WO2023054252A1 - Communication device, communication device control method, and program therefor - Google Patents

Communication device, communication device control method, and program therefor Download PDF

Info

Publication number
WO2023054252A1
WO2023054252A1 PCT/JP2022/035679 JP2022035679W WO2023054252A1 WO 2023054252 A1 WO2023054252 A1 WO 2023054252A1 JP 2022035679 W JP2022035679 W JP 2022035679W WO 2023054252 A1 WO2023054252 A1 WO 2023054252A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
emlmr
mld
frame exchange
communication device
Prior art date
Application number
PCT/JP2022/035679
Other languages
French (fr)
Japanese (ja)
Inventor
智行 ▲高▼田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2023054252A1 publication Critical patent/WO2023054252A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to a communication device that performs wireless communication, a control method for the communication device, and a program therefor.
  • the IEEE 802.11 standard series is known as a major wireless LAN communication standard.
  • the IEEE 802.11 standard series includes standards such as IEEE 802.11a/b/g/n/ac/ax.
  • IEEE802.11ax uses OFDMA (orthogonal frequency multiple access) to achieve a high peak throughput of up to 9.6 gigabits per second (Gbps), as well as a technology that improves communication speeds under congested conditions.
  • OFDMA orthogonal frequency-division multiple access.
  • a task group called IEEE 802.11be was launched as a successor standard aimed at further improving throughput, improving frequency utilization efficiency, and improving communication latency.
  • multi-link communication in which one AP constructs multiple links with one STA (station) in frequency bands such as 2.4 GHz, 5 GHz, and 6 GHz, and performs simultaneous communication.
  • An AP in multi-link communication is called an AP MLD (Access point multi-link device), and an STA is called a non-AP MLD (non-Access point multi-link device).
  • EMLMR enhanced multi-link multi-radio
  • the non-AP MLD operating in EMLMR mode performs initial frame exchange after initial frame exchange with the number of spatial streams according to the per-link spatial stream capability for each EMLMR link. Until the end of the frame exchange sequence on the link, it operates as follows. The operation is to receive a PPDU (Physical layer convergence protocol data unit) with the number of spatial streams that maximizes the value presented in the EMLMR supported MCS AND NSS SET subfield of the Common Info field of the Basic variant Multi-Link element, and This is the operation of transmitting PPDU with the number of spatial streams indicated in the supported MCS AND NSS SET subfield.
  • PPDU Physical layer convergence protocol data unit
  • An object of the present invention is to provide a communication device that executes a frame exchange sequence with the number of spatial streams according to the spatial stream capability for each link on which an EMLMR link is established.
  • a communication device is a communication device that operates as a multi-link device conforming to the IEEE802.11 series standard, and includes a first enhanced multi-link multi-radio (EMLMR) link and a second enhanced multi-radio (EMLMR) link.
  • EMLMR enhanced multi-link multi-radio
  • EMLMR enhanced multi-radio
  • -link multi-radio link without allocating a particular link's spatial stream to said first EMLMR link and said second EMLMR link when performing a frame exchange sequence on two links; and control means for controlling execution of a frame exchange sequence with a respective number of spatial streams of the link and said second EMLMR link.
  • the present invention it is possible to provide a communication device that executes a frame exchange sequence with the number of spatial streams according to the spatial stream capability for each link on which an EMLMR link is established.
  • FIG. 1 is a diagram showing the configuration of a network in the present invention
  • FIG. 1 is a diagram showing a hardware configuration of a communication device according to the present invention
  • FIG. 1 is a diagram showing a functional configuration of a communication device according to the present invention
  • FIG. 1 is a diagram showing an overview of Multi-Link communication
  • FIG. FIG. 10 is a diagram showing a Basic variant Multi-Link element included in an Association Request frame
  • FIG. 10 is a diagram showing the EMLMR Capabilities subfield included in the Common Info field of the Basic variant Multi-Link element
  • Fig. 4 is a flowchart of the processing performed to initiate a frame exchange sequence on an EMLMR link in accordance with the present invention
  • Fig. 4 is a flowchart of the processing performed to initiate a frame exchange sequence on an EMLMR link in accordance with the present invention
  • FIG. 4 is a flowchart of the processing performed to initiate a frame exchange sequence on an EMLMR link in accordance with the present invention
  • FIG. 1 shows the configuration of a network searched by a communication device 101 (hereinafter referred to as Non-AP MLD 101) according to this embodiment.
  • a communication device 102 (hereafter, AP MLD 102 ) is an access point (AP) that has a role of constructing the wireless network 100 .
  • AP MLD 102 can communicate with Non-AP MLD 101 .
  • This embodiment applies to Non-AP MLD 101 and AP MLD 102 .
  • Each of the Non-AP MLD 101 and AP MLD 102 can perform wireless communication conforming to the IEEE802.11be (EHT) standard.
  • IEEE is an abbreviation for Institute of Electrical and Electronics Engineers.
  • the Non-AP MLD 101 and AP MLD 102 can communicate in frequencies of 2.4 GHz band, 5 GHz band and 6 GHz band.
  • the frequency band used by each communication device is not limited to this, and different frequency bands such as the 60 GHz band may be used.
  • the Non-AP MLD 101 and AP MLD 102 can communicate using bandwidths of 20 MHz, 40 MHz, 80 MHz, 160 MHz and 320 MHz.
  • the bandwidth used by each communication device is not limited to this, and different bandwidths such as 240 MHz and 4 MHz may be used.
  • the Non-AP MLD 101 and AP MLD 102 can realize multi-user (MU, Multi User) communication by multiplexing signals of a plurality of users by executing OFDMA communication conforming to the IEEE802.11be standard.
  • OFDMA stands for Orthogonal Frequency Division Multiple Access.
  • RU Resource Unit
  • the AP can communicate with multiple STAs in parallel within the defined bandwidth.
  • radio waves reach different ranges depending on their frequency. It is known that the lower the frequency, the greater the radio wave diffraction and the greater the reach, and the higher the frequency, the less the radio wave diffraction and the shorter the reach. Even if there are obstacles on the way, low-frequency radio waves can reach around the obstacles, but high-frequency radio waves tend to travel in a straight line, making it difficult to reach them.
  • the frequency of 2.4 GHz is often used by other devices, and it is known that microwave ovens emit radio waves in the same frequency band. In this way, even if the same device emits radio waves, it is conceivable that the strength of the radio waves and the SN (Signal/Noise) ratio of the received radio waves may differ depending on the location and environment of the device.
  • Non-AP MLD 101 and AP MLD 102 are compliant with the IEEE802.11be standard, but in addition to this, they may also be compliant with the legacy standard, which is a standard prior to the IEEE802.11be standard.
  • the Non-AP MLD 101 and AP MLD 102 may support at least one of the IEEE802.11a/b/g/n/ac/ax standards.
  • other communication standards such as Bluetooth (registered trademark), NFC, UWB, ZigBee, and MBOA may be supported.
  • UWB is an abbreviation for Ultra Wide Band
  • MBOA is an abbreviation for Multi Band OFDM Alliance.
  • NFC is an abbreviation for Near Field Communication.
  • UWB includes wireless USB, wireless 1394, WiNET, and the like. Moreover, it may correspond to a communication standard for wired communication such as a wired LAN.
  • Specific examples of the AP MLD 102 include, but are not limited to, wireless LAN routers and personal computers (PCs).
  • the AP MLD 102 may be an information processing device such as a wireless chip capable of executing wireless communication conforming to the IEEE802.11be standard.
  • Specific examples of the Non-AP MLD 101 include, but are not limited to, cameras, tablets, smartphones, PCs, mobile phones, video cameras, headsets, and the like.
  • the Non-AP MLD 101 may be an information processing device such as a wireless chip capable of executing wireless communication conforming to the IEEE802.11be standard. Each communication device can communicate using bandwidths of 20 MHz, 40 MHz, 80 MHz, 160 MHz and 320 MHz.
  • the Non-AP MLD 101 and AP MLD 102 establish links via a plurality of frequency channels and perform multi-link communication.
  • the IEEE 802.11 series standards define the bandwidth of each frequency channel as 20 MHz, except for the 60 GHz band. It is defined as 2.16 GHz in the 60 GHz band.
  • the frequency channel is a frequency channel defined in the IEEE802.11 series standard, and in the IEEE802.11 series standard, a plurality of frequencies are used in each of the 2.4 GHz band, 5 GHz band, 6 GHz band, and 60 GHz band.
  • a frequency channel is defined.
  • a bandwidth of 40 MHz or more may be used in one frequency channel by bonding with adjacent frequency channels.
  • the AP MLD 102 has the ability to establish a link with the Non-AP MLD 101 via the first frequency channel in the 2.4 GHz band and communicate.
  • the Non-AP MLD 101 has the ability to establish a link and communicate with the AP MLD 102 via a second frequency channel in the 5 GHz band.
  • the Non-AP MLD 101 performs multi-link communication that maintains the second link via the second frequency channel in parallel with the link via the first frequency channel.
  • AP MLD 102 can improve throughput in communication with Non-AP MLD 101 by establishing links with Non-AP MLD 101 via multiple frequency channels.
  • multiple links with different frequency bands may be established between each communication device.
  • the Non-AP MLD 101 may establish links in each of the 2.4 GHz band, 5 GHz band, and 6 GHz band.
  • links may be established via a plurality of different channels included in the same frequency band.
  • a 6ch link in the 2.4 GHz band may be established as the first link
  • a 1ch link in the 2.4 GHz band may be established as the second link. Links with the same frequency band and links with different frequency bands may coexist.
  • the Non-AP MLD 101 may be able to establish a 1ch link in the 2.4GHz band and a 149ch link in the 5GHz band in addition to the first 6ch link in the 2.4GHz band.
  • a 1ch link in the 2.4GHz band and a 149ch link in the 5GHz band in addition to the first 6ch link in the 2.4GHz band.
  • the number and arrangement of the AP MLD and Non-AP MLD are not limited to this.
  • one non-AP MLD may be added. The frequency band of each link to be established at this time, the number of links, and the frequency width do not matter.
  • the AP MLD 102 and the non-AP MLD 101 transmit and receive data to and from the partner device via multiple links. Data transmission/reception may be performed on one of the links forming the multi-link.
  • the AP MLD 102 and the Non-AP MLD 101 may be able to perform MIMO (Multiple-Input And Multiple-Output) communication.
  • MIMO Multiple-Input And Multiple-Output
  • the AP MLD 102 and the Non-AP MLD 101 have multiple antennas and one transmits different signals from each antenna using the same frequency channel.
  • the receiving side simultaneously receives all signals arriving from multiple streams using multiple antennas, separates and decodes the signals of each stream.
  • MIMO communication By executing MIMO communication in this way, the AP MLD 102 and Non-AP MLD 101 can communicate more data in the same amount of time than when MIMO communication is not executed.
  • the AP MLD 102 and the Non-AP MLD 101 may perform MIMO communication on some links when performing multi-link communication.
  • FIG. 2 shows a hardware configuration example of the Non-AP MLD 101 in this embodiment.
  • Non-AP MLD 101 has storage section 201 , control section 202 , function section 203 , input section 204 , output section 205 , communication section 206 and antenna 207 .
  • a plurality of antennas may be provided.
  • the storage unit 201 is composed of one or more memories such as ROM and RAM, and stores computer programs for performing various operations described later and various information such as communication parameters for wireless communication.
  • ROM Read Only Memory
  • RAM Random Access Memory.
  • storage media such as flexible disks, hard disks, optical disks, magneto-optical disks, CD-ROMs, CD-Rs, magnetic tapes, non-volatile memory cards, DVDs, etc. may be used.
  • the storage unit 201 may include a plurality of memories or the like.
  • the control unit 202 is composed of, for example, one or more processors such as CPU and MPU, and controls the entire Non-AP MLD 101 by executing computer programs stored in the storage unit 201 .
  • the control unit 202 may control the entire Non-AP MLD 101 through cooperation between the computer program stored in the storage unit 201 and an OS (Operating System).
  • the control unit 202 also generates data and signals (radio frames) to be transmitted in communication with other communication devices.
  • CPU is an abbreviation for Central Processing Unit
  • MPU is an abbreviation for Micro Processing Unit.
  • the control unit 202 may be provided with a plurality of processors such as multi-core processors, and the plurality of processors may control the entire Non-AP MLD 101 .
  • control unit 202 controls the function unit 203 to perform predetermined processing such as wireless communication, imaging, printing, and projection.
  • the functional unit 203 is hardware for the Non-AP MLD 101 to execute predetermined processing.
  • the input unit 204 receives various operations from the user.
  • the output unit 205 performs various outputs to the user via a monitor screen or a speaker.
  • the output from the output unit 205 may be display on a monitor screen, audio output from a speaker, vibration output, or the like.
  • both the input unit 204 and the output unit 205 may be realized by one module like a touch panel.
  • the input unit 204 and the output unit 205 may be integrated with the Non-AP MLD 101 or may be separate.
  • the communication unit 206 controls wireless communication conforming to the IEEE802.11be standard. In addition to the IEEE802.11be standard, the communication unit 206 may control wireless communication conforming to other IEEE802.11 series standards, and wired communication such as a wired LAN. The communication unit 206 controls the antenna 207 to transmit and receive signals for wireless communication generated by the control unit 202 .
  • the Non-AP MLD 101 may control wireless communication in compliance with these communication standards. Also, if the Non-AP MLD 101 can perform wireless communication conforming to a plurality of communication standards, it may be configured to have separate communication units and antennas corresponding to each communication standard.
  • the Non-AP MLD 101 communicates data such as image data, document data, and video data with the Non-AP MLD 101 via the communication unit 206 .
  • the antenna 207 may be configured separately from the communication unit 206, or may be configured together with the communication unit 206 as one module.
  • Antenna 207 is an antenna capable of communication in the 2.4 GHz band, 5 GHz band, and 6 GHz band.
  • the Non-AP MLD 101 may have one antenna in this embodiment, it may have three antennas. Alternatively, different antennas may be provided for each frequency band. Also, if the Non-AP MLD 101 has multiple antennas, it may have a communication unit 206 corresponding to each antenna.
  • the AP MLD 102 has the same hardware configuration as the Non-AP MLD 101.
  • FIG. 3 shows a block diagram of the functional configuration of the Non-AP MLD 101 in this embodiment.
  • the AP MLD 102 also has the same configuration.
  • the Non-AP MLD 101 is assumed to have a wireless LAN control section 301 .
  • the number of wireless LAN control units is not limited to one, and may be two, or three or more.
  • Non-AP MLD 101 further has frame processing section 302 , EMLMR management section 303 , UI control section 304 and storage section 305 , and radio antenna 306 .
  • the wireless LAN control unit 301 includes an antenna and circuits for transmitting and receiving wireless signals to and from other wireless LAN devices, and programs for controlling them.
  • the wireless LAN control unit 301 executes wireless LAN communication control based on frames generated by the frame processing unit 302 according to the IEEE802.11 standard series.
  • the frame processing unit 302 processes wireless control frames transmitted and received by the wireless LAN control unit 301 .
  • the content of the radio control generated and analyzed by the frame processing unit 302 may be restricted by settings saved in the storage unit 305 . Also, it may be changed by user setting from the UI control unit 304 .
  • the information of the generated frame is sent to the wireless LAN control section 301 and transmitted to the communication partner.
  • the frame information received by the wireless LAN control unit 301 is passed to the frame processing unit 302 and analyzed.
  • the EMLMR management unit 303 manages and controls which links are EMLMR links. Administrative controls include establishment of EMLMR links and deletion of EMLMR links.
  • Estimatment of an EMLMR link refers to the state in which an EMLMR link is specified at the time of establishing a Multi-Link or after establishing a Multi-Link. Deleting an EMLMR link refers to removing the state of a link identified as an EMLMR link.
  • the UI control unit 304 includes hardware related to the user interface, such as a touch panel or buttons for receiving operations on the Non-AP MLD 101 by the user (not shown) of the Non-AP MLD 101, and programs that control them. Note that the UI control unit 304 also has a function of presenting information to the user, such as displaying images or outputting audio.
  • the storage unit 305 is a storage device that can be composed of a ROM and a RAM that store programs and data for the Non-AP MLD 101 to operate.
  • Fig. 4 shows the configurations of AP MLD and Non-AP MLD that perform Multi-Link communication.
  • a communication device that operates with Multi-Link is called an MLD (Multi-Link Device), and one MLD has multiple STAs and APs (Access Points) linked to each Link.
  • An MLD with AP functions is called AP MLD, and an MLD without AP functions is called Non-AP MLD.
  • AP1 401 and STA1 404 in FIG. 4 establish Link1 407 via the first frequency channel.
  • AP2 402 and STA2 405 establish Link2 408 over a second frequency channel
  • AP3 403 and STA3 406 establish Link3 409 over a third frequency channel.
  • the AP MLD and the Non-AP MLD establish connections via frequency channels in the sub-GHz, 2.4 GHz, 3.6 GHz, 4.9 and 5 GHz, 60 GHz, and 6 GHz bands.
  • the AP MLD and Non-AP MLD maintain the connection of the second link through the second frequency channel in parallel with the connection of the first link through the first frequency channel.
  • multiple connections may be established via different frequency channels in the same frequency band.
  • each of Link1, Link2, and Link3 is assigned the number of spatial streams according to the spatial stream capability (per-link spatial stream capability). Assuming that there are six antennas, each link uses two antennas. That is, the spatial stream capability of each link is "2". As will be described later, when Link1 and Link2 and/or Link3 are EMLMR links, the spatial stream capability during EMLMR operation of Link1 is "4" or "6", and Link2 and/or Link3 is "0". becomes. As a result, it becomes possible to transmit and receive each data obtained by dividing one data or a plurality of different data via Link 1 using multiple antennas at the same timing and on the same frequency so as not to interfere spatially.
  • the number of spatial streams is determined by the EHT Capabilities element or EHT Operation element included in the frame declaring that the no-AP MLD supports EHT. Specifically, it is determined based on the value of the Supported EHT-MCS And NSS Set field or Basic EHT-MCS And NSS Set field included in the EHT Capabilities element or EHT Operation element.
  • Fig. 5A shows the Basic Variant Multi-Link element in the Association Request frame.
  • FIG. 5B shows the EMLMR Capabilities subfield contained in the Common Info field of the Basic variant Multi-Link element. If the EMLMR Support field is "0", it indicates that EMLMR is not supported, and if it is "1", it indicates that EMLMR is supported. When Multi-Link communication is established, all links establish EMLMR links.
  • the Basic variant Multi-Link element is described as being included in the Association Request frame when establishing the Multi-Link, but it may also be included in the probe request frame, probe response frame, association response frame, beacon frame, etc. good.
  • An EMLMR link is established by sending, receiving, or exchanging a frame containing the EMLMR Support subfield with a value of 1 on each link that configures the Multi-Link. At that time, the EMLMR link may be established only with some of the links that make up the Multi-Link by doing this with only some of the links. Also, an EMLMR link may be established over multiple links, including other links, by transmitting, receiving, or exchanging a frame containing an EMLMR Support subfield with a value of 1 over one link. In that case, the EMLMR links may be established with all the links that make up the Multi-Link, or the EMLMR links may be established with only some of the links.
  • the link that establishes the EMLMR link is specified by including information for identifying the link that establishes the EMLMR link in the frame that includes the EMLMR Support subfield with a value of 1. May be specified.
  • a link ID (Link Identifier), a BSSID (Basic Service Set Identifier) corresponding to the link, a TID (Traffic Identifier), and the like can be used.
  • the EMLMR Supported MCS And NSS Set subfield indicates the maximum number of spatial streams when transmitting and receiving PPDU during EMLMR operation.
  • ELMMR operation of a specific link reduces the number of spatial streams assigned to links other than the EMLMR-operating link, and allows the specific link to transmit and receive PPDUs with the increased number of spatial streams.
  • an instruction was given to establish the EMLMR link when establishing the Multi-Link the establishment of the EMLMR link may be specified in an Action frame that is transmitted after the Multi-Link is established.
  • a frame called an EML (Enhanced Multi-Link) Operating Mode Notification frame should be prepared and instructed to establish an EMLMR link.
  • EML Enhanced Multi-Link
  • those frames are The sent and received links establish an EMLMR link.
  • some or all of the other links that make up the multi-link may establish the EMLMR link.
  • link establishes an EMLMR link.
  • some or all of the other links that make up the multi-link may establish the EMLMR link.
  • the link that establishes the EMLMR link may be specified by including information for identifying the link that establishes the EMLMR link in the EML Operating Mode Notification frame.
  • a link ID (Link Identifier), a BSSID (Basic Service Set Identifier) corresponding to the link, a TID (Traffic Identifier), and the like can be used.
  • the Non-AP MLD may instruct the establishment of the EMLMR link.
  • the EML Operating Mode Notification frame is an Action frame that non-AP MLD transmits in order to operate in EMLMR mode. It is the frame that needs to be sent to operate in EMLMR mode after it is deleted later.
  • FIG. 6 The main movement below is the movement of the frame processing unit 302 or the ELMMR control unit 303, but the movement as a communication device is the movement of the AP MLD 102. Therefore, the following description will be made with the control unit 202 of the communication apparatus as the subject of operation. It should be noted that this movement may be executed by the non AP MLD 101.
  • the present invention expresses that the EMLMR link that performs the ELMMR operation continues the frame exchange sequence.
  • the control unit 202 determines that there is data to be transmitted to the communication device that is the communication partner.
  • Data to be transmitted includes data requested to be transmitted from an arbitrary communication device to a communication device serving as a communication partner, or data generated by the function unit 203 .
  • the control unit 202 determines whether or not multiple EMLMR links have been established. For example, if not only Link1 but also Link2 are established, it is determined as Yes, and if only Link1 is established, it is determined as No.
  • a conceivable method for checking whether multiple EMLMR links have been established is to determine whether each of the multiple links has transmitted and received a frame containing an EMLMR Support subfield with a value of 1.
  • the EMLMR Support subfield with a value of 1 and the frame containing the information for identifying the link that establishes the EMLMR link are exchanged, and the link in which the information for identifying the link in the frame sent by both sides matches If there are multiple, it may be determined that multiple ELMMR links have been established.
  • EML Operating instead of the frame containing the information for identifying the link that establishes the EMLMR link and the EMLMR Support subfield, EML Operating that contains information for identifying the link that establishes the EMLMR link A Mode Notification frame may be transmitted.
  • the process proceeds to S8.
  • the control unit 202 transmits a start frame via the EMLMR link.
  • the start frame of the ELMMR link is the first frame transmitted in the frame exchange sequence defined in the IEEE802.11 standard Annex G. For example, there are RTS (Request To Send) frame and MU-RTS Trigger frame. This start frame serves as an instruction to start frame exchange on the EMLMR link after the EMLMR link is established.
  • the control unit 202 determines whether or not a response frame has been received.
  • the response frame of the ELMMR link is a frame transmitted as a response from the communication device that received the start frame in the frame exchange sequence defined in the IEEE802.11 standard Annex G. For example, there is a CTS (Clear To Send) frame.
  • the control unit 202 selects a space that maximizes the number of spatial streams presented in the EMLMR Supported MCS AND NSS SET subfield of the Common Info field of the Basic variant Multi-Link element transmitted by the non-AP MLD before the start of this flow. Start frame exchange sequence with stream number. As a result, one EMLMR link performs EMLMR operation. In S17, it is determined whether or not the frame exchange sequence has ended. The description so far has been made assuming a so-called normal ELMMR operation.
  • S2 based on the communication performance prediction, it is determined whether or not the condition for transmitting the start frame over a plurality of ELMMR links is met.
  • a method of prediction based on the degree of congestion of the channel corresponding to each link, that is, the number of non-AP MLDs connected to the AP MLD can be considered. Also, a method of measuring the received signal strength and/or the signal-to-noise power ratio of each link and predicting the communication performance of each link is conceivable.
  • the control unit 202 transmits a start frame over a plurality of EMLMR links.
  • the number of spatial streams specified at this time specifies the number of spatial streams according to the spatial stream capability of each link. That is, it is the number determined by the EHT Capabilities element or the EHT Operation element included in the frame declaring that the non-AP MLD supports EHT.
  • Other links that have not established an EMLMR link are not links that perform a frame exchange sequence.
  • the control unit 202 determines whether or not a response frame has been received on at least one EMLMR link. If no response frame is received within the specified period, it is determined that the frame exchange sequence will not be executed on the ELMMR link, and the process ends. On the other hand, when a response frame is received, the process proceeds to S5. In S5, the control unit 202 determines whether or not there are a plurality of EMLMR links that have received the response frame. When S5 is determined as No, the process proceeds to S10. If the determination in S5 is Yes, the process proceeds to S6. In S6, the control unit 202 performs frame exchange with the number of spatial streams according to the spatial stream capability of each link on the EMLMR link that received the response frame. In S7, it is determined whether or not the frame exchange sequence has ended, and if the determination is Yes, the process ends.
  • this flow is executed after the control unit 202 receives the start frame on the ELMMR link.
  • the control unit 202 determines whether or not another start frame has been received on an EMLMR link other than the selected EMLMR link during the period from the start of reception of the start frame to the start of transmission of the response frame. to detect If determined as No in S12, the process proceeds to S18.
  • the control unit 202 transmits a response frame to the received start frame. The rest is as described with reference to FIG.
  • S13 based on the prediction of communication performance, it is determined whether or not conditions for transmitting response frames over a plurality of EMLMR links are met.
  • a method of predicting communication performance based on the degree of congestion of the channel corresponding to each link that is, the number of non-AP MLDs connected to the AP MLD, can be considered.
  • a method of measuring the received signal strength and/or the signal-to-noise power ratio of each link and predicting the communication performance of each link is conceivable.
  • the control unit 202 selects one EMLMR link from the EMLMR links that have transmitted or received the start frame based on a predetermined criterion. EMLMR operations are performed on the selected EMLMR link.
  • the determination method based on the predetermined criteria is the following determination method. There are roughly three determination methods: (1) selection based on information for identifying the link (link ID, etc.), (2) selection based on the order in which the EMLMR links were established, and (3) communication performance. (the degree of congestion of the channel corresponding to the link (the number of STAs connected to the AP), etc.).
  • Link ID is an ID assigned to each link by establishing Multi-Link.
  • IDs are assigned in the order in which link IDs are established, the link with the lowest link ID number among the multiple EMLMR links is selected as one EMLMR link. Alternatively, a link with a higher link ID number may be selected as one EMLMR link.
  • the selection is based on the order in which the ELMMR links were established, more specifically, the selection is based on at least one of the following orders.
  • - The order in which frames containing the EMLMR Support subfield with a value of 1 were transmitted -
  • the frames containing the EMLMR Support subfield with a value of 1 were transmitted and
  • the order in which the EML Operating Mode Notification frames containing the EMLMR Mode subfield with a value of 1 were sent (for non-AP MLD) -
  • the order in which EML Operating Mode Notification frames containing the EMLMR Mode subfield with a value of 1 are received (in the case of AP MLD)
  • the order in which a frame containing an EMLMR Support subfield with a value of 1 is received and an EML Operating Mode Notification frame containing an EMLMR Mode subfield with a value of 1 is transmitted (in the case of non-AP MLD)
  • the EMLMR link identified by that information may be selected based on the order in which the information is transmitted or received. Also, the EMLMR link identified by the information may be selected based on the order in which the transmitted information for identifying the link establishing the EMLMR link matches the received information.
  • the EMLMR link with the link order of 1 is the EMLMR link selected according to the predetermined criteria. For example, if the EMLMR links are selected in the order in which the frames containing the EMLMR Support subfield with a value of 1 are received, the AP MLD receives the frame containing the EMLMR Support subfield with a value of 1 on Link1, and then on Link2. , Link1 is assigned the order of 1, so Link1 is selected. As described in other embodiments, when selecting a plurality of EMLMR links, the links are selected in descending order of order up to a prescribed value that allows the EMLMR links to be established.
  • the degree of congestion of the channel corresponding to each EMLMR link is measured, and the EMLMR link with the lowest degree of congestion is selected as one EMLMR link.
  • a measuring method there is a method of judging by the number of STAs connected to the AP, and a method of obtaining the channel occupancy rate in each link of the Multi-Link can be considered.
  • the process proceeds to S14.
  • the control unit 202 transmits response frames through the plurality of EMLMR links from which the start frame was received, and transitions to S15.
  • the control unit 202 executes frame exchange with the number of spatial streams according to the spatial stream capability of each link on the EMLMR link that transmitted the response frame.
  • a specific method for proper control is a control method for exchanging frames on one EMLMR link or on a plurality of EMLMR links depending on whether or not to exchange frame exchange sequences on a plurality of EMLMR links. Continue the frame exchange sequence on the selected EMLMR link, and if there is an unselected EMLMR link, temporarily stop the frame exchange sequence on that EMLMR link.
  • step S5 of FIG. 6 it is determined in S5 of FIG. 6 whether or not there are a plurality of EMLMR links that have received the response frame, and depending on the result, the process transitions to either step S6 or S10. However, S5 may be skipped. In this case, it is determined in S4 whether a response frame has been received on at least one ELMMR link, and if the result is Yes, the process proceeds to step S6.
  • a plurality of EMLMR links may be operated in EMLMR mode. For example, assume that four links, Link1 to Link4, are formed between a communication device and a communication device on the other end.
  • Link1 and Link2 are operated as an EMLMR link, there is a method of allocating the spatial stream of Link3 to Link1 and the spatial stream of Link4 to Link2. As a result, the number of spatial streams of Link1 and Link2 increases, while the number of spatial streams of Link3 and Link4 decreases.
  • a plurality of EMLMR links that increase the number of spatial streams can exist, a plurality of EMLMR links can be selected based on a predetermined criterion in S8 of FIG. 6 and S16 of FIG.
  • each selected EMLMR link has received a response frame
  • each EMLMR link that has received the response frame performs an EMLMR operation.
  • the response frame may be transmitted through each EMLMR link selected in S18 of FIG. 7, and the EMLMR operation may be executed in each EMLMR link that transmitted the response frame in S10.
  • the selection when the selection is made based on the order in which the ELMMR links are established, the selection is made from the lowest order. You can choose.
  • the Basic variant Multi-Link element was described, but it may be a Basic Multi-Link element, and the EMLMR Supported MCS And NSS Set subfield may be an EMLMR Rx NSS subfield and an EMLMR Tx NSS subfield.
  • the EMLMR Rx NSS subfield indicates the maximum number of spatial streams in reception and the EMLMR Tx NSS subfield indicates the maximum number of spatial streams in transmission.
  • a recording medium recording the program code of the software that realizes the above functions is supplied to the system or apparatus, and the computer (CPU, MPU) of the system or apparatus reads and executes the program code stored in the recording medium.
  • the program code itself read out from the storage medium implements the functions of the above-described embodiments, and the storage medium storing the program code constitutes the above-described device.
  • Examples of storage media for supplying program codes include flexible disks, hard disks, optical disks, magneto-optical disks, CD-ROMs, CD-Rs, magnetic tapes, non-volatile memory cards, ROMs, and DVDs. can.
  • OS is an abbreviation for Operating System.
  • the program code read from the storage medium is written to the memory provided in the function expansion board inserted into the computer or the function expansion unit connected to the computer. Then, based on the instructions of the program code, the CPU provided in the function expansion board or function expansion unit may perform part or all of the actual processing to realize the above functions.
  • the present invention supplies a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in the computer of the system or apparatus reads and executes the program. It can also be realized by processing to It can also be implemented by a circuit (for example, ASIC) that implements one or more functions.
  • a circuit for example, ASIC

Abstract

The present invention enables the provision of a communication device for executing a frame exchange sequence with a number of spatial streams that accords with the spatial stream capability of each link for which an EMLMR link is established.

Description

通信装置、通信装置の制御方法、およびそのプログラムCOMMUNICATION DEVICE, COMMUNICATION DEVICE CONTROL METHOD, AND THEREOF
 本発明は、無線通信を行う通信装置、通信装置の制御方法、およびそのプログラムに関する。 The present invention relates to a communication device that performs wireless communication, a control method for the communication device, and a program therefor.
 近年の通信されるデータ量の増加に伴い、無線LAN(Local Area Network)等の通信技術の開発が進められている。無線LANの主要な通信規格として、IEEE(Institute of Electrical and Electronics Engineers)802.11規格シリーズが知られている。IEEE802.11規格シリーズには、IEEE802.11a/b/g/n/ac/ax等の規格が含まれる。例えば、最新規格のIEEE802.11axでは、OFDMA(直交周波数多元接続)を用いて、最大9.6ギガビット毎秒(Gbps)という高いピークスループットに加え、混雑状況下での通信速度を向上させる技術が規格化されている(特許文献1参照)。なお、OFDMAは、Orthogonal frequency-division multiple accessの略である。 With the recent increase in the amount of data being communicated, the development of communication technologies such as wireless LAN (Local Area Network) is underway. The IEEE (Institute of Electrical and Electronics Engineers) 802.11 standard series is known as a major wireless LAN communication standard. The IEEE 802.11 standard series includes standards such as IEEE 802.11a/b/g/n/ac/ax. For example, the latest standard, IEEE802.11ax, uses OFDMA (orthogonal frequency multiple access) to achieve a high peak throughput of up to 9.6 gigabits per second (Gbps), as well as a technology that improves communication speeds under congested conditions. (see Patent Document 1). Note that OFDMA is an abbreviation for Orthogonal frequency-division multiple access.
 さらなるスループット向上や周波数利用効率の改善、通信レイテンシ改善を目指した後継規格として、IEEE802.11beと呼ばれるtask groupが発足した。 A task group called IEEE 802.11be was launched as a successor standard aimed at further improving throughput, improving frequency utilization efficiency, and improving communication latency.
 IEEE802.11beでは、1台のAPが1台のSTA(Station)と2.4GHz、5GHz、6GHz帯等の周波数バンドで複数のLinkを構築し、同時通信を行うMulti-Link通信が検討されている。Multi-Link通信におけるAPはAP MLD(Access point multi-link device)と呼称され、STAはnon-AP MLD(non-Access point multi-link device)と呼称される。 In IEEE802.11be, multi-link communication is being considered, in which one AP constructs multiple links with one STA (station) in frequency bands such as 2.4 GHz, 5 GHz, and 6 GHz, and performs simultaneous communication. there is An AP in multi-link communication is called an AP MLD (Access point multi-link device), and an STA is called a non-AP MLD (non-Access point multi-link device).
 また、IEEE 802.11beでは、Multi-Link通信におけるEnhanced multi-link multi-radio(EMLMR)動作が検討されている。EMLMRモードで動作するnon-AP MLDは、EMLMRリンク毎の空間ストリームケイパビリティ(per-link spatial stream capability)に従った空間ストリーム数で初期フレーム交換(initial frame exchange)した後、初期フレーム交換を行ったリンクにおいてフレーム交換シーケンス(frame exchange sequence)の終了まで次のように動作する。その動作とは、Basic variant Multi-LinkエレメントのCommon InfoフィールドのEMLMR SUPPORTED MCS AND NSS SETサブフィールドで提示した値を最大とする空間ストリーム数でPPDU(Physical layer convergence protocol data unit)を受信し、EMLMR SUPPORTED MCS AND NSS SETサブフィールドで提示した空間ストリーム数でPPDUを送信する動作である。 Also, in IEEE 802.11be, enhanced multi-link multi-radio (EMLMR) operation in multi-link communication is under consideration. The non-AP MLD operating in EMLMR mode performs initial frame exchange after initial frame exchange with the number of spatial streams according to the per-link spatial stream capability for each EMLMR link. Until the end of the frame exchange sequence on the link, it operates as follows. The operation is to receive a PPDU (Physical layer convergence protocol data unit) with the number of spatial streams that maximizes the value presented in the EMLMR supported MCS AND NSS SET subfield of the Common Info field of the Basic variant Multi-Link element, and This is the operation of transmitting PPDU with the number of spatial streams indicated in the supported MCS AND NSS SET subfield.
特開2018-50133号公報JP 2018-50133 A
 複数のEMLMRリンクが確立されている場合に、EMLMRリンクが確立されているリンク毎の空間ストリームケイパビリティに従った空間ストリーム数でフレーム交換シーケンスを実行することが考えられていなかった。  When multiple EMLMR links are established, it has not been considered to execute the frame exchange sequence with the number of spatial streams according to the spatial stream capability for each link on which the EMLMR links are established.
 本願発明は、EMLMRリンクが確立されているリンク毎の空間ストリームケイパビリティに従った空間ストリーム数でフレーム交換シーケンスを実行する通信装置を提供することを目的とする。 An object of the present invention is to provide a communication device that executes a frame exchange sequence with the number of spatial streams according to the spatial stream capability for each link on which an EMLMR link is established.
 本願発明の通信装置は、IEEE802.11シリーズ規格に準拠したMulti-Link Deviceとして動作する通信装置であって、第1のEMLMR(Enhanced multi-link multi-radio)リンクおよび第2のEMLMR(Enhanced multi-link multi-radio)リンクの2つのリンクでフレーム交換シーケンスを実行する場合、特定のリンクの空間ストリームを前記第1のEMLMRリンクおよび前記第2のEMLMRリンクに割り当てることなく、前記第1のEMLMRリンクおよび前記第2のEMLMRリンクの夫々の空間ストリーム数でフレーム交換シーケンスを実行するように制御する制御手段と、を備えることを特徴とする。 A communication device according to the present invention is a communication device that operates as a multi-link device conforming to the IEEE802.11 series standard, and includes a first enhanced multi-link multi-radio (EMLMR) link and a second enhanced multi-radio (EMLMR) link. -link multi-radio) link, without allocating a particular link's spatial stream to said first EMLMR link and said second EMLMR link when performing a frame exchange sequence on two links; and control means for controlling execution of a frame exchange sequence with a respective number of spatial streams of the link and said second EMLMR link.
 本発明によれば、EMLMRリンクが確立されているリンク毎の空間ストリームケイパビリティに従った空間ストリーム数でフレーム交換シーケンスを実行する通信装置を提供することが可能となる。 According to the present invention, it is possible to provide a communication device that executes a frame exchange sequence with the number of spatial streams according to the spatial stream capability for each link on which an EMLMR link is established.
本発明におけるネットワークの構成を示す図である。1 is a diagram showing the configuration of a network in the present invention; FIG. 本発明における通信装置のハードウェア構成を示す図である。1 is a diagram showing a hardware configuration of a communication device according to the present invention; FIG. 本発明における通信装置の機能構成を示す図である。1 is a diagram showing a functional configuration of a communication device according to the present invention; FIG. Multi-Link通信の概要を示す図である。1 is a diagram showing an overview of Multi-Link communication; FIG. Association Requestフレームに含まれるBasic variant Multi-Link elementを示す図である。FIG. 10 is a diagram showing a Basic variant Multi-Link element included in an Association Request frame; Basic variant Multi-LinkエレメントのCommon Infoフィールドに含まれるEMLMR Capabilitiesサブフィールドを示す図である。FIG. 10 is a diagram showing the EMLMR Capabilities subfield included in the Common Info field of the Basic variant Multi-Link element; 本発明におけるEMLMRリンクでフレーム交換シーケンスを開始するために実行する処理のフローチャートである。Fig. 4 is a flowchart of the processing performed to initiate a frame exchange sequence on an EMLMR link in accordance with the present invention; 本発明におけるEMLMRリンクでフレーム交換シーケンスを開始するために実行する処理のフローチャートである。Fig. 4 is a flowchart of the processing performed to initiate a frame exchange sequence on an EMLMR link in accordance with the present invention;
 以下、添付の図面を参照して、本発明の実施形態を詳細に説明する。なお、以下の実施形態において示す構成は一例に過ぎず、本発明は図示された構成に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the configurations shown in the following embodiments are merely examples, and the present invention is not limited to the illustrated configurations.
 (無線通信システムの構成)
 図1は、本実施形態にかかる通信装置101(以下、Non-AP MLD101)が探索するネットワークの構成を示す。通信装置102(以下、AP MLD102)は、無線ネットワーク100を構築する役割を有するアクセスポイント(AP)である。AP MLD102はNon-AP MLD101と通信可能である。本実施形態はNon-AP MLD101、AP MLD102に適用する。
(Configuration of wireless communication system)
FIG. 1 shows the configuration of a network searched by a communication device 101 (hereinafter referred to as Non-AP MLD 101) according to this embodiment. A communication device 102 (hereafter, AP MLD 102 ) is an access point (AP) that has a role of constructing the wireless network 100 . AP MLD 102 can communicate with Non-AP MLD 101 . This embodiment applies to Non-AP MLD 101 and AP MLD 102 .
 Non-AP MLD101、AP MLD102の各々は、IEEE802.11be(EHT)規格に準拠した無線通信を実行することができる。なお、IEEEはInstitute of Electrical and Electronics Engineersの略である。Non-AP MLD101、AP MLD102は、2.4GHz帯、5GHz帯、および6GHz帯の周波数において通信することができる。各通信装置が使用する周波数帯は、これに限定されるものではなく、例えば60GHz帯のように、異なる周波数帯を使用してもよい。また、Non-AP MLD101、AP MLD102は、20MHz、40MHz、80MHz、160MHz、および320MHzの帯域幅を使用して通信することができる。各通信装置が使用する帯域幅は、これに限定されるものではなく、例えば240MHzや4MHzのように、異なる帯域幅を使用してもよい。 Each of the Non-AP MLD 101 and AP MLD 102 can perform wireless communication conforming to the IEEE802.11be (EHT) standard. Note that IEEE is an abbreviation for Institute of Electrical and Electronics Engineers. The Non-AP MLD 101 and AP MLD 102 can communicate in frequencies of 2.4 GHz band, 5 GHz band and 6 GHz band. The frequency band used by each communication device is not limited to this, and different frequency bands such as the 60 GHz band may be used. Also, the Non-AP MLD 101 and AP MLD 102 can communicate using bandwidths of 20 MHz, 40 MHz, 80 MHz, 160 MHz and 320 MHz. The bandwidth used by each communication device is not limited to this, and different bandwidths such as 240 MHz and 4 MHz may be used.
 Non-AP MLD101、AP MLD102は、IEEE802.11be規格に準拠したOFDMA通信を実行することで、複数のユーザの信号を多重する、マルチユーザ(MU、Multi User)通信を実現することができる。OFDMAは、Orthogonal Frequency Division Multiple Access(直交周波数分割多元接続)の略である。OFDMA通信では、分割された周波数帯域の一部(RU、Resource Unit)が各STAにそれぞれ重ならないように割り当てられ、各STAの搬送波が直交する。そのため、APは規定された帯域幅の中で複数のSTAと並行して通信することができる。 The Non-AP MLD 101 and AP MLD 102 can realize multi-user (MU, Multi User) communication by multiplexing signals of a plurality of users by executing OFDMA communication conforming to the IEEE802.11be standard. OFDMA stands for Orthogonal Frequency Division Multiple Access. In OFDMA communication, a part of the divided frequency band (RU, Resource Unit) is assigned to each STA so as not to overlap each other, and the carriers of each STA are orthogonal. Therefore, the AP can communicate with multiple STAs in parallel within the defined bandwidth.
 一般的に電波は周波数によって届く範囲が異なり、周波数が低いほど電波の回折が大きく遠くまで届き、周波数が高いほど電波の回折が小さく届く距離も短いことが知られている。途中障害物があったとしても、周波数が低い電波は障害物を回り込んで届くが、周波数が高い電波は直進性が高いために回り込みづらく、届かないことがある。一方で2.4GHzの周波数は他の機器が使用することも多く、電子レンジが同じ周波数帯の電波を発することが知られている。このように同じ機器が発する電波であっても、配置する場所や環境によっては周波数帯によって届く電波の強さやSN(Signal/Noise)比に違いが生じることが考えられる。 In general, radio waves reach different ranges depending on their frequency. It is known that the lower the frequency, the greater the radio wave diffraction and the greater the reach, and the higher the frequency, the less the radio wave diffraction and the shorter the reach. Even if there are obstacles on the way, low-frequency radio waves can reach around the obstacles, but high-frequency radio waves tend to travel in a straight line, making it difficult to reach them. On the other hand, the frequency of 2.4 GHz is often used by other devices, and it is known that microwave ovens emit radio waves in the same frequency band. In this way, even if the same device emits radio waves, it is conceivable that the strength of the radio waves and the SN (Signal/Noise) ratio of the received radio waves may differ depending on the location and environment of the device.
 なお、Non-AP MLD101、AP MLD102は、IEEE802.11be規格に対応するとしたが、これに加えて、IEEE802.11be規格より前の規格であるレガシー規格に対応していてもよい。具体的には、Non-AP MLD101、AP MLD102は、IEEE802.11a/b/g/n/ac/ax規格の少なくともいずれか一つに対応していてもよい。また、IEEE802.11シリーズ規格に加えて、Bluetooth(登録商標)、NFC、UWB、ZigBee、MBOAなどの他の通信規格に対応していてもよい。なお、UWBはUltra Wide Bandの略であり、MBOAはMulti Band OFDM Allianceの略である。また、NFCはNear Field Communicationの略である。UWBには、ワイヤレスUSB、ワイヤレス1394、WiNETなどが含まれる。また、有線LANなどの有線通信の通信規格に対応していてもよい。AP MLD102の具体例としては、無線LANルーターやパーソナルコンピュータ(PC)などが挙げられるが、これらに限定されない。 It should be noted that the Non-AP MLD 101 and AP MLD 102 are compliant with the IEEE802.11be standard, but in addition to this, they may also be compliant with the legacy standard, which is a standard prior to the IEEE802.11be standard. Specifically, the Non-AP MLD 101 and AP MLD 102 may support at least one of the IEEE802.11a/b/g/n/ac/ax standards. In addition to the IEEE802.11 series standard, other communication standards such as Bluetooth (registered trademark), NFC, UWB, ZigBee, and MBOA may be supported. UWB is an abbreviation for Ultra Wide Band, and MBOA is an abbreviation for Multi Band OFDM Alliance. Also, NFC is an abbreviation for Near Field Communication. UWB includes wireless USB, wireless 1394, WiNET, and the like. Moreover, it may correspond to a communication standard for wired communication such as a wired LAN. Specific examples of the AP MLD 102 include, but are not limited to, wireless LAN routers and personal computers (PCs).
 また、AP MLD102は、IEEE802.11be規格に準拠した無線通信を実行することができる無線チップなどの情報処理装置であってもよい。また、Non-AP MLD101の具体的な例としては、カメラ、タブレット、スマートフォン、PC、携帯電話、ビデオカメラ、ヘッドセットなどが挙げられるが、これらに限定されない。また、Non-AP MLD101は、IEEE802.11be規格に準拠した無線通信を実行することができる無線チップなどの情報処理装置であってもよい。各通信装置は、20MHz、40MHz、80MHz、160MHz、および320MHzの帯域幅を使用して通信することができる。 Also, the AP MLD 102 may be an information processing device such as a wireless chip capable of executing wireless communication conforming to the IEEE802.11be standard. Specific examples of the Non-AP MLD 101 include, but are not limited to, cameras, tablets, smartphones, PCs, mobile phones, video cameras, headsets, and the like. Also, the Non-AP MLD 101 may be an information processing device such as a wireless chip capable of executing wireless communication conforming to the IEEE802.11be standard. Each communication device can communicate using bandwidths of 20 MHz, 40 MHz, 80 MHz, 160 MHz and 320 MHz.
 また、Non-AP MLD101、AP MLD102は、複数の周波数チャネルを介してリンクを確立し、通信するMulti-Link通信を実行する。IEEE802.11シリーズ規格では、60GHz帯を除いて各周波数チャネルの帯域幅は20MHzとして定義されている。60GHz帯では2.16GHzとして定義されている。ここで、周波数チャネルとは、IEEE802.11シリーズ規格に定義された周波数チャネルであって、IEEE802.11シリーズ規格では、2.4GHz帯、5GHz帯、6GHz帯、60GHz帯の各周波数帯に複数の周波数チャネルが定義されている。なお、隣接する周波数チャネルとボンディングすることで、1つの周波数チャネルにおいて40MHz以上の帯域幅を利用してもよい。 Also, the Non-AP MLD 101 and AP MLD 102 establish links via a plurality of frequency channels and perform multi-link communication. The IEEE 802.11 series standards define the bandwidth of each frequency channel as 20 MHz, except for the 60 GHz band. It is defined as 2.16 GHz in the 60 GHz band. Here, the frequency channel is a frequency channel defined in the IEEE802.11 series standard, and in the IEEE802.11 series standard, a plurality of frequencies are used in each of the 2.4 GHz band, 5 GHz band, 6 GHz band, and 60 GHz band. A frequency channel is defined. A bandwidth of 40 MHz or more may be used in one frequency channel by bonding with adjacent frequency channels.
 例えば、AP MLD102はNon-AP MLD101と2.4GHz帯の第1の周波数チャネルを介したリンクを確立し、通信する能力がある。Non-AP MLD101はこれと並行してAP MLD102と5GHz帯の第2の周波数チャネルを介したリンクを確立し、通信する能力がある。この場合に、Non-AP MLD101は、第1の周波数チャネルを介したリンクと並行して、第2の周波数チャネルを介した第2のリンクを維持するMulti-Link通信を実行する。このようにAP MLD102は複数の周波数チャネルを介したリンクをNon-AP MLD101と確立することで、Non-AP MLD101との通信におけるスループットを向上させることができる。 For example, the AP MLD 102 has the ability to establish a link with the Non-AP MLD 101 via the first frequency channel in the 2.4 GHz band and communicate. In parallel with this, the Non-AP MLD 101 has the ability to establish a link and communicate with the AP MLD 102 via a second frequency channel in the 5 GHz band. In this case, the Non-AP MLD 101 performs multi-link communication that maintains the second link via the second frequency channel in parallel with the link via the first frequency channel. In this way, AP MLD 102 can improve throughput in communication with Non-AP MLD 101 by establishing links with Non-AP MLD 101 via multiple frequency channels.
 なお、各通信機器間のリンクはMulti-link通信において、周波数帯の異なるリンクを複数確立してもよい。例えば、Non-AP MLD101は2.4GHz帯、5GHz帯、6GHz帯それぞれでリンクを確立できるようにしてもよい。あるいは同じ周波数帯に含まれる複数の異なるチャネルを介してリンクを確立できるようにしてもよい。例えば2.4GHz帯における6chのリンクを第1のリンクとして、これに加えて2.4GHz帯における1chのリンクを第2のリンクとして確立できるようにしてもよい。なお、周波数帯が同じリンクと、異なるリンクとが混在していてもよい。例えば、Non-AP MLD101は2.4GHz帯における6chの第一のリンクに加えて、2.4GHz帯の1chのリンクと、5GHz帯における149chのリンクを確立できてもよい。Non-AP MLD101とAPは周波数の異なる複数の接続を確立することで、ある帯域が混雑している場合であっても、Non-AP MLD101と他方の帯域で通信を確立することができる。そのため、Non-AP MLD101との通信におけるスループットの低下や通信遅延を防ぐことができる。 In multi-link communication, multiple links with different frequency bands may be established between each communication device. For example, the Non-AP MLD 101 may establish links in each of the 2.4 GHz band, 5 GHz band, and 6 GHz band. Alternatively, links may be established via a plurality of different channels included in the same frequency band. For example, a 6ch link in the 2.4 GHz band may be established as the first link, and in addition, a 1ch link in the 2.4 GHz band may be established as the second link. Links with the same frequency band and links with different frequency bands may coexist. For example, the Non-AP MLD 101 may be able to establish a 1ch link in the 2.4GHz band and a 149ch link in the 5GHz band in addition to the first 6ch link in the 2.4GHz band. By establishing multiple connections with different frequencies between the Non-AP MLD 101 and the AP, even if one band is congested, communication can be established between the Non-AP MLD 101 and the other band. Therefore, it is possible to prevent a decrease in throughput and a communication delay in communication with the Non-AP MLD 101.
 なお、図1の無線ネットワークではAP MLD1台とNon-AP MLD1台となっているが、AP MLDおよびNon-AP MLDの台数や配置はこれに限定されない。例えば、図1の無線ネットワークに加えて、Non-AP MLDを1台増やしてもよい。このとき確立する各リンクの周波数帯やリンクの数、周波数幅は問わない。  In the wireless network in Fig. 1, there is one AP MLD and one Non-AP MLD, but the number and arrangement of the AP MLD and Non-AP MLD are not limited to this. For example, in addition to the wireless network in FIG. 1, one non-AP MLD may be added. The frequency band of each link to be established at this time, the number of links, and the frequency width do not matter.
 Multi-link通信を行う場合、AP MLD102とNon-AP MLD101とは、複数のリンクを介して相手装置とデータの送受信を行う。Multi-linkを構成するリンクの内の1つのリンクでデータの送受信を行ってもよい。 When performing multi-link communication, the AP MLD 102 and the non-AP MLD 101 transmit and receive data to and from the partner device via multiple links. Data transmission/reception may be performed on one of the links forming the multi-link.
 また、AP MLD102とNon-AP MLD101はMIMO(Multiple-Input And Multiple-Output)通信を実行できてもよい。この場合、AP MLD102およびNon-AP MLD101は複数のアンテナを有し、一方がそれぞれのアンテナから異なる信号を同じ周波数チャネルを用いて送る。受信側は、複数のアンテナを用いて複数ストリームから到達したすべての信号を同時に受信し、各ストリームの信号を分離し、復号する。このように、MIMO通信を実行することで、AP MLD102およびNon-AP MLD101は、MIMO通信を実行しない場合と比べて、同じ時間でより多くのデータを通信することができる。また、AP MLD102およびNon-AP MLD101は、Multi-link通信を行う場合に、一部のリンクにおいてMIMO通信を実行してもよい。 Also, the AP MLD 102 and the Non-AP MLD 101 may be able to perform MIMO (Multiple-Input And Multiple-Output) communication. In this case, the AP MLD 102 and the Non-AP MLD 101 have multiple antennas and one transmits different signals from each antenna using the same frequency channel. The receiving side simultaneously receives all signals arriving from multiple streams using multiple antennas, separates and decodes the signals of each stream. By executing MIMO communication in this way, the AP MLD 102 and Non-AP MLD 101 can communicate more data in the same amount of time than when MIMO communication is not executed. Also, the AP MLD 102 and the Non-AP MLD 101 may perform MIMO communication on some links when performing multi-link communication.
 (AP MLDおよびNon-AP MLDの構成)
 図2に、本実施形態におけるNon-AP MLD101のハードウェア構成例を示す。Non-AP MLD101は、記憶部201、制御部202、機能部203、入力部204、出力部205、通信部206およびアンテナ207を有する。なお、アンテナは複数でもよい。
(Configuration of AP MLD and Non-AP MLD)
FIG. 2 shows a hardware configuration example of the Non-AP MLD 101 in this embodiment. Non-AP MLD 101 has storage section 201 , control section 202 , function section 203 , input section 204 , output section 205 , communication section 206 and antenna 207 . A plurality of antennas may be provided.
 記憶部201は、ROMやRAM等の1以上のメモリにより構成され、後述する各種動作を行うためのコンピュータプログラムや、無線通信のための通信パラメータ等の各種情報を記憶する。ROMはRead Only Memoryの、RAMはRandom Access Memoryの夫々略である。なお、記憶部201として、ROM、RAM等のメモリの他に、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリカード、DVDなどの記憶媒体を用いてもよい。また、記憶部201が複数のメモリ等を備えていてもよい。 The storage unit 201 is composed of one or more memories such as ROM and RAM, and stores computer programs for performing various operations described later and various information such as communication parameters for wireless communication. ROM stands for Read Only Memory, and RAM stands for Random Access Memory. As the storage unit 201, in addition to memories such as ROM and RAM, storage media such as flexible disks, hard disks, optical disks, magneto-optical disks, CD-ROMs, CD-Rs, magnetic tapes, non-volatile memory cards, DVDs, etc. may be used. Also, the storage unit 201 may include a plurality of memories or the like.
 制御部202は、例えば、CPUやMPU等の1以上のプロセッサにより構成され、記憶部201に記憶されたコンピュータプログラムを実行することにより、Non-AP MLD101の全体を制御する。なお、制御部202は、記憶部201に記憶されたコンピュータプログラムとOS(Operating System)との協働により、Non-AP MLD101の全体を制御するようにしてもよい。また、制御部202は、他の通信装置との通信において送信するデータや信号(無線フレーム)を生成する。なお、CPUはCentral Processing Unitの、MPUは、Micro Processing Unitの略である。また、制御部202がマルチコア等の複数のプロセッサを備え、複数のプロセッサによりNon-AP MLD101全体を制御するようにしてもよい。 The control unit 202 is composed of, for example, one or more processors such as CPU and MPU, and controls the entire Non-AP MLD 101 by executing computer programs stored in the storage unit 201 . Note that the control unit 202 may control the entire Non-AP MLD 101 through cooperation between the computer program stored in the storage unit 201 and an OS (Operating System). The control unit 202 also generates data and signals (radio frames) to be transmitted in communication with other communication devices. Note that CPU is an abbreviation for Central Processing Unit, and MPU is an abbreviation for Micro Processing Unit. Also, the control unit 202 may be provided with a plurality of processors such as multi-core processors, and the plurality of processors may control the entire Non-AP MLD 101 .
 また、制御部202は、機能部203を制御して、無線通信や、撮像、印刷、投影等の所定の処理を実行する。機能部203は、Non-AP MLD101が所定の処理を実行するためのハードウェアである。 Also, the control unit 202 controls the function unit 203 to perform predetermined processing such as wireless communication, imaging, printing, and projection. The functional unit 203 is hardware for the Non-AP MLD 101 to execute predetermined processing.
 入力部204は、ユーザからの各種操作の受付を行う。出力部205は、モニタ画面やスピーカーを介して、ユーザに対して各種出力を行う。ここで、出力部205による出力とは、モニタ画面上への表示や、スピーカーによる音声出力、振動出力などであってもよい。なお、タッチパネルのように入力部204と出力部205の両方を1つのモジュールで実現するようにしてもよい。また、入力部204および出力部205は、夫々Non-AP MLD101と一体であってもよいし、別体であってもよい。 The input unit 204 receives various operations from the user. The output unit 205 performs various outputs to the user via a monitor screen or a speaker. Here, the output from the output unit 205 may be display on a monitor screen, audio output from a speaker, vibration output, or the like. Note that both the input unit 204 and the output unit 205 may be realized by one module like a touch panel. Also, the input unit 204 and the output unit 205 may be integrated with the Non-AP MLD 101 or may be separate.
 通信部206は、IEEE802.11be規格に準拠した無線通信の制御を行う。また、通信部206は、IEEE802.11be規格に加えて、他のIEEE802.11シリーズ規格に準拠した無線通信の制御や、有線LAN等の有線通信の制御を行ってもよい。通信部206は、アンテナ207を制御して、制御部202によって生成された無線通信のための信号の送受信を行う。 The communication unit 206 controls wireless communication conforming to the IEEE802.11be standard. In addition to the IEEE802.11be standard, the communication unit 206 may control wireless communication conforming to other IEEE802.11 series standards, and wired communication such as a wired LAN. The communication unit 206 controls the antenna 207 to transmit and receive signals for wireless communication generated by the control unit 202 .
 なお、Non-AP MLD101が、IEEE802.11be規格に加えて、NFC規格やBluetooth規格等に対応している場合、これらの通信規格に準拠した無線通信の制御を行ってもよい。また、Non-AP MLD101が複数の通信規格に準拠した無線通信を実行できる場合、夫々の通信規格に対応した通信部とアンテナを個別に有する構成であってもよい。Non-AP MLD101は通信部206を介して、画像データや文書データ、映像データ等のデータをNon-AP MLD101と通信する。なお、アンテナ207は、通信部206と別体として構成されていてもよいし、通信部206と合わせて一つのモジュールとして構成されていてもよい。 Note that if the Non-AP MLD 101 supports the NFC standard, the Bluetooth standard, etc. in addition to the IEEE802.11be standard, it may control wireless communication in compliance with these communication standards. Also, if the Non-AP MLD 101 can perform wireless communication conforming to a plurality of communication standards, it may be configured to have separate communication units and antennas corresponding to each communication standard. The Non-AP MLD 101 communicates data such as image data, document data, and video data with the Non-AP MLD 101 via the communication unit 206 . The antenna 207 may be configured separately from the communication unit 206, or may be configured together with the communication unit 206 as one module.
 アンテナ207は、2.4GHz帯、5GHz帯、および6GHz帯における通信が可能なアンテナである。本実施形態では、Non-AP MLD101は1つのアンテナを有するとしたが、3つのアンテナでもよい。または、周波数帯ごとに異なるアンテナを有していてもよい。また、Non-AP MLD101は、アンテナを複数有している場合、各アンテナに対応した通信部206を有していてもよい。 Antenna 207 is an antenna capable of communication in the 2.4 GHz band, 5 GHz band, and 6 GHz band. Although the Non-AP MLD 101 has one antenna in this embodiment, it may have three antennas. Alternatively, different antennas may be provided for each frequency band. Also, if the Non-AP MLD 101 has multiple antennas, it may have a communication unit 206 corresponding to each antenna.
 なお、AP MLD102はNon-AP MLD101と同様のハードウェア構成を有する。 The AP MLD 102 has the same hardware configuration as the Non-AP MLD 101.
 図3には、本実施形態におけるNon-AP MLD101の機能構成のブロック図を示す。なお、AP MLD102も同様の構成である。ここではNon-AP MLD101は無線LAN制御部301を備えるものとする。なお、無線LAN制御部の数は1つに限らず、2つでもよいし、3つ以上でも構わない。Non-AP MLD101は、さらに、フレーム処理部302、EMLMR管理部303、UI制御部304および記憶部305、無線アンテナ306を有する。 FIG. 3 shows a block diagram of the functional configuration of the Non-AP MLD 101 in this embodiment. The AP MLD 102 also has the same configuration. Here, the Non-AP MLD 101 is assumed to have a wireless LAN control section 301 . Note that the number of wireless LAN control units is not limited to one, and may be two, or three or more. Non-AP MLD 101 further has frame processing section 302 , EMLMR management section 303 , UI control section 304 and storage section 305 , and radio antenna 306 .
 無線LAN制御部301は、他の無線LAN装置との間で無線信号を送受信するためのアンテナ並びに回路、およびそれらを制御するプログラムを含んで構成される。無線LAN制御部301は、IEEE802.11規格シリーズに従って、フレーム処理部302で生成されたフレームを元に無線LANの通信制御を実行する。 The wireless LAN control unit 301 includes an antenna and circuits for transmitting and receiving wireless signals to and from other wireless LAN devices, and programs for controlling them. The wireless LAN control unit 301 executes wireless LAN communication control based on frames generated by the frame processing unit 302 according to the IEEE802.11 standard series.
 フレーム処理部302は、無線LAN制御部301で送受信する無線制御フレームを処理する。フレーム処理部302で生成及び解析する無線制御の内容は記憶部305に保存されている設定によって制約を課してもよい。またUI制御部304からのユーザ設定によって変更してもよい。生成されたフレームの情報は無線LAN制御部301に送られ、通信相手に送信される。無線LAN制御部301で受信したフレームの情報はフレーム処理部302に渡され解析される。 The frame processing unit 302 processes wireless control frames transmitted and received by the wireless LAN control unit 301 . The content of the radio control generated and analyzed by the frame processing unit 302 may be restricted by settings saved in the storage unit 305 . Also, it may be changed by user setting from the UI control unit 304 . The information of the generated frame is sent to the wireless LAN control section 301 and transmitted to the communication partner. The frame information received by the wireless LAN control unit 301 is passed to the frame processing unit 302 and analyzed.
 EMLMR管理部303は、どのリンクをEMLMRリンクとするかの管理制御を行う。管理制御には、EMLMRリンクの確立、およびEMLMRリンクの削除などがある。 The EMLMR management unit 303 manages and controls which links are EMLMR links. Administrative controls include establishment of EMLMR links and deletion of EMLMR links.
 EMLMRリンクの確立とは、Multi-Link確立時、もしくはMulti-Link確立後に、EMLMRリンクを特定した状態を指す。EMLMRリンクの削除とは、EMLMRリンクとして特定されたリンクのその状態を解除することを指す。 "Establishment of an EMLMR link" refers to the state in which an EMLMR link is specified at the time of establishing a Multi-Link or after establishing a Multi-Link. Deleting an EMLMR link refers to removing the state of a link identified as an EMLMR link.
 UI制御部304は、Non-AP MLD101の不図示のユーザによるNon-AP MLD101に対する操作を受け付けるためのタッチパネルまたはボタン等のユーザインタフェースに関わるハードウェアおよびそれらを制御するプログラムを含んで構成される。なお、UI制御部304は、例えば画像等の表示、または音声出力等の情報をユーザに提示するための機能も有する。 The UI control unit 304 includes hardware related to the user interface, such as a touch panel or buttons for receiving operations on the Non-AP MLD 101 by the user (not shown) of the Non-AP MLD 101, and programs that control them. Note that the UI control unit 304 also has a function of presenting information to the user, such as displaying images or outputting audio.
 記憶部305は、Non-AP MLD101が動作するプログラムおよびデータを保存するROMとRAM等によって構成されうる記憶装置である。 The storage unit 305 is a storage device that can be composed of a ROM and a RAM that store programs and data for the Non-AP MLD 101 to operate.
 図4にMulti-Link通信を行うAP MLDとNon-AP MLDの構成を示す。 Fig. 4 shows the configurations of AP MLD and Non-AP MLD that perform Multi-Link communication.
 Multi-Linkで動作する通信装置はMLD(Multi-Link Device)と呼び、一つのMLDは各Linkに紐づくSTAやAP(Access Point)を複数個有する。AP機能を有するMLDをAP MLD、AP機能を有さないMLDをNon-AP MLDと呼ぶ。 A communication device that operates with Multi-Link is called an MLD (Multi-Link Device), and one MLD has multiple STAs and APs (Access Points) linked to each Link. An MLD with AP functions is called AP MLD, and an MLD without AP functions is called Non-AP MLD.
 図4のAP1 401とSTA1 404は第1の周波数チャネルを介してLink1 407を確立する。同様に、AP2 402とSTA2 405は第2の周波数チャネルを介してLink2 408を確立し、AP3 403とSTA3 406は第3の周波数チャネルを介してLink3 409を確立する。 AP1 401 and STA1 404 in FIG. 4 establish Link1 407 via the first frequency channel. Similarly, AP2 402 and STA2 405 establish Link2 408 over a second frequency channel, and AP3 403 and STA3 406 establish Link3 409 over a third frequency channel.
 ここでAP MLDとNon-AP MLDは、サブGHz帯、2.4GHz帯、3.6GHz帯、4.9及び5GHz帯、60GHz帯、及び6GHz帯の周波数チャネルを介して接続を確立する。AP MLDおよびNon-AP MLDは、第1の周波数チャネルを介した第1のリンクの接続と並行して、第2の周波数チャネルを介した第2のリンクの接続を維持する。また、異なる周波数帯域の接続ではなく、同じ周波数帯域の異なる周波数チャネルを介した接続を複数確立してもよい。 Here, the AP MLD and the Non-AP MLD establish connections via frequency channels in the sub-GHz, 2.4 GHz, 3.6 GHz, 4.9 and 5 GHz, 60 GHz, and 6 GHz bands. The AP MLD and Non-AP MLD maintain the connection of the second link through the second frequency channel in parallel with the connection of the first link through the first frequency channel. Also, instead of connections in different frequency bands, multiple connections may be established via different frequency channels in the same frequency band.
 また、Link1、Link2、Link3のそれぞれには、空間ストリームケイパビリティ(per-link spatial stream capability)に従った空間ストリーム数が割り当てられている。6本のアンテナが存在すると仮定した場合、それぞれのリンクは2本ずつのアンテナを利用したリンクとなる。すなわち、夫々のリンクの空間ストリームケイパビリティは「2」である。後述するが、Link1とLink2および/またはLink3がEMLMRリンクである場合、Link1のEMLMR動作(EMLMR Operation)中の空間ストリームケイパビリティは「4」または「6」となり、Link2および/またはLink3は「0」となる。結果、Link1を介して、1つのデータを分割したそれぞれのデータ、もしくは異なる複数のデータを複数のアンテナを利用し空間的に干渉しないよう同一タイミング、かつ同一周波数で送受信することが可能になる。なお、空間ストリーム数の決定は、no-AP MLDがEHTに対応していることを宣言するフレームに含まれるEHT Capabilitiesエレメント、またはEHT Operationエレメントで決定される。具体的には、EHT Capabilitiesエレメント、またはEHT Operationエレメントに含まれるSupported EHT-MCS And NSS Setフィールド、またはBasic EHT-MCS And NSS Setフィールドの値に基づいて決定される。 In addition, each of Link1, Link2, and Link3 is assigned the number of spatial streams according to the spatial stream capability (per-link spatial stream capability). Assuming that there are six antennas, each link uses two antennas. That is, the spatial stream capability of each link is "2". As will be described later, when Link1 and Link2 and/or Link3 are EMLMR links, the spatial stream capability during EMLMR operation of Link1 is "4" or "6", and Link2 and/or Link3 is "0". becomes. As a result, it becomes possible to transmit and receive each data obtained by dividing one data or a plurality of different data via Link 1 using multiple antennas at the same timing and on the same frequency so as not to interfere spatially. The number of spatial streams is determined by the EHT Capabilities element or EHT Operation element included in the frame declaring that the no-AP MLD supports EHT. Specifically, it is determined based on the value of the Supported EHT-MCS And NSS Set field or Basic EHT-MCS And NSS Set field included in the EHT Capabilities element or EHT Operation element.
 図5AにAssociation RequestフレームにおけるBasic variant Multi-Link elementを示す。図5Bに、Basic variant Multi-LinkエレメントのCommon Infoフィールドに含まれるEMLMR Capabilitiesサブフィールドを示す。EMLMR Supportフィールドが「0」の場合、EMLMRに非対応であることを示し、「1」の場合、EMLMRに対応していることを示す。Multi-Link通信が確立した際に、すべてのリンクがEMLMRリンクを確立する。Basic variant Multi-Linkエレメントは、Multi-Linkを確立する際のAssociation Requestフレームに含まれるものとして説明しているが、probe requestフレーム、probe responseフレーム、association response フレーム、Beaconフレームなどに含まれても良い。 Fig. 5A shows the Basic Variant Multi-Link element in the Association Request frame. FIG. 5B shows the EMLMR Capabilities subfield contained in the Common Info field of the Basic variant Multi-Link element. If the EMLMR Support field is "0", it indicates that EMLMR is not supported, and if it is "1", it indicates that EMLMR is supported. When Multi-Link communication is established, all links establish EMLMR links. The Basic variant Multi-Link element is described as being included in the Association Request frame when establishing the Multi-Link, but it may also be included in the probe request frame, probe response frame, association response frame, beacon frame, etc. good.
 EMLMRリンクの確立は値が1であるEMLMR Supportサブフィールドを含むフレームをMulti-Linkを構成する各リンクで送信、受信、または交換することで行われる。その際、Multi-Linkを構成する一部のリンクのみでそれが行われることで、その一部のリンクのみでEMLMRリンクが確立されてもよい。また、値が1であるEMLMR Supportサブフィールドを含むフレームを1つのリンクで送信、受信、または交換することで他のリンクを含む複数のリンクでEMLMRリンクが確立されてもよい。その場合、Multi-Linkを構成する全てのリンクでEMLMRリンクが確立されてもよいし、一部のリンクのみでEMLMRリンクが確立されてもよい。EMLMRリンクを確立するリンクを指定するために、値が1であるEMLMR Supportサブフィールドを含むフレームに、EMLMRリンクを確立するリンクを識別するための情報を含めることで、EMLMRリンクを確立するリンクを指定してもよい。リンクを識別するための情報としてはリンクID(Link identifier)、当該リンクに対応するBSSID(Basic service set identifier)、TID(Traffic identifier)等が利用できる。 An EMLMR link is established by sending, receiving, or exchanging a frame containing the EMLMR Support subfield with a value of 1 on each link that configures the Multi-Link. At that time, the EMLMR link may be established only with some of the links that make up the Multi-Link by doing this with only some of the links. Also, an EMLMR link may be established over multiple links, including other links, by transmitting, receiving, or exchanging a frame containing an EMLMR Support subfield with a value of 1 over one link. In that case, the EMLMR links may be established with all the links that make up the Multi-Link, or the EMLMR links may be established with only some of the links. In order to specify the link that establishes the EMLMR link, the link that establishes the EMLMR link is specified by including information for identifying the link that establishes the EMLMR link in the frame that includes the EMLMR Support subfield with a value of 1. May be specified. As information for identifying a link, a link ID (Link Identifier), a BSSID (Basic Service Set Identifier) corresponding to the link, a TID (Traffic Identifier), and the like can be used.
 EMLMR Supported MCS And NSS SetサブフィールドはEMLMR動作中にPPDUを送受信する際の最大空間ストリーム数を指す。特定のリンクがEMLMR動作することで、EMLMR動作するリンク以外のリンクに割り当てられている空間ストリーム数は減少し、特定のリンクは増大した空間ストリーム数でPPDUの送受信が可能になる。 The EMLMR Supported MCS And NSS Set subfield indicates the maximum number of spatial streams when transmitting and receiving PPDU during EMLMR operation. ELMMR operation of a specific link reduces the number of spatial streams assigned to links other than the EMLMR-operating link, and allows the specific link to transmit and receive PPDUs with the increased number of spatial streams.
 なお、Multi-Link確立時にEMLMRリンクを確立するように指示を行ったが、Multi-Linkを確立後に送信されるActionフレームでEMLMRリンクの確立を指定しても良い。その場合、EML(Enhanced Multi-Link) Operating Mode Notificationフレームと呼ばれるフレームを用意し、EMLMRリンクを確立するように指示すれば良い。例えば、Non AP MLDの場合、値が1であるEMLMR Supportサブフィールドを含むフレームを受信し、値が1であるEMLMR Modeサブフィールドを含むEML Operating Mode Notificationフレームを送信した際に、それらのフレームを送受信したリンクがEMLMRリンクを確立する。または、Multi-linkを構成する他の一部のリンクまたは全部のリンクがEMLMRリンクを確立してもよい。また、AP MLDの場合、値が1であるEMLMR Supportサブフィールドを含むフレームを送信し、値が1であるEMLMR Modeサブフィールドを含むEML Operating Mode Notificationフレームを受信した際に、それらのフレームを送受信したリンクがEMLMRリンクを確立する。または、Multi-linkを構成する他の一部のリンクまたは全部のリンクがEMLMRリンクを確立してもよい。その場合、EML Operating Mode NotificationフレームにEMLMRリンクを確立するリンクを識別するための情報を含めることで、EMLMRリンクを確立するリンクを指定してもよい。リンクを識別するための情報としてはリンクID(Link identifier)、当該リンクに対応するBSSID(Basic service set identifier)、TID(Traffic identifier)等が利用できる。 Although an instruction was given to establish the EMLMR link when establishing the Multi-Link, the establishment of the EMLMR link may be specified in an Action frame that is transmitted after the Multi-Link is established. In that case, a frame called an EML (Enhanced Multi-Link) Operating Mode Notification frame should be prepared and instructed to establish an EMLMR link. For example, in the case of Non AP MLD, when a frame containing an EMLMR Support subfield with a value of 1 is received and an EML Operating Mode Notification frame containing an EMLMR Mode subfield with a value of 1 is transmitted, those frames are The sent and received links establish an EMLMR link. Alternatively, some or all of the other links that make up the multi-link may establish the EMLMR link. Also, in the case of AP MLD, when a frame containing an EMLMR Support subfield with a value of 1 is transmitted, and an EML Operating Mode Notification frame containing an EMLMR Mode subfield with a value of 1 is received, these frames are transmitted and received. link establishes an EMLMR link. Alternatively, some or all of the other links that make up the multi-link may establish the EMLMR link. In that case, the link that establishes the EMLMR link may be specified by including information for identifying the link that establishes the EMLMR link in the EML Operating Mode Notification frame. As information for identifying a link, a link ID (Link Identifier), a BSSID (Basic Service Set Identifier) corresponding to the link, a TID (Traffic Identifier), and the like can be used.
 Non-AP MLDが主体となってEMLMRリンクを確立するものと説明したが、AP MLDからEMLMRリンクの確立を指示しても良い。なお、EML Operating Mode Notificationフレームは、non-AP MLDがEMLMRモードで動作するために送信するActionフレームであり、Multi-Link通信を確立した際にEMLMRリンクを確立しなかった場合、またはEMLMRリンク確立後にそれが削除された後にEMLMRモードで動作するために送信する必要があるフレームである。 Although it has been explained that the Non-AP MLD takes the lead in establishing the EMLMR link, the AP MLD may instruct the establishment of the EMLMR link. In addition, the EML Operating Mode Notification frame is an Action frame that non-AP MLD transmits in order to operate in EMLMR mode. It is the frame that needs to be sent to operate in EMLMR mode after it is deleted later.
 次に、EMLMRリンクを確立した後にEMLMRモードで動作しフレーム交換を行う際のAP MLD102の動きについて図6、図7を用いて説明する。以下の動きの主体は、フレーム処理部302、もしくはEMLMR制御部303の動きであるが、通信装置としての動きはAP MLD102の動きである。よって、以後の動作主体は通信装置の制御部202として説明する。なお、この動きはnon AP MLD 101で実行されても良い。 Next, the operation of the AP MLD 102 when operating in EMLMR mode and exchanging frames after establishing an EMLMR link will be described using FIGS. 6 and 7. FIG. The main movement below is the movement of the frame processing unit 302 or the ELMMR control unit 303, but the movement as a communication device is the movement of the AP MLD 102. Therefore, the following description will be made with the control unit 202 of the communication apparatus as the subject of operation. It should be noted that this movement may be executed by the non AP MLD 101.
 まずは、開始フレームを送信する場合の動きについて、図6を用いて説明する。フレーム交換シーケンスは、開始フレームが送信されるタイミングから始まっていることから、EMLMR動作するEMLMRリンクはフレーム交換シーケンスを続行すると本願発明では表現している。S0において、制御部202は、通信相手となる通信装置へ送信すべきデータが存在すると判定する。送信すべきデータとは、任意の通信装置から通信相手となる通信装置へ送信依頼されたデータ、もしくは、機能部203により生成されたデータなどがある。 First, the movement when transmitting the start frame will be explained using FIG. Since the frame exchange sequence starts from the timing at which the start frame is transmitted, the present invention expresses that the EMLMR link that performs the ELMMR operation continues the frame exchange sequence. In S0, the control unit 202 determines that there is data to be transmitted to the communication device that is the communication partner. Data to be transmitted includes data requested to be transmitted from an arbitrary communication device to a communication device serving as a communication partner, or data generated by the function unit 203 .
 S1において、制御部202はEMLMRリンクが複数確立されているか否かを判定する。例えば、Link1のみならず、Link2も確立されていればYesと判定され、Link1のみ確立している場合はNoと判定される。複数のEMLMRリンクが確立されているか否かを確認する方法は、複数のリンクの各々が、値が1であるEMLMR Supportサブフィールドを含むフレームを送信かつ受信したかを判定する方法が考えられる。または、複数のリンクの各々が、値が1であるEMLMR Supportサブフィールドを含むフレームを送信し、値が1であるEMLMR Modeサブフィールドを含むEML Operating Mode Notificationフレームを受信したかを判定する方法が考えられる。または、複数のリンクの各々ではなく、Multi-linkを構成するいずれかのリンクで上述の判定を行うことで複数のEMLMRリンクが確立されているか否かを確認してもよい。 In S1, the control unit 202 determines whether or not multiple EMLMR links have been established. For example, if not only Link1 but also Link2 are established, it is determined as Yes, and if only Link1 is established, it is determined as No. A conceivable method for checking whether multiple EMLMR links have been established is to determine whether each of the multiple links has transmitted and received a frame containing an EMLMR Support subfield with a value of 1. Alternatively, there is a method for determining whether each of the multiple links has transmitted a frame containing an EMLMR Support subfield with a value of 1 and received an EML Operating Mode Notification frame containing an EMLMR Mode subfield with a value of 1. Conceivable. Alternatively, it may be confirmed whether or not a plurality of ELMMR links are established by performing the above determination on any one of the links that constitute the multi-link, instead of on each of the plurality of links.
 その場合、値が1であるEMLMR SupportサブフィールドとEMLMRリンクを確立するリンクを識別するための情報を含むフレームを交換し、双方が送信したフレームにおいてリンクを識別するための情報が一致したリンクが複数存在している場合、複数のEMLMRリンクが確立されていると判定してもよい。ここで、non-AP MLDの場合、EMLMR SupportサブフィールドとEMLMRリンクを確立するリンクを識別するための情報を含むフレームに代えて、EMLMRリンクを確立するリンクを識別するための情報を含むEML Operating Mode Notificationフレームを送信してもよい。AP MLDの場合、EMLMR SupportサブフィールドとEMLMRリンクを確立するリンクを識別するための情報を含むフレームに代えて、EMLMRリンクを確立するリンクを識別するための情報を含むEML Operating Mode Notificationフレームを受信してもよい。 In that case, the EMLMR Support subfield with a value of 1 and the frame containing the information for identifying the link that establishes the EMLMR link are exchanged, and the link in which the information for identifying the link in the frame sent by both sides matches If there are multiple, it may be determined that multiple ELMMR links have been established. Here, in the case of non-AP MLD, instead of the frame containing the information for identifying the link that establishes the EMLMR link and the EMLMR Support subfield, EML Operating that contains information for identifying the link that establishes the EMLMR link A Mode Notification frame may be transmitted. In the case of AP MLD, receive an EML Operating Mode Notification frame containing information for identifying the link for establishing the EMLMR link, instead of the frame containing the information for identifying the link for establishing the EMLMR link and the EMLMR Support subfield You may
 S1においてNoと判定された場合、S8へ遷移する。S8において、制御部202は、EMLMRリンクを介して開始フレームを送信する。EMLMRリンクの開始フレームは、IEEE802.11規格書Annex Gに定義されているフレーム交換シーケンス(Frame exchange sequence)において、最初に送信されるフレームである。例えば、RTS(Request To Send)フレームや、MU-RTS Triggerフレームなどがある。この開始フレームが、EMLMRリンクを確立した後、フレーム交換をEMLMRリンクで開始するための指示となる。 If it is determined as No in S1, the process proceeds to S8. At S8, the control unit 202 transmits a start frame via the EMLMR link. The start frame of the ELMMR link is the first frame transmitted in the frame exchange sequence defined in the IEEE802.11 standard Annex G. For example, there are RTS (Request To Send) frame and MU-RTS Trigger frame. This start frame serves as an instruction to start frame exchange on the EMLMR link after the EMLMR link is established.
 S9において、制御部202は、応答フレームを受信したか否かを判定する。EMLMRリンクの応答フレームは、IEEE802.11規格書Annex Gに定義されているフレーム交換シーケンス(Frame exchange sequence)において、開始フレームを受信した通信装置からそれに対する応答として送信されるフレームである。例えば、CTS(Clear To Send)フレームなどがある。 In S9, the control unit 202 determines whether or not a response frame has been received. The response frame of the ELMMR link is a frame transmitted as a response from the communication device that received the start frame in the frame exchange sequence defined in the IEEE802.11 standard Annex G. For example, there is a CTS (Clear To Send) frame.
 S10において、制御部202は、non-AP MLDが本フロー開始前に送信したBasic variant Multi-LinkエレメントのCommon InfoフィールドのEMLMR SUPPORTED MCS AND NSS SETサブフィールドで提示した空間ストリーム数を最大とする空間ストリーム数でフレーム交換シーケンスを開始する。これにより、1つのEMLMRリンクは、EMLMR動作することとなる。S17において、フレーム交換シーケンスが終了したか否かを判定し、Yesと判定されたことに応じて処理を終了する。ここまでの説明は、いわゆる、通常のEMLMR動作を想定した動きである。 At S10, the control unit 202 selects a space that maximizes the number of spatial streams presented in the EMLMR Supported MCS AND NSS SET subfield of the Common Info field of the Basic variant Multi-Link element transmitted by the non-AP MLD before the start of this flow. Start frame exchange sequence with stream number. As a result, one EMLMR link performs EMLMR operation. In S17, it is determined whether or not the frame exchange sequence has ended. The description so far has been made assuming a so-called normal ELMMR operation.
 次に、S1においてYesと判定された場合、すなわち、EMLMRリンクが複数確立されている場合の動きについて説明する。S2において、通信性能の予測に基づいて複数のEMLMRリンクで開始フレームを送信する条件に合致するか否かを判定する。通信性能の予測とは、各リンクに対応するチャンネルの混雑度、すなわちAP MLDに接続しているnon-AP MLDの数で予測する方法が考えられる。また、各リンクの受信信号強度および/または信号対雑音電力比を計測して各リンクの通信性能を予測する方法が考えられる。例えば、Link1とLink2のうち1つのリンクのチャンネルが他のリンクより大幅に混雑している、または受信信号強度が低いといった場合、両リンクとも良好に動作させることはできないのでLink1またはLink2のどちらかをEMLMR動作させるためにS8へ遷移させる。だが、Link1およびLink2とも同程度にチャンネルが混雑しているもしくは十分に空いている、または受信信号強度が低いもしくは十分に高いといった場合、EMLMR動作による通信性能の向上が見込めないので、夫々のリンクの空間ストリームケイパビリティに従った空間ストリーム数でデータ送受信をさせるためS3に遷移させる。 Next, the operation when it is determined as Yes in S1, that is, when multiple EMLMR links are established, will be described. In S2, based on the communication performance prediction, it is determined whether or not the condition for transmitting the start frame over a plurality of ELMMR links is met. For prediction of communication performance, a method of prediction based on the degree of congestion of the channel corresponding to each link, that is, the number of non-AP MLDs connected to the AP MLD can be considered. Also, a method of measuring the received signal strength and/or the signal-to-noise power ratio of each link and predicting the communication performance of each link is conceivable. For example, if the channel on one of Link1 and Link2 is significantly more congested than the other link, or the received signal strength is low, either Link1 or Link2 will not work as both links cannot operate well. to S8 for EMLMR operation. However, if the channels of Link1 and Link2 are similarly congested or sufficiently empty, or if the received signal strength is low or sufficiently high, no improvement in communication performance can be expected by the EMLMR operation. In order to transmit and receive data with the number of spatial streams according to the spatial stream capability of , the process proceeds to S3.
 S3において、制御部202は、複数のEMLMRリンクで開始フレームを送信する。ただし、この際指定する空間ストリーム数は、夫々のリンクの空間ストリームケイパビリティに従った空間ストリーム数を指定する。すなわち、non-AP MLDがEHTに対応していることを宣言するフレームに含まれるEHT Capabilitiesエレメント、またはEHT Operationエレメントで決定される数である。EMLMRリンクを確立していない他のリンクについては、フレーム交換シーケンスを行うリンクではない。 At S3, the control unit 202 transmits a start frame over a plurality of EMLMR links. However, the number of spatial streams specified at this time specifies the number of spatial streams according to the spatial stream capability of each link. That is, it is the number determined by the EHT Capabilities element or the EHT Operation element included in the frame declaring that the non-AP MLD supports EHT. Other links that have not established an EMLMR link are not links that perform a frame exchange sequence.
 S4において、制御部202は、少なくとも1つのEMLMRリンクで応答フレームを受信したか否かを判定する。特定の期間内に応答フレーム受信しなかった場合は、EMLMRリンクでフレーム交換シーケンスは実行されないと判断し処理を終了する。一方、応答フレームを受信した場合は、S5に遷移する。S5において、制御部202は、応答フレームを受信したEMLMRリンクは複数であるか否かを判定する。S5がNoの判定の場合は、S10に遷移する。S5がYesの判定の場合は、S6に遷移する。S6において、制御部202は、応答フレームを受信したEMLMRリンクにおいて、リンク毎の空間ストリームケイパビリティに従った空間ストリーム数でフレーム交換を実行する。S7において、フレーム交換シーケンスが終了したか否かを判定し、Yesと判定されたことに応じて処理を終了する。 In S4, the control unit 202 determines whether or not a response frame has been received on at least one EMLMR link. If no response frame is received within the specified period, it is determined that the frame exchange sequence will not be executed on the ELMMR link, and the process ends. On the other hand, when a response frame is received, the process proceeds to S5. In S5, the control unit 202 determines whether or not there are a plurality of EMLMR links that have received the response frame. When S5 is determined as No, the process proceeds to S10. If the determination in S5 is Yes, the process proceeds to S6. In S6, the control unit 202 performs frame exchange with the number of spatial streams according to the spatial stream capability of each link on the EMLMR link that received the response frame. In S7, it is determined whether or not the frame exchange sequence has ended, and if the determination is Yes, the process ends.
 次に開始フレームを受信する場合の動きについて、図7を用いて説明する。図7の付番において、図6の付番と重複するステップについては、図6で説明済みのため説明を割愛する。S11において、制御部202がEMLMRリンクで開始フレームを受信してから本フローは実行される。S12において、制御部202は、開始フレームを受信開始してから、応答フレームの送信を開始するまでの期間において、選択されたEMLMRリンクとは別のEMLMRリンクで別の開始フレームを受信したか否かを検出する。S12においてNoと判定された場合、S18へ遷移する。S18において、制御部202は、受信した開始フレームに対する応答フレームを送信する。以降は図6で説明した通りである。 Next, the operation when receiving the start frame will be explained using FIG. In the numbering in FIG. 7, the steps overlapping with the numbering in FIG. 6 have already been explained in FIG. 6, so the explanation will be omitted. In S11, this flow is executed after the control unit 202 receives the start frame on the ELMMR link. In S12, the control unit 202 determines whether or not another start frame has been received on an EMLMR link other than the selected EMLMR link during the period from the start of reception of the start frame to the start of transmission of the response frame. to detect If determined as No in S12, the process proceeds to S18. At S18, the control unit 202 transmits a response frame to the received start frame. The rest is as described with reference to FIG.
 S12においてYesと判定された場合、S13に遷移する。S13において、通信性能の予測に基づいて複数のEMLMRリンクで応答フレームを送信する条件に合致するか否かを判定する。通信性能の予測とは、S2と同様に、各リンクに対応するチャンネルの混雑度、すなわちAP MLDに接続しているnon-AP MLDの数で予測する方法が考えられる。また、各リンクの受信信号強度および/または信号対雑音電力比を計測して各リンクの通信性能を予測する方法が考えられる。 If it is determined as Yes in S12, the process proceeds to S13. In S13, based on the prediction of communication performance, it is determined whether or not conditions for transmitting response frames over a plurality of EMLMR links are met. As with S2, a method of predicting communication performance based on the degree of congestion of the channel corresponding to each link, that is, the number of non-AP MLDs connected to the AP MLD, can be considered. Also, a method of measuring the received signal strength and/or the signal-to-noise power ratio of each link and predicting the communication performance of each link is conceivable.
 S13においてNoと判定された場合、S16に遷移する。S16において、制御部202は、開始フレームを送信または受信したEMLMRリンクの中から所定の基準で1つのEMLMRリンクを選択する。選択されたEMLMRリンクでEMLMR動作が行われる。所定の基準での決め方とは次のような決定方法である。大きく分けて3つの決定方法があり、(1)リンクを識別するための情報(リンクID等)に基づいて選択、(2)EMLMRリンクが確立された順序に基づいて選択、(3)通信性能(リンクに対応するチャンネルの混雑度(APに接続しているSTAの数)等)の少なくともいずれか1つに基づいて選択する。 If it is determined as No in S13, the process proceeds to S16. In S16, the control unit 202 selects one EMLMR link from the EMLMR links that have transmitted or received the start frame based on a predetermined criterion. EMLMR operations are performed on the selected EMLMR link. The determination method based on the predetermined criteria is the following determination method. There are roughly three determination methods: (1) selection based on information for identifying the link (link ID, etc.), (2) selection based on the order in which the EMLMR links were established, and (3) communication performance. (the degree of congestion of the channel corresponding to the link (the number of STAs connected to the AP), etc.).
 リンクを識別するための情報(リンクID等)に基づいて選択する場合、図5Aに示すMulti-Link element のLink IDサブフィールドを参照し決定する。Link IDはMulti-Linkを確立することで、リンク毎に割り当てられるIDである。リンクIDを確立した順序でIDが割り振られる場合、複数のEMLMRリンクの内、リンクIDの番号が低いリンクを、選択する1つのEMLMRリンクとする。または、リンクIDの番号が高いリンクを、選択する1つのEMLMRリンクとしても良い。 When making a selection based on information for identifying a link (link ID, etc.), refer to the Link ID subfield of the Multi-Link element shown in FIG. 5A. Link ID is an ID assigned to each link by establishing Multi-Link. When IDs are assigned in the order in which link IDs are established, the link with the lowest link ID number among the multiple EMLMR links is selected as one EMLMR link. Alternatively, a link with a higher link ID number may be selected as one EMLMR link.
 EMLMRリンクが確立された順序に基づいて選択する場合、より具体的には次の順序の中から少なくとも1つの順序に基づいて選択する。
・値が1であるEMLMR Supportサブフィールドを含むフレームを送信した順序
・値が1であるEMLMR Supportサブフィールドを含むフレームを受信した順序
・値が1であるEMLMR Supportサブフィールドを含むフレームを送信かつ受信した順序
・値が1であるEMLMR Modeサブフィールドを含むEML Operating Mode Notificationフレームを送信した順序(non-AP MLDの場合)
・値が1であるEMLMR Modeサブフィールドを含むEML Operating Mode Notificationフレームを受信した順序(AP MLDの場合)
・値が1であるEMLMR Supportサブフィールドを含むフレームを受信し、かつ、値が1であるEMLMR Modeサブフィールドを含むEML Operating Mode Notificationフレームを送信した順序(non-AP MLDの場合)
・値が1であるEMLMR Supportサブフィールドを含むフレームを送信し、かつ、値が1であるEMLMR Modeサブフィールドを含むEML Operating Mode Notificationフレームを受信した順序(AP MLDの場合)
If the selection is based on the order in which the ELMMR links were established, more specifically, the selection is based on at least one of the following orders.
- The order in which frames containing the EMLMR Support subfield with a value of 1 were transmitted - The order in which frames containing the EMLMR Support subfield with a value of 1 were received - The frames containing the EMLMR Support subfield with a value of 1 were transmitted and The order in which the EML Operating Mode Notification frames containing the EMLMR Mode subfield with a value of 1 were sent (for non-AP MLD)
- The order in which EML Operating Mode Notification frames containing the EMLMR Mode subfield with a value of 1 are received (in the case of AP MLD)
- The order in which a frame containing an EMLMR Support subfield with a value of 1 is received and an EML Operating Mode Notification frame containing an EMLMR Mode subfield with a value of 1 is transmitted (in the case of non-AP MLD)
- The order in which a frame containing an EMLMR Support subfield with a value of 1 is transmitted and an EML Operating Mode Notification frame containing an EMLMR Mode subfield with a value of 1 is received (in the case of AP MLD)
 上記フレームにEMLMRリンクを確立するリンクを識別するための情報が含まれている場合、その情報を送信もしくは受信した順序に基づいて、その情報で識別されるEMLMRリンクを選択してもよい。また、送信したEMLMRリンクを確立するリンクを識別するための情報と受信したそれが一致した順序に基づいて、その情報で識別されるEMLMRリンクを選択してもよい。 If the frame contains information for identifying a link that establishes an EMLMR link, the EMLMR link identified by that information may be selected based on the order in which the information is transmitted or received. Also, the EMLMR link identified by the information may be selected based on the order in which the transmitted information for identifying the link establishing the EMLMR link matches the received information.
 この順序に従ってそれぞれのEMLMRリンクに順番が1の値から割り当てられる。つまり、リンクの順番が1のEMLMRリンクが、所定の基準で選択されるEMLMRリンクとなる。例えば、値が1であるEMLMR Supportサブフィールドを含むフレームを受信した順序でEMLMRリンクを選択する場合、AP MLDが、値が1であるEMLMR Supportサブフィールドを含むフレームをLink1で受信し、その後Link2で受信したと仮定した場合、Link1が1の順番を割り当てられるのでLink1を選択することになる。なお、その他の実施例で説明を行うが、複数のEMLMRリンクを選択する場合は、順番が低い順からEMLMRリンクを確立可能な規定値まで選択することになる。 An order is assigned to each EMLMR link starting with a value of 1 according to this order. That is, the EMLMR link with the link order of 1 is the EMLMR link selected according to the predetermined criteria. For example, if the EMLMR links are selected in the order in which the frames containing the EMLMR Support subfield with a value of 1 are received, the AP MLD receives the frame containing the EMLMR Support subfield with a value of 1 on Link1, and then on Link2. , Link1 is assigned the order of 1, so Link1 is selected. As described in other embodiments, when selecting a plurality of EMLMR links, the links are selected in descending order of order up to a prescribed value that allows the EMLMR links to be established.
 通信性能に基づいて選択する場合、夫々のEMLMRリンクに対応するチャンネルの混雑度を計測し、混雑度が最も低いEMLMRリンクを、選択する1つのEMLMRリンクとする。計測方法としては、APに接続しているSTAの数で判断する方法がある他、Multi-Linkの各リンクにおけるチャンネルの占有率を求める方法が考えられる。 When selecting based on communication performance, the degree of congestion of the channel corresponding to each EMLMR link is measured, and the EMLMR link with the lowest degree of congestion is selected as one EMLMR link. As a measuring method, there is a method of judging by the number of STAs connected to the AP, and a method of obtaining the channel occupancy rate in each link of the Multi-Link can be considered.
 S13においてYesと判定された場合、S14に遷移する。S14において、制御部202は、開始フレームを受信した複数のEMLMRリンクで応答フレームを送信し、S15に遷移する。S15において、制御部202は、応答フレームを送信したEMLMRリンクにおいて、リンク毎の空間ストリームケイパビリティに従った空間ストリーム数でフレーム交換を実行する。S7において、フレーム交換シーケンスが終了したか否かを判定し、Yesと判定されたことに応じて処理を終了する。 If it is determined as Yes in S13, the process proceeds to S14. In S14, the control unit 202 transmits response frames through the plurality of EMLMR links from which the start frame was received, and transitions to S15. In S15, the control unit 202 executes frame exchange with the number of spatial streams according to the spatial stream capability of each link on the EMLMR link that transmitted the response frame. In S7, it is determined whether or not the frame exchange sequence has ended, and if the determination is Yes, the process ends.
 以上、実施例1では、EMLMR動作開始前に相手方となる通信装置と複数の開始フレームのやり取りがあった場合、EMLMRモードでの動作を適正に制御する方法について説明した。適正に制御する具体的な方法とは、複数のEMLMRリンクでフレーム交換シーケンスを交換するか否かに応じて、1つのEMLMRリンクまたは複数のEMLMRリンクでフレーム交換を行う制御方法である。選択したEMLMRリンクでフレーム交換シーケンスを続行し、選択されなかったEMLMRリンクがある場合は、そのEMLMRリンクでのフレーム交換シーケンスを一時的に停止する。 As described above, in the first embodiment, the method of properly controlling the operation in the EMLMR mode when a plurality of start frames are exchanged with the communication device of the other party before the start of the EMLMR operation has been described. A specific method for proper control is a control method for exchanging frames on one EMLMR link or on a plurality of EMLMR links depending on whether or not to exchange frame exchange sequences on a plurality of EMLMR links. Continue the frame exchange sequence on the selected EMLMR link, and if there is an unselected EMLMR link, temporarily stop the frame exchange sequence on that EMLMR link.
 [その他の実施例]
 実施例1では図6のS5で応答フレームを受信したEMLMRリンクが複数であったかを判断し、その結果によりS6またはS10のいずれかのステップに遷移した。しかし、S5はスキップされてもよい。この場合、S4で少なくとも1つのEMLMRリンクで応答フレームを受信したかを判断し、その結果がYesである場合、S6のステップに遷移する。
[Other Examples]
In the first embodiment, it is determined in S5 of FIG. 6 whether or not there are a plurality of EMLMR links that have received the response frame, and depending on the result, the process transitions to either step S6 or S10. However, S5 may be skipped. In this case, it is determined in S4 whether a response frame has been received on at least one ELMMR link, and if the result is Yes, the process proceeds to step S6.
 実施例1では、EMLMRリンクを1つ選択する方法を開示したが、複数のEMLMRリンクをEMLMRモードで動作させても良い。例えば、通信装置と、相手方となる通信装置との間にLink1乃至Link4までの4本のリンクが形成されているとする。Link1とLink2をEMLMRリンクとして動作させる場合、Link1にLink3の空間ストリームを割り当て、Link2にLink4の空間ストリームを割り当てる方法などがある。結果、Link1およびLink2の空間ストリーム数は増加し、逆にLink3およびLink4の空間ストリーム数は減少する。このようなケースも考えられるため、空間ストリーム数を増加させるEMLMRリンクが複数存在できる場合は、図6のS8および図7のS16で所定の基準で複数のEMLMRリンクを選択すれば良い。 Although the method of selecting one EMLMR link is disclosed in the first embodiment, a plurality of EMLMR links may be operated in EMLMR mode. For example, assume that four links, Link1 to Link4, are formed between a communication device and a communication device on the other end. When Link1 and Link2 are operated as an EMLMR link, there is a method of allocating the spatial stream of Link3 to Link1 and the spatial stream of Link4 to Link2. As a result, the number of spatial streams of Link1 and Link2 increases, while the number of spatial streams of Link3 and Link4 decreases. Since such a case is conceivable, when a plurality of EMLMR links that increase the number of spatial streams can exist, a plurality of EMLMR links can be selected based on a predetermined criterion in S8 of FIG. 6 and S16 of FIG.
 そして、図6のS9において、選択した各EMLMRリンクで応答フレームを受信したか判断し、S10において、応答フレームを受信した各EMLMRリンクでEMLMR動作を実行すればよい。また、図7のS18で選択した各EMLMRリンクで応答フレームを送信し、S10において、応答フレームを送信した各EMLMRリンクでEMLMR動作を実行すればよい。 Then, in S9 of FIG. 6, it is determined whether each selected EMLMR link has received a response frame, and in S10, each EMLMR link that has received the response frame performs an EMLMR operation. Also, the response frame may be transmitted through each EMLMR link selected in S18 of FIG. 7, and the EMLMR operation may be executed in each EMLMR link that transmitted the response frame in S10.
 実施例1では、EMLMRリンクが確立された順序に基づいて選択する際に、順番が低い順から選択を行ったが、順番が高い順から選択を行っても良いし、真ん中の順番を最初に選択しいっても良い。 In the first embodiment, when the selection is made based on the order in which the ELMMR links are established, the selection is made from the lowest order. You can choose.
 実施例1では、Basic variant Multi-Linkエレメントと説明したが、Basic Multi-Linkエレメントでもよく、EMLMR Supported MCS And NSS Setサブフィールドは、EMLMR Rx NSSサブフィールドおよびEMLMR Tx NSSサブフィールドでも良い。この場合、EMLMR Rx NSSサブフィールドは受信における最大空間ストリーム数を示し、EMLMR Tx NSSサブフィールドは送信における最大空間ストリーム数を示す。 In the first embodiment, the Basic variant Multi-Link element was described, but it may be a Basic Multi-Link element, and the EMLMR Supported MCS And NSS Set subfield may be an EMLMR Rx NSS subfield and an EMLMR Tx NSS subfield. In this case, the EMLMR Rx NSS subfield indicates the maximum number of spatial streams in reception and the EMLMR Tx NSS subfield indicates the maximum number of spatial streams in transmission.
 なお、上述の機能を実現するソフトウェアのプログラムコードを記録した記録媒体をシステムあるいは装置に供給し、システムあるいは装置のコンピュータ(CPU、MPU)が記録媒体に格納されたプログラムコードを読み出し実行するようにしてもよい。この場合、記憶媒体から読み出されたプログラムコード自体が上述の実施形態の機能を実現することとなり、そのプログラムコードを記憶した記憶媒体は上述の装置を構成することになる。 A recording medium recording the program code of the software that realizes the above functions is supplied to the system or apparatus, and the computer (CPU, MPU) of the system or apparatus reads and executes the program code stored in the recording medium. may In this case, the program code itself read out from the storage medium implements the functions of the above-described embodiments, and the storage medium storing the program code constitutes the above-described device.
 プログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリカード、ROM、DVDなどを用いることができる。 Examples of storage media for supplying program codes include flexible disks, hard disks, optical disks, magneto-optical disks, CD-ROMs, CD-Rs, magnetic tapes, non-volatile memory cards, ROMs, and DVDs. can.
 また、コンピュータが読み出したプログラムコードを実行することにより、上述の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOSが実際の処理の一部または全部を行い、上述の機能を実現してもよい。OSとは、Operating Systemの略である。 In addition, by executing the program code read by the computer, not only the above functions are realized, but also based on the instructions of the program code, the OS running on the computer may perform part or all of the actual processing. may be performed to implement the functions described above. OS is an abbreviation for Operating System.
 さらに、記憶媒体から読み出されたプログラムコードを、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込む。そして、そのプログラムコードの指示に基づき、機能拡張ボードや機能拡張ユニットに備わるCPUが実際の処理の一部または全部を行い、上述の機能を実現してもよい。 Furthermore, the program code read from the storage medium is written to the memory provided in the function expansion board inserted into the computer or the function expansion unit connected to the computer. Then, based on the instructions of the program code, the CPU provided in the function expansion board or function expansion unit may perform part or all of the actual processing to realize the above functions.
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。 The present invention supplies a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in the computer of the system or apparatus reads and executes the program. It can also be realized by processing to It can also be implemented by a circuit (for example, ASIC) that implements one or more functions.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiments, and various changes and modifications are possible without departing from the spirit and scope of the present invention. Accordingly, the following claims are included to publicize the scope of the invention.
 本願は、2021年9月30日提出の日本国特許出願特願2021-162357を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2021-162357 submitted on September 30, 2021, and the entire contents of the description are incorporated herein.

Claims (9)

  1.  IEEE802.11シリーズ規格に準拠したMulti-Link Deviceとして動作する通信装置であって、
     第1のEMLMR(Enhanced multi-link multi-radio)リンクおよび第2のEMLMR(Enhanced multi-link multi-radio)リンクの2つのリンクでフレーム交換シーケンスを実行する場合、特定のリンクの空間ストリームを前記第1のEMLMRリンクおよび前記第2のEMLMRリンクに割り当てることなく、前記第1のEMLMRリンクおよび前記第2のEMLMRリンクの夫々の空間ストリーム数でフレーム交換シーケンスを実行するように制御する制御手段と、を備えることを特徴とする通信装置。
    A communication device that operates as a Multi-Link Device compliant with the IEEE802.11 series standard,
    When performing frame exchange sequences on two links, a first Enhanced multi-link multi-radio (EMLMR) link and a second Enhanced multi-link multi-radio (EMLMR) link, the spatial stream of a particular link is described above. control means for controlling execution of a frame exchange sequence with the number of spatial streams in each of said first EMLMR link and said second EMLMR link without assigning them to said first EMLMR link and said second EMLMR link; A communication device comprising:
  2.  前記制御手段は、前記第1のEMLMRリンクまたは前記第2のEMLMRリンクをEMLMR動作させるリンクとして決定し、EMLMR動作させるリンクとして決定されたリンクにおいて、前記夫々の空間ストリーム数に代えて、non-AP MLDとして動作している他の通信装置がEMLMR SUPPORTED MCS AND NSS SETサブフィールドで定義した値を最大とする空間ストリーム数でフレーム交換シーケンスにおける初期フレーム交換の後のフレーム交換を続行するように制御することを特徴とする請求項1に記載の通信装置。 The control means determines the first EMLMR link or the second EMLMR link as a link for EMLMR operation, and replaces each of the number of spatial streams in the link determined as the link for EMLMR operation with non- Control so that other communication devices operating as AP MLD continue frame exchange after the initial frame exchange in the frame exchange sequence with the number of spatial streams up to the value defined in the EMLMR Supported MCS AND NSS SET subfield The communication device according to claim 1, characterized in that:
  3.  前記制御手段は、通信性能の予測に基づき、請求項1に記載の前記制御および請求項2に記載の前記制御のうち、いずれか1つの制御でフレーム交換シーケンスを続行する
     ことを特徴とする請求項2に記載の通信装置。
    The control means continues the frame exchange sequence under any one of the control described in claim 1 and the control described in claim 2 based on the prediction of communication performance. Item 3. The communication device according to item 2.
  4.  前記制御手段は、フレーム交換シーケンスが終了することに伴い、フレーム交換シーケンスを行ったEMLMRリンクを削除することを特徴とする請求項1乃至3のいずれか1項に記載の通信装置。 The communication device according to any one of claims 1 to 3, wherein the control means deletes the EMLMR link on which the frame exchange sequence is performed when the frame exchange sequence ends.
  5.  IEEE802.11シリーズ規格に準拠したMulti-Link Deviceとして動作する通信装置の制御方法であって、
     第1のEMLMR(Enhanced multi-link multi-radio)リンクおよび第2のEMLMR(Enhanced multi-link multi-radio)リンクの2つのリンクでフレーム交換シーケンスを実行する場合、特定のリンクの空間ストリームを前記第1のEMLMRリンクおよび前記第2のEMLMRリンクに割り当てることなく、前記第1のEMLMRリンクおよび前記第2のEMLMRリンクの夫々の空間ストリーム数でフレーム交換シーケンスを実行するように制御する制御ステップを含むことを特徴とする制御方法。
    A control method for a communication device operating as a Multi-Link Device conforming to the IEEE802.11 series standard,
    When performing frame exchange sequences on two links, a first Enhanced multi-link multi-radio (EMLMR) link and a second Enhanced multi-link multi-radio (EMLMR) link, the spatial stream of a particular link is described above. a control step of controlling to execute a frame exchange sequence with a number of spatial streams in each of said first EMLMR link and said second EMLMR link without assigning them to said first EMLMR link and said second EMLMR link; A control method, comprising:
  6.  前記制御ステップにおいては、前記第1のEMLMRリンクまたは前記第2のEMLMRリンクをEMLMR動作させるリンクとして決定し、EMLMR動作させるリンクとして決定されたリンクにおいて、前記夫々の空間ストリーム数に代えて、non-AP MLDとして動作している自装置または他の通信装置がEMLMR SUPPORTED MCS AND NSS SETサブフィールドで定義した値を最大とする空間ストリーム数でフレーム交換シーケンスにおける初期フレーム交換後のフレーム交換を実行するように制御することを特徴とする請求項5に記載の制御方法。 In the control step, the first EMLMR link or the second EMLMR link is determined as a link for EMLMR operation, and in the link determined as a link for EMLMR operation, instead of each of the number of spatial streams, non - Perform frame exchange after the initial frame exchange in the frame exchange sequence with the number of spatial streams that maximizes the value defined in the ELMMR Supported MCS AND NSS SET subfield by the own device or other communication device operating as the AP MLD 6. The control method according to claim 5, wherein the control is performed such that
  7.  前記制御ステップにおいては、通信性能の予測に基づき、請求項1に記載の前記制御および請求項2に記載の前記制御のうち、いずれか1つの制御でフレーム交換シーケンスを続行することを特徴とする請求項6に記載の制御方法。 In the control step, the frame exchange sequence is continued under either one of the control according to claim 1 and the control according to claim 2 based on the prediction of communication performance. The control method according to claim 6.
  8.  前記制御ステップにおいては、フレーム交換シーケンスが終了することに伴い、フレーム交換シーケンスを行ったEMLMRリンクを削除することを特徴とする請求項5乃至7のいずれか1項に記載の制御方法。 The control method according to any one of claims 5 to 7, characterized in that, in said control step, the EMLMR link on which the frame exchange sequence has been performed is deleted as the frame exchange sequence ends.
  9.  コンピュータを請求項1から4の何れか1項に記載の通信装置の各手段として機能させるためのプログラム。 A program for causing a computer to function as each means of the communication device according to any one of claims 1 to 4.
PCT/JP2022/035679 2021-09-30 2022-09-26 Communication device, communication device control method, and program therefor WO2023054252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162357 2021-09-30
JP2021162357A JP2023051565A (en) 2021-09-30 2021-09-30 Communication device, method for controlling communication device, and program for the same

Publications (1)

Publication Number Publication Date
WO2023054252A1 true WO2023054252A1 (en) 2023-04-06

Family

ID=85782650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035679 WO2023054252A1 (en) 2021-09-30 2022-09-26 Communication device, communication device control method, and program therefor

Country Status (2)

Country Link
JP (1) JP2023051565A (en)
WO (1) WO2023054252A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013088A1 (en) * 2018-07-09 2020-01-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Access point and communication method
US20210144698A1 (en) * 2019-11-12 2021-05-13 Nxp Usa, Inc. Multi-Antenna Processing In Multi-Link Wireless Communication Systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013088A1 (en) * 2018-07-09 2020-01-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Access point and communication method
US20210144698A1 (en) * 2019-11-12 2021-05-13 Nxp Usa, Inc. Multi-Antenna Processing In Multi-Link Wireless Communication Systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KWON YOUNG HOON: "Resolution for CIDs related to EMLMR (CC34) - Part 2", IEEE 802.11-21/0774R01, 1 May 2021 (2021-05-01), pages 1 - 8, XP093052727, [retrieved on 20230608] *

Also Published As

Publication number Publication date
JP2023051565A (en) 2023-04-11

Similar Documents

Publication Publication Date Title
JP5245008B2 (en) AP selection information provision method
JP2024019465A (en) Communication device, information processing device, control method, and program
WO2021176957A1 (en) Communication device, communication method, and program
TWI805977B (en) Communication device, communication method, and communication control program
EP4231552A1 (en) Transmission station and reception station
JP2024010191A (en) Communication device, information processing device, control method, and program
US20230209632A1 (en) Communication apparatus, control method, and storage medium
US20230137441A1 (en) Communication apparatus, control method for communication apparatus, and storage medium
WO2023054252A1 (en) Communication device, communication device control method, and program therefor
WO2023054250A1 (en) Communication device, method for controlling communication device, and program thereof
WO2023054249A1 (en) Communication device, method for controlling communication device, and program for same
WO2023054030A1 (en) Communication device, method for controlling communication device, and program therefor
WO2023037903A1 (en) Communication device, communication method, and program
WO2023037970A1 (en) Communication device, communication method, and program
WO2023037971A1 (en) Communication device, communication method, and program
WO2024080230A1 (en) Communication device, communication method, and program
WO2023106031A1 (en) Communication device, communication method, and program
WO2023095544A1 (en) Communication device, communication method, and program
WO2023048092A1 (en) Communication device, communication method, and program
WO2023112513A1 (en) Communication device, control method, and program therefor
WO2023037904A1 (en) Communication device, communication method, and program
US20230057296A1 (en) Communication apparatus, communication control method, communication method, and computer-readable storage medium
WO2022259857A1 (en) Communication device, communication method, and program
WO2024004588A1 (en) Communication device, control method, and program
WO2023058544A1 (en) Communication device, control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876119

Country of ref document: EP

Kind code of ref document: A1