WO2023054235A1 - All-solid-state battery - Google Patents

All-solid-state battery Download PDF

Info

Publication number
WO2023054235A1
WO2023054235A1 PCT/JP2022/035615 JP2022035615W WO2023054235A1 WO 2023054235 A1 WO2023054235 A1 WO 2023054235A1 JP 2022035615 W JP2022035615 W JP 2022035615W WO 2023054235 A1 WO2023054235 A1 WO 2023054235A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
active material
positive electrode
volume ratio
negative electrode
Prior art date
Application number
PCT/JP2022/035615
Other languages
French (fr)
Japanese (ja)
Inventor
富沢祥江
伊藤大悟
横島克典
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2023054235A1 publication Critical patent/WO2023054235A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to all-solid-state batteries.
  • a secondary battery using an electrolytic solution has problems such as leakage of the electrolytic solution. Therefore, an all-solid-state battery is being developed that has a solid electrolyte and is composed of other elemental technologies that are also solid.
  • the maximum amount of active material is filled in the electrode layers of the positive and negative electrodes, and the thickness of the electrode layers is changed. It is common to balance the capacities of the positive and negative electrodes.
  • Patent Document 1 discloses an all-solid-state battery in which the filling rate of graphite, which is a negative electrode active material, is increased and combined with an NCA-based positive electrode active material.
  • graphite which is a negative electrode active material
  • NCA-based positive electrode active material the filling rate of graphite, which is a negative electrode active material
  • the positive electrode layer must be made thicker in order to balance the capacity with the positive electrode.
  • sulfide-based all-solid-state batteries can be fabricated by pressurization, it is possible to balance the capacity by such a thickness. In a solid-state battery, the combination of materials and the sintering temperature change drastically, and it becomes difficult to balance the capacity depending on the thickness.
  • Non-Patent Document 1 As described in Non-Patent Document 1, if you try to balance the capacity by the thickness of the electrode layers of the positive and negative electrodes, problems such as interlayer separation and warping due to shrinkage mismatch between the positive and negative electrodes in the sintering process become problems.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an all-solid-state battery that can realize a good capacity balance while suppressing the shrinkage mismatch between the positive and negative electrodes in the sintering process. .
  • An all-solid-state battery includes an oxide-based solid electrolyte layer, a positive electrode layer provided on a first main surface of the oxide-based solid electrolyte layer, and a second main surface of the oxide-based solid electrolyte layer.
  • one of the positive electrode layer and the negative electrode layer has higher electron conductivity during charging than when uncharged and more than the active material of the other electrode layer It contains an active material with a small volumetric capacity, has a higher volume ratio of the active material than the other electrode layer, has a lower volume ratio of the conductive aid than the other electrode layer, and has an average thickness T1 of the one electrode layer and and the ratio T1/T2 to the average thickness T2 of the other electrode layer is 0.75 or more and 1.3 or less.
  • the one electrode layer may be the positive electrode layer, and the other electrode layer may be the negative electrode layer.
  • the volume ratio of the solid electrolyte having ion conductivity is 30 Vol. % or more, 60 Vol. % or less.
  • the active material that exhibits higher electron conductivity during charging than during uncharging is LiCoPO 4 , Li 2 CoP 2 O 7 or Li 6 Co. 5 (P 2 O 7 ) 4 may be used.
  • the volume ratio of the active material is 15 Vol. % or more, 55 Vol. % or less.
  • the volume ratio of the conductive aid is 8 Vol. % or more, 24 Vol. % or less.
  • the active material that exhibits higher electron conductivity during charging than during uncharging is Li 1.3 Al 0.3 Ti 1.7 ( PO4 ) 3 , LiTi2 ( PO4 ) 3 , or LiTiOPO4 .
  • FIG. 1 is a schematic cross-sectional view showing the basic structure of an all-solid-state battery
  • FIG. 1 is a schematic cross-sectional view showing the basic structure of an all-solid-state battery
  • FIG. 1 is a schematic cross-sectional view of a stacked all-solid-state battery
  • FIG. 3 is a schematic cross-sectional view of another stacked all-solid-state battery. It is a figure which illustrates the flow of the manufacturing method of an all-solid-state battery.
  • (a) and (b) are figures which illustrate a lamination process.
  • FIG. 1 is a schematic cross-sectional view showing the basic structure of an all-solid-state battery 100 according to the first embodiment.
  • the all-solid battery 100 has a structure in which a solid electrolyte layer 30 is sandwiched between a positive electrode layer 10 and a negative electrode layer 20 .
  • the positive electrode layer 10 is formed on the first main surface of the solid electrolyte layer 30 and the negative electrode layer 20 is formed on the second main surface of the solid electrolyte layer 30 .
  • the solid electrolyte layer 30 is mainly composed of a solid electrolyte having ionic conductivity.
  • the solid electrolyte of the solid electrolyte layer 30 is, for example, an oxide-based solid electrolyte having lithium ion conductivity.
  • the solid electrolyte is, for example, a phosphate-based solid electrolyte having a NASICON structure.
  • a phosphate-based solid electrolyte having a NASICON structure has properties of high electrical conductivity and stability in the atmosphere.
  • a phosphate-based solid electrolyte is, for example, a phosphate containing lithium.
  • the phosphate is not particularly limited, but examples thereof include a composite lithium phosphate with Ti (eg, LiTi 2 (PO 4 ) 3 ).
  • Ti can be partially or wholly substituted with tetravalent transition metals such as Ge, Sn, Hf, and Zr.
  • tetravalent transition metals such as Ge, Sn, Hf, and Zr.
  • trivalent transition metals such as Al, Ga, In, Y and La. More specifically, for example, Li 1+x Al x Ge 2-x (PO 4 ) 3 , Li 1+x Al x Zr 2-x (PO 4 ) 3 , Li 1+x Al x Ti 2-x (PO 4 ) 3 etc.
  • the positive electrode layer 10 includes a positive electrode active material 12, a conductive aid 13, a solid electrolyte 14, and the like.
  • the negative electrode layer 20 includes a negative electrode active material 22, a conductive aid 23, a solid electrolyte 24, and the like.
  • the all-solid-state battery 100 can be used as a secondary battery. Electroconductivity is obtained in the positive electrode layer 10 and the negative electrode layer 20 by providing the positive electrode layer 10 with the conductive aid 13 and the negative electrode layer 20 with the conductive aid 23 .
  • the positive electrode active material 12 is a positive electrode active material whose electron conductivity during charging is higher than that during uncharged (during empty charge).
  • the positive electrode active material 12 is, for example, LiCoPO 4 , Li 2 CoP 2 O 7 or Li 6 Co 5 (P 2 O 7 ) 4 or the like.
  • the negative electrode active material 22 is not particularly limited as long as it is an active material having a negative electrode action, and examples thereof include Nb 2 O 5 , V 2 O 5 and Ta 2 O 5 .
  • the conductive aids 13 and 23 are not particularly limited as long as they are conductive materials, but are, for example, carbon materials. Alternatively, metal may be used as the conductive aids 13 and 23 . Examples of metals for the conductive aids 13 and 23 include Pd, Ni, Cu, Fe, and alloys containing these.
  • the solid electrolytes 14 and 24 are not particularly limited as long as they are ion-conductive solid electrolytes.
  • a solid electrolyte that is the main component of the solid electrolyte layer 30 can be used.
  • the negative electrode active material 22 is not particularly limited, but in the combination of the positive electrode active material 12 and the negative electrode active material 22, an active material having a smaller volumetric capacity than the negative electrode active material 22 is used as the positive electrode active material 12. Also, the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 is higher than the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 . Also, the volume ratio of the conductive aid 13 in the positive electrode layer 10 is lower than the volume ratio of the conductive aid 23 in the negative electrode layer 20 .
  • the positive electrode active material 12 has a smaller volumetric capacity than the negative electrode active material 22 in order to balance the capacities of the positive electrode layer 10 and the negative electrode layer 20 with the same electrode layer thickness, the filling of the positive electrode active material 12 It is desirable to increase the amount. However, if the amount of the conductive aid 13 is reduced, the electron conduction decreases and the resistance becomes high. Since the electron conduction in the positive electrode layer 10 can be sufficient in the charged state for operation, even if the difference between the thickness of the positive electrode layer 10 and the thickness of the negative electrode layer 20 is small, a good capacity balance can be realized. can.
  • the ratio T1/T2 between the average thickness T1 of the positive electrode layer 10 and the average thickness T2 of the negative electrode layer 20 is set to 0.75 or more and 1.3 or less.
  • the ratio T1/T2 is set to 0.75 or more and 1.3 or less.
  • the all-solid-state battery 100 can realize good capacity balance while suppressing the shrinkage mismatch between the positive and negative electrodes in the sintering process.
  • the average thickness T1 of the positive electrode layer 10 and the average thickness T2 of the negative electrode layer 20 can be measured by averaging the thicknesses at 10 points through SEM observation of a cross section cut perpendicular to the stacking direction.
  • the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 is too small, a sufficient capacity density may not be ensured. Therefore, it is preferable to set a lower limit to the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 .
  • the volume ratio of the positive electrode active material 12 is 15 Vol. % or more, and 17.5 Vol. % or more, and 20 Vol. % or more is more preferable.
  • the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 is too large, there is a risk of an increase in internal resistance due to insufficient sintering and densification of the electrode and a decrease in electronic conductivity and ionic conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 .
  • the volume ratio of the positive electrode active material 12 is 55 Vol. % or less, and 50 Vol. % or less, and 45 Vol. % or less.
  • the volume ratio of the conductive aid 13 in the positive electrode layer 10 is too small, there is a risk of an increase in internal resistance due to a decrease in electronic conductivity. Therefore, in the positive electrode layer 10 , it is preferable to set a lower limit to the volume ratio of the conductive aid 13 .
  • the volume ratio of the conductive aid 13 is 8 Vol. % or more, and 9 Vol. % or more, and 10 Vol. % or more is more preferable.
  • the volume ratio of the conductive additive 13 in the positive electrode layer 10 is too large, there is a risk of a decrease in capacity, insufficient sintering and densification of the electrode, and an increase in internal resistance due to a decrease in ionic conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the conductive additive 13 in the positive electrode layer 10 .
  • the volume ratio of the conductive aid 13 is 24 Vol. % or less, and 22 Vol. % or less, and 20 Vol. % or less.
  • the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 is too small, the ionic conductivity may decrease and the sintering and densification of the electrode may be insufficient. Therefore, it is preferable to set a lower limit to the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 .
  • the volume ratio of the solid electrolyte 14 is 30 Vol. % or more, and 35 Vol. % or more, and 40 Vol. % or more is more preferable.
  • the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 is too large, there is a risk of an increase in internal resistance due to a decrease in capacity and electron conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 .
  • the volume ratio of the solid electrolyte 14 is 65 Vol. % or less, and 60 Vol. % or less, and 55 Vol. % or less.
  • the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 is too small, it may not be possible to secure a sufficient capacity density. Therefore, it is preferable to set a lower limit to the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 .
  • the volume ratio of the negative electrode active material 22 is 10 Vol. % or more, and 12.5 Vol. % or more, and 15 Vol. % or more is more preferable.
  • the volume ratio of the negative electrode active material 22 is 45 Vol. % or less, and 40 Vol. % or less, and 35 Vol. % or less.
  • the volume ratio of the conductive aid 23 in the negative electrode layer 20 is too small, there is a risk of an increase in internal resistance due to a decrease in electronic conductivity. Therefore, it is preferable to set a lower limit to the volume ratio of the conductive additive 23 in the negative electrode layer 20 .
  • the volume ratio of the conductive aid 23 is 16 Vol. % or more, and 18 Vol. % or more, and 20 Vol. % or more is more preferable.
  • the volume ratio of the conductive aid 23 in the negative electrode layer 20 is too large, there is a risk of a decrease in capacity, insufficient sintering and densification of the electrode, and an increase in internal resistance due to a decrease in ionic conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the conductive aid 23 in the negative electrode layer 20 .
  • the volume ratio of the conductive aid 23 is 50 Vol. % or less, and 45 Vol. % or less, and 40 Vol. % or less.
  • the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 is too small, the ionic conductivity may decrease and the sintering and densification of the electrode may be insufficient. Therefore, it is preferable to set a lower limit to the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 .
  • the volume ratio of the solid electrolyte 24 is 30 Vol. % or more, and 35 Vol. % or more, and 40 Vol. % or more is more preferable.
  • the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 is too large, there is a risk of an increase in internal resistance due to a decrease in capacity and electron conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 .
  • the volume ratio of the solid electrolyte 24 is 65 Vol. % or less, and 60 Vol. % or less, and 55 Vol. % or less.
  • the ratio T1/T2 is 0.75 or more and 1.30 or less. It is preferably 0.80 or more and 1.25 or less.
  • a non-aqueous electrolyte secondary battery capable of high-current pulse discharge on the order of mA has been developed by etching the inner lid surface of the battery storage can to form an uneven structure to reduce the resistance.
  • a carbon layer on the current collector and bringing it into contact with the sintered electrode plate the contact is maintained by the pressure of the caulking of the storage can, so that it can be operated repeatedly under the usage conditions for IoT devices such as CV charging and pulse charging/discharging.
  • a coin-type lithium secondary battery has been developed in which the battery resistance does not easily increase even when the battery is heated.
  • These secondary batteries are designed to reduce the internal resistance as much as possible and prevent the resistance from increasing, making them suitable for high-rate discharge such as pulse discharge.
  • it is necessary to provide a limiting resistor in order to prevent a momentary large current from flowing during CV charging. It can be said that it is unsuitable for applications where simplification is particularly desired.
  • the positive electrode active material 12 that exhibits higher electron conductivity when fully charged than when uncharged is used, and the volume ratio of the conductive aid 13 in the positive electrode layer 10 to the negative electrode layer 20 is Since it is lower than the volume ratio of the conductive aid 23, a large current at low SOC is suppressed, and stable CV charging becomes possible.
  • the electron conductivity of the positive electrode active material 12, which is rate-limiting during charging increases at high SOC, high-rate discharge is possible.
  • the negative electrode layer 20 includes a negative electrode active material 22 having a higher electron conductivity during charging than when uncharged and having a smaller volumetric capacity than the positive electrode active material 12 of the positive electrode layer 10.
  • the volume ratio of the active material is higher than that of the positive electrode layer 10 and the volume ratio of the conductive aid is lower than that of the positive electrode layer 10 . Differences from the first embodiment will be described below.
  • the negative electrode active material 22 is a negative electrode active material whose electron conductivity during charging is higher than that during charging (during empty charging).
  • the negative electrode active material 22 is , for example, Li1.3Al0.3Ti1.7 ( PO4 ) 3 , LiTi2 ( PO4 ) 3 , LiTiOPO4 , or the like .
  • the positive electrode active material 12 is not particularly limited as long as it is an active material having a positive electrode action, and examples thereof include LiFePO 4 , LiMnPO 4 and LiMn 2 O 4 .
  • the positive electrode active material 12 is not particularly limited, but in the combination of the positive electrode active material 12 and the negative electrode active material 22, an active material having a smaller volumetric capacity than the positive electrode active material 12 is used as the negative electrode active material 22. Also, the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 is higher than the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 . Also, the volume ratio of the conductive aid 23 in the negative electrode layer 20 is lower than the volume ratio of the conductive aid 13 in the positive electrode layer 10 .
  • the average thickness of the negative electrode layer 20 is denoted as T1
  • the average thickness of the positive electrode layer 10 is denoted as T2.
  • T1 the average thickness of the negative electrode layer 20
  • T2 the average thickness of the positive electrode layer 10
  • T2 the difference between the thickness of the positive electrode layer 10 and the thickness of the negative electrode layer 20 becomes small.
  • the shrinkage mismatch between the positive electrode layer 10 and the negative electrode layer 20 in the sintering process can be suppressed.
  • warping in the all-solid-state battery 100 can be suppressed, and cracking can be suppressed.
  • the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 is too small, a sufficient capacity density may not be ensured. Therefore, it is preferable to set a lower limit to the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 .
  • the volume ratio of the positive electrode active material 12 is 10 Vol. % or more, and 12.5 Vol. % or more, and 15 Vol. % or more is more preferable.
  • the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 is too large, there is a risk of an increase in internal resistance due to insufficient sintering and densification of the electrode and a decrease in electronic conductivity and ionic conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 .
  • the volume ratio of the positive electrode active material 12 is 45 Vol. % or less, and 40 Vol. % or less, and 35 Vol. % or less.
  • the volume ratio of the conductive aid 13 in the positive electrode layer 10 is too small, there is a risk of an increase in internal resistance due to a decrease in electronic conductivity. Therefore, in the positive electrode layer 10 , it is preferable to set a lower limit to the volume ratio of the conductive aid 13 .
  • the volume ratio of the conductive aid 13 is 16 Vol. % or more, and 18 Vol. % or more, and 20 Vol. % or more is more preferable.
  • the volume ratio of the conductive additive 13 in the positive electrode layer 10 is too large, there is a risk of a decrease in capacity, insufficient sintering and densification of the electrode, and an increase in internal resistance due to a decrease in ionic conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the conductive additive 13 in the positive electrode layer 10 .
  • the volume ratio of the conductive aid 13 is 50 Vol. % or less, and 45 Vol. % or less, and 40 Vol. % or less.
  • the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 is too small, the ionic conductivity may decrease and the sintering and densification of the electrode may be insufficient. Therefore, it is preferable to set a lower limit to the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 .
  • the volume ratio of the solid electrolyte 14 is 30 Vol. % or more, and 35 Vol. % or more, and 40 Vol. % or more is more preferable.
  • the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 is too large, there is a risk of an increase in internal resistance due to a decrease in capacity and electron conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 .
  • the volume ratio of the solid electrolyte 14 is 65 Vol. % or less, and 60 Vol. % or less, and 55 Vol. % or less.
  • the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 is too small, it may not be possible to secure a sufficient capacity density. Therefore, it is preferable to set a lower limit to the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 .
  • the volume ratio of the negative electrode active material 22 is 15 Vol. % or more, and 17.5 Vol. % or more, and 20 Vol. % or more is more preferable.
  • the volume ratio of the negative electrode active material 22 is 55 Vol. % or less, and 50 Vol. % or less, and 45 Vol. % or less.
  • the volume ratio of the conductive aid 23 in the negative electrode layer 20 is too small, there is a risk of an increase in internal resistance due to a decrease in electronic conductivity. Therefore, it is preferable to set a lower limit to the volume ratio of the conductive additive 23 in the negative electrode layer 20 .
  • the volume ratio of the conductive aid 23 is 8 Vol. % or more, and 9 Vol. % or more, and 10 Vol. % or more is more preferable.
  • the volume ratio of the conductive aid 23 in the negative electrode layer 20 is too large, there is a risk of a decrease in capacity, insufficient sintering and densification of the electrode, and an increase in internal resistance due to a decrease in ionic conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the conductive aid 23 in the negative electrode layer 20 .
  • the volume ratio of the conductive aid 23 is 24 Vol. % or less, and 22 Vol. % or less, and 20 Vol. % or less.
  • the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 is too small, the ionic conductivity may decrease and the sintering and densification of the electrode may be insufficient. Therefore, it is preferable to set a lower limit to the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 .
  • the volume ratio of the solid electrolyte 24 is 30 Vol. % or more, and 35 Vol. % or more, and 40 Vol. % or more is more preferable.
  • the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 is too large, there is a risk of an increase in internal resistance due to a decrease in capacity and electron conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 .
  • the volume ratio of the solid electrolyte 24 is 65 Vol. % or less, and 60 Vol. % or less, and 55 Vol. % or less.
  • the negative electrode active material 22 that exhibits higher electron conductivity in the fully charged state than in the uncharged state is used, and the volume ratio of the conductive support agent 23 in the negative electrode layer 20 is the same as that of the conductive support agent 13 in the positive electrode layer 10 . , the large current at low SOC is suppressed, and stable CV charging becomes possible. On the other hand, since the electron conductivity of the negative electrode active material 22, which is rate-limiting during charging, increases at high SOC, high-rate discharge is possible.
  • FIG. 3 is a schematic cross-sectional view of a stacked all-solid-state battery 100a in which a plurality of battery units are stacked.
  • the all-solid-state battery 100a includes a laminated chip 60 having a substantially rectangular parallelepiped shape.
  • the first external electrode 40a and the second external electrode 40b are provided so as to be in contact with two side surfaces of the four surfaces other than the top surface and the bottom surface of the stacking direction end.
  • the two side surfaces may be two adjacent side surfaces or two side surfaces facing each other.
  • the first external electrode 40a and the second external electrode 40b are provided so as to be in contact with two side surfaces (hereinafter referred to as two end surfaces) facing each other.
  • the all-solid-state battery 100a a plurality of positive electrode layers 10 and a plurality of negative electrode layers 20 are alternately laminated with solid electrolyte layers 30 interposed therebetween. Edges of the plurality of positive electrode layers 10 are exposed on the first end surface of the laminated chip 60 and are not exposed on the second end surface. Edges of the plurality of negative electrode layers 20 are exposed on the second end surface of the laminated chip 60 and are not exposed on the first end surface. Thereby, the positive electrode layer 10 and the negative electrode layer 20 are alternately connected to the first external electrode 40a and the second external electrode 40b.
  • the solid electrolyte layer 30 extends from the first external electrode 40a to the second external electrode 40b.
  • the all-solid-state battery 100a has a structure in which a plurality of battery units are stacked.
  • a cover layer 50 is laminated on the upper surface of the laminated structure of the positive electrode layer 10, the solid electrolyte layer 30, and the negative electrode layer 20 (in the example of FIG. 3, the upper surface of the uppermost positive electrode layer 10).
  • a cover layer 50 is also laminated on the lower surface of the laminated structure (in the example of FIG. 3, the lower surface of the lowermost positive electrode layer 10).
  • the cover layer 50 is mainly composed of, for example, an inorganic material containing Al, Zr , Ti, etc. (eg, Al2O3 , ZrO2 , TiO2 , etc.).
  • the cover layer 50 may contain the main component of the solid electrolyte layer 30 as a main component.
  • the positive electrode layer 10 and the negative electrode layer 20 may have collector layers.
  • the first current collector layer 11 may be provided within the positive electrode layer 10 .
  • a second current collector layer 21 may be provided in the negative electrode layer 20 .
  • the first current collector layer 11 and the second current collector layer 21 are mainly composed of a conductive material.
  • metal, carbon, or the like can be used as the conductive material of the first current collector layer 11 and the second current collector layer 21 .
  • FIG. 5 is a diagram illustrating the flow of the method for manufacturing the all-solid-state battery 100a.
  • raw material powder for the solid electrolyte layer that constitutes the solid electrolyte layer 30 described above is prepared.
  • raw material powder of an oxide-based solid electrolyte can be produced by mixing raw materials, additives, and the like and using a solid-phase synthesis method or the like.
  • a desired average particle size For example, a planetary ball mill using 5 mm ⁇ ZrO 2 balls is used to adjust the desired average particle size.
  • raw material powder of ceramics that constitutes the cover layer 50 is prepared.
  • raw material powder for the cover layer can be produced by mixing raw materials, additives, and the like and using a solid-phase synthesis method or the like.
  • a desired average particle size For example, a planetary ball mill using 5 mm ⁇ ZrO 2 balls is used to adjust the desired average particle size.
  • raw material powder for the solid electrolyte layer can be substituted.
  • an internal electrode paste for producing the above-described positive electrode layer 10 and negative electrode layer 20 are individually produced.
  • an internal electrode paste can be obtained by uniformly dispersing a conductive aid, an electrode active material, a solid electrolyte material, a sintering aid, a binder, a plasticizer, and the like in water or an organic solvent.
  • the solid electrolyte material the solid electrolyte paste described above may be used.
  • a carbon material or the like is used as the conductive aid.
  • a metal may be used as the conductive aid. Examples of the metal of the conductive aid include Pd, Ni, Cu, Fe, and alloys containing these. Pd, Ni, Cu, Fe, alloys containing these, and various carbon materials may also be used.
  • Examples of sintering aids for internal electrode paste include Li—B—O compounds, Li—Si—O compounds, Li—C—O compounds, Li—S—O compounds, Li—P—O
  • a glass component such as any one or more of the glass components such as base compounds is included.
  • an external electrode paste for producing the first external electrode 40a and the second external electrode 40b is prepared.
  • an external electrode paste can be obtained by uniformly dispersing a conductive material, a glass frit, a binder, a plasticizer, and the like in water or an organic solvent.
  • a solid electrolyte slurry having a desired average particle size is prepared by uniformly dispersing the raw material powder for the solid electrolyte layer in an aqueous solvent or an organic solvent together with a binder, a dispersant, a plasticizer, etc., followed by wet pulverization. get At this time, a bead mill, a wet jet mill, various kneaders, a high-pressure homogenizer, or the like can be used, and it is preferable to use a bead mill from the viewpoint of being able to simultaneously adjust the particle size distribution and disperse.
  • a binder is added to the obtained solid electrolyte slurry to obtain a solid electrolyte paste.
  • the solid electrolyte green sheet 51 can be produced.
  • the coating method is not particularly limited, and a slot die method, a reverse coating method, a gravure coating method, a bar coating method, a doctor blade method, or the like can be used.
  • the particle size distribution after wet pulverization can be measured, for example, using a laser diffraction measurement device using a laser diffraction scattering method.
  • an internal electrode paste 52 is printed on one surface of a solid electrolyte green sheet 51 .
  • a reverse pattern 53 is printed on a region of the solid electrolyte green sheet 51 where the internal electrode paste 52 is not printed.
  • the reverse pattern 53 the same one as the solid electrolyte green sheet 51 can be used.
  • a plurality of solid electrolyte green sheets 51 after printing are alternately shifted and laminated.
  • the laminate is obtained by crimping the cover sheets 54 from above and below in the lamination direction. In this case, in the laminate, the internal electrode paste 52 for the positive electrode layer 10 is exposed on one end surface, and the internal electrode paste 52 for the negative electrode layer 20 is exposed on the other end surface.
  • the cover sheet 54 can be formed by coating the raw material powder for the cover layer in the same manner as in the solid electrolyte green sheet production process.
  • the cover sheet 54 is formed thicker than the solid electrolyte green sheet 51 . The thickness may be increased during coating, or may be increased by stacking a plurality of coated sheets.
  • the external electrode paste 55 is applied to each of the two end faces by a dipping method or the like and dried. Thereby, a molding for forming the all-solid-state battery 100a is obtained.
  • the firing conditions are oxidizing atmosphere or non-oxidizing atmosphere, and the maximum temperature is preferably 400° C. to 1000° C., more preferably 500° C. to 900° C., without any particular limitation.
  • a step of holding below the maximum temperature in an oxidizing atmosphere may be provided to sufficiently remove the binder until the maximum temperature is reached. In order to reduce process costs, it is desirable to bake at as low a temperature as possible. After firing, reoxidation treatment may be performed. Through the above steps, the all-solid-state battery 100a is produced.
  • current collector layers can be formed in the positive electrode layer 10 and the negative electrode layer 20 by sequentially laminating the internal electrode paste, the current collector paste containing a conductive material, and the internal electrode paste. can.
  • LiCoPO 4 (LCP: substantial volumetric capacity of 450 mAh/cm 3 ), whose electronic conductivity is improved by charging, is applied as the positive electrode active material, carbon powder (C) is applied as the conductive aid, and Li is used as the solid electrolyte.
  • -Al-Ge-P-O based ionic conductor (LAGP) was applied, and an internal electrode paste for the positive electrode layer was prepared so that the volume ratio of LCP, C and LAGP was 35:15:50.
  • Nb 2 O 5 (volume specific capacity up to 1 V vs. Li/Li + 920 mAh/cm 3 ) was applied as the negative electrode active material, carbon powder (C) was used as the conductive aid, and Li—Al—Ge— was used as the solid electrolyte.
  • a PO-based ionic conductor (LAGP) was applied, and the internal electrode paste for the negative electrode layer was prepared so that the volume ratio of Nb 2 O 5 , C and LAGP was 17.5:32.5:50. bottom.
  • a solid electrolyte green sheet with a thickness of 20 ⁇ m was produced by a tape casting method using a slurry composed of a solid electrolyte made of LAGP, an organic binder, a dispersant, a plasticizer, and an organic solvent.
  • the internal electrode paste for the positive electrode layer was applied by screen printing.
  • An internal electrode paste for a negative electrode layer was applied onto the second solid electrolyte green sheet by screen printing.
  • the internal electrode paste for the positive electrode layer and the internal electrode paste for the negative electrode layer were made to have the same thickness.
  • a plurality of first solid electrolyte green sheets and a plurality of second solid electrolyte green sheets were laminated such that the positive electrode layer and the negative electrode layer were alternately pulled out to the left and right to obtain a green chip of a laminated all-solid-state battery. .
  • the green chip was sintered by degreasing and firing, and an external electrode paste was applied and cured to form an external electrode, thereby obtaining a stacked all-solid-state battery.
  • LiFePO 4 (LFP: volume specific capacity 610 mAh/cm 3 ) is used as the positive electrode active material, and the volume ratio of LFP, C, and LAGP is 26:24:50.
  • An all-solid battery was fabricated in the same manner as in Example 1 except for the above.
  • Example 2 An internal electrode paste for the positive electrode layer was prepared so that the volume ratio of LCP, C, and LAGP was 28:22:50, and the thickness of the positive electrode layer was 1.25 times the thickness of the negative electrode layer. An all-solid-state battery was produced in the same manner as in 1.
  • Example 3 An all-solid battery was produced in the same manner as in Example 1, except that the internal electrode paste for the negative electrode layer was produced such that the volume ratio of Nb 2 O 5 , C and LAGP was 25:25:50.
  • Example 5 An internal electrode paste for the positive electrode layer was prepared so that the volume ratio of LCP, C, and LAGP was 30:25:45, and the volume ratio of Nb 2 O 5 , C, and LAGP was 25:25:50.
  • An all-solid-state battery was produced in the same manner as in Example 1, except that the internal electrode paste for the negative electrode layer was produced such that
  • An internal electrode paste for the positive electrode layer was prepared so that the volume ratio of LCP, C, and LAGP was 30:25:45, and the volume ratio of Nb 2 O 5 , C, and LAGP was 35:15:50.
  • An all-solid-state battery was produced in the same manner as in Example 1, except that the internal electrode paste for the negative electrode layer was produced such that
  • Examples 1-3 and Comparative Examples 1-6 were evaluated. If the actual capacity [mAh] was 1 mAh or more and neither warpage nor cracks occurred, it was judged to be good. If the actual capacity [mAh] was 1 mAh or more, and if warpage occurred but cracks did not occur, it was determined to be good " ⁇ ”. If it was neither very good " ⁇ " nor good " ⁇ ", it was judged to be bad "x".
  • Examples 1 to 3 were judged to be very good or good. This is because the positive electrode layer contains an active material whose electronic conductivity is higher when charged than when uncharged and whose volumetric capacity is smaller than that of the active material of the negative electrode layer, and the active material volume ratio is higher than that of the negative electrode layer. This is probably because the volume ratio of the conductive aid was lower than that of the layer, and the ratio T1/T2 between the average thickness T1 of the positive electrode layer and the average thickness T2 of the negative electrode layer was 0.75 or more and 1.3 or less. .
  • Comparative Examples 1 to 6 were judged to be defective.
  • Comparative Example 1 it is presumed that LiFePO 4 was used as the positive electrode active material, since the electron conductivity does not increase after charging.
  • Comparative Examples 2 and 4 it is estimated that T1/T2 exceeded 1.3.
  • Comparative Example 3 it is presumed that the positive electrode layer and the negative electrode layer had the same volume ratio of the active material.
  • Comparative Example 5 it is presumed that the positive electrode layer and the negative electrode layer had the same volume ratio of the conductive aid.
  • Comparative Example 6 it is presumed that this is because the volume ratio of the active material in the negative electrode layer was higher than that in the positive electrode layer.
  • Example 4 Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP: Volume specific capacity up to 1 V vs. Li/Li + 350 mAh/cm 3 ), which improves electronic conductivity by charging, is used as the negative electrode active material. is applied, carbon powder (C) is applied as a conductive agent, Li—Al—Ge—P—O-based ionic conductor (LAGP) is applied as a solid electrolyte, and the volume ratio of LATP, C and LAGP is An internal electrode paste for the negative electrode layer was prepared so as to have a ratio of 35:15:50.
  • LiFePO 4 (LFP: volume specific capacity 610 mAh/cm 3 ), whose electronic conductivity does not increase after charging, was applied as the positive electrode active material, and the positive electrode layer was adjusted so that the volume ratio of LFP, C, and LAGP was 20:25:55.
  • An internal electrode paste was prepared for Other conditions were the same as in Example 1.
  • Example 4 The results of Example 4 and Comparative Example 7 are shown in Tables 3 and 4.
  • Example 4 and Comparative Example 7 were evaluated. If the actual capacity [mAh] was 1 mAh or more and neither warpage nor cracks occurred, it was judged to be good. If the actual capacity [mAh] was 1 mAh or more, and if warpage occurred but cracks did not occur, it was determined to be good " ⁇ ”. If it was neither very good " ⁇ " nor good " ⁇ ", it was judged to be bad "x".
  • Example 4 it was judged to be very good or good. This is because the negative electrode layer contains an active material whose electronic conductivity is higher when charged than when uncharged and whose volumetric capacity is smaller than that of the active material of the positive electrode layer, and the volume ratio of the active material is higher than that of the positive electrode layer. This is probably because the volume ratio of the conductive aid was lower than that of the layer, and the ratio T1/T2 between the average thickness T1 of the negative electrode layer and the average thickness T2 of the positive electrode layer was 0.75 or more and 1.3 or less. .
  • Comparative Example 7 was determined to be defective. As for Comparative Example 7, it is presumed that the volume ratio of the active material in the positive electrode layer and the negative electrode layer was the same.
  • Example 4 both CV charging and pulse discharging were judged to be good " ⁇ ". This is because the negative electrode active material used has a higher electron conductivity when fully charged than when uncharged, and the volume ratio of the conductive aid in the negative electrode layer was lower than the volume ratio of the conductive aid in the positive electrode layer. It is estimated to be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

This all-solid-state battery is characterized by comprising an oxide-based solid electrolyte layer, a positive electrode layer that is arranged on a first main surface of the oxide-based solid electrolyte layer, and a negative electrode layer that is arranged on a second main surface of the oxide-based solid electrolyte layer. This all-solid-state battery is also characterized in that: either one of the positive electrode layer and the negative electrode layer contains an active material which has higher electron conductivity in a charged state than in an uncharged state, while having a lower volume specific capacity than the active material of the other electrode layer, a higher active material volume ratio than the other electrode layer, and a lower volume ratio of a conductive assistant than the other electrode layer; and the ratio (T1/T2) of the average thickness T1 of the one electrode layer to the average thickness T2 of the other electrode layer is 0.75 to 1.3. 

Description

全固体電池All-solid battery
 本発明は、全固体電池に関する。 The present invention relates to all-solid-state batteries.
 近年、二次電池が様々な分野で利用されている。電解液を用いた二次電池には、電解液の漏洩等の問題がある。そこで、固体電解質を備え、他の要素技術も固体で構成した全固体電池の開発が行われている。 In recent years, secondary batteries have been used in various fields. A secondary battery using an electrolytic solution has problems such as leakage of the electrolytic solution. Therefore, an all-solid-state battery is being developed that has a solid electrolyte and is composed of other elemental technologies that are also solid.
 比容量の異なる正極活物質と負極活物質とを組み合わせる場合、一般的な二次電池では、正負極それぞれの電極層内に活物質を最大量充填させ、電極層の厚みを変化させることで、正負極の容量バランスをとることが一般的である。 When a positive electrode active material and a negative electrode active material with different specific capacities are combined, in a general secondary battery, the maximum amount of active material is filled in the electrode layers of the positive and negative electrodes, and the thickness of the electrode layers is changed. It is common to balance the capacities of the positive and negative electrodes.
特開2019-164484号公報JP 2019-164484 A
 例えば、特許文献1のように、負極活物質であるグラファイトの充填率を高め、NCA系正極活物質と組み合わせた全固体電池が開示されている。この電池では、グラファイトの方が高い体積比容量を有し、かつ充填率も高くしているため、正極との容量バランスをとろうとすると、正極層を厚くしなければならない。硫化物系の全固体電池は加圧による作製が可能であるため、このような厚みにより容量バランスを取ることが可能であるが、焼結プロセスを必要とする酸化物系固体電解質を用いた全固体電池においては、各材料間の組み合わせおよび焼結温度により変化が激しく、厚みにより容量バランスを取ることが困難になる。 For example, Patent Document 1 discloses an all-solid-state battery in which the filling rate of graphite, which is a negative electrode active material, is increased and combined with an NCA-based positive electrode active material. In this battery, since graphite has a higher volumetric capacity and a higher filling rate, the positive electrode layer must be made thicker in order to balance the capacity with the positive electrode. Since sulfide-based all-solid-state batteries can be fabricated by pressurization, it is possible to balance the capacity by such a thickness. In a solid-state battery, the combination of materials and the sintering temperature change drastically, and it becomes difficult to balance the capacity depending on the thickness.
 非特許文献1にあるように、正負極の電極層厚みによって容量バランスをとろうとすると、焼結プロセスにおける正負極間の収縮ミスマッチによる層間?離や反りなどの不具合が問題となる。 As described in Non-Patent Document 1, if you try to balance the capacity by the thickness of the electrode layers of the positive and negative electrodes, problems such as interlayer separation and warping due to shrinkage mismatch between the positive and negative electrodes in the sintering process become problems.
 正負極層を同等の厚みとした場合、体積比容量の小さい方の電極活物質の充填量(体積比率)を増加させるために、電極層内の導電助剤やイオン伝導助剤(固体電解質)の充填量(体積比率)を下げる必要があり、電子伝導性、イオン伝導性の低下が問題となる。 When the thickness of the positive and negative electrode layers is the same, in order to increase the filling amount (volume ratio) of the electrode active material with the smaller volumetric capacity, a conductive agent or an ion conductive agent (solid electrolyte) is added to the electrode layer. It is necessary to reduce the filling amount (volume ratio) of , and the decrease in electronic conductivity and ionic conductivity becomes a problem.
 本発明は、上記課題に鑑みなされたものであり、焼結プロセスにおける正負極間の収縮ミスマッチを抑制しつつ、良好な容量バランスを実現することができる全固体電池を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an all-solid-state battery that can realize a good capacity balance while suppressing the shrinkage mismatch between the positive and negative electrodes in the sintering process. .
 本発明に係る全固体電池は、酸化物系固体電解質層と、前記酸化物系固体電解質層の第1主面上に設けられ正極層と、前記酸化物系固体電解質層の第2主面上に設けられた負極層と、を備え、前記正極層および前記負極層のいずれか一方の電極層は、未充電時よりも充電時の電子伝導が高くなりかつ他方の電極層の活物質よりも体積比容量が小さな活物質を含み、前記他方の電極層よりも活物質体積比率が高く、前記他方の電極層よりも導電助剤の体積比率が低く、前記一方の電極層の平均厚みT1と、前記他方の電極層の平均厚みT2との比率T1/T2は、0.75以上、1.3以下であることを特徴とする。 An all-solid-state battery according to the present invention includes an oxide-based solid electrolyte layer, a positive electrode layer provided on a first main surface of the oxide-based solid electrolyte layer, and a second main surface of the oxide-based solid electrolyte layer. one of the positive electrode layer and the negative electrode layer has higher electron conductivity during charging than when uncharged and more than the active material of the other electrode layer It contains an active material with a small volumetric capacity, has a higher volume ratio of the active material than the other electrode layer, has a lower volume ratio of the conductive aid than the other electrode layer, and has an average thickness T1 of the one electrode layer and and the ratio T1/T2 to the average thickness T2 of the other electrode layer is 0.75 or more and 1.3 or less.
 上記全固体電池において、前記一方の電極層は、前記正極層であり、前記他方の電極層は、前記負極層であってもよい。 In the all-solid-state battery, the one electrode layer may be the positive electrode layer, and the other electrode layer may be the negative electrode layer.
 上記全固体電池の前記一方の電極層において、イオン伝導性を有する固体電解質の体積比率は、30Vol.%以上、60Vol.%以下であってもよい。 In the one electrode layer of the all-solid-state battery, the volume ratio of the solid electrolyte having ion conductivity is 30 Vol. % or more, 60 Vol. % or less.
 上記全固体電池において、前記一方の電極層が前記正極層である場合に、未充電時よりも充電時の電子伝導が高くなる活物質は、LiCoPO、LiCoPまたはLiCo(Pであってもよい。 In the all-solid-state battery, when the one electrode layer is the positive electrode layer, the active material that exhibits higher electron conductivity during charging than during uncharging is LiCoPO 4 , Li 2 CoP 2 O 7 or Li 6 Co. 5 (P 2 O 7 ) 4 may be used.
 上記全固体電池の前記一方の電極層において、前記活物質の体積比率は、15Vol.%以上、55Vol.%以下であってもよい。 In the one electrode layer of the all-solid-state battery, the volume ratio of the active material is 15 Vol. % or more, 55 Vol. % or less.
 上記全固体電池の前記一方の電極層において、前記導電助剤の体積比率は、8Vol.%以上、24Vol.%以下であってもよい。 In the one electrode layer of the all-solid-state battery, the volume ratio of the conductive aid is 8 Vol. % or more, 24 Vol. % or less.
 上記全固体電池において、前記一方の電極層が前記負極層である場合に、未充電時よりも充電時の電子伝導が高くなる活物質は、Li1.3Al0.3Ti1.7(PO、LiTi(PO、またはLiTiOPOであってもよい。 In the all-solid-state battery, when the one electrode layer is the negative electrode layer, the active material that exhibits higher electron conductivity during charging than during uncharging is Li 1.3 Al 0.3 Ti 1.7 ( PO4 ) 3 , LiTi2 ( PO4 ) 3 , or LiTiOPO4 .
 本発明によれば、焼結プロセスにおける正負極間の収縮ミスマッチを抑制しつつ、良好な容量バランスを実現することができる全固体電池を提供することができる。 According to the present invention, it is possible to provide an all-solid-state battery that can realize a good capacity balance while suppressing the shrinkage mismatch between the positive and negative electrodes in the sintering process.
全固体電池の基本構造を示す模式的断面図である。1 is a schematic cross-sectional view showing the basic structure of an all-solid-state battery; FIG. 全固体電池の基本構造を示す模式的断面図である。1 is a schematic cross-sectional view showing the basic structure of an all-solid-state battery; FIG. 積層型の全固体電池の模式的断面図である。1 is a schematic cross-sectional view of a stacked all-solid-state battery; FIG. 積層型の他の全固体電池の模式的断面図である。FIG. 3 is a schematic cross-sectional view of another stacked all-solid-state battery. 全固体電池の製造方法のフローを例示する図である。It is a figure which illustrates the flow of the manufacturing method of an all-solid-state battery. (a)および(b)は積層工程を例示する図である。(a) and (b) are figures which illustrate a lamination process.
 以下、図面を参照しつつ、実施形態について説明する。 Embodiments will be described below with reference to the drawings.
(第1実施形態)
 図1は、第1実施形態に係る全固体電池100の基本構造を示す模式的断面図である。図1で例示するように、全固体電池100は、正極層10と負極層20とによって、固体電解質層30が挟持された構造を有する。例えば、正極層10は固体電解質層30の第1主面上に形成されており、負極層20は固体電解質層30の第2主面上に形成されている。
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing the basic structure of an all-solid-state battery 100 according to the first embodiment. As illustrated in FIG. 1 , the all-solid battery 100 has a structure in which a solid electrolyte layer 30 is sandwiched between a positive electrode layer 10 and a negative electrode layer 20 . For example, the positive electrode layer 10 is formed on the first main surface of the solid electrolyte layer 30 and the negative electrode layer 20 is formed on the second main surface of the solid electrolyte layer 30 .
 固体電解質層30は、イオン伝導性を有する固体電解質を主成分とする。固体電解質層30の固体電解質は、例えばリチウムイオン伝導性を有する酸化物系の固体電解質である。当該固体電解質は、例えば、NASICON構造を有するリン酸塩系固体電解質である。NASICON構造を有するリン酸塩系固体電解質は、高い導電率を有するとともに、大気中で安定しているという性質を有している。リン酸塩系固体電解質は、例えば、リチウムを含んだリン酸塩である。当該リン酸塩は、特に限定されるものではないが、例えば、Tiとの複合リン酸リチウム塩(例えば、LiTi(PO)などが挙げられる。または、TiをGe,Sn,Hf,Zrなどといった4価の遷移金属に一部あるいは全部置換することもできる。また、Li含有量を増加させるために、Al,Ga,In,Y,Laなどの3価の遷移金属に一部置換してもよい。より具体的には、例えば、Li1+xAlGe2-x(POや、Li1+xAlZr2-x(PO、Li1+xAlTi2-x(POなどが挙げられる。 The solid electrolyte layer 30 is mainly composed of a solid electrolyte having ionic conductivity. The solid electrolyte of the solid electrolyte layer 30 is, for example, an oxide-based solid electrolyte having lithium ion conductivity. The solid electrolyte is, for example, a phosphate-based solid electrolyte having a NASICON structure. A phosphate-based solid electrolyte having a NASICON structure has properties of high electrical conductivity and stability in the atmosphere. A phosphate-based solid electrolyte is, for example, a phosphate containing lithium. The phosphate is not particularly limited, but examples thereof include a composite lithium phosphate with Ti (eg, LiTi 2 (PO 4 ) 3 ). Alternatively, Ti can be partially or wholly substituted with tetravalent transition metals such as Ge, Sn, Hf, and Zr. Moreover, in order to increase the Li content, it may be partially substituted with trivalent transition metals such as Al, Ga, In, Y and La. More specifically, for example, Li 1+x Al x Ge 2-x (PO 4 ) 3 , Li 1+x Al x Zr 2-x (PO 4 ) 3 , Li 1+x Al x Ti 2-x (PO 4 ) 3 etc.
 図2で例示するように、正極層10は、正極活物質12、導電助剤13、固体電解質14などを備えている。負極層20は、負極活物質22、導電助剤23、固体電解質24などを備えている。正極層10が正極活物質12を備え、負極層20が負極活物質22を備えることによって、全固体電池100を二次電池として用いることができる。正極層10が導電助剤13を備え、負極層20が導電助剤23を備えることによって、正極層10および負極層20に導電性が得られる。正極層10が固体電解質14を備え、負極層20が固体電解質24を備えることによって、正極層10および負極層20にイオン伝導性が得られる。なお、図2において、固体電解質層30についてはハッチを省略してある。また、固体電解質14,24についてもハッチを省略してある。 As illustrated in FIG. 2, the positive electrode layer 10 includes a positive electrode active material 12, a conductive aid 13, a solid electrolyte 14, and the like. The negative electrode layer 20 includes a negative electrode active material 22, a conductive aid 23, a solid electrolyte 24, and the like. By providing the positive electrode layer 10 with the positive electrode active material 12 and the negative electrode layer 20 with the negative electrode active material 22, the all-solid-state battery 100 can be used as a secondary battery. Electroconductivity is obtained in the positive electrode layer 10 and the negative electrode layer 20 by providing the positive electrode layer 10 with the conductive aid 13 and the negative electrode layer 20 with the conductive aid 23 . By providing the positive electrode layer 10 with the solid electrolyte 14 and the negative electrode layer 20 with the solid electrolyte 24 , ion conductivity is obtained in the positive electrode layer 10 and the negative electrode layer 20 . In FIG. 2, hatching of the solid electrolyte layer 30 is omitted. Further, hatching of the solid electrolytes 14 and 24 is also omitted.
 正極活物質12は、未充電時(空充電時)よりも充電時の電子伝導性が高くなる正極活物質である。正極活物質12は、例えば、LiCoPO、LiCoPまたはLiCo(Pなどである。 The positive electrode active material 12 is a positive electrode active material whose electron conductivity during charging is higher than that during uncharged (during empty charge). The positive electrode active material 12 is, for example, LiCoPO 4 , Li 2 CoP 2 O 7 or Li 6 Co 5 (P 2 O 7 ) 4 or the like.
 負極活物質22は、負極作用を有する活物質であれば特に限定されるものではないが、例えば、Nb、V、Taなどである。 The negative electrode active material 22 is not particularly limited as long as it is an active material having a negative electrode action, and examples thereof include Nb 2 O 5 , V 2 O 5 and Ta 2 O 5 .
 導電助剤13,23は、導電性材料であれば特に限定されるものではないが、例えば、カーボン材料などである。または、導電助剤13,23として、金属を用いてもよい。導電助剤13,23の金属としては、Pd、Ni、Cu、Fe、これらを含む合金などが挙げられる。 The conductive aids 13 and 23 are not particularly limited as long as they are conductive materials, but are, for example, carbon materials. Alternatively, metal may be used as the conductive aids 13 and 23 . Examples of metals for the conductive aids 13 and 23 include Pd, Ni, Cu, Fe, and alloys containing these.
 固体電解質14,24、イオン伝導性を有する固体電解質であれば特に限定されるものではない。固体電解質14,24として、例えば、固体電解質層30の主成分である固体電解質を用いることができる。 The solid electrolytes 14 and 24 are not particularly limited as long as they are ion-conductive solid electrolytes. As the solid electrolytes 14 and 24, for example, a solid electrolyte that is the main component of the solid electrolyte layer 30 can be used.
 負極活物質22は特に限定されるものではないが、正極活物質12と負極活物質22との組み合わせにおいて、正極活物質12として、負極活物質22よりも体積比容量が小さい活物質を用いる。また、正極層10における正極活物質12の体積比率が、負極層20における負極活物質22の体積比率よりも高くなっている。また、正極層10における導電助剤13の体積比率が、負極層20における導電助剤23の体積比率よりも低くなっている。 The negative electrode active material 22 is not particularly limited, but in the combination of the positive electrode active material 12 and the negative electrode active material 22, an active material having a smaller volumetric capacity than the negative electrode active material 22 is used as the positive electrode active material 12. Also, the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 is higher than the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 . Also, the volume ratio of the conductive aid 13 in the positive electrode layer 10 is lower than the volume ratio of the conductive aid 23 in the negative electrode layer 20 .
 この構成によれば、電子伝導性低下の影響を軽微にしつつ、正極層10と負極層20との間で、良好な容量バランスを実現できるようになる。例えば、正極活物質12の方が負極活物質22よりも体積比容量が小さい場合、同じ電極層厚みで正極層10と負極層20との容量バランスをとるためには、正極活物質12の充填量を多くすることが望まれる。しかしながら、導電助剤13を減らすと電子伝導が低下し高抵抗となるゆえ、導電助剤13を減らすことはできないが、充電により電子伝導が向上する正極活物質12を適用することで、電池を動作させる充電状態においては正極層10内の電子伝導を十分とすることできるため、正極層10の厚みと負極層20の厚みとの差異を小さくしても、良好な容量バランスを実現することができる。 According to this configuration, it is possible to realize a good capacity balance between the positive electrode layer 10 and the negative electrode layer 20 while minimizing the influence of the decrease in electronic conductivity. For example, when the positive electrode active material 12 has a smaller volumetric capacity than the negative electrode active material 22, in order to balance the capacities of the positive electrode layer 10 and the negative electrode layer 20 with the same electrode layer thickness, the filling of the positive electrode active material 12 It is desirable to increase the amount. However, if the amount of the conductive aid 13 is reduced, the electron conduction decreases and the resistance becomes high. Since the electron conduction in the positive electrode layer 10 can be sufficient in the charged state for operation, even if the difference between the thickness of the positive electrode layer 10 and the thickness of the negative electrode layer 20 is small, a good capacity balance can be realized. can.
 また、本実施形態において、正極層10の平均厚みT1と、負極層20の平均厚みT2との比率T1/T2を0.75以上、1.3以下とする。このように、比率T1/T2を0.75以上、1.3以下とすることで、正極層10の厚みと負極層20の厚みとの差異が小さくなる。それにより、焼結プロセスにおける正極層10と負極層20との間の収縮ミスマッチを抑制することができる。それにより、全固体電池100における反りを抑制することができ、クラックの発生を抑制することができる。 Also, in the present embodiment, the ratio T1/T2 between the average thickness T1 of the positive electrode layer 10 and the average thickness T2 of the negative electrode layer 20 is set to 0.75 or more and 1.3 or less. Thus, by setting the ratio T1/T2 to 0.75 or more and 1.3 or less, the difference between the thickness of the positive electrode layer 10 and the thickness of the negative electrode layer 20 becomes small. Thereby, the shrinkage mismatch between the positive electrode layer 10 and the negative electrode layer 20 in the sintering process can be suppressed. As a result, warping in the all-solid-state battery 100 can be suppressed, and cracking can be suppressed.
 以上のことから、本実施形態に係る全固体電池100は、焼結プロセスにおける正負極間の収縮ミスマッチを抑制しつつ、良好な容量バランスを実現することができる。 As described above, the all-solid-state battery 100 according to the present embodiment can realize good capacity balance while suppressing the shrinkage mismatch between the positive and negative electrodes in the sintering process.
 なお、正極層10の平均厚みT1および負極層20の平均厚みT2は、積層方向に対して垂直切断した断面のSEM観察で10か所の厚みの平均値をとることで測定することができる。 Note that the average thickness T1 of the positive electrode layer 10 and the average thickness T2 of the negative electrode layer 20 can be measured by averaging the thicknesses at 10 points through SEM observation of a cross section cut perpendicular to the stacking direction.
 正極層10において、正極活物質12の体積比率が小さすぎると、十分な容量密度を確保できないおそれがある。そこで、正極層10において、正極活物質12の体積比率に下限を設けることが好ましい。例えば、正極層10において、正極活物質12の体積比率は、15Vol.%以上であることが好ましく、17.5Vol.%以上であることがより好ましく、20Vol.%以上であることがさらに好ましい。 If the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 is too small, a sufficient capacity density may not be ensured. Therefore, it is preferable to set a lower limit to the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 . For example, in the positive electrode layer 10, the volume ratio of the positive electrode active material 12 is 15 Vol. % or more, and 17.5 Vol. % or more, and 20 Vol. % or more is more preferable.
 正極層10において、正極活物質12の体積比率が大きすぎると、電極の焼結緻密化不足や電子伝導性、イオン伝導性低下による内部抵抗増大のおそれがある。そこで、正極層10において、正極活物質12の体積比率に上限を設けることが好ましい。例えば、正極層10において、正極活物質12の体積比率は、55Vol.%以下であることが好ましく、50Vol.%以下であることがより好ましく、45Vol.%以下であることがさらに好ましい。 If the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 is too large, there is a risk of an increase in internal resistance due to insufficient sintering and densification of the electrode and a decrease in electronic conductivity and ionic conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 . For example, in the positive electrode layer 10, the volume ratio of the positive electrode active material 12 is 55 Vol. % or less, and 50 Vol. % or less, and 45 Vol. % or less.
 正極層10において、導電助剤13の体積比率が小さすぎると、電子伝導性低下による内部抵抗増大のおそれがある。そこで、正極層10において、導電助剤13の体積比率に下限を設けることが好ましい。例えば、正極層10において、導電助剤13の体積比率は、8Vol.%以上であることが好ましく、9Vol.%以上であることがより好ましく、10Vol.%以上であることがさらに好ましい。 If the volume ratio of the conductive aid 13 in the positive electrode layer 10 is too small, there is a risk of an increase in internal resistance due to a decrease in electronic conductivity. Therefore, in the positive electrode layer 10 , it is preferable to set a lower limit to the volume ratio of the conductive aid 13 . For example, in the positive electrode layer 10, the volume ratio of the conductive aid 13 is 8 Vol. % or more, and 9 Vol. % or more, and 10 Vol. % or more is more preferable.
 正極層10において、導電助剤13の体積比率が大きすぎると、容量低下、電極の焼結緻密化不足やイオン伝導性低下による内部抵抗増大のおそれがある。そこで、正極層10において、導電助剤13の体積比率に上限を設けることが好ましい。例えば、正極層10において、導電助剤13の体積比率は、24Vol.%以下であることが好ましく、22Vol.%以下であることがより好ましく、20Vol.%以下であることがさらに好ましい。 If the volume ratio of the conductive additive 13 in the positive electrode layer 10 is too large, there is a risk of a decrease in capacity, insufficient sintering and densification of the electrode, and an increase in internal resistance due to a decrease in ionic conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the conductive additive 13 in the positive electrode layer 10 . For example, in the positive electrode layer 10, the volume ratio of the conductive aid 13 is 24 Vol. % or less, and 22 Vol. % or less, and 20 Vol. % or less.
 正極層10において、固体電解質14の体積比率が小さすぎると、イオン伝導性低下や電極の焼結緻密化不足のおそれがある。そこで、正極層10において、固体電解質14の体積比率に下限を設けることが好ましい。例えば、正極層10において、固体電解質14の体積比率は、30Vol.%以上であることが好ましく、35Vol.%以上であることがより好ましく、40Vol.%以上であることがさらに好ましい。 If the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 is too small, the ionic conductivity may decrease and the sintering and densification of the electrode may be insufficient. Therefore, it is preferable to set a lower limit to the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 . For example, in the positive electrode layer 10, the volume ratio of the solid electrolyte 14 is 30 Vol. % or more, and 35 Vol. % or more, and 40 Vol. % or more is more preferable.
 正極層10において、固体電解質14の体積比率が大きすぎると、容量低下や電子伝導性低下による内部抵抗増大のおそれがある。そこで、正極層10において、固体電解質14の体積比率に上限を設けることが好ましい。例えば、正極層10において、固体電解質14の体積比率は、65Vol.%以下であることが好ましく、60Vol.%以下であることがより好ましく、55Vol.%以下であることがさらに好ましい。 If the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 is too large, there is a risk of an increase in internal resistance due to a decrease in capacity and electron conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 . For example, in the positive electrode layer 10, the volume ratio of the solid electrolyte 14 is 65 Vol. % or less, and 60 Vol. % or less, and 55 Vol. % or less.
 負極層20において、負極活物質22の体積比率が小さすぎると、十分な容量密度を確保できないおそれがある。そこで、負極層20において、負極活物質22の体積比率に下限を設けることが好ましい。例えば、負極層20において、負極活物質22の体積比率は、10Vol.%以上であることが好ましく、12.5Vol.%以上であることがより好ましく、15Vol.%以上であることがさらに好ましい。 If the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 is too small, it may not be possible to secure a sufficient capacity density. Therefore, it is preferable to set a lower limit to the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 . For example, in the negative electrode layer 20, the volume ratio of the negative electrode active material 22 is 10 Vol. % or more, and 12.5 Vol. % or more, and 15 Vol. % or more is more preferable.
 負極層20において、負極活物質22の体積比率が大きすぎると、電極の焼結緻密化不足や電子伝導性、イオン伝導性低下による内部抵抗増大のおそれがある。そこで、負極層20において、負極活物質22の体積比率に上限を設けることが好ましい。例えば、負極層20において、負極活物質22の体積比率は、45Vol.%以下であることが好ましく、40Vol.%以下であることがより好ましく、35Vol.%以下であることがさらに好ましい。 In the negative electrode layer 20, if the volume ratio of the negative electrode active material 22 is too large, there is a risk of an increase in internal resistance due to insufficient sintering and densification of the electrode and a decrease in electronic conductivity and ionic conductivity. Therefore, it is preferable to set an upper limit for the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 . For example, in the negative electrode layer 20, the volume ratio of the negative electrode active material 22 is 45 Vol. % or less, and 40 Vol. % or less, and 35 Vol. % or less.
 負極層20において、導電助剤23の体積比率が小さすぎると、電子伝導性低下による内部抵抗増大のおそれがある。そこで、負極層20において、導電助剤23の体積比率に下限を設けることが好ましい。例えば、負極層20において、導電助剤23の体積比率は、16Vol.%以上であることが好ましく、18Vol.%以上であることがより好ましく、20Vol.%以上であることがさらに好ましい。 If the volume ratio of the conductive aid 23 in the negative electrode layer 20 is too small, there is a risk of an increase in internal resistance due to a decrease in electronic conductivity. Therefore, it is preferable to set a lower limit to the volume ratio of the conductive additive 23 in the negative electrode layer 20 . For example, in the negative electrode layer 20, the volume ratio of the conductive aid 23 is 16 Vol. % or more, and 18 Vol. % or more, and 20 Vol. % or more is more preferable.
 負極層20において、導電助剤23の体積比率が大きすぎると、容量低下、電極の焼結緻密化不足やイオン伝導性低下による内部抵抗増大のおそれがある。そこで、負極層20において、導電助剤23の体積比率に上限を設けることが好ましい。例えば、負極層20において、導電助剤23の体積比率は、50Vol.%以下であることが好ましく、45Vol.%以下であることがより好ましく、40Vol.%以下であることがさらに好ましい。 If the volume ratio of the conductive aid 23 in the negative electrode layer 20 is too large, there is a risk of a decrease in capacity, insufficient sintering and densification of the electrode, and an increase in internal resistance due to a decrease in ionic conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the conductive aid 23 in the negative electrode layer 20 . For example, in the negative electrode layer 20, the volume ratio of the conductive aid 23 is 50 Vol. % or less, and 45 Vol. % or less, and 40 Vol. % or less.
 負極層20において、固体電解質24の体積比率が小さすぎると、イオン伝導性低下や電極の焼結緻密化不足のおそれがある。そこで、負極層20において、固体電解質24の体積比率に下限を設けることが好ましい。例えば、負極層20において、固体電解質24の体積比率は、30Vol.%以上であることが好ましく、35Vol.%以上であることがより好ましく、40Vol.%以上であることがさらに好ましい。 If the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 is too small, the ionic conductivity may decrease and the sintering and densification of the electrode may be insufficient. Therefore, it is preferable to set a lower limit to the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 . For example, in the negative electrode layer 20, the volume ratio of the solid electrolyte 24 is 30 Vol. % or more, and 35 Vol. % or more, and 40 Vol. % or more is more preferable.
 負極層20において、固体電解質24の体積比率が大きすぎると、容量低下や電子伝導性低下による内部抵抗増大のおそれがある。そこで、負極層20において、固体電解質24の体積比率に上限を設けることが好ましい。例えば、負極層20において、固体電解質24の体積比率は、65Vol.%以下であることが好ましく、60Vol.%以下であることがより好ましく、55Vol.%以下であることがさらに好ましい。 If the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 is too large, there is a risk of an increase in internal resistance due to a decrease in capacity and electron conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 . For example, in the negative electrode layer 20, the volume ratio of the solid electrolyte 24 is 65 Vol. % or less, and 60 Vol. % or less, and 55 Vol. % or less.
 正極層10と負極層20との間で、焼結プロセスにおける正極層10と負極層20との間の収縮ミスマッチを抑制する観点から、比率T1/T2は、0.75以上1.30以下であることが好ましく、0.80以上1.25以下であることがより好ましい。 From the viewpoint of suppressing shrinkage mismatch between the positive electrode layer 10 and the negative electrode layer 20 in the sintering process, the ratio T1/T2 is 0.75 or more and 1.30 or less. It is preferably 0.80 or more and 1.25 or less.
 ところで、IoTデバイスやウェアラブル機器の普及に伴い、小型薄型でありながら高容量かつ高出力のまた安全性を重視した全固体電池の採用が期待されている。さらに、バックアップ用途では、定電圧(CV)充電が可能であること、ハイレート放電(パルス放電)が可能であることなどが要求されている。CV充電可能な二次電池は、電流制御ICを設ける必要が無いため、デバイス内部の部品点数、占有体積を減らせるため、小型化や低コスト化できるメリットがある。 By the way, with the spread of IoT devices and wearable devices, there are expectations for the adoption of all-solid-state batteries that are small and thin, yet have high capacity, high output, and an emphasis on safety. Furthermore, in backup applications, constant voltage (CV) charging and high rate discharge (pulse discharge) are required. Since the CV chargeable secondary battery does not require a current control IC, the number of parts and the volume occupied inside the device can be reduced, so there is an advantage that the size and cost can be reduced.
 例えば、電池の収納缶内蓋面をエッチング処理により凹凸構造として低抵抗化することで、mAオーダーの大電流パルス放電が可能な非水電解質二次電池が開発されている。または、集電体上にカーボン層を設けて焼結電極板に接触させて、収納缶のカシメによる圧力により接触を保持させることにより、CV充電・パルス充放電といったIoTデバイス向け使用条件において繰り返し動作させても電池抵抗が上昇しにくいコイン形リチウム二次電池が開発されている。 For example, a non-aqueous electrolyte secondary battery capable of high-current pulse discharge on the order of mA has been developed by etching the inner lid surface of the battery storage can to form an uneven structure to reduce the resistance. Alternatively, by providing a carbon layer on the current collector and bringing it into contact with the sintered electrode plate, the contact is maintained by the pressure of the caulking of the storage can, so that it can be operated repeatedly under the usage conditions for IoT devices such as CV charging and pulse charging/discharging. A coin-type lithium secondary battery has been developed in which the battery resistance does not easily increase even when the battery is heated.
 これらの二次電池は、内部抵抗をできる限り低減したり、抵抗が上昇しにくいように工夫がされており、パルス放電のようなハイレート放電に適している。一方で、これらの二次電池は、充電を簡素化するためにCV充電した際に瞬間的な大電流が流れることを防止するために、制限抵抗を設ける必要があり、パッケージおよび制御回路設計において簡素化が特に望まれる用途には不向きと言える。 These secondary batteries are designed to reduce the internal resistance as much as possible and prevent the resistance from increasing, making them suitable for high-rate discharge such as pulse discharge. On the other hand, in order to simplify charging, it is necessary to provide a limiting resistor in order to prevent a momentary large current from flowing during CV charging. It can be said that it is unsuitable for applications where simplification is particularly desired.
 例えば、ハイレート放電を可能とするためにどの充電率(SOC:State of Charge)でも低抵抗の全固体電池とすると、低SOCの状態からCV充電をした際に大電流が流れてしまい、制限抵抗なしには電池の故障や回路への影響が懸念される。一方、電池の抵抗を高くすると、充電時の電流量を抑制できるが、ハイレート放電には適さなくなる。そこで、充電前の低SOC時は高抵抗で、充電後の高SOC時には低抵抗の全固体電池が求められる。 For example, if a low-resistance all-solid-state battery is used at any charge rate (SOC: State of Charge) to enable high-rate discharge, a large current will flow when CV charging is performed from a low SOC state, and the limiting resistance Without it, there are concerns about battery failure and effects on circuits. On the other hand, if the resistance of the battery is increased, the amount of current during charging can be suppressed, but it is not suitable for high-rate discharge. Therefore, there is a demand for an all-solid-state battery that has a high resistance when the SOC is low before charging and a low resistance when the SOC is high after charging.
 本実施形態に係る全固体電池100では、未充電時よりも満充電時の電子伝導が高くなる正極活物質12を用いておりかつ正極層10における導電助剤13の体積比率が負極層20における導電助剤23の体積比率よりも低いため、低SOC時の大電流が抑制され、安定なCV充電が可能となる。一方で、充電時に律速となる正極活物質12の電子伝導性が高SOC時には高くなるため、ハイレート放電が可能となる。 In the all-solid-state battery 100 according to the present embodiment, the positive electrode active material 12 that exhibits higher electron conductivity when fully charged than when uncharged is used, and the volume ratio of the conductive aid 13 in the positive electrode layer 10 to the negative electrode layer 20 is Since it is lower than the volume ratio of the conductive aid 23, a large current at low SOC is suppressed, and stable CV charging becomes possible. On the other hand, since the electron conductivity of the positive electrode active material 12, which is rate-limiting during charging, increases at high SOC, high-rate discharge is possible.
(第2実施形態)
 第2実施形態においては、負極層20は、未充電時よりも充電時の電子伝導が高くなりかつ正極層10の正極活物質12よりも体積比容量が小さな負極活物質22を含み、正極層10よりも活物質体積比率が高く、正極層10よりも導電助剤の体積比率が低くなっている。以下、第1実施形態と異なる点について説明する。
(Second embodiment)
In the second embodiment, the negative electrode layer 20 includes a negative electrode active material 22 having a higher electron conductivity during charging than when uncharged and having a smaller volumetric capacity than the positive electrode active material 12 of the positive electrode layer 10. The volume ratio of the active material is higher than that of the positive electrode layer 10 and the volume ratio of the conductive aid is lower than that of the positive electrode layer 10 . Differences from the first embodiment will be described below.
 負極活物質22は、未充電時(空充電時)よりも充電時の電子伝導性が高くなる負極活物質である。負極活物質22は、例えば、Li1.3Al0.3Ti1.7(PO、LiTi(PO、LiTiOPOなどである。 The negative electrode active material 22 is a negative electrode active material whose electron conductivity during charging is higher than that during charging (during empty charging). The negative electrode active material 22 is , for example, Li1.3Al0.3Ti1.7 ( PO4 ) 3 , LiTi2 ( PO4 ) 3 , LiTiOPO4 , or the like .
 正極活物質12は、正極作用を有する活物質であれば特に限定されるものではないが、例えば、LiFePO、LiMnPO、LiMnなどである。 The positive electrode active material 12 is not particularly limited as long as it is an active material having a positive electrode action, and examples thereof include LiFePO 4 , LiMnPO 4 and LiMn 2 O 4 .
 正極活物質12は特に限定されるものではないが、正極活物質12と負極活物質22との組み合わせにおいて、負極活物質22として、正極活物質12よりも体積比容量が小さい活物質を用いる。また、負極層20における負極活物質22の体積比率が、正極層10における正極活物質12の体積比率よりも高くなっている。また、負極層20における導電助剤23の体積比率が、正極層10における導電助剤13の体積比率よりも低くなっている。 The positive electrode active material 12 is not particularly limited, but in the combination of the positive electrode active material 12 and the negative electrode active material 22, an active material having a smaller volumetric capacity than the positive electrode active material 12 is used as the negative electrode active material 22. Also, the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 is higher than the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 . Also, the volume ratio of the conductive aid 23 in the negative electrode layer 20 is lower than the volume ratio of the conductive aid 13 in the positive electrode layer 10 .
 この構成によれば、電子伝導性低下の影響を軽微にしつつ、正極層10と負極層20との間で、良好な容量バランスを実現できるようになる。 According to this configuration, it is possible to realize a good capacity balance between the positive electrode layer 10 and the negative electrode layer 20 while minimizing the influence of the decrease in electronic conductivity.
 本実施形態においては、負極層20の平均厚みをT1と表記し、正極層10の平均厚みをT2と表記する。本実施形態においては、比率T1/T2を0.75以上、1.3以下とすることで、正極層10の厚みと負極層20の厚みとの差異が小さくなる。それにより、焼結プロセスにおける正極層10と負極層20との間の収縮ミスマッチを抑制することができる。それにより、全固体電池100における反りを抑制することができ、クラックの発生を抑制することができる。 In the present embodiment, the average thickness of the negative electrode layer 20 is denoted as T1, and the average thickness of the positive electrode layer 10 is denoted as T2. In the present embodiment, by setting the ratio T1/T2 to 0.75 or more and 1.3 or less, the difference between the thickness of the positive electrode layer 10 and the thickness of the negative electrode layer 20 becomes small. Thereby, the shrinkage mismatch between the positive electrode layer 10 and the negative electrode layer 20 in the sintering process can be suppressed. As a result, warping in the all-solid-state battery 100 can be suppressed, and cracking can be suppressed.
 以上のことから、本実施形態においても、焼結プロセスにおける正負極間の収縮ミスマッチを抑制しつつ、良好な容量バランスを実現することができる。 From the above, in the present embodiment as well, it is possible to achieve a good capacity balance while suppressing the shrinkage mismatch between the positive and negative electrodes in the sintering process.
 正極層10において、正極活物質12の体積比率が小さすぎると、十分な容量密度を確保できないおそれがある。そこで、正極層10において、正極活物質12の体積比率に下限を設けることが好ましい。例えば、正極層10において、正極活物質12の体積比率は、10Vol.%以上であることが好ましく、12.5Vol.%以上であることがより好ましく、15Vol.%以上であることがさらに好ましい。 If the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 is too small, a sufficient capacity density may not be ensured. Therefore, it is preferable to set a lower limit to the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 . For example, in the positive electrode layer 10, the volume ratio of the positive electrode active material 12 is 10 Vol. % or more, and 12.5 Vol. % or more, and 15 Vol. % or more is more preferable.
 正極層10において、正極活物質12の体積比率が大きすぎると、電極の焼結緻密化不足や電子伝導性、イオン伝導性低下による内部抵抗増大のおそれがある。そこで、正極層10において、正極活物質12の体積比率に上限を設けることが好ましい。例えば、正極層10において、正極活物質12の体積比率は、45Vol.%以下であることが好ましく、40Vol.%以下であることがより好ましく、35Vol.%以下であることがさらに好ましい。 If the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 is too large, there is a risk of an increase in internal resistance due to insufficient sintering and densification of the electrode and a decrease in electronic conductivity and ionic conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the positive electrode active material 12 in the positive electrode layer 10 . For example, in the positive electrode layer 10, the volume ratio of the positive electrode active material 12 is 45 Vol. % or less, and 40 Vol. % or less, and 35 Vol. % or less.
 正極層10において、導電助剤13の体積比率が小さすぎると、電子伝導性低下による内部抵抗増大のおそれがある。そこで、正極層10において、導電助剤13の体積比率に下限を設けることが好ましい。例えば、正極層10において、導電助剤13の体積比率は、16Vol.%以上であることが好ましく、18Vol.%以上であることがより好ましく、20Vol.%以上であることがさらに好ましい。 If the volume ratio of the conductive aid 13 in the positive electrode layer 10 is too small, there is a risk of an increase in internal resistance due to a decrease in electronic conductivity. Therefore, in the positive electrode layer 10 , it is preferable to set a lower limit to the volume ratio of the conductive aid 13 . For example, in the positive electrode layer 10, the volume ratio of the conductive aid 13 is 16 Vol. % or more, and 18 Vol. % or more, and 20 Vol. % or more is more preferable.
 正極層10において、導電助剤13の体積比率が大きすぎると、容量低下、電極の焼結緻密化不足やイオン伝導性低下による内部抵抗増大のおそれがある。そこで、正極層10において、導電助剤13の体積比率に上限を設けることが好ましい。例えば、正極層10において、導電助剤13の体積比率は、50Vol.%以下であることが好ましく、45Vol.%以下であることがより好ましく、40Vol.%以下であることがさらに好ましい。 If the volume ratio of the conductive additive 13 in the positive electrode layer 10 is too large, there is a risk of a decrease in capacity, insufficient sintering and densification of the electrode, and an increase in internal resistance due to a decrease in ionic conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the conductive additive 13 in the positive electrode layer 10 . For example, in the positive electrode layer 10, the volume ratio of the conductive aid 13 is 50 Vol. % or less, and 45 Vol. % or less, and 40 Vol. % or less.
 正極層10において、固体電解質14の体積比率が小さすぎると、イオン伝導性低下や電極の焼結緻密化不足のおそれがある。そこで、正極層10において、固体電解質14の体積比率に下限を設けることが好ましい。例えば、正極層10において、固体電解質14の体積比率は、30Vol.%以上であることが好ましく、35Vol.%以上であることがより好ましく、40Vol.%以上であることがさらに好ましい。 If the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 is too small, the ionic conductivity may decrease and the sintering and densification of the electrode may be insufficient. Therefore, it is preferable to set a lower limit to the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 . For example, in the positive electrode layer 10, the volume ratio of the solid electrolyte 14 is 30 Vol. % or more, and 35 Vol. % or more, and 40 Vol. % or more is more preferable.
 正極層10において、固体電解質14の体積比率が大きすぎると、容量低下や電子伝導性低下による内部抵抗増大のおそれがある。そこで、正極層10において、固体電解質14の体積比率に上限を設けることが好ましい。例えば、正極層10において、固体電解質14の体積比率は、65Vol.%以下であることが好ましく、60Vol.%以下であることがより好ましく、55Vol.%以下であることがさらに好ましい。 If the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 is too large, there is a risk of an increase in internal resistance due to a decrease in capacity and electron conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the solid electrolyte 14 in the positive electrode layer 10 . For example, in the positive electrode layer 10, the volume ratio of the solid electrolyte 14 is 65 Vol. % or less, and 60 Vol. % or less, and 55 Vol. % or less.
 負極層20において、負極活物質22の体積比率が小さすぎると、十分な容量密度を確保できないおそれがある。そこで、負極層20において、負極活物質22の体積比率に下限を設けることが好ましい。例えば、負極層20において、負極活物質22の体積比率は、15Vol.%以上であることが好ましく、17.5Vol.%以上であることがより好ましく、20Vol.%以上であることがさらに好ましい。 If the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 is too small, it may not be possible to secure a sufficient capacity density. Therefore, it is preferable to set a lower limit to the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 . For example, in the negative electrode layer 20, the volume ratio of the negative electrode active material 22 is 15 Vol. % or more, and 17.5 Vol. % or more, and 20 Vol. % or more is more preferable.
 負極層20において、負極活物質22の体積比率が大きすぎると、電極の焼結緻密化不足や電子伝導性、イオン伝導性低下による内部抵抗増大のおそれがある。そこで、負極層20において、負極活物質22の体積比率に上限を設けることが好ましい。例えば、負極層20において、負極活物質22の体積比率は、55Vol.%以下であることが好ましく、50Vol.%以下であることがより好ましく、45Vol.%以下であることがさらに好ましい。 In the negative electrode layer 20, if the volume ratio of the negative electrode active material 22 is too large, there is a risk of an increase in internal resistance due to insufficient sintering and densification of the electrode and a decrease in electronic conductivity and ionic conductivity. Therefore, it is preferable to set an upper limit for the volume ratio of the negative electrode active material 22 in the negative electrode layer 20 . For example, in the negative electrode layer 20, the volume ratio of the negative electrode active material 22 is 55 Vol. % or less, and 50 Vol. % or less, and 45 Vol. % or less.
 負極層20において、導電助剤23の体積比率が小さすぎると、電子伝導性低下による内部抵抗増大のおそれがある。そこで、負極層20において、導電助剤23の体積比率に下限を設けることが好ましい。例えば、負極層20において、導電助剤23の体積比率は、8Vol.%以上であることが好ましく、9Vol.%以上であることがより好ましく、10Vol.%以上であることがさらに好ましい。 If the volume ratio of the conductive aid 23 in the negative electrode layer 20 is too small, there is a risk of an increase in internal resistance due to a decrease in electronic conductivity. Therefore, it is preferable to set a lower limit to the volume ratio of the conductive additive 23 in the negative electrode layer 20 . For example, in the negative electrode layer 20, the volume ratio of the conductive aid 23 is 8 Vol. % or more, and 9 Vol. % or more, and 10 Vol. % or more is more preferable.
 負極層20において、導電助剤23の体積比率が大きすぎると、容量低下、電極の焼結緻密化不足やイオン伝導性低下による内部抵抗増大のおそれがある。そこで、負極層20において、導電助剤23の体積比率に上限を設けることが好ましい。例えば、負極層20において、導電助剤23の体積比率は、24Vol.%以下であることが好ましく、22Vol.%以下であることがより好ましく、20Vol.%以下であることがさらに好ましい。 If the volume ratio of the conductive aid 23 in the negative electrode layer 20 is too large, there is a risk of a decrease in capacity, insufficient sintering and densification of the electrode, and an increase in internal resistance due to a decrease in ionic conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the conductive aid 23 in the negative electrode layer 20 . For example, in the negative electrode layer 20, the volume ratio of the conductive aid 23 is 24 Vol. % or less, and 22 Vol. % or less, and 20 Vol. % or less.
 負極層20において、固体電解質24の体積比率が小さすぎると、イオン伝導性低下や電極の焼結緻密化不足のおそれがある。そこで、負極層20において、固体電解質24の体積比率に下限を設けることが好ましい。例えば、負極層20において、固体電解質24の体積比率は、30Vol.%以上であることが好ましく、35Vol.%以上であることがより好ましく、40Vol.%以上であることがさらに好ましい。 If the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 is too small, the ionic conductivity may decrease and the sintering and densification of the electrode may be insufficient. Therefore, it is preferable to set a lower limit to the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 . For example, in the negative electrode layer 20, the volume ratio of the solid electrolyte 24 is 30 Vol. % or more, and 35 Vol. % or more, and 40 Vol. % or more is more preferable.
 負極層20において、固体電解質24の体積比率が大きすぎると、容量低下や電子伝導性低下による内部抵抗増大のおそれがある。そこで、負極層20において、固体電解質24の体積比率に上限を設けることが好ましい。例えば、負極層20において、固体電解質24の体積比率は、65Vol.%以下であることが好ましく、60Vol.%以下であることがより好ましく、55Vol.%以下であることがさらに好ましい。 If the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 is too large, there is a risk of an increase in internal resistance due to a decrease in capacity and electron conductivity. Therefore, it is preferable to set an upper limit to the volume ratio of the solid electrolyte 24 in the negative electrode layer 20 . For example, in the negative electrode layer 20, the volume ratio of the solid electrolyte 24 is 65 Vol. % or less, and 60 Vol. % or less, and 55 Vol. % or less.
 なお、本実施形態では、未充電時よりも満充電時の電子伝導が高くなる負極活物質22を用いておりかつ負極層20における導電助剤23の体積比率が正極層10における導電助剤13の体積比率よりも低いため、低SOC時の大電流が抑制され、安定なCV充電が可能となる。一方で、充電時に律速となる負極活物質22の電子伝導性が高SOC時には高くなるため、ハイレート放電が可能となる。 Note that, in the present embodiment, the negative electrode active material 22 that exhibits higher electron conductivity in the fully charged state than in the uncharged state is used, and the volume ratio of the conductive support agent 23 in the negative electrode layer 20 is the same as that of the conductive support agent 13 in the positive electrode layer 10 . , the large current at low SOC is suppressed, and stable CV charging becomes possible. On the other hand, since the electron conductivity of the negative electrode active material 22, which is rate-limiting during charging, increases at high SOC, high-rate discharge is possible.
(積層型全固体電池)
 図3は、複数の電池単位が積層された積層型の全固体電池100aの模式的断面図である。全固体電池100aは、略直方体形状を有する積層チップ60を備える。積層チップ60において、積層方向端の上面および下面以外の4面のうちの2面である2側面に接するように、第1外部電極40aおよび第2外部電極40bが設けられている。当該2側面は、隣接する2側面であってもよく、互いに対向する2側面であってもよい。本実施形態においては、互いに対向する2側面(以下、2端面と称する)に接するように第1外部電極40aおよび第2外部電極40bが設けられているものとする。
(Layered all-solid-state battery)
FIG. 3 is a schematic cross-sectional view of a stacked all-solid-state battery 100a in which a plurality of battery units are stacked. The all-solid-state battery 100a includes a laminated chip 60 having a substantially rectangular parallelepiped shape. In the laminated chip 60, the first external electrode 40a and the second external electrode 40b are provided so as to be in contact with two side surfaces of the four surfaces other than the top surface and the bottom surface of the stacking direction end. The two side surfaces may be two adjacent side surfaces or two side surfaces facing each other. In the present embodiment, the first external electrode 40a and the second external electrode 40b are provided so as to be in contact with two side surfaces (hereinafter referred to as two end surfaces) facing each other.
 以下の説明において、第1実施形態および第2実施形態に係る全固体電池100と同一の組成範囲、同一の厚み範囲、および同一の粒度分布範囲を有するものについては、同一符号を付すことで詳細な説明を省略する。 In the following description, those having the same composition range, the same thickness range, and the same particle size distribution range as the all-solid-state batteries 100 according to the first and second embodiments are denoted by the same reference numerals. detailed description is omitted.
 全固体電池100aにおいては、複数の正極層10と複数の負極層20とが、固体電解質層30を介して交互に積層されている。複数の正極層10の端縁は、積層チップ60の第1端面に露出し、第2端面には露出していない。複数の負極層20の端縁は、積層チップ60の第2端面に露出し、第1端面には露出していない。それにより、正極層10および負極層20は、第1外部電極40aと第2外部電極40bとに、交互に導通している。なお、固体電解質層30は、第1外部電極40aから第2外部電極40bにかけて延在している。このように、全固体電池100aは、複数の電池単位が積層された構造を有している。 In the all-solid-state battery 100a, a plurality of positive electrode layers 10 and a plurality of negative electrode layers 20 are alternately laminated with solid electrolyte layers 30 interposed therebetween. Edges of the plurality of positive electrode layers 10 are exposed on the first end surface of the laminated chip 60 and are not exposed on the second end surface. Edges of the plurality of negative electrode layers 20 are exposed on the second end surface of the laminated chip 60 and are not exposed on the first end surface. Thereby, the positive electrode layer 10 and the negative electrode layer 20 are alternately connected to the first external electrode 40a and the second external electrode 40b. The solid electrolyte layer 30 extends from the first external electrode 40a to the second external electrode 40b. Thus, the all-solid-state battery 100a has a structure in which a plurality of battery units are stacked.
 正極層10、固体電解質層30および負極層20の積層構造の上面(図3の例では、最上層の正極層10の上面)に、カバー層50が積層されている。また、当該積層構造の下面(図3の例では、最下層の正極層10の下面)にも、カバー層50が積層されている。カバー層50は、例えば、Al、Zr、Tiなどを含む無機材料(例えば、Al、ZrO、TiOなど)を主成分とする。カバー層50は、固体電解質層30の主成分を主成分として含んでいてもよい。 A cover layer 50 is laminated on the upper surface of the laminated structure of the positive electrode layer 10, the solid electrolyte layer 30, and the negative electrode layer 20 (in the example of FIG. 3, the upper surface of the uppermost positive electrode layer 10). A cover layer 50 is also laminated on the lower surface of the laminated structure (in the example of FIG. 3, the lower surface of the lowermost positive electrode layer 10). The cover layer 50 is mainly composed of, for example, an inorganic material containing Al, Zr , Ti, etc. (eg, Al2O3 , ZrO2 , TiO2 , etc.). The cover layer 50 may contain the main component of the solid electrolyte layer 30 as a main component.
 正極層10および負極層20は、集電体層を備えていてもよい。例えば、図4で例示するように、正極層10内に第1集電体層11が設けられていてもよい。また、負極層20内に第2集電体層21が設けられていてもよい。第1集電体層11および第2集電体層21は、導電性材料を主成分とする。例えば、第1集電体層11および第2集電体層21の導電性材料として、金属、カーボンなどを用いることができる。第1集電体層11を第1外部電極40aに接続し、第2集電体層21を第2外部電極40bに接続することで、集電効率が向上する。 The positive electrode layer 10 and the negative electrode layer 20 may have collector layers. For example, as illustrated in FIG. 4 , the first current collector layer 11 may be provided within the positive electrode layer 10 . Also, a second current collector layer 21 may be provided in the negative electrode layer 20 . The first current collector layer 11 and the second current collector layer 21 are mainly composed of a conductive material. For example, metal, carbon, or the like can be used as the conductive material of the first current collector layer 11 and the second current collector layer 21 . By connecting the first collector layer 11 to the first external electrode 40a and connecting the second collector layer 21 to the second external electrode 40b, the current collection efficiency is improved.
 続いて、図3で例示した全固体電池100aの製造方法について説明する。図5は、全固体電池100aの製造方法のフローを例示する図である。 Next, a method for manufacturing the all-solid-state battery 100a illustrated in FIG. 3 will be described. FIG. 5 is a diagram illustrating the flow of the method for manufacturing the all-solid-state battery 100a.
 (固体電解質層用の原料粉末作製工程)
 まず、上述の固体電解質層30を構成する固体電解質層用の原料粉末を作製する。例えば、原料、添加物などを混合し、固相合成法などを用いることで、酸化物系固体電解質の原料粉末を作製することができる。得られた原料粉末を乾式粉砕することで、所望の平均粒径に調整することができる。例えば、5mmφのZrOボールを用いた遊星ボールミルで、所望の平均粒径に調整する。
(Process for preparing raw material powder for solid electrolyte layer)
First, raw material powder for the solid electrolyte layer that constitutes the solid electrolyte layer 30 described above is prepared. For example, raw material powder of an oxide-based solid electrolyte can be produced by mixing raw materials, additives, and the like and using a solid-phase synthesis method or the like. By dry pulverizing the obtained raw material powder, it is possible to adjust to a desired average particle size. For example, a planetary ball mill using 5 mmφ ZrO 2 balls is used to adjust the desired average particle size.
 (カバー層用の原料粉末作製工程)
 まず、上述のカバー層50を構成するセラミックスの原料粉末を作製する。例えば、原料、添加物などを混合し、固相合成法などを用いることで、カバー層用の原料粉末を作製することができる。得られた原料粉末を乾式粉砕することで、所望の平均粒径に調整することができる。例えば、5mmφのZrOボールを用いた遊星ボールミルで、所望の平均粒径に調整する。固体電解質層30とカバー層50とが同組成を有する場合には、固体電解質層用の原料粉末を代用することができる。
(Process for preparing raw material powder for cover layer)
First, raw material powder of ceramics that constitutes the cover layer 50 is prepared. For example, raw material powder for the cover layer can be produced by mixing raw materials, additives, and the like and using a solid-phase synthesis method or the like. By dry pulverizing the obtained raw material powder, it is possible to adjust to a desired average particle size. For example, a planetary ball mill using 5 mmφ ZrO 2 balls is used to adjust the desired average particle size. When the solid electrolyte layer 30 and the cover layer 50 have the same composition, raw material powder for the solid electrolyte layer can be substituted.
 (電極層用ペースト作製工程)
 次に、上述の正極層10および負極層20の作製用の内部電極用ペーストを個別に作製する。例えば、導電助剤、電極活物質、固体電解質材料、焼結助剤、バインダ、可塑剤などを水あるいは有機溶剤に均一分散させることで内部電極用ペーストを得ることができる。固体電解質材料として、上述した固体電解質ペーストを用いてもよい。導電助剤として、カーボン材料などを用いる。導電助剤として、金属を用いてもよい。導電助剤の金属としては、Pd、Ni、Cu、Fe、これらを含む合金などが挙げられる。Pd、Ni、Cu、Fe、これらを含む合金や各種カーボン材料などをさらに用いてもよい。
(Electrode layer paste preparation step)
Next, internal electrode pastes for producing the above-described positive electrode layer 10 and negative electrode layer 20 are individually produced. For example, an internal electrode paste can be obtained by uniformly dispersing a conductive aid, an electrode active material, a solid electrolyte material, a sintering aid, a binder, a plasticizer, and the like in water or an organic solvent. As the solid electrolyte material, the solid electrolyte paste described above may be used. A carbon material or the like is used as the conductive aid. A metal may be used as the conductive aid. Examples of the metal of the conductive aid include Pd, Ni, Cu, Fe, and alloys containing these. Pd, Ni, Cu, Fe, alloys containing these, and various carbon materials may also be used.
 内部電極用ペーストの焼結助剤として、例えば、Li-B-O系化合物、Li-Si-O系化合物、Li-C-O系化合物、Li-S-O系化合物,Li-P-O系化合物などのガラス成分のどれか1つあるいは複数などのガラス成分が含まれている。 Examples of sintering aids for internal electrode paste include Li—B—O compounds, Li—Si—O compounds, Li—C—O compounds, Li—S—O compounds, Li—P—O A glass component such as any one or more of the glass components such as base compounds is included.
 (外部電極用ペースト作製工程)
 次に、上述の第1外部電極40aおよび第2外部電極40bの作製用の外部電極用ペーストを作製する。例えば、導電性材料、ガラスフリット、バインダ、可塑剤などを水あるいは有機溶剤に均一分散させることで外部電極用ペーストを得ることができる。
(External electrode paste preparation process)
Next, an external electrode paste for producing the first external electrode 40a and the second external electrode 40b is prepared. For example, an external electrode paste can be obtained by uniformly dispersing a conductive material, a glass frit, a binder, a plasticizer, and the like in water or an organic solvent.
 (固体電解質グリーンシート作製工程)
 固体電解質層用の原料粉末を、結着材、分散剤、可塑剤などとともに、水性溶媒あるいは有機溶媒に均一に分散させて、湿式粉砕を行うことで、所望の平均粒径を有する固体電解質スラリを得る。このとき、ビーズミル、湿式ジェットミル、各種混練機、高圧ホモジナイザーなどを用いることができ、粒度分布の調整と分散とを同時に行うことができる観点からビーズミルを用いることが好ましい。得られた固体電解質スラリにバインダを添加して固体電解質ペーストを得る。得られた固体電解質ペーストを塗工することで、固体電解質グリーンシート51を作製することができる。塗工方法は、特に限定されるものではなく、スロットダイ方式、リバースコート方式、グラビアコート方式、バーコート方式、ドクターブレード方式などを用いることができる。湿式粉砕後の粒度分布は、例えば、レーザ回折散乱法を用いたレーザ回折測定装置を用いて測定することができる。
(Solid electrolyte green sheet manufacturing process)
A solid electrolyte slurry having a desired average particle size is prepared by uniformly dispersing the raw material powder for the solid electrolyte layer in an aqueous solvent or an organic solvent together with a binder, a dispersant, a plasticizer, etc., followed by wet pulverization. get At this time, a bead mill, a wet jet mill, various kneaders, a high-pressure homogenizer, or the like can be used, and it is preferable to use a bead mill from the viewpoint of being able to simultaneously adjust the particle size distribution and disperse. A binder is added to the obtained solid electrolyte slurry to obtain a solid electrolyte paste. By applying the obtained solid electrolyte paste, the solid electrolyte green sheet 51 can be produced. The coating method is not particularly limited, and a slot die method, a reverse coating method, a gravure coating method, a bar coating method, a doctor blade method, or the like can be used. The particle size distribution after wet pulverization can be measured, for example, using a laser diffraction measurement device using a laser diffraction scattering method.
 (積層工程)
 図6(a)で例示するように、固体電解質グリーンシート51の一面に、内部電極用ペースト52を印刷する。固体電解質グリーンシート51上で内部電極用ペースト52が印刷されていない領域には、逆パターン53を印刷する。逆パターン53として、固体電解質グリーンシート51と同様のものを用いることができる。印刷後の複数の固体電解質グリーンシート51を、交互にずらして積層する。図6(b)で例示するように、積層方向の上下から、カバーシート54を圧着することで、積層体を得る。この場合、当該積層体において、一方の端面に正極層10用の内部電極用ペースト52が露出し、他方の端面に負極層20用の内部電極用ペースト52が露出するように、略直方体形状の積層体を得る。カバーシート54は、固体電解質グリーンシート作製工程と同様の手法でカバー層用の原料粉末を塗工することで形成することができる。カバーシート54は、固体電解質グリーンシート51よりも厚く形成しておく。塗工時に厚くしてもよく、塗工したシートを複数枚重ねることで厚くしてもよい。
(Lamination process)
As illustrated in FIG. 6A , an internal electrode paste 52 is printed on one surface of a solid electrolyte green sheet 51 . A reverse pattern 53 is printed on a region of the solid electrolyte green sheet 51 where the internal electrode paste 52 is not printed. As the reverse pattern 53, the same one as the solid electrolyte green sheet 51 can be used. A plurality of solid electrolyte green sheets 51 after printing are alternately shifted and laminated. As illustrated in FIG. 6B, the laminate is obtained by crimping the cover sheets 54 from above and below in the lamination direction. In this case, in the laminate, the internal electrode paste 52 for the positive electrode layer 10 is exposed on one end surface, and the internal electrode paste 52 for the negative electrode layer 20 is exposed on the other end surface. A laminate is obtained. The cover sheet 54 can be formed by coating the raw material powder for the cover layer in the same manner as in the solid electrolyte green sheet production process. The cover sheet 54 is formed thicker than the solid electrolyte green sheet 51 . The thickness may be increased during coating, or may be increased by stacking a plurality of coated sheets.
 次に、2端面のそれぞれに、ディップ法等で外部電極用ペースト55を塗布して乾燥させる。これにより、全固体電池100aを形成するための成型体が得られる。 Next, the external electrode paste 55 is applied to each of the two end faces by a dipping method or the like and dried. Thereby, a molding for forming the all-solid-state battery 100a is obtained.
 (焼成工程)
 次に、得られた積層体を焼成する。焼成の条件は酸化性雰囲気下あるいは非酸化性雰囲気下で、最高温度を好ましくは400℃~1000℃、より好ましくは500℃~900℃などとすることが特に限定なく挙げられる。最高温度に達するまでにバインダを十分に除去するために酸化性雰囲気において最高温度より低い温度で保持する工程を設けてもよい。プロセスコストを低減するためにはできるだけ低温で焼成することが望ましい。焼成後に、再酸化処理を施してもよい。以上の工程により、全固体電池100aが生成される。
(Baking process)
Next, the obtained laminate is fired. The firing conditions are oxidizing atmosphere or non-oxidizing atmosphere, and the maximum temperature is preferably 400° C. to 1000° C., more preferably 500° C. to 900° C., without any particular limitation. A step of holding below the maximum temperature in an oxidizing atmosphere may be provided to sufficiently remove the binder until the maximum temperature is reached. In order to reduce process costs, it is desirable to bake at as low a temperature as possible. After firing, reoxidation treatment may be performed. Through the above steps, the all-solid-state battery 100a is produced.
 なお、内部電極用ペーストと、導電性材料を含む集電体用ペーストと、内部電極用ペーストとを順に積層することで、正極層10および負極層20内に集電体層を形成することができる。 It should be noted that current collector layers can be formed in the positive electrode layer 10 and the negative electrode layer 20 by sequentially laminating the internal electrode paste, the current collector paste containing a conductive material, and the internal electrode paste. can.
 以下、実施形態に従って全固体電池を作製し、特性について調べた。 All-solid-state batteries were produced according to the embodiments, and their characteristics were investigated.
(実施例1)
 正極活物質に、充電により電子伝導性が向上するLiCoPO(LCP:実質的な体積比容量450mAh/cm)を適用し、導電助剤にカーボン粉末(C)を適用し、固体電解質にLi-Al-Ge-P-O系イオン伝導体(LAGP)を適用し、LCPとCとLAGPとの体積比率を35:15:50となるように正極層用の内部電極用ペーストを作製した。
(Example 1)
LiCoPO 4 (LCP: substantial volumetric capacity of 450 mAh/cm 3 ), whose electronic conductivity is improved by charging, is applied as the positive electrode active material, carbon powder (C) is applied as the conductive aid, and Li is used as the solid electrolyte. -Al-Ge-P-O based ionic conductor (LAGP) was applied, and an internal electrode paste for the positive electrode layer was prepared so that the volume ratio of LCP, C and LAGP was 35:15:50.
 負極活物質に、Nb(1V vs. Li/Liまでの体積比容量920mAh/cm)を適用し、導電助剤にカーボン粉末(C)、固体電解質にLi-Al-Ge-P-O系イオン伝導体(LAGP)を適用し、NbとCとLAGPとの体積比率を17.5:32.5:50となるように負極層用の内部電極用ペーストを作製した。 Nb 2 O 5 (volume specific capacity up to 1 V vs. Li/Li + 920 mAh/cm 3 ) was applied as the negative electrode active material, carbon powder (C) was used as the conductive aid, and Li—Al—Ge— was used as the solid electrolyte. A PO-based ionic conductor (LAGP) was applied, and the internal electrode paste for the negative electrode layer was prepared so that the volume ratio of Nb 2 O 5 , C and LAGP was 17.5:32.5:50. bottom.
 LAGPからなる固体電解質、有機バインダ、分散剤、可塑剤、有機溶媒からなるスラリを用いてテープキャスト法にて厚さ20μmの固体電解質グリーンシートを作製した。 A solid electrolyte green sheet with a thickness of 20 μm was produced by a tape casting method using a slurry composed of a solid electrolyte made of LAGP, an organic binder, a dispersant, a plasticizer, and an organic solvent.
 第1固体電解質グリーンシート上に、正極層用の内部電極用ペーストをスクリーン印刷法により塗布形成した。第2固体電解質グリーンシート上に、負極層用の内部電極用ペーストをスクリーン印刷法により塗布形成した。正極層用の内部電極用ペーストと、負極層用の内部電極用ペーストとが同じ厚みになるようにした。複数の第1固体電解質グリーンシートと、複数の第2固体電解質グリーンシートとを、正極層と負極層とが交互に左右に引き出されるように積層し、積層型全固体電池のグリーンチップを得た。グリーンチップを脱脂・焼成することで焼結し、外部電極用ペーストを塗布形成・硬化することで外部電極形成し、積層型全固体電池を得た。 On the first solid electrolyte green sheet, the internal electrode paste for the positive electrode layer was applied by screen printing. An internal electrode paste for a negative electrode layer was applied onto the second solid electrolyte green sheet by screen printing. The internal electrode paste for the positive electrode layer and the internal electrode paste for the negative electrode layer were made to have the same thickness. A plurality of first solid electrolyte green sheets and a plurality of second solid electrolyte green sheets were laminated such that the positive electrode layer and the negative electrode layer were alternately pulled out to the left and right to obtain a green chip of a laminated all-solid-state battery. . The green chip was sintered by degreasing and firing, and an external electrode paste was applied and cured to form an external electrode, thereby obtaining a stacked all-solid-state battery.
 積層型全固体電池の外観を観察したところ、反りやクラック等は見られなかった。正極活物質全量から推定される容量は1.20mAhであり、負極活物質全量から推定される容量は1.23mAhであったが、実際に電池特性を評価したところ、電池容量は1.15mAhであった。 When the appearance of the stacked all-solid-state battery was observed, no warping or cracks were observed. The capacity estimated from the total amount of the positive electrode active material was 1.20 mAh, and the capacity estimated from the total amount of the negative electrode active material was 1.23 mAh. However, when the battery characteristics were actually evaluated, the battery capacity was 1.15 mAh. there were.
(比較例1)
 正極活物質に、充電後に電子伝導が上がらないLiFePO(LFP:体積比容量610mAh/cm)を適用し、LFPとCとLAGPとの体積比率を26:24:50となるようにしたこと以外、実施例1と同様に全固体電池を作製した。
(Comparative example 1)
LiFePO 4 (LFP: volume specific capacity 610 mAh/cm 3 ) is used as the positive electrode active material, and the volume ratio of LFP, C, and LAGP is 26:24:50. An all-solid battery was fabricated in the same manner as in Example 1 except for the above.
 積層型全固体電池の外観を観察したところ、反りやクラック等は見られなかった。正極活物質全量から推定される容量は1.21mAhであり、負極活物質全量から推定される容量は1.23mAhであったが、実際に電池特性を評価したところ、電池容量は0.67mAhであった。 When the appearance of the stacked all-solid-state battery was observed, no warping or cracks were observed. The capacity estimated from the total amount of the positive electrode active material was 1.21 mAh, and the capacity estimated from the total amount of the negative electrode active material was 1.23 mAh. However, when the battery characteristics were actually evaluated, the battery capacity was 0.67 mAh. there were.
(比較例2)
 LCPとCとLAGPとの体積比率を20:30:50となるように正極層用の内部電極用ペーストを作製し、正負極の容量バランスをとるために正極層厚みを負極層厚みの1.75倍としたこと以外、実施例1と同様に全固体電池を作製した。
(Comparative example 2)
An internal electrode paste for the positive electrode layer was prepared so that the volume ratio of LCP, C and LAGP was 20:30:50. An all-solid-state battery was produced in the same manner as in Example 1, except that the size was increased 75 times.
 積層型全固体電池の外観を観察したところ、クラックが観察された。正極活物質全量から推定される容量は1.20mAhであり、負極活物質全量から推定される容量は1.23mAhであったが、実際に電池特性を評価したところ、電池はオープン故障しており、容量測定できなかった。 When observing the appearance of the stacked all-solid-state battery, cracks were observed. The capacity estimated from the total amount of the positive electrode active material was 1.20 mAh, and the capacity estimated from the total amount of the negative electrode active material was 1.23 mAh. , the capacity could not be measured.
(比較例3)
 LCPとCとLAGPとの体積比率を17.5:32.5:50となるように正極層用の内部電極用ペーストを作製したこと以外、実施例1と同様に全固体電池を作製した。
(Comparative Example 3)
An all-solid battery was produced in the same manner as in Example 1, except that the internal electrode paste for the positive electrode layer was produced such that the volume ratio of LCP, C, and LAGP was 17.5:32.5:50.
 積層型全固体電池の外観を観察したところ、反りやクラック等は見られなかった。正極活物質全量から推定される容量は0.60mAhであり、負極活物質全量から推定される容量は1.23mAhであったが、実際に電池特性を評価したところ、電池容量は0.55mAhであった。 When the appearance of the stacked all-solid-state battery was observed, no warping or cracks were observed. The capacity estimated from the total amount of the positive electrode active material was 0.60 mAh, and the capacity estimated from the total amount of the negative electrode active material was 1.23 mAh. However, when the battery characteristics were actually evaluated, the battery capacity was 0.55 mAh. there were.
(実施例2)
 LCPとCとLAGPとの体積比率を28:22:50となるように正極層用の内部電極用ペーストを作製し、正極層厚みを負極層厚みの1.25倍としたこと以外、実施例1と同様に全固体電池を作製した。
(Example 2)
An internal electrode paste for the positive electrode layer was prepared so that the volume ratio of LCP, C, and LAGP was 28:22:50, and the thickness of the positive electrode layer was 1.25 times the thickness of the negative electrode layer. An all-solid-state battery was produced in the same manner as in 1.
 積層型全固体電池の外観を観察したところ、ごくわずかな反りが見られたがクラックは認められなかった。正極活物質全量から推定される容量は1.20mAhであり、負極活物質全量から推定される容量は1.23mAhであったが、実際に電池特性を評価したところ、電池容量は1.12mAhであった。 When observing the appearance of the stacked all-solid-state battery, a very slight warp was observed, but no cracks were observed. The capacity estimated from the total amount of the positive electrode active material was 1.20 mAh, and the capacity estimated from the total amount of the negative electrode active material was 1.23 mAh. However, when the battery characteristics were actually evaluated, the battery capacity was 1.12 mAh. there were.
(比較例4)
 LCPとCとLAGPとの体積比率を26:24:50となるように正極層用の内部電極用ペーストを作製し、正極層厚みを負極層厚みの1.35倍としたこと以外、実施例1と同様に全固体電池を作製した。
(Comparative Example 4)
An internal electrode paste for the positive electrode layer was prepared so that the volume ratio of LCP, C, and LAGP was 26:24:50, and the thickness of the positive electrode layer was 1.35 times the thickness of the negative electrode layer. An all-solid-state battery was produced in the same manner as in 1.
 積層型全固体電池の外観を観察したところ、クラックが観察された。正極活物質全量から推定される容量は1.20mAhであり、負極活物質全量から推定される容量は1.23mAhであったが、実際に電池特性を評価したところ、電池はショート故障しており、容量測定できなかった。 When observing the appearance of the stacked all-solid-state battery, cracks were observed. The capacity estimated from the total amount of the positive electrode active material was 1.20 mAh, and the capacity estimated from the total amount of the negative electrode active material was 1.23 mAh. , the capacity could not be measured.
(実施例3)
 NbとCとLAGPとの体積比率を25:25:50となるように負極層用の内部電極用ペーストを作製したこと以外、実施例1と同様に全固体電池を作製した。
(Example 3)
An all-solid battery was produced in the same manner as in Example 1, except that the internal electrode paste for the negative electrode layer was produced such that the volume ratio of Nb 2 O 5 , C and LAGP was 25:25:50.
 積層型全固体電池の外観を観察したところ、反りやクラック等は見られなかった。正極活物質全量から推定される容量は1.20mAhであり、負極活物質全量から推定される容量は1.71mAhであったが、実際に電池特性を評価したところ、電池容量は1.18mAhであった。 When the appearance of the stacked all-solid-state battery was observed, no warping or cracks were observed. The capacity estimated from the total amount of the positive electrode active material was 1.20 mAh, and the capacity estimated from the total amount of the negative electrode active material was 1.71 mAh. However, when the battery characteristics were actually evaluated, the battery capacity was 1.18 mAh. there were.
(比較例5)
 LCPとCとLAGPとの体積比率を30:25:45となるように正極層用の内部電極用ペーストを作製し、NbとCとLAGPとの体積比率を25:25:50となるように負極層用の内部電極用ペーストを作製したこと以外、実施例1と同様に全固体電池を作製した。
(Comparative Example 5)
An internal electrode paste for the positive electrode layer was prepared so that the volume ratio of LCP, C, and LAGP was 30:25:45, and the volume ratio of Nb 2 O 5 , C, and LAGP was 25:25:50. An all-solid-state battery was produced in the same manner as in Example 1, except that the internal electrode paste for the negative electrode layer was produced such that
 積層型全固体電池の外観を観察したところ、反りやクラック等は見られなかった。正極活物質全量から推定される容量は1.03mAhであり、負極活物質全量から推定される容量は1.71mAhであったが、実際に電池特性を評価したところ、電池容量は0.99mAhであった。 When the appearance of the stacked all-solid-state battery was observed, no warping or cracks were observed. The capacity estimated from the total amount of the positive electrode active material was 1.03 mAh, and the capacity estimated from the total amount of the negative electrode active material was 1.71 mAh. However, when the battery characteristics were actually evaluated, the battery capacity was 0.99 mAh. there were.
(比較例6)
 LCPとCとLAGPとの体積比率を30:25:45となるように正極層用の内部電極用ペーストを作製し、NbとCとLAGPとの体積比率を35:15:50となるように負極層用の内部電極用ペーストを作製したこと以外、実施例1と同様に全固体電池を作製した。
(Comparative Example 6)
An internal electrode paste for the positive electrode layer was prepared so that the volume ratio of LCP, C, and LAGP was 30:25:45, and the volume ratio of Nb 2 O 5 , C, and LAGP was 35:15:50. An all-solid-state battery was produced in the same manner as in Example 1, except that the internal electrode paste for the negative electrode layer was produced such that
 積層型全固体電池の外観を観察したところ、反りやクラック等は見られなかった。正極活物質全量から推定される容量は1.03mAhであり、負極活物質全量から推定される容量は2.39mAhであったが、実際に電池特性を評価したところ、電池容量は0.92mAhであった。 When the appearance of the stacked all-solid-state battery was observed, no warping or cracks were observed. The capacity estimated from the total amount of the positive electrode active material was 1.03 mAh, and the capacity estimated from the total amount of the negative electrode active material was 2.39 mAh. However, when the battery characteristics were actually evaluated, the battery capacity was 0.92 mAh. there were.
 実施例1~3および比較例1~6の結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
The results of Examples 1-3 and Comparative Examples 1-6 are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~3および比較例1~6について、評価を行なった。実容量[mAh]が1mAh以上となっており、反りもクラックも発生していなければ、良好「◎」と判定した。実容量[mAh]が1mAh以上となっており、反りが発生しているもののクラックが発生していなければ、良好「〇」と判定した。非常に良好「◎」でも良好「〇」でもなければ、不良「×」と判定した。 Examples 1-3 and Comparative Examples 1-6 were evaluated. If the actual capacity [mAh] was 1 mAh or more and neither warpage nor cracks occurred, it was judged to be good. If the actual capacity [mAh] was 1 mAh or more, and if warpage occurred but cracks did not occur, it was determined to be good "◯". If it was neither very good "⊚" nor good "◯", it was judged to be bad "x".
 実施例1~3では、非常に良好または良好と判定された。これは、正極層が、未充電時よりも充電時の電子伝導が高くなりかつ負極層の活物質よりも体積比容量が小さな活物質を含み、負極層よりも活物質体積比率が高く、負極層よりも導電助剤の体積比率が低く、正極層の平均厚みT1と、負極層の平均厚みT2との比率T1/T2が0.75以上、1.3以下であったからであると考えられる。 Examples 1 to 3 were judged to be very good or good. This is because the positive electrode layer contains an active material whose electronic conductivity is higher when charged than when uncharged and whose volumetric capacity is smaller than that of the active material of the negative electrode layer, and the active material volume ratio is higher than that of the negative electrode layer. This is probably because the volume ratio of the conductive aid was lower than that of the layer, and the ratio T1/T2 between the average thickness T1 of the positive electrode layer and the average thickness T2 of the negative electrode layer was 0.75 or more and 1.3 or less. .
 これに対して、比較例1~6では、不良と判定された。比較例1については、充電後に電子伝導が上がらないLiFePOを正極活物質として用いたからであると推定される。比較例2,4については、T1/T2が1.3を上回ったからであると推定される。比較例3については、正極層および負極層において活物質の体積比率が同等としたからであると推定される。比較例5については、正極層および負極層において導電助剤の体積比率が同等としたからであると推定される。比較例6については、正極層よりも負極層における活物質体積比率を高くしたからであると推定される。 On the other hand, Comparative Examples 1 to 6 were judged to be defective. In Comparative Example 1, it is presumed that LiFePO 4 was used as the positive electrode active material, since the electron conductivity does not increase after charging. For Comparative Examples 2 and 4, it is estimated that T1/T2 exceeded 1.3. As for Comparative Example 3, it is presumed that the positive electrode layer and the negative electrode layer had the same volume ratio of the active material. As for Comparative Example 5, it is presumed that the positive electrode layer and the negative electrode layer had the same volume ratio of the conductive aid. As for Comparative Example 6, it is presumed that this is because the volume ratio of the active material in the negative electrode layer was higher than that in the positive electrode layer.
 なお、実施例1~3および比較例1~6について、SOC=0%からCV充電した場合の突入電流[mA]と、電池容量1mAhに対するレート(C)を測定した。また、実施例1~3および比較例1~6について、SOC=100%で20mA・100μsecを1sec間隔で100回繰り返すというパルス放電試験を行ない、パルス電圧ドロップ[V]を測定した。これらの結果を表1および表2に示す。比較例2および比較例4についてはクラックが発生していたために、測定できなかった。突入電流について、5C以下となっていればCV充電が良好「〇」と判定し、5C以下となっていなければCV充電が不良「×」と判定した。また、パルス電圧ドロップについて、0.16V以下となっていればパルス放電が良好と判定し、0.16V以下となっていなければパルス放電が不良「×」と判定した。 In addition, for Examples 1 to 3 and Comparative Examples 1 to 6, the inrush current [mA] when CV charging was performed from SOC = 0% and the rate (C) for a battery capacity of 1 mAh were measured. Further, for Examples 1 to 3 and Comparative Examples 1 to 6, a pulse discharge test was conducted in which SOC=100% and 20 mA/100 μsec were repeated 100 times at intervals of 1 sec, and the pulse voltage drop [V] was measured. These results are shown in Tables 1 and 2. Comparative Examples 2 and 4 could not be measured because cracks were generated. If the inrush current was 5C or less, the CV charging was determined to be good "O", and if it was not 5C or less, the CV charging was determined to be poor "x". In addition, when the pulse voltage drop was 0.16 V or less, the pulse discharge was determined to be good, and when it was not 0.16 V or less, the pulse discharge was determined to be defective (x).
 実施例1~3では、CV充電、およびパルス放電について、いずれも良好「〇」と判定された。これは、未充電時よりも満充電時の電子伝導が高くなる正極活物質を用いておりかつ正極層における導電助剤の体積比率が負極層における導電助剤の体積比率よりも低かったからであると推定される。 In Examples 1 to 3, both CV charging and pulse discharging were judged to be good "◯". This is because the positive electrode active material used has a higher electron conductivity when fully charged than when uncharged, and the volume ratio of the conductive aid in the positive electrode layer was lower than the volume ratio of the conductive aid in the negative electrode layer. It is estimated to be.
(実施例4)
 負極活物質に、充電により電子伝導性が向上するLi1.3Al0.3Ti1.7(PO(LATP:1V vs. Li/Liまでの体積比容量350mAh/cm)を適用し、導電助剤にカーボン粉末(C)を適用し、固体電解質にLi-Al-Ge-P-O系イオン伝導体(LAGP)を適用し、LATPとCとLAGPとの体積比率を35:15:50となるように負極層用の内部電極用ペーストを作製した。正極活物質に、充電後に電子伝導が上がらないLiFePO(LFP:体積比容量610mAh/cm)を適用し、LFPとCとLAGPとの体積比率を20:25:55となるように正極層用の内部電極用ペーストを作製した。その他の条件は実施例1と同様とした。
(Example 4)
Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP: Volume specific capacity up to 1 V vs. Li/Li + 350 mAh/cm 3 ), which improves electronic conductivity by charging, is used as the negative electrode active material. is applied, carbon powder (C) is applied as a conductive agent, Li—Al—Ge—P—O-based ionic conductor (LAGP) is applied as a solid electrolyte, and the volume ratio of LATP, C and LAGP is An internal electrode paste for the negative electrode layer was prepared so as to have a ratio of 35:15:50. LiFePO 4 (LFP: volume specific capacity 610 mAh/cm 3 ), whose electronic conductivity does not increase after charging, was applied as the positive electrode active material, and the positive electrode layer was adjusted so that the volume ratio of LFP, C, and LAGP was 20:25:55. An internal electrode paste was prepared for Other conditions were the same as in Example 1.
 積層型全固体電池の外観を観察したところ、反りやクラック等は見られなかった。正極活物質全量から推定される容量は1.22mAhであり、負極活物質全量から推定される容量は1.23mAhであったが、実際に電池特性を評価したところ、電池容量は1.04mAhであった。 When the appearance of the stacked all-solid-state battery was observed, no warping or cracks were observed. The capacity estimated from the total amount of the positive electrode active material was 1.22 mAh, and the capacity estimated from the total amount of the negative electrode active material was 1.23 mAh. However, when the battery characteristics were actually evaluated, the battery capacity was 1.04 mAh. there were.
(比較例7)
 LATPとCとLAGPとの体積比率を25:25:50となるように負極層用の内部電極用ペーストを作製し、LFPとCとLAGPとの体積比率を25:25:50としたこと以外、実施例4と同様に全固体電池を作製した。
(Comparative Example 7)
An internal electrode paste for the negative electrode layer was prepared so that the volume ratio of LATP, C and LAGP was 25: 25: 50, and the volume ratio of LFP, C and LAGP was 25: 25: 50. , an all-solid-state battery was fabricated in the same manner as in Example 4.
 積層型全固体電池の外観を観察したところ、反りやクラック等は見られなかった。正極活物質全量から推定される容量は1.52mAhであり、負極活物質全量から推定される容量は0.88mAhであったが、実際に電池特性を評価したところ、電池容量は0.85mAhであった。 When the appearance of the stacked all-solid-state battery was observed, no warping or cracks were observed. The capacity estimated from the total amount of the positive electrode active material was 1.52 mAh, and the capacity estimated from the total amount of the negative electrode active material was 0.88 mAh. However, when the battery characteristics were actually evaluated, the battery capacity was 0.85 mAh. there were.
 実施例4および比較例7の結果を表3および表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
The results of Example 4 and Comparative Example 7 are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例4および比較例7について、評価を行なった。実容量[mAh]が1mAh以上となっており、反りもクラックも発生していなければ、良好「◎」と判定した。実容量[mAh]が1mAh以上となっており、反りが発生しているもののクラックが発生していなければ、良好「〇」と判定した。非常に良好「◎」でも良好「〇」でもなければ、不良「×」と判定した。 Example 4 and Comparative Example 7 were evaluated. If the actual capacity [mAh] was 1 mAh or more and neither warpage nor cracks occurred, it was judged to be good. If the actual capacity [mAh] was 1 mAh or more, and if warpage occurred but cracks did not occur, it was determined to be good "◯". If it was neither very good "⊚" nor good "◯", it was judged to be bad "x".
 実施例4では、非常に良好または良好と判定された。これは、負極層が、未充電時よりも充電時の電子伝導が高くなりかつ正極層の活物質よりも体積比容量が小さな活物質を含み、正極層よりも活物質体積比率が高く、正極層よりも導電助剤の体積比率が低く、負極層の平均厚みT1と、正極層の平均厚みT2との比率T1/T2が0.75以上、1.3以下であったからであると考えられる。 In Example 4, it was judged to be very good or good. This is because the negative electrode layer contains an active material whose electronic conductivity is higher when charged than when uncharged and whose volumetric capacity is smaller than that of the active material of the positive electrode layer, and the volume ratio of the active material is higher than that of the positive electrode layer. This is probably because the volume ratio of the conductive aid was lower than that of the layer, and the ratio T1/T2 between the average thickness T1 of the negative electrode layer and the average thickness T2 of the positive electrode layer was 0.75 or more and 1.3 or less. .
 これに対して、比較例7では、不良と判定された。比較例7については、正極層および負極層において活物質の体積比率が同等としたからであると推定される。 On the other hand, Comparative Example 7 was determined to be defective. As for Comparative Example 7, it is presumed that the volume ratio of the active material in the positive electrode layer and the negative electrode layer was the same.
 なお、実施例4および比較例7について、SOC=0%からCV充電した場合の突入電流[mA]と、電池容量1mAhに対するレート(C)を測定した。また、実施例4および比較例7について、SOC=100%で20mA・100μsecを1sec間隔で100回繰り返すというパルス放電試験を行ない、パルス電圧ドロップ[V]を測定した。これらの結果を表3および表4に示す。突入電流について、5C以下となっていればCV充電が良好「〇」と判定し、5C以下となっていなければCV充電が不良「×」と判定した。また、パルス電圧ドロップについて、0.16V以下となっていればパルス放電が良好と判定し、0.16V以下となっていなければパルス放電が不良「×」と判定した。 In addition, for Example 4 and Comparative Example 7, the inrush current [mA] when CV charging was performed from SOC = 0% and the rate (C) for a battery capacity of 1 mAh were measured. Further, for Example 4 and Comparative Example 7, a pulse discharge test was conducted in which SOC=100% and 20 mA/100 μsec were repeated 100 times at intervals of 1 sec, and the pulse voltage drop [V] was measured. These results are shown in Tables 3 and 4. If the inrush current was 5C or less, the CV charging was determined to be good "O", and if it was not 5C or less, the CV charging was determined to be poor "x". In addition, when the pulse voltage drop was 0.16 V or less, the pulse discharge was determined to be good, and when it was not 0.16 V or less, the pulse discharge was determined to be defective (x).
 実施例4では、CV充電、およびパルス放電について、いずれも良好「〇」と判定された。これは、未充電時よりも満充電時の電子伝導が高くなる負極活物質を用いておりかつ負極層における導電助剤の体積比率が正極層における導電助剤の体積比率よりも低かったからであると推定される。 In Example 4, both CV charging and pulse discharging were judged to be good "◯". This is because the negative electrode active material used has a higher electron conductivity when fully charged than when uncharged, and the volume ratio of the conductive aid in the negative electrode layer was lower than the volume ratio of the conductive aid in the positive electrode layer. It is estimated to be.
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and variations can be made within the scope of the gist of the present invention described in the scope of claims. Change is possible.

Claims (7)

  1.  酸化物系固体電解質層と、
     前記酸化物系固体電解質層の第1主面上に設けられ正極層と、
     前記酸化物系固体電解質層の第2主面上に設けられた負極層と、を備え、
     前記正極層および前記負極層のいずれか一方の電極層は、未充電時よりも充電時の電子伝導が高くなりかつ他方の電極層の活物質よりも体積比容量が小さな活物質を含み、前記他方の電極層よりも活物質体積比率が高く、前記他方の電極層よりも導電助剤の体積比率が低く、
     前記一方の電極層の平均厚みT1と、前記他方の電極層の平均厚みT2との比率T1/T2は、0.75以上、1.3以下であることを特徴とする全固体電池。
    an oxide-based solid electrolyte layer;
    a positive electrode layer provided on the first main surface of the oxide-based solid electrolyte layer;
    a negative electrode layer provided on the second main surface of the oxide-based solid electrolyte layer,
    Either one of the positive electrode layer and the negative electrode layer contains an active material having a higher electron conductivity during charging than when uncharged and having a smaller volumetric capacity than the active material of the other electrode layer, The volume ratio of the active material is higher than that of the other electrode layer, and the volume ratio of the conductive aid is lower than that of the other electrode layer,
    An all-solid-state battery, wherein a ratio T1/T2 between the average thickness T1 of the one electrode layer and the average thickness T2 of the other electrode layer is 0.75 or more and 1.3 or less.
  2.  前記一方の電極層は、前記正極層であり、
     前記他方の電極層は、前記負極層であることを特徴とする請求項1に記載の全固体電池。
    The one electrode layer is the positive electrode layer,
    2. The all-solid-state battery according to claim 1, wherein the other electrode layer is the negative electrode layer.
  3.  前記一方の電極層において、イオン伝導性を有する固体電解質の体積比率は、30Vol.%以上、65Vol.%以下であることを特徴とする請求項1または請求項2に記載の全固体電池。 In the one electrode layer, the volume ratio of the solid electrolyte having ion conductivity is 30 Vol. % or more, 65 Vol. % or less, the all-solid-state battery according to claim 1 or 2.
  4.  前記一方の電極層が前記正極層である場合に、未充電時よりも充電時の電子伝導が高くなる活物質は、LiCoPO、LiCoPまたはLiCo(Pであることを特徴とする請求項1から請求項3のいずれか一項に記載の全固体電池。 When the one electrode layer is the positive electrode layer, the active material that exhibits higher electron conductivity during charging than during uncharging is LiCoPO 4 , Li 2 CoP 2 O 7 or Li 6 Co 5 (P 2 O 7 ) . ) 4 , the all-solid-state battery according to any one of claims 1 to 3.
  5.  前記一方の電極層において、前記活物質の体積比率は、15Vol.%以上、55Vol.%以下であることを特徴とする請求項1から請求項4のいずれか一項に記載の全固体電池。 In the one electrode layer, the volume ratio of the active material is 15 Vol. % or more, 55 Vol. % or less, the all-solid-state battery according to any one of claims 1 to 4.
  6.  前記一方の電極層において、前記導電助剤の体積比率は、8Vol.%以上、24Vol.%以下であることを特徴とする請求項1から請求項5のいずれか一項に記載の全固体電池。 In the one electrode layer, the volume ratio of the conductive aid is 8 Vol. % or more, 24 Vol. % or less, the all-solid-state battery according to any one of claims 1 to 5.
  7.  前記一方の電極層が前記負極層である場合に、未充電時よりも充電時の電子伝導が高くなる活物質は、Li1.3Al0.3Ti1.7(PO、LiTi(PO、またはLiTiOPOであることを特徴とする請求項1に記載の全固体電池。
     
    When the one electrode layer is the negative electrode layer, the active material that exhibits higher electron conductivity during charging than during uncharging is Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 and LiTi. 2 (PO 4 ) 3 or LiTiOPO 4 , the all-solid-state battery according to claim 1.
PCT/JP2022/035615 2021-09-29 2022-09-26 All-solid-state battery WO2023054235A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021159715A JP2023049768A (en) 2021-09-29 2021-09-29 All-solid battery
JP2021-159715 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054235A1 true WO2023054235A1 (en) 2023-04-06

Family

ID=85782612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035615 WO2023054235A1 (en) 2021-09-29 2022-09-26 All-solid-state battery

Country Status (2)

Country Link
JP (1) JP2023049768A (en)
WO (1) WO2023054235A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103130A (en) * 2005-10-03 2007-04-19 Geomatec Co Ltd Thin film solid secondary battery and method of manufacturing thin film solid secondary battery
JP2018190695A (en) * 2017-04-28 2018-11-29 株式会社オハラ All-solid-state battery
WO2019093221A1 (en) * 2017-11-10 2019-05-16 日本碍子株式会社 Secondary battery
JP2021051825A (en) * 2019-09-20 2021-04-01 Fdk株式会社 All-solid battery, positive electrode and production method of all-solid battery
JP2021082514A (en) * 2019-11-20 2021-05-27 トヨタ自動車株式会社 All-solid battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103130A (en) * 2005-10-03 2007-04-19 Geomatec Co Ltd Thin film solid secondary battery and method of manufacturing thin film solid secondary battery
JP2018190695A (en) * 2017-04-28 2018-11-29 株式会社オハラ All-solid-state battery
WO2019093221A1 (en) * 2017-11-10 2019-05-16 日本碍子株式会社 Secondary battery
JP2021051825A (en) * 2019-09-20 2021-04-01 Fdk株式会社 All-solid battery, positive electrode and production method of all-solid battery
JP2021082514A (en) * 2019-11-20 2021-05-27 トヨタ自動車株式会社 All-solid battery

Also Published As

Publication number Publication date
JP2023049768A (en) 2023-04-10

Similar Documents

Publication Publication Date Title
US11349146B2 (en) All-solid lithium ion secondary battery
JP7290978B2 (en) All-solid battery
CN110235295B (en) Lithium ion solid storage battery and method for manufacturing same
CN110931842A (en) All-solid-state battery
JP6897760B2 (en) All solid state battery
JP2015220097A (en) Lithium ion secondary battery
WO2018181576A1 (en) All-solid-state battery
WO2023119876A1 (en) All-solid-state battery
WO2020138040A1 (en) Solid-state battery
JP7040519B2 (en) Solid electrolyte and all-solid-state lithium-ion secondary battery
CN110957493A (en) All-solid-state battery
WO2023054235A1 (en) All-solid-state battery
JP7393203B2 (en) all solid state battery
WO2021079698A1 (en) All-solid-state battery
WO2023127283A1 (en) All-solid-state battery and method for producing same
JP7299105B2 (en) All-solid-state battery and manufacturing method thereof
WO2023037788A1 (en) All-solid-state battery
JP7402040B2 (en) All-solid-state battery and its manufacturing method
WO2024070429A1 (en) Negative electrode active material and all-solid-state battery
WO2022185717A1 (en) Negative electrode active material and all-solid-state battery
JP7425600B2 (en) All-solid-state battery and its manufacturing method
JP7421929B2 (en) All-solid-state battery and its manufacturing method
WO2023013132A1 (en) Negative electrode active material and all-solid-state battery
JP7383389B2 (en) all solid state battery
WO2022118561A1 (en) All-solid-state battery and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876102

Country of ref document: EP

Kind code of ref document: A1