WO2023054064A1 - Rotor - Google Patents

Rotor Download PDF

Info

Publication number
WO2023054064A1
WO2023054064A1 PCT/JP2022/034998 JP2022034998W WO2023054064A1 WO 2023054064 A1 WO2023054064 A1 WO 2023054064A1 JP 2022034998 W JP2022034998 W JP 2022034998W WO 2023054064 A1 WO2023054064 A1 WO 2023054064A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet insertion
rotor
pair
insertion holes
magnets
Prior art date
Application number
PCT/JP2022/034998
Other languages
French (fr)
Japanese (ja)
Inventor
白砂貴盛
野村佳寛
廣瀬雄大
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2023054064A1 publication Critical patent/WO2023054064A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to rotors of motors.
  • Japanese Patent Laying-Open No. 2011-004529 discloses a rotor of a motor.
  • This rotor includes a plurality of laminated rotor cores.
  • a plurality of magnets are embedded in each of the plurality of rotor cores.
  • the plurality of magnets includes a pair of magnets.
  • a pair of magnets are arranged in a substantially V shape in plan view.
  • a bridge portion is formed between each of the pair of magnets and the peripheral surface of the rotor core by the pair of magnets arranged in the V-shape. Also, the pair of magnets are arranged in a substantially V-shape so that the ends thereof are close to each other. Therefore, a bridge is also formed between these two adjacent ends.
  • the bridge portion refers to the portion of the rotor core that exists between the magnet and the magnet or air.
  • the rotor core according to JP-A-2011-004529 has three bridge portions around the pair of magnets. In this case, leakage flux occurs in the three bridge portions. This leakage magnetic flux hinders the increase in output of the motor.
  • An object of the present invention is to solve the above-mentioned problems.
  • An aspect of the present invention is a rotor having a magnet insertion hole into which a plurality of magnets are inserted.
  • a pair of first magnet insertion holes arranged so that the distance between them becomes short and a pair of first magnet insertion holes arranged between the pair of first magnet insertion holes, and the central portion is arranged closer to the center of the rotor than both ends a second magnet insertion hole having a shape, wherein the plurality of magnets are inserted into a pair of first magnets inserted into each of the pair of first magnet insertion holes and the second magnet insertion hole, and a pair of second magnets arranged at the both ends of the second magnet insertion hole while being spaced apart from each other.
  • the open ends of the pair of first magnet insertion holes do not form a bridge portion, it is possible to reduce the leakage magnetic flux of the rotor.
  • FIG. 1 is a plan view illustrating a rotor according to an embodiment
  • FIG. FIG. 2 is a plan view showing a rotor according to a comparative example.
  • FIG. 1 is a plan view illustrating a rotor 10 according to an embodiment.
  • the rotor 10 is a substantially annular member.
  • the rotor core 11 rotates integrally with the shaft of the motor along the circumferential direction CD.
  • the rotor 10 has a surface 12 and an outer peripheral surface 14 .
  • the surface 12 is parallel to the radial direction RD of the rotor 10 .
  • the rotor 10 further has a rotor core 11 formed with a plurality of magnet insertion holes 16 and a plurality of magnets 18 inserted into each of the plurality of magnet insertion holes 16 .
  • the rotor core 11 is a substantially annular electromagnetic steel plate.
  • the number of rotor cores 11 illustrated in FIG. 1 is one.
  • the rotor 10 has multiple rotor cores 11 .
  • a plurality of rotor cores 11 are laminated in the rotor 10 along the axial direction AD of the rotation line of the rotor 10 .
  • Each of the plurality of magnet insertion holes 16 is a hole group having three holes (20, 20, 22). A description of the three holes (20, 20, 22) will be given later.
  • a plurality of magnet insertion holes 16 are arranged along the circumferential direction CD of the rotor 10 on the surface 12 .
  • the number of magnet insertion holes 16 illustrated in FIG. 1 is six. However, the number of magnet insertion holes 16 is not limited to six. Also, in order to avoid redundant description, only one of the plurality of magnet insertion holes 16 will be mainly described below.
  • the magnet insertion hole 16 has a pair of first magnet insertion holes 20 and second magnet insertion holes 22 .
  • the magnet insertion hole 16 has a V shape. That is, the pair of first magnet insertion holes 20 and second magnet insertion holes 22 are arranged in a V shape (substantially V shape) as a whole (see FIG. 1).
  • Each of the pair of first magnet insertion holes 20 is a through hole penetrating through the rotor core 11 along the axial direction AD.
  • the pair of first magnet insertion holes 20 are separated from each other in the circumferential direction CD of the rotor 10 .
  • the distance between the pair of first magnet insertion holes 20 gradually becomes shorter toward the inner side of the rotor core 11 with respect to the radial direction RD of the rotor 10 .
  • the pair of first magnet insertion holes 20 in FIG. 1 are arranged in a V shape (substantially V shape).
  • Each of the pair of first magnet insertion holes 20 has a substantially rectangular shape. However, one end of each of the pair of first magnet insertion holes 20 is open to the outer peripheral surface 14 . Accordingly, no bridge portion is formed outside the pair of first magnet insertion holes 20 in the rotor core 11 in the radial direction RD of the rotor 10 .
  • the second magnet insertion hole 22 is also a through hole penetrating through the rotor core 11 along the axial direction AD.
  • the second magnet insertion hole 22 is formed in the rotor core 11 with a gap from the first magnet insertion hole 20 .
  • the second magnet insertion hole 22 has a shape (V shape) in which the central portion is arranged closer to the center of the rotor (10) than both end portions.
  • the second magnet insertion holes 22 are arranged on the longitudinal extension of the pair of first magnet insertion holes 20 . That is, the second magnet insertion holes 22 are arranged between the pair of first magnet insertion holes 20 .
  • the plurality of magnets 18 has a pair of first magnets 24 (241, 242) and a pair of second magnets 26 (261, 262).
  • the pair of first magnets 24 are inserted into the pair of first magnet insertion holes 20 .
  • Each of the pair of first magnets 24 has a substantially rectangular shape that matches the shape of the first magnet insertion hole 20 .
  • the pair of first magnets 24 inserted into the pair of first magnet insertion holes 20 are arranged in a V shape according to the arrangement of the pair of first magnet insertion holes 20 .
  • each of the pair of first magnet insertion holes 20 is open.
  • the pair of first magnets 24 may drop out of the pair of first magnet insertion holes 20 as the rotor 10 rotates.
  • the rotor core 11 further has the jaw 21 of FIG.
  • the jaw 21 is a protrusion provided in each of the pair of first magnet insertion holes 20 .
  • the jaw 21 extends from the outside (one open end side) of the first magnet 24 with respect to the radial direction RD of the rotor 10 toward the inside of the first magnet insertion hole 20 (the first magnet 24). This prevents the pair of first magnets 24 from falling out of the pair of first magnet insertion holes 20 as the rotor 10 rotates.
  • each of the pair of first magnet insertion holes 20 has an inner first side wall 201 and an outer second side wall 202 in the radial direction RD of the rotor 10 .
  • Jaw 21 preferably extends from first side wall 201 of first side wall 201 and second side wall 202 . The reason will be described later.
  • a pair of second magnets 26 are inserted into the second magnet insertion holes 22 .
  • the pair of second magnets 26 inserted into the second magnet insertion holes 22 are arranged in a V shape according to the shape of the second magnet insertion holes 22 .
  • the pair of second magnets 26 are arranged apart from each other inside the second magnet insertion hole 22 .
  • Each of the pair of second magnets 26 in FIG. 1 has a generally rectangular shape.
  • the first magnet 241, which is one of the pair of first magnets 24, and the second magnet 261, which is one of the pair of second magnets 26, are adjacent to each other.
  • a bridge portion (first bridge portion) BA exists between the first magnet 241 and the second magnet 261 .
  • the first bridge portion BA receives centrifugal force when the rotor 10 rotates. This centrifugal force is received by the second side wall 202 of the first magnet insertion hole 20 adjacent to the first bridge portion BA and the jaw portion 21 supporting the first magnet 241 .
  • the jaw 21 is provided on the first side wall 201 .
  • the centrifugal force applied to the first bridge portion BA is also distributed to the first side wall 201 without being concentrated on the second side wall 202 .
  • the load applied to the first bridge portion BA based on the centrifugal force of the rotor 10 is further reduced.
  • the other first magnet 242 of the pair of first magnets 24 and the other second magnet 262 of the pair of second magnets 26 are adjacent to each other.
  • a bridge portion (second bridge portion) BB exists between the first magnet 242 and the second magnet 262 .
  • the second bridge portion BB also receives a load based on the centrifugal force of the rotor 10, like the first bridge portion BA. This load is reduced by the second side wall 202 of the first magnet insertion hole 20 adjacent to the second bridge portion BB and the jaw portion 21 (first side wall 201 ) supporting the first magnet 242 .
  • the pair of second magnets 26 are in communication. Therefore, no bridge portion is formed between the pair of second magnets 26 .
  • FIG. 2 is a plan view showing a rotor 100 according to a comparative example.
  • the rotor 100 has a plurality of magnet insertion holes (a plurality of hole groups) 102 arranged along the circumferential direction CD of the rotor 100 .
  • Each of the plurality of magnet insertion holes 102 has a pair of magnet insertion holes 104 arranged in a substantially V shape.
  • a pair of magnets 106 are inserted into the pair of magnet insertion holes 104 .
  • a bridge portion BX exists between one magnet insertion hole 104 of the pair of magnet insertion holes 104 and the peripheral surface 108 of the rotor 100 .
  • a bridge portion BY is also present between the other magnet insertion hole 104 and the peripheral surface 108 of the rotor 100 .
  • each of the pair of magnet insertion holes 104 has an inner end portion 110 with respect to the radial direction RD of the rotor 100 .
  • the ends 110 of the pair of magnet insertion holes 104 are close to each other by arranging the pair of magnet insertion holes 104 in a substantially V shape. In this case, there is also a bridge portion BZ between the two ends 110 .
  • the rotor 100 forms three bridge portions (BX, BY, BZ) for each magnet insertion hole 102 .
  • leakage flux occurs in the three bridge portions (BX, BY, BZ).
  • the rotor 10 of this embodiment forms only two bridge portions (BA, BB) for each magnet insertion hole 16 . Therefore, rotor 10 can reduce the amount of leakage magnetic flux more than rotor 100 .
  • the shape of the magnet insertion hole 16 is not limited to a V shape (substantially V shape).
  • the shape of the magnet insertion hole 16 may be arcuate (U-shaped), for example.
  • the shape of each of the pair of first magnet insertion holes 20 (first magnets 24) and second magnet insertion holes 22 (second magnets 26) may be changed as appropriate.
  • the pair of first magnet insertion holes do not form a bridge portion at one open end. Therefore, leakage flux of the rotor is reduced.
  • Each of the pair of first magnet insertion holes (20) may have a substantially rectangular shape.
  • first magnet insertion holes (20) For each of the pair of first magnet insertion holes (20), side walls (201, 202) of the first magnet insertion holes (20) are provided on one open end side of the first magnet insertion holes (20).
  • a jaw (21) may be formed extending from the inside of the first magnet insertion hole (20). As a result, the jaw is formed so as to protrude inside the hole, thereby preventing the magnet from dropping out of the insertion hole.
  • the jaw (21) may extend from an inner side wall (201) of the first magnet insertion hole (20) with respect to the radial direction (RD) of the rotor (10). This reduces the load on the bridge portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

A rotor (10) comprising: a pair of first magnet insertion holes (20) each of which has one end opened to an outer peripheral surface (14) of the rotor and which are arranged such that the spacing therebetween is smaller toward the inner side of the rotor in the radial direction (RD); a second magnet insertion hole (22) which is formed between the pair of first magnet insertion holes and which has a central portion being positioned closer to the center of the rotor than the both end portions are; a pair of first magnets (24) respectively inserted in the pair of first magnet insertion holes; and a pair of second magnets (26) which are inserted in the second magnet insertion hole and which are arranged in the both end portions of the second magnet insertion hole in a state of being spaced apart from each other.

Description

ロータrotor
 本発明は、モータのロータに関する。 The present invention relates to rotors of motors.
 特開2011-004529号公報には、モータのロータが開示されている。このロータは、積層された複数のロータコアを備える。複数のロータコアの各々には複数の磁石が埋設される。複数の磁石は、一対の磁石を含む。一対の磁石は、平面視において略V字状に配置される。 Japanese Patent Laying-Open No. 2011-004529 discloses a rotor of a motor. This rotor includes a plurality of laminated rotor cores. A plurality of magnets are embedded in each of the plurality of rotor cores. The plurality of magnets includes a pair of magnets. A pair of magnets are arranged in a substantially V shape in plan view.
 このV字状態に配置された一対の磁石によって、一対の磁石の各々と、ロータコアの周面との間にはブリッジ部が形成される。また、一対の磁石は、略V字状に配置されることで、互いに近接する端部を有する。したがって、この近接した2つの端部の間にもブリッジ部が形成される。なお、ブリッジ部とは、磁石と、磁石または空気との間に存在するロータコアの部分をいう。 A bridge portion is formed between each of the pair of magnets and the peripheral surface of the rotor core by the pair of magnets arranged in the V-shape. Also, the pair of magnets are arranged in a substantially V-shape so that the ends thereof are close to each other. Therefore, a bridge is also formed between these two adjacent ends. The bridge portion refers to the portion of the rotor core that exists between the magnet and the magnet or air.
 したがって、特開2011-004529号公報に係るロータコアは、一対の磁石の周囲に3つのブリッジ部を有する。この場合、3つのブリッジ部において漏れ磁束が生じる。この漏れ磁束は、モータの高出力化を阻害する。 Therefore, the rotor core according to JP-A-2011-004529 has three bridge portions around the pair of magnets. In this case, leakage flux occurs in the three bridge portions. This leakage magnetic flux hinders the increase in output of the motor.
 本発明は、上述した課題を解決することを目的とする。 An object of the present invention is to solve the above-mentioned problems.
 本発明の態様は複数の磁石が挿入される磁石挿入孔を有するロータであって、前記磁石挿入孔は、一端が前記ロータの外周面に開放され、前記ロータの径方向の内側に向かうにつれて互いの間隔が短くなるように配置される一対の第1磁石挿入孔と、一対の前記第1磁石挿入孔の間に配置され、中央部が両端部よりも前記ロータの中心の近くに配置される形状の第2磁石挿入孔と、を有し、複数の前記磁石は、一対の前記第1磁石挿入孔の各々に挿入される一対の第1磁石と、前記第2磁石挿入孔に挿入され、互いに離間した状態で前記第2磁石挿入孔の前記両端部に配置される一対の第2磁石と、を有する。 An aspect of the present invention is a rotor having a magnet insertion hole into which a plurality of magnets are inserted. A pair of first magnet insertion holes arranged so that the distance between them becomes short and a pair of first magnet insertion holes arranged between the pair of first magnet insertion holes, and the central portion is arranged closer to the center of the rotor than both ends a second magnet insertion hole having a shape, wherein the plurality of magnets are inserted into a pair of first magnets inserted into each of the pair of first magnet insertion holes and the second magnet insertion hole, and a pair of second magnets arranged at the both ends of the second magnet insertion hole while being spaced apart from each other.
 本発明の態様によれば、一対の第1磁石挿入孔の開放された一端はブリッジ部を形成しないので、ロータの漏れ磁束を低減させることが可能となる。 According to the aspect of the present invention, since the open ends of the pair of first magnet insertion holes do not form a bridge portion, it is possible to reduce the leakage magnetic flux of the rotor.
図1は、実施形態に係るロータを例示する平面図である。1 is a plan view illustrating a rotor according to an embodiment; FIG. 図2は、比較例に係るロータを示す平面図である。FIG. 2 is a plan view showing a rotor according to a comparative example.
 [実施形態]
 図1は、実施形態に係るロータ10を例示する平面図である。
[Embodiment]
FIG. 1 is a plan view illustrating a rotor 10 according to an embodiment.
 ロータ10は、略環状の部材である。モータの完成品において、ロータコア11は、周方向CDに沿って、モータのシャフトと一体的に回転する。 The rotor 10 is a substantially annular member. In the finished motor, the rotor core 11 rotates integrally with the shaft of the motor along the circumferential direction CD.
 ロータ10は、表面12と、外周面14とを有する。表面12は、ロータ10の径方向RDと平行な面である。 The rotor 10 has a surface 12 and an outer peripheral surface 14 . The surface 12 is parallel to the radial direction RD of the rotor 10 .
 ロータ10は、複数の磁石挿入孔16が形成されたロータコア11と、複数の磁石挿入孔16の各々に挿入される複数の磁石18とをさらに有する。 The rotor 10 further has a rotor core 11 formed with a plurality of magnet insertion holes 16 and a plurality of magnets 18 inserted into each of the plurality of magnet insertion holes 16 .
 ロータコア11は、略環状の電磁鋼板である。図1に図示されたロータコア11の数は1つである。ただし、ロータ10は、ロータコア11を複数有する。複数のロータコア11は、ロータ10において、ロータ10の回転線の軸線方向ADに沿って積層される。 The rotor core 11 is a substantially annular electromagnetic steel plate. The number of rotor cores 11 illustrated in FIG. 1 is one. However, the rotor 10 has multiple rotor cores 11 . A plurality of rotor cores 11 are laminated in the rotor 10 along the axial direction AD of the rotation line of the rotor 10 .
 複数の磁石挿入孔16の各々は、3つの孔(20、20、22)を有する孔群である。3つの孔(20、20、22)の説明は後述する。複数の磁石挿入孔16は、表面12において、ロータ10の周方向CDに沿って配置される。 Each of the plurality of magnet insertion holes 16 is a hole group having three holes (20, 20, 22). A description of the three holes (20, 20, 22) will be given later. A plurality of magnet insertion holes 16 are arranged along the circumferential direction CD of the rotor 10 on the surface 12 .
 なお、図1に例示された磁石挿入孔16の数は6である。ただし、磁石挿入孔16の数は6に限定されない。また、説明が冗長化することを避けるため、以下においては、複数の磁石挿入孔16のうちの1つのみが主に説明される。 The number of magnet insertion holes 16 illustrated in FIG. 1 is six. However, the number of magnet insertion holes 16 is not limited to six. Also, in order to avoid redundant description, only one of the plurality of magnet insertion holes 16 will be mainly described below.
 磁石挿入孔16は、一対の第1磁石挿入孔20と、第2磁石挿入孔22とを有する。磁石挿入孔16はV字状を有する。つまり、一対の第1磁石挿入孔20と、第2磁石挿入孔22とは、全体としてV字状(略V字状)に配置される(図1参照)。 The magnet insertion hole 16 has a pair of first magnet insertion holes 20 and second magnet insertion holes 22 . The magnet insertion hole 16 has a V shape. That is, the pair of first magnet insertion holes 20 and second magnet insertion holes 22 are arranged in a V shape (substantially V shape) as a whole (see FIG. 1).
 一対の第1磁石挿入孔20の各々は、ロータコア11を軸線方向ADに沿って貫通する貫通孔である。一対の第1磁石挿入孔20は、ロータ10の周方向CDに関して互いに離れている。 Each of the pair of first magnet insertion holes 20 is a through hole penetrating through the rotor core 11 along the axial direction AD. The pair of first magnet insertion holes 20 are separated from each other in the circumferential direction CD of the rotor 10 .
 一対の第1磁石挿入孔20の間隔は、ロータ10の径方向RDに関してロータコア11の内側に向かうにつれて、次第に短くなる。これに関し、図1の一対の第1磁石挿入孔20は、V字状(略V字状)に配置される。 The distance between the pair of first magnet insertion holes 20 gradually becomes shorter toward the inner side of the rotor core 11 with respect to the radial direction RD of the rotor 10 . In this regard, the pair of first magnet insertion holes 20 in FIG. 1 are arranged in a V shape (substantially V shape).
 一対の第1磁石挿入孔20の各々は、略矩形状を有する。ただし、一対の第1磁石挿入孔20の各々の一端は、外周面14に開放されている。これにより、ロータコア11のうち、ロータ10の径方向RDに関して一対の第1磁石挿入孔20より外側には、ブリッジ部が形成されない。 Each of the pair of first magnet insertion holes 20 has a substantially rectangular shape. However, one end of each of the pair of first magnet insertion holes 20 is open to the outer peripheral surface 14 . Accordingly, no bridge portion is formed outside the pair of first magnet insertion holes 20 in the rotor core 11 in the radial direction RD of the rotor 10 .
 第2磁石挿入孔22も、ロータコア11を軸線方向ADに沿って貫通する貫通孔である。この第2磁石挿入孔22は、第1磁石挿入孔20と間隔を開けてロータコア11に形成されている。第2磁石挿入孔22は、中央部が両端部よりもロータ(10)の中心の近くに配置される形状(V字形状)を有する。 The second magnet insertion hole 22 is also a through hole penetrating through the rotor core 11 along the axial direction AD. The second magnet insertion hole 22 is formed in the rotor core 11 with a gap from the first magnet insertion hole 20 . The second magnet insertion hole 22 has a shape (V shape) in which the central portion is arranged closer to the center of the rotor (10) than both end portions.
 第2磁石挿入孔22は、一対の第1磁石挿入孔20の長手の延長上に配置される。つまり、第2磁石挿入孔22は、一対の第1磁石挿入孔20の間に配置される。 The second magnet insertion holes 22 are arranged on the longitudinal extension of the pair of first magnet insertion holes 20 . That is, the second magnet insertion holes 22 are arranged between the pair of first magnet insertion holes 20 .
 複数の磁石18は、一対の第1磁石24(241、242)と、一対の第2磁石26(261、262)とを有する。 The plurality of magnets 18 has a pair of first magnets 24 (241, 242) and a pair of second magnets 26 (261, 262).
 一対の第1磁石24は、一対の第1磁石挿入孔20に挿入される。一対の第1磁石24の各々は、第1磁石挿入孔20の形状に合わせた略矩形状を有する。一対の第1磁石挿入孔20に挿入された一対の第1磁石24は、一対の第1磁石挿入孔20の配置に従って、V字状に配置される。 The pair of first magnets 24 are inserted into the pair of first magnet insertion holes 20 . Each of the pair of first magnets 24 has a substantially rectangular shape that matches the shape of the first magnet insertion hole 20 . The pair of first magnets 24 inserted into the pair of first magnet insertion holes 20 are arranged in a V shape according to the arrangement of the pair of first magnet insertion holes 20 .
 なお、前述の通り、一対の第1磁石挿入孔20の各々の一端は、開放されている。この場合、一対の第1磁石24は、ロータ10の回転に伴って一対の第1磁石挿入孔20から脱落するおそれがある。 As described above, one end of each of the pair of first magnet insertion holes 20 is open. In this case, the pair of first magnets 24 may drop out of the pair of first magnet insertion holes 20 as the rotor 10 rotates.
 そこで、ロータコア11は、図1の顎部21をさらに有する。顎部21は、一対の第1磁石挿入孔20の各々に設けられる突出部である。顎部21は、ロータ10の径方向RDに関して第1磁石24よりも外側(開放された一端側)から、第1磁石挿入孔20の内側(第1磁石24)に向かって延びる。これにより、ロータ10の回転に伴って一対の第1磁石24が一対の第1磁石挿入孔20から脱落することが防止される。 Therefore, the rotor core 11 further has the jaw 21 of FIG. The jaw 21 is a protrusion provided in each of the pair of first magnet insertion holes 20 . The jaw 21 extends from the outside (one open end side) of the first magnet 24 with respect to the radial direction RD of the rotor 10 toward the inside of the first magnet insertion hole 20 (the first magnet 24). This prevents the pair of first magnets 24 from falling out of the pair of first magnet insertion holes 20 as the rotor 10 rotates.
 顎部21に関し、一対の第1磁石挿入孔20の各々は、ロータ10の径方向RDの内側の第1側壁201と、外側の第2側壁202とを有する。顎部21は、第1側壁201と第2側壁202とのうち、第1側壁201から延びると好ましい。その理由は後述する。 Regarding the jaw 21 , each of the pair of first magnet insertion holes 20 has an inner first side wall 201 and an outer second side wall 202 in the radial direction RD of the rotor 10 . Jaw 21 preferably extends from first side wall 201 of first side wall 201 and second side wall 202 . The reason will be described later.
 一対の第2磁石26は、第2磁石挿入孔22に挿入される。第2磁石挿入孔22に挿入された一対の第2磁石26は、第2磁石挿入孔22の形状に合わせて、V字状に配置される。ただし、一対の第2磁石26は、第2磁石挿入孔22内において、互いに離れて配置される。図1の一対の第2磁石26の各々は略矩形状を有する。 A pair of second magnets 26 are inserted into the second magnet insertion holes 22 . The pair of second magnets 26 inserted into the second magnet insertion holes 22 are arranged in a V shape according to the shape of the second magnet insertion holes 22 . However, the pair of second magnets 26 are arranged apart from each other inside the second magnet insertion hole 22 . Each of the pair of second magnets 26 in FIG. 1 has a generally rectangular shape.
 以上の構成をロータコア11が有することで、一対の第1磁石24のうち一方の第1磁石241と、一対の第2磁石26のうち一方の第2磁石261とが隣り合う。第1磁石241と第2磁石261との間に、ブリッジ部(第1ブリッジ部)BAが存在する。第1ブリッジ部BAは、ロータ10が回転する場合において遠心力を受ける。この遠心力は、第1ブリッジ部BAが隣り合う第1磁石挿入孔20の第2側壁202と、第1磁石241を支持する顎部21とにより受け止められる。しかも、本実施形態の場合、顎部21は第1側壁201に設けられる。この場合、第1ブリッジ部BAにかかる遠心力が、第2側壁202に集中することなく第1側壁201にも分散する。これにより、ロータ10の遠心力に基づいて印加される第1ブリッジ部BAの負荷がより一層低減される。 With the rotor core 11 having the above configuration, the first magnet 241, which is one of the pair of first magnets 24, and the second magnet 261, which is one of the pair of second magnets 26, are adjacent to each other. A bridge portion (first bridge portion) BA exists between the first magnet 241 and the second magnet 261 . The first bridge portion BA receives centrifugal force when the rotor 10 rotates. This centrifugal force is received by the second side wall 202 of the first magnet insertion hole 20 adjacent to the first bridge portion BA and the jaw portion 21 supporting the first magnet 241 . Moreover, in this embodiment, the jaw 21 is provided on the first side wall 201 . In this case, the centrifugal force applied to the first bridge portion BA is also distributed to the first side wall 201 without being concentrated on the second side wall 202 . As a result, the load applied to the first bridge portion BA based on the centrifugal force of the rotor 10 is further reduced.
 また、以上の構成をロータコア11が有することで、一対の第1磁石24のうち他方の第1磁石242と、一対の第2磁石26のうち他方の第2磁石262とが隣り合う。第1磁石242と第2磁石262との間に、ブリッジ部(第2ブリッジ部)BBが存在する。なお、第1ブリッジ部BAと同様に、第2ブリッジ部BBも、ロータ10の遠心力に基づいて負荷を受ける。この負荷は、第2ブリッジ部BBが隣り合う第1磁石挿入孔20の第2側壁202と、第1磁石242を支持する顎部21(第1側壁201)とにより、低減される。 Also, since the rotor core 11 has the above configuration, the other first magnet 242 of the pair of first magnets 24 and the other second magnet 262 of the pair of second magnets 26 are adjacent to each other. A bridge portion (second bridge portion) BB exists between the first magnet 242 and the second magnet 262 . Note that the second bridge portion BB also receives a load based on the centrifugal force of the rotor 10, like the first bridge portion BA. This load is reduced by the second side wall 202 of the first magnet insertion hole 20 adjacent to the second bridge portion BB and the jaw portion 21 (first side wall 201 ) supporting the first magnet 242 .
 なお、一対の第2磁石26の間は連通している。したがって、一対の第2磁石26の間にブリッジ部は形成されない。 The pair of second magnets 26 are in communication. Therefore, no bridge portion is formed between the pair of second magnets 26 .
 ロータ10の構成の説明は以上である。次に、ロータ10との比較例として、従来技術に係る典型的なロータ(100)を説明する。 The description of the configuration of the rotor 10 is above. Next, as a comparative example with the rotor 10, a typical rotor (100) according to the prior art will be described.
 図2は、比較例に係るロータ100を示す平面図である。 FIG. 2 is a plan view showing a rotor 100 according to a comparative example.
 ロータ100は、ロータ100の周方向CDに沿って配置される複数の磁石挿入孔(複数の孔群)102を有する。複数の磁石挿入孔102の各々は、略V字状に配置された一対の磁石挿入孔104を有する。一対の磁石挿入孔104には、一対の磁石106が挿入される。 The rotor 100 has a plurality of magnet insertion holes (a plurality of hole groups) 102 arranged along the circumferential direction CD of the rotor 100 . Each of the plurality of magnet insertion holes 102 has a pair of magnet insertion holes 104 arranged in a substantially V shape. A pair of magnets 106 are inserted into the pair of magnet insertion holes 104 .
 一対の磁石挿入孔104のうち一方の磁石挿入孔104と、ロータ100の周面108との間には、ブリッジ部BXが存在する。また、他方の磁石挿入孔104と、ロータ100の周面108との間にも、ブリッジ部BYが存在する。さらに、一対の磁石挿入孔104の各々は、ロータ100の径方向RDに関して内側の端部110を有する。一対の磁石挿入孔104の端部110は、一対の磁石挿入孔104が略V字状に配置されることで、互いに近接する。この場合、2つの端部110の間にも、ブリッジ部BZが存在する。 A bridge portion BX exists between one magnet insertion hole 104 of the pair of magnet insertion holes 104 and the peripheral surface 108 of the rotor 100 . A bridge portion BY is also present between the other magnet insertion hole 104 and the peripheral surface 108 of the rotor 100 . Furthermore, each of the pair of magnet insertion holes 104 has an inner end portion 110 with respect to the radial direction RD of the rotor 100 . The ends 110 of the pair of magnet insertion holes 104 are close to each other by arranging the pair of magnet insertion holes 104 in a substantially V shape. In this case, there is also a bridge portion BZ between the two ends 110 .
 したがって、ロータ100は、各磁石挿入孔102につき、3つのブリッジ部(BX、BY、BZ)を形成する。この場合、3つのブリッジ部(BX、BY、BZ)において漏れ磁束が生じる。 Therefore, the rotor 100 forms three bridge portions (BX, BY, BZ) for each magnet insertion hole 102 . In this case, leakage flux occurs in the three bridge portions (BX, BY, BZ).
 上記のロータ100に対し、本実施形態のロータ10は、各磁石挿入孔16につき2つのブリッジ部(BA、BB)しか形成しない。したがって、ロータ10は、ロータ100よりも漏れ磁束の量を低減することができる。 In contrast to the rotor 100 described above, the rotor 10 of this embodiment forms only two bridge portions (BA, BB) for each magnet insertion hole 16 . Therefore, rotor 10 can reduce the amount of leakage magnetic flux more than rotor 100 .
 なお、本発明は、上述した開示に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得る。 It should be noted that the present invention is not limited to the above disclosure, and can adopt various configurations without departing from the gist of the present invention.
 例えば、磁石挿入孔16の形状はV字状(略V字状)に限定されない。磁石挿入孔16の形状は、例えば弧状(U字状)でもよい。この場合、一対の第1磁石挿入孔20(第1磁石24)と、第2磁石挿入孔22(第2磁石26)との各々の形状は、適宜変更されてもよい。 For example, the shape of the magnet insertion hole 16 is not limited to a V shape (substantially V shape). The shape of the magnet insertion hole 16 may be arcuate (U-shaped), for example. In this case, the shape of each of the pair of first magnet insertion holes 20 (first magnets 24) and second magnet insertion holes 22 (second magnets 26) may be changed as appropriate.
 [実施形態から得られる発明]
 上記実施形態から把握しうる発明について、以下に記載する。
[Invention obtained from the embodiment]
Inventions that can be understood from the above embodiments will be described below.
 複数の磁石(18)が挿入される磁石挿入孔(16)を有するロータ(10)であって、前記磁石挿入孔(16)は、一端が前記ロータ(10)の外周面(14)に開放され、前記ロータ(10)の径方向(RD)の内側に向かうにつれて互いの間隔が短くなるように配置される一対の第1磁石挿入孔(20)と、一対の前記第1磁石挿入孔(20)の間に配置され、中央部が両端部よりも前記ロータ(10)の中心の近くに配置される形状の第2磁石挿入孔(22)と、を有し、複数の前記磁石(18)は、一対の前記第1磁石挿入孔(20)の各々に挿入される一対の第1磁石(24)と、前記第2磁石挿入孔(22)に挿入され、互いに離間した状態で前記第2磁石挿入孔(22)の前記両端部に配置される一対の第2磁石(26)と、を有する。 A rotor (10) having a magnet insertion hole (16) into which a plurality of magnets (18) are inserted, wherein one end of the magnet insertion hole (16) is open to the outer peripheral surface (14) of the rotor (10) A pair of first magnet insertion holes (20) arranged so that the distance between them becomes shorter toward the inner side in the radial direction (RD) of the rotor (10), and the pair of first magnet insertion holes ( a second magnet insertion hole (22) arranged between the magnets (18) and having a shape in which the central portion is arranged closer to the center of the rotor (10) than both ends; ) are a pair of first magnets (24) inserted into each of the pair of first magnet insertion holes (20), and a pair of first magnets (24) inserted into the second magnet insertion holes (22), spaced apart from each other. and a pair of second magnets (26) arranged at the two end portions of the two-magnet insertion hole (22).
 これにより、一対の第1磁石挿入孔は、開放された一端においてブリッジ部を形成しない。したがって、ロータの漏れ磁束が低減される。 As a result, the pair of first magnet insertion holes do not form a bridge portion at one open end. Therefore, leakage flux of the rotor is reduced.
 一対の前記第1磁石挿入孔(20)の各々は、略矩形状を有してもよい。 Each of the pair of first magnet insertion holes (20) may have a substantially rectangular shape.
 一対の前記第1磁石挿入孔(20)の各々について、前記第1磁石挿入孔(20)のうち開放された一端側には、前記第1磁石挿入孔(20)の側壁(201、202)から前記第1磁石挿入孔(20)の内側に向かって延びる顎部(21)が形成されてもよい。これにより、顎部が孔の内側に突出して形成されるので、磁石が挿入孔の外部に脱落することが防止される。 For each of the pair of first magnet insertion holes (20), side walls (201, 202) of the first magnet insertion holes (20) are provided on one open end side of the first magnet insertion holes (20). A jaw (21) may be formed extending from the inside of the first magnet insertion hole (20). As a result, the jaw is formed so as to protrude inside the hole, thereby preventing the magnet from dropping out of the insertion hole.
 前記顎部(21)は、前記第1磁石挿入孔(20)のうち、前記ロータ(10)の径方向(RD)に関して内側の側壁(201)から延びてもよい。これにより、ブリッジ部にかかる負荷が低減する。 The jaw (21) may extend from an inner side wall (201) of the first magnet insertion hole (20) with respect to the radial direction (RD) of the rotor (10). This reduces the load on the bridge portion.

Claims (4)

  1.  複数の磁石(18)が挿入される磁石挿入孔(16)を有するロータ(10)であって、
     前記磁石挿入孔(16)は、
     一端が前記ロータ(10)の外周面(14)に開放され、前記ロータ(10)の径方向(RD)の内側に向かうにつれて互いの間隔が短くなるように配置される一対の第1磁石挿入孔(20)と、
     一対の前記第1磁石挿入孔(20)の間に配置され、中央部が両端部よりも前記ロータ(10)の中心の近くに配置される形状の第2磁石挿入孔(22)と、
     を有し、
     複数の前記磁石(18)は、
     一対の前記第1磁石挿入孔(20)の各々に挿入される一対の第1磁石(24)と、
     前記第2磁石挿入孔(22)に挿入され、互いに離間した状態で前記第2磁石挿入孔(22)の前記両端部に配置される一対の第2磁石(26)と、
     を有する、ロータ(10)。
    A rotor (10) having magnet insertion holes (16) into which a plurality of magnets (18) are inserted,
    The magnet insertion hole (16) is
    A pair of first magnet inserts, one end of which is open to the outer peripheral surface (14) of the rotor (10), and which are arranged so that the distance between them decreases toward the inner side in the radial direction (RD) of the rotor (10). a hole (20);
    a second magnet insertion hole (22) arranged between the pair of first magnet insertion holes (20) and having a shape in which the central portion is arranged closer to the center of the rotor (10) than both end portions;
    has
    The plurality of magnets (18) are
    a pair of first magnets (24) inserted into each of the pair of first magnet insertion holes (20);
    a pair of second magnets (26) inserted into the second magnet insertion holes (22) and arranged at the two ends of the second magnet insertion holes (22) while being separated from each other;
    A rotor (10) having a.
  2.  請求項1に記載のロータ(10)であって、
     一対の前記第1磁石挿入孔(20)の各々は、略矩形状を有する、ロータ(10)。
    A rotor (10) according to claim 1, wherein
    A rotor (10), wherein each of the pair of first magnet insertion holes (20) has a substantially rectangular shape.
  3.  請求項1または2に記載のロータ(10)であって、
     一対の前記第1磁石挿入孔(20)の各々について、前記第1磁石挿入孔(20)のうち開放された一端側には、前記第1磁石挿入孔(20)の側壁(201、202)から前記第1磁石挿入孔(20)の内側に向かって延びる顎部(21)が形成される、ロータ(10)。
    A rotor (10) according to claim 1 or 2,
    For each of the pair of first magnet insertion holes (20), side walls (201, 202) of the first magnet insertion holes (20) are provided on one open end side of the first magnet insertion holes (20). A rotor (10) is formed with a jaw (21) extending from toward the inside of said first magnet insertion hole (20).
  4.  請求項3に記載のロータ(10)であって、
     前記顎部(21)は、前記第1磁石挿入孔(20)のうち、前記ロータ(10)の径方向(RD)に関して内側の側壁(201)から延びる、ロータ(10)。
    A rotor (10) according to claim 3, characterized in that
    The rotor (10), wherein the jaw (21) extends from an inner side wall (201) of the first magnet insertion hole (20) with respect to the radial direction (RD) of the rotor (10).
PCT/JP2022/034998 2021-09-30 2022-09-20 Rotor WO2023054064A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-160978 2021-09-30
JP2021160978 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054064A1 true WO2023054064A1 (en) 2023-04-06

Family

ID=85782549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034998 WO2023054064A1 (en) 2021-09-30 2022-09-20 Rotor

Country Status (2)

Country Link
TW (1) TW202322519A (en)
WO (1) WO2023054064A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179253A (en) * 1979-09-21 1990-07-12 General Electric Co <Ge> Rotary electric machine and manufacture thereof
JP2015511114A (en) * 2012-03-20 2015-04-13 コルモーゲン コーポレーションKollmorgen Corporation Cantilever rotor magnet support
JP2020014336A (en) * 2018-07-19 2020-01-23 ダイキン工業株式会社 Rotary electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179253A (en) * 1979-09-21 1990-07-12 General Electric Co <Ge> Rotary electric machine and manufacture thereof
JP2015511114A (en) * 2012-03-20 2015-04-13 コルモーゲン コーポレーションKollmorgen Corporation Cantilever rotor magnet support
JP2020014336A (en) * 2018-07-19 2020-01-23 ダイキン工業株式会社 Rotary electric machine

Also Published As

Publication number Publication date
TW202322519A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US9780613B2 (en) Permanent magnet rotor with inner and outer circumferential inclined ribs
EP1734639B1 (en) Rotor of flux barrier type synchronous reluctance motor and flux barrier type synchronous motor having the same
US10199893B2 (en) Rotor of rotary electric machine
KR100472798B1 (en) Induction motor with built-in permanent magnet
JP5118920B2 (en) Rotor and rotating electric machine
US6548932B1 (en) Nonmagnetic magnet retention channel arrangement for high speed rotors
JP6507273B2 (en) Rotor for permanent magnet embedded motor and motor using the same
EP3131187B1 (en) Synchronous reluctance rotating electric machine
JP4003416B2 (en) motor
JP7028249B2 (en) Rotor
US9570947B2 (en) Electric rotating machine
WO2018044038A1 (en) Line-start synchronous reluctance motor and rotor thereof
WO2017077789A1 (en) Rotating electric machine
CN111799906B (en) Rotor for an electric machine
WO2018066647A1 (en) Synchronous reluctance type rotary electric machine
WO2023054064A1 (en) Rotor
US9088189B2 (en) Lamination stack for an electrical machine rotor and associated method of making
US20200227963A1 (en) Rotor core of rotating electrical machine
JP2019075923A5 (en)
SI21830A (en) Synchronous electromechanical transducer
JP6357859B2 (en) Permanent magnet embedded rotary electric machine
KR102163345B1 (en) Synchronous reluctance type rotating electric machine
US11404924B2 (en) Rotor
CN113098166B (en) Rotor punching sheet and rotor iron core
JP6856011B2 (en) Rotating machine rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875934

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)