WO2023053518A1 - Control device for suppressing collision of electrically assisted vehicle and electrically assisted vehicle provided with said control device - Google Patents

Control device for suppressing collision of electrically assisted vehicle and electrically assisted vehicle provided with said control device Download PDF

Info

Publication number
WO2023053518A1
WO2023053518A1 PCT/JP2022/013003 JP2022013003W WO2023053518A1 WO 2023053518 A1 WO2023053518 A1 WO 2023053518A1 JP 2022013003 W JP2022013003 W JP 2022013003W WO 2023053518 A1 WO2023053518 A1 WO 2023053518A1
Authority
WO
WIPO (PCT)
Prior art keywords
predetermined
pedal
collision
electrically assisted
vehicle
Prior art date
Application number
PCT/JP2022/013003
Other languages
French (fr)
Japanese (ja)
Inventor
悟 清水
太一 ▲柳▼岡
康夫 保坂
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2023053518A1 publication Critical patent/WO2023053518A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor

Definitions

  • the present invention relates to collision suppression technology for electrically assisted vehicles.
  • the back electromotive force of the motor is used to generate electricity and charge the battery. Power-assisted bicycles with functions are known.
  • An electrically assisted bicycle supplies driving force with a motor according to human power, and the body is lighter than an automobile, etc., so it is easy to follow the operation of the person, and it is safe to ride as the user intends. Although it is a simple vehicle, it relies on the user's attention and operation to respond to the surrounding environment.
  • Patent Document 1 discloses a collision prevention control device that includes a control device that outputs a brake actuation signal to brake a motor when the result of processing information detected by an obstacle sensor provided in a vehicle satisfies a predetermined condition. disclosed.
  • braking is forcibly applied based on the information detected by the obstacle sensor. For example, even if the user recognizes the obstacle and intends to avoid it after approaching it, the braking will hinder the vehicle from traveling. As a result, convenience is lost.
  • Patent Document 2 when a stationary object or an object moving at a low speed is detected by monitoring the front, it is determined that the vehicle is traveling in a warning area, and the urgency is determined from the accelerator operation speed and accelerator pedal operation while the vehicle is traveling in the warning area.
  • a technique is disclosed for determining and performing automatic braking prior to brake operation. This technology reads the user's intentions to some extent and then automatically applies the brakes. It is difficult for the user to maintain balance in a low-speed state, and this control is not suitable for a vehicle that is supposed to avoid obstacles while maintaining a certain speed.
  • a control device for an electrically assisted vehicle includes: (A) a collision prediction unit that predicts a collision based on an output from a forward monitoring sensor; When this is predicted, it is determined whether or not a predetermined pedal operation is performed by the user, and if the predetermined pedal operation is performed, the control for decelerating the electrically assisted vehicle is stopped and the motor is driven. and a control unit for reducing the driving force or stopping the motor drive.
  • FIG. 1 is a diagram showing the appearance of a power-assisted bicycle according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of a motor control device.
  • FIG. 3 is a diagram showing a functional configuration of portions according to the embodiment.
  • FIG. 4 is a diagram showing a processing flow representing operation contents in the first embodiment.
  • FIG. 5 is a diagram showing a time chart in the first embodiment.
  • FIG. 6 is a diagram showing a processing flow representing operation contents in the second embodiment.
  • FIG. 7 is a diagram showing a time chart in the second embodiment.
  • FIG. 8 is a diagram showing a processing flow representing operation contents in the third embodiment.
  • FIG. 9 is a diagram showing a processing flow representing operation contents in the third embodiment.
  • Embodiments of the present invention will be described below using an example of an electrically assisted bicycle, which is an example of an electrically assisted vehicle.
  • the embodiments of the present invention are not limited to application only to electrically assisted bicycles, and can also be applied to control devices for mobile bodies (for example, carts, wheelchairs, etc.) that move according to human power. .
  • FIG. 1 is an external view showing an example of an electrically assisted bicycle, which is an example of an electrically assisted vehicle according to the present embodiment.
  • This electrically assisted bicycle 1 is equipped with a motor drive device.
  • the motor driving device has a battery pack 101 , a motor control device 102 , a torque sensor 103 , a pedal rotation sensor 104 , a motor 105 , an operation panel 106 , a brake sensor 107 and a forward monitoring sensor 108 .
  • the electrically assisted bicycle 1 also has a front wheel, a rear wheel, a headlight, a freewheel, a transmission, and the like.
  • the battery pack 101 is, for example, a lithium-ion secondary battery, but may be other types of batteries such as a lithium-ion polymer secondary battery, a nickel-metal hydride storage battery, or the like.
  • the battery pack 101 supplies electric power to the motor 105 via the motor control device 102, and also charges the battery pack 101 with regenerated electric power from the motor 105 via the motor control device 102 during regeneration.
  • the torque sensor 103 is provided around the crankshaft, detects the force applied to the pedal by the driver, and outputs the detection result to the motor control device 102 . Further, the pedal rotation sensor 104 is provided around the crankshaft in the same manner as the torque sensor 103 and outputs a signal corresponding to rotation to the motor control device 102 .
  • the motor 105 is, for example, a well-known three-phase DC brushless motor, and is attached to the front wheel of the electrically assisted bicycle 1, for example.
  • the motor 105 rotates the front wheels, and the rotor is connected to the front wheels so that the rotor rotates according to the rotation of the front wheels.
  • the motor 105 has a rotation sensor such as a Hall element, and outputs rotor rotation information (that is, a Hall signal) to the motor control device 102 .
  • the motor control device 102 performs predetermined calculations based on signals from the rotation sensor of the motor 105, the brake sensor 107, the torque sensor 103, the pedal rotation sensor 104, etc., controls the driving of the motor 105, and controls the regeneration by the motor 105. Also controls. Note that, in the embodiment of the present invention, the motor control device 102 performs collision prediction based on the output from the forward monitoring sensor 108, and performs motor control and the like as described below.
  • the forward monitoring sensor 108 is, for example, a millimeter wave sensor, a camera, or an infrared sensor such as LIDAR (Light Detection And Ranging). Millimeter-wave sensors are capable of stable detection even in bad weather, but the only information they can obtain is the distance to obstacles. Also, if the images captured by the camera are processed, the size and condition of the obstacles can be determined, but the accuracy of detection deteriorates at night or in bad weather. Infrared sensors such as LIDAR can detect angle information and size of obstacles by scanning, but they are expensive. As described above, various forms of sensors can be used for forward monitoring sensor 108, and any form of sensor may be employed in the embodiment of the present invention.
  • the motor controller 102 processes the output data according to aspects of the forward looking sensor 108 to perform collision prediction.
  • the front monitoring sensor 108 is preferably installed in front of the electrically power-assisted bicycle 1 because it monitors the front.
  • the operation panel 106 accepts, for example, an instruction input regarding the presence or absence of assistance (that is, turning on and off the power switch) and, in the case of assistance, an input such as a desired assist ratio from the passenger. 102.
  • the operation panel 106 also has a function of displaying data such as travel distance, travel time, calorie consumption, and regenerative power amount calculated by the motor control device 102 .
  • the operation panel 106 may have a display unit such as an LED (Light Emitting Diode).
  • the driver is presented with, for example, the charge level of the battery pack 101, the on/off state, the mode corresponding to the desired assist ratio, and the like.
  • the motor control device 102 when predicting that the possibility of a collision is equal to or higher than a predetermined level, causes the operation panel 106 to perform an output informing of danger, or from a speaker. Sound may be output.
  • FIG. 2 shows a configuration related to the motor control device 102 according to this embodiment.
  • the motor control device 102 has a controller 1020 and a FET (Field Effect Transistor) bridge 1030 .
  • the FET bridge 1030 includes a high-side FET (Suh) and a low-side FET (Sul) for switching the U-phase of the motor 105, and a high-side FET (Svh) and a low-side FET (Svl) for switching the V-phase of the motor 105. ), and a high-side FET (Swh) and a low-side FET (Swl) for switching the W phase of the motor 105 .
  • the FET bridge 1030 is a motor drive unit and constitutes a part of a complementary switching amplifier.
  • the controller 1020 includes a calculation unit 1021, a pedal rotation input unit 1022, a motor rotation input unit 1024, a variable delay circuit 1025, a motor drive timing generation unit 1026, a torque input unit 1027, and a brake input unit 1028. , an AD input section 1029 for AD (Analog-Digital) conversion of the output voltage of the battery pack 101 , and a sensor input section 1023 .
  • AD Analog-Digital
  • the calculation unit 1021 receives input from the operation panel 106 (for example, assist on/off), input from the brake input unit 1028 (for example, brake on/off), input from the pedal rotation input unit 1022, and motor rotation input unit. 1024, the input from the torque input unit 1027, the input from the sensor input unit 1023, and the input from the AD input unit 1029 are used to perform a predetermined calculation, and the motor drive timing generation unit 1026 and the variable delay circuit 1025 Output to Note that the calculation unit 1021 has a memory 10211, and the memory 10211 stores various data used for calculation, data during processing, and the like. Furthermore, the arithmetic unit 1021 may be implemented by a processor executing a program, and in this case the program may be recorded in the memory 10211 . Also, the memory 10211 may be provided separately from the calculation unit 1021 .
  • Pedal rotation input section 1022 digitizes the pedal rotation phase angle (also called crank rotation phase angle; it may also include a signal representing the direction of rotation) from pedal rotation sensor 104 and outputs it to calculation section 1021 .
  • a motor rotation input unit 1024 digitizes a signal (for example, a rotation phase angle, a rotation direction, etc.) related to the rotation of the motor 105 (rotation of the front wheels in this embodiment) from the Hall signal output by the motor 105, and outputs it to the calculation unit 1021.
  • output to Torque input section 1027 digitizes a signal corresponding to the pedaling force from torque sensor 103 and outputs the digitized signal to calculation section 1021 .
  • AD input section 1029 digitizes the output voltage from the secondary battery and outputs it to arithmetic section 1021 .
  • the brake input unit 1028 digitizes the signal indicating whether or not the brake is applied from the brake sensor 107 and outputs the digitized signal to the calculation unit 1021 .
  • Sensor input section 1023 digitizes the signal from front monitoring sensor 108 in accordance with the form of front monitoring sensor 108 and inputs the digitized signal to calculation section 1021 .
  • the computation unit 1021 outputs the lead angle value to the variable delay circuit 1025 as a computation result.
  • the variable delay circuit 1025 adjusts the phase of the Hall signal based on the lead angle value received from the calculation unit 1021 and outputs the Hall signal to the motor drive timing generation unit 1026 .
  • the calculation unit 1021 outputs, for example, a PWM code corresponding to a duty ratio of PWM (Pulse Width Modulation) to the motor drive timing generation unit 1026 as a calculation result.
  • Motor drive timing generator 1026 generates and outputs a switching signal for each FET included in FET bridge 1030 based on the adjusted Hall signal from variable delay circuit 1025 and the PWM code from calculator 1021 .
  • the motor 105 may be power driven or may be regeneratively braked. Note that the basic operation of the motor is described in the pamphlet of International Publication No. 2012/086459, etc., and is not the main part of the present embodiment, so the description is omitted here.
  • FIG. 3 shows an example of a functional configuration realized by executing a predetermined program in the calculation unit 1021.
  • calculation unit 1021 implements collision prediction unit 3100 , pedal rotation processing unit 3200 , motor rotation processing unit 3300 , control unit 3400 , and motor control unit 3500 .
  • the collision prediction unit 3100 performs collision prediction to determine whether the possibility of collision is equal to or higher than a predetermined level, based on the forward monitoring sensor input from the sensor input unit 1023 that receives the signal from the forward monitoring sensor 108 . For example, when it is determined that the distance between the power-assisted bicycle 1 and the obstacle is within 10 m, for example, the possibility of collision is predicted to be at or above a predetermined level. It should be noted that determination may be made by adding other conditions in addition to the distance.
  • the control unit 3400 calculates the pedal input torque, the traveling speed output from the pedal rotation processing unit 3200, and the motor rotation processing based on the pedal rotation. Based on the vehicle speed and the like output from the unit 3300, it determines whether to execute or stop motor driving, or to execute or stop automatic braking by regenerative braking or the like, and issues an instruction therefor.
  • the motor control unit 3500 controls motor driving and regenerative braking of the motor 105 according to instructions. In addition to regenerative braking, braking that consumes regenerative current in the motor 105 without flowing regenerative current to the battery, and in some cases, braking using a mechanical brake such as pressing the brake pad against the rim of the tire. be.
  • steps S1 to S13 are executed at predetermined control cycles.
  • the collision prediction unit 3100 executes collision prediction based on the forward monitoring sensor input (Fig. 4: step S1). As described above, an obstacle is specified, and it is determined whether or not the condition that the distance to the obstacle is within 10 m, for example, is satisfied.
  • the motor control unit 3500 executes normal control (step S11). In other words, the control unit 3400 does not instruct to execute or stop motor driving or to execute or stop automatic braking, and the motor control unit 3500 controls the motor so as to perform normal motor driving or regenerative braking. Then, the process moves to step S13.
  • step S5 the control unit 3400 determines whether a predetermined pedal operation is being performed. is confirmed (step S5).
  • the predetermined pedal operation is, for example, a predetermined pedal operation indicating the user's intention to continue running. That is, in step S5, it is determined whether or not the user has an intention to continue running.
  • a predetermined pedal operation is determined under the following conditions. 1) The difference between the running speed and the vehicle speed based on pedal rotation is a predetermined value (eg, 2 km/h) or less 2) The pedal input torque is a predetermined threshold value (eg, 5 Nm) or more If these conditions are met: This is because the driver is pedaling so as to maintain the current vehicle speed or increase the vehicle speed. Only 1) or only 2) may be set as a condition.
  • condition 1) 3)
  • a predetermined threshold value for example, 5 rpm
  • a predetermined threshold value for example, 5 rpm
  • step S5 If the predetermined pedal operation has not been performed (step S5: Yes route), the control unit 3400 instructs to stop the motor drive and perform automatic braking, and the motor control unit 3500 stops the motor drive and performs automatic braking.
  • Execute step S7). That is, when the user does not indicate the intention to continue running, not only the motor drive is stopped, but also automatic braking is executed to further decelerate the vehicle, thereby reducing the possibility of collision. Then, the process moves to step S13.
  • step S5 when a predetermined pedal operation is performed (step S5: No route), the control unit 3400 instructs to stop motor driving and automatic braking, and the motor control unit 3500 stops motor driving and automatic braking. (step S9).
  • the control unit 3400 instructs to stop motor driving and automatic braking, and the motor control unit 3500 stops motor driving and automatic braking. (step S9).
  • the user's intention is prioritized and automatic braking is not performed. This will prevent the vehicle speed from increasing easily, thus improving safety.
  • the motor control unit 3500 determines whether or not the end of processing has been instructed by the user turning off the power (step S13). If the end of the process is not instructed, the process returns to step S1. On the other hand, when the end of processing is instructed, the processing ends.
  • FIG. 5 As schematically shown in the uppermost part of FIG. 5, an obstacle is placed in front of the power-assisted bicycle 1, and the power-assisted bicycle 1 is assumed to be running on a flat ground toward the obstacle. .
  • the distance between the power-assisted bicycle 1 and the obstacle gradually decreases, and when the distance is within 10 m, the possibility of collision is predicted to exceed a predetermined level. Note that up to (e) in FIG. 5, as a first example, as shown in FIG. 5(b), the predetermined pedal operation is continued even if the distance to the obstacle is within 10 m. Then, as shown in FIGS.
  • the control unit 3400 When the possibility of collision is predicted to be at or above a predetermined level, the control unit 3400 turns on a warning lamp provided on the operation panel 106 or the like, outputs a warning sound from a speaker, or the like. The user may be warned.
  • Fig. 6 shows the contents of the operation performed instead of Fig. 4. However, in FIG. 6, the same operation parts as in FIG. 4 are shown with the same step numbers, and only different parts will be explained. In FIG. 6, steps S21 to S25 are added instead of step S7 executed after step S5.
  • step S5 when it is determined in step S5 that the predetermined pedal operation is not performed, the control section 3400 determines whether or not the vehicle speed from the motor rotation processing section 3300 is less than the predetermined threshold TH1 (step S21). ).
  • the stability at low speeds is different between an electrically assisted bicycle, such as a road bike, which is intended for high speed riding, and a three-wheeled electrically assisted bicycle, which tends to maintain its independence even at low speeds. Therefore, for the former electrically assisted bicycle, for example, the threshold TH1 is set to 10 km/h, and for the latter electrically assisted bicycle, for example, the threshold TH1 is set to 5 km/h. However, this is only an example, and an appropriate value is set through an experiment or the like.
  • step S23 if the vehicle speed is less than the predetermined threshold TH1, the control unit 3400 instructs to stop the motor drive and perform weak automatic braking, and the motor control unit 3500 stops the motor drive and weak automatic braking. is executed (step S23).
  • Weak automatic braking means weaker than the degree of automatic braking in step S25. That is, when the vehicle speed is slow, the degree of automatic braking is weakened so as not to decelerate too much. Then, the process moves to step S13. For example, the amount of regenerative current is set to be small, or the regenerative braking torque is set to be small.
  • step S25 if the vehicle speed is equal to or higher than the predetermined threshold TH1, the control unit 3400 instructs to stop the motor drive and perform strong automatic braking, and the motor control unit 3500 stops the motor drive and strong automatic braking.
  • Strong automatic braking means strong compared to the degree of automatic braking in step S23. That is, when the vehicle speed is high, the degree of automatic braking is strengthened so as to significantly decelerate the vehicle. Then, the process moves to step S13. For example, the amount of regenerative current is set to be large, or the torque of regenerative braking is set to be large.
  • FIG. 7 An example of control in the present embodiment will be described using FIG.
  • an obstacle is placed in front of the power-assisted bicycle 1, and the power-assisted bicycle 1 is assumed to be traveling on flat ground toward the obstacle.
  • the distance between the electrically power-assisted bicycle 1 and the obstacle gradually becomes shorter, and when the distance becomes 10 m or less, the possibility of collision is predicted to exceed a predetermined level (time t1).
  • the predetermined pedal operation is not performed continuously. Therefore, the motor is not driven as shown in FIG. 7(c).
  • steps S31 to S47 are executed at predetermined control cycles.
  • the collision prediction unit 3100 executes collision prediction based on the forward monitoring sensor input (Fig. 8: step S31). This step is the same as step S1 in FIG.
  • the motor control unit 3500 executes normal control (step S49). In other words, the control unit 3400 does not instruct to execute or stop motor driving or to execute or stop automatic braking, and the motor control unit 3500 controls the motor so as to perform normal motor driving or regenerative braking.
  • the collision prediction unit 3100 sets off a first flag indicating that the possibility of collision is equal to or higher than a predetermined level and a second flag that is set when a predetermined pedal operation is not performed (step S51). ). The first flag and the second flag are initially turned off, and if they are already turned off in step S51, nothing will be done as a result. Then, the process moves to step S47.
  • collision prediction unit 3100 determines whether the first flag indicating that the possibility of collision is equal to or higher than the predetermined level is on. is determined (step S35). If the first flag is already on, the process proceeds to step S41. On the other hand, if the first flag is off, collision prediction section 3100 sets the first flag to on (step S37). Control unit 3400 is notified that the possibility of collision has reached or exceeded a predetermined level by turning on the first flag. Then, the control unit 3400 records in the memory the pedal rotation speed A and the pedal input torque B at the timing when the first flag is turned on (step S39). By recording the pedal rotation phase angle at this stage, the pedal rotation angle up to that control cycle can be obtained from the difference between the pedal rotation phase angle in the subsequent control cycle and the recorded pedal rotation phase angle.
  • the control unit 3400 checks whether a predetermined pedal operation is performed (step S41).
  • the predetermined pedal operation is, for example, a predetermined pedal operation that indicates the user's intention to continue running, and is the same as in the first embodiment. If a predetermined pedal operation is being performed (step S41: No route), the process proceeds via terminal A to the process of FIG.
  • step S41 if the predetermined pedal operation has not been performed (step S41: Yes route), the control unit 3400 turns on the second flag indicating that the predetermined pedal operation has not been performed (step S43). Then, the control unit 3400 instructs to stop driving the motor and execute automatic braking, and the motor control unit 3500 stops driving the motor and executes automatic braking (step S45).
  • step S41 Yes route
  • step S43 the control unit 3400 instructs to stop driving the motor and execute automatic braking
  • step S45 stops driving the motor and executes automatic braking
  • the motor control unit 3500 determines whether or not the user has instructed to end the processing by turning off the power (step S47). If the end of the process has not been instructed, the process returns to step S31. On the other hand, when the end of processing is instructed, the processing ends.
  • control unit 3400 determines whether or not the second flag is on (step S53).
  • the second flag is ON, it indicates that there was a state in which the predetermined pedal operation was not performed in the past, and now the predetermined pedal operation is performed. Therefore, the user recognizes the situation change and starts pedaling. Therefore, if the second flag is on, the control unit 3400 instructs to stop automatic braking and restart motor driving, and the motor control unit 3500 stops automatic braking and restarts motor driving (step S55). .
  • the process returns to step S47 via terminal B.
  • control unit 3400 determines whether or not the condition for resuming motor driving is satisfied (step S59).
  • Conditions for resuming motor driving in the present embodiment are, for example, the following conditions.
  • Conditions 11) and 12) are for detecting that the pedal rotation has become faster and that the pedal input torque has become stronger, based on the values recorded in step S39.
  • Condition 13) is based on the condition that the pedal input torque is absolutely large, and the user's intention to increase speed is taken into account from the pedal rotation angle after the possibility of collision reaches a predetermined level or higher.
  • control unit 3400 instructs to stop motor driving and automatic braking, as in the first and second embodiments. Stop driving and automatic braking are executed (step S63). Also here, instead of stopping the motor drive, the driving force of the motor drive may be reduced in some cases. Then, the process returns to step S47 via terminal B.
  • step S61 the process returns to step S47 via terminal B.
  • the motor is controlled to be driven.
  • the motor may be driven when another second predetermined pedal operation is performed in a state in which no pedal operation is performed.
  • the second predetermined pedal operation may include a condition regarding the pedal rotation angle.
  • the present invention is not limited to this.
  • any technical feature in each embodiment described above may be deleted, or any technical feature described in other embodiments may be added. Also good.
  • the technical element of changing the strength of automatic braking according to the vehicle speed as in the second embodiment may be applied to the third embodiment.
  • the functional block diagram described above is an example, and one functional block may be divided into a plurality of functional blocks, or a plurality of functional blocks may be integrated into one functional block.
  • the order of the steps may be changed, or a plurality of steps may be executed in parallel, as long as the content of the processing does not change.
  • condition 1) for a predetermined pedal operation is such that the pedal rotation speed is converted to the running speed [km/h] and compared with the vehicle speed. , and compared with the number of revolutions of the motor. Furthermore, it is also possible to convert the values into values in other units for comparison.
  • the number of motor rotations is converted into vehicle speed, but the vehicle speed can be calculated by providing a sensor that measures the vehicle speed or by accumulating the acceleration.
  • the vehicle speed may be calculated by dividing by the time taken for .
  • the traveling distance may be calculated from the trajectory obtained by measuring the position using, for example, GPS (Global Positioning System).
  • the control device for an electrically assisted vehicle includes (A) a collision prediction unit that predicts a collision based on an output from a forward monitoring sensor; is predicted, it is determined whether or not a predetermined pedal operation is being performed by the user. and a control unit that reduces the driving force of the drive or stops the motor drive.
  • control section described above may perform control to decelerate the electrically assisted vehicle when a predetermined pedal operation is not performed.
  • a predetermined pedal operation In the case of an electrically assisted vehicle, if the user does not indicate that the vehicle should travel, the vehicle is decelerated through regeneration or the like to avoid danger.
  • other deceleration methods may be adopted in addition to regeneration.
  • the control unit described above controls the vehicle speed of the electrically assisted vehicle as compared with the case where the vehicle speed is equal to or greater than the threshold value. may be controlled to weaken the degree of deceleration. In the case of an electrically assisted vehicle, excessive deceleration is dangerous, so the degree of automatic braking is weakened at low speeds.
  • control unit described above decelerates the electrically assisted vehicle when it is detected that a predetermined pedal operation or a second predetermined pedal operation is being performed during control to decelerate the electrically assisted vehicle. It is also possible to stop the control to drive the motor and perform the control to drive the motor.
  • the fact that the state in which the pedal is not being operated has changed to the state in which the pedal is being operated is because the intention of the user who has recognized the change in the situation indicates to continue running.
  • the second predetermined pedal operation is an operation different from the predetermined pedal operation, and may include, for example, a condition regarding the pedal rotation angle.
  • control unit is controlled to reduce the driving force of the motor drive or to stop the motor drive when a predetermined pedal operation is performed, and the collision prediction unit detects that the possibility of a collision is at a predetermined level or higher.
  • the motor may be driven. This is because, even when the pedal operation continues, it is preferable to restart the assist if the pedal operation increases the vehicle speed.
  • control unit described above determines whether or not the predetermined pedal operation is performed, and (a) the relationship between the vehicle speed of the electrically assisted vehicle and the traveling speed converted based on the pedal rotation satisfies a predetermined condition.
  • the determination may be made based on at least one of (a) whether the pedal rotation speed is equal to or greater than the threshold value, and (c) whether or not the pedal input torque is equal to or greater than the threshold value.
  • control unit described above detects a predetermined pedal operation indicating that the vehicle speed of the electrically assisted vehicle is to be increased more than when the collision prediction unit predicts that the possibility of a collision is equal to or higher than a predetermined level. f) the current pedal rotation speed and the pedal input torque when the collision prediction unit predicts that the possibility of a collision is equal to or higher than a predetermined level; ii) at least one of the current pedal input torque and the current pedal input torque has increased by a predetermined amount or more; You may make it determine by .

Abstract

Provided is a control device for electrically assisted vehicle for executing collision suppression appropriate for an operation mode of an electrically assisted vehicle such as an electrically assisted bicycle, the control device comprising: a collision prediction unit which executes collision prediction on the basis of an output from a front monitoring sensor; and a control unit which determines whether or not a user is executing a predetermined pedal operation when the collision prediction unit predicts that a possibility of a collision is higher than or equal to a predetermined level and stops, when the predetermined pedal operation is being executed, control of decelerating the electrically assisted vehicle and simultaneously reduces a driving force of motor drive or stops the motor drive.

Description

電動アシスト車の衝突抑制のための制御装置及び当該制御装置を備える電動アシスト車Control device for collision suppression of electrically assisted vehicle and electrically assisted vehicle equipped with the control device
 本発明は、電動アシスト車の衝突抑制技術に関する。 The present invention relates to collision suppression technology for electrically assisted vehicles.
 モータの駆動力で人力を補助するのに加え、ユーザがブレーキを操作するなど減速を指示した場合や下り坂等で惰性走行している際にモータの逆起電力によって発電しバッテリに充電する回生機能を有する電動アシスト自転車が知られている。 In addition to assisting human power with the driving force of the motor, when the user instructs to decelerate by operating the brake, etc., or when coasting on a downhill, etc., the back electromotive force of the motor is used to generate electricity and charge the battery. Power-assisted bicycles with functions are known.
 電動アシスト自転車は人力に応じてモータにより駆動力を供給し、また車体も自動車等に比して軽量である為、人の操作に対する追従性がよく、ユーザの意図通りに走行することが出来る安全な乗り物ではあるが、周囲環境への対応はユーザの注意力と操作に依存している。 An electrically assisted bicycle supplies driving force with a motor according to human power, and the body is lighter than an automobile, etc., so it is easy to follow the operation of the person, and it is safe to ride as the user intends. Although it is a simple vehicle, it relies on the user's attention and operation to respond to the surrounding environment.
 一方、センサ技術により障害物を検知し、衝突を軽減するように自動ブレーキ機能を備えた自動車が既に商品化され普及している。これらの自動車向け衝突軽減のための自動ブレーキ機能は、安全に寄与することが実証されているものの、多くは四輪自動車の走行状態に沿った形になっている。すなわち、障害物が少ない自動車道路走行を前提として、障害物があることはイレギュラーで、且つ4輪であるため急ブレーキがなされてもある程度安定性が保たれている。 On the other hand, vehicles equipped with automatic braking functions to detect obstacles using sensor technology and reduce collisions have already been commercialized and are in widespread use. Although these automatic braking functions for collision mitigation for automobiles have been proven to contribute to safety, most of them are shaped according to the driving conditions of four-wheeled vehicles. That is, assuming that the vehicle travels on a motorway with few obstacles, the presence of obstacles is irregular, and since the vehicle has four wheels, stability is maintained to some extent even when sudden braking is performed.
 しかし、人通りの多い歩道を走行する可能性があり、また障害物に向けて停止するのではなく、ある程度速度を落とした上で避けることを前提とする二輪又は三輪車の電動アシスト自転車に対して、自動車向け衝突軽減の自動ブレーキ機能を適用するのは、好ましくない。 However, for two- or three-wheeled motor-assisted bicycles, which may run on sidewalks with a lot of pedestrian traffic, and which are premised on avoiding obstacles after slowing down rather than stopping toward them. , it is not preferable to apply the automatic braking function for collision mitigation for automobiles.
 なお、例えば特許文献1には、車両に備えた障害物センサの検出情報の処理結果が所定の条件にある時にブレーキ作動信号を出力してモータに制動を働かせる制御装置を備える衝突防止制御装置が開示されている。しかしながら、この技術では、障害物センサの検出情報によって強制的に制動がかけられるため、例えばユーザが障害物を認識した上で近づいてから避けるという走行の意図を持っていても制動で走行を妨げることになり利便性を損ねてしまう。 For example, Patent Document 1 discloses a collision prevention control device that includes a control device that outputs a brake actuation signal to brake a motor when the result of processing information detected by an obstacle sensor provided in a vehicle satisfies a predetermined condition. disclosed. However, with this technology, braking is forcibly applied based on the information detected by the obstacle sensor. For example, even if the user recognizes the obstacle and intends to avoid it after approaching it, the braking will hinder the vehicle from traveling. As a result, convenience is lost.
 また、例えば特許文献2には、前方を監視して停止物もしくは低速で移動中の物体を検出すると警戒領域走行中を判断し、警戒領域走行中にアクセル操作速度やアクセルペダル操作から緊急性を判断し、ブレーキ操作に先駆けて自動制動を行う技術が開示されている。この技術は、ユーザの意図をある程度読み取ったうえで自動制動を行うものであるが、基本的に四輪自動車の運転を想定したものであり、自転車のように、急に制動がかかったり、極低速の状態でユーザがバランスを維持することが難しく、ある程度の速度を維持しつつ障害物を避けることを想定した乗り物に適した制御ではない。 For example, in Patent Document 2, when a stationary object or an object moving at a low speed is detected by monitoring the front, it is determined that the vehicle is traveling in a warning area, and the urgency is determined from the accelerator operation speed and accelerator pedal operation while the vehicle is traveling in the warning area. A technique is disclosed for determining and performing automatic braking prior to brake operation. This technology reads the user's intentions to some extent and then automatically applies the brakes. It is difficult for the user to maintain balance in a low-speed state, and this control is not suitable for a vehicle that is supposed to avoid obstacles while maintaining a certain speed.
特開平4-96603号公報JP-A-4-96603 特開平11-255087号公報JP-A-11-255087
 従って、本発明の目的は、一側面によれば、電動アシスト自転車のような電動アシスト車の運転態様に適切な衝突抑制技術を提供することである。 Therefore, according to one aspect of the present invention, it is an object of the present invention to provide a collision suppression technique suitable for the driving mode of an electrically assisted vehicle such as an electrically assisted bicycle.
 本発明に係る、電動アシスト車の制御装置は、(A)前方監視センサからの出力に基づき衝突予測を行う衝突予測部と、(B)衝突予測部により衝突の可能性が所定レベル以上であると予測されると、ユーザによる所定のペダル操作が行われているか否かを判定し、所定のペダル操作が行われている場合には、電動アシスト車を減速させる制御を停止し且つモータ駆動の駆動力を低減またはモータ駆動を停止させる制御部とを有する。 A control device for an electrically assisted vehicle according to the present invention includes: (A) a collision prediction unit that predicts a collision based on an output from a forward monitoring sensor; When this is predicted, it is determined whether or not a predetermined pedal operation is performed by the user, and if the predetermined pedal operation is performed, the control for decelerating the electrically assisted vehicle is stopped and the motor is driven. and a control unit for reducing the driving force or stopping the motor drive.
図1は、実施の形態における電動アシスト自転車の外観を示す図である。FIG. 1 is a diagram showing the appearance of a power-assisted bicycle according to an embodiment. 図2は、モータ制御装置の構成例を示す図である。FIG. 2 is a diagram showing a configuration example of a motor control device. 図3は、実施の形態に係る部分の機能構成を示す図である。FIG. 3 is a diagram showing a functional configuration of portions according to the embodiment. 図4は、第1の実施の形態における動作内容を表す処理フローを示す図である。FIG. 4 is a diagram showing a processing flow representing operation contents in the first embodiment. 図5は、第1の実施の形態におけるタイムチャートを示す図である。FIG. 5 is a diagram showing a time chart in the first embodiment. 図6は、第2の実施の形態における動作内容を表す処理フローを示す図である。FIG. 6 is a diagram showing a processing flow representing operation contents in the second embodiment. 図7は、第2の実施の形態におけるタイムチャートを示す図である。FIG. 7 is a diagram showing a time chart in the second embodiment. 図8は、第3の実施の形態における動作内容を表す処理フローを示す図である。FIG. 8 is a diagram showing a processing flow representing operation contents in the third embodiment. 図9は、第3の実施の形態における動作内容を表す処理フローを示す図である。FIG. 9 is a diagram showing a processing flow representing operation contents in the third embodiment.
 以下、本発明の実施の形態について、電動アシスト車の一例である電動アシスト自転車の例をもって説明する。しかしながら、本発明の実施の形態は、電動アシスト自転車だけに適用対象を限定するものではなく、人力に応じて移動する移動体(例えば、台車、車いすなど)の制御装置等についても適用可能である。 Embodiments of the present invention will be described below using an example of an electrically assisted bicycle, which is an example of an electrically assisted vehicle. However, the embodiments of the present invention are not limited to application only to electrically assisted bicycles, and can also be applied to control devices for mobile bodies (for example, carts, wheelchairs, etc.) that move according to human power. .
[実施の形態1]
 図1は、本実施の形態における電動アシスト車の一例である電動アシスト自転車の一例を示す外観図である。この電動アシスト自転車1は、モータ駆動装置を搭載している。モータ駆動装置は、バッテリパック101と、モータ制御装置102と、トルクセンサ103と、ペダル回転センサ104と、モータ105と、操作パネル106と、ブレーキセンサ107と、前方監視センサ108とを有する。
[Embodiment 1]
FIG. 1 is an external view showing an example of an electrically assisted bicycle, which is an example of an electrically assisted vehicle according to the present embodiment. This electrically assisted bicycle 1 is equipped with a motor drive device. The motor driving device has a battery pack 101 , a motor control device 102 , a torque sensor 103 , a pedal rotation sensor 104 , a motor 105 , an operation panel 106 , a brake sensor 107 and a forward monitoring sensor 108 .
 また、電動アシスト自転車1は、前輪、後輪、前照灯、フリーホイール、変速機等も有している。 The electrically assisted bicycle 1 also has a front wheel, a rear wheel, a headlight, a freewheel, a transmission, and the like.
 バッテリパック101は、例えばリチウムイオン二次電池であるが、他種の電池、例えばリチウムイオンポリマー二次電池、ニッケル水素蓄電池などであってもよい。そして、バッテリパック101は、モータ制御装置102を介してモータ105に対して電力を供給し、回生時にはモータ制御装置102を介してモータ105からの回生電力によって充電も行う。 The battery pack 101 is, for example, a lithium-ion secondary battery, but may be other types of batteries such as a lithium-ion polymer secondary battery, a nickel-metal hydride storage battery, or the like. The battery pack 101 supplies electric power to the motor 105 via the motor control device 102, and also charges the battery pack 101 with regenerated electric power from the motor 105 via the motor control device 102 during regeneration.
 トルクセンサ103は、クランク軸周辺に設けられており、運転者によるペダルの踏力を検出し、この検出結果をモータ制御装置102に出力する。また、ペダル回転センサ104は、トルクセンサ103と同様に、クランク軸周辺に設けられており、回転に応じた信号をモータ制御装置102に出力する。 The torque sensor 103 is provided around the crankshaft, detects the force applied to the pedal by the driver, and outputs the detection result to the motor control device 102 . Further, the pedal rotation sensor 104 is provided around the crankshaft in the same manner as the torque sensor 103 and outputs a signal corresponding to rotation to the motor control device 102 .
 モータ105は、例えば周知の三相直流ブラシレスモータであり、例えば電動アシスト自転車1の前輪に装着されている。モータ105は、前輪を回転させるとともに、前輪の回転に応じてローターが回転するように、ローターが前輪に連結されている。さらに、モータ105はホール素子等の回転センサを備えてローターの回転情報(すなわちホール信号)をモータ制御装置102に出力する。 The motor 105 is, for example, a well-known three-phase DC brushless motor, and is attached to the front wheel of the electrically assisted bicycle 1, for example. The motor 105 rotates the front wheels, and the rotor is connected to the front wheels so that the rotor rotates according to the rotation of the front wheels. Further, the motor 105 has a rotation sensor such as a Hall element, and outputs rotor rotation information (that is, a Hall signal) to the motor control device 102 .
 モータ制御装置102は、モータ105の回転センサ、ブレーキセンサ107、トルクセンサ103及びペダル回転センサ104等からの信号に基づき所定の演算を行って、モータ105の駆動を制御し、モータ105による回生の制御も行う。なお、本発明の実施の形態では、モータ制御装置102は、前方監視センサ108からの出力に基づき衝突予測を行って、以下で述べるようなモータの制御等を行う。 The motor control device 102 performs predetermined calculations based on signals from the rotation sensor of the motor 105, the brake sensor 107, the torque sensor 103, the pedal rotation sensor 104, etc., controls the driving of the motor 105, and controls the regeneration by the motor 105. Also controls. Note that, in the embodiment of the present invention, the motor control device 102 performs collision prediction based on the output from the forward monitoring sensor 108, and performs motor control and the like as described below.
 前方監視センサ108は、例えば、ミリ波センサ、カメラ、LIDAR(Light Detection And Ranging)等の赤外線センサである。ミリ波センサは、悪天候下でも安定して検出できるものの、得られる情報は障害物との距離のみであるという特徴がある。また、カメラが撮影した映像を処理すれば、障害物の大きさや様態が判別できるものの、夜間や悪天候で検出精度が悪化するという特徴がある。LIDAR等の赤外線センサは、スキャンすることで障害物への角度情報や大きさ等がわかるが、価格が高価である。このように、前方監視センサ108には様々な形態のセンサを用いることができるが、本発明の実施の形態ではいずれの形態のセンサを採用しても良い。モータ制御装置102は、前方監視センサ108の態様に応じて出力データを処理して、衝突予測を行う。前方監視センサ108の設置個所は、前方を監視することから電動アシスト自転車1の車両前方が好ましい。 The forward monitoring sensor 108 is, for example, a millimeter wave sensor, a camera, or an infrared sensor such as LIDAR (Light Detection And Ranging). Millimeter-wave sensors are capable of stable detection even in bad weather, but the only information they can obtain is the distance to obstacles. Also, if the images captured by the camera are processed, the size and condition of the obstacles can be determined, but the accuracy of detection deteriorates at night or in bad weather. Infrared sensors such as LIDAR can detect angle information and size of obstacles by scanning, but they are expensive. As described above, various forms of sensors can be used for forward monitoring sensor 108, and any form of sensor may be employed in the embodiment of the present invention. The motor controller 102 processes the output data according to aspects of the forward looking sensor 108 to perform collision prediction. The front monitoring sensor 108 is preferably installed in front of the electrically power-assisted bicycle 1 because it monitors the front.
 操作パネル106は、例えばアシストの有無に関する指示入力(すなわち、電源スイッチのオン及びオフ)、アシスト有りの場合には希望アシスト比等の入力を搭乗者から受け付けて、当該指示入力等をモータ制御装置102に出力する。また、操作パネル106は、モータ制御装置102によって演算された結果である走行距離、走行時間、消費カロリー、回生電力量等のデータを表示する機能を有する場合もある。また、操作パネル106は、LED(Light Emitting Diode)などによる表示部を有している場合もある。これによって、例えばバッテリパック101の充電レベルや、オンオフの状態、希望アシスト比に対応するモードなどを運転者に提示する。さらに、モータ制御装置102は、前方監視センサ108からの出力に基づき、衝突の可能性が所定レベル以上であると予測した場合には、操作パネル106に危険を知らせる出力を行わせたり、スピーカから音を出力させるなどしても良い。 The operation panel 106 accepts, for example, an instruction input regarding the presence or absence of assistance (that is, turning on and off the power switch) and, in the case of assistance, an input such as a desired assist ratio from the passenger. 102. In some cases, the operation panel 106 also has a function of displaying data such as travel distance, travel time, calorie consumption, and regenerative power amount calculated by the motor control device 102 . Also, the operation panel 106 may have a display unit such as an LED (Light Emitting Diode). As a result, the driver is presented with, for example, the charge level of the battery pack 101, the on/off state, the mode corresponding to the desired assist ratio, and the like. Further, based on the output from the forward monitoring sensor 108, the motor control device 102, when predicting that the possibility of a collision is equal to or higher than a predetermined level, causes the operation panel 106 to perform an output informing of danger, or from a speaker. Sound may be output.
 本実施の形態に係るモータ制御装置102に関連する構成を図2に示す。モータ制御装置102は、制御器1020と、FET(Field Effect Transistor)ブリッジ1030とを有する。FETブリッジ1030は、モータ105のU相についてのスイッチングを行うハイサイドFET(Suh)及びローサイドFET(Sul)と、モータ105のV相についてのスイッチングを行うハイサイドFET(Svh)及びローサイドFET(Svl)と、モータ105のW相についてのスイッチングを行うハイサイドFET(Swh)及びローサイドFET(Swl)とを含む。このFETブリッジ1030は、モータの駆動部であり、コンプリメンタリ型スイッチングアンプの一部を構成している。 FIG. 2 shows a configuration related to the motor control device 102 according to this embodiment. The motor control device 102 has a controller 1020 and a FET (Field Effect Transistor) bridge 1030 . The FET bridge 1030 includes a high-side FET (Suh) and a low-side FET (Sul) for switching the U-phase of the motor 105, and a high-side FET (Svh) and a low-side FET (Svl) for switching the V-phase of the motor 105. ), and a high-side FET (Swh) and a low-side FET (Swl) for switching the W phase of the motor 105 . The FET bridge 1030 is a motor drive unit and constitutes a part of a complementary switching amplifier.
 また、制御器1020は、演算部1021と、ペダル回転入力部1022と、モータ回転入力部1024と、可変遅延回路1025と、モータ駆動タイミング生成部1026と、トルク入力部1027と、ブレーキ入力部1028と、バッテリパック101の出力電圧をAD(Analog-Digital)変換するAD入力部1029と、センサ入力部1023とを有する。 Further, the controller 1020 includes a calculation unit 1021, a pedal rotation input unit 1022, a motor rotation input unit 1024, a variable delay circuit 1025, a motor drive timing generation unit 1026, a torque input unit 1027, and a brake input unit 1028. , an AD input section 1029 for AD (Analog-Digital) conversion of the output voltage of the battery pack 101 , and a sensor input section 1023 .
 演算部1021は、操作パネル106からの入力(例えばアシストのオン/オフなど)、ブレーキ入力部1028からの入力(例えばブレーキのオン/オフ)、ペダル回転入力部1022からの入力、モータ回転入力部1024からの入力、トルク入力部1027からの入力、センサ入力部1023からの入力、AD入力部1029からの入力を用いて所定の演算を行って、モータ駆動タイミング生成部1026及び可変遅延回路1025に対して出力を行う。なお、演算部1021は、メモリ10211を有しており、メモリ10211は、演算に用いる各種データ及び処理途中のデータ等を格納する。さらに、演算部1021は、プログラムをプロセッサが実行することによって実現される場合もあり、この場合には当該プログラムがメモリ10211に記録されている場合もある。また、メモリ10211は、演算部1021とは別に設けられる場合もある。 The calculation unit 1021 receives input from the operation panel 106 (for example, assist on/off), input from the brake input unit 1028 (for example, brake on/off), input from the pedal rotation input unit 1022, and motor rotation input unit. 1024, the input from the torque input unit 1027, the input from the sensor input unit 1023, and the input from the AD input unit 1029 are used to perform a predetermined calculation, and the motor drive timing generation unit 1026 and the variable delay circuit 1025 Output to Note that the calculation unit 1021 has a memory 10211, and the memory 10211 stores various data used for calculation, data during processing, and the like. Furthermore, the arithmetic unit 1021 may be implemented by a processor executing a program, and in this case the program may be recorded in the memory 10211 . Also, the memory 10211 may be provided separately from the calculation unit 1021 .
 ペダル回転入力部1022は、ペダル回転センサ104からの、ペダル回転位相角(クランク回転位相角とも呼ぶ。なお、回転方向を表す信号を含む場合もある。)を、ディジタル化して演算部1021に出力する。モータ回転入力部1024は、モータ105が出力するホール信号からモータ105の回転(本実施の形態においては前輪の回転)に関する信号(例えば回転位相角、回転方向など)を、ディジタル化して演算部1021に出力する。トルク入力部1027は、トルクセンサ103からの踏力に相当する信号をディジタル化して演算部1021に出力する。AD入力部1029は、二次電池からの出力電圧をディジタル化して演算部1021に出力する。 Pedal rotation input section 1022 digitizes the pedal rotation phase angle (also called crank rotation phase angle; it may also include a signal representing the direction of rotation) from pedal rotation sensor 104 and outputs it to calculation section 1021 . do. A motor rotation input unit 1024 digitizes a signal (for example, a rotation phase angle, a rotation direction, etc.) related to the rotation of the motor 105 (rotation of the front wheels in this embodiment) from the Hall signal output by the motor 105, and outputs it to the calculation unit 1021. output to Torque input section 1027 digitizes a signal corresponding to the pedaling force from torque sensor 103 and outputs the digitized signal to calculation section 1021 . AD input section 1029 digitizes the output voltage from the secondary battery and outputs it to arithmetic section 1021 .
 ブレーキ入力部1028は、ブレーキセンサ107からのブレーキ有り又は無しを表す信号をディジタル化して演算部1021に出力する。センサ入力部1023は、前方監視センサ108からの信号を、前方監視センサ108の形態に応じてディジタル化して演算部1021に入力する。 The brake input unit 1028 digitizes the signal indicating whether or not the brake is applied from the brake sensor 107 and outputs the digitized signal to the calculation unit 1021 . Sensor input section 1023 digitizes the signal from front monitoring sensor 108 in accordance with the form of front monitoring sensor 108 and inputs the digitized signal to calculation section 1021 .
 演算部1021は、演算結果として進角値を可変遅延回路1025に出力する。可変遅延回路1025は、演算部1021から受け取った進角値に基づきホール信号の位相を調整してモータ駆動タイミング生成部1026に出力する。演算部1021は、演算結果として例えばPWM(Pulse Width Modulation)のデューティー比に相当するPWMコードをモータ駆動タイミング生成部1026に出力する。モータ駆動タイミング生成部1026は、可変遅延回路1025からの調整後のホール信号と演算部1021からのPWMコードとに基づいて、FETブリッジ1030に含まれる各FETに対するスイッチング信号を生成して出力する。演算部1021の演算結果によって、モータ105は、力行駆動される場合もあれば、回生制動される場合もある。なお、モータの基本動作については、国際公開第2012/086459号パンフレット等に記載されており、本実施の形態の主要部ではないので、ここでは説明を省略する。 The computation unit 1021 outputs the lead angle value to the variable delay circuit 1025 as a computation result. The variable delay circuit 1025 adjusts the phase of the Hall signal based on the lead angle value received from the calculation unit 1021 and outputs the Hall signal to the motor drive timing generation unit 1026 . The calculation unit 1021 outputs, for example, a PWM code corresponding to a duty ratio of PWM (Pulse Width Modulation) to the motor drive timing generation unit 1026 as a calculation result. Motor drive timing generator 1026 generates and outputs a switching signal for each FET included in FET bridge 1030 based on the adjusted Hall signal from variable delay circuit 1025 and the PWM code from calculator 1021 . Depending on the calculation result of the calculation unit 1021, the motor 105 may be power driven or may be regeneratively braked. Note that the basic operation of the motor is described in the pamphlet of International Publication No. 2012/086459, etc., and is not the main part of the present embodiment, so the description is omitted here.
 次に、図3に、演算部1021において所定のプログラムを実行することで実現される機能構成例を示す。具体的には、演算部1021により、衝突予測部3100と、ペダル回転処理部3200と、モータ回転処理部3300と、制御部3400と、モータ制御部3500とが実現される。 Next, FIG. 3 shows an example of a functional configuration realized by executing a predetermined program in the calculation unit 1021. Specifically, calculation unit 1021 implements collision prediction unit 3100 , pedal rotation processing unit 3200 , motor rotation processing unit 3300 , control unit 3400 , and motor control unit 3500 .
 モータ回転処理部3300は、モータ回転入力部1024からのモータ回転入力に基づき、例えばモータ回転数[rpm]を算出すると共に、当該モータ回転数を電動アシスト自転車1の速度(=車速[km/h])に換算する。また、ペダル回転処理部3200は、ペダル回転入力部1022からのペダル回転入力に基づき、例えばペダル回転数[rpm]を算出し、当該ペダル回転数を走行速度[km/h]に換算する。より具体的には、ペダル回転数に対してペダル1回転で進む距離の値を乗ずることで、ペダル回転に基づく走行速度を算出する。なお、変速機が電動アシスト自転車1に付いている場合には、ペダル1回転で進む距離の値は、ギア比によって異なってくる場合がある。このような場合には、例えばモータの回転数/ペダルの回転数によりギア比を算出し、当該ギア比を用いることでペダル1回転で進む距離の値を動的に調整する。 The motor rotation processing unit 3300 calculates, for example, the motor rotation speed [rpm] based on the motor rotation input from the motor rotation input unit 1024, and calculates the motor rotation speed as the speed of the electrically power-assisted bicycle 1 (=vehicle speed [km/h ]). Further, the pedal rotation processing unit 3200 calculates, for example, the pedal rotation speed [rpm] based on the pedal rotation input from the pedal rotation input unit 1022, and converts the pedal rotation speed into the running speed [km/h]. More specifically, the travel speed based on the pedal rotation is calculated by multiplying the pedal rotation number by the distance traveled by one pedal rotation. If the power-assisted bicycle 1 is equipped with a transmission, the distance traveled by one rotation of the pedal may differ depending on the gear ratio. In such a case, the gear ratio is calculated by, for example, the number of revolutions of the motor/the number of revolutions of the pedal, and the value of the distance traveled by one rotation of the pedal is dynamically adjusted by using the gear ratio.
 衝突予測部3100は、前方監視センサ108からの信号を受け付けるセンサ入力部1023からの前方監視センサ入力に基づき、衝突の可能性が所定レベル以上であるか否かを判定する衝突予測を行う。例えば、電動アシスト自転車1と障害物との距離が例えば10m以内になっていると判断されると、衝突の可能性が所定レベル以上であると予測する。なお、距離のみではなく、他の条件を加えて判定するようにしても良い。 The collision prediction unit 3100 performs collision prediction to determine whether the possibility of collision is equal to or higher than a predetermined level, based on the forward monitoring sensor input from the sensor input unit 1023 that receives the signal from the forward monitoring sensor 108 . For example, when it is determined that the distance between the power-assisted bicycle 1 and the obstacle is within 10 m, for example, the possibility of collision is predicted to be at or above a predetermined level. It should be noted that determination may be made by adding other conditions in addition to the distance.
 制御部3400は、衝突予測部3100が衝突の可能性が所定レベル以上であると予測した場合に、ペダル入力トルク、ペダル回転処理部3200から出力される、ペダル回転に基づく走行速度、モータ回転処理部3300から出力される車速などに基づき、モータ駆動の実行又は停止、回生制動などによる自動制動の実行又は停止の判断を行って、その指示を行う。モータ制御部3500は、指示に従ってモータ105のモータ駆動及び回生制動の制御を行う。なお、回生制動だけではなく、バッテリに回生電流を流すことなくモータ105において回生電流を消費するような制動、場合によってはタイヤのリムにブレーキパッドを押し当てるといった機械ブレーキを用いる制動を行う場合もある。 When the collision prediction unit 3100 predicts that the possibility of a collision is equal to or higher than a predetermined level, the control unit 3400 calculates the pedal input torque, the traveling speed output from the pedal rotation processing unit 3200, and the motor rotation processing based on the pedal rotation. Based on the vehicle speed and the like output from the unit 3300, it determines whether to execute or stop motor driving, or to execute or stop automatic braking by regenerative braking or the like, and issues an instruction therefor. The motor control unit 3500 controls motor driving and regenerative braking of the motor 105 according to instructions. In addition to regenerative braking, braking that consumes regenerative current in the motor 105 without flowing regenerative current to the battery, and in some cases, braking using a mechanical brake such as pressing the brake pad against the rim of the tire. be.
 以下、図4及び図5を用いて動作内容などについて詳細に説明する。なお、ステップS1乃至S13を所定の制御周期毎に実行する。  Hereinafter, the contents of the operation will be described in detail using FIGS. 4 and 5. Note that steps S1 to S13 are executed at predetermined control cycles.
 まず、衝突予測部3100は、前方監視センサ入力に基づき衝突予測を実行する(図4:ステップS1)。上でも述べたように、障害物が特定され、当該障害物との距離が例えば10m以内という条件が満たされているか否かなどを判定する。衝突予測部3100により衝突の可能性が所定レベル未満であると予測されると(ステップS3:Noルート)、モータ制御部3500は、通常の制御を実行する(ステップS11)。すなわち、制御部3400は、モータ駆動の実行又は停止、自動制動の実行又は停止といった指示を行うことなく、モータ制御部3500は、通常のモータ駆動や回生制動を行うようにモータを制御する。そして処理はステップS13に移行する。 First, the collision prediction unit 3100 executes collision prediction based on the forward monitoring sensor input (Fig. 4: step S1). As described above, an obstacle is specified, and it is determined whether or not the condition that the distance to the obstacle is within 10 m, for example, is satisfied. When the collision prediction unit 3100 predicts that the possibility of collision is less than the predetermined level (step S3: No route), the motor control unit 3500 executes normal control (step S11). In other words, the control unit 3400 does not instruct to execute or stop motor driving or to execute or stop automatic braking, and the motor control unit 3500 controls the motor so as to perform normal motor driving or regenerative braking. Then, the process moves to step S13.
 一方、衝突予測部3100が衝突の可能性が所定レベル以上であることを表す出力を制御部3400にすると(ステップS3:Yesルート)、制御部3400は、所定のペダル操作が行われていないかを確認する(ステップS5)。所定のペダル操作は、例えば、ユーザが走行継続の意図を示すような所定のペダル操作である。すなわち、ステップS5では、ユーザに走行継続の意図がないかを判断する。 On the other hand, when the collision prediction unit 3100 outputs to the control unit 3400 the output indicating that the possibility of collision is equal to or higher than the predetermined level (step S3: Yes route), the control unit 3400 determines whether a predetermined pedal operation is being performed. is confirmed (step S5). The predetermined pedal operation is, for example, a predetermined pedal operation indicating the user's intention to continue running. That is, in step S5, it is determined whether or not the user has an intention to continue running.
 このような所定のペダル操作は、より具体的には、以下のような条件で判定される。
1)ペダル回転に基づく走行速度と車速との差が所定値(例えば2km/h)以下である
2)ペダル入力トルクが所定の閾値(例えば5N・m)以上である
 このような条件を満たす場合には、現在の車速を維持するか車速を増加させるようにペダルを漕いでいることになるためである。なお、1)のみ、又は2)のみを条件にしても良い。
More specifically, such a predetermined pedal operation is determined under the following conditions.
1) The difference between the running speed and the vehicle speed based on pedal rotation is a predetermined value (eg, 2 km/h) or less 2) The pedal input torque is a predetermined threshold value (eg, 5 Nm) or more If these conditions are met: This is because the driver is pedaling so as to maintain the current vehicle speed or increase the vehicle speed. Only 1) or only 2) may be set as a condition.
 さらに、1)の条件に代って、
3)ペダル回転数が所定の閾値(例えば5rpm)以上である
 という条件を採用して、ユーザがペダルを多く回転させているか否かを確認するようにしても良い。さらに、1)又は3)と、2)とのいずれかで簡易に判定するようにしても良い。
Furthermore, instead of condition 1),
3) The condition that the number of pedal rotations is equal to or greater than a predetermined threshold value (for example, 5 rpm) may be employed to check whether the user is rotating the pedals frequently. Furthermore, either 1) or 3) or 2) may be simply determined.
 所定のペダル操作が行われていない場合(ステップS5:Yesルート)、制御部3400は、モータ駆動の停止且つ自動制動の実行を指示し、モータ制御部3500は、モータ駆動の停止且つ自動制動の実行する(ステップS7)。すなわち、ユーザが走行継続の意図を示していない場合には、モータ駆動を停止させるだけではなく、自動制動をも実行することで、より減速させることで、衝突の可能性を低減させる。そして処理はステップS13に移行する。 If the predetermined pedal operation has not been performed (step S5: Yes route), the control unit 3400 instructs to stop the motor drive and perform automatic braking, and the motor control unit 3500 stops the motor drive and performs automatic braking. Execute (step S7). That is, when the user does not indicate the intention to continue running, not only the motor drive is stopped, but also automatic braking is executed to further decelerate the vehicle, thereby reducing the possibility of collision. Then, the process moves to step S13.
 一方、所定のペダル操作が行われている場合(ステップS5:Noルート)、制御部3400は、モータ駆動及び自動制動を停止するように指示し、モータ制御部3500は、モータ駆動及び自動制動停止する(ステップS9)。このような場合、ユーザには走行継続の意図があるので、当該ユーザの意図を優先して、自動制動は行わないが、衝突の可能性が所定レベル以上であるので、モータ駆動も停止する。そうすれば、簡単には車速の増加がなされないようになるので、安全性が向上する。なお、モータ駆動の停止ではなく、駆動力の低減でもよい場合がある。そして処理はステップS13に移行する。 On the other hand, when a predetermined pedal operation is performed (step S5: No route), the control unit 3400 instructs to stop motor driving and automatic braking, and the motor control unit 3500 stops motor driving and automatic braking. (step S9). In such a case, since the user has an intention to continue running, the user's intention is prioritized and automatic braking is not performed. This will prevent the vehicle speed from increasing easily, thus improving safety. In some cases, instead of stopping the motor drive, it may be possible to reduce the driving force. Then, the process moves to step S13.
 モータ制御部3500は、ユーザによる電源オフなどにより、処理終了が指示されたか否かを判断する(ステップS13)。処理終了が指示されていない場合には、処理はステップS1に戻る。一方、処理終了が指示されている場合には、処理を終了する。 The motor control unit 3500 determines whether or not the end of processing has been instructed by the user turning off the power (step S13). If the end of the process is not instructed, the process returns to step S1. On the other hand, when the end of processing is instructed, the processing ends.
 以上のように、単に衝突予測部3100の衝突予測の結果だけではなく、ユーザの意図が表れるペダル操作に着目することで、電動アシスト自転車1特有の走行形態に対処しつつ、安全性を向上させることができるようになる。 As described above, by focusing not only on the collision prediction result of the collision prediction unit 3100 but also on the pedal operation that expresses the user's intention, safety can be improved while coping with the unique riding style of the electrically power-assisted bicycle 1. be able to
 図5を用いて、本実施の形態における制御の一例を説明する。図5の最上段に模式的に示すように、電動アシスト自転車1の前方には障害物が置かれており、電動アシスト自転車1は、障害物に向かって平地を走行している場面を想定する。図5(a)に示すように、電動アシスト自転車1と障害物との距離は徐々に短くなって行き、当該距離が10m以内となると、衝突の可能性が所定レベル以上と予測される。なお、図5における(e)までは第1の例として、図5(b)に示すように、所定のペダル操作が、障害物との距離が10m以内となっても継続される。そうすると、図5(c)及び(d)に示すように、障害物との距離が10m以内となって衝突の可能性が所定レベル以上となると、モータ駆動が停止されると共に、自動制動も行われない。そのため、図5(e)に示すように、障害物との距離が10m以内となって衝突の可能性が所定レベル以上となると、モータ駆動が無い分、それより前の車速よりは徐々に減速するようになる。 An example of control in the present embodiment will be described using FIG. As schematically shown in the uppermost part of FIG. 5, an obstacle is placed in front of the power-assisted bicycle 1, and the power-assisted bicycle 1 is assumed to be running on a flat ground toward the obstacle. . As shown in FIG. 5(a), the distance between the power-assisted bicycle 1 and the obstacle gradually decreases, and when the distance is within 10 m, the possibility of collision is predicted to exceed a predetermined level. Note that up to (e) in FIG. 5, as a first example, as shown in FIG. 5(b), the predetermined pedal operation is continued even if the distance to the obstacle is within 10 m. Then, as shown in FIGS. 5(c) and 5(d), when the distance to the obstacle is within 10 m and the possibility of collision exceeds a predetermined level, the motor is stopped and automatic braking is also performed. can't break Therefore, as shown in FIG. 5(e), when the distance to the obstacle is within 10 m and the possibility of collision exceeds a predetermined level, the vehicle speed is gradually decelerated from the previous vehicle speed due to the lack of motor drive. will come to
 一方、図5(f)乃至(i)までの第2の例では、図5(a)に示すように、電動アシスト自転車1と障害物との距離は徐々に短くなって行き、当該距離が10m以内となって衝突の可能性が所定レベル以上と予測される直前に、図5(f)に示すように、所定のペダルの回転が停止される。このような場合には、衝突の可能性が所定レベル以上と予測されると、図5(g)及び(h)に示すように、モータ駆動は停止されると共に、回生などによる自動制動が実行されるようになる。これにより、図5(i)に示すように、衝突の可能性が所定レベル以上と予測されると、図5(e)の場合に比して急激に減速するようになる。 On the other hand, in the second example shown in FIGS. 5(f) to 5(i), as shown in FIG. Immediately before the possibility of a collision is predicted to exceed a predetermined level within 10 m, rotation of a predetermined pedal is stopped as shown in FIG. 5(f). In such a case, when the possibility of collision is predicted to exceed a predetermined level, as shown in FIGS. It will be done. As a result, as shown in FIG. 5(i), when the possibility of collision is predicted to exceed a predetermined level, the vehicle decelerates more rapidly than in the case of FIG. 5(e).
 なお、衝突の可能性が所定レベル以上であると予測された場合には、制御部3400は、操作パネル106などに設けられた警告ランプを点灯させたり、スピーカから警告音を出力するなどにより、ユーザに注意を促すようにしても良い。 When the possibility of collision is predicted to be at or above a predetermined level, the control unit 3400 turns on a warning lamp provided on the operation panel 106 or the like, outputs a warning sound from a speaker, or the like. The user may be warned.
 また、上では、「自動制動停止」「モータ駆動停止」とあるが、その前から停止している場合にはその制御状態を継続するものである。 Also, in the above, "automatic braking stop" and "motor drive stop" are mentioned, but if it has been stopped before that, the control state will continue.
[実施の形態2]
 第1の実施の形態では、所定のペダル操作が行われていない場合に自動制動を行うことで強制的に減速させるが、電動アシスト自転車1を含む自転車では、減速しすぎると車体がふらついたりして逆に危険性が増す。本実施の形態では、このような自転車の特性に対処するものである。
[Embodiment 2]
In the first embodiment, when a predetermined pedal operation is not performed, automatic braking is performed to forcibly decelerate the bicycle. On the contrary, the danger increases. The present embodiment addresses such bicycle characteristics.
 図6に、図4の代わりに行われる動作内容を示す。但し、図6においては、図4と同じ動作部分についてはステップ番号を同じものとして示し、異なる部分のみ説明する。図6では、ステップS5の後に実行されるステップS7の代わりに、ステップS21乃至S25が追加されている。  Fig. 6 shows the contents of the operation performed instead of Fig. 4. However, in FIG. 6, the same operation parts as in FIG. 4 are shown with the same step numbers, and only different parts will be explained. In FIG. 6, steps S21 to S25 are added instead of step S7 executed after step S5.
 すなわち、ステップS5で所定のペダル操作が行われていないと判定された場合、制御部3400は、モータ回転処理部3300からの車速が所定の閾値TH1未満であるか否かを判断する(ステップS21)。 That is, when it is determined in step S5 that the predetermined pedal operation is not performed, the control section 3400 determines whether or not the vehicle speed from the motor rotation processing section 3300 is less than the predetermined threshold TH1 (step S21). ).
 低速走行時における安定性は、高速走行を想定するロードバイクのような電動アシスト自転車と低速でも自立状態が保たれやすい三輪の電動アシスト自転車とでは異なっている。従って、前者のような電動アシスト自転車であれば、例えば10km/hを閾値TH1に設定し、後者のような電動アシスト自転車であれば、例えば5km/hを閾値TH1に設定する。但し、これは一例であって、実験などで適切な値を設定する。  The stability at low speeds is different between an electrically assisted bicycle, such as a road bike, which is intended for high speed riding, and a three-wheeled electrically assisted bicycle, which tends to maintain its independence even at low speeds. Therefore, for the former electrically assisted bicycle, for example, the threshold TH1 is set to 10 km/h, and for the latter electrically assisted bicycle, for example, the threshold TH1 is set to 5 km/h. However, this is only an example, and an appropriate value is set through an experiment or the like.
 そして、車速が所定の閾値TH1未満であれば、制御部3400は、モータ駆動を停止し且つ弱い自動制動を実行するように指示し、モータ制御部3500は、モータ駆動を停止し且つ弱い自動制動を実行する(ステップS23)。弱い自動制動は、ステップS25における自動制動の度合いと比較して弱いということである。すなわち、車速が遅い場合には、あまりに減速しないように自動制動の度合いを弱くする。そして処理はステップS13に移行する。たとえば、回生電流の量を少なくなるように設定したり、回生制動のトルクを小さくなるように設定する。 Then, if the vehicle speed is less than the predetermined threshold TH1, the control unit 3400 instructs to stop the motor drive and perform weak automatic braking, and the motor control unit 3500 stops the motor drive and weak automatic braking. is executed (step S23). Weak automatic braking means weaker than the degree of automatic braking in step S25. That is, when the vehicle speed is slow, the degree of automatic braking is weakened so as not to decelerate too much. Then, the process moves to step S13. For example, the amount of regenerative current is set to be small, or the regenerative braking torque is set to be small.
 一方、車速が所定の閾値TH1以上であれば、制御部3400は、モータ駆動を停止し且つ強い自動制動を実行するように指示し、モータ制御部3500は、モータ駆動を停止し且つ強い自動制動を実行する(ステップS25)。強い自動制動は、ステップS23における自動制動の度合いと比較して強いということである。すなわち、車速が速い場合には、大きく減速するように自動制動の度合いを強くする。そして処理はステップS13に移行する。たとえば、回生電流の量を多くなるように設定したり、回生制動のトルクが大きくなるように設定する。 On the other hand, if the vehicle speed is equal to or higher than the predetermined threshold TH1, the control unit 3400 instructs to stop the motor drive and perform strong automatic braking, and the motor control unit 3500 stops the motor drive and strong automatic braking. is executed (step S25). Strong automatic braking means strong compared to the degree of automatic braking in step S23. That is, when the vehicle speed is high, the degree of automatic braking is strengthened so as to significantly decelerate the vehicle. Then, the process moves to step S13. For example, the amount of regenerative current is set to be large, or the torque of regenerative braking is set to be large.
 図7を用いて、本実施の形態における制御の一例を説明する。図7の最上段に模式的に示すように、電動アシスト自転車1の前方には障害物が置かれており、電動アシスト自転車1は、障害物に向かって平地を走行している場面を想定する。図7(a)に示すように、電動アシスト自転車1と障害物との距離は徐々に短くなって行き、当該距離が10m以内となると、衝突の可能性が所定レベル以上と予測される(時刻t1)。この例では、図7(b)に示すように、所定のペダル操作は継続的に行われていない。そのため、図7(c)に示すように、モータ駆動も行われていない。このため、時刻t1において、衝突の可能性が所定レベル以上と予測されると、図7(d)に示すように、強い自動制動が実行されるようになる。これに応じて、図7(e)に示すように、車速が急激に減少するようになる。但し、車速が閾値TH1=10km/hに達すると(時刻t2)、図7(d)に示すように、強い自動制動から弱い自動制動に変化するので、そうすると、車速の減少度合いは小さくなり、走行の安定性を損ねなくなる。 An example of control in the present embodiment will be described using FIG. As schematically shown in the uppermost part of FIG. 7, an obstacle is placed in front of the power-assisted bicycle 1, and the power-assisted bicycle 1 is assumed to be traveling on flat ground toward the obstacle. . As shown in FIG. 7(a), the distance between the electrically power-assisted bicycle 1 and the obstacle gradually becomes shorter, and when the distance becomes 10 m or less, the possibility of collision is predicted to exceed a predetermined level (time t1). In this example, as shown in FIG. 7B, the predetermined pedal operation is not performed continuously. Therefore, the motor is not driven as shown in FIG. 7(c). Therefore, at time t1, when the possibility of collision is predicted to exceed a predetermined level, strong automatic braking is performed as shown in FIG. 7(d). Accordingly, as shown in FIG. 7(e), the vehicle speed suddenly decreases. However, when the vehicle speed reaches the threshold TH1=10 km/h (time t2), as shown in FIG. 7(d), the automatic braking changes from strong to weak. It does not impair the stability of running.
 このように、所定のペダル操作が行われていない状態で、単純に自動制動を行うのではなく、車速に応じて走行の安定性を維持できるように自動制動を行うようにすることで、安全性の向上がなされる。 In this way, instead of simply performing automatic braking when the prescribed pedal operation is not performed, automatic braking is performed so as to maintain driving stability according to the vehicle speed, thereby improving safety. improvement in sexuality.
[実施の形態3]
 第1及び第2の実施の形態では、衝突の可能性が所定レベル以上のままであると、ユーザはモータ駆動によるアシストを得ることができない。しかしながら、所定のペダル操作が行われていない状態から所定のペダル操作が行われるようになった場合には、ユーザが状況変化を認識したことを表しており、衝突の可能性が所定レベル以上であっても、速度維持などのためにモータ駆動によるアシストを行うことが好ましい。また、所定のペダル操作が行われている中で、ペダル回転がより速くなったりペダル入力トルクがより強くなったりした場合にも、ユーザが状況変化を認識したことを表しており、衝突の可能性が所定レベル以上であっても、速度維持などのためにモータ駆動によるアシストを行うことが好ましい。
[Embodiment 3]
In the first and second embodiments, if the possibility of collision remains at or above a predetermined level, the user cannot obtain motor drive assistance. However, when the predetermined pedal operation is performed from the state in which the predetermined pedal operation is not performed, it means that the user has recognized a change in the situation, and the possibility of collision is equal to or higher than the predetermined level. Even if there is, it is preferable to perform assist by motor drive for speed maintenance. In addition, when the pedal rotation speeds up or the pedal input torque increases while a predetermined pedal operation is being performed, it also indicates that the user has recognized a change in the situation, indicating that a collision may occur. Even if the speed is at or above a predetermined level, it is preferable to perform assist by motor driving in order to maintain the speed.
 本実施の形態はこのような観点を踏まえたものであり、図8及び図9を用いて本実施の形態に係る動作内容を説明する。なお、ステップS31乃至ステップS47を所定の制御周期毎に実行する。 The present embodiment is based on such a point of view, and operation contents according to the present embodiment will be explained using FIGS. 8 and 9. FIG. Note that steps S31 to S47 are executed at predetermined control cycles.
 まず、衝突予測部3100は、前方監視センサ入力に基づき衝突予測を実行する(図8:ステップS31)。本ステップは、図4のステップS1と同様である。衝突予測部3100により衝突の可能性が所定レベル未満であると判定されると(ステップS33:Noルート)、モータ制御部3500は、通常の制御を実行する(ステップS49)。すなわち、制御部3400は、モータ駆動の実行又は停止、自動制動の実行又は停止といった指示を行うことなく、モータ制御部3500は通常のモータ駆動や回生制動を行うようにモータを制御する。また、衝突予測部3100は、衝突の可能性が所定レベル以上であることを表す第1フラグ及び所定のペダル操作を行っていなかった場合にセットされる第2フラグをオフにセットする(ステップS51)。第1フラグ及び第2フラグは初期的にはオフになっており、ステップS51で既にオフであれば、結果的に何もしないことになる。そして処理はステップS47に移行する。 First, the collision prediction unit 3100 executes collision prediction based on the forward monitoring sensor input (Fig. 8: step S31). This step is the same as step S1 in FIG. When the collision prediction unit 3100 determines that the possibility of collision is less than the predetermined level (step S33: No route), the motor control unit 3500 executes normal control (step S49). In other words, the control unit 3400 does not instruct to execute or stop motor driving or to execute or stop automatic braking, and the motor control unit 3500 controls the motor so as to perform normal motor driving or regenerative braking. Further, the collision prediction unit 3100 sets off a first flag indicating that the possibility of collision is equal to or higher than a predetermined level and a second flag that is set when a predetermined pedal operation is not performed (step S51). ). The first flag and the second flag are initially turned off, and if they are already turned off in step S51, nothing will be done as a result. Then, the process moves to step S47.
 一方、衝突予測部3100が衝突の可能性が所定レベル以上であると予測すると、衝突予測部3100は、衝突の可能性が所定レベル以上であることを表す第1フラグがオンであるか否かを判定する(ステップS35)。第1フラグが既にオンであれば、処理はステップS41に移行する。一方、第1フラグがオフであれば、衝突予測部3100は、第1フラグをオンにセットする(ステップS37)。制御部3400には、第1フラグがオンに変化することで、衝突の可能性が所定レベル以上になったことが通知される。そして、制御部3400は、第1フラグがオンに変化したタイミングにおけるペダル回転数A及びペダル入力トルクBを、メモリに記録する(ステップS39)。なお、この段階におけるペダル回転位相角も記録しておくことで、後の制御周期におけるペダル回転位相角と記録されたペダル回転位相角と差により、その制御周期までのペダル回転角度が得られる。 On the other hand, when collision prediction unit 3100 predicts that the possibility of collision is equal to or higher than the predetermined level, collision prediction unit 3100 determines whether the first flag indicating that the possibility of collision is equal to or higher than the predetermined level is on. is determined (step S35). If the first flag is already on, the process proceeds to step S41. On the other hand, if the first flag is off, collision prediction section 3100 sets the first flag to on (step S37). Control unit 3400 is notified that the possibility of collision has reached or exceeded a predetermined level by turning on the first flag. Then, the control unit 3400 records in the memory the pedal rotation speed A and the pedal input torque B at the timing when the first flag is turned on (step S39). By recording the pedal rotation phase angle at this stage, the pedal rotation angle up to that control cycle can be obtained from the difference between the pedal rotation phase angle in the subsequent control cycle and the recorded pedal rotation phase angle.
 そして、制御部3400は、所定のペダル操作が行われていないかを確認する(ステップS41)。所定のペダル操作は、例えば、ユーザが走行継続の意図を示すような所定のペダル操作であり、第1の実施の形態と同様である。所定のペダル操作が行われている場合には(ステップS41:Noルート)、処理は端子Aを介して図9の処理に移行する。 Then, the control unit 3400 checks whether a predetermined pedal operation is performed (step S41). The predetermined pedal operation is, for example, a predetermined pedal operation that indicates the user's intention to continue running, and is the same as in the first embodiment. If a predetermined pedal operation is being performed (step S41: No route), the process proceeds via terminal A to the process of FIG.
 一方、所定のペダル操作が行われていない場合(ステップS41:Yesルート)、制御部3400は、所定のペダル操作が行われていない状態を表す第2フラグをオンにセットする(ステップS43)。そして、制御部3400は、モータ駆動の停止且つ自動制動の実行を指示し、モータ制御部3500は、モータ駆動の停止且つ自動制動を実行する(ステップS45)。第1の実施の形態と同様に、ユーザが走行継続の意思を示していない場合には、モータ駆動を停止させるだけではなく、自動制動をも実行することで、より減速させることで、衝突の可能性を低減させる。 On the other hand, if the predetermined pedal operation has not been performed (step S41: Yes route), the control unit 3400 turns on the second flag indicating that the predetermined pedal operation has not been performed (step S43). Then, the control unit 3400 instructs to stop driving the motor and execute automatic braking, and the motor control unit 3500 stops driving the motor and executes automatic braking (step S45). As in the first embodiment, when the user does not indicate the intention to continue running, not only the motor drive is stopped, but also automatic braking is performed to further decelerate the vehicle, thereby preventing a collision. reduce the chances.
 そして、モータ制御部3500は、ユーザによる電源オフなどにより、処理終了が指示されたか否かを判断する(ステップS47)。処理終了が指示されていない場合には、処理はステップS31に戻る。一方、処理終了が指示されている場合には、処理を終了する。 Then, the motor control unit 3500 determines whether or not the user has instructed to end the processing by turning off the power (step S47). If the end of the process has not been instructed, the process returns to step S31. On the other hand, when the end of processing is instructed, the processing ends.
 次に、端子A以降の動作内容について図9を用いて説明する。まず、制御部3400は、第2フラグがオンであるか否かを判断する(ステップS53)。ここで第2フラグがオンであれば、過去に所定のペダル操作が行われていない状態があって、ここで所定のペダル操作が行われるようになったことを表している。よって、ユーザが状況変化を認識してペダルを漕ぎ始めたことになる。このため、第2フラグがオンであれば、制御部3400は、自動制動の停止且つモータ駆動の再開を指示し、モータ制御部3500は、自動制動の停止且つモータ駆動を再開する(ステップS55)。これにより、ユーザはモータ駆動によるアシストを得て走行を継続できるようになる。そして処理は端子Bを介してステップS47に戻る。 Next, the contents of operation after terminal A will be described using FIG. First, control unit 3400 determines whether or not the second flag is on (step S53). Here, if the second flag is ON, it indicates that there was a state in which the predetermined pedal operation was not performed in the past, and now the predetermined pedal operation is performed. Therefore, the user recognizes the situation change and starts pedaling. Therefore, if the second flag is on, the control unit 3400 instructs to stop automatic braking and restart motor driving, and the motor control unit 3500 stops automatic braking and restarts motor driving (step S55). . As a result, the user can continue running with assistance from the motor drive. Then, the process returns to step S47 via terminal B.
 一方、第2フラグがオフであれば、制御部3400は、モータ駆動の再開条件を満たすか否かを判断する(ステップS59)。本実施の形態におけるモータ駆動の再開条件は、例えば以下のような条件である。 On the other hand, if the second flag is off, the control unit 3400 determines whether or not the condition for resuming motor driving is satisfied (step S59). Conditions for resuming motor driving in the present embodiment are, for example, the following conditions.
11)現在のペダル回転数>記録されたペダル回転数A+5[rpm]
12)現在のペダル入力トルク>記録されたペダル入力トルクB+5[N・m]
13)現在のペダル入力トルク>10N・m且つペダル回転角度>+45°
 数値については一例であり、実験などにより適切な数値を設定する。
11) Current pedal rotation speed > Recorded pedal rotation speed A + 5 [rpm]
12) Current pedal input torque > recorded pedal input torque B + 5 [Nm]
13) Current pedal input torque>10Nm and pedal rotation angle>+45°
The numerical values are only examples, and appropriate numerical values are set through experiments and the like.
 これらの条件全てを満たす場合にモータ駆動の再開条件を満たすと判断しても良いし、これらの1又は2の条件を満たした場合にモータ駆動の再開条件を満たすと判断しても良い。11)及び12)の条件については、ステップS39で記録された値を基準に、ペダル回転がより速くなったこと、ペダル入力トルクがより強くなったことを検出するものである。13)の条件は、ペダル入力トルクが絶対的に大きいという条件付きで、衝突の可能性が所定レベル以上となってからのペダル回転角度により、ユーザによる増速意図をくみ取るものである。 It may be determined that the conditions for resuming motor driving are met when all of these conditions are met, or it may be determined that the conditions for resuming motor driving are met when condition 1 or 2 is met. Conditions 11) and 12) are for detecting that the pedal rotation has become faster and that the pedal input torque has become stronger, based on the values recorded in step S39. Condition 13) is based on the condition that the pedal input torque is absolutely large, and the user's intention to increase speed is taken into account from the pedal rotation angle after the possibility of collision reaches a predetermined level or higher.
 モータ駆動の再開条件を満たさない場合には、第1及び第2の実施の形態と同様に、制御部3400は、モータ駆動の停止且つ自動制動の停止を指示し、モータ制御部3500は、モータ駆動の停止且つ自動制動の停止を実行する(ステップS63)。ここでも、モータ駆動の停止の代わりに、モータ駆動の駆動力を低減させてもよい場合がある。そして、処理は端子Bを介してステップS47に戻る。 If the conditions for resuming motor driving are not satisfied, control unit 3400 instructs to stop motor driving and automatic braking, as in the first and second embodiments. Stop driving and automatic braking are executed (step S63). Also here, instead of stopping the motor drive, the driving force of the motor drive may be reduced in some cases. Then, the process returns to step S47 via terminal B.
 一方、モータ駆動の再開条件を満たす場合には、制御部3400は、自動制動の停止且つモータ駆動の実行を指示し、モータ制御部3500は、自動制動を停止し、且つモータ駆動を実行する(ステップS61)。そして、処理は端子Bを介してステップS47に戻る。 On the other hand, if the conditions for resuming motor driving are satisfied, the control unit 3400 instructs to stop automatic braking and start driving the motor, and the motor control unit 3500 stops automatic braking and starts driving the motor (( step S61). Then, the process returns to step S47 via terminal B.
 以上のように、衝突の可能性が所定レベル以上である場合であっても、ユーザが状況変化を認識して、それがペダル操作に反映された場合には、モータ駆動によるアシストを再開させて、よりユーザの意図に沿った制御が行われるようになる。 As described above, even when the possibility of a collision is equal to or higher than the predetermined level, if the user recognizes a change in the situation and the change is reflected in the pedal operation, the assist by the motor drive is restarted. , the control is more in line with the user's intention.
 なお、図8及び図9の処理フローでは、所定のペダル操作が行われていない状態から同じ所定のペダル操作が行われると、モータ駆動を行うように制御していたが、所定のペダル操作が行われていない状態から別の第2の所定のペダル操作が行われると、モータ駆動を行うようにしても良い。第2の所定のペダル操作は、ペダル回転角度についての条件を含むようにしても良い。 In the processing flows of FIGS. 8 and 9, when the same predetermined pedal operation is performed in a state in which the predetermined pedal operation is not performed, the motor is controlled to be driven. The motor may be driven when another second predetermined pedal operation is performed in a state in which no pedal operation is performed. The second predetermined pedal operation may include a condition regarding the pedal rotation angle.
 以上本発明の実施の形態を説明したが、本発明はこれに限定されるものではない。例えば、目的に応じて、上で述べた各実施の形態における任意の技術的特徴を削除するようにしても良いし、他の実施の形態で述べた任意の技術的特徴を追加するようにしても良い。例えば、第2の実施の形態のような車速による自動制動の強度を変化させるという技術的要素を第3の実施の形態に適用しても良い。 Although the embodiment of the present invention has been described above, the present invention is not limited to this. For example, depending on the purpose, any technical feature in each embodiment described above may be deleted, or any technical feature described in other embodiments may be added. Also good. For example, the technical element of changing the strength of automatic braking according to the vehicle speed as in the second embodiment may be applied to the third embodiment.
 さらに、上で述べた機能ブロック図は一例であって、1の機能ブロックを複数の機能ブロックに分けても良いし、複数の機能ブロックを1つの機能ブロックに統合しても良い。処理フローについても、処理内容が変わらない限り、ステップの順番を入れ替えたり、複数のステップを並列に実行するようにしても良い。 Furthermore, the functional block diagram described above is an example, and one functional block may be divided into a plurality of functional blocks, or a plurality of functional blocks may be integrated into one functional block. As for the processing flow, the order of the steps may be changed, or a plurality of steps may be executed in parallel, as long as the content of the processing does not change.
 なお、所定のペダル操作についての1)の条件は、ペダル回転数を走行速度[km/h]に換算することで、車速と比較するようになっているが、ペダル回転数を車輪の回転数に換算して、モータの回転数と比較するようにしても良い。更に他の単位の数値に換算して比較するようにしても良い。 Note that the condition 1) for a predetermined pedal operation is such that the pedal rotation speed is converted to the running speed [km/h] and compared with the vehicle speed. , and compared with the number of revolutions of the motor. Furthermore, it is also possible to convert the values into values in other units for comparison.
 また、上で述べた例ではモータ回転数を車速に換算しているが、車速については、車速を測定するセンサを設けたり、加速度を累積することで車速を計算したり、例えば走行距離を走行に掛かった時間で除することで車速を算出するようにしても良い。走行距離については、例えばGPS(Global Positioning System)を用いて位置を計測して、その軌跡から算出しても良い。 In the example described above, the number of motor rotations is converted into vehicle speed, but the vehicle speed can be calculated by providing a sensor that measures the vehicle speed or by accumulating the acceleration. The vehicle speed may be calculated by dividing by the time taken for . The traveling distance may be calculated from the trajectory obtained by measuring the position using, for example, GPS (Global Positioning System).
 以上述べた実施の形態をまとめると以下のようになる。 The above embodiments can be summarized as follows.
 本実施の形態に係る、電動アシスト車の制御装置は、(A)前方監視センサからの出力に基づき衝突予測を行う衝突予測部と、(B)衝突予測部により衝突の可能性が所定レベル以上であると予測されると、ユーザによる所定のペダル操作が行われているか否かを判定し、所定のペダル操作が行われている場合には、電動アシスト車を減速させる制御を停止し且つモータ駆動の駆動力を低減またはモータ駆動を停止させる制御部とを有する。 The control device for an electrically assisted vehicle according to the present embodiment includes (A) a collision prediction unit that predicts a collision based on an output from a forward monitoring sensor; is predicted, it is determined whether or not a predetermined pedal operation is being performed by the user. and a control unit that reduces the driving force of the drive or stops the motor drive.
 電動アシスト車の場合には、衝突の可能性が所定レベル以上であると予測されても、ユーザにより所定のペダル操作がなされていれば、走行すべきというユーザの意図が明示されているので、そのユーザの意図を優先させる。但し、モータ駆動によるアシストを低減または停止させることで、車速の増加を抑制して衝突をユーザによって回避させるようにする。 In the case of an electrically assisted vehicle, even if the possibility of a collision is predicted to be at or above a predetermined level, the user's intention to travel is clearly indicated as long as the user performs a predetermined pedal operation. Prioritize the user's intentions. However, by reducing or stopping the assistance by the motor drive, the increase in vehicle speed is suppressed and the collision is avoided by the user.
 また、上で述べた制御部は、所定のペダル操作が行われていない場合に、電動アシスト車を減速させるように制御するようにしても良い。電動アシスト車の場合、走行すべきというユーザの意図が示されていない場合には、回生などにより減速することで危険を回避できるようにするものである。但し、回生だけではなく、他の減速手法を採用しても良い。 In addition, the control section described above may perform control to decelerate the electrically assisted vehicle when a predetermined pedal operation is not performed. In the case of an electrically assisted vehicle, if the user does not indicate that the vehicle should travel, the vehicle is decelerated through regeneration or the like to avoid danger. However, other deceleration methods may be adopted in addition to regeneration.
 さらに、上で述べた制御部は、所定のペダル操作が行われていない場合に、電動アシスト車の車速が閾値未満である場合には、車速が閾値以上である場合に比して電動アシスト車の減速の度合いが弱くなるように制御するようにしても良い。電動アシスト車の場合、減速しすぎると危険なので、低速の場合には自動制動の度合いを弱めるようにするものである。 Furthermore, when the predetermined pedal operation is not performed and the vehicle speed of the electrically assisted vehicle is less than the threshold value, the control unit described above controls the vehicle speed of the electrically assisted vehicle as compared with the case where the vehicle speed is equal to or greater than the threshold value. may be controlled to weaken the degree of deceleration. In the case of an electrically assisted vehicle, excessive deceleration is dangerous, so the degree of automatic braking is weakened at low speeds.
 また、上で述べた制御部は、電動アシスト車を減速させるように制御中、所定のペダル操作又は第2の所定のペダル操作が行われていることが検出されると、電動アシスト車を減速させる制御を停止し且つモータの駆動を実行するように制御するようにしても良い。ペダル操作が行われていない状態からペダル操作が行われる状態に遷移したということは、状況変化を認識したユーザの意図が走行継続を示しているためである。なお、第2の所定のペダル操作は、上記所定のペダル操作とは異なる操作であって、例えばペダル回転角度についての条件を含む場合もある。 Further, the control unit described above decelerates the electrically assisted vehicle when it is detected that a predetermined pedal operation or a second predetermined pedal operation is being performed during control to decelerate the electrically assisted vehicle. It is also possible to stop the control to drive the motor and perform the control to drive the motor. The fact that the state in which the pedal is not being operated has changed to the state in which the pedal is being operated is because the intention of the user who has recognized the change in the situation indicates to continue running. It should be noted that the second predetermined pedal operation is an operation different from the predetermined pedal operation, and may include, for example, a condition regarding the pedal rotation angle.
 さらに、上で述べた制御部は、所定のペダル操作が行われている場合にモータ駆動の駆動力を低減またはモータ駆動を停止させる制御中、衝突予測部により衝突の可能性が所定レベル以上であると予測された時よりも、電動アシスト車の車速を増加させることを示すペダル操作を検知した場合には、モータ駆動を実行させる制御を行うようにしても良い。ペダル操作が継続している場合においても、ペダル操作がより車速を増加させるようになされれば、アシストを再開させることが好ましいからである。 Furthermore, the above-described control unit is controlled to reduce the driving force of the motor drive or to stop the motor drive when a predetermined pedal operation is performed, and the collision prediction unit detects that the possibility of a collision is at a predetermined level or higher. When it is detected that the pedal is operated to increase the vehicle speed of the electrically assisted vehicle, the motor may be driven. This is because, even when the pedal operation continues, it is preferable to restart the assist if the pedal operation increases the vehicle speed.
 なお、上で述べた制御部は、上記所定のペダル操作が行われているか否かを、あ)電動アシスト車の車速とペダル回転に基づき換算された走行速度との関係が所定の条件を満たしているか否か又はい)ペダル回転数が閾値以上であるか否かと、う)ベダル入力トルクが閾値以上であるか否かとの少なくともいずれかに基づき判定するようにしても良い。 Note that the control unit described above determines whether or not the predetermined pedal operation is performed, and (a) the relationship between the vehicle speed of the electrically assisted vehicle and the traveling speed converted based on the pedal rotation satisfies a predetermined condition. Alternatively, the determination may be made based on at least one of (a) whether the pedal rotation speed is equal to or greater than the threshold value, and (c) whether or not the pedal input torque is equal to or greater than the threshold value.
 さらに、上で述べた制御部は、衝突予測部により衝突の可能性が所定レベル以上であると予測された時よりも、電動アシスト車の車速を増加させることを示す所定のペダル操作を検知したか否かを、か)衝突予測部により衝突の可能性が所定レベル以上であると予測された時におけるペダル回転数とペダル入力トルクとのうち少なくともいずれかを基準にして現在のペダル回転数と現在のペダル入力トルクとのうち少なくともいずれかが所定量以上増加したことと、き)予め定められたペダル入力トルク及びペダル回転角度についての条件を満たすこととのうち少なくともいずれかが満たされたか否かで判定するようにしても良い。 Further, the control unit described above detects a predetermined pedal operation indicating that the vehicle speed of the electrically assisted vehicle is to be increased more than when the collision prediction unit predicts that the possibility of a collision is equal to or higher than a predetermined level. f) the current pedal rotation speed and the pedal input torque when the collision prediction unit predicts that the possibility of a collision is equal to or higher than a predetermined level; ii) at least one of the current pedal input torque and the current pedal input torque has increased by a predetermined amount or more; You may make it determine by .
 このような構成は、実施の形態に述べられた事項に限定されるものではなく、実質的に同一の効果を奏する他の構成にて実施される場合もある。 Such configurations are not limited to the matters described in the embodiments, and may be implemented in other configurations that produce substantially the same effects.

Claims (8)

  1.  前方監視センサからの出力に基づき衝突予測を行う衝突予測部と、
     前記衝突予測部により衝突の可能性が所定レベル以上であると予測されると、ユーザによる所定のペダル操作が行われているか否かを判定し、前記所定のペダル操作が行われている場合には、電動アシスト車を減速させる制御を停止し且つモータ駆動の駆動力を低減またはモータ駆動を停止させる制御部と、
     を有する、電動アシスト車の制御装置。
    a collision prediction unit that predicts a collision based on the output from the forward monitoring sensor;
    When the collision prediction unit predicts that the possibility of collision is equal to or higher than a predetermined level, it determines whether or not a predetermined pedal operation is performed by the user, and if the predetermined pedal operation is performed, a control unit that stops control for decelerating the electrically assisted vehicle and reduces the driving force of the motor drive or stops the motor drive;
    A control device for an electrically assisted vehicle.
  2.  前記制御部は、
     前記所定のペダル操作が行われていない場合に、前記電動アシスト車を減速させるように制御する
     請求項1記載の制御装置。
    The control unit
    The control device according to claim 1, wherein when the predetermined pedal operation is not performed, the electrically assisted vehicle is controlled to decelerate.
  3.  前記制御部は、
     前記所定のペダル操作が行われていない場合に、前記電動アシスト車の車速が閾値未満である場合には、前記車速が前記閾値以上である場合に比して前記電動アシスト車の減速の度合いが弱くなるように制御する
     請求項2記載の制御装置。
    The control unit
    When the vehicle speed of the electrically assisted vehicle is less than the threshold value when the predetermined pedal operation is not performed, the degree of deceleration of the electrically assisted vehicle is greater than when the vehicle speed is equal to or greater than the threshold value. 3. The control device according to claim 2, wherein control is performed so as to weaken.
  4.  前記制御部は、
     前記電動アシスト車を減速させるように制御中、前記所定のペダル操作又は第2の所定のペダル操作が行われていることが検出されると、前記電動アシスト車を減速させる制御を停止し且つ前記モータの駆動を実行するように制御する
     請求項2又は3記載の制御装置。
    The control unit
    When it is detected that the predetermined pedal operation or the second predetermined pedal operation is being performed during the control to decelerate the electric assist vehicle, the control for decelerating the electric assist vehicle is stopped and the 4. The control device according to claim 2 or 3, which controls to drive the motor.
  5.  前記制御部は、
     前記所定のペダル操作が行われている場合に前記モータ駆動の駆動力を低減またはモータ駆動を停止させる制御中、前記衝突予測部により衝突の可能性が所定レベル以上であると予測された時よりも、前記電動アシスト車の車速を増加させることを示すペダル操作を検知した場合には、前記モータ駆動を実行させる制御を行う
     請求項1記載の制御装置。
    The control unit
    When the collision prediction unit predicts that the possibility of a collision is equal to or higher than a predetermined level during control for reducing the driving force of the motor drive or stopping the motor drive when the predetermined pedal operation is performed 2. The control device according to claim 1, further comprising: performing control for executing the motor drive when detecting a pedal operation indicating that the vehicle speed of the electrically assisted vehicle is to be increased.
  6.  前記制御部は、
     前記所定のペダル操作が行われているか否かを、前記電動アシスト車の車速とペダル回転に基づき換算された走行速度との関係が所定の条件を満たしているか否か又はペダル回転数が閾値以上であるか否かと、ベダル入力トルクが閾値以上であるか否かとの少なくともいずれかに基づき判定する
     請求項1記載の制御装置。
    The control unit
    Whether the predetermined pedal operation is performed, whether the relationship between the vehicle speed of the electrically assisted vehicle and the running speed converted based on the pedal rotation satisfies a predetermined condition, or whether the pedal rotation speed is equal to or greater than a threshold and whether or not the pedal input torque is equal to or greater than the threshold.
  7.  前記制御部は、
     前記衝突予測部により衝突の可能性が所定レベル以上であると予測された時よりも、前記電動アシスト車の車速を増加させることを示す所定のペダル操作を検知したか否かを、
     前記衝突予測部により衝突の可能性が所定レベル以上であると予測された時におけるペダル回転数とペダル入力トルクとのうち少なくともいずれかを基準にして現在のペダル回転数と現在のペダル入力トルクとのうち少なくともいずれかが所定量以上増加したことと、予め定められたペダル入力トルク及びペダル回転角度についての条件を満たすこととのうち少なくともいずれかが満たされたか否かで判定する
     請求項5記載の制御装置。
    The control unit
    whether or not a predetermined pedal operation indicating that the vehicle speed of the electrically assisted vehicle is to be increased from when the collision prediction unit predicts that the possibility of a collision is equal to or higher than a predetermined level is detected;
    The current pedal rotation speed and the current pedal input torque are calculated based on at least one of the pedal rotation speed and the pedal input torque when the collision prediction unit predicts that the possibility of a collision is equal to or higher than a predetermined level. increased by a predetermined amount or more, and predetermined conditions regarding the pedal input torque and the pedal rotation angle are satisfied. controller.
  8.  請求項1記載の制御装置を有する電動アシスト車。 An electrically assisted vehicle having the control device according to claim 1.
PCT/JP2022/013003 2021-09-30 2022-03-22 Control device for suppressing collision of electrically assisted vehicle and electrically assisted vehicle provided with said control device WO2023053518A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021160599 2021-09-30
JP2021-160599 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053518A1 true WO2023053518A1 (en) 2023-04-06

Family

ID=85782157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013003 WO2023053518A1 (en) 2021-09-30 2022-03-22 Control device for suppressing collision of electrically assisted vehicle and electrically assisted vehicle provided with said control device

Country Status (1)

Country Link
WO (1) WO2023053518A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037340A (en) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd Electric assistant vehicle
JP2016097877A (en) * 2014-11-25 2016-05-30 パナソニックIpマネジメント株式会社 Electric bicycle and method for controlling the same
WO2019187854A1 (en) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 Control device and vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037340A (en) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd Electric assistant vehicle
JP2016097877A (en) * 2014-11-25 2016-05-30 パナソニックIpマネジメント株式会社 Electric bicycle and method for controlling the same
WO2019187854A1 (en) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 Control device and vehicle

Similar Documents

Publication Publication Date Title
JP3642364B2 (en) Bicycle regeneration control device with auxiliary power
JP6381573B2 (en) Electric motor regeneration control device, electric motor regeneration drive device, and electric auxiliary vehicle
US8725340B1 (en) Motor drive controller and electric power-assisted vehicle
US9573569B2 (en) Regenerative brake device and motor-assisted vehicle provided with the same
US20180319397A1 (en) Braking/Driving Force Control Method and Braking/Driving Force Control Device
JP7308198B2 (en) MOTOR CONTROL DEVICE AND METHOD, AND POWER-ASSISTED VEHICLE
JP2004320850A (en) Motor torque controller for vehicle
US10919600B2 (en) Motor driving control apparatus and method and motor-assisted vehicle
US10137787B2 (en) Regenerative controller for electric motor, regenerative driver for electric motor, and power-assisted vehicle
US20180194430A1 (en) Controller for driving a motor, and electric power assisted vehicle
WO2023053518A1 (en) Control device for suppressing collision of electrically assisted vehicle and electrically assisted vehicle provided with said control device
JP2004215447A (en) Travel controller for vehicle
KR101935055B1 (en) Smart Electric Vehicle and Smart Operation Method thereof
CN102556063A (en) Intelligent electric mobility scooter
KR101977416B1 (en) Smart Electric Vehicle and Smart Operation Method thereof
JP7457472B2 (en) Motor control device and electric assist vehicle
CN202413786U (en) Intelligent electric scooter
JP5537994B2 (en) Electric assist bicycle
KR101977415B1 (en) Smart Electric Vehicle and Smart Operation Method thereof
KR101414816B1 (en) electric car
WO2023281846A1 (en) Motor control device for electrically assisted vehicle, and electrically assisted vehicle
JP7195288B2 (en) Motor drive control device and electrically assisted vehicle
WO2024024402A1 (en) Motor control device for electrically power assisted vehicle, and electrically power assisted vehicle
JP5651224B2 (en) Regenerative brake device and electric assist vehicle equipped with the same
EP4331934A1 (en) Control device and control method for rider assistance system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551039

Country of ref document: JP