WO2023053529A1 - Polyarylene sulfide resin production method, polyarylene sulfide resin, polyarylene sulfide resin composition, and polyarylene sulfide resin molded article - Google Patents

Polyarylene sulfide resin production method, polyarylene sulfide resin, polyarylene sulfide resin composition, and polyarylene sulfide resin molded article Download PDF

Info

Publication number
WO2023053529A1
WO2023053529A1 PCT/JP2022/013800 JP2022013800W WO2023053529A1 WO 2023053529 A1 WO2023053529 A1 WO 2023053529A1 JP 2022013800 W JP2022013800 W JP 2022013800W WO 2023053529 A1 WO2023053529 A1 WO 2023053529A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
pas resin
sulfide resin
resin
test piece
Prior art date
Application number
PCT/JP2022/013800
Other languages
French (fr)
Japanese (ja)
Inventor
拓 茨木
まい 池田
高志 古沢
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022547720A priority Critical patent/JP7228109B1/en
Publication of WO2023053529A1 publication Critical patent/WO2023053529A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0259Preparatory processes metal hydrogensulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0286Chemical after-treatment
    • C08G75/029Modification with organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a method for producing a polyarylene sulfide resin, a polyarylene sulfide resin, a polyarylene sulfide resin composition, and a polyarylene sulfide resin molded product.
  • PAS resins Polyarylene sulfide resins
  • PPS resins polyphenylene sulfide resins
  • the PAS resin used for the above applications maximizes its functions by combining various additives such as glass fibers, fillers, elastomers, and the like. Therefore, controlling the interfacial reactivity between an additive such as glass fiber and the PAS resin and the reactivity between the elastomer and the PAS resin is an essential technology for the functional expression of the obtained PAS resin (parts).
  • Patent Literature 1 discloses a technique related to a PAS resin having higher reactivity with epoxysilane than conventional PAS resins.
  • the functional group at the molecular end of the PAS resin which is a factor that greatly contributes to the reactivity of the interface between the PAS resin and a different material, is not studied at all.
  • the PAS resin has a unique circumstance that it is polymerized at a high temperature of 200° C. or higher and under a high pressure. As a result, many side reactions occur during the polymerization of the PAS resin, resulting in the presence of various functional groups at the molecular ends of the PAS resin, which greatly contribute to the reactivity.
  • the high heat resistance/chemical resistance of PAS resins limits the analytical prescriptions, and the present situation is that the amounts of various functional groups have not yet been quantified.
  • controlling the reactivity of the interface between the PAS resin and different materials by the molecular terminal structure of the PAS resin is a technique with a very high barrier, but various applications are expected, so it is requested by various technical fields. It is a technology that is being used.
  • the present invention provides a PAS resin molded article having excellent mechanical strength, particularly tensile strength, and small variation in physical properties between lots, a highly reactive resin and resin composition constituting the article, and furthermore,
  • the object is to provide a manufacturing method.
  • the present inventors have made intensive research and repeated experiments.
  • the above problems can be solved by using a specific polyarylene sulfide resin evaluated by the zeta potential value according to the streaming potential method under specific conditions.
  • the present invention comprises a step (1) of polymerizing a PAS resin, A method for producing a PAS resin, comprising the steps (2) of purifying the PAS resin to prepare a purified PAS resin, and (3) evaluating a test piece formed from at least a portion of the purified PAS resin.
  • the step (3) is a test piece preparation step (3-1) in which the test piece is obtained by solidifying the molten PAS resin obtained by melting the purified PAS resin;
  • a method for producing a PAS resin, comprising a discrimination step (3-3) of discriminating a PAS resin having a zeta potential value in the range of -50 to -65 mV as measured in the step (3-2).
  • the present invention is a PAS resin whose surface zeta potential value of the test piece at pH 7.8 to 8.2 is in the range of -50 to -65 mV.
  • the present invention provides a PAS resin having a surface zeta potential value in the range of -50 to -65 mV, wherein the surface zeta potential value is measured from a test piece having at least a portion of the PAS resin.
  • a PAS resin having a zeta potential value on the surface of the test piece at pH 7.8 to 8.2 in the range of -50 to -65 mV and a substance having a reactive functional group are blended, It is a PAS resin composition.
  • the molded article of the present invention is obtained by melt-molding the PAS resin composition described above.
  • the PAS resin obtained by the production method according to any one of claims 1 to 3 and a substance having a reactive functional group are blended and melted. Having a kneading step, and The zeta potential value of the surface of the test piece at pH 7.8 to 8.2 of the PAS resin is in the range of -50 to -65 mV.
  • the method for producing a molded product of the present invention is characterized by including the step of melt-molding the PAS resin composition obtained by the production method described above.
  • the present invention by quantifying and determining the surface characteristics of the PAS resin with high accuracy, it is possible to obtain a resin having specific reactivity with higher accuracy than in the past.
  • the resin by using the resin, it is possible to provide a PAS molded article having less variation in physical properties, excellent mechanical strength, particularly excellent tensile strength, a resin composition constituting the PAS molded article, and a method for producing the same.
  • FIG. 1 is a schematic diagram showing an example of a method for measuring zeta potential by streaming potential method.
  • the method for producing a PAS resin according to the present embodiment includes a step (1) of polymerizing a PAS resin, a step (2) of purifying the PAS resin to prepare a purified PAS resin, and the purification step. and a step (3) of evaluating a test piece made from at least a portion of the purified PAS resin.
  • the step (3) comprises a test piece preparation step (3-1) in which the purified PAS resin is melted to prepare a molten PAS resin, and then the molten PAS resin is solidified to obtain the test piece;
  • the method for producing a PAS resin of the present embodiment for the purpose of evaluating the surface properties of the obtained PAS resin, after preparing a test piece as an evaluation sample from at least a part of the PAS resin, the By measuring the zeta potential of the test piece, the surface characteristics of the obtained PAS resin are grasped. As a result, it is possible to quantify the surface characteristics of the PAS resin with high accuracy, so that it is possible to identify resins having more uniform reactivity than conventional methods. As a result, it is possible to provide a PAS resin molded product with little variation in physical properties and excellent mechanical strength, particularly excellent tensile strength, and a method for producing the same.
  • PAS resin obtained through the purification treatment of step (2) is referred to as purified PAS resin
  • molten PAS resin the PAS resin obtained through the purification treatment of step (2)
  • purified PAS resin the PAS resin obtained through the purification treatment of step (2)
  • molten PAS resin the PAS resin obtained through the purification treatment of step (2)
  • molten PAS resin the PAS resin obtained through the purification treatment of step (2)
  • molten PAS resin molten PAS resin
  • Step (1) is a step of polymerizing a PAS resin.
  • the step (1) is not particularly limited, and a known polymerization method can be applied depending on the chemical structure of the target PAS resin.
  • the zeta potential value of the surface of the test piece which is an evaluation sample formed from at least a part of the obtained PAS resin, tends to be in the range of -50 to -65 mV.
  • the method of polymerizing the PAS resin that can be applied to the present embodiment is not particularly limited. (Manufacturing method 2) in a polar solvent in the presence of an alkali metal sulfide and/or alkali metal hydrosulfide (hereinafter sometimes abbreviated as a sulfidation agent) agent, etc.
  • the method of (manufacturing method 2) is versatile and preferable.
  • an alkali metal salt of carboxylic acid or sulfonic acid, or an alkali hydroxide may be added in order to adjust the degree of polymerization.
  • an alkali metal salt of a carboxylic acid or a sulfonic acid, or an alkali hydroxide may be added during the reaction in order to adjust the degree of polymerization.
  • a polar organic solvent and / or a dihalogeno aromatic compound is further added to the low water content solid. and, if necessary, a dihalogeno aromatic compound in the presence of a solid alkali metal sulfide and an aprotic polar organic solvent.
  • a polyhalogeno aromatic compound or other copolymerization components are added, and an alkali metal hydrosulfide and an organic acid alkali metal salt are added in an amount of 0.01 to 0.9 mol per 1 mol of the sulfur source.
  • Particularly preferred is a method of conducting the reaction while controlling the amount of water in the reaction system within the range of 0.02 mol or less per 1 mol of the aprotic polar organic solvent (see WO2010/058713 pamphlet).
  • the polymerization method using the above production method 2 more specifically, at least one polyhalogenoaromatic compound and at least one
  • a reaction mixture (slurry) containing a PAS resin obtained by reacting with a sulfidating agent under appropriate polymerization conditions will be described below.
  • a form obtained by reacting the slurry in the presence of a sulfidating agent and an organic solvent while continuously or intermittently adding a polyhalogenoaromatic compound and/or an organic solvent is also included. do.
  • the polyhaloaromatic compound used in the present embodiment is, for example, a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring, specifically p-dihalobenzene, m-dihalobenzene , o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4,4′-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4- Dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p,p'-dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4' -dihalodiphenyl sulfone, 4,4'-dihalodiphenyl sulfox
  • dihalogeno aromatic compounds may be used alone or in combination of two or more.
  • Polyhalogeno aromatic compounds other than dihalogeno aromatic compounds include 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5- tetrahalobenzene, 1,2,4,5-tetrahalobenzene, 1,4,6-trihalonaphthalene and the like. Moreover, you may block-copolymerize these compounds.
  • dihalogenated benzenes preferred are those containing 80 mol % or more of p-dichlorobenzene.
  • the polyhalogeno aromatic compounds described above may be used alone or in combination of two or more.
  • the halogen atoms contained in each halogenoaromatic compound are preferably chlorine atoms and/or bromine atoms.
  • a polyhalogeno aromatic compound having 3 or more halogen substituents in one molecule may be used as a branching agent as desired.
  • examples of such polyhalogenoaromatic compounds include 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,4,6-trichloronaphthalene and the like.
  • polyhalogeno aromatic compounds having functional groups with active hydrogen such as amino groups, thiol groups, hydroxyl groups, etc.
  • 2,6-dichloroaniline and 2,5-dichloroaniline 2,4-dichloroaniline, 2,3-dichloroaniline and other dihaloanilines
  • 2,3,4-trichloroaniline, 2,3,5-trichloroaniline, 2,4,6-trichloroaniline 3, trihaloanilines such as 4,5-trichloroaniline
  • dihaloaminodiphenyl ethers such as 2,2'-diamino-4,4'-dichlorodiphenyl ether and 2,4'-diamino-2',4-dichlorodiphenyl ether and compounds in which an amino group is replaced with a thiol group or a hydroxyl group in a mixture thereof.
  • active hydrogen-containing polyhalogens in which the hydrogen atoms bonded to the carbon atoms forming the aromatic ring in these active hydrogen-containing polyhalogeno aromatic compounds are substituted with other inert groups, for example, hydrocarbon groups such as alkyl groups.
  • Aromatic compounds can also be used.
  • the active hydrogen-containing dihalogenoaromatic compounds are preferred, and dichloroaniline is particularly preferred.
  • polyhalogenoaromatic compounds having a nitro group examples include mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; 2-nitro-4,4'-dichlorodiphenyl ether and the like. dihalonitrodiphenyl ethers; 3,3′-dinitro-4,4′-dichlorodiphenyl sulfones such as dihalonitrodiphenyl sulfones; 2,5-dichloro-3-nitropyridine, 2-chloro-3,5 - mono- or dihalonitropyridines such as dinitropyridine; or various dihalonitronaphthalenes.
  • Polar organic solvents include formamide, acetamide, N-methylformamide, N,N-dimethylacetamide, tetramethylurea, N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl- ⁇ -caprolactam, ⁇ -caprolactam, Amides such as hexamethylphosphoramide, N-dimethylpropylene urea, 1,3-dimethyl-2-imidazolidinoic acid, ureas and lactams; sulfolane, sulfolane such as dimethylsulfolane; nitriles such as benzonitrile; methyl Mention may be made of ketones such as phenyl ketone and mixtures thereof, among which N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl- ⁇ -caprolactam, ⁇ -caprolactam, hexamethylphosphoramide, N -Dimethylpropylene urea, amides having an
  • the sulfidation agent used in this embodiment includes alkali metal sulfides and/or alkali metal hydrosulfides.
  • Alkali metal sulfides include lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide and mixtures thereof. Such alkali metal sulfides can be used as hydrates or as aqueous mixtures or as anhydrates. Alkali metal sulfides can also be derived from the reaction between alkali metal hydrosulfides and alkali metal hydroxides. A small amount of alkali metal hydroxide may be added to react with alkali metal hydrosulfide and alkali metal thiosulfate, which are usually present in trace amounts in alkali metal sulfide.
  • Alkali metal hydrosulfides include lithium hydrogen sulfide, sodium hydrogen sulfide, rubidium hydrogen sulfide, cesium hydrogen sulfide, and mixtures thereof. Such alkali metal hydrosulfides can be used as hydrates or as aqueous mixtures or as anhydrates.
  • the alkali metal hydrosulfide is used together with the alkali metal hydroxide.
  • the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. These may be used alone, or two or more of them may be mixed. You can use it as Among these, lithium hydroxide, sodium hydroxide and potassium hydroxide are preferred because they are readily available, and sodium hydroxide is particularly preferred.
  • the method for producing the PAS resin used in the present embodiment can also use a hydrous sulfidation agent as a raw material. It is preferable to use it for the polymerization reaction of the resin. Further, when the amount of the aprotic polar solvent charged is small, for example, when it is less than 1 mol with respect to 1 mol of sulfur atoms in the sulfidation agent, in the presence of the polyhaloaromatic compound, the hydrous sulfidation agent and the non- It is preferred to dehydrate the protic polar solvent.
  • aprotic polar solvent and hydrous alkali metal sulfide or hydrous alkali hydrosulfide and alkali metal hydroxide as hydrous sulfidating agent are charged into a reaction vessel equipped with a distillation apparatus.
  • a temperature at which water is removed azeotropically specifically, in the range of 300 ° C. or less, preferably in the range of 80 to 220 ° C., more preferably in the range of 100 to 200 ° C., and water is removed by distillation. It is carried out by discharging out of the system.
  • dehydration is performed until the amount of water in the system in which the polymerization reaction is performed is 5 mol or less, more preferably in the range of 0.01 to 2.0 mol, per 1 mol of the sulfur atom of the sulfidating agent. is preferred.
  • the polymerization conditions for the PAS resin generally range from a temperature of 200 to 330° C., and the pressure should be such that the polymerization solvent and the polyhaloaromatic compound, which is the polymerization monomer, are substantially kept in the liquid phase. is selected from the range of 0.1 to 20 MPa, preferably from the range of 0.1 to 2 MPa.
  • the amount of the polyhaloaromatic compound charged is in the range of 0.2 mol to 5.0 mol, preferably in the range of 0.8 to 1.3 mol, more preferably in the range of 0.8 to 1.3 mol, per 1 mol of the sulfur atom of the sulfidating agent. It is prepared so as to be in the range of 0.9 to 1.1 mol.
  • the amount of the aprotic polar solvent charged is in the range of 1.0 to 6.0 mol, preferably in the range of 2.5 to 4.5 mol, per 1 mol of the sulfur atom of the sulfidating agent. adjust.
  • the polymerization reaction is preferably carried out in the presence of a small amount of water, and the proportion thereof is preferably adjusted appropriately in consideration of the polymerization method, the molecular weight of the resulting polymer, and productivity.
  • the dehydration operation is carried out so that the amount becomes 2.0 mol or less, preferably 1.6 mol or less per 1 mol of the sulfur atom of the sulfidation agent, and the dehydration is performed in the presence of the polyhaloaromatic compound.
  • the operation is 0.9 mol or less, preferably 0.05 to 0.3 mol, more preferably 0.01 to 0.02 mol or less.
  • Dehydration operation may be performed so that the range of
  • polymerizing the sulfidating agent and the polyhaloaromatic compound in the presence of the polar organic solvent include, for example: 1) A method using a polymerization aid such as an alkali metal carboxylate or lithium halide, 2) A method using a branching agent such as an aromatic polyhalogen compound, 3) a method of conducting a polymerization reaction in the presence of a small amount of water and then adding water to further polymerize; 4) a method of cooling the gas phase portion of the reaction vessel during the reaction between the alkali metal sulfide and the aromatic dihalogen compound to condense a portion of the gas phase in the reaction vessel and reflux it to the liquid phase; 5) reacting an alkali metal sulfide, or a hydrous alkali metal hydrosulfide and an alkali metal hydroxide with an amide, urea or lactam having an aliphatic cyclic structure in the presence of a polyhaloaromatic compound while dehydrating; a
  • the coarse slurry containing the PAS resin obtained in step (1) is subjected to suitable means (e.g., vacuum distillation method, centrifugal separation method, screw decanter method, vacuum filtration method, pressure filtration method, etc.).
  • suitable means e.g., vacuum distillation method, centrifugal separation method, screw decanter method, vacuum filtration method, pressure filtration method, etc.
  • a suitable method can be selected) to separate and remove the organic solvent, and then the crude PAS resin (the PAS resin that has not undergone the purification step) can be recovered.
  • the total amount of the organic solvent used from the charging of the raw materials to the completion of the polymerization reaction is preferably in a ratio of 1 to 6 mol per 1 mol of the sulfidating agent, which is the sulfur source.
  • the amount of the organic solvent initially charged is preferably 0.01 to 0.50 mol with respect to 1 mol of the sulfidating agent, which is the sulfur source.
  • Examples of the acid under the condition (c) include saturated fatty acids such as carbonic acid, oxalic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, and monochloroacetic acid; acrylic acid, crotonic acid, oleic acid, and the like; aromatic carboxylic acids such as unsaturated fatty acids, benzoic acid, phthalic acid and salicylic acid; dicarboxylic acids such as oxalic acid, maleic acid and fumaric acid; organic acids such as methanesulfonic acid and sulfonic acids such as p-toluenesulfonic acid; Inorganic acids such as sulfuric acid, sulfurous acid, nitric acid, nitrous acid or phosphoric acid may be mentioned.
  • Examples of the hydrogen salt under the condition (c) include sodium hydrogen sulfate, disodium hydrogen phosphate, sodium hydrogen carbonate, and the like. Organic acids that cause less corrosion to metal members
  • step (1) of the present embodiment when the above condition (a) is adopted, the concentration of the PAS resin during polymerization is increased, so that the ring-opened product of the aliphatic cyclic compound is added to the end of the PAS resin. can exhibit a certain zeta potential value because it is easier for In step (1) of the present embodiment, if the above condition (b) is adopted, the concentration of the PAS resin during polymerization increases, so that the ring-opened product of the aliphatic cyclic compound is attached to the end of the PAS resin. A specific zeta potential value can be exhibited because the reaction that occurs is likely to proceed.
  • the acidic component is included in the PAS resin, and the acidic component oozes out in the purification step, resulting in terminal functionalization of the PAS resin.
  • Certain zeta potential values can be exhibited because some of the groups ion exchange and protonate.
  • Step (2) purification step
  • a known purification treatment can be applied according to the chemical structure of the PAS resin to be evaluated, etc.
  • the slurry containing the PAS resin obtained in the step (1) it is preferable to add a washing solution to the crude PAS resin, which is the solid content of the slurry, and perform washing treatment, filtration treatment and drying treatment.
  • each of the washing treatment, filtration treatment and drying treatment can be optionally performed at least once or more than once.
  • the purification treatment of the PAS resin (slurry containing the PAS resin) obtained in step (1) is not particularly limited.
  • the reaction mixture is used as it is, or after adding an acid or base, the solvent is distilled off under reduced pressure or normal pressure, and then the solid after solvent distillation is treated with water, a reaction solvent (or an equivalent solubility in a low-molecular-weight polymer).
  • a reaction solvent or an organic solvent having an equivalent solubility to the low-molecular-weight polymer
  • the drying method in the above refining treatment is not particularly limited, and it is preferable to dry at a drying temperature of 120-270°C.
  • the atmosphere of the drying treatment includes under vacuum, under reduced pressure, under nitrogen or inert gas inert gas atmosphere, under oxidizing atmosphere such as oxygen or air, and under mixed gas atmosphere of air and nitrogen.
  • the drying time is preferably 0.5 to 53 hours.
  • the filtration treatment is not particularly limited as long as it is a method capable of solid-liquid separation, and examples include a method of solid-liquid separation using a filter, a centrifuge, or the like.
  • Specific purification conditions include the following conditions (d) to (f).
  • step (2) it is preferable to acid-treat the crude PAS resin with a predetermined amount or more of an acid solution. More preferably, the acid treatment is performed using an acid solution of about twice the total weight of the PAS resin.
  • the pH of the acid solution used in the acid treatment of (d) is preferably 6 or less.
  • step (2) it is preferable to wash with hot water of 140 to 260° C. with 1.5 to 10 times the total weight of the PAS resin.
  • the terminal functional groups of the PAS resin can be protonated by an ion exchange reaction.
  • the acid used for the acid solution is not particularly limited as long as an acid solution having a pH of 6 or less can be prepared, and the acid under the condition (c) above can be used.
  • the step (1 ) or in the step (2) an acid may be added to the PAS resin.
  • the preferred purification step of the present embodiment is solid-liquid separation of the PAS resin (including slurry) obtained in step (1) or the slurry containing the PAS resin obtained in step (1). It includes acid treatment by adding an acid solution to the crude PAS resin, which is a solid content.
  • step (2) is the PAS resin (including slurry) obtained in step (1) or crude PAS, which is the solid content of the slurry containing the PAS resin obtained in step (1).
  • the crude PAS resin is subjected to acid treatment by adding an acid solution one or more times.
  • Step (3) in the present embodiment is a step of evaluating a test piece produced from at least part of the PAS resin obtained through steps (1) and (2).
  • the step (3) includes a test strip preparation step (3-1), a zeta potential measurement step (3-2) and a discrimination step (3-3).
  • step (3) of the present embodiment the chemical properties of the PAS resin, which is the raw material of the test piece, are quantified based on the zeta potential value of the surface of the test piece, which is an evaluation sample formed from the PAS resin. Accordingly, it is not necessary to evaluate the entire amount of the PAS resin obtained through steps (1) and (2), and it is sufficient to evaluate the PAS resin obtained through steps (1) and (2). Since the step (3) in the present embodiment makes it possible to identify a PAS resin having a zeta potential value within a predetermined range, the surface characteristics of the PAS resin can be quantified with high accuracy, and the PAS resin can be distinguished and sorted.
  • Step (3-1) is a step of melting the PAS resin obtained in steps (1) and (2) to prepare a molten PAS resin, and then solidifying the molten PAS resin to prepare a test piece.
  • the test piece preparation step in the present embodiment comprises extracting at least part of the PAS resin obtained in steps (1) to (2), melting it once, and then solidifying the melted PAS resin.
  • the test piece of the present embodiment is preferably in an amorphous state.
  • amorphous state refers to a state in which no crystalline phase exists in the PAS resin constituting the test piece, and more specifically, the following condition (i) is satisfied.
  • (i) In the DSC measurement of the PAS resin film which is the test piece, when the temperature range from 40 ° C. to 350 ° C. is raised at 20 ° C./min, an exothermic peak accompanying crystallization occurs between 100 ° C. and 200 ° C. is not confirmed.
  • the chemical properties of the PAS resin are quantified using the zeta potential value of the surface of the test piece made from the PAS resin.
  • the reason why the reactivity of the PAS resin is evaluated from the surface chemical properties is that the PAS resin has extremely high chemical resistance.
  • PPS resin which is a particularly preferred embodiment of PAS resin
  • the presence of a solvent capable of dissolving the PPS resin at 200° C. or lower has not yet been found. This is because there is practically no technique for directly evaluating the molecular ends in the PAS resin, which greatly contributes to reactivity. Therefore, in the present invention, by using a specific test piece as a reference, the characteristics of the PAS resin, which is the constituent material of the test piece, are grasped.
  • the method of melting the PAS resin to prepare the molten PAS resin is not particularly limited as long as the PAS resin can be heated and melted, and known heating means can be employed. Specific examples include a hot plate, hot air/cold air circulating constant temperature oven, microwave or (far) infrared heater, or hot press.
  • the heating time for heating the PAS resin using the heating means is not particularly limited as long as the PAS resin is melted, and is, for example, about 30 seconds to 10 minutes.
  • the temperature for melting the PAS resin may be the melting point of the PAS resin or higher, preferably 300° C. or higher and 400° C. or lower. Since the PAS resin undergoes an oxidative cross-linking reaction at a temperature of 200° C. or higher, it may be thermally melted in a non-oxidizing inert gas atmosphere.
  • the PAS resin may be heated and melted through the sheet body.
  • the sheet body preferably has a melting point higher than that of the PAS resin and preferably has a hydrophobic surface.
  • a PAS resin for example, a powdered PAS resin
  • the sheet body is heated using a heating means to melt the PAS resin. It is preferable to prepare a molten PAS resin by As another method, a PAS resin (for example, solid or powdered purified PAS resin) is sandwiched between a pair of sheets, and then the pair of sheets is heated by heating means.
  • the sheet body it is preferable to melt the PAS resin by heating one of the pair of sheet bodies to prepare a molten PAS resin.
  • the sheet body By using the sheet body, it is possible to easily collect the test piece in which the molten PAS resin is solidified.
  • the sheet body preferably has releasability. As a result, the test piece can be easily collected without the solidified PAS resin adhering to it, so that damage to the appearance characteristics (cracking, rough skin, etc.) can be reduced, or breakage of the test piece can be suppressed.
  • the material of the sheet body must have a melting point higher than that of the PAS resin, and examples thereof include metal materials (martensitic stainless steel such as SUS404C), fluororesins, polyimides, and ceramics.
  • metal materials martensitic stainless steel such as SUS404C
  • fluororesins include polytetrafluoroethylene (PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene/ethylene copolymer (ETFE), tetrafluoroethylene/hexafluoropropylene copolymer polymer (FEP), polyvinylidene fluoride (PVDF) or ethylene-chlorotrifluoroethylene copolymer (ECTFE).
  • the fluororesin may contain an inorganic filler such as glass fiber, if necessary.
  • the method of solidifying the molten PAS resin includes a method of solidifying the molten PAS resin by cooling.
  • the cooling may be natural cooling or rapid cooling, and rapid cooling is preferred.
  • a known cooling means can be employed as the cooling method. Examples of the cooling means include rolls whose surface temperature can be adjusted (cooling rolls), air knives, immersion in water (a water tank, etc.), and direct or indirect contact with metal materials at 35° C. or lower.
  • the test piece of the present embodiment is preferably made of amorphous PAS resin.
  • a method for producing such an amorphous PAS resin it is preferable to solidify the molten PAS resin by rapidly cooling it. By rapid cooling, it is possible to produce an amorphous PAS resin that does not contain a crystalline phase. Therefore, it becomes easier to uniformly evaluate the PAS resin even by surface measurement, and it becomes an index of reactivity in the molten state. This is preferable from the viewpoint of ease of use.
  • the PAS resin obtained through steps (1) and (2) is melted and then cooled at a rate of 10 ° C./second or more. It is more preferable to cool at a speed of 100° C./s or less. Moreover, the cooling rate is preferably maintained in the temperature range from 400° C. to at least the Tg of the PAS resin. As a result, the PAS resin can be solidified in an amorphous state, the PAS resin can be uniformly evaluated even by surface measurement, and the measurement can easily serve as an index of reactivity in the molten state. In the present embodiment, it is preferable to cool the molten PAS resin at a cooling rate of 10° C./sec or more and 100° C./sec or less to the Tg or less of the PAS resin, preferably 90° C. or less.
  • the molten PAS resin may be solidified through the sheet body for the purpose of easily obtaining a test piece of a predetermined size.
  • Another method for solidifying the molten PAS resin is to solidify the molten PAS resin between the pair of sheet bodies by cooling at least one of a pair of sheet bodies placed so as to sandwich the molten PAS resin.
  • test piece it is preferable to collect the test piece by As a result, the test piece can be easily collected without the solidified PAS resin adhering to it, so that deterioration of the appearance characteristics (thickness, etc.) can be reduced, or breakage of the test piece can be suppressed.
  • the test piece in the present embodiment is an example of the object to be measured for zeta potential measurement. ) must be provided. Therefore, in the step (3-1) of the present embodiment, a test piece having a certain shape, size and thickness is prepared as an object to be measured for convenience of zeta potential measurement. It is considered that the test piece in this embodiment is not particularly limited as long as it does not affect the measured value itself for each zeta potential measurement as much as possible.
  • test piece is 4.5 to 5.5 cm (length) ⁇ 2.5 to 3.5 cm (width) ⁇ 0.05 to 0.15 cm (thickness) for convenience of zeta potential measurement.
  • a film-like PAS resin is used.
  • shape, size, thickness, etc. of the test piece are not particularly limited as long as they do not affect the zeta potential measurement value itself as much as possible.
  • a flat plate (film-like including) and is preferably a step of producing a test piece composed of a PAS resin in an amorphous state.
  • the "length and width of the test piece” are measured using vernier calipers.
  • the “thickness of the test piece” means that the test piece is cut at 5 points in the longitudinal direction at 8 mm intervals in the direction perpendicular to the longitudinal direction, and 5 test pieces at 5 mm intervals in the width direction on each cut surface.
  • the thickness of the film was measured using a TH-104 film thickness measuring machine (manufactured by Tester Sangyo Co., Ltd.), and refers to the average value of the thickness of a total of 25 points.
  • the surface of the test piece or the surface of the sheet body may be surface-treated for the purpose of suppressing variation in measured values.
  • the surface treatment method is not particularly limited, and can be appropriately selected from known methods within a range that does not impair the characteristics of the test piece. For example, degreasing with an organic solvent such as acetone in which the PAS resin is insoluble is mentioned.
  • the step (3-2) is a step of measuring the zeta potential of the surface of the test piece obtained in the test piece preparation step by streaming potential method.
  • the zeta potential value as an index of the surface properties of the PAS resin, it is possible to relatively easily measure the surface properties of the evaluation sample and to easily grasp the properties of the PAS resin.
  • the fluctuation range (variation coefficient) of the zeta potential value due to the measurement is smaller than in the viscosity increase measurement using the conventional MFR.
  • the step (3-2) in the present embodiment is preferably a step of measuring the zeta potential of the surface of the test piece by the streaming potential method under conditions of pH 7.8 to 8.2.
  • the zeta potential measurement conditions within the range of pH 7.8 to 8.2 not only the variation in the measured values is further reduced, but also the absolute value of the observed zeta potential value itself can be increased. can.
  • the amount of difference in zeta potential value increases, so that it becomes easier to detect the difference in zeta potential value between the same or different PAS resins, and it becomes easier to evaluate the properties of the PAS resins with higher accuracy.
  • the zeta potential in the present embodiment is measured within a pH range of 7.8 to 8.2 using streaming potential method.
  • the zeta potential by streaming potential method is generated by forming an electric double layer at the solid-liquid interface between the test piece and the electrolytic solution. It is calculated from the Helmholtz-Smolkowschki equation by measuring the difference between the laminar flow of the solution, the viscosity of the electrolyte solution, and the dielectric constant of the electrolyte solution. The measurement of zeta potential by the streaming potential method will be described below with reference to FIG.
  • Compressed air or an inert gas may also be used to sweep away the electrolyte solution 3 with a constant pressure difference ( ⁇ P) to create a flow. Then, using the values of the laminar flow velocity difference (or pressure difference), the viscosity of the electrolytic solution 3, the dielectric constant of the electrolytic solution 3, etc., measured by the above principle, the following Helmholtz-Smoluchowski formula formula:
  • I str represents the streaming current
  • U str represents the streaming potential
  • ⁇ p represents the differential pressure
  • represents the viscosity of the electrolyte solution
  • ⁇ r ⁇ ⁇ 0 represents the electrolyte solution.
  • KB represents the electrical conductivity
  • L/A represents the parameters of the channel.
  • the electrolytic solution that can be used to measure the zeta potential is preferably an aqueous solution containing a monovalent-monovalent electrolyte, such as an aqueous potassium chloride solution, an aqueous sodium chloride solution, an aqueous lithium chloride solution, an aqueous potassium hydroxide solution, An aqueous sodium hydroxide solution or an aqueous lithium hydroxide solution may be mentioned.
  • a monovalent-monovalent electrolyte such as an aqueous potassium chloride solution, an aqueous sodium chloride solution, an aqueous lithium chloride solution, an aqueous potassium hydroxide solution, An aqueous sodium hydroxide solution or an aqueous lithium hydroxide solution may be mentioned.
  • the pH-adjusting acid or alkali used when measuring the zeta potential a general acid or alkali aqueous solution is used, and HCl or KOH is mainly used.
  • the electrolyte concentration in the electrolytic solution is preferably 0.1 to 1000 mmol/L.
  • a buffer solution may be used as an electrolytic solution that can be used.
  • the buffer solution can be appropriately selected according to the pH conditions to be measured.
  • the buffer solution refers to a weak acid and its salt (conjugate base), or a mixed solution of a weak base and its salt (conjugate acid), which can be combined to adjust the desired pH.
  • phosphate buffer MES buffer, Tris buffer or HEPES buffer
  • CHES buffer solution TAPS buffer solution, or Bicine buffer solution is mentioned.
  • the pH of the electrolytic solution used in step (3-2) in the present embodiment is preferably in the range of 7.8 to 8.2. electrolyte solution is used.
  • the conductivity of the zeta potential electrolyte solution in this embodiment may be in the range of 14-15 mS/m.
  • the pH and conductivity measurement methods in this specification are measured using a pH and conductivity meter (SurPASS3 (Anton Paar)).
  • the temperature for measuring the zeta potential in the present embodiment is preferably around room temperature (22 to 28° C.).
  • the step (3-2) in this embodiment uses the following conditions as an example.
  • ⁇ Type of electrolytic solution KCl aqueous solution
  • Ultrapure water used for electrolytic solution ASTM I grade
  • ⁇ Concentration of electrolytic solution 1 mmol/L
  • ⁇ Electrolytic solution conductivity 14 to 15 mS/m
  • ⁇ Measurement temperature 20 to 28°C ⁇ pH: 7.8 to 8.2
  • ⁇ Cell type Clamp cell ⁇ Cell material: PVDF ⁇ Gap between cell and test piece (evaluation sample): adjusted to 100 to 120 ⁇ m ⁇ Measurement pressure range: 200 to 450 mbar
  • the step (3-3) in this embodiment is a discrimination step of discriminating PAS resins having a zeta potential value in the range of -50 to -65 mV as measured by the zeta potential measurement step.
  • the zeta potential of the surface of the test piece is measured at a predetermined pH (for example, pH 3 to 9)
  • a reactive functional group for example, , a functional group containing an oxygen atom or a nitrogen atom
  • the reactivity of the prepared PAS resin is naturally considered to be high.
  • the zeta potential values of test pieces having the same molecular weight of PAS resin as constituent components are compared, it is confirmed that the reactivity of the PAS resin used in the test piece having a large zeta potential value tends to be high.
  • the zeta potential value of the PAS resin is -50 mV or more, the hot water resistance of the PAS resin tends to decrease.
  • the zeta potential value is -65 mV or less, the reactivity between the PAS resin and the substance having a reactive functional group tends to decrease.
  • a step (selection step) of selecting a PAS resin having a specific zeta potential may be included after the determination step of step (3-3). Thereby, a PAS resin having a specific reactivity can be selected. If the selected lot of resin has the same zeta potential, the reactivity with a substance having a reactive functional group will also be the same, so the mechanical strength etc. when made into a resin composition or molded product can be the same. . Therefore, by sorting using the zeta potential as an index, it is possible to obtain a molded article with less variation in physical properties between lots and a resin composition constituting the molded article than when the degree of viscosity increase, which is a conventional index, is used. .
  • the PAS resin composition according to the present embodiment has a zeta potential on the surface of the test piece at pH 7.8 to 8.2 obtained through the above steps (1) to (3) in the range of -50 to -65 mV.
  • the PAS resin contained in the PAS resin composition of the present embodiment exhibits high reactivity because it has a zeta potential value within a specific range.
  • a resin composition is prepared by melt-kneading another raw material, particularly a substance having a reactive functional group, and a PAS resin having a zeta potential value within a specific range
  • the PAS resin and the reactive functional group are produced. It exhibits excellent mechanical strength because it reacts well with substances.
  • the PAS resin contained in the PAS resin composition has a zeta potential value within a specific range, variations in reactivity are reduced, and as a result, variations in the physical properties of the entire PAS resin composition are reduced. .
  • the substance having a reactive functional group in the present embodiment is not particularly limited as long as it is a substance having a reactive functional group capable of interacting (including chemical bonding) with the PAS resin. It is preferably one or more substances selected from the group consisting of agents, elastomers, epoxy resins, and surface-treated inorganic fillers. Substances having suitable reactive functional groups are described below.
  • the PAS resin composition according to this embodiment preferably contains a silane coupling agent.
  • the silane coupling agent is not particularly limited as long as it does not impair the effects of the present invention, but a functional group capable of reacting with at least one group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and a salt of a carboxyl group.
  • a silane coupling agent having Such functional groups include epoxy group, amino group, hydroxyl group, carboxyl group, mercapto group, isocyanate group, oxazoline group, and formula: R (CO) O (CO) - or R (CO) O - (in the formula, R represents an alkyl group having 1 to 8 carbon atoms.).
  • Examples of such silane coupling agents include epoxy groups such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and the like.
  • the silane coupling agent is an optional component, and the ratio when blending is not particularly limited.
  • it is preferably 0.3 parts by mass or more with respect to 100 parts by mass of the PAS resin. , more preferably 0.4 parts by mass or more, more preferably 0.5 parts by mass or more.
  • it is more preferably 10 parts by mass or less, more preferably 8 parts by mass or less, relative to 100 parts by mass of the PAS resin. , 6 parts by mass or less.
  • the PAS resin composition according to this embodiment preferably contains an elastomer.
  • the elastomer By including the elastomer, the toughness and thermal shock resistance of the PAS resin composition can be further enhanced. From the same point of view, it is preferable to use a thermoplastic elastomer as the elastomer.
  • the thermoplastic elastomer is not particularly limited as long as it does not impair the effects of the present invention. Examples of the thermoplastic elastomer include polyolefin-based elastomers, fluorine-based elastomers, and silicone-based elastomers.
  • the elastomer (particularly thermoplastic elastomer) preferably has a functional group capable of reacting with at least one group selected from the group consisting of hydroxyl group, amino group, carboxyl group and carboxyl group.
  • Such functional groups include epoxy group, amino group, hydroxyl group, carboxyl group, mercapto group, isocyanate group, oxazoline group, and formula: R (CO) O (CO) - or R (CO) O - (in the formula, R represents an alkyl group having 1 to 8 carbon atoms.).
  • a thermoplastic elastomer having such a functional group can be obtained, for example, by copolymerizing an ⁇ -olefin and a vinyl polymerizable compound having the functional group.
  • Examples of ⁇ -olefins include ⁇ -olefins having 2 to 8 carbon atoms such as ethylene, propylene and butene-1.
  • Examples of the vinyl polymerizable compound having the functional group include ⁇ , ⁇ -unsaturated carboxylic acids and their alkyl esters such as (meth)acrylic acid and (meth)acrylic acid esters, maleic acid, fumaric acid, itaconic acid and Other examples include ⁇ , ⁇ -unsaturated dicarboxylic acids having 4 to 10 carbon atoms and derivatives thereof (mono- or diesters, acid anhydrides thereof, etc.), glycidyl (meth)acrylate, and the like.
  • an epoxy group a carboxyl group, and a formula: R (CO) O (CO) - or R (CO) O - (wherein R represents an alkyl group having 1 to 8 carbon atoms)
  • R represents an alkyl group having 1 to 8 carbon atoms
  • Ethylene-propylene copolymers and ethylene-butene copolymers having at least one functional group selected from the group consisting of the groups represented are preferred from the standpoint of improving toughness and impact resistance.
  • the elastomer is an optional component, but the ratio when blending is not particularly limited. 1 part by mass or more, preferably 1 part by mass or more, preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 15 parts by mass or less.
  • the PAS resin composition according to the present embodiment preferably contains an epoxy resin.
  • the epoxy resin is not particularly limited as long as it does not impair the effects of the present invention. Examples include bisphenol type epoxy resins such as bisphenol A type and bisphenol F type; glycidyl ester type epoxy resins; glycidyl amino type epoxy resins; and epoxy resins having a polyarylene ether structure.
  • the epoxy resin is an optional component, but the ratio at the time of blending is not particularly limited. parts or more, more preferably 5 parts by mass or more, preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 15 parts by mass or less.
  • the amount of active groups in the curing agent is 0.1 equivalents or less, more preferably 0.01 equivalents or less, and most preferably 0 equivalents, ie, absent.
  • the PAS resin composition according to the present embodiment preferably contains a surface-treated inorganic filler.
  • these inorganic fillers known and commonly used materials can be used as long as they do not impair the effects of the present invention. and inorganic fillers.
  • fibers such as glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, calcium silicate, wollastonite, and fibrous filler such as natural fiber are used.
  • Non-fibrous fillers can also be used.
  • Specific examples of the surface treatment agent for surface-treating the inorganic filler include epoxy-based compounds, isocyanate-based compounds, silane-based compounds, titanate-based compounds, borane treatment, ceramic coating, and the like. Among them, epoxy-based compounds and silane-based compounds are preferred.
  • the inorganic filler is not an essential component in the present invention, and when blended, its content is not particularly limited as long as it does not impair the effects of the present invention.
  • the amount of the inorganic filler compounded is, for example, preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and further preferably 20 parts by mass or more with respect to 100 parts by mass of the PAS resin. preferable.
  • it is more preferably 350 parts by mass or less, and 300 parts by mass or less with respect to 100 parts by mass of the PAS resin. More preferably, it is particularly preferably 250 parts by mass or less.
  • the PAS resin composition according to the present embodiment may contain a synthetic resin other than the PAS resin, a coloring agent, an antistatic agent, an antioxidant, a heat stabilizer, an ultraviolet stabilizer, an ultraviolet absorber, Additives such as foaming agents, flame retardants, flame retardant aids, rust inhibitors, and coupling agents (hereinafter referred to as "other components") may be included.
  • the other components are, for example, preferably 0.01 parts by mass or more and preferably 1000 parts by mass or less with respect to 100 parts by mass of the PAS resin, depending on the purpose and application so as not to impair the effects of the present invention. It may be used after adjusting as appropriate.
  • Examples of the synthetic resin include polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polycarbonate resin, polyphenylene ether resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyetherketone resin, poly Synthetic resins such as arylene resins, polyethylene resins, polypropylene resins, polytetrafluoroethylene resins, polydifluoroethylene resins, polystyrene resins, ABS resins, phenol resins, urethane resins, and liquid crystal polymers can be used.
  • the synthetic resin is not an essential component, and the mixing ratio is not particularly limited as long as it does not impair the effects of the present invention, and can be appropriately selected according to each purpose.
  • the PAS resin composition according to the present embodiment it can be about 5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the PAS resin.
  • the ratio of the PAS resin to the total of the PAS resin and the synthetic resin is preferably (100/115) or more, more preferably (100/105) or more, on a mass basis.
  • the method for producing a PAS resin composition according to the present embodiment includes a step of blending the PAS resin obtained through the above steps (1) to (3) and a substance having a reactive functional group, and melt-kneading them. and the zeta potential value of the surface of the test piece at pH 7.8 to 8.2 of the PAS resin is in the range of -50 to -65 mV.
  • the PAS resin composition according to the present embodiment contains each essential component and optionally optional components.
  • the essential components and optional components are the same as those described in the PAS resin composition according to the present embodiment.
  • the method of blending and kneading the essential components and optional components is not particularly limited, but a method of blending the essential components and optionally optional components and melt-kneading them, more specifically, a tumbler if necessary Alternatively, a method of homogeneously dry-mixing with a Henschel mixer or the like and then introducing into a twin-screw extruder to melt-knead may be used.
  • Melt-kneading is carried out in a temperature range in which the resin temperature is equal to or higher than the melting point of the PAS resin, preferably the melting point +10°C or higher, more preferably the melting point +10°C or higher, further preferably the melting point +20°C or higher, Preferably, the melting point is +100° C. or lower, more preferably, the melting point is +50° C. or lower.
  • melt-kneader a twin-screw kneading extruder is preferable from the viewpoint of dispersibility and productivity. It is preferable to melt-knead while appropriately adjusting the range of and melt-kneading under conditions where the ratio (discharge rate / screw rotation speed) is in the range of 0.02 to 5 (kg / hr / rpm). is more preferred. Moreover, addition and mixing of each component to the melt-kneader may be performed simultaneously, or may be performed separately.
  • the ratio of the distance from the extruder resin input part (top feeder) to the side feeder with respect to the total screw length of the twin-screw kneading extruder is preferably 0.1 or more, and 0 .3 or more is more preferable. Also, the ratio is preferably 0.9 or less, more preferably 0.7 or less.
  • the PAS resin composition according to the present embodiment obtained by melt-kneading in this manner has a morphology in which the PAS resin forms a continuous phase and other essential components and optional components are dispersed.
  • the PAS resin composition according to the present embodiment is processed into pellets, chips, granules, powder, and the like by a known method, for example, extruding the resin composition in a molten state into strands. After that, it is preferable to perform pre-drying in a temperature range of 100 to 150° C., if necessary.
  • the molded article according to this embodiment is obtained by melt-molding the PAS resin composition according to this embodiment described above. Further, the method for producing a molded product according to the present embodiment is characterized by having a step of melt-molding the PAS resin composition obtained by the above-described method for producing a PAS resin composition according to the present embodiment.
  • the molded article according to the present embodiment uses the PAS resin composition according to the present embodiment as a material, physical properties such as mechanical strength are maintained at a high level, and excellent moist heat resistance and moldability are realized. It has the effect of
  • the PAS resin composition can be molded by injection molding, compression molding, extrusion molding of composites, sheets, pipes, etc., pultrusion molding, blow molding, transfer molding, and the like. Also suitable for injection molding applications.
  • various molding conditions are not particularly limited, and molding can be performed by a general method.
  • the resin temperature is in the range of the melting point of the PAS resin or higher, preferably the melting point +10°C or higher, more preferably the melting point +10°C to the melting point +100°C, further preferably the melting point +20°C.
  • the PAS resin composition After passing through the step of melting the PAS resin composition in a temperature range of up to the melting point +50° C., it may be molded by injecting it into a mold from the resin discharge port. At that time, the mold temperature may also be set within a known temperature range, for example, room temperature (approximately 23°C) to 300°C, preferably 120 to 180°C.
  • Products using the molded article according to the present embodiment are not particularly limited, and can be used for the following various applications.
  • electrical and electronic parts such as connectors, printed circuit boards, and sealed molded products
  • automobile parts such as lamp reflectors and various electrical parts
  • interior materials for various buildings, aircraft, and automobiles It can be widely used as injection molding/compression molding products such as precision parts such as watch parts, extrusion molding/pultrusion molding products such as fibers, films, sheets, and pipes, and 3D printer modeling products.
  • the p-DCB distilled azeotropically was separated with a decanter and returned to the kettle as needed.
  • the internal temperature of the autoclave was cooled to 160°C, and 29.486 kg (297 mol) of NMP was supplied, then the temperature was raised to 220°C and stirred for 2 hours, and then the temperature was raised to 250°C and stirred for 1 hour. bottom.
  • the final pressure was 0.28 MPa.
  • the bottom valve of the autoclave is opened, NMP is extracted into a 150 L vacuum stirring dryer with stirring blades while the pressure is reduced, and then the NMP is sufficiently removed by stirring at 150 ° C. for 2 hours under reduced pressure, and the powder is obtained.
  • a mixture (A-1) of PPS resin and salts was obtained.
  • the resulting water-containing cake and 600 g of ion-exchanged water were placed in a 1 L autoclave equipped with a stirrer, stirred at 220° C. for 30 minutes, cooled to room temperature, and filtered. Added and filtered. After that, 600 g of carbonated water having a pH of 4 at 20° C. was added and filtered, and further 600 g of ion-exchanged water at 70° C. was added and filtered. The resulting water-containing cake was dried in a hot air circulation dryer at 120° C. for 6 hours to obtain a white powdery PPS resin. The same operation was repeated to obtain 3 lots of PPS resin.
  • Example (1-3) Evaluation of PPS resin 0.5 g of the obtained PPS resin was weighed and sandwiched between two glass fiber-containing polytetrafluoroethylene resin sheets (Nitto Denko Co., Ltd., Nitoflon). Heated for 1 minute using a hot plate heated to 350°C. At this time, the PPS resin melted, so that it was pressed from above with a metal plate heated to 350° C. to form a film with a thickness of 0.1 cm.
  • the two polytetrafluoroethylene resin sheets sandwiching the film-like molten PPS resin were transferred from the hot plate onto a metal plate at room temperature (28° C.), and immediately The melted PPS resin was solidified by sandwiching it from above with metal plates at room temperature (28° C.) and cooling down to room temperature (28° C.). Thereafter, the solidified film-like PPS resin was cut into 5 cm ⁇ 3 cm pieces to obtain amorphous test pieces. It was confirmed by DSC measurement that the test piece was in an amorphous state.
  • Example (2-2) Purification and Preparation of PPS Resin To 417 g of the mixture (B-1), 1000 g of ion-exchanged water at 70° C. was added, stirred for 20 minutes, and filtered. After repeating this operation once more, the resulting water-containing cake and 600 g of ion-exchanged water were supplied to a 1 L autoclave equipped with a stirrer and stirred at 160° C. for 30 minutes. After cooling to room temperature, 600 g of ion-exchanged water at 70° C. was added to the resulting water-containing cake, followed by filtration. The resulting water-containing cake was dried in a hot air circulation dryer at 120° C. for 6 hours to obtain a white powdery PPS resin. The same operation was repeated to obtain 3 lots of PPS resin.
  • Example (2-3) Evaluation of PPS resin In the same manner as in Example 1, the zeta potential value of the surface of the obtained PPS resin test piece was measured. Table 1 shows the results.
  • Comparative Example (1-2) Purification and Preparation of PPS Resin The procedure was carried out in the same manner as in Example 1-2, except that the temperature of the ion-exchanged water used for washing and the stirring temperature were all set to 70°C. A PPS resin was obtained. The same operation was repeated to obtain 3 lots of PPS resin.
  • Comparative Example (2-1) Polymerization of PPS Resin The same procedure as in Example 2-1 was performed except that oxalic acid dihydrate was not added at 200° C. during cooling.
  • Comparative example (3) The degree of increase in viscosity of the PPS resin when epoxysilane was added was measured, and lots of PPS resin having a degree of increase in viscosity of 9.0 to 9.1 times were selected. Also, in the same manner as in Example 1, the zeta potential values of the surfaces of the selected PPS resin test pieces were measured. The results are shown in Table 1
  • DSC measurement of PPS resin 4 mg was taken from a film-shaped PPS resin test piece prepared for zeta potential measurement, and 20% from 40 ° C. to 350 ° C. was measured using a differential scanning calorimeter (DSC), Perkin Elmer's DSC8500. The temperature was raised at °C/min. Since no exothermic peak due to crystallization of the resin was observed between 100° C. and 200° C., it was confirmed that each film-like test piece was in an amorphous state.
  • DSC differential scanning calorimeter

Abstract

The present invention provides: a polyarylene sulfide (PAS) resin molded article which has little variation in reactivity and has uniform mechanical strength, particularly tensile strength; a resin and resin composition from which the molded article is constituted; and a production method for these. More specifically, provided is a PAS resin production method comprising a step (1) for polymerizing a PAS resin, a step (2) for refining the PAS resin to prepare a refined PAS resin, and a step (3) for evaluating a test piece formed from at least part of the refined PAS resin, wherein step (3) comprises a test piece production step for obtaining the test piece by solidifying molten PAS resin that is obtained by melting the refined PAS resin, a zeta potential measurement step for measuring the zeta potential of the surface of the test piece via a flow potential method at a pH of 7.8-8.2, and a distinguishing step for distinguishing PAS resin for which the zeta potential value measured in the above step is in the range of -50 mV to -65 mV.

Description

ポリアリーレンスルフィド樹脂の製造方法、ポリアリーレンスルフィド樹脂、ポリアリーレンスルフィド樹脂組成物、及びポリアリーレンスルフィド樹脂成形品Method for producing polyarylene sulfide resin, polyarylene sulfide resin, polyarylene sulfide resin composition, and polyarylene sulfide resin molded article
 本発明は、ポリアリーレンスルフィド樹脂の製造方法、ポリアリーレンスルフィド樹脂、ポリアリーレンスルフィド樹脂組成物、及びポリアリーレンスルフィド樹脂成形品に関する。 The present invention relates to a method for producing a polyarylene sulfide resin, a polyarylene sulfide resin, a polyarylene sulfide resin composition, and a polyarylene sulfide resin molded product.
 ポリフェニレンスルフィド樹脂(以下、これを「PPS樹脂」とも略記する。)に代表されるポリアリーレンスルフィド樹脂(以下、これを「PAS樹脂」とも略記する。)は、耐熱性及び耐薬品性等に優れることから、電気電子部品、自動車部品、水回り部品、繊維、又はフィルム用途等に幅広く利用されている。上記の用途に採用されているPAS樹脂は、ガラス繊維、フィラー、エラストマー等、様々な添加剤を組み合わせることによって、その機能を最大限に発現している。そのため、ガラス繊維等の添加剤とPAS樹脂との界面の反応性及びエラストマーとPAS樹脂との反応性の制御が、得られるPAS樹脂(部品)の機能発現に不可欠な技術となっている。例えば、特許文献1には、従来のPAS樹脂よりエポキシシランとの反応性が高いPAS樹脂に関する技術が開示されている。 Polyarylene sulfide resins (hereinafter also abbreviated as "PAS resins") typified by polyphenylene sulfide resins (hereinafter also abbreviated as "PPS resins") are excellent in heat resistance, chemical resistance, etc. Therefore, it is widely used for electrical and electronic parts, automobile parts, plumbing parts, fibers, films, and the like. The PAS resin used for the above applications maximizes its functions by combining various additives such as glass fibers, fillers, elastomers, and the like. Therefore, controlling the interfacial reactivity between an additive such as glass fiber and the PAS resin and the reactivity between the elastomer and the PAS resin is an essential technology for the functional expression of the obtained PAS resin (parts). For example, Patent Literature 1 discloses a technique related to a PAS resin having higher reactivity with epoxysilane than conventional PAS resins.
特開平06-256517号公報JP-A-06-256517
 しかしながら、上記特許文献1の技術では、PAS樹脂と異種材料との界面の反応性に大きく寄与する因子であるPAS樹脂の分子末端の官能基については一切検討されていない。また、PAS樹脂には、200℃以上の高温及び高圧下で重合されるという特有の事情が内在する。これにより、PAS樹脂の重合中、副反応が多く進行する結果、反応性に大きく寄与するPAS樹脂中の分子末端には、様々な官能基が混在してしまうという実情がある。さらには、PAS樹脂の高い耐熱性/耐薬品性によって分析処方が限定的となり、未だに各種官能基量の定量化には至っていないのが現状である。そのため、PAS樹脂と異種材料との界面の反応性をPAS樹脂の分子末端構造により制御することは、非常に障壁の高い技術ではあるが、様々な応用が期待されることから各技術分野から要求されている技術である。 However, in the technique of Patent Document 1, the functional group at the molecular end of the PAS resin, which is a factor that greatly contributes to the reactivity of the interface between the PAS resin and a different material, is not studied at all. In addition, the PAS resin has a unique circumstance that it is polymerized at a high temperature of 200° C. or higher and under a high pressure. As a result, many side reactions occur during the polymerization of the PAS resin, resulting in the presence of various functional groups at the molecular ends of the PAS resin, which greatly contribute to the reactivity. Furthermore, the high heat resistance/chemical resistance of PAS resins limits the analytical prescriptions, and the present situation is that the amounts of various functional groups have not yet been quantified. Therefore, controlling the reactivity of the interface between the PAS resin and different materials by the molecular terminal structure of the PAS resin is a technique with a very high barrier, but various applications are expected, so it is requested by various technical fields. It is a technology that is being used.
 そこで、本発明は、優れた機械的強度、特に引張強度を備え、かつ、ロット間の物性ばらつきの小さいPAS樹脂成形品、それを構成する反応性に優れた樹脂及び樹脂組成物、さらにそれらの製造方法を提供することを目的とする。 Therefore, the present invention provides a PAS resin molded article having excellent mechanical strength, particularly tensile strength, and small variation in physical properties between lots, a highly reactive resin and resin composition constituting the article, and furthermore, The object is to provide a manufacturing method.
 本発明者は、上記問題点に鑑み、鋭意研究し、実験を重ねた結果、特定条件下での流動電位法によるゼータ電位値により評価した特定のポリアリーレンスルフィド樹脂を用いると、上記の課題を解決しうることを見出し、本発明を完成するに至った。 In view of the above problems, the present inventors have made intensive research and repeated experiments. As a result, the above problems can be solved by using a specific polyarylene sulfide resin evaluated by the zeta potential value according to the streaming potential method under specific conditions. We have found that the problem can be solved, and have completed the present invention.
 本発明は、PAS樹脂を重合する工程(1)、
 前記PAS樹脂を精製して精製PAS樹脂を調製する工程(2)、及び
 前記精製PAS樹脂の少なくとも一部から形成された試験片を評価する工程(3)、を有するPAS樹脂の製造方法であって、
 工程(3)が、前記精製PAS樹脂を溶融させた溶融PAS樹脂を固化させることによって前記試験片を得る試験片作製工程(3-1)と、
 前記試験片の表面のゼータ電位を、流動電位法によりpH7.8~8.2の条件下で測定するゼータ電位測定工程(3-2)と、
 前記工程(3-2)により測定されたゼータ電位値が-50~-65mVの範囲のPAS樹脂を判別する判別工程(3-3)、を有する、PAS樹脂の製造方法である。
The present invention comprises a step (1) of polymerizing a PAS resin,
A method for producing a PAS resin, comprising the steps (2) of purifying the PAS resin to prepare a purified PAS resin, and (3) evaluating a test piece formed from at least a portion of the purified PAS resin. hand,
The step (3) is a test piece preparation step (3-1) in which the test piece is obtained by solidifying the molten PAS resin obtained by melting the purified PAS resin;
A zeta potential measurement step (3-2) of measuring the zeta potential of the surface of the test piece under conditions of pH 7.8 to 8.2 by streaming potential method;
A method for producing a PAS resin, comprising a discrimination step (3-3) of discriminating a PAS resin having a zeta potential value in the range of -50 to -65 mV as measured in the step (3-2).
 また、本発明は、pH7.8~8.2における試験片の表面のゼータ電位値が-50~-65mVの範囲である、PAS樹脂である。換言すると、本発明は、表面のゼータ電位値が-50~-65mVの範囲を示すPAS樹脂であって、前記表面のゼータ電位値は、前記PAS樹脂の少なくとも一部を有する試験片から測定されることを特徴とする、PAS樹脂である。 Also, the present invention is a PAS resin whose surface zeta potential value of the test piece at pH 7.8 to 8.2 is in the range of -50 to -65 mV. In other words, the present invention provides a PAS resin having a surface zeta potential value in the range of -50 to -65 mV, wherein the surface zeta potential value is measured from a test piece having at least a portion of the PAS resin. A PAS resin characterized by
 また、pH7.8~8.2における試験片の表面のゼータ電位値が-50~-65mVの範囲であるPAS樹脂と、反応性官能基を有する物質を配合してなることを特徴とする、PAS樹脂組成物である。 In addition, a PAS resin having a zeta potential value on the surface of the test piece at pH 7.8 to 8.2 in the range of -50 to -65 mV and a substance having a reactive functional group are blended, It is a PAS resin composition.
 本発明の成形品は、前記記載のPAS樹脂組成物を溶融成形してなる。 The molded article of the present invention is obtained by melt-molding the PAS resin composition described above.
 本発明のPAS樹脂組成物の製造方法は、前記請求項1~3のいずれか1項に記載の製造方法で得られたPAS樹脂と、反応性官能基を有する物質とを配合して、溶融混練する工程を有し、かつ、
 前記PAS樹脂のpH7.8~8.2における試験片の表面のゼータ電位値が-50~-65mVの範囲であることを特徴とする。
In the method for producing a PAS resin composition of the present invention, the PAS resin obtained by the production method according to any one of claims 1 to 3 and a substance having a reactive functional group are blended and melted. Having a kneading step, and
The zeta potential value of the surface of the test piece at pH 7.8 to 8.2 of the PAS resin is in the range of -50 to -65 mV.
 本発明の成形品の製造方法は、前記記載の製造方法で得られたPAS樹脂組成物を溶融成形する工程を含むことを特徴とする。 The method for producing a molded product of the present invention is characterized by including the step of melt-molding the PAS resin composition obtained by the production method described above.
 本発明によれば、PAS樹脂の表面特性を高精度に定量化し判別することにより、従来よりもより高精度に特定の反応性を有する樹脂を得ることができる。また、当該樹脂用いることにより、物性のばらつきが少なく、かつ、優れた機械的強度、特に優れた引張強度を備えたPAS成形品及びそれを構成する樹脂組成物並びにその製造方法を提供できる。 According to the present invention, by quantifying and determining the surface characteristics of the PAS resin with high accuracy, it is possible to obtain a resin having specific reactivity with higher accuracy than in the past. In addition, by using the resin, it is possible to provide a PAS molded article having less variation in physical properties, excellent mechanical strength, particularly excellent tensile strength, a resin composition constituting the PAS molded article, and a method for producing the same.
図1は、流動電位法によるゼータ電位の測定方法の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a method for measuring zeta potential by streaming potential method.
 以下、本発明の実施の形態(以下、「本実施形態」と言う。)について詳細に説明するが、本発明は以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention (hereinafter referred to as "present embodiments") will be described in detail. can be implemented.
<PAS樹脂の製造方法>
 本実施形態に係るPAS樹脂の製造方法は、PAS樹脂を重合する工程(1)と、前記PAS樹脂を精製して精製PAS樹脂を調製する工程(2)と、前記精製工程を経て得られた精製PAS樹脂の少なくとも一部から作製した試験片を評価する工程(3)とを有する。そして、前記工程(3)は、前記精製PAS樹脂を溶融させて溶融PAS樹脂を調製した後、前記溶融PAS樹脂を固化させることによって前記試験片を得る試験片作製工程(3-1)と、前記試験片の表面のゼータ電位を、流動電位法によりpH7.8~8.2の条件下で測定するゼータ電位測定工程(3-2)と、前記工程(3-2)により測定されたゼータ電位値が-50~-65mVの範囲のPAS樹脂を判別する判別工程(3-3)、を有する。
<Method for producing PAS resin>
The method for producing a PAS resin according to the present embodiment includes a step (1) of polymerizing a PAS resin, a step (2) of purifying the PAS resin to prepare a purified PAS resin, and the purification step. and a step (3) of evaluating a test piece made from at least a portion of the purified PAS resin. The step (3) comprises a test piece preparation step (3-1) in which the purified PAS resin is melted to prepare a molten PAS resin, and then the molten PAS resin is solidified to obtain the test piece; The zeta potential measurement step (3-2) of measuring the zeta potential on the surface of the test piece by a streaming potential method under conditions of pH 7.8 to 8.2, and the zeta measured in the step (3-2) A discrimination step (3-3) for discriminating PAS resins having potential values in the range of -50 to -65 mV.
 換言すると、本実施形態のPAS樹脂の製造方法は、得られるPAS樹脂の表面特性を評価する目的で当該PAS樹脂の少なくとも一部から評価試料である試験片を作製した後、特定条件下において当該試験片のゼータ電位を測定することにより、得られるPAS樹脂の表面特性を把握するものである。これにより、PAS樹脂の表面特性を高精度に定量化できるため、従来よりも均質な反応性を有する樹脂を判別できる。その結果、物性のばらつきが少なく、かつ、優れた機械的強度、特に優れた引張強度を備えたPAS樹脂成形品及びその製造方法を提供できる。 In other words, in the method for producing a PAS resin of the present embodiment, for the purpose of evaluating the surface properties of the obtained PAS resin, after preparing a test piece as an evaluation sample from at least a part of the PAS resin, the By measuring the zeta potential of the test piece, the surface characteristics of the obtained PAS resin are grasped. As a result, it is possible to quantify the surface characteristics of the PAS resin with high accuracy, so that it is possible to identify resins having more uniform reactivity than conventional methods. As a result, it is possible to provide a PAS resin molded product with little variation in physical properties and excellent mechanical strength, particularly excellent tensile strength, and a method for producing the same.
 なお、本明細書では説明の便宜上、工程(2)の精製処理を経て得られたPAS樹脂を精製PAS樹脂と称し、溶融したPAS樹脂を溶融PAS樹脂と称する。 In this specification, for convenience of explanation, the PAS resin obtained through the purification treatment of step (2) is referred to as purified PAS resin, and the melted PAS resin is referred to as molten PAS resin.
 以下、本実施形態のPAS樹脂の製造方法の各工程について説明する。
・工程(1)(重合工程)
 工程(1)は、PAS樹脂を重合する工程である。当該工程(1)は、特に制限されることはなく、目的物であるPAS樹脂の化学構造に応じて公知の重合方法を適用することができる。また、本実施形態における重合工程の好ましい態様としては、得られるPAS樹脂の少なくとも一部から形成された評価試料である試験片の表面のゼータ電位値が-50~-65mVの範囲を示しやすい特定の重合条件をさらに適用するものである。そこで以下、本実施形態に適用できる一般的な重合方法を説明した後、原料及び特定の重合条件を詳説する。
Each step of the method for producing a PAS resin according to this embodiment will be described below.
・Step (1) (polymerization step)
Step (1) is a step of polymerizing a PAS resin. The step (1) is not particularly limited, and a known polymerization method can be applied depending on the chemical structure of the target PAS resin. In addition, as a preferred aspect of the polymerization step in the present embodiment, the zeta potential value of the surface of the test piece, which is an evaluation sample formed from at least a part of the obtained PAS resin, tends to be in the range of -50 to -65 mV. further apply the polymerization conditions of Therefore, after explaining a general polymerization method applicable to the present embodiment, raw materials and specific polymerization conditions will be explained in detail.
 <重合方法>
 本実施形態に適用できるPAS樹脂の重合方法としては特に限定されないが、例えば(製造法1)硫黄と炭酸ソーダの存在下でジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、(製造法2)極性溶媒中でアルカリ金属硫化物及び/又はアルカリ金属水硫化物(以下、スルフィド化剤と略すことがある。)剤等の存在下にジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、(製造法3)p-クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法、(製造法4)ジヨード芳香族化合物と単体硫黄を、カルボキシ基やアミノ基等の官能基を有していてもよい重合禁止剤の存在下、減圧させながら溶融重合させる方法、等が挙げられる。これらの方法のなかでも、(製造法2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加しても良い。上記(製造法2)方法のなかでも、反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加しても良い。上記(製造法2)方法のなかでも、ジハロゲノ芳香族化合物類、極性有機溶媒、及びスルフィド化剤を含む配合物が、(極性有機溶媒)/(スルフィド化剤)=0.02/1~0.9/1(モル比)の範囲になるように反応器に仕込み、好ましくは不活性ガス雰囲気下開放系で昇温を開始して、前記配合物を脱水し、かつ当該脱水の進行とともに固形物を析出させ、均一に各成分を分散させた低含水固形物を得た後、所定の温度に冷却して、必要により極性有機溶媒及び/又はジハロゲノ芳香族化合物類をさらに前記低含水固形物に添加し、不活性ガス雰囲気下にて重合を行う方法(特許3637543号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01~0.9モルの範囲の有機酸アルカリ金属塩及び反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モル以下の範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)が特に好ましい。
<Polymerization method>
The method of polymerizing the PAS resin that can be applied to the present embodiment is not particularly limited. (Manufacturing method 2) in a polar solvent in the presence of an alkali metal sulfide and/or alkali metal hydrosulfide (hereinafter sometimes abbreviated as a sulfidation agent) agent, etc. A method of polymerizing an aromatic compound by adding, if necessary, a polyhalogeno aromatic compound or other copolymerization components, (manufacturing method 3) adding p-chlorothiophenol and, if necessary, other copolymerization components, (Manufacturing method 4) A method of melt-polymerizing a diiodo aromatic compound and elemental sulfur under reduced pressure in the presence of a polymerization inhibitor that may have a functional group such as a carboxy group or an amino group, etc. Among these methods, the method of (manufacturing method 2) is versatile and preferable. During the reaction, an alkali metal salt of carboxylic acid or sulfonic acid, or an alkali hydroxide may be added in order to adjust the degree of polymerization. Among the methods described above (manufacturing method 2), an alkali metal salt of a carboxylic acid or a sulfonic acid, or an alkali hydroxide may be added during the reaction in order to adjust the degree of polymerization. Among the above (manufacturing method 2) methods, a compound containing a dihalogenoaromatic compound, a polar organic solvent, and a sulfidating agent has a ratio of (polar organic solvent)/(sulfidating agent)=0.02/1 to 0. .9/1 (molar ratio) is charged to the reactor, and the temperature is preferably started to rise in an open system under an inert gas atmosphere to dehydrate the compound and solidify as the dehydration progresses. After precipitating the substance and obtaining a low water content solid in which each component is uniformly dispersed, it is cooled to a predetermined temperature, and if necessary, a polar organic solvent and / or a dihalogeno aromatic compound is further added to the low water content solid. and, if necessary, a dihalogeno aromatic compound in the presence of a solid alkali metal sulfide and an aprotic polar organic solvent. A polyhalogeno aromatic compound or other copolymerization components are added, and an alkali metal hydrosulfide and an organic acid alkali metal salt are added in an amount of 0.01 to 0.9 mol per 1 mol of the sulfur source. Particularly preferred is a method of conducting the reaction while controlling the amount of water in the reaction system within the range of 0.02 mol or less per 1 mol of the aprotic polar organic solvent (see WO2010/058713 pamphlet).
 本実施形態の工程(1)としては、上記製造法2を用いた重合方法、より詳細には、極性溶媒(例えば、極性有機溶媒)中、少なくとも1種のポリハロゲノ芳香族化合物と少なくとも1種のスルフィド化剤とを適当な重合条件下で反応して得られるPAS樹脂を含有する反応混合物(スラリー)を得る工程を一例に挙げて以下説明する。また、本実施形態においては、スラリーがスルフィド化剤及び有機溶媒の存在下に、ポリハロゲノ芳香族化合物及び/又は有機溶媒を連続的、乃至、断続的に加えながら反応させることにより得られる形態も包含する。 As the step (1) of the present embodiment, the polymerization method using the above production method 2, more specifically, at least one polyhalogenoaromatic compound and at least one An example of the process of obtaining a reaction mixture (slurry) containing a PAS resin obtained by reacting with a sulfidating agent under appropriate polymerization conditions will be described below. In addition, in the present embodiment, a form obtained by reacting the slurry in the presence of a sulfidating agent and an organic solvent while continuously or intermittently adding a polyhalogenoaromatic compound and/or an organic solvent is also included. do.
 本実施形態で用いられるポリハロ芳香族化合物とは、例えば、芳香族環に直接結合した2個以上のハロゲン原子を有するハロゲン化芳香族化合物であり、具体的には、p-ジハロベンゼン、m-ジハロベンゼン、o-ジハロベンゼン、2,5-ジハロトルエン、1,4-ジハロナフタレン、1-メトキシ-2,5-ジハロベンゼン、4,4’-ジハロビフェニル、3,5-ジハロ安息香酸、2,4-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,4-ジハロニトロベンゼン、2,4-ジハロアニソール、p,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、4,4’-ジハロジフェニルスルホン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1~18のアルキル基を有する化合物が挙げられる。上述のジハロゲノ芳香族化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。また、ジハロゲノ芳香族化合物以外のポリハロゲノ芳香族化合物としては、1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレンなどが挙げられる。また、これらの化合物をブロック共重合してもよい。上記具体例の中でも好ましいのはジハロゲン化ベンゼン類であり、特に好ましいのはp-ジクロルベンゼンを80モル%以上含むものである。なお、上述のポリハロゲノ芳香族化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。また、上記各ハロゲノ芳香族化合物中に含まれるハロゲン原子は、塩素原子及び/又は臭素原子であることが好ましい。 The polyhaloaromatic compound used in the present embodiment is, for example, a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring, specifically p-dihalobenzene, m-dihalobenzene , o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4,4′-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4- Dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p,p'-dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4' -dihalodiphenyl sulfone, 4,4'-dihalodiphenyl sulfoxide, 4,4'-dihalodiphenyl sulfide, and compounds having an alkyl group having 1 to 18 carbon atoms in the aromatic ring of each of the above compounds. . The above dihalogeno aromatic compounds may be used alone or in combination of two or more. Polyhalogeno aromatic compounds other than dihalogeno aromatic compounds include 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5- tetrahalobenzene, 1,2,4,5-tetrahalobenzene, 1,4,6-trihalonaphthalene and the like. Moreover, you may block-copolymerize these compounds. Among the above specific examples, preferred are dihalogenated benzenes, and particularly preferred are those containing 80 mol % or more of p-dichlorobenzene. The polyhalogeno aromatic compounds described above may be used alone or in combination of two or more. Further, the halogen atoms contained in each halogenoaromatic compound are preferably chlorine atoms and/or bromine atoms.
 また、枝分かれ構造とすることによってPAS樹脂の粘度増大を図る目的で、1分子中に3個以上のハロゲン置換基を有するポリハロゲノ芳香族化合物を分岐剤として所望に応じて用いてもよい。このようなポリハロゲノ芳香族化合物としては、例えば、1,2,4-トリクロルベンゼン、1,3,5-トリクロルベンゼン、1,4,6-トリクロルナフタレン等が挙げられる。 For the purpose of increasing the viscosity of the PAS resin by forming a branched structure, a polyhalogeno aromatic compound having 3 or more halogen substituents in one molecule may be used as a branching agent as desired. Examples of such polyhalogenoaromatic compounds include 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,4,6-trichloronaphthalene and the like.
 更に、アミノ基、チオール基、ヒドロキシル基等の活性水素を持つ官能基を有するポリハロゲノ芳香族化合物を挙げることができ、具体的には、2,6-ジクロルアニリン、2,5-ジクロルアニリン、2,4-ジクロルアニリン、2,3-ジクロルアニリン等のジハロアニリン類;2,3,4-トリクロルアニリン、2,3,5-トリクロルアニリン、2,4,6-トリクロルアニリン、3,4,5-トリクロルアニリン等のトリハロアニリン類;2,2’-ジアミノ-4,4’-ジクロルジフェニルエーテル、2,4’-ジアミノ-2’,4-ジクロルジフェニルエーテル等のジハロアミノジフェニルエーテル類及びこれらの混合物においてアミノ基がチオール基やヒドロキシル基に置き換えられた化合物などが例示される。 Furthermore, polyhalogeno aromatic compounds having functional groups with active hydrogen such as amino groups, thiol groups, hydroxyl groups, etc. can be mentioned, and specifically, 2,6-dichloroaniline and 2,5-dichloroaniline. , 2,4-dichloroaniline, 2,3-dichloroaniline and other dihaloanilines; 2,3,4-trichloroaniline, 2,3,5-trichloroaniline, 2,4,6-trichloroaniline, 3, trihaloanilines such as 4,5-trichloroaniline; dihaloaminodiphenyl ethers such as 2,2'-diamino-4,4'-dichlorodiphenyl ether and 2,4'-diamino-2',4-dichlorodiphenyl ether and compounds in which an amino group is replaced with a thiol group or a hydroxyl group in a mixture thereof.
 また、これらの活性水素含有ポリハロゲノ芳香族化合物中の芳香族環を形成する炭素原子に結合した水素原子が他の不活性基、例えばアルキル基などの炭化水素基に置換している活性水素含有ポリハロゲノ芳香族化合物も使用できる。 In addition, active hydrogen-containing polyhalogens in which the hydrogen atoms bonded to the carbon atoms forming the aromatic ring in these active hydrogen-containing polyhalogeno aromatic compounds are substituted with other inert groups, for example, hydrocarbon groups such as alkyl groups. Aromatic compounds can also be used.
 これらの各種活性水素含有ポリハロ芳香族化合物の中でも、好ましいのは活性水素含有ジハロゲノ芳香族化合物であり、特に好ましいのはジクロルアニリンである。 Among these various active hydrogen-containing polyhaloaromatic compounds, the active hydrogen-containing dihalogenoaromatic compounds are preferred, and dichloroaniline is particularly preferred.
 ニトロ基を有するポリハロゲノ芳香族化合物としては、例えば、2,4-ジニトロクロルベンゼン、2,5-ジクロルニトロベンゼン等のモノ又はジハロニトロベンゼン類;2-ニトロ-4,4’-ジクロルジフェニルエーテル等のジハロニトロジフェニルエーテル類;3,3’-ジニトロ-4,4’-ジクロルジフェニルスルホン等のジハロニトロジフェニルスルホン類;2,5-ジクロル-3-ニトロピリジン、2-クロル-3,5-ジニトロピリジン等のモノ又はジハロニトロピリジン類;或いは各種ジハロニトロナフタレン類などが挙げられる。 Examples of polyhalogenoaromatic compounds having a nitro group include mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; 2-nitro-4,4'-dichlorodiphenyl ether and the like. dihalonitrodiphenyl ethers; 3,3′-dinitro-4,4′-dichlorodiphenyl sulfones such as dihalonitrodiphenyl sulfones; 2,5-dichloro-3-nitropyridine, 2-chloro-3,5 - mono- or dihalonitropyridines such as dinitropyridine; or various dihalonitronaphthalenes.
 極性有機溶媒としては、ホルムアミド、アセトアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素、N-メチル-2-ピロリドン、2-ピロリドン、N-メチル-ε-カプロラクタム、ε-カプロラクタム、ヘキサメチルホスホルアミド、N-ジメチルプロピレン尿素、1,3-ジメチル-2-イミダゾリジノン酸などのアミド、尿素及びラクタム類;スルホラン、ジメチルスルホラン等のスルホラン類;ベンゾニトリル等のニトリル類;メチルフェニルケトン等のケトン類及びこれらの混合物を挙げることができ、これらの中でもN-メチル-2-ピロリドン、2-ピロリドン、N-メチル-ε-カプロラクタム、ε-カプロラクタム、ヘキサメチルホスホルアミド、N-ジメチルプロピレン尿素、1,3-ジメチル-2-イミダゾリジノン酸の脂肪族系環状構造を有するアミドが好ましく、N-メチル-2-ピロリドンがさらに好ましい。 Polar organic solvents include formamide, acetamide, N-methylformamide, N,N-dimethylacetamide, tetramethylurea, N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl-ε-caprolactam, ε-caprolactam, Amides such as hexamethylphosphoramide, N-dimethylpropylene urea, 1,3-dimethyl-2-imidazolidinoic acid, ureas and lactams; sulfolane, sulfolane such as dimethylsulfolane; nitriles such as benzonitrile; methyl Mention may be made of ketones such as phenyl ketone and mixtures thereof, among which N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl-ε-caprolactam, ε-caprolactam, hexamethylphosphoramide, N -Dimethylpropylene urea, amides having an aliphatic ring structure of 1,3-dimethyl-2-imidazolidinoic acid are preferred, and N-methyl-2-pyrrolidone is more preferred.
 本実施形態で用いられるスルフィド化剤としては、アルカリ金属硫化物及び/又はアルカリ金属水硫化物が挙げられる。 The sulfidation agent used in this embodiment includes alkali metal sulfides and/or alkali metal hydrosulfides.
 アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化ルビジウム、硫化セシウム及びこれらの混合物が含まれる。かかるアルカリ金属硫化物は、水和物あるいは水性混合物あるいは無水物として使用することができる。また、アルカリ金属硫化物はアルカリ金属水硫化物とアルカリ金属水酸化物との反応によっても導くことができる。尚、通常、アルカリ金属硫化物中に微量存在するアルカリ金属水硫化物、チオ硫酸アルカリ金属と反応させるために、少量のアルカリ金属水酸化物を加えても差し支えない。 Alkali metal sulfides include lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide and mixtures thereof. Such alkali metal sulfides can be used as hydrates or as aqueous mixtures or as anhydrates. Alkali metal sulfides can also be derived from the reaction between alkali metal hydrosulfides and alkali metal hydroxides. A small amount of alkali metal hydroxide may be added to react with alkali metal hydrosulfide and alkali metal thiosulfate, which are usually present in trace amounts in alkali metal sulfide.
 アルカリ金属水硫化物としては、硫化水素リチウム、硫化水素ナトリウム、硫化水素ルビジウム、硫化水素セシウム及びこれらの混合物が含まれる。かかるアルカリ金属水硫化物は、水和物あるいは水性混合物あるいは無水物として使用することができる。 Alkali metal hydrosulfides include lithium hydrogen sulfide, sodium hydrogen sulfide, rubidium hydrogen sulfide, cesium hydrogen sulfide, and mixtures thereof. Such alkali metal hydrosulfides can be used as hydrates or as aqueous mixtures or as anhydrates.
 また、前記アルカリ金属水硫化物はアルカリ金属水酸化物と伴に用いる。当該アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等が挙げられるが、これらはそれぞれ単独で用いても良いし、2種以上を混合して用いても良い。これらの中でも、入手が容易なことから水酸化リチウムと水酸化ナトリウム及び水酸化カリウムが好ましく、特に水酸化ナトリウムが好ましい。 Also, the alkali metal hydrosulfide is used together with the alkali metal hydroxide. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. These may be used alone, or two or more of them may be mixed. You can use it as Among these, lithium hydroxide, sodium hydroxide and potassium hydroxide are preferred because they are readily available, and sodium hydroxide is particularly preferred.
 本実施形態に用いるPAS樹脂の製造方法は、原料として含水スルフィド化剤を用いることもでき、その場合、少なくとも非プロトン性極性溶媒の存在下で、含水スルフィド化剤を脱水する工程を経て、PAS樹脂の重合反応に供することが好ましい。また、非プロトン性極性溶媒の仕込み量が少ない場合、例えば、スルフィド化剤の硫黄原子1モルに対して、1モル未満の場合、ポリハロ芳香族化合物の存在下で、含水スルフィド化剤と、非プロトン性極性溶媒とを、脱水させることが好ましい。 The method for producing the PAS resin used in the present embodiment can also use a hydrous sulfidation agent as a raw material. It is preferable to use it for the polymerization reaction of the resin. Further, when the amount of the aprotic polar solvent charged is small, for example, when it is less than 1 mol with respect to 1 mol of sulfur atoms in the sulfidation agent, in the presence of the polyhaloaromatic compound, the hydrous sulfidation agent and the non- It is preferred to dehydrate the protic polar solvent.
 含水スルフィド化剤の脱水は、少なくとも非プロトン性極性溶媒と、含水スルフィド化剤として含水アルカリ金属硫化物または含水アルカリ水硫化物及びアルカリ金属水酸化物を、蒸留装置が設けられた反応容器に仕込み、水が共沸により除去される温度、具体的には、300℃以下の範囲、好ましくは80~220℃の範囲、より好ましくは100~200℃の範囲にまで加熱して、蒸留により水を系外に排出することにより行う。脱水工程では、重合反応を行う系内の水分量が、スルフィド化剤の硫黄原子1モルに対して、5モル以下、より好ましくは、0.01~2.0モルの範囲となるまで脱水することが好ましい。 For dehydration of the hydrous sulfidating agent, at least aprotic polar solvent and hydrous alkali metal sulfide or hydrous alkali hydrosulfide and alkali metal hydroxide as hydrous sulfidating agent are charged into a reaction vessel equipped with a distillation apparatus. , a temperature at which water is removed azeotropically, specifically, in the range of 300 ° C. or less, preferably in the range of 80 to 220 ° C., more preferably in the range of 100 to 200 ° C., and water is removed by distillation. It is carried out by discharging out of the system. In the dehydration step, dehydration is performed until the amount of water in the system in which the polymerization reaction is performed is 5 mol or less, more preferably in the range of 0.01 to 2.0 mol, per 1 mol of the sulfur atom of the sulfidating agent. is preferred.
 PAS樹脂の重合条件は一般に、温度200~330℃の範囲であり、圧力は重合溶媒及び重合モノマーであるポリハロ芳香族化合物を実質的に液相に保持するような範囲であるべきであり、一般には0.1~20MPaの範囲、好ましくは0.1~2MPaの範囲より選択される。ポリハロ芳香族化合物の仕込量は、前記スルフィド化剤の硫黄原子1モルに対して、0.2モル~5.0モルの範囲、好ましくは0.8~1.3モルの範囲、さらに好ましくは0.9~1.1モルの範囲となるよう調製する。また、非プロトン性極性溶媒の仕込量は、スルフィド化剤の硫黄原子1モルに対して、1.0~6.0モルの範囲、好ましくは2.5~4.5モルの範囲となるよう調整する。なお、重合反応は少量の水の存在下に行うことが好ましく、その割合は、重合方法や得られるポリマーの分子量や生産性との兼ね合いで適宜調整することが好ましい。具体的には、スルフィド化剤の硫黄原子1モルに対して2.0モル以下、好ましくは1.6モル以下の範囲となるよう脱水操作を行うが、さらにポリハロ芳香族化合物の存在下で脱水操作を行う場合(例えば、下記具体的態様における「5)」の方法)においては0.9モル以下、好ましくは0.05~0.3モル、より好ましくは0.01~0.02モル以下の範囲となるよう脱水操作を行えばよい。 The polymerization conditions for the PAS resin generally range from a temperature of 200 to 330° C., and the pressure should be such that the polymerization solvent and the polyhaloaromatic compound, which is the polymerization monomer, are substantially kept in the liquid phase. is selected from the range of 0.1 to 20 MPa, preferably from the range of 0.1 to 2 MPa. The amount of the polyhaloaromatic compound charged is in the range of 0.2 mol to 5.0 mol, preferably in the range of 0.8 to 1.3 mol, more preferably in the range of 0.8 to 1.3 mol, per 1 mol of the sulfur atom of the sulfidating agent. It is prepared so as to be in the range of 0.9 to 1.1 mol. In addition, the amount of the aprotic polar solvent charged is in the range of 1.0 to 6.0 mol, preferably in the range of 2.5 to 4.5 mol, per 1 mol of the sulfur atom of the sulfidating agent. adjust. The polymerization reaction is preferably carried out in the presence of a small amount of water, and the proportion thereof is preferably adjusted appropriately in consideration of the polymerization method, the molecular weight of the resulting polymer, and productivity. Specifically, the dehydration operation is carried out so that the amount becomes 2.0 mol or less, preferably 1.6 mol or less per 1 mol of the sulfur atom of the sulfidation agent, and the dehydration is performed in the presence of the polyhaloaromatic compound. When the operation is performed (for example, the method of "5)" in the specific embodiment below), it is 0.9 mol or less, preferably 0.05 to 0.3 mol, more preferably 0.01 to 0.02 mol or less. Dehydration operation may be performed so that the range of
 上記した極性有機溶媒の存在下、スルフィド化剤とポリハロ芳香族化合物とを重合させる具体的態様としては、例えば、
1)アルカリ金属カルボン酸塩またはハロゲン化リチウム等の重合助剤を使用する方法、
2)芳香族ポリハロゲン化合物等の分岐剤を使用する方法、
3)少量の水の存在下に重合反応を行い次いで水を追加してさらに重合する方法、
4)アルカリ金属硫化物と芳香族ジハロゲン化合物との反応中に、反応釜の気相部分を冷却して反応釜内の気相の一部を凝縮させ液相に還流させる方法、
5)ポリハロ芳香族化合物の存在下、アルカリ金属硫化物、又は、含水アルカリ金属水硫化物及びアルカリ金属水酸化物と、脂肪族環状構造を有するアミド、尿素またはラクタムとを、脱水させながら反応させて固形のアルカリ金属硫化物を含むスラリーを製造する工程、該スラリーを製造した後、更にN-メチル-2-ピロリドンなどの極性有機溶媒を加え、水を留去して脱水を行う工程、次いで、脱水工程を経て得られたスラリー中で、ポリハロ芳香族化合物と、アルカリ金属水硫化物と、前記脂肪族環状構造を有するアミド、尿素またはラクタムの加水分解物のアルカリ金属塩とを、N-メチル-2-ピロリドンなどの極性有機溶媒1モルに対して反応系内に現存する水分量が0.02モル以下で反応させて重合を行う工程を必須の製造工程として有する方法、が挙げられる。
Specific embodiments of polymerizing the sulfidating agent and the polyhaloaromatic compound in the presence of the polar organic solvent include, for example:
1) A method using a polymerization aid such as an alkali metal carboxylate or lithium halide,
2) A method using a branching agent such as an aromatic polyhalogen compound,
3) a method of conducting a polymerization reaction in the presence of a small amount of water and then adding water to further polymerize;
4) a method of cooling the gas phase portion of the reaction vessel during the reaction between the alkali metal sulfide and the aromatic dihalogen compound to condense a portion of the gas phase in the reaction vessel and reflux it to the liquid phase;
5) reacting an alkali metal sulfide, or a hydrous alkali metal hydrosulfide and an alkali metal hydroxide with an amide, urea or lactam having an aliphatic cyclic structure in the presence of a polyhaloaromatic compound while dehydrating; a step of producing a slurry containing a solid alkali metal sulfide, a step of adding a polar organic solvent such as N-methyl-2-pyrrolidone after producing the slurry, distilling off water to dehydrate, and then , in the slurry obtained through the dehydration step, the polyhaloaromatic compound, the alkali metal hydrosulfide, and the alkali metal salt of the hydrolyzate of the amide, urea or lactam having an aliphatic ring structure are added to N- and a method comprising, as an essential production step, a step of polymerizing by reacting 1 mol of a polar organic solvent such as methyl-2-pyrrolidone with the amount of water present in the reaction system being 0.02 mol or less.
 また、本実施形態において、工程(1)により得られたPAS樹脂を含有する粗スラリーを、適当な手段(減圧留去法、遠心分離法、スクリューデカンター法、減圧濾過法、加圧濾過法など適当な方法が選択可能である)により「脱溶媒」させて、有機溶媒を分離除去した後、粗PAS樹脂(精製工程を経ていないPAS樹脂)を回収できる。 Further, in the present embodiment, the coarse slurry containing the PAS resin obtained in step (1) is subjected to suitable means (e.g., vacuum distillation method, centrifugal separation method, screw decanter method, vacuum filtration method, pressure filtration method, etc.). A suitable method can be selected) to separate and remove the organic solvent, and then the crude PAS resin (the PAS resin that has not undergone the purification step) can be recovered.
 <特定の重合条件>
 本実施形態においては、前記工程(1)及び後述の工程(2)により得られるPAS樹脂の少なくとも一部から形成された評価試料である試験片の表面のゼータ電位値が、pH7.8~8.2(例えば、pH=8.0)において-50~-65mVの範囲を示すことが好ましい。前記試験片の表面のゼータ電位値が、pH7.8~8.2(例えば、pH=8.0)において-50~-65mVの範囲を示しやすい傾向に必要な特定の重合条件としては、以下の条件(a)~(c)が挙げられる。
 (a)原料の仕込みから重合反応が終了するまでに使用した有機溶媒の総量が、硫黄源であるスルフィド化剤1molに対して1~6molの比率であることが好ましい。
 (b)最初に仕込む有機溶媒の量が、硫黄源であるスルフィド化剤1molに対して、0.01~0.50molの比率であることが好ましい。
 (c)工程(1)における重合反応後のPAS樹脂(又はスラリー)に酸又は水素塩を添加することが好ましい。より好ましくは、重合工程における重合反応後のPAS樹脂(又はスラリー)に酸又は水素塩を添加して、当該反応混合物のpHを7~11に調整する。
<Specific polymerization conditions>
In the present embodiment, the zeta potential value of the surface of the test piece, which is an evaluation sample formed from at least a part of the PAS resin obtained in the step (1) and the step (2) described later, is pH 7.8 to 8. It preferably exhibits a range of -50 to -65 mV at .2 (eg pH = 8.0). The specific polymerization conditions necessary for the zeta potential value of the surface of the test piece to tend to show a range of -50 to -65 mV at pH 7.8 to 8.2 (eg, pH = 8.0) are as follows. conditions (a) to (c).
(a) The total amount of the organic solvent used from the charging of the raw materials to the completion of the polymerization reaction is preferably in a ratio of 1 to 6 mol per 1 mol of the sulfidating agent, which is the sulfur source.
(b) The amount of the organic solvent initially charged is preferably 0.01 to 0.50 mol with respect to 1 mol of the sulfidating agent, which is the sulfur source.
(c) It is preferable to add an acid or a hydrogen salt to the PAS resin (or slurry) after the polymerization reaction in step (1). More preferably, an acid or hydrogen salt is added to the PAS resin (or slurry) after the polymerization reaction in the polymerization step to adjust the pH of the reaction mixture to 7-11.
 上記(c)の条件における酸としては、例えば、炭酸、シュウ酸、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、モノクロロ酢酸等の飽和脂肪酸、アクリル酸、クロトン酸、オレイン酸等の不飽和脂肪酸、安息香酸、フタル酸、サリチル酸等の芳香族カルボン酸、蓚酸、マレイン酸、フマル酸等のジカルボン酸、或いはメタンスルホン酸、パラトルエンスルホン酸等のスルホン酸などの有機酸、塩酸、硫酸、亜硫酸、硝酸、亜硝酸又はリン酸等の無機酸が挙げられる。上記(c)の条件における水素塩としては、硫酸水素ナトリウム、リン酸水素二ナトリウム、炭酸水素ナトリウム等が挙げられる。実機での使用においては、金属部材への腐食が少ない有機酸が好ましい。 Examples of the acid under the condition (c) include saturated fatty acids such as carbonic acid, oxalic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, and monochloroacetic acid; acrylic acid, crotonic acid, oleic acid, and the like; aromatic carboxylic acids such as unsaturated fatty acids, benzoic acid, phthalic acid and salicylic acid; dicarboxylic acids such as oxalic acid, maleic acid and fumaric acid; organic acids such as methanesulfonic acid and sulfonic acids such as p-toluenesulfonic acid; Inorganic acids such as sulfuric acid, sulfurous acid, nitric acid, nitrous acid or phosphoric acid may be mentioned. Examples of the hydrogen salt under the condition (c) include sodium hydrogen sulfate, disodium hydrogen phosphate, sodium hydrogen carbonate, and the like. Organic acids that cause less corrosion to metal members are preferred for use in actual machines.
 本実施形態における工程(1)において、上記(a)の条件を採用すると、重合中のPAS樹脂の濃度が高くなる為、脂肪族系環状化合物の開環物がPAS樹脂の末端に付与する反応が進みやすくなるという理由から、特定のゼータ電位値を示しうる。また、本実施形態における工程(1)において、上記(b)の条件を採用すると、重合中のPAS樹脂の濃度が高くなる為、脂肪族系環状化合物の開環物がPAS樹脂の末端に付与する反応が進みやすくなるという理由から、特定のゼータ電位値を示しうる。また、本実施形態における工程(1)において、上記(c)の条件を採用すると、PAS樹脂内に酸性成分が内包され、精製工程で酸性分が滲み出てくることにより、PAS樹脂の末端官能基の一部がイオン交換しプロトン化するという理由から、特定のゼータ電位値を示しうる。 In the step (1) of the present embodiment, when the above condition (a) is adopted, the concentration of the PAS resin during polymerization is increased, so that the ring-opened product of the aliphatic cyclic compound is added to the end of the PAS resin. can exhibit a certain zeta potential value because it is easier for In step (1) of the present embodiment, if the above condition (b) is adopted, the concentration of the PAS resin during polymerization increases, so that the ring-opened product of the aliphatic cyclic compound is attached to the end of the PAS resin. A specific zeta potential value can be exhibited because the reaction that occurs is likely to proceed. In addition, when the above condition (c) is adopted in the step (1) of the present embodiment, the acidic component is included in the PAS resin, and the acidic component oozes out in the purification step, resulting in terminal functionalization of the PAS resin. Certain zeta potential values can be exhibited because some of the groups ion exchange and protonate.
 本実施形態において、試験片の表面のゼータ電位値がpH7.8~8.2(例えば、pH=8.0)において-50~-65mVの範囲とするためには、重合工程又は下記精製工程において、前記PAS樹脂に酸を添加することが好ましい。そのため、上記(a)~(c)の重合条件のうち、特に(c)を満たすことにより、前記ゼータ電位値が所定の範囲になる傾向が強い。なお、試験片の表面のゼータ電位値がpH4.8~5.2(例えば、pH=5.0)において-30~-45mVの範囲を示しやすい傾向に必要な特定の重合条件としても、上記の条件(a)~(c)を適用することができる。 In the present embodiment, in order for the zeta potential value of the surface of the test piece to be in the range of -50 to -65 mV at pH 7.8 to 8.2 (eg, pH = 8.0), the polymerization step or the following purification step WHEREIN: It is preferable to add an acid to the said PAS resin. Therefore, among the above polymerization conditions (a) to (c), particularly by satisfying (c), there is a strong tendency for the zeta potential value to fall within a predetermined range. In addition, the zeta potential value of the surface of the test piece tends to show a range of -30 to -45 mV at pH 4.8 to 5.2 (for example, pH = 5.0). Conditions (a) to (c) can be applied.
・工程(2)(精製工程)
 本実施形態において、工程(1)後に工程(2)の精製工程をさらに施すことが好ましい。本実施形態における工程(2)は、評価対象物であるPAS樹脂の化学構造などに応じて公知の精製処理を適用することができるが、工程(1)で得られたPAS樹脂を含有するスラリー又は前記スラリーの固形分である粗PAS樹脂に洗浄溶液を添加して洗浄処理、濾過処理及び乾燥処理を行う工程であることが好ましい。また、前記洗浄処理、濾過処理及び乾燥処理は、それぞれ任意前記処理を少なくとも1回又は複数回行うことができる。
・Step (2) (purification step)
In this embodiment, it is preferable to further perform the purification step of step (2) after step (1). In the step (2) of the present embodiment, a known purification treatment can be applied according to the chemical structure of the PAS resin to be evaluated, etc. However, the slurry containing the PAS resin obtained in the step (1) Alternatively, it is preferable to add a washing solution to the crude PAS resin, which is the solid content of the slurry, and perform washing treatment, filtration treatment and drying treatment. In addition, each of the washing treatment, filtration treatment and drying treatment can be optionally performed at least once or more than once.
 以下、本実施形態に適用可能な精製処理を説明した後、上記特定の精製条件を詳説する。 Hereinafter, after explaining the purification process applicable to this embodiment, the above-mentioned specific purification conditions will be explained in detail.
 本実施形態において、工程(1)により得られたPAS樹脂(PAS樹脂を含むスラリー)の精製処理としては、特に制限されるものではないが、例えば、(精製処理1)重合反応終了後、先ず反応混合物をそのまま、あるいは酸または塩基を加えた後、減圧下または常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、更に中和、水洗、濾過および乾燥する方法、或いは、(精製処理2)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、かつ少なくともPASに対しては貧溶媒である溶媒)を沈降剤として添加して、PASや無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法、或いは、(精製処理3)重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、その後中和、水洗、濾過および乾燥をする方法、(精製処理4)重合反応終了後、反応混合物に水を加えて水洗浄、濾過、必要に応じて水洗浄の時に酸を加えて酸処理し、乾燥をする方法、(精製処理5)重合反応終了後、反応混合物を濾過し、必要に応じ、反応溶媒で1回または2回以上洗浄し、更に水洗浄、濾過および乾燥する方法、等が挙げられる。 In the present embodiment, the purification treatment of the PAS resin (slurry containing the PAS resin) obtained in step (1) is not particularly limited. The reaction mixture is used as it is, or after adding an acid or base, the solvent is distilled off under reduced pressure or normal pressure, and then the solid after solvent distillation is treated with water, a reaction solvent (or an equivalent solubility in a low-molecular-weight polymer). organic solvent), acetone, methyl ethyl ketone, a method of washing with a solvent such as alcohols once or twice or more, and further neutralization, washing with water, filtration and drying, or (purification treatment 2) After the polymerization reaction is completed, the reaction Solvents such as water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons (which are soluble in the polymerization solvent used and are at least poor for PAS) are added to the mixture. A method of adding a solvent) as a precipitant to precipitate solid products such as PAS and inorganic salts, and filtering, washing, and drying them, or (purification process 3) after the polymerization reaction is completed, After adding a reaction solvent (or an organic solvent having an equivalent solubility to the low-molecular-weight polymer) to the reaction mixture and stirring, filtering to remove the low-molecular-weight polymer, water, acetone, methyl ethyl ketone, alcohols, etc. A method of washing with a solvent once or twice or more, followed by neutralization, washing with water, filtration and drying; (Purification treatment 5) After completion of the polymerization reaction, the reaction mixture is filtered, and if necessary, washed with a reaction solvent once or twice or more, and then dried. methods of water washing, filtering and drying, and the like.
 上記精製処理における乾燥方法は特に制限されることはなく、120~270℃の乾燥温度で乾燥することが好ましい。また、乾燥処理の雰囲気は、真空下、減圧下、窒素若しくは不活性ガス不活性ガス雰囲気下、酸素若しくは空気等の酸化性雰囲気下、空気及び窒素の混合ガス雰囲気下が挙げられる。乾燥時間は、0.5~53時間であることが好ましい。また、上記濾過処理は、固液分離できる方法であれば特に制限されることはなく、濾過機、遠心分離機等を用いて固液分離する方法が挙げられる。 The drying method in the above refining treatment is not particularly limited, and it is preferable to dry at a drying temperature of 120-270°C. Moreover, the atmosphere of the drying treatment includes under vacuum, under reduced pressure, under nitrogen or inert gas inert gas atmosphere, under oxidizing atmosphere such as oxygen or air, and under mixed gas atmosphere of air and nitrogen. The drying time is preferably 0.5 to 53 hours. The filtration treatment is not particularly limited as long as it is a method capable of solid-liquid separation, and examples include a method of solid-liquid separation using a filter, a centrifuge, or the like.
 <特定の精製条件>
 本実施形態における工程(2)において、前記試験片の表面のゼータ電位値がpH7.8~8.2(例えば、pH=8.0)において-50~-65mVの範囲を示しやすい傾向に必要な特定の精製条件としては、以下の条件(d)~(f)が挙げられる。
 (d)工程(2)において、所定量以上の酸溶液を用いて粗PAS樹脂を酸処理することが好ましい。より好ましくは、PAS樹脂の総重量の約2倍以上の酸溶液を用いて酸処理する。
 (e)上記(d)の酸処理で使用する酸溶液のpHが6以下であることが好ましい。
 (f)工程(2)において、140~260℃の熱水を、PAS樹脂の総重量の1.5~10倍で熱水洗浄することが好ましい。
<Specific purification conditions>
In step (2) in the present embodiment, the zeta potential value of the surface of the test piece tends to be in the range of -50 to -65 mV at pH 7.8 to 8.2 (eg, pH = 8.0). Specific purification conditions include the following conditions (d) to (f).
(d) In step (2), it is preferable to acid-treat the crude PAS resin with a predetermined amount or more of an acid solution. More preferably, the acid treatment is performed using an acid solution of about twice the total weight of the PAS resin.
(e) The pH of the acid solution used in the acid treatment of (d) is preferably 6 or less.
(f) In step (2), it is preferable to wash with hot water of 140 to 260° C. with 1.5 to 10 times the total weight of the PAS resin.
 本実施形態における工程(2)において、上記(d)~(f)の条件を採用すると、イオン交換反応により、PAS樹脂の末端官能基をプロトン化することができる。上記酸溶液に使用する酸は、pH6以下の酸溶液を調製できれば特に制限されることはなく、上記(c)の条件における酸を援用することができる。 When the conditions (d) to (f) above are employed in step (2) in the present embodiment, the terminal functional groups of the PAS resin can be protonated by an ion exchange reaction. The acid used for the acid solution is not particularly limited as long as an acid solution having a pH of 6 or less can be prepared, and the acid under the condition (c) above can be used.
 本実施形態において、試験片の表面のゼータ電位値をpH7.8~8.2(例えば、pH=8.0)において-50~-65mVの範囲内にすることを目的として、前記工程(1)又は前記工程(2)において、前記PAS樹脂に酸を添加してもよい。より詳細には、本実施形態の好ましい精製工程は、工程(1)で得られたPAS樹脂(スラリーを含む。)又は工程(1)で得られたPAS樹脂を含有するスラリーを固液分離した固形分である粗PAS樹脂に対して酸溶液を添加して酸処理することを含む。 In this embodiment, the step (1 ) or in the step (2), an acid may be added to the PAS resin. More specifically, the preferred purification step of the present embodiment is solid-liquid separation of the PAS resin (including slurry) obtained in step (1) or the slurry containing the PAS resin obtained in step (1). It includes acid treatment by adding an acid solution to the crude PAS resin, which is a solid content.
 好ましい工程(2)の他の態様としては、工程(1)で得られたPAS樹脂(スラリーを含む。)又は工程(1)で得られたPAS樹脂を含有するスラリーの固形分である粗PAS樹脂に洗浄溶液を添加して洗浄、濾過及び乾燥を行う工程中に、前記粗PAS樹脂に対して酸溶液を添加する酸処理を1回以上行う。 Another preferred embodiment of step (2) is the PAS resin (including slurry) obtained in step (1) or crude PAS, which is the solid content of the slurry containing the PAS resin obtained in step (1). During the steps of adding a washing solution to the resin, washing, filtering and drying, the crude PAS resin is subjected to acid treatment by adding an acid solution one or more times.
 なお、本実施形態の別の態様としては、試験片の表面のゼータ電位値がpH4.8~5.2(例えば、pH=5.0)において-30~-45mVの範囲を示しやすい傾向に必要な特定の精製工程として、上記pH7.8~8.2(例えば、pH=8.0)における測定系と同様に、上記の条件(d)~(f)を適用することができる。 As another aspect of the present embodiment, the zeta potential value of the surface of the test piece tends to be in the range of -30 to -45 mV at pH 4.8 to 5.2 (eg, pH = 5.0). As the necessary specific purification steps, conditions (d) to (f) above can be applied in the same manner as in the measurement system at pH 7.8 to 8.2 (eg, pH=8.0).
・工程(3)(評価工程)
 本実施形態における工程(3)は、工程(1)及び(2)を経て得られたPAS樹脂の少なくとも一部から作製した試験片を評価する工程である。そして、当該工程(3)は、試験片作製工程(3-1)、ゼータ電位測定工程(3-2)及び判別工程(3-3)を有する。換言すると、本実施形態における工程(3)は、工程(1)~(2)により得られたPAS樹脂の少なくとも一部から試験片(=評価試料)を作製して、当該試験片を所定の条件下でゼータ電位測定することにより、前記試験片の表面物性を評価して前記PAS樹脂の物性を把握する工程である。そのため、本実施形態における工程(3)では、PAS樹脂から形成した評価試料である試験片の表面のゼータ電位値をもって、試験片の原料のPAS樹脂の化学的特性を定量化する。これにより、上記工程(1)~(2)により得られたPAS樹脂を全量評価する必要はなく、上記工程(1)~(2)により得られたPAS樹脂を評価すれば足りうる。本実施形態における工程(3)により、所定の範囲のゼータ電位値を有するPAS樹脂を特定することができるため、PAS樹脂の表面特性を高精度に定量化し、判別及び選別することができる。
・Process (3) (evaluation process)
Step (3) in the present embodiment is a step of evaluating a test piece produced from at least part of the PAS resin obtained through steps (1) and (2). The step (3) includes a test strip preparation step (3-1), a zeta potential measurement step (3-2) and a discrimination step (3-3). In other words, step (3) in the present embodiment involves preparing a test piece (=evaluation sample) from at least a portion of the PAS resin obtained in steps (1) and (2), and subjecting the test piece to a predetermined It is a step of evaluating the surface physical properties of the test piece by measuring the zeta potential under the conditions and grasping the physical properties of the PAS resin. Therefore, in step (3) of the present embodiment, the chemical properties of the PAS resin, which is the raw material of the test piece, are quantified based on the zeta potential value of the surface of the test piece, which is an evaluation sample formed from the PAS resin. Accordingly, it is not necessary to evaluate the entire amount of the PAS resin obtained through steps (1) and (2), and it is sufficient to evaluate the PAS resin obtained through steps (1) and (2). Since the step (3) in the present embodiment makes it possible to identify a PAS resin having a zeta potential value within a predetermined range, the surface characteristics of the PAS resin can be quantified with high accuracy, and the PAS resin can be distinguished and sorted.
・工程(3-1)<試験片作製工程>
 工程(3-1)は、工程(1)及び工程(2)により得られたPAS樹脂を溶融して溶融PAS樹脂を調製した後、当該溶融PAS樹脂を固化させることによって試験片を作製する工程である。換言すると、本実施形態における試験片作製工程は、工程(1)~(2)により得られたPAS樹脂の少なくとも一部を採取して一度溶融させた後、溶融したPAS樹脂を固化させることにより、所定の形状及び表面特性を有する試験片を作製する工程である。より溶融状態に即した評価を行う観点から、本実施形態の試験片は、非晶状態であることが好ましい。
・ Process (3-1) <Test piece preparation process>
Step (3-1) is a step of melting the PAS resin obtained in steps (1) and (2) to prepare a molten PAS resin, and then solidifying the molten PAS resin to prepare a test piece. is. In other words, the test piece preparation step in the present embodiment comprises extracting at least part of the PAS resin obtained in steps (1) to (2), melting it once, and then solidifying the melted PAS resin. , which is the process of producing a test piece with a predetermined shape and surface properties. From the viewpoint of performing evaluations that are more in line with the molten state, the test piece of the present embodiment is preferably in an amorphous state.
 なお、本明細書における「非晶状態」とは、試験片を構成するPAS樹脂中に結晶相が存在しないものをいい、より詳細には、以下の(i)の条件を満たすことをいう。
 (i)試験片であるPAS樹脂フィルムのDSC測定において、40℃から350℃までの温度範囲を20℃/分で昇温する際に、100℃~200℃の間に結晶化に伴う発熱ピークが確認されないこと。
The term "amorphous state" as used herein refers to a state in which no crystalline phase exists in the PAS resin constituting the test piece, and more specifically, the following condition (i) is satisfied.
(i) In the DSC measurement of the PAS resin film which is the test piece, when the temperature range from 40 ° C. to 350 ° C. is raised at 20 ° C./min, an exothermic peak accompanying crystallization occurs between 100 ° C. and 200 ° C. is not confirmed.
 また、本実施形態における評価方法では、PAS樹脂から作製した試験片の表面のゼータ電位値をもって、試験片の原料のPAS樹脂の化学的特性を定量化している。このように表面の化学的特性からPAS樹脂の反応性を評価する理由は、PAS樹脂の耐薬品性が極めて高いことに起因するものである。PAS樹脂の特に好ましい実施形態であるPPS樹脂に至っては、200℃以下で当該PPS樹脂を溶解させる溶媒の存在が未だに見つかっていないため、PAS樹脂自体の特性(物性及び化学的性など)、特に反応性に大きく寄与するPAS樹脂中の分子末端を直接評価する術が事実上無いに等しい現状が存在するからである。そのため、本発明では、特定の試験片を基準とすることにより、当該試験片の構成材料であるPAS樹脂の特性を把握するものである。 In addition, in the evaluation method of the present embodiment, the chemical properties of the PAS resin, which is the raw material of the test piece, are quantified using the zeta potential value of the surface of the test piece made from the PAS resin. The reason why the reactivity of the PAS resin is evaluated from the surface chemical properties is that the PAS resin has extremely high chemical resistance. With respect to PPS resin, which is a particularly preferred embodiment of PAS resin, the presence of a solvent capable of dissolving the PPS resin at 200° C. or lower has not yet been found. This is because there is practically no technique for directly evaluating the molecular ends in the PAS resin, which greatly contributes to reactivity. Therefore, in the present invention, by using a specific test piece as a reference, the characteristics of the PAS resin, which is the constituent material of the test piece, are grasped.
 <溶融>
 本実施形態において、PAS樹脂を溶融して溶融PAS樹脂を調製する方法は、、PAS樹脂を加熱溶融できるものであれば特に制限されることはなく、公知の加熱手段を採用できる。具体的には、ホットプレート、熱風・冷風循環式恒温オーブン、マイクロ波又は(遠)赤外線ヒーター、又はホットプレスなどが挙げられる。また、上記加熱手段を用いてPAS樹脂を加熱する場合の加熱時間は、PAS樹脂が溶融されていれば特に制限されることはなく、例えば30秒~10分程度である。PAS樹脂を溶融する温度としては、PAS樹脂の融点以上であればよく、好ましくは300℃以上400℃以下である。PAS樹脂は200℃以上の温度で酸化架橋反応が進むため、非酸化性の不活性ガス雰囲気中で熱溶融してもよい。
<melting>
In this embodiment, the method of melting the PAS resin to prepare the molten PAS resin is not particularly limited as long as the PAS resin can be heated and melted, and known heating means can be employed. Specific examples include a hot plate, hot air/cold air circulating constant temperature oven, microwave or (far) infrared heater, or hot press. The heating time for heating the PAS resin using the heating means is not particularly limited as long as the PAS resin is melted, and is, for example, about 30 seconds to 10 minutes. The temperature for melting the PAS resin may be the melting point of the PAS resin or higher, preferably 300° C. or higher and 400° C. or lower. Since the PAS resin undergoes an oxidative cross-linking reaction at a temperature of 200° C. or higher, it may be thermally melted in a non-oxidizing inert gas atmosphere.
 工程(3-1)において、シート体を介して、PAS樹脂を加熱溶融してもよい。シート体を使用して試験片を作製する場合、好適なシート体は、PAS樹脂より高い融点を有し、かつその表面が疎水性を有することが好ましい。より詳細な加熱溶融する方法としては、シート体上にPAS樹脂(例えば、粉末状のPAS樹脂)を載置した後、加熱手段を用いて前記シート体を加熱することにより前記PAS樹脂を溶融させて溶融PAS樹脂を作製することが好ましい。また、別の方法としては、1対のシート体の間にPAS樹脂(例えば、固形状又は粉末状の精製PAS樹脂)を挟むよう載置した後、加熱手段を用いて前記1対のシート体又は前記1対のシート体の一方を加熱することにより前記PAS樹脂を溶融させて溶融PAS樹脂を作製することが好ましい。シート体を用いることにより、溶融PAS樹脂が固化した試験片を、容易に回収することができる。特に当該シート体は、離形性を有することが好ましい。これにより、固化したPAS樹脂が付着することなく試験片を容易に回収できるため、外観的特性が損なわれること(割れ、肌荒れ等)を低減できる、あるいは試験片の破断を抑制できる。 In step (3-1), the PAS resin may be heated and melted through the sheet body. When the sheet body is used to prepare the test piece, the sheet body preferably has a melting point higher than that of the PAS resin and preferably has a hydrophobic surface. As a more detailed heat-melting method, after placing a PAS resin (for example, a powdered PAS resin) on a sheet body, the sheet body is heated using a heating means to melt the PAS resin. It is preferable to prepare a molten PAS resin by As another method, a PAS resin (for example, solid or powdered purified PAS resin) is sandwiched between a pair of sheets, and then the pair of sheets is heated by heating means. Alternatively, it is preferable to melt the PAS resin by heating one of the pair of sheet bodies to prepare a molten PAS resin. By using the sheet body, it is possible to easily collect the test piece in which the molten PAS resin is solidified. In particular, the sheet body preferably has releasability. As a result, the test piece can be easily collected without the solidified PAS resin adhering to it, so that damage to the appearance characteristics (cracking, rough skin, etc.) can be reduced, or breakage of the test piece can be suppressed.
 上記シート体の材料としては、PAS樹脂より高い融点を有する必要があり、例えば、金属材料(SUS404C等のマルテンサイト系ステンレス鋼)、フッ素系樹脂、ポリイミド、又はセラミックス等が挙げられる。上記フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、ポリビニリデンフルオライド(PVDF)又はエチレン-クロロトリフルオロエチレンコポリマー(ECTFE)が挙げられる。また、フッ素系樹脂は必要によりガラスファイバー等の無機充填フィラーを含有してもよい。 The material of the sheet body must have a melting point higher than that of the PAS resin, and examples thereof include metal materials (martensitic stainless steel such as SUS404C), fluororesins, polyimides, and ceramics. Examples of the fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene/ethylene copolymer (ETFE), tetrafluoroethylene/hexafluoropropylene copolymer polymer (FEP), polyvinylidene fluoride (PVDF) or ethylene-chlorotrifluoroethylene copolymer (ECTFE). In addition, the fluororesin may contain an inorganic filler such as glass fiber, if necessary.
 <固化>
 工程(3-1)において、溶融PAS樹脂を固化する方法は、冷却により溶融PAS樹脂を固化する方法が挙げられる。上記冷却は、自然放冷又は急速冷却が挙げられ、急速冷却が好ましい。当該冷却の方法としては、公知の冷却手段を採用できる。当該冷却手段としては、例えば、表面温度を調節できるロール(冷却ロール)、エアナイフ、水中への浸漬(水槽等)、35℃以下の金属材料との直接又は間接的接触が挙げられる。
<Solidification>
In step (3-1), the method of solidifying the molten PAS resin includes a method of solidifying the molten PAS resin by cooling. The cooling may be natural cooling or rapid cooling, and rapid cooling is preferred. A known cooling means can be employed as the cooling method. Examples of the cooling means include rolls whose surface temperature can be adjusted (cooling rolls), air knives, immersion in water (a water tank, etc.), and direct or indirect contact with metal materials at 35° C. or lower.
 また、上記の通り、本実施形態の試験片は、非晶状態のPAS樹脂から形成されていることが好ましい。このような非晶状態のPAS樹脂を作製する方法としては、溶融PAS樹脂を急速冷却することにより固化することが好ましい。急速冷却することにより、結晶相を含まない非晶状態のPAS樹脂を製造することができるため、表面測定であってもPAS樹脂を均一に評価し易くなり、溶融状態の反応性の指標になり易いという観点で好ましい。 Further, as described above, the test piece of the present embodiment is preferably made of amorphous PAS resin. As a method for producing such an amorphous PAS resin, it is preferable to solidify the molten PAS resin by rapidly cooling it. By rapid cooling, it is possible to produce an amorphous PAS resin that does not contain a crystalline phase. Therefore, it becomes easier to uniformly evaluate the PAS resin even by surface measurement, and it becomes an index of reactivity in the molten state. This is preferable from the viewpoint of ease of use.
 本実施形態にかかる試験片作製工程は、工程(1)~(2)を経て得られたPAS樹脂を溶融させた後、10℃/秒以上の速さで冷却することが好ましく、10℃/秒以上100℃/秒以下の速さで冷却することがより好ましい。また、上記冷却速度は、400℃から少なくともPAS樹脂のTgの温度域において維持することが好ましい。これにより、PAS樹脂を非晶状態で固体化でき、表面測定であってもPAS樹脂を均一に評価し易くなり、溶融状態の反応性の指標になり易いという効果を奏する。本実施形態において、PAS樹脂が溶融した状態から10℃/秒以上100℃/秒以下の冷却速度でPAS樹脂のTg以下、好ましくは90℃以下まで冷却することが好ましい。 In the test piece preparation process according to the present embodiment, the PAS resin obtained through steps (1) and (2) is melted and then cooled at a rate of 10 ° C./second or more. It is more preferable to cool at a speed of 100° C./s or less. Moreover, the cooling rate is preferably maintained in the temperature range from 400° C. to at least the Tg of the PAS resin. As a result, the PAS resin can be solidified in an amorphous state, the PAS resin can be uniformly evaluated even by surface measurement, and the measurement can easily serve as an index of reactivity in the molten state. In the present embodiment, it is preferable to cool the molten PAS resin at a cooling rate of 10° C./sec or more and 100° C./sec or less to the Tg or less of the PAS resin, preferably 90° C. or less.
 本実施形態の工程(3-1)において、所定の大きさの試験片を容易に得る目的で、シート体を介して溶融PAS樹脂を固化してもよい。より詳細な溶融PAS樹脂を固化する方法としては、冷却手段を用いて溶融PAS樹脂が載置されたシート体を冷却することにより溶融PAS樹脂を固化して試験片を回収することが好ましい。また溶融PAS樹脂を固化する別の方法としては、溶融PAS樹脂を挟むように載置した1対のシート体の少なくとも一方を冷却することにより前記1対のシート体間の前記溶融PAS樹脂を固化して試験片を回収することが好ましい。これにより、固化したPAS樹脂が付着することなく試験片を容易に回収できるため、外観的特性(厚み等)が損なわれることを低減できる、あるいは試験片の破断を抑制できる。 In the step (3-1) of this embodiment, the molten PAS resin may be solidified through the sheet body for the purpose of easily obtaining a test piece of a predetermined size. As a more detailed method of solidifying the molten PAS resin, it is preferable to use cooling means to cool the sheet on which the molten PAS resin is placed, thereby solidifying the molten PAS resin and recovering the test piece. Another method for solidifying the molten PAS resin is to solidify the molten PAS resin between the pair of sheet bodies by cooling at least one of a pair of sheet bodies placed so as to sandwich the molten PAS resin. It is preferable to collect the test piece by As a result, the test piece can be easily collected without the solidified PAS resin adhering to it, so that deterioration of the appearance characteristics (thickness, etc.) can be reduced, or breakage of the test piece can be suppressed.
 <試験片>
 本実施形態における試験片はゼータ電位測定の被測定物の一例であって、ゼータ電位測定毎にその測定値自体に極力影響を及ぼさないような一定の外観的基準(一定の形状又は大きさ等)を設ける必要がある。そのため、本実施形態の工程(3-1)では、ゼータ電位測定の便宜上、一定の形状、大きさ及び厚みを備えた試験片を被測定物として作製している。本実施形態における試験片は、ゼータ電位測定毎にその測定値自体に極力影響を及ぼさない限り特に制限されることはないと考えられる。
<Test piece>
The test piece in the present embodiment is an example of the object to be measured for zeta potential measurement. ) must be provided. Therefore, in the step (3-1) of the present embodiment, a test piece having a certain shape, size and thickness is prepared as an object to be measured for convenience of zeta potential measurement. It is considered that the test piece in this embodiment is not particularly limited as long as it does not affect the measured value itself for each zeta potential measurement as much as possible.
 本明細書では、試験片として、ゼータ電位測定の便宜上、4.5~5.5cm(長さ)×2.5~3.5cm(幅)×0.05~0.15cm(厚さ)のフィルム状のPAS樹脂を使用している。しかしながら、ゼータ電位測定値自体に極力影響を及ぼさない限り、試験片の形状、大きさ及び厚み等は特に制限されることはないことはいうまでもない。 In this specification, the test piece is 4.5 to 5.5 cm (length) × 2.5 to 3.5 cm (width) × 0.05 to 0.15 cm (thickness) for convenience of zeta potential measurement. A film-like PAS resin is used. However, it goes without saying that the shape, size, thickness, etc. of the test piece are not particularly limited as long as they do not affect the zeta potential measurement value itself as much as possible.
 本実施形態における試験片作製工程は、4.5~5.5cm(長さ)×2.5~3.5cm(幅)×0.05~0.15cm(厚さ)の平板状(フィルム状を含む)であり、かつ非晶状態のPAS樹脂から構成された試験片を作製する工程であることが好ましい。 In the test piece preparation process in this embodiment, a flat plate (film-like including) and is preferably a step of producing a test piece composed of a PAS resin in an amorphous state.
 なお、本明細書において、「試験片の長さ及び幅」はノギスを用いて測定している。一方、「試験片の厚さ」とは、試験片を、長手方向に8mm間隔で5箇所、前記長手に直交する方向に切断し、各切断面において幅方向に5mm間隔で5点の試験片の厚さをTH-104 フィルム用厚さ測定機(テスタ-産業株式会社製)を用いて測定した、合計25点の厚さの平均値を指す。 In this specification, the "length and width of the test piece" are measured using vernier calipers. On the other hand, the "thickness of the test piece" means that the test piece is cut at 5 points in the longitudinal direction at 8 mm intervals in the direction perpendicular to the longitudinal direction, and 5 test pieces at 5 mm intervals in the width direction on each cut surface. The thickness of the film was measured using a TH-104 film thickness measuring machine (manufactured by Tester Sangyo Co., Ltd.), and refers to the average value of the thickness of a total of 25 points.
 また、本実施形態において、試験片の表面又はシート体の表面は、測定値の変動を抑制する目的として、表面処理を施してもよい。上記表面処理法としては、特に制限はなく、公知の方法の中から、試験片の特性を損なわない範囲で適宜選択することができ、例えば、アセトンなどのPAS樹脂が不溶な有機溶媒による脱脂などが挙げられる。 In addition, in the present embodiment, the surface of the test piece or the surface of the sheet body may be surface-treated for the purpose of suppressing variation in measured values. The surface treatment method is not particularly limited, and can be appropriately selected from known methods within a range that does not impair the characteristics of the test piece. For example, degreasing with an organic solvent such as acetone in which the PAS resin is insoluble is mentioned.
・工程(3-2)<ゼータ電位測定工程>
 工程(3-2)は、上記試験片作製工程により得られた試験片の表面のゼータ電位を、流動電位法により測定する工程である。ゼータ電位値をPAS樹脂の表面特性の指標とすることにより、比較的簡便に評価試料の表面物性を測定することができ、かつPAS樹脂の物性を容易に把握することができる。また、PAS樹脂の同試料についてゼータ電位値を複数回測定した場合、従来のMFRを用いた粘度上昇度測定と比べて、ゼータ電位値は測定による振れ幅(変動係数)が小さい。
・Step (3-2) <Zeta potential measurement step>
The step (3-2) is a step of measuring the zeta potential of the surface of the test piece obtained in the test piece preparation step by streaming potential method. By using the zeta potential value as an index of the surface properties of the PAS resin, it is possible to relatively easily measure the surface properties of the evaluation sample and to easily grasp the properties of the PAS resin. In addition, when the zeta potential value is measured multiple times for the same PAS resin sample, the fluctuation range (variation coefficient) of the zeta potential value due to the measurement is smaller than in the viscosity increase measurement using the conventional MFR.
 本実施形態における工程(3-2)は、試験片の表面のゼータ電位を、流動電位法により、pH7.8~8.2の条件下で測定する工程であることが好ましい。ゼータ電位の測定条件をpH7.8~8.2の範囲内に設定することにより、測定値のばらつきがより低減されるだけではなく、観測されるゼータ電位値の絶対値自体を大きくすることができる。これにより、例えばゼータ電位値の差分量が大きくなるため、同一又は異なるPAS樹脂間のゼータ電位値の差を検出しやすくなり、PAS樹脂の性状をより高精度に評価し易くなる。 The step (3-2) in the present embodiment is preferably a step of measuring the zeta potential of the surface of the test piece by the streaming potential method under conditions of pH 7.8 to 8.2. By setting the zeta potential measurement conditions within the range of pH 7.8 to 8.2, not only the variation in the measured values is further reduced, but also the absolute value of the observed zeta potential value itself can be increased. can. As a result, for example, the amount of difference in zeta potential value increases, so that it becomes easier to detect the difference in zeta potential value between the same or different PAS resins, and it becomes easier to evaluate the properties of the PAS resins with higher accuracy.
 また、本実施形態における工程(3-2)は、流動電位法により互いに異なる複数のpHの範囲下で、試験片の表面のゼータ電位を測定してもよい。さらには、例えば、滴定曲線の変曲点に近いpH=8近傍(例えば、pH6.5~8.4)でのpH調節が難しい場合、pH=5近傍(例えば、pH4.5~6.0)で試験片の表面のゼータ電位を併せて測定してもよい。 Further, in step (3-2) in the present embodiment, the zeta potential of the surface of the test piece may be measured under a plurality of different pH ranges by streaming potential method. Furthermore, for example, when it is difficult to adjust pH near pH = 8 (eg, pH 6.5 to 8.4) near the inflection point of the titration curve, near pH = 5 (eg, pH 4.5 to 6.0 ), the zeta potential of the surface of the test piece may also be measured.
 <ゼータ電位>
 本実施形態におけるゼータ電位は、流動電位法を用いてpHが7.8~8.2の範囲内で測定される。流動電位法によるゼータ電位は、試験片と電解溶液との固液界面の電気二重層を形成することにより生じる、前記試験片の表面近傍における電解溶液の層流と前記試験片から遠位における電解溶液の層流との層流の差、電解溶液の粘度、及び電解溶液の誘電率を計測して、ヘルムホルツ-スモルコフシキの式から算出される。以下、図1を用いて流動電位法によるゼータ電位の測定について説明する。
<Zeta potential>
The zeta potential in the present embodiment is measured within a pH range of 7.8 to 8.2 using streaming potential method. The zeta potential by streaming potential method is generated by forming an electric double layer at the solid-liquid interface between the test piece and the electrolytic solution. It is calculated from the Helmholtz-Smolkowschki equation by measuring the difference between the laminar flow of the solution, the viscosity of the electrolyte solution, and the dielectric constant of the electrolyte solution. The measurement of zeta potential by the streaming potential method will be described below with reference to FIG.
 図1は、流動電位法によるゼータ電位の測定の一例として、平板状(フィルム状を含む)の試験片2である評価試料(=被測定物)と電解溶液3との固液界面の電気二重層の様子を模式的に表した模式図である。また、図1では、説明の便宜上、PAS樹脂から構成される試験片2が負に帯電している例を表す。 FIG. 1 shows, as an example of the measurement of zeta potential by the streaming potential method, the electric potential of the solid-liquid interface between the evaluation sample (=measurement object), which is a flat plate-like (including film-like) test piece 2, and the electrolytic solution 3. It is a schematic diagram which represented the mode of the multilayer typically. For convenience of explanation, FIG. 1 shows an example in which the test piece 2 made of PAS resin is negatively charged.
 本発明の流動電位法によるゼータ電位の測定では、図1に示すクランプセル1の少なくとも片面に試験片2であるPASフィルムをセットし、pHを8に調整した電解液3(1mmolのKCl水溶液)を流し、圧力差(Δp)によって生じる電圧を計測し、後述のヘルムホルツ-スモルコフシキ(Helmholtz-Smoluchowski)の式(式(II))からゼータ電位を測定している。 In the zeta potential measurement by the streaming potential method of the present invention, a PAS film, which is a test piece 2, was set on at least one side of the clamp cell 1 shown in FIG. is flowed, the voltage generated by the pressure difference (Δp) is measured, and the zeta potential is measured from the Helmholtz-Smoluchowski formula (formula (II)) described later.
 図1に示すように、試験片2が負に帯電していると、電解溶液3中において、正の電荷を有する微粒子又はイオンが試験片2の表面に集まり、いわゆる電気二重層を形成する。この状態に電極4a,b間に電場が印加されると、正の電荷を有する微粒子又はイオンにより試験片2の表面近傍で負の電極4a側への流れ(層流)が生じる。これにより、この流れ(層流)を補償するためにクランプセル1中央部では逆方向への流れ(層流)が生じる。図1では、矢印が電解溶液3の流れの方向を表している。また、圧縮空気又は不活性ガスを用いて一定圧力差(ΔP)で電解溶液3を押し流して流れを生じさせてもよい。そして、上記原理により計測された、層流流速の差(又は圧力差)、電解溶液3の粘度及び電解溶液3の誘電率等の値を用いて、以下のヘルムホルツ-スモルコフシキ(Helmholtz-Smoluchowski)の式: As shown in FIG. 1, when the test piece 2 is negatively charged, positively charged fine particles or ions gather on the surface of the test piece 2 in the electrolytic solution 3 to form a so-called electric double layer. When an electric field is applied between the electrodes 4a and 4b in this state, a flow (laminar flow) toward the negative electrode 4a occurs near the surface of the test piece 2 due to positively charged fine particles or ions. As a result, a flow in the opposite direction (laminar flow) occurs in the central portion of the clamp cell 1 in order to compensate for this flow (laminar flow). In FIG. 1 , arrows indicate the direction of flow of the electrolytic solution 3 . Compressed air or an inert gas may also be used to sweep away the electrolyte solution 3 with a constant pressure difference (ΔP) to create a flow. Then, using the values of the laminar flow velocity difference (or pressure difference), the viscosity of the electrolytic solution 3, the dielectric constant of the electrolytic solution 3, etc., measured by the above principle, the following Helmholtz-Smoluchowski formula formula:
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-I000002
(上記式(I)及び(II)中、Istrは流動電流を表し、Ustrは流動電位を表し、Δpは差圧を表し、ηは電解溶液の粘度を表し、εr×ε0は電解質溶液の誘電率を表し、KBは電気伝導率を表し、L/Aは流路のパラメータを表す。)
からゼータ電位(ζ)が算出される。
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-I000002
(In the above formulas (I) and (II), I str represents the streaming current, U str represents the streaming potential, Δp represents the differential pressure, η represents the viscosity of the electrolyte solution, and εr × ε0 represents the electrolyte solution. represents the dielectric constant of , KB represents the electrical conductivity, and L/A represents the parameters of the channel.)
The zeta potential (ζ) is calculated from
 <ゼータ電位の測定条件>
 本実施形態において、ゼータ電位の測定に使用可能な電解溶液としては、1価-1価電解質を含有する水溶液が好ましく、例えば、塩化カリウム水溶液、塩化ナトリウム水溶液、塩化リチウム水溶液、水酸化カリウム水溶液、水酸化ナトリウム水溶液又は水酸化リチウム水溶液が挙げられる。
<Zeta potential measurement conditions>
In the present embodiment, the electrolytic solution that can be used to measure the zeta potential is preferably an aqueous solution containing a monovalent-monovalent electrolyte, such as an aqueous potassium chloride solution, an aqueous sodium chloride solution, an aqueous lithium chloride solution, an aqueous potassium hydroxide solution, An aqueous sodium hydroxide solution or an aqueous lithium hydroxide solution may be mentioned.
 また、ゼータ電位の測定の際に使用するpH調整用の酸又はアルカリとしては、一般的な酸又はアルカリ水溶液が用いられ、HCl又はKOHが主に用いられる。上記電解溶液中の電解質の濃度は、0.1~1000mmol/Lであることが好ましい。本実施形態において、特定のpH範囲の条件下でゼータ電位測定を行う場合、使用可能な電解溶液として、緩衝溶液を用いてもよい。当該緩衝溶液は、測定するpH条件に応じて適宜選択することができる。また、緩衝溶液は、弱酸及びその塩(共役塩基)、あるいは弱塩基及びその塩(共役酸)を混合した溶液をいい、これらを組合せて所望のpHに調整しうる。例えば、pH6以上8未満に設定する場合、リン酸緩衝溶液、MES緩衝溶液、Tris緩衝溶液又はHEPES緩衝液が挙げられる。さらに、pH8以上9未満に設定する場合、CHES緩衝溶液、TAPS緩衝溶液又はBicine緩衝溶液が挙げられる。 In addition, as the pH-adjusting acid or alkali used when measuring the zeta potential, a general acid or alkali aqueous solution is used, and HCl or KOH is mainly used. The electrolyte concentration in the electrolytic solution is preferably 0.1 to 1000 mmol/L. In this embodiment, when zeta potential measurement is performed under conditions of a specific pH range, a buffer solution may be used as an electrolytic solution that can be used. The buffer solution can be appropriately selected according to the pH conditions to be measured. Further, the buffer solution refers to a weak acid and its salt (conjugate base), or a mixed solution of a weak base and its salt (conjugate acid), which can be combined to adjust the desired pH. For example, when setting the pH to 6 or more and less than 8, phosphate buffer, MES buffer, Tris buffer or HEPES buffer can be used. Furthermore, when setting to pH 8 or more and less than 9, CHES buffer solution, TAPS buffer solution, or Bicine buffer solution is mentioned.
 本実施形態における工程(3-2)に使用する電解溶液のpHは、7.8~8.2の範囲であることが好ましく、本実施形態の好適な一例では、pH7.8~8.2の電解溶液を使用している。また、本実施形態におけるゼータ電位の電解溶液の伝導度は、14~15mS/mの範囲でありうる。なお、本明細書におけるpH及び伝導度の測定方法は、pH及び導電率計(SurPASS3(Anton Paar社))を用いて測定している。また、本実施形態におけるゼータ電位の測定温度は、室温付近(22~28℃)であることが好ましい。 The pH of the electrolytic solution used in step (3-2) in the present embodiment is preferably in the range of 7.8 to 8.2. electrolyte solution is used. Also, the conductivity of the zeta potential electrolyte solution in this embodiment may be in the range of 14-15 mS/m. In addition, the pH and conductivity measurement methods in this specification are measured using a pH and conductivity meter (SurPASS3 (Anton Paar)). Moreover, the temperature for measuring the zeta potential in the present embodiment is preferably around room temperature (22 to 28° C.).
 本実施形態における工程(3-2)は、一例として以下の条件を使用している。
・電解溶液の種類:KCl水溶液
・電解溶液に用いる超純水:ASTM Iグレード
・電解溶液の濃度:1mmol/L
・電解溶液の伝導度:14~15mS/m
・測定温度:20~28℃
・pH:7.8~8.2
・セルの種類:クランプセル
・セルの材質:PVDF
・セルと試験片(評価試料)との間隔:100~120μmに調整
・測定圧力範囲:200~450mbar
The step (3-2) in this embodiment uses the following conditions as an example.
・Type of electrolytic solution: KCl aqueous solution ・Ultrapure water used for electrolytic solution: ASTM I grade ・Concentration of electrolytic solution: 1 mmol/L
・Electrolytic solution conductivity: 14 to 15 mS/m
・Measurement temperature: 20 to 28°C
・pH: 7.8 to 8.2
・Cell type: Clamp cell ・Cell material: PVDF
・Gap between cell and test piece (evaluation sample): adjusted to 100 to 120 μm ・Measurement pressure range: 200 to 450 mbar
・工程(3-3)<判別工程>
 本実施形態における工程(3-3)は、前記ゼータ電位測定工程により測定されたゼータ電位値が-50~-65mVの範囲のPAS樹脂を判別する判別工程である。工程(3-3)の好適な態様は、ゼータ電位測定工程によりpH7.8~8.2(例えばpH=8.0)の条件下で測定されたゼータ電位値が、-50~-65mVの範囲に含まれるか否かを判別する判別工程でありうる。
・ Process (3-3) <discrimination process>
The step (3-3) in this embodiment is a discrimination step of discriminating PAS resins having a zeta potential value in the range of -50 to -65 mV as measured by the zeta potential measurement step. A preferred aspect of the step (3-3) is that the zeta potential value measured under conditions of pH 7.8 to 8.2 (eg pH = 8.0) in the zeta potential measurement step is -50 to -65 mV. It can be a determination step of determining whether or not it is included in the range.
 試験片の表面のゼータ電位値が、pH7.8~8.2(例えば、pH=8.0)において-50~-65mVの範囲を示すPAS樹脂は、反応性に優れるため、他の反応性材料をさらに配合したPAS樹脂組成物やその成形品において優れた機械的特性を呈することができる。 PAS resin, which exhibits a zeta potential value on the surface of the test piece in the range of -50 to -65 mV at pH 7.8 to 8.2 (eg, pH = 8.0), has excellent reactivity. Excellent mechanical properties can be exhibited in the PAS resin composition in which the material is further blended and the molded article thereof.
 試験片の表面のゼータ電位を所定のpH(例えば、pH3~9)で測定した場合、そのゼータ電位値が大きいと、試験片を構成するPAS樹脂の分子末端に存在する反応性官能基(例えば、酸素原子又は窒素原子を含む官能基)の数が多い傾向を示すため、準備したPAS樹脂の反応性が当然高くなると考えられる。特に、同一分子量のPAS樹脂を構成成分とする試験片同士のゼータ電位値を比較すると、ゼータ電位値が大きい試験片に使用したPAS樹脂の反応性が高い傾向が確認される。 When the zeta potential of the surface of the test piece is measured at a predetermined pH (for example, pH 3 to 9), if the zeta potential value is large, a reactive functional group (for example, , a functional group containing an oxygen atom or a nitrogen atom) tends to be large, the reactivity of the prepared PAS resin is naturally considered to be high. In particular, when the zeta potential values of test pieces having the same molecular weight of PAS resin as constituent components are compared, it is confirmed that the reactivity of the PAS resin used in the test piece having a large zeta potential value tends to be high.
 本実施形態における別の態様において、上記工程(3-3)と併用して、前記工程(3-2)によりpH4.8~5.2(例えば、pH=5.0)の条件下で測定された前記試験片の表面のゼータ電位値が、-30~-45mVの範囲に含まれるか否かを判別する判別工程を有してもよい。当該範囲に含まれると、より反応性に優れたPAS樹脂を提供できる。なお、pH4.8~5.2(例えば、pH=5.0)の測定系の方より、pH7.8~8.2(例えば、pH=8.0)の測定系の方が、同一又は異なるPPS樹脂間のゼータ電位値及びその差分がより大きくなるため、PPS樹脂の性状をより高精度に評価し易くなる。 In another aspect of the present embodiment, in combination with the step (3-3), the step (3-2) is measured under the conditions of pH 4.8 to 5.2 (eg, pH = 5.0). It may have a determination step of determining whether the zeta potential value of the surface of the test piece that has been applied is within the range of -30 to -45 mV. If it is included in this range, a PAS resin with more excellent reactivity can be provided. In addition, the measurement system of pH 7.8 to 8.2 (eg, pH = 8.0) is the same or Since the zeta potential values and their differences between different PPS resins become larger, it becomes easier to evaluate the properties of the PPS resins with higher accuracy.
 PAS樹脂のゼータ電位値が-50mV以上であると、PAS樹脂の耐熱水性が低下するという傾向を示す。一方、上記ゼータ電位値が-65mV以下であると、PAS樹脂と反応性官能基を有する物質との反応性が低下するという傾向を示す。 When the zeta potential value of the PAS resin is -50 mV or more, the hot water resistance of the PAS resin tends to decrease. On the other hand, when the zeta potential value is -65 mV or less, the reactivity between the PAS resin and the substance having a reactive functional group tends to decrease.
 工程(3-3)の判別工程の後に、特定のゼータ電位を有するPAS樹脂を選別する工程(選別工程)を有してもよい。これにより、特定の反応性を有するPAS樹脂を選別することができる。選別したロットの樹脂のゼータ電位が同等であれば、反応性官能基を有する物質との反応性も同等となるため、樹脂組成物や成形品にしたときの機械的強度等も同等になりうる。よって、ゼータ電位を指標として選別することで、従来の指標である粘度上昇度を用いた場合よりも、よりロット間の物性ばらつきが少ない成形品及びそれを構成する樹脂組成物を得ることができる。 A step (selection step) of selecting a PAS resin having a specific zeta potential may be included after the determination step of step (3-3). Thereby, a PAS resin having a specific reactivity can be selected. If the selected lot of resin has the same zeta potential, the reactivity with a substance having a reactive functional group will also be the same, so the mechanical strength etc. when made into a resin composition or molded product can be the same. . Therefore, by sorting using the zeta potential as an index, it is possible to obtain a molded article with less variation in physical properties between lots and a resin composition constituting the molded article than when the degree of viscosity increase, which is a conventional index, is used. .
<PAS樹脂組成物>
 次に、PAS樹脂組成物について説明する。本実施形態に係るPAS樹脂組成物は、上述の工程(1)~(3)を経て得られた、pH7.8~8.2における試験片表面のゼータ電位が-50~-65mVの範囲であるPAS樹脂と、反応性官能基を有する物質と、を含有する、PAS樹脂組成物である。
<PAS resin composition>
Next, the PAS resin composition will be explained. The PAS resin composition according to the present embodiment has a zeta potential on the surface of the test piece at pH 7.8 to 8.2 obtained through the above steps (1) to (3) in the range of -50 to -65 mV. A PAS resin composition containing a certain PAS resin and a substance having a reactive functional group.
 本実施形態におけるPAS樹脂組成物中に含まれるPAS樹脂は、特定の範囲のゼータ電位値を有することから、高い反応性を示す。これにより、他の原料、特に反応性官能基を有する物質と、特定の範囲のゼータ電位値を有するPAS樹脂とを溶融混練して樹脂組成物を作製すると、PAS樹脂と反応性官能基を有する物質とが十分に反応するため、優れた機械的強度を示す。また、PAS樹脂組成物中に含まれるPAS樹脂は、特定の範囲のゼータ電位値を有することから、反応性のばらつきが少なくなり、その結果、PAS樹脂組成物全体の物性自体のばらつきも少なくなる。 The PAS resin contained in the PAS resin composition of the present embodiment exhibits high reactivity because it has a zeta potential value within a specific range. As a result, when a resin composition is prepared by melt-kneading another raw material, particularly a substance having a reactive functional group, and a PAS resin having a zeta potential value within a specific range, the PAS resin and the reactive functional group are produced. It exhibits excellent mechanical strength because it reacts well with substances. In addition, since the PAS resin contained in the PAS resin composition has a zeta potential value within a specific range, variations in reactivity are reduced, and as a result, variations in the physical properties of the entire PAS resin composition are reduced. .
 本実施形態における反応性官能基を有する物質としては、前記PAS樹脂と相互作用(化学結合を含む)しうる反応性官能基を有する物質であれば特に制限されることはないが、シランカップリング剤、エラストマー、エポキシ樹脂、及び表面処理された無機充填剤からなる群から選択される1種又は2種以上の物質であることが好ましい。以下、好適な反応性官能基を有する物質について説明する。 The substance having a reactive functional group in the present embodiment is not particularly limited as long as it is a substance having a reactive functional group capable of interacting (including chemical bonding) with the PAS resin. It is preferably one or more substances selected from the group consisting of agents, elastomers, epoxy resins, and surface-treated inorganic fillers. Substances having suitable reactive functional groups are described below.
<シランカップリング剤>
 本実施形態に係るPAS樹脂組成物は、シランカップリング剤を配合することが好ましい。当該シランカップリング剤としては、本発明の効果を損ねなければ特に限定されないが、ヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基の塩からなる群より選ばれる少なくとも一種の基と反応し得る官能基を有するシランカップリング剤が好ましいものとして挙げられる。係る官能基としては、エポキシ基、アミノ基、水酸基、カルボキシル基、メルカプト基、イソシアネート基、オキサゾリン基、及び、式:R(CO)O(CO)-又はR(CO)O-(式中、Rは炭素原子数1~8のアルキル基を表す。)で表される基が挙げられる。このようなシランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有アルコキシシラン化合物、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシラン等のイソシアナト基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン化合物、γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシラン等の水酸基含有アルコキシシラン化合物が挙げられる。
<Silane coupling agent>
The PAS resin composition according to this embodiment preferably contains a silane coupling agent. The silane coupling agent is not particularly limited as long as it does not impair the effects of the present invention, but a functional group capable of reacting with at least one group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and a salt of a carboxyl group. A silane coupling agent having Such functional groups include epoxy group, amino group, hydroxyl group, carboxyl group, mercapto group, isocyanate group, oxazoline group, and formula: R (CO) O (CO) - or R (CO) O - (in the formula, R represents an alkyl group having 1 to 8 carbon atoms.). Examples of such silane coupling agents include epoxy groups such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and the like. Alkoxysilane compound containing, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane , γ-isocyanatopropylethyldiethoxysilane, γ-isocyanatopropyltrichlorosilane and other isocyanato group-containing alkoxysilane compounds, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-(2-aminoethyl)amino Examples include amino group-containing alkoxysilane compounds such as propyltrimethoxysilane and γ-aminopropyltrimethoxysilane, and hydroxyl group-containing alkoxysilane compounds such as γ-hydroxypropyltrimethoxysilane and γ-hydroxypropyltriethoxysilane.
 本実施形態において、シランカップリング剤は任意成分であり、配合する際の割合は特に限定されず、例えば、PAS樹脂100質量部に対して、好ましくは0.3質量部以上であることが好ましく、0.4質量部以上であることがより好ましく、0.5質量部以上であることがさらに好ましい。一方、より優れた樹脂組成物の流動性や加工性を確保する観点から、前記PAS樹脂100質量部に対して10質量部以下であることがより好ましく、8質量部以下であることがさらに好ましく、6質量部以下であることが特に好ましい。 In the present embodiment, the silane coupling agent is an optional component, and the ratio when blending is not particularly limited. For example, it is preferably 0.3 parts by mass or more with respect to 100 parts by mass of the PAS resin. , more preferably 0.4 parts by mass or more, more preferably 0.5 parts by mass or more. On the other hand, from the viewpoint of ensuring better fluidity and workability of the resin composition, it is more preferably 10 parts by mass or less, more preferably 8 parts by mass or less, relative to 100 parts by mass of the PAS resin. , 6 parts by mass or less.
<エラストマー>
 本実施形態に係るPAS樹脂組成物は、エラストマーを配合することが好ましい。前記エラストマーを含むことによって、PAS樹脂組成物の靭性や耐冷熱衝撃性をより高めることができる。同様の観点から、前記エラストマーとして熱可塑性エラストマーを用いることが好ましい。前記熱可塑性エラストマーとしては、本発明の効果を損ねなければ特に限定されないが、熱可塑性エラストマーとしては、例えば、ポリオレフィン系エラストマー、フッ素系エラストマー及びシリコーン系エラストマー等が挙げられる。
<Elastomer>
The PAS resin composition according to this embodiment preferably contains an elastomer. By including the elastomer, the toughness and thermal shock resistance of the PAS resin composition can be further enhanced. From the same point of view, it is preferable to use a thermoplastic elastomer as the elastomer. The thermoplastic elastomer is not particularly limited as long as it does not impair the effects of the present invention. Examples of the thermoplastic elastomer include polyolefin-based elastomers, fluorine-based elastomers, and silicone-based elastomers.
 エラストマー(特に熱可塑性エラストマー)は、ヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基からなる群より選ばれる少なくとも一種の基と反応し得る官能基を有することが好ましい。係る官能基としては、エポキシ基、アミノ基、水酸基、カルボキシル基、メルカプト基、イソシアネート基、オキサゾリン基、及び、式:R(CO)O(CO)-又はR(CO)O-(式中、Rは炭素原子数1~8のアルキル基を表す。)で表される基が挙げられる。係る官能基を有する熱可塑性エラストマーは、例えば、α-オレフィンと前記官能基を有するビニル重合性化合物との共重合により得ることができる。α-オレフィンは、例えば、エチレン、プロピレン及びブテン-1等の炭素数2~8のα-オレフィン類が挙げられる。前記官能基を有するビニル重合性化合物としては、例えば、(メタ)アクリル酸及び(メタ)アクリル酸エステル等のα,β-不飽和カルボン酸及びそのアルキルエステル、マレイン酸、フマル酸、イタコン酸及びその他の炭素数4~10のα、β-不飽和ジカルボン酸及びその誘導体(モノ若しくはジエステル、及びその酸無水物等)、並びにグリシジル(メタ)アクリレート等が挙げられる。これらの中でも、エポキシ基、カルボキシル基、及び、式:R(CO)O(CO)-又はR(CO)O-(式中、Rは炭素原子数1~8のアルキル基を表す。)で表される基からなる群から選ばれる少なくとも1種の官能基を有するエチレン-プロピレン共重合体及びエチレン-ブテン共重合体が、靭性及び耐衝撃性の向上の点から好ましい。 The elastomer (particularly thermoplastic elastomer) preferably has a functional group capable of reacting with at least one group selected from the group consisting of hydroxyl group, amino group, carboxyl group and carboxyl group. Such functional groups include epoxy group, amino group, hydroxyl group, carboxyl group, mercapto group, isocyanate group, oxazoline group, and formula: R (CO) O (CO) - or R (CO) O - (in the formula, R represents an alkyl group having 1 to 8 carbon atoms.). A thermoplastic elastomer having such a functional group can be obtained, for example, by copolymerizing an α-olefin and a vinyl polymerizable compound having the functional group. Examples of α-olefins include α-olefins having 2 to 8 carbon atoms such as ethylene, propylene and butene-1. Examples of the vinyl polymerizable compound having the functional group include α,β-unsaturated carboxylic acids and their alkyl esters such as (meth)acrylic acid and (meth)acrylic acid esters, maleic acid, fumaric acid, itaconic acid and Other examples include α,β-unsaturated dicarboxylic acids having 4 to 10 carbon atoms and derivatives thereof (mono- or diesters, acid anhydrides thereof, etc.), glycidyl (meth)acrylate, and the like. Among these, an epoxy group, a carboxyl group, and a formula: R (CO) O (CO) - or R (CO) O - (wherein R represents an alkyl group having 1 to 8 carbon atoms) Ethylene-propylene copolymers and ethylene-butene copolymers having at least one functional group selected from the group consisting of the groups represented are preferred from the standpoint of improving toughness and impact resistance.
 本実施形態において、エラストマーは任意成分であるが、配合する際の割合は特に限定されず、例えば、PAS樹脂100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上、さらに好ましくは1質量部以上から、好ましくは30質量部以下、より好ましくは20質量部以下、さらに好ましくは15質量部以下である。 In the present embodiment, the elastomer is an optional component, but the ratio when blending is not particularly limited. 1 part by mass or more, preferably 1 part by mass or more, preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 15 parts by mass or less.
<エポキシ樹脂>
 本実施形態に係るPAS樹脂組成物は、エポキシ樹脂を配合することが好ましい。当該エポキシ樹脂としては、本発明の効果を損ねなければ特に限定されず、例えば、ビスフェノールA型、ビスフェノールF型のようなビスフェノール型エポキシ樹脂;クレゾールノボラック、フェノールノボラックのようなノボラック型エポキシ樹脂;環状脂肪族型エポキシ樹脂;グリシジルエステル型エポキシ樹脂;グリシジルアミノ型エポキシ樹脂;ポリアリーレンエーテル構造を有するエポキシ樹脂等が挙げられ、中でも、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂が好ましい。
<Epoxy resin>
The PAS resin composition according to the present embodiment preferably contains an epoxy resin. The epoxy resin is not particularly limited as long as it does not impair the effects of the present invention. Examples include bisphenol type epoxy resins such as bisphenol A type and bisphenol F type; glycidyl ester type epoxy resins; glycidyl amino type epoxy resins; and epoxy resins having a polyarylene ether structure.
 本実施形態において、エポキシ樹脂は任意成分であるが、配合する際の割合は特に限定されず、例えば、PAS樹脂100質量部に対して、好ましくは0.1質量部以上、より好ましくは1質量部以上、さらに好ましくは5質量部以上から、好ましくは30質量部質量部以下、より好ましくは20質量部下、さらに好ましくは15質量部以下である。 In the present embodiment, the epoxy resin is an optional component, but the ratio at the time of blending is not particularly limited. parts or more, more preferably 5 parts by mass or more, preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 15 parts by mass or less.
 なお、本発明に用いるPAS樹脂組成物に含まれるこれらのエポキシ樹脂は、硬化剤が存在すると溶融混練時に硬化反応によりエポキシ基が消失するため、エポキシ樹脂成分中のエポキシ基の合計1当量に対して、硬化剤中の活性基が0.1当量以下、より好ましくは0.01当量以下、最も好ましくは0当量、すなわち不存在下である。 These epoxy resins contained in the PAS resin composition used in the present invention lose epoxy groups due to a curing reaction during melt-kneading when a curing agent is present. Therefore, the amount of active groups in the curing agent is 0.1 equivalents or less, more preferably 0.01 equivalents or less, and most preferably 0 equivalents, ie, absent.
<表面処理された無機充填剤>
 本実施形態に係るPAS樹脂組成物は、表面処理された無機充填剤を配合することが好ましい。これら無機充填剤としては本発明の効果を損なうものでなければ公知慣用の材料を用いることもでき、例えば、繊維状のものや、粒状や板状などの非繊維状のものなど、さまざまな形状の無機充填剤等が挙げられる。具体的には、ガラス繊維、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、珪酸カルシウム、ワラストナイト等の繊維、天然繊維等の繊維状充填剤が使用でき、またガラスビーズ、ガラスフレーク、硫酸バリウム、クレー、パイロフィライト、ベントナイト、セリサイト、マイカ、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、ガラスビーズ、ゼオライト、ミルドファイバー、硫酸カルシウム等の非繊維状充填剤も使用できる。無機充填剤を表面処理する表面処理剤としては、具体的には、エポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物、ボラン処理、セラミックコート等があげられる。なかでも、エポキシ系化合物またはシラン系化合物が好ましい。
<Surface-treated inorganic filler>
The PAS resin composition according to the present embodiment preferably contains a surface-treated inorganic filler. As these inorganic fillers, known and commonly used materials can be used as long as they do not impair the effects of the present invention. and inorganic fillers. Specifically, fibers such as glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, calcium silicate, wollastonite, and fibrous filler such as natural fiber are used. It can also be used for glass beads, glass flakes, barium sulfate, clay, pyrophyllite, bentonite, sericite, mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, glass beads, zeolite, milled fiber, calcium sulfate, etc. Non-fibrous fillers can also be used. Specific examples of the surface treatment agent for surface-treating the inorganic filler include epoxy-based compounds, isocyanate-based compounds, silane-based compounds, titanate-based compounds, borane treatment, ceramic coating, and the like. Among them, epoxy-based compounds and silane-based compounds are preferred.
 本発明において無機充填剤は必須成分ではなく、配合する場合、その含有量は本発明の効果を損ねなければ特に限定されるものではない。無機充填剤の配合量としては、例えば、PAS樹脂100質量部に対して、5質量部以上であることが好ましく、10量部以上であることがより好ましく、20質量部以上であることがさらに好ましい。一方、より優れた樹脂組成物の流動性や加工性、成形品表面の平滑性を得る観点から、前記PAS樹脂100質量部に対して350質量部以下であることがより好ましく、300質量部以下であることがさらに好ましく、250質量部以下であることが特に好ましい。 The inorganic filler is not an essential component in the present invention, and when blended, its content is not particularly limited as long as it does not impair the effects of the present invention. The amount of the inorganic filler compounded is, for example, preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and further preferably 20 parts by mass or more with respect to 100 parts by mass of the PAS resin. preferable. On the other hand, from the viewpoint of obtaining more excellent fluidity and workability of the resin composition and smoothness of the surface of the molded product, it is more preferably 350 parts by mass or less, and 300 parts by mass or less with respect to 100 parts by mass of the PAS resin. More preferably, it is particularly preferably 250 parts by mass or less.
<その他の成分>
 本実施形態に係るPAS樹脂組成物は、要求される性能に応じて、前記PAS樹脂以外の合成樹脂、色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、防錆剤、及びカップリング剤等の添加剤(以下、「その他の成分」という。)を含むことができる。前記その他の成分は、例えば、前記PAS樹脂100質量部に対して、好ましくは0.01質量部以上であり、好ましくは1000質量部以下で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。
<Other ingredients>
Depending on the performance required, the PAS resin composition according to the present embodiment may contain a synthetic resin other than the PAS resin, a coloring agent, an antistatic agent, an antioxidant, a heat stabilizer, an ultraviolet stabilizer, an ultraviolet absorber, Additives such as foaming agents, flame retardants, flame retardant aids, rust inhibitors, and coupling agents (hereinafter referred to as "other components") may be included. The other components are, for example, preferably 0.01 parts by mass or more and preferably 1000 parts by mass or less with respect to 100 parts by mass of the PAS resin, depending on the purpose and application so as not to impair the effects of the present invention. It may be used after adjusting as appropriate.
 前記合成樹脂としては、例えば、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアリーレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ四弗化エチレン樹脂、ポリ二弗化エチレン樹脂、ポリスチレン樹脂、ABS樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等の合成樹脂が挙げられる。 Examples of the synthetic resin include polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polycarbonate resin, polyphenylene ether resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyetherketone resin, poly Synthetic resins such as arylene resins, polyethylene resins, polypropylene resins, polytetrafluoroethylene resins, polydifluoroethylene resins, polystyrene resins, ABS resins, phenol resins, urethane resins, and liquid crystal polymers can be used.
 前記合成樹脂は必須成分ではなく、その配合の割合は本発明の効果を損ねなければ特に限定されるものではなく、それぞれの目的に応じて適宜選択できる。例えば、本実施形態に係るPAS樹脂組成物において、前記PAS樹脂100質量部に対し5質量部以上であり、15質量部以下の程度とすることができる。換言すれば、前記PAS樹脂と合成樹脂との合計に対してPAS樹脂の割合は質量基準で、好ましくは(100/115)以上であり、より好ましくは(100/105)以上である。 The synthetic resin is not an essential component, and the mixing ratio is not particularly limited as long as it does not impair the effects of the present invention, and can be appropriately selected according to each purpose. For example, in the PAS resin composition according to the present embodiment, it can be about 5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the PAS resin. In other words, the ratio of the PAS resin to the total of the PAS resin and the synthetic resin is preferably (100/115) or more, more preferably (100/105) or more, on a mass basis.
<PAS樹脂組成物の製造方法>
 次に、PAS樹脂組成物の製造方法について説明する。本実施形態に係るPAS樹脂組成物の製造方法は、上述の工程(1)~(3)を経て得られたPAS樹脂と、反応性官能基を有する物質とを配合し、溶融混練する工程を有し、かつ、前記PAS樹脂のpH7.8~8.2における試験片の表面のゼータ電位値が-50~-65mVの範囲であるを特徴とする。
<Method for producing PAS resin composition>
Next, a method for producing the PAS resin composition will be described. The method for producing a PAS resin composition according to the present embodiment includes a step of blending the PAS resin obtained through the above steps (1) to (3) and a substance having a reactive functional group, and melt-kneading them. and the zeta potential value of the surface of the test piece at pH 7.8 to 8.2 of the PAS resin is in the range of -50 to -65 mV.
 本実施形態に係るPAS樹脂組成物は、各必須成分及び必要に応じて任意成分を配合する。なお、前記必須成分及び任意成分については、上述した本実施形態に係るPAS樹脂組成物の中で説明した内容と同様である。
 前記必須成分及び任意成分を、配合及び混練する方法としては、特に限定されないが、必須成分と必要に応じて任意成分を配合して、溶融混錬する方法、より詳しくは、必要に応じてタンブラー又はヘンシェルミキサー等で均一に乾式混合し、次いで、二軸押出機に投入して溶融混練する方法が挙げられる。
The PAS resin composition according to the present embodiment contains each essential component and optionally optional components. The essential components and optional components are the same as those described in the PAS resin composition according to the present embodiment.
The method of blending and kneading the essential components and optional components is not particularly limited, but a method of blending the essential components and optionally optional components and melt-kneading them, more specifically, a tumbler if necessary Alternatively, a method of homogeneously dry-mixing with a Henschel mixer or the like and then introducing into a twin-screw extruder to melt-knead may be used.
 溶融混錬は、樹脂温度が前記PAS樹脂の融点以上となる温度範囲、好ましくは該融点+10℃以上となる温度範囲、より好ましくは該融点+10℃以上、さらに好ましくは該融点+20℃以上から、好ましくは該融点+100℃以下、より好ましくは該融点+50℃以下までの範囲の温度に加熱して行うことができる。 Melt-kneading is carried out in a temperature range in which the resin temperature is equal to or higher than the melting point of the PAS resin, preferably the melting point +10°C or higher, more preferably the melting point +10°C or higher, further preferably the melting point +20°C or higher, Preferably, the melting point is +100° C. or lower, more preferably, the melting point is +50° C. or lower.
 前記溶融混練機としては分散性や生産性の観点から二軸混練押出機が好ましく、例えば、樹脂成分の吐出量5~500(kg/hr)の範囲と、スクリュー回転数50~500(rpm)の範囲とを適宜調整しながら溶融混練することが好ましく、それらの比率(吐出量/スクリュー回転数)が0.02~5(kg/hr/rpm)の範囲となる条件下に溶融混練することがさらに好ましい。
 また、溶融混練機への各成分の添加、混合は同時に行ってもよいし、分割して行っても良い。例えば、前記成分のうち、添加剤を添加する場合は、前記二軸混練押出機のサイドフィーダーから該押出機内に投入することが分散性の観点から好ましい。かかるサイドフィーダーの位置は、前記二軸混練押出機のスクリュー全長に対する、該押出機樹脂投入部(トップフィーダー)から該サイドフィーダーまでの距離の比率が、0.1以上であることが好ましく、0.3以上であることがより好ましい。また、かかる比率は0.9以下であることが好ましく、0.7以下であることがより好ましい。
As the melt-kneader, a twin-screw kneading extruder is preferable from the viewpoint of dispersibility and productivity. It is preferable to melt-knead while appropriately adjusting the range of and melt-kneading under conditions where the ratio (discharge rate / screw rotation speed) is in the range of 0.02 to 5 (kg / hr / rpm). is more preferred.
Moreover, addition and mixing of each component to the melt-kneader may be performed simultaneously, or may be performed separately. For example, when an additive is added among the above components, it is preferable from the viewpoint of dispersibility to feed it into the extruder from the side feeder of the twin-screw kneading extruder. Regarding the position of the side feeder, the ratio of the distance from the extruder resin input part (top feeder) to the side feeder with respect to the total screw length of the twin-screw kneading extruder is preferably 0.1 or more, and 0 .3 or more is more preferable. Also, the ratio is preferably 0.9 or less, more preferably 0.7 or less.
 このように溶融混練して得られる本実施形態に係るPAS樹脂組成物は、PAS樹脂が連続相を形成し、他の必須成分や任意成分が分散されたモルフォロジーを有する。本実施形態に係るPAS樹脂組成物は、該溶融混練後に、公知の方法、例えば、溶融状態の樹脂組成物をストランド状に押出成形した後、ペレット、チップ、顆粒、粉末などの形態に加工してから、必要に応じて100~150℃の温度範囲で予備乾燥を施すことが好ましい。 The PAS resin composition according to the present embodiment obtained by melt-kneading in this manner has a morphology in which the PAS resin forms a continuous phase and other essential components and optional components are dispersed. After the melt-kneading, the PAS resin composition according to the present embodiment is processed into pellets, chips, granules, powder, and the like by a known method, for example, extruding the resin composition in a molten state into strands. After that, it is preferable to perform pre-drying in a temperature range of 100 to 150° C., if necessary.
<PAS樹脂成形品、成形品の製造方法>
 本実施形態に係る成形品は、上述した本実施形態に係るPAS樹脂組成物を溶融成形してなる。また、本実施形態に係る成形品の製造方法は、上述した本実施形態に係るPAS樹脂組成物の製造方法により得られたPAS樹脂組成物を、溶融成形する工程を有することを特徴とする。
<PAS resin molded product, method for manufacturing molded product>
The molded article according to this embodiment is obtained by melt-molding the PAS resin composition according to this embodiment described above. Further, the method for producing a molded product according to the present embodiment is characterized by having a step of melt-molding the PAS resin composition obtained by the above-described method for producing a PAS resin composition according to the present embodiment.
 本実施形態に係る成形品は、本実施形態に係るPAS樹脂組成物を材料として用いているため、機械的強度等の物性が高いレベルで維持されつつ、優れた耐湿熱性及び成形性が実現される、という効果を奏する。 Since the molded article according to the present embodiment uses the PAS resin composition according to the present embodiment as a material, physical properties such as mechanical strength are maintained at a high level, and excellent moist heat resistance and moldability are realized. It has the effect of
 前記PAS樹脂組成物の成形は、射出成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形等、各種成形に供することが可能であるが、特に離形性にも優れるため射出成形用途に適している。射出成形にて成形する場合、各種成形条件は特に限定されず、通常一般的な方法にて成形することができる。例えば、射出成形機内で、樹脂温度がPAS樹脂の融点以上の温度範囲、好ましくは該融点+10℃以上の温度範囲、より好ましくは融点+10℃~融点+100℃の温度範囲、さらに好ましくは融点+20℃~融点+50℃の温度範囲で前記PAS樹脂組成物を溶融する工程を経た後、樹脂吐出口よりを金型内に注入して成形すればよい。その際、金型温度も公知の温度範囲、例えば、室温(23℃程度)~300℃、好ましくは120~180℃に設定すればよい。 The PAS resin composition can be molded by injection molding, compression molding, extrusion molding of composites, sheets, pipes, etc., pultrusion molding, blow molding, transfer molding, and the like. Also suitable for injection molding applications. When molding by injection molding, various molding conditions are not particularly limited, and molding can be performed by a general method. For example, in an injection molding machine, the resin temperature is in the range of the melting point of the PAS resin or higher, preferably the melting point +10°C or higher, more preferably the melting point +10°C to the melting point +100°C, further preferably the melting point +20°C. After passing through the step of melting the PAS resin composition in a temperature range of up to the melting point +50° C., it may be molded by injecting it into a mold from the resin discharge port. At that time, the mold temperature may also be set within a known temperature range, for example, room temperature (approximately 23°C) to 300°C, preferably 120 to 180°C.
<用途>
 本実施形態に係る成形品を用いた製品は、特に限定されることはなく、以下のような各種用途に利用可能である。例えば、コネクタ・プリント基板・封止成形品などの電気・電子部品、ランプリフレクター・各種電装部品などの自動車部品、各種建築物や航空機・自動車などの内装用材料、あるいはOA機器部品・カメラ部品・時計部品などの精密部品等の射出成形・圧縮成形品、あるいは繊維・フィルム・シート・パイプなどの押出成形・引抜成形品、3Dプリンタ造形品等として幅広く利用可能である。
<Application>
Products using the molded article according to the present embodiment are not particularly limited, and can be used for the following various applications. For example, electrical and electronic parts such as connectors, printed circuit boards, and sealed molded products; automobile parts such as lamp reflectors and various electrical parts; interior materials for various buildings, aircraft, and automobiles; It can be widely used as injection molding/compression molding products such as precision parts such as watch parts, extrusion molding/pultrusion molding products such as fibers, films, sheets, and pipes, and 3D printer modeling products.
 以下に実施例を挙げて本発明を具体的に説明する。これら例は例示的なものであって限定的なものではない。なお、以下、特に断りが無い場合「%」や「部」は質量基準とする。 The present invention will be specifically described below with reference to examples. These examples are illustrative and not limiting. In the following, unless otherwise specified, "%" and "parts" are based on mass.
<実施例1~2、比較例1~3>
・PPS樹脂の製造
実施例(1-1) PPS樹脂の重合
 圧力計、温度計、コンデンサ、デカンタを連結した撹拌翼及び底弁付き150Lオートクレーブにp-ジクロロベンゼン(p-DCB)22.050kg(150モル)、N-メチル-2-ピロリドン(NMP)2.974kg(30モル)、68%NaSH12.362kg(150モル)、及び48%NaOH12.500kg(150モル)を供給し、撹拌しながら窒素雰囲気下で173℃まで昇温した。水12.353kgを留出させた後、釜を密閉した。その際、共沸により留出したp-DCBはデカンタ-で分離して、随時釜内に戻した。脱水終了後、オートクレーブ内温を160℃まで冷却し、NMP29.486kg(297モル)を供給した後、220℃まで昇温して2時間撹拌し、続いて250℃まで昇温して1時間撹拌した。最終圧力は0.28MPaであった。反応後、オートクレーブの底弁を開いて、減圧状態のまま撹拌翼付き150L真空撹拌乾燥機にNMPを抜き取り、続いて、減圧下150℃で2時間撹拌してNMPを十分除去し、粉末状のPPS樹脂と塩類との混合物(A-1)を得た。
<Examples 1-2, Comparative Examples 1-3>
・ PPS resin production example (1-1) Polymerization of PPS resin 22.050 kg of p-dichlorobenzene (p-DCB) in a 150 L autoclave equipped with a stirring blade and a bottom valve connecting a pressure gauge, a thermometer, a condenser and a decanter ( 150 mol), 2.974 kg (30 mol) of N-methyl-2-pyrrolidone (NMP), 12.362 kg (150 mol) of 68% NaSH, and 12.500 kg (150 mol) of 48% NaOH and stirred nitrogen The temperature was raised to 173° C. under the atmosphere. After distilling off 12.353 kg of water, the kettle was closed. At that time, the p-DCB distilled azeotropically was separated with a decanter and returned to the kettle as needed. After dehydration, the internal temperature of the autoclave was cooled to 160°C, and 29.486 kg (297 mol) of NMP was supplied, then the temperature was raised to 220°C and stirred for 2 hours, and then the temperature was raised to 250°C and stirred for 1 hour. bottom. The final pressure was 0.28 MPa. After the reaction, the bottom valve of the autoclave is opened, NMP is extracted into a 150 L vacuum stirring dryer with stirring blades while the pressure is reduced, and then the NMP is sufficiently removed by stirring at 150 ° C. for 2 hours under reduced pressure, and the powder is obtained. A mixture (A-1) of PPS resin and salts was obtained.
実施例(1-2)PPS樹脂の精製及び調整
 前記混合物(A-1)417gに70℃のイオン交換水1000gを加え、20分間撹拌したのちろ過する工程を2回繰り返した。得られた含水ケーキと、イオン交換水600gを撹拌機付き1Lオートクレーブに供給し、160℃で30分間撹拌した。室温に冷却後、ろ過して得られた含水ケーキに、さらに70℃のイオン交換水800gを加え、ろ過した。得られた含水ケーキと、イオン交換水600gを撹拌機付き1Lオートクレーブに仕込み、220℃で30分間撹拌を行い、室温に冷却後、ろ過して得た含水ケーキに70℃のイオン交換水600gを加えろ過した。その後、20℃でpH4の炭酸水600gを加えてろ過し、さらに70℃のイオン交換水600gを加え、ろ過した。得られた含水ケーキを120℃の熱風循環乾燥機で6時間乾燥して、白色粉末状のPPS樹脂を得た。同様の操作を繰り返し、3ロットのPPS樹脂を得た。
Example (1-2) Purification and Preparation of PPS Resin To 417 g of the mixture (A-1), 1,000 g of ion-exchanged water at 70° C. was added, stirred for 20 minutes, and filtered. The process was repeated twice. The resulting hydrous cake and 600 g of ion-exchanged water were supplied to a 1 L autoclave equipped with a stirrer and stirred at 160° C. for 30 minutes. After cooling to room temperature, 800 g of ion-exchanged water at 70° C. was further added to the water-containing cake obtained by filtration, followed by filtration. The resulting water-containing cake and 600 g of ion-exchanged water were placed in a 1 L autoclave equipped with a stirrer, stirred at 220° C. for 30 minutes, cooled to room temperature, and filtered. Added and filtered. After that, 600 g of carbonated water having a pH of 4 at 20° C. was added and filtered, and further 600 g of ion-exchanged water at 70° C. was added and filtered. The resulting water-containing cake was dried in a hot air circulation dryer at 120° C. for 6 hours to obtain a white powdery PPS resin. The same operation was repeated to obtain 3 lots of PPS resin.
実施例(1-3)PPS樹脂の評価
 得られたPPS樹脂を0.5g計量し、ガラスファイバー入りの2枚のポリテトラフルオロエチレン樹脂シート(日東電工株式会社製 ニトフロン)の間に挟み、予め350℃に加熱してあるホットプレートを用いて1分間加熱した。この際、前記PPS樹脂が溶融してくるため、厚みが0.1cmになるよう、上から350℃に加熱した金属板でプレスし、フィルム状にした。前記フィルム状のPPS樹脂をさらに1分間加熱した後、フィルム状の溶融PPS樹脂を挟んだ2枚のポリテトラフルオロエチレン樹脂シートをホットプレートから室温(28℃)の金属板の上に移し、即時に上から室温(28℃)の金属板で挟み、室温(28℃)に至るまで冷却して前記溶融PPS樹脂を固化させた。その後、固化したフィルム状のPPS樹脂を5cm×3cmにカットして、非晶状態の試験片を得た。試験片が非晶状態であることは、DSC測定によって確認した。試験片の表面をアセトンで脱脂した後、固体専用ゼータ電位計であるSurPASS3(Anton Paar社)を用いて、以下の測定条件下で流動電位法にて、試験片の表面のゼータ電位値をそれぞれ測定した。結果を表1に示す。
 「測定条件」
  ・電解液:1mmol/LのKCl水溶液
  ・測定温度:22~26℃
  ・pH:8.0
Example (1-3) Evaluation of PPS resin 0.5 g of the obtained PPS resin was weighed and sandwiched between two glass fiber-containing polytetrafluoroethylene resin sheets (Nitto Denko Co., Ltd., Nitoflon). Heated for 1 minute using a hot plate heated to 350°C. At this time, the PPS resin melted, so that it was pressed from above with a metal plate heated to 350° C. to form a film with a thickness of 0.1 cm. After further heating the film-like PPS resin for 1 minute, the two polytetrafluoroethylene resin sheets sandwiching the film-like molten PPS resin were transferred from the hot plate onto a metal plate at room temperature (28° C.), and immediately The melted PPS resin was solidified by sandwiching it from above with metal plates at room temperature (28° C.) and cooling down to room temperature (28° C.). Thereafter, the solidified film-like PPS resin was cut into 5 cm×3 cm pieces to obtain amorphous test pieces. It was confirmed by DSC measurement that the test piece was in an amorphous state. After degreasing the surface of the test piece with acetone, the zeta potential value of the surface of the test piece was measured by the streaming potential method under the following measurement conditions using a solid-only zeta potential meter, SurPASS3 (Anton Paar). It was measured. Table 1 shows the results.
"Measurement condition"
・Electrolyte solution: 1 mmol/L KCl aqueous solution ・Measurement temperature: 22 to 26°C
・pH: 8.0
実施例(2-1) PPS樹脂の重合
 圧力計、温度計、コンデンサを連結した撹拌翼及び底弁付き150Lオートクレーブに、フレーク状含水硫化ソーダ(60.3重量%NaS)19.413kgと、NMP45.0kgとを供給した。窒素気流下で攪拌しながら209℃まで昇温させ、水4.644kgを留出させた(残存する水分量は硫化ソーダ1モル当り1.13モル)。その後、オートクレーブを密閉して180℃まで冷却し、p-DCB22.185kg及びNMP18.0kgを供給しながら、更に冷却した。液温150℃において、窒素ガスによりオートクレーブ内をゲージ圧0.1MPaに加圧して、再度加熱を開始した。液温200℃から250℃まで3時間かけて昇温させ、250℃で1時間保持して反応させた後、水0.635kgを加圧注入し、220℃まで40分かけて冷却した。その後、更に冷却を続け、200℃においてシュウ酸・2水和物0.284kg(2.25モル)とNMP0.663kgを加圧注入した。更に冷却を続け、100℃において、底弁を開いて反応スラリーを150L平板ろ過機に移送し、120℃で加圧ろ過した。続いて、NMP16kgを加え、加圧ろ過した。ろ過後、撹拌翼付き150L真空乾燥機を用いて、減圧下150℃で2時間撹拌してNMPを除去し、粉末状のPPS樹脂と塩類の混合物(B-1)を得た。
Example (2-1) Polymerization of PPS Resin 19.413 kg of flaky hydrous sodium sulfide (60.3 wt% Na 2 S) and , and 45.0 kg of NMP. The temperature was raised to 209° C. while stirring under a nitrogen stream, and 4.644 kg of water was distilled off (the remaining water content was 1.13 mol per 1 mol of sodium sulfide). The autoclave was then closed and cooled to 180° C. and further cooled while feeding 22.185 kg of p-DCB and 18.0 kg of NMP. At a liquid temperature of 150° C., the inside of the autoclave was pressurized to a gauge pressure of 0.1 MPa by nitrogen gas, and heating was started again. The liquid temperature was raised from 200° C. to 250° C. over 3 hours and held at 250° C. for 1 hour for reaction, then 0.635 kg of water was pressurized and cooled to 220° C. over 40 minutes. Thereafter, cooling was further continued, and 0.284 kg (2.25 mol) of oxalic acid dihydrate and 0.663 kg of NMP were injected under pressure at 200°C. Further cooling was continued, and at 100°C, the bottom valve was opened, the reaction slurry was transferred to a 150L flat plate filter, and pressure filtered at 120°C. Subsequently, 16 kg of NMP was added and filtered under pressure. After filtration, using a 150 L vacuum dryer equipped with a stirring blade, the mixture was stirred at 150° C. under reduced pressure for 2 hours to remove NMP, thereby obtaining a powdery PPS resin-salt mixture (B-1).
実施例(2-2)PPS樹脂の精製及び調整
 該混合物(B-1)417gに70℃のイオン交換水1000gを加え、20分間撹拌したのちろ過した。この操作をさらに1回繰り返したのち、得られた含水ケーキとイオン交換水600gを撹拌機付き1Lオートクレーブに供給し、160℃で30分間撹拌した。室温に冷却後、ろ過して、得られた含水ケーキに70℃のイオン交換水600gを加えてさらにろ過を行った。得られた含水ケーキを120℃の熱風循環乾燥機で6時間乾燥して、白色粉末状のPPS樹脂を得た。同様の操作を繰り返し、3ロットのPPS樹脂を得た。
Example (2-2) Purification and Preparation of PPS Resin To 417 g of the mixture (B-1), 1000 g of ion-exchanged water at 70° C. was added, stirred for 20 minutes, and filtered. After repeating this operation once more, the resulting water-containing cake and 600 g of ion-exchanged water were supplied to a 1 L autoclave equipped with a stirrer and stirred at 160° C. for 30 minutes. After cooling to room temperature, 600 g of ion-exchanged water at 70° C. was added to the resulting water-containing cake, followed by filtration. The resulting water-containing cake was dried in a hot air circulation dryer at 120° C. for 6 hours to obtain a white powdery PPS resin. The same operation was repeated to obtain 3 lots of PPS resin.
実施例(2-3)PPS樹脂の評価
 実施例1と同様の方法で、得られたPPS樹脂の試験片の表面のゼータ電位値をそれぞれ測定した。結果を表1に示す。
Example (2-3) Evaluation of PPS resin In the same manner as in Example 1, the zeta potential value of the surface of the obtained PPS resin test piece was measured. Table 1 shows the results.
比較例(1-1)PPS樹脂の重合
 実施例1-1と同様の方法で実施した。
Comparative Example (1-1) Polymerization of PPS resin It was carried out in the same manner as in Example 1-1.
比較例(1-2)PPS樹脂の精製及び調整
 洗浄に使用したイオン交換水の温度及び撹拌温度を全て70℃としたこと以外は実施例1-2にと同様に実施し、白色粉末状のPPS樹脂を得た。同様の操作を繰り返し、3ロットのPPS樹脂を得た。
Comparative Example (1-2) Purification and Preparation of PPS Resin The procedure was carried out in the same manner as in Example 1-2, except that the temperature of the ion-exchanged water used for washing and the stirring temperature were all set to 70°C. A PPS resin was obtained. The same operation was repeated to obtain 3 lots of PPS resin.
比較例(1-3)PPS樹脂の評価
 実施例1と同様の方法で、得られたPPS樹脂の試験片の表面のゼータ電位値をそれぞれ測定した。結果を表1に示す。
Comparative Example (1-3) Evaluation of PPS Resin In the same manner as in Example 1, the zeta potential value of the surface of the obtained PPS resin test piece was measured. Table 1 shows the results.
比較例(2-1)PPS樹脂の重合
 冷却時、200℃においてシュウ酸・2水和物を添加しなかったこと以外は実施例2-1と同様の方法で実施した。
Comparative Example (2-1) Polymerization of PPS Resin The same procedure as in Example 2-1 was performed except that oxalic acid dihydrate was not added at 200° C. during cooling.
比較例(2-2)PPS樹脂の精製及び調整
 実施例2-1と同様の方法で実施した。同様の操作を繰り返し、3ロットのPPS樹脂を得た。
Comparative Example (2-2) Purification and Preparation of PPS Resin It was carried out in the same manner as in Example 2-1. The same operation was repeated to obtain 3 lots of PPS resin.
比較例(2-3)PPS樹脂の評価
 実施例1と同様の方法で、得られたPPS樹脂の試験片の表面のゼータ電位値をそれぞれ測定した。結果を表1に示す。
Comparative Example (2-3) Evaluation of PPS Resin In the same manner as in Example 1, the zeta potential value of the surface of the obtained PPS resin test piece was measured. Table 1 shows the results.
比較例(3)
 PPS樹脂のエポキシシラン添加時の粘度上昇度を測定し、粘度上昇度が9.0~9.1倍のPPS樹脂のロットを選別した。また、実施例1と同様の方法で、選別したPPS樹脂の試験片の表面のゼータ電位値をそれぞれ測定した。結果を表1に示す
Comparative example (3)
The degree of increase in viscosity of the PPS resin when epoxysilane was added was measured, and lots of PPS resin having a degree of increase in viscosity of 9.0 to 9.1 times were selected. Also, in the same manner as in Example 1, the zeta potential values of the surfaces of the selected PPS resin test pieces were measured. The results are shown in Table 1
・樹脂組成物の製造
 実施例1~2及び比較例1~3で得られた各PPS樹脂100質量部、エラストマー10質量部及びシランカップリング剤0.8質量部を配合した。その後、株式会社日本製鋼所製ベント付2軸押出機「TEX-30α(製品名)」にこれら配合材料を投入し、樹脂成分吐出量30kg/hr、スクリュー回転数200rpm、設定樹脂温度320℃で溶融混練して樹脂組成物のペレットを得た。ガラス繊維は50質量部をサイドフィーダーから投入し、それ以外の材料はタンブラーで予め均一に混合しトップフィーダーから投入した。得られた樹脂組成物のペレットを140℃ギヤオーブンで2時間乾燥した後、射出成形することで各種試験片を作製し、下記の試験を行った。
Production of resin composition 100 parts by mass of each PPS resin obtained in Examples 1 and 2 and Comparative Examples 1 and 3, 10 parts by mass of elastomer and 0.8 parts by mass of silane coupling agent were blended. After that, these compounding materials are put into a vented twin-screw extruder “TEX-30α (product name)” manufactured by The Japan Steel Works, Ltd., and the resin component discharge amount is 30 kg / hr, the screw rotation speed is 200 rpm, and the set resin temperature is 320 ° C. The pellets of the resin composition were obtained by melt-kneading. 50 parts by mass of the glass fiber was fed from the side feeder, and the other materials were preliminarily mixed uniformly in a tumbler and fed from the top feeder. After drying the obtained pellets of the resin composition in a gear oven at 140° C. for 2 hours, they were injection molded to prepare various test pieces, and the following tests were performed.
<評価> <Evaluation>
(1)PPS樹脂のDSC測定
 ゼータ電位測定用に作製したフィルム状のPPS樹脂試験片から4mg分取し、示差走査熱量計(DSC)であるパーキンエルマー製DSC8500により、40℃から350℃まで20℃/分で昇温した。100℃~200℃の間における樹脂の結晶化に伴う発熱ピークが観測されないことから、各フィルム状の試験片が非晶状態であることを確認した。
(1) DSC measurement of PPS resin 4 mg was taken from a film-shaped PPS resin test piece prepared for zeta potential measurement, and 20% from 40 ° C. to 350 ° C. was measured using a differential scanning calorimeter (DSC), Perkin Elmer's DSC8500. The temperature was raised at °C/min. Since no exothermic peak due to crystallization of the resin was observed between 100° C. and 200° C., it was confirmed that each film-like test piece was in an amorphous state.
(2)PPS樹脂の粘度上昇度の測定
 エポキシシランを添加して溶融混練した際の、前後の粘度変化から、溶融粘度上昇度を算出した。エポキシシランはγ-グリシドキシプロピルトリメトキシシラン1.0%(対PPS樹脂固形分質量比)を用いた。溶融混練は、ラボプラストミル(20-200C、R-60タイプミキサー使用、株式会社東洋精機製作所製)を用いて、320℃、100rpmで、5分間行った。溶融粘度上昇度は、次式より算出した。結果を表1に示す。
 粘度上昇度(倍率)=(エポキシシラン添加後のMFR)/(エポキシシラン未添加時のMFR)
(2) Measurement of Viscosity Increase of PPS Resin The melt viscosity increase was calculated from the change in viscosity before and after adding the epoxysilane and melt-kneading. 1.0% of γ-glycidoxypropyltrimethoxysilane (mass ratio of solid content to PPS resin) was used as epoxysilane. Melt-kneading was carried out at 320° C. and 100 rpm for 5 minutes using Labo Plastomill (20-200C, using R-60 type mixer, manufactured by Toyo Seiki Seisakusho Co., Ltd.). The degree of increase in melt viscosity was calculated from the following formula. Table 1 shows the results.
Degree of viscosity increase (magnification) = (MFR after addition of epoxysilane)/(MFR when no addition of epoxysilane)
(3)PPS樹脂成形品の引張強さ測定
 得られたペレットをシリンダー温度310℃に設定した住友重機製射出成形機(SE-75D-HP)に供給し、金型温度140℃に温調したISO Type-Aダンベル片成形用金型を用いて射出成形を行い、ISO Type-Aダンベル片を得た。なお、ウェルド部を含まない試験片となるよう1点ゲートから樹脂を射出して作製したものとした。得られた試験片を用いて、ISO 527-1および2に準拠した測定方法で引張強度を測定した。結果を表1に示す。
(3) Tensile strength measurement of PPS resin molded product The obtained pellets were supplied to a Sumitomo Heavy Industries injection molding machine (SE-75D-HP) set at a cylinder temperature of 310 ° C., and the mold temperature was adjusted to 140 ° C. Injection molding was performed using an ISO Type-A dumbbell piece molding mold to obtain an ISO Type-A dumbbell piece. In addition, the resin was injected from a single gate so as to produce a test piece that did not include a weld portion. Using the obtained test piece, the tensile strength was measured by the measuring method according to ISO 527-1 and 2. Table 1 shows the results.
(4)PPS樹脂成形品のシャルピー衝撃強さ(ノッチ無し)測定
 (3)と同様に作製した試験片の中央部分を長さ80mm、幅10mm、厚さ4mmの棒状に切り出したものを耐衝撃性試験片とし、ISO179-1/1eUに準拠した方法でシャルピー衝撃試験を行い、衝撃強さ(kJ/m)の測定を行った。結果を表1に示す。
(4) Measurement of Charpy impact strength (without notch) of PPS resin molded product (3) The center part of the test piece prepared in the same manner as in (3) was cut into a bar shape with a length of 80 mm, a width of 10 mm, and a thickness of 4 mm. A Charpy impact test was carried out by a method conforming to ISO179-1/1eU to measure the impact strength (kJ/m 2 ). Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果から、ゼータ電位が特定の範囲である実施例の樹脂を用いた成形品は、ロット間の引張強さ及びシャルピー衝撃強さのばらつき(CV)が小さいことが認められた。従来の粘度上昇度を反応性の指標として採用した比較例3は、物性のばらつき(CV)も実施例と比較して大きくなった。 From the results in Table 1, it was confirmed that the molded articles using the resins of the examples whose zeta potential was within a specific range had small variation (CV) in tensile strength and Charpy impact strength between lots. Comparative Example 3, in which the conventional degree of increase in viscosity was used as an index of reactivity, showed a larger variability (CV) of physical properties than in Examples.

Claims (8)

  1.  ポリアリーレンスルフィド樹脂を重合する工程(1)、
     前記ポリアリーレンスルフィド樹脂を精製して精製ポリアリーレンスルフィド樹脂を調製する工程(2)、及び、
     前記精製ポリアリーレンスルフィド樹脂の少なくとも一部から形成された試験片を評価する工程(3)、を有するポリアリーレンスルフィド樹脂の製造方法であって、
     工程(3)が、前記精製ポリアリーレンスルフィド樹脂を溶融させた溶融ポリアリーレンスルフィド樹脂を固化させることによって前記試験片を得る試験片作製工程(3-1)と、
     前記試験片の表面のゼータ電位を、流動電位法によりpH7.8~8.2の条件下で測定するゼータ電位測定工程(3-2)と、
     前記工程(3-2)により測定されたゼータ電位値が-50~-65mVの範囲のポリアリーレンスルフィド樹脂を判別する判別工程(3-3)とを有する、ポリアリーレンスルフィド樹脂の製造方法。
    step (1) of polymerizing a polyarylene sulfide resin;
    a step (2) of purifying the polyarylene sulfide resin to prepare a purified polyarylene sulfide resin; and
    A method for producing a polyarylene sulfide resin, comprising the step (3) of evaluating a test piece formed from at least a portion of the purified polyarylene sulfide resin,
    The step (3) is a test piece preparation step (3-1) in which the test piece is obtained by solidifying the molten polyarylene sulfide resin obtained by melting the purified polyarylene sulfide resin;
    A zeta potential measurement step (3-2) of measuring the zeta potential of the surface of the test piece under conditions of pH 7.8 to 8.2 by streaming potential method;
    A method for producing a polyarylene sulfide resin, comprising a discrimination step (3-3) for discriminating polyarylene sulfide resins having a zeta potential value in the range of −50 to −65 mV as measured in the step (3-2).
  2.  前記ゼータ電位値が-50~-65mVの範囲内となるよう、前記工程(1)又は前記工程(2)において、前記ポリアリーレンスルフィド樹脂に酸を添加する、請求項1に記載のポリアリーレンスルフィド樹脂の製造方法。 The polyarylene sulfide according to claim 1, wherein an acid is added to the polyarylene sulfide resin in the step (1) or the step (2) so that the zeta potential value is in the range of -50 to -65 mV. A method for producing resin.
  3.  前記工程(2)が、工程(1)で得たポリアリーレンスルフィド樹脂を、140℃~260℃かつ前記ポリアリーレンスルフィド樹脂の総重量に対して1.5~10倍量の熱水で洗浄する工程を有するものである、請求項1又は2に記載のポリアリーレンスルフィド樹脂の製造方法。 In step (2), the polyarylene sulfide resin obtained in step (1) is washed with hot water at 140° C. to 260° C. and an amount of 1.5 to 10 times the total weight of the polyarylene sulfide resin. 3. The method for producing a polyarylene sulfide resin according to claim 1, comprising steps.
  4.  pH7.8~8.2における試験片の表面のゼータ電位値が-50~-65mVの範囲である、ポリアリーレンスルフィド樹脂。 A polyarylene sulfide resin whose zeta potential value on the surface of the test piece at pH 7.8 to 8.2 is in the range of -50 to -65 mV.
  5.  pH7.8~8.2における試験片の表面のゼータ電位値が-50~-65mVの範囲であるポリアリーレンスルフィド樹脂と、反応性官能基を有する物質を配合してなることを特徴とする、ポリアリーレンスルフィド樹脂組成物。 A polyarylene sulfide resin having a zeta potential value on the surface of the test piece at pH 7.8 to 8.2 in the range of -50 to -65 mV and a substance having a reactive functional group are blended, A polyarylene sulfide resin composition.
  6.  請求項5に記載のポリアリーレンスルフィド樹脂組成物を溶融成形してなる成形品。 A molded article obtained by melt-molding the polyarylene sulfide resin composition according to claim 5.
  7.  前記請求項1~3のいずれか1項に記載の製造方法で得られたポリアリーレンスルフィド樹脂と、反応性官能基を有する物質とを配合して、溶融混練する工程を有し、かつ、
     前記ポリアリーレンスルフィド樹脂のpH7.8~8.2における試験片の表面のゼータ電位値が-50~-65mVの範囲である、ポリアリーレンスルフィド樹脂組成物の製造方法。
    A step of blending the polyarylene sulfide resin obtained by the production method according to any one of claims 1 to 3 and a substance having a reactive functional group and melt-kneading them, and
    A method for producing a polyarylene sulfide resin composition, wherein the surface of the test piece of the polyarylene sulfide resin has a zeta potential value of -50 to -65 mV at pH 7.8 to 8.2.
  8.  前記請求項7に記載の製造方法で得られたポリアリーレンスルフィド樹脂組成物を溶融成形する工程を含む、ポリアリーレンスルフィド樹脂成形品の製造方法。 A method for producing a polyarylene sulfide resin molded article, comprising the step of melt-molding the polyarylene sulfide resin composition obtained by the production method according to claim 7.
PCT/JP2022/013800 2021-09-28 2022-03-24 Polyarylene sulfide resin production method, polyarylene sulfide resin, polyarylene sulfide resin composition, and polyarylene sulfide resin molded article WO2023053529A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022547720A JP7228109B1 (en) 2021-09-28 2022-03-24 Method for producing polyarylene sulfide resin, polyarylene sulfide resin, polyarylene sulfide resin composition, and polyarylene sulfide resin molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021157738 2021-09-28
JP2021-157738 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023053529A1 true WO2023053529A1 (en) 2023-04-06

Family

ID=85782186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013800 WO2023053529A1 (en) 2021-09-28 2022-03-24 Polyarylene sulfide resin production method, polyarylene sulfide resin, polyarylene sulfide resin composition, and polyarylene sulfide resin molded article

Country Status (1)

Country Link
WO (1) WO2023053529A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070445A (en) * 2018-10-31 2020-05-07 東レ株式会社 Method for producing granula polyarylene sulfide
JP2021113279A (en) * 2020-01-20 2021-08-05 東ソー株式会社 Method for producing polyarylene sulfide
JP2021130792A (en) * 2020-02-21 2021-09-09 東レ株式会社 Method for producing polyarylene sulfide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070445A (en) * 2018-10-31 2020-05-07 東レ株式会社 Method for producing granula polyarylene sulfide
JP2021113279A (en) * 2020-01-20 2021-08-05 東ソー株式会社 Method for producing polyarylene sulfide
JP2021130792A (en) * 2020-02-21 2021-09-09 東レ株式会社 Method for producing polyarylene sulfide

Similar Documents

Publication Publication Date Title
TWI377231B (en)
JP5029881B2 (en) Polyarylene sulfide resin composition
US9422400B2 (en) Granular polyarylene sulfide and process for manufacturing the same
EP3473660B1 (en) Method for producing polyphenylene sulfide and high-viscosity polyphenylene sulfide produced thereby
JP5189293B2 (en) Branched polyarylene sulfide resin, process for producing the same, and use thereof as a polymer modifier
KR920000209B1 (en) Polyarylene thioether of high crystallizing rate and a process for producing the same
EP1033388B1 (en) Thermoplastic resin composition
JP2018009148A (en) Method for producing polyarylene sulfide resin composition
JP6003345B2 (en) Method for producing polyarylene sulfide resin
JP2004352923A (en) Method for producing polyarylene sulfide resin
JP2005041922A (en) Method for producing polyarylene sulfide resin
JP7228109B1 (en) Method for producing polyarylene sulfide resin, polyarylene sulfide resin, polyarylene sulfide resin composition, and polyarylene sulfide resin molded article
WO2023053529A1 (en) Polyarylene sulfide resin production method, polyarylene sulfide resin, polyarylene sulfide resin composition, and polyarylene sulfide resin molded article
JP6107959B2 (en) Polyarylene sulfide film and method for producing the same
JP2017071752A (en) Method for producing polyarylene sulfide resin
JPH0987518A (en) Polyphenylene sulfide resin composition
JP2016079305A (en) Polyarylene sulfide-based resin composition
JPS63260952A (en) Polyarylene thioether composition
KR920000197B1 (en) Fine spherulitic polyarylene thioether and a process for producing the same
KR102094448B1 (en) Method for preparing polyarylene sulfide
JP2011140586A (en) Method for producing polyarylene sulfide resin composition and molded product using the resin composition
JP3143928B2 (en) Method for producing polyarylene sulfide
JP2023000930A (en) Method for evaluating polyarylenesulfide resin
JP6003346B2 (en) Method for producing polyarylene sulfide resin
WO2010018681A1 (en) Resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022547720

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875412

Country of ref document: EP

Kind code of ref document: A1