付記6)
前記臍帯由来細胞が、前記臍帯組織からプロテアーゼ(例えば、コラゲナーゼ、ディスパーゼ等)を実質的に用いず(プロテアーゼによる分解を伴わず)に調製された細胞である、付記5に記載の細胞調製物。
(付記7)
前記臍帯由来細胞が、前記臍帯組織を切片に切断後、前記切片を培養することにより得られる付着性の細胞である、付記5または6に記載の細胞調製物。
(付記8)
前記細胞調製物は、1×10~1×10個の臍帯由来細胞を含む、付記1から7のいずれかに記載の細胞調製物。
(付記9)
前記細胞調製物は、前記臍帯由来細胞の抽出物および/または分泌物を含む、付記1から8のいずれかに記載の細胞調製物。
(付記10)
静脈内投与用である、付記1から9のいずれかに記載の細胞調製物。
(付記11)
放射線照射により生じる成熟ニューロン細胞の神経突起の退縮を抑制する、付記1から10のいずれかに記載の細胞調製物。
(付記12)
放射線照射により生じる未成熟ニューロン細胞の細胞死を抑制する、付記1から11のいずれかに記載の細胞調製物。
(付記13)
放射線照射により生じるニューロン細胞における活性酸素の発生を抑制する、付記1から12のいずれかに記載の細胞調製物。
(付記14)
放射線照射により生じるニューロン細胞のネクローシスを抑制する、付記1から13のいずれかに記載の細胞調製物。
(付記15)
前記神経は、中枢神経である、付記1から14のいずれかに記載の細胞調製物。
(付記16)
前記神経は、脳または脊髄である、付記1から15のいずれかに記載の細胞調製物。
(付記17)
前記放射線による神経障害は、放射線脳症、放射線神経炎、放射線脊髄症、放射線脳壊死、放射線視神経、白質脳症、舌下神経麻痺、顔面神経麻痺、三叉神経障害、および放射線誘発腕神経叢障害からなる群から選択される、付記1から16のいずれかに記載の細胞調製物。
<細胞調製物の用途>
(付記18)
放射線により生じる成熟ニューロン細胞の神経突起の退縮抑制に用いる細胞調製物であって、
付記1から17のいずれかに記載の細胞調製物および/または付記1から17のいずれかに記載の臍帯由来細胞を含む、細胞調製物。
(付記19)
放射線により生じる成熟ニューロン細胞の神経突起の退縮の抑制方法であって、
対象に、付記18に記載の細胞調製物を用いる、方法。
(付記20)
前記対象に、前記細胞調製物を投与する工程を含む、付記19に記載の方法。
(付記21)
前記細胞調製物を、in vitroまたはin vivoで用いる、付記19または20に記載の方法。
(付記22)
放射線により生じる未成熟ニューロン細胞の細胞死の抑制に用いる細胞調製物であって、
付記1から17のいずれかに記載の細胞調製物および/または付記1から17のいずれかに記載の臍帯由来細胞を含む、細胞調製物。
(付記23)
放射線により生じる未成熟ニューロン細胞の細胞死の抑制方法であって、
対象に、付記22に記載の細胞調製物を用いる、方法。
(付記24)
前記対象に、前記細胞調製物を投与する工程を含む、付記23に記載の方法。
(付記25)
前記細胞調製物を、in vitroまたはin vivoで用いる、付記23または24に記載の方法。
(付記26)
放射線により生じるニューロン細胞の活性酸素の発生抑制に用いる細胞調製物であって、
付記1から17のいずれかに記載の細胞調製物および/または付記1から17のいずれかに記載の臍帯由来細胞を含む、細胞調製物。
(付記27)
放射線により生じるニューロン細胞の活性酸素の発生の抑制方法であって、
対象に、付記26に記載の細胞調製物を用いる、方法。
(付記28)
前記対象に、前記細胞調製物を投与する工程を含む、付記27に記載の方法。
(付記29)
前記細胞調製物を、in vitroまたはin vivoで用いる、付記27または28に記載の方法。
(付記30)
放射線により生じるニューロン細胞のネクローシスの抑制に用いる細胞調製物であって、
付記1から17のいずれかに記載の細胞調製物および/または付記1から17のいずれかに記載の臍帯由来細胞を含む、細胞調製物。
(付記31)
放射線により生じるニューロン細胞のネクローシスの発生の抑制方法であって、
対象に、付記30に記載の細胞調製物を用いる、方法。
(付記32)
前記対象に、前記細胞調製物を投与する工程を含む、付記31に記載の方法。
(付記33)
前記細胞調製物を、in vitroまたはin vivoで用いる、付記31または32に記載の方法。
(付記34)
放射線により生じる神経系の炎症抑制に用いる細胞調製物であって、
付記1から17のいずれかに記載の細胞調製物および/または付記1から17のいずれかに記載の臍帯由来細胞を含む、細胞調製物。
(付記35)
放射線により生じる神経系の炎症の抑制方法であって、
対象に、付記34に記載の細胞調製物を用いる、方法。
(付記36)
前記対象に、前記細胞調製物を投与する工程を含む、付記35に記載の方法。
(付記37)
前記細胞調製物を、in vitroまたはin vivoで用いる、付記35または36に記載の方法。
<処置方法>
(付記38)
放射線による神経障害の処置方法であって、
対象に、付記1から17のいずれかに記載の細胞調製物および/または付記1から17のいずれかに記載の臍帯由来細胞を用いる、方法。
(付記39)
前記対象に、前記細胞調製物および/または臍帯由来細胞を投与する工程を含む、付記384に記載の方法。
(付記40)
前記細胞調製物を、in vitroまたはin vivoで用いる、付記38または39に記載の方法。
<細胞調製物の使用>
(付記41)
放射線による神経障害の処置に用いるための、細胞調製物であり、
付記1から17のいずれかに記載の細胞調製物および/または付記1から17のいずれかに記載の臍帯由来細胞を含む、細胞調製物。
(付記42)
放射線により生じる成熟ニューロン細胞の神経突起の退縮抑制に用いるための、細胞調製物であり、
付記1から17のいずれかに記載の細胞調製物および/または付記1から17のいずれかに記載の臍帯由来細胞を含む、細胞調製物。
(付記43)
放射線により生じる未成熟ニューロン細胞の細胞死の抑制に用いるための、細胞調製物であり、
付記1から17のいずれかに記載の細胞調製物および/または付記1から17のいずれかに記載の臍帯由来細胞を含む、細胞調製物。
(付記44)
放射線により生じるニューロン細胞の活性酸素の発生抑制に用いるための、細胞調製物であり、
付記1から17のいずれかに記載の細胞調製物および/または付記1から17のいずれかに記載の臍帯由来細胞を含む、細胞調製物。
(付記45)
放射線により生じるニューロン細胞のネクローシスの抑制に用いるための、細胞調製物であり、
付記1から17のいずれかに記載の細胞調製物および/または付記1から17のいずれかに記載の臍帯由来細胞を含む、細胞調製物。
(付記46)
放射線により生じる神経系の炎症抑制に用いるための、細胞調製物であり、
付記1から17のいずれかに記載の細胞調製物および/または付記1から17のいずれかに記載の臍帯由来細胞を含む、細胞調製物。
<Appendix>
Some or all of the above-described embodiments and examples can be described as in the following appendices, but are not limited to the following.
<Cell preparation used for treatment of radiation-induced neuropathy>
(Appendix 1)
A cell preparation for the treatment of radiation neuropathy, comprising:
A cell preparation, wherein the cell preparation comprises umbilical cord-derived cells.
(Appendix 2)
The cell preparation of paragraph 1, wherein the umbilical cord-derived cells are umbilical cord-derived mesenchymal cells.
(Appendix 3)
The umbilical cord-derived cells are
(i) positive for CD105, CD73, CD90, CD44, HLA-class I, HLA-G5 and PD-L2; 2. Cell preparation according to 2.
(Appendix 4)
The umbilical cord-derived cells are
(iii) A cell preparation according to any one of Appendices 1 to 3, wherein the expression of the gene and/or protein of any one of IDO, PGE2, PD-L1 is induced under conditions of inflammation.
(Appendix 5)
5. A cell preparation according to any one of Appendices 1 to 4, wherein the umbilical cord-derived cells are cells prepared from umbilical cord tissue comprising amnion, blood vessels, perivascular tissue and/or Walton's Jelly.
(Appendix 6)
6. The cell preparation of Appendix 5, wherein the umbilical cord-derived cells are cells prepared from the umbilical cord tissue substantially free of proteases (e.g., collagenase, dispase, etc.) (without degradation by proteases).
(Appendix 7)
7. The cell preparation according to appendix 5 or 6, wherein the umbilical cord-derived cells are adherent cells obtained by cutting the umbilical cord tissue into pieces and culturing the pieces.
(Appendix 8)
8. A cell preparation according to any one of Supplements 1 to 7, wherein said cell preparation comprises 1×10 6 to 1×10 9 umbilical cord-derived cells.
(Appendix 9)
9. A cell preparation according to any one of Supplements 1 to 8, wherein said cell preparation comprises an extract and/or secretion of said umbilical cord-derived cells.
(Appendix 10)
10. A cell preparation according to any one of Appendices 1 to 9, which is for intravenous administration.
(Appendix 11)
11. A cell preparation according to any one of Appendices 1 to 10, which inhibits neurite retraction of mature neuronal cells caused by irradiation.
(Appendix 12)
12. The cell preparation according to any one of Appendices 1 to 11, which suppresses cell death of immature neuronal cells caused by irradiation.
(Appendix 13)
13. The cell preparation according to any one of Appendices 1 to 12, which suppresses generation of reactive oxygen in neuronal cells caused by irradiation.
(Appendix 14)
14. A cell preparation according to any one of Appendices 1 to 13, which inhibits necrosis of neuronal cells caused by irradiation.
(Appendix 15)
15. A cell preparation according to any of Supplements 1 to 14, wherein said nerve is a central nerve.
(Appendix 16)
16. A cell preparation according to any of Supplements 1 to 15, wherein said nerve is the brain or the spinal cord.
(Appendix 17)
The radiation-induced neuropathy consists of radiation encephalopathy, radiation neuritis, radiation myelopathy, radiation brain necrosis, radiation optic nerve, leukoencephalopathy, hypoglossal nerve palsy, facial nerve palsy, trigeminal neuropathy, and radiation-induced brachial plexopathy. 17. A cell preparation according to any one of appendices 1 to 16, selected from the group.
<Application of cell preparation>
(Appendix 18)
A cell preparation for suppressing neurite retraction of mature neuronal cells caused by radiation,
18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
(Appendix 19)
A method for suppressing neurite retraction of mature neuron cells caused by radiation, comprising:
19. A method of using the cell preparation of Supplementary Note 18 in a subject.
(Appendix 20)
20. The method of paragraph 19, comprising administering said cell preparation to said subject.
(Appendix 21)
21. The method of paragraphs 19 or 20, wherein said cell preparation is used in vitro or in vivo.
(Appendix 22)
A cell preparation for use in suppressing radiation-induced cell death of immature neuronal cells, comprising:
18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
(Appendix 23)
A method for suppressing cell death of immature neuronal cells caused by radiation, comprising:
A method of using the cell preparation of Supplementary Note 22 in a subject.
(Appendix 24)
24. The method of Clause 23, comprising administering said cell preparation to said subject.
(Appendix 25)
25. The method of paragraphs 23 or 24, wherein said cell preparation is used in vitro or in vivo.
(Appendix 26)
A cell preparation used to suppress the generation of reactive oxygen in neuronal cells caused by radiation,
18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
(Appendix 27)
A method for suppressing the generation of reactive oxygen in neuronal cells caused by radiation, comprising:
A method of using the cell preparation of Supplementary Note 26 in a subject.
(Appendix 28)
28. The method of Clause 27, comprising administering said cell preparation to said subject.
(Appendix 29)
29. The method of paragraphs 27 or 28, wherein said cell preparation is used in vitro or in vivo.
(Appendix 30)
A cell preparation for use in inhibiting radiation-induced necrosis of neuronal cells, comprising:
18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
(Appendix 31)
A method for suppressing the occurrence of neuronal necrosis caused by radiation, comprising:
A method of using the cell preparation of Supplementary Note 30 in a subject.
(Appendix 32)
32. The method of paragraph 31, comprising administering said cell preparation to said subject.
(Appendix 33)
33. The method of paragraphs 31 or 32, wherein said cell preparation is used in vitro or in vivo.
(Appendix 34)
A cell preparation for use in suppressing radiation-induced nervous system inflammation, comprising:
18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
(Appendix 35)
A method of inhibiting inflammation of the nervous system caused by radiation, comprising:
A method of using the cell preparation of Supplementary Note 34 in a subject.
(Appendix 36)
36. The method of paragraph 35, comprising administering said cell preparation to said subject.
(Appendix 37)
37. The method of paragraphs 35 or 36, wherein said cell preparation is used in vitro or in vivo.
<Treatment method>
(Appendix 38)
A method of treating neuropathy with radiation, comprising:
18. A method, wherein the subject uses a cell preparation according to any one of Appendices 1-17 and/or an umbilical cord-derived cell according to any one of Appendices 1-17.
(Appendix 39)
385. The method of Clause 384, comprising administering said cell preparation and/or umbilical cord-derived cells to said subject.
(Appendix 40)
40. A method according to Appendix 38 or 39, wherein said cell preparation is used in vitro or in vivo.
<Use of cell preparation>
(Appendix 41)
A cell preparation for use in the treatment of radiation neuropathy,
18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
(Appendix 42)
A cell preparation for use in inhibiting neurite retraction of mature neuronal cells caused by radiation,
18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
(Appendix 43)
A cell preparation for use in suppressing radiation-induced cell death of immature neuronal cells,
18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
(Appendix 44)
A cell preparation for use in suppressing generation of reactive oxygen species in neuronal cells caused by radiation,
18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
(Appendix 45)
A cell preparation for use in inhibiting necrosis of neuronal cells caused by radiation,
18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
(Appendix 46)
A cell preparation for use in suppressing radiation-induced nervous system inflammation,
18. A cell preparation comprising a cell preparation according to any one of Appendices 1 to 17 and/or an umbilical cord-derived cell according to any one of Appendices 1 to 17.
 以上のように、本発明によれば、放射線照射により生じる成熟ニューロン細胞の神経突起の退縮の抑制、放射線照射により生じる未成熟ニューロン細胞の細胞死の抑制、放射線照射により生じるニューロン細胞における活性酸素の発生の抑制、放射線照射により生じるニューロン細胞のネクローシスの抑制、および放射線照射により生じる神経系の炎症を抑制することができる。このため、本発明によれば、放射線による神経障害を処置できるといえる。このため、本発明は、例えば、医薬分野等において極めて有用である。 As described above, according to the present invention, it is possible to suppress neurite retraction of mature neuron cells caused by irradiation, suppress cell death of immature neuronal cells caused by irradiation, and reduce active oxygen in neuronal cells caused by irradiation. It can suppress development, suppress necrosis of neuronal cells caused by irradiation, and suppress inflammation of the nervous system caused by irradiation. Therefore, according to the present invention, it can be said that radiation-induced neuropathy can be treated. Therefore, the present invention is extremely useful in, for example, the medical field.
 この出願は、2021年9月30日に出願された日本出願特願2021-162249を基礎とする優先権を主張し、その開示のすべてをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-162249 filed on September 30, 2021, and incorporates all of its disclosure herein.

Claims (18)

  1. 放射線による神経障害の処置に用いる細胞調製物であって、
    前記細胞調製物は、臍帯由来細胞を含む、細胞調製物。
    A cell preparation for the treatment of radiation neuropathy, comprising:
    A cell preparation, wherein the cell preparation comprises umbilical cord-derived cells.
  2. 前記臍帯由来細胞は、臍帯由来間葉系細胞である、請求項1記載の細胞調製物。 2. The cell preparation of claim 1, wherein said umbilical cord-derived cells are umbilical cord-derived mesenchymal cells.
  3. 前記臍帯由来細胞は、
     (i)CD105、CD73、CD90、CD44、HLA-classI、HLA-G5およびPD-L2が陽性であり、かつ
     (ii)CD45、CD34、CD11b、CD19およびHLA-ClassIIが陰性である、請求項1または2に記載の細胞調製物。
    The umbilical cord-derived cells are
    (i) positive for CD105, CD73, CD90, CD44, HLA-class I, HLA-G5 and PD-L2; and (ii) negative for CD45, CD34, CD11b, CD19 and HLA-Class II. or the cell preparation according to 2.
  4. 前記臍帯由来細胞は、
     (iii)炎症の条件下でIDO、PGE2、PD-L1のいずれか1つの遺伝子および/またはタンパクの発現が誘導される、請求項1から3のいずれか一項に記載の細胞調製物。
    The umbilical cord-derived cells are
    (iii) The cell preparation of any one of claims 1 to 3, wherein expression of any one of IDO, PGE2, PD-L1 gene and/or protein is induced under conditions of inflammation.
  5. 前記臍帯由来細胞が、羊膜、血管、血管周囲組織および/またはワルトンジェリーを含む臍帯組織から調製された細胞である、請求項1から4のいずれか一項に記載の細胞調製物。 5. The cell preparation of any one of claims 1-4, wherein the umbilical cord-derived cells are cells prepared from umbilical cord tissue, including amniotic membrane, blood vessels, perivascular tissue and/or Walton's Jelly.
  6. 前記細胞調製物は、1×10~1×10個の臍帯由来細胞を含む、請求項1から5のいずれか一項に記載の細胞調製物。 6. The cell preparation of any one of claims 1-5, wherein the cell preparation comprises 1 x 106 to 1 x 109 umbilical cord-derived cells.
  7. 前記細胞調製物は、前記臍帯由来細胞の抽出物および/または分泌物を含む、請求項1から6のいずれか一項に記載の細胞調製物。 7. The cell preparation of any one of claims 1-6, wherein said cell preparation comprises an extract and/or secretion of said umbilical cord-derived cells.
  8. 静脈内投与用である、請求項1から7のいずれか一項に記載の細胞調製物。 8. The cell preparation according to any one of claims 1 to 7, which is for intravenous administration.
  9. 放射線照射により生じる成熟ニューロン細胞の神経突起の退縮を抑制する、請求項1から8のいずれか一項に記載の細胞調製物。 9. The cell preparation according to any one of claims 1 to 8, which inhibits neurite retraction of mature neuronal cells caused by irradiation.
  10. 放射線照射により生じる未成熟ニューロン細胞の細胞死を抑制する、請求項1から9のいずれか一項に記載の細胞調製物。 10. The cell preparation according to any one of claims 1 to 9, which suppresses cell death of immature neuronal cells caused by irradiation.
  11. 放射線照射により生じるニューロン細胞における活性酸素の発生を抑制する、請求項1から10のいずれか一項に記載の細胞調製物。 11. The cell preparation according to any one of claims 1 to 10, which suppresses generation of active oxygen in neuronal cells caused by irradiation.
  12. 放射線照射により生じるニューロン細胞のネクローシスを抑制する、請求項1から11のいずれか一項に記載の細胞調製物。 12. The cell preparation according to any one of claims 1 to 11, which inhibits necrosis of neuronal cells caused by irradiation.
  13. 前記神経は、中枢神経である、請求項1から12のいずれか一項に記載の細胞調製物。 13. The cell preparation of any one of claims 1-12, wherein the nerve is the central nerve.
  14. 前記神経は、脳または脊髄である、請求項1から13のいずれか一項に記載の細胞調製物。 14. The cell preparation of any one of claims 1-13, wherein the nerve is the brain or spinal cord.
  15. 前記放射線による神経障害は、放射線脳症、放射線神経炎、放射線脊髄症、放射線脳壊死、放射線視神経、白質脳症、舌下神経麻痺、顔面神経麻痺、三叉神経障害、および放射線誘発腕神経叢障害からなる群から選択される、請求項1から14のいずれか一項に記載の細胞調製物。 The radiation-induced neuropathy consists of radiation encephalopathy, radiation neuritis, radiation myelopathy, radiation brain necrosis, radiation optic nerve, leukoencephalopathy, hypoglossal nerve palsy, facial nerve palsy, trigeminal neuropathy, and radiation-induced brachial plexopathy. 15. A cell preparation according to any one of claims 1 to 14, selected from the group.
  16. 請求項1から15のいずれか一項に記載の細胞調製物を含む、放射線神経障害の治療的処置又は予防的処置に用いる放射線神経障害用処置剤。 16. A therapeutic agent for radiation neuropathy for therapeutic or prophylactic treatment of radiation neuropathy, comprising the cell preparation according to any one of claims 1 to 15.
  17. 請求項16記載の放射線神経障害用処置剤を投与対象に投与する投与工程を含む、放射性神経障害の治療的処置又は予防的処置のための処置方法。 17. A treatment method for therapeutic or prophylactic treatment of radiation neuropathy, comprising the administration step of administering the therapeutic agent for radiation neuropathy according to claim 16 to an administration subject.
  18. 放射線による神経障害を処置するための、請求項1から15記載の細胞調製物の使用。

     
    16. Use of the cell preparation according to claims 1-15 for treating radiation-induced neuropathy.

PCT/JP2022/035846 2021-09-30 2022-09-27 Cell preparation used for treatment of neuropathy due to radiation WO2023054317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162249 2021-09-30
JP2021162249 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054317A1 true WO2023054317A1 (en) 2023-04-06

Family

ID=85782706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035846 WO2023054317A1 (en) 2021-09-30 2022-09-27 Cell preparation used for treatment of neuropathy due to radiation

Country Status (1)

Country Link
WO (1) WO2023054317A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204231A1 (en) * 2016-05-24 2017-11-30 国立大学法人 東京大学 Therapeutic agent for brain dysfunction comprising umbilical cord-derived cells
JP2019535691A (en) * 2016-11-03 2019-12-12 エグゾステム バイオテック リミテッド Mesenchymal stem cell populations, their products and their use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204231A1 (en) * 2016-05-24 2017-11-30 国立大学法人 東京大学 Therapeutic agent for brain dysfunction comprising umbilical cord-derived cells
JP2019535691A (en) * 2016-11-03 2019-12-12 エグゾステム バイオテック リミテッド Mesenchymal stem cell populations, their products and their use

Similar Documents

Publication Publication Date Title
JP7126703B2 (en) Cerebral disorder therapeutic agent containing umbilical cord-derived cells
CA2642887C (en) Mapc therapeutics without adjunctive immunosuppressive treatment
US20220090008A1 (en) Colony forming medium and use thereof
Shams et al. Mesenchymal stem cells pretreated with HGF and FGF4 can reduce liver fibrosis in mice
JP5809068B2 (en) Immunosuppression-treatment of related diseases
JP6307531B2 (en) Use of stem cells to prevent axonal retraction of neurons
KR20180071030A (en) Composition for preventing or treating ischemic diseases comprising mitochondria
EP3502237A1 (en) Composition for promoting growth of stem cells comprising phytosphingosine-1-phosphate or derivatives thereof, and composition for culturing media of stem cells comprising same
Lange-Consiglio et al. In vitro studies of horse umbilical cord matrix-derived cells: from characterization to labeling for magnetic resonance imaging
WO2023054317A1 (en) Cell preparation used for treatment of neuropathy due to radiation
WO2022102784A1 (en) Cell preparation to be used for preventing decrease in muscle mass
JP7165352B2 (en) Improvement and treatment of chronic lung disease by pluripotent stem cells
JP2022523503A (en) Pluripotent adult progenitor cells for use in treating intracerebral hemorrhage
JP2022528339A (en) Adult liver progenitor cells for the treatment of acute exacerbations of chronic liver failure
WO2022180911A1 (en) Cell preparation for use in treatment of hemophagocytic syndrome
US20210130789A1 (en) Methods of stromal cell expansion, uses and materials related thereto
US20230016479A1 (en) Method for preparing mesenchymal stem cells having improved viability through anti-cancer virus introduction
US20180085405A1 (en) Treatment of stroke by amniotic fluid derived stem cell conditioned media and products derived thereof
KR102216646B1 (en) A composition comprising mesenchymal stem cell for inhibiting adipogenesis
KR20230127938A (en) Method of stem cell culture using serum-free medium
Capasso et al. Effect of Low-Dose Ionizing Radiations on the Biology of Human Mesenchymal Stromal Cells
KR20210018405A (en) A composition comprising mesenchymal stem cell for inhibiting adipogenesis
CA3220002A1 (en) Methods and compositions for treating liver disease
Mareschi et al. COMPARING THE IMMUNOREGULATORY EFFECTS OF MESENCHYMAL STEM CELLS ISOALTED FROM BONE MARROW, PLACENTA AND AMNIOTIC FLUID
KR20120041706A (en) Composition for anticancer containing umbilical cord blood- or adipose tissue-derived stem cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551503

Country of ref document: JP