WO2023053270A1 - Saddle-type vehicle - Google Patents

Saddle-type vehicle Download PDF

Info

Publication number
WO2023053270A1
WO2023053270A1 PCT/JP2021/035872 JP2021035872W WO2023053270A1 WO 2023053270 A1 WO2023053270 A1 WO 2023053270A1 JP 2021035872 W JP2021035872 W JP 2021035872W WO 2023053270 A1 WO2023053270 A1 WO 2023053270A1
Authority
WO
WIPO (PCT)
Prior art keywords
slope
vehicle body
unit
jump
vehicle
Prior art date
Application number
PCT/JP2021/035872
Other languages
French (fr)
Japanese (ja)
Inventor
隼也 石川
秀敏 豊田
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2021/035872 priority Critical patent/WO2023053270A1/en
Publication of WO2023053270A1 publication Critical patent/WO2023053270A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/415Inclination sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/02Motorcycles characterised by position of motor or engine with engine between front and rear wheels

Definitions

  • the present invention relates to a saddle-ride type vehicle.
  • An object of the present invention is to provide a saddle riding type vehicle that allows a rider to enjoy jumping more.
  • a slope detection unit detects a slope on which a vehicle body jumps when it passes through, and a slope detector detects the slope of the slope until the vehicle body jumps. and an output control section that controls the output of the power unit based on the power.
  • FIG. 1 is a side view of a straddle-type vehicle according to an embodiment of the invention.
  • FIG. 2 is a block diagram showing the configuration of a control system for jump control in a saddle type vehicle.
  • FIG. 3 is a diagram schematically showing jumping of the vehicle body.
  • FIG. 4 is a diagram showing an example of jump level setting data.
  • FIG. 5 is a diagram schematically showing jump modes for each jump level.
  • FIG. 6 is a flow chart of jump control.
  • FIG. 7 is an explanatory diagram of the detection operation by the image processing unit.
  • FIG. 8 is a block diagram showing the configuration of a control system according to a modification of the invention.
  • FIG. 9 is an explanatory diagram of the detection operation by the image processing unit according to the modification of the present invention.
  • FIG. 1 is a side view of a straddle-type vehicle 10 according to an embodiment of the invention.
  • a straddle-type vehicle 10 includes a body frame 11, a power unit 12 supported by the body frame 11, a front fork 14 supporting a front wheel 13 in a steerable manner, a swing arm 16 supporting a rear wheel 15, and a passenger seat.
  • the vehicle includes a seat 17 .
  • the saddle-ride type vehicle 10 is a vehicle in which an occupant sits astride a seat 17 .
  • the seat 17 is provided above the rear portion of the body frame 11 .
  • the body frame 11 includes a head pipe provided at the front end of the body frame 11, a front frame positioned behind the head pipe, and a rear frame positioned behind the front frame. A front end of the front frame is connected to the head pipe.
  • the seat 17 is supported by the rear frame.
  • the front fork 14 is supported by the head pipe so that it can be steered left and right.
  • the front wheel 13 is supported by an axle 13 a provided at the lower end of the front fork 14 .
  • a steering handle 21 gripped by a passenger is attached to the upper end of the front fork 14 .
  • the swing arm 16 is supported by a pivot shaft 22 supported by the vehicle body frame 11 .
  • the pivot shaft 22 is a shaft extending horizontally in the vehicle width direction.
  • a pivot shaft 22 is inserted through the front end of the swing arm 16 .
  • the swing arm 16 swings up and down around the pivot shaft 22 .
  • the rear wheel 15 is supported by an axle 15 a provided at the rear end of the swing arm 16 .
  • Power unit 12 is arranged between front wheel 13 and rear wheel 15 and supported by body frame 11 .
  • Power unit 12 is an internal combustion engine.
  • the power unit 12 includes a crankcase 23 and a cylinder portion that houses reciprocating pistons.
  • An exhaust device 25 is connected to the exhaust port of the cylinder portion.
  • the output of power unit 12 is transmitted to rear wheels 15 by a driving force transmission member that connects power unit 12 and rear wheels 15 .
  • the straddle-type vehicle 10 also includes a front fender 26 that covers the front wheels 13 from above, a rear fender 27 that covers the rear wheels 15 from above, a step 28 on which the passenger puts his or her feet, and a fuel for storing the fuel used by the power unit 12. and a tank 29 .
  • a front fender 26 is attached to the front fork 14 .
  • the rear fender 27 and step 28 are provided below the seat 17 .
  • the fuel tank 29 is supported by the vehicle body frame 11 .
  • the straddle-type vehicle 10 also includes a rear wheel braking device 30 that brakes the rear wheels 15 and a brake actuator 32 (see FIG. 2) that operates the rear wheel braking device 30 .
  • the saddle-ride type vehicle 10 includes an accelerator grip rotatable with respect to the steering wheel 21 and an accelerator position sensor 42A (see FIG. 2) that detects the rotation angle of the accelerator grip. is operated to operate the accelerator, and the accelerator operation is detected by the accelerator position sensor 42A.
  • the straddle-type vehicle 10 of the present embodiment is a motorcycle, and is configured as an off-road off-road vehicle with high running performance.
  • This saddle-ride type vehicle 10 is configured with specifications suitable for jumping the vehicle body by passing through a jumping slope M (see FIG. 3) such as a jumping table installed on uneven terrain. can enjoy jumping.
  • the vehicle body of the saddle-ride type vehicle 10 is composed of a body frame 11 and components that are in a jump state together with the body frame 11 .
  • the straddle-type vehicle 10 of the present embodiment controls the output of the power unit 12 based on the jump slope M until the vehicle body enters the jump state by passing the jump slope M, and By controlling the body posture when the body is jumping, the rider can enjoy jumping more.
  • the output control until the vehicle body enters the jump state is referred to as pre-jump output control
  • the attitude control of the vehicle body during the jump is referred to as posture control during jump.
  • the control including is called jump control.
  • FIG. 2 is a block diagram showing the configuration of a control system 35 related to jump control in the saddle type vehicle 10.
  • the control system 35 includes a vehicle speed detection section 40, an accelerator operation detection section 42, a mode selection input section 44, an imaging section 46, an IMU 48, and a control device 50.
  • the vehicle speed detection unit 40 includes a vehicle speed sensor 40A that detects the vehicle speed of the vehicle body, and outputs vehicle speed detection information D1 to the control device 50 .
  • the accelerator operation detection unit 42 includes the accelerator position sensor 42A, detects the rider's accelerator operation, and outputs accelerator operation detection information D2 to the control device 50.
  • the mode selection input unit 44 includes an operation switch 44A operated by the rider, receives input for mode selection through operation of the operation switch 44A, and outputs mode selection information D3 indicating the selected mode to the control device 50.
  • the operation switch 44A is arranged, for example, in a switch box or the like provided on the central side of the vehicle body adjacent to the accelerator grip. Modes to be selected are set for each jump skill, and in the present embodiment, three modes of beginner mode, intermediate player mode, and advanced player mode are selected in descending order of skill.
  • the input method for mode selection is not limited to the operation of the operation switch 44A, and any other input method such as voice input may be used.
  • the photographing unit 46 includes a camera 46A that photographs the forward direction from the vehicle body, and outputs photographing data D4 to the control device 50 (slope detector 62).
  • the IMU 48 is an inertial measurement unit that detects three-dimensional inertial motion in the vehicle body. Specifically, IMU 48 detects the angular velocity and acceleration of three axes (roll axis, pitch axis, yaw axis) of the vehicle body, and outputs these detection values D5 to control device 50 (bank angle detection unit 60).
  • the control device 50 includes, for example, an electronic control unit (ECU: Electronic Control Unit), which is an example of one or more computers.
  • the ECU includes a processor such as a CPU or MPU, a memory device such as a ROM or RAM, and an interface circuit that connects each unit such as the vehicle speed detection unit 40 .
  • the control device 50 may be implemented by cooperation of software and hardware.
  • the control device 50 realizes various functional configurations used for jump control by causing the processor to execute programs stored in the memory device.
  • the control device 50 includes a bank angle detection unit 60, a slope detection unit 62, a step detection unit 64, a level setting unit 66, an output control unit 68, a jump execution intention determination unit 70, and an attitude control unit 72 .
  • a bank angle detection unit 60 detects a bank angle ⁇ (see FIG. 5) of the vehicle body based on the detection value D5 of the IMU 48 .
  • the slope detection unit 62 detects a jump slope M that exists in front of the vehicle body in the traveling direction, and determines the width Pa (see FIG. 5), height Pb (see FIGS. 3 and 5), and the slope of the jump slope M.
  • a parameter hereinafter referred to as "shape parameter" relating to shape and structure such as ⁇ (see FIG. 3) is calculated.
  • the slope detection unit 62 of the present embodiment includes an image processing unit 62A.
  • the image processing unit 62A detects the jump slope M shown in the image data D4 by image recognition, and determines the shape parameters of the jump slope M, The distance to the jump slope M is calculated.
  • the image processing unit 62A also reflects the bank angle ⁇ in image processing to improve the accuracy of shape parameter calculation, and this image processing will be described later.
  • the step detection unit 64 detects a step between the vehicle body and the jump slope M in front of the vehicle body in the traveling direction.
  • the level difference detection section 64 detects a level difference by performing image recognition processing on the photographed data D4 in the same manner as the image processing section 62A. In this case, when the vehicle passes through, unevenness that causes a sudden change in vehicle speed is detected as a step.
  • the method of detecting the slope M for jumping and the step is not limited to image recognition processing, and any known or well-known method such as a detection method using LiDAR (light detection and ranging) can be used.
  • the level setting unit 66 sets the jump level setting value based on the mode selection information D3 of the mode selection input unit 44.
  • the jump level set value is the target value of the flight distance and the body posture at the time of jumping. These target values are set according to the difficulty of the jump.
  • FIG. 3 is a diagram schematically showing jumping of the vehicle body.
  • target values for the flight distance E and the landing posture are set in advance for each of the beginner mode, the intermediate player mode, and the advanced player mode based on the difficulty level. is stored in advance in the memory device as
  • FIG. 4 is a diagram showing an example of the jump level setting data 75
  • FIG. 5 is a diagram schematically showing jump modes for each jump level.
  • the flying distance E in beginner mode is set to zero.
  • the output of power unit 12 is controlled so that the vehicle body is prevented from rising (so as not to jump) when the vehicle body passes the jump slope M.
  • the flying distance E in the intermediate player mode and the advanced player mode is set to a predetermined fixed distance that does not cause excessive flying.
  • the landing posture of the intermediate mode is set to the front wheel-rear wheel simultaneous landing (Fig. 5: jump mode B) in which the front wheels 13 and the rear wheels 15 touch the ground at the same time, A rear wheel landing (FIG. 5: jump mode C) is set in which the rear wheels 15 land on the ground before the front wheels 13 do.
  • the output control unit 68 determines the target flight distance E based on the shape parameter of the jump slope M and the jump level set value until at least the vehicle body enters the jump state due to the jump slope M.
  • the output of the power unit 12 is controlled so that the vehicle body passes the jumping slope M at a vehicle speed at which is obtained.
  • the power unit 12 of the present embodiment is an engine, and the output control section 68 controls the throttle body provided in the saddle type vehicle 10 and adjusts the amount of intake air supplied to the power unit 12 to increase the output of the power unit 12. Control.
  • the jump execution intention determination unit 70 determines whether or not the rider intends to jump the vehicle body during control by the output control unit 68 . In the present embodiment, the jump execution intention determination unit 70 determines that, during the control by the output control unit 68, if the time during which the accelerator grip is not rotated exceeds a predetermined threshold time at the determination timing. Then, it is determined that the rider has no intention of jumping the vehicle body. Note that the jump execution intention determination unit 70 detects the presence or absence of the rider's operation on a predetermined switch or the like, or uses other arbitrary methods such as determination based on the rider's driving operation state to determine the rider's intention to jump the vehicle body. You may judge whether it has.
  • the output control unit 68 does not cause a jump when the vehicle body passes the jump slope M when the jump execution intention determination unit 70 determines that the rider does not have the intention to jump the vehicle body.
  • the vehicle speed is controlled so as to prevent the vehicle body from floating (Fig. 5: jump mode A).
  • the posture control unit 72 controls the posture of the vehicle body while it is jumping so that the vehicle body lands in the landing posture set by the jump level setting value.
  • the posture control section 72 controls the power unit 12 and the rear wheel braking device 30 to increase or decrease the rotational speed of the rear wheels 15, thereby controlling the posture of the vehicle body.
  • the posture control unit 72 controls the rear wheels 15
  • the power unit 12 and the rear wheel braking device 30 are controlled so that the rotational speed of the
  • the posture control unit 72 increases the rotational speed of the rear wheels 15.
  • the power unit 12 and the rear wheel braking device 30 are controlled so as to do so.
  • determination as to whether or not the vehicle body is jumping is made based on the difference in rotation speed between the front wheels 13 and the rear wheels 15, based on the detection value D5 of the IMU 48, and the strokes of the front and rear suspensions. Any technique, such as determination based on quantity, can be used.
  • jump control by the control system 35.
  • Such jump control is performed when the saddle-ride type vehicle 10 is traveling on uneven terrain. It is assumed that mode selection by the rider has been completed in advance.
  • FIG. 6 is a flow chart of jump control. While the saddle-ride type vehicle 10 is traveling on uneven ground, the slope detector 62 continuously detects the jump slope M (step S1). As described above, the slope detection unit 62 detects the jump slope M by image processing the photographed data D4 of the photographing unit 46 by the image processing unit 62A.
  • FIG. 7 is an explanatory diagram of the detection operation by the image processing section 62A.
  • the photographic data D4 of the present embodiment is moving image data in which images are captured at a predetermined frame rate. is detected, and the shape parameters (height Pa, width Pb, inclination ⁇ , etc.) of the jump slope M are specified.
  • the image processing unit 62A performs image recognition processing on the detection range H set in the captured image D4f, and detects the jump slope M reflected in the detection range H.
  • the detection range H is set to a range smaller than the size of the captured image D4f (that is, a size having a predetermined margin around it).
  • the scenery in front of the vehicle body tilts according to the tilt of the vehicle body (bank angle ⁇ ), as shown in detection mode A in FIG.
  • a part of the slope M for jumping in front of the vehicle body may protrude from the detection range H.
  • the accuracy of the shape parameter (the width Pa in the illustrated example) of the jump slope M decreases. Therefore, when the bank angle ⁇ becomes equal to or greater than a predetermined value, the image processing unit 62A changes the detection range H, and performs image recognition processing on the changed detection range H to detect the jump slope M. .
  • "expansion" is used as one mode of changing the detection range H.
  • the image processing unit 62A expands the detection range H as shown in the detection mode B in FIG. To detect.
  • the entire jump slope M falls within the detection range H, and the shape parameter can be obtained with high accuracy.
  • the detection range H is set to be smaller than the size of the captured image D4f, the computational load can be reduced compared to the case where the entire captured image D4f is subjected to image recognition processing.
  • the expansion of the detection range H is performed only when the bank angle ⁇ is equal to or greater than a predetermined value, that is, when the precision of the shape parameter of the jumping slope M may be lowered. Increased computational load due to expansion is limited to when necessary. This makes it possible to both reduce the computational load and maintain the accuracy of the shape parameters.
  • step S2 when the jump slope M is detected (step S2: Yes), the output control section 68 acquires the level setting value from the level setting section 66 (step S3). Then, the output control unit 68 specifies target values for the flight distance E and the landing posture at the time of the jump based on the level setting values, and executes pre-jump output control so that the jump is achieved according to the target values. (step S4). Specifically, the output control unit 68 determines the target vehicle speed when passing through the jump slope M based on the slope ⁇ of the jump slope M and the target value of the flight distance E.
  • the output control unit 68 feedback-controls the vehicle speed so that the vehicle body passes the jump slope M at the target vehicle speed at least until the vehicle body enters the jump state.
  • the output control section 68 controls the vehicle speed by controlling the output of the power unit 12 and the braking force of the rear wheel braking device 30 .
  • the vehicle body jumps at a flight distance E corresponding to the level set value (rider's selection mode).
  • step S4 if the step detector 64 detects a step ahead of the vehicle body, the output control unit 68 feedback-controls the vehicle speed after the step has passed. As a result, even if the running condition changes abruptly due to the vehicle passing over a bump, feedback control is performed after the running condition stabilizes, so more accurate control is possible without the influence of the bump.
  • step S4 when the jump execution intention determination unit 70 determines that the rider does not have the intention to execute a jump while the output control unit 68 is feedback-controlling the vehicle speed, the output control unit 68 obtains a target vehicle speed that does not cause a jump when the vehicle body passes the jump slope M (the vehicle body is suppressed from rising), and performs feedback control so that the vehicle body passes the jump slope M at the target vehicle speed. . This prevents the body from jumping unintentionally by the rider.
  • step S5 Yes
  • step S6 the attitude control unit 72 controls the rotational speed of the rear wheels 15 while the vehicle body is jumping, thereby controlling the attitude of the vehicle body so that the vehicle body lands in accordance with the target value of the landing attitude.
  • step S6 the vehicle body lands in a landing posture corresponding to the level set value (rider's selection mode).
  • the jump is performed with the flight distance E and the landing attitude corresponding to the rider's selection mode (level set value), so that the rider can choose the jump according to his/her skill and preference. You can enjoy jumping.
  • the saddle-ride type vehicle 10 of the present embodiment controls the output of the power unit 12 based on the slope ⁇ of the jumping slope M until the vehicle body jumps due to the jumping slope M.
  • FIG. As a result, the vehicle body passes through the jump slope M at a vehicle speed suitable for the jump of the vehicle body, and the rider can enjoy jumping more.
  • the straddle-ride type vehicle 10 of the present embodiment controls the output of the power unit 12 based on the target vehicle speed corresponding to the slope ⁇ of the jump slope M and the vehicle speed. According to this configuration, the vehicle body passes over the jump slope M at a vehicle speed corresponding to the slope ⁇ of the jump slope M. Therefore, even if the slope ⁇ of the jump slope M changes, the rider can enjoy jumping. can.
  • the straddle-type vehicle 10 of the present embodiment reduces the output of the power unit so as to suppress the lifting of the vehicle body when the vehicle body passes the jump slope M when the accelerator is not operated for more than a certain period of time. Control. According to this configuration, it is automatically determined based on the accelerator operation that the rider has no intention of jumping, and it is possible to prevent execution of output control related to a jump that the rider does not intend.
  • the saddle-ride type vehicle 10 of the present embodiment controls the output of the power unit 12 after the vehicle body has passed through the step and before it enters a jump state due to the jump slope M. I do. According to this configuration, even if the running condition suddenly changes due to the vehicle passing over a bump, the feedback control is performed after the running condition stabilizes, so more accurate control is possible without the influence of the bump. becomes.
  • the straddle-type vehicle 10 of the present embodiment expands the detection range H preset with respect to the photographed image D4f in accordance with the bank angle ⁇ of the vehicle body, and determines the jump slope M from the expanded detection range H. Then, the shape parameters of the jump slope M are specified. According to this configuration, even if part of the jumping slope M protrudes from the detection range H in the photographed image D4f due to the vehicle body tilting to the left or right, the entire jumping slope M is within the detection range H. can be accommodated, and deterioration of the calculation accuracy of the shape parameter can be prevented. Further, the expansion of the detection range H is performed only when the bank angle .theta. An increase in the computational load is limited only when necessary, and both the reduction of the computational load and the maintenance of the calculation accuracy of the shape parameters can be achieved.
  • the straddle-type vehicle 10 of the present embodiment changes the pre-jump output control of the power unit 12 according to the mode input by the rider's mode selection. According to this configuration, the rider can select a mode according to his/her own skill and preference, and enjoy jumping corresponding to the selected mode.
  • the saddle-ride type vehicle 10 of the present embodiment suppresses the uplift of the vehicle body when the vehicle body passes the jump slope M (that is, does not jump). ) to control the output of the power unit 12 . According to this configuration, a rider who does not want to jump can avoid a jump even when the vehicle body travels and passes the jump slope M by selecting the beginner mode.
  • FIG. 8 is a diagram showing the configuration of a control system 135 according to this modification.
  • a control system 135 according to this modification includes an environment information detection unit 149, an output unit 180, and a display unit 182 in addition to the configuration of the above-described embodiment.
  • the device 50 functions as a road information detection section 174 and a difficulty determination section 176 .
  • the environment information detection unit 149 includes sensors 149A that detect environment information related to the environment around the vehicle body during running, and outputs detection information D6 to the control device 50.
  • the environmental information is environmental factors that affect the difficulty of jumping, and is information on environmental factors other than the ground (road surface) and the slope M for jumping. , whether or not there is another vehicle running around the saddle-ride type vehicle 10 .
  • the sensors 149A are sensors that detect information on such environmental factors, such as wind speed sensors, rainfall sensors, and peripheral vehicle detection sensors.
  • the travel path information detection unit 174 detects travel path information related to the travel path along which the vehicle body travels until it reaches the jumping slope M.
  • the travel road information is information relating to factors that affect the running state of the vehicle body, and includes, for example, the presence or absence of unevenness on the travel road surface, the degree of unevenness, the coefficient of friction, and the like.
  • the traveling road information detection unit 174 identifies vibration occurring in the vehicle body based on the detection value D5 of the IMU 48, and identifies the presence or absence of unevenness and the degree of unevenness based on the vibration. Further, the road information detection unit 174 identifies the friction coefficient based on, for example, the slipping state of the rear wheels 15 that are driving wheels.
  • the difficulty determination unit 176 determines the difficulty of the jump on the forward jump slope M based on the detection information D6 of the environment information and the road surface condition. For example, when the condition of the road surface is bad (so-called bad road), when the wind and rain are strong, or when there are other traveling vehicles heading for the jump slope M in front, the difficulty determination unit 176 determines whether the jump is difficult. judged to be of high quality.
  • the difficulty determination unit 176 refers to the shape parameters (slope ⁇ and height Pb) of the jumping slope M in addition to the environment information and the running path information. It may be determined that the difficulty is high when the weight Pb is high.
  • Output unit 180 includes a signal output circuit that outputs a signal to display unit 182 , and outputs information on the difficulty determined by difficulty determination unit 176 to display unit 182 .
  • the display unit 182 is a display panel or an indicator provided on the vehicle body, and displays the difficulty information output from the output unit 180 .
  • the rider can know the difficulty of the jump from the display on the display unit 182, and can determine whether or not to jump according to the difficulty.
  • the output unit 180 may output a signal indicating the difficulty to the equipment worn by the rider instead of the display unit 182, and the device may provide the rider with information regarding the difficulty.
  • Such equipment includes, for example, a helmet and a head-up display (HUD).
  • HUD head-up display
  • the image processing section 62A of the slope detection section 62 changes the detection range H by expanding the detection range H when the bank angle ⁇ is equal to or greater than a predetermined value.
  • the image processing unit 62A does not change the size of the detection range H, but adjusts the detection range H to match the position of the jump slope M. You may move in D4f.
  • the image processing unit 62A performs detection mode D in FIG.
  • the detection range H is moved in the photographed image D4f in the direction in which the jumping slope M protrudes (lower right direction in FIG. 9) so that the entire jumping slope M falls within the detection range H.
  • the entire jump slope M is detected within the detection range H. , and a decrease in the calculation accuracy of the shape parameter can be prevented.
  • the saddle-ride type vehicle 10 is provided with a rotation device for mechanically rotating the camera 46A around the photographing direction of the camera 46A. By rotating the image D4f, the effect of the bank angle ⁇ may be removed from the photographed image D4f.
  • Arrangement 1 In a saddle-riding vehicle having a power unit for driving a vehicle body, a slope detection unit for detecting a slope on which the vehicle body jumps when it passes through, and a slope detector for detecting the slope until the vehicle body jumps. and an output control section that controls the output of the power unit based on the gradient. According to Configuration 1, the rider can enjoy jumping more.
  • (Configuration 2) A configuration characterized by comprising a vehicle speed detection section that detects a vehicle speed, wherein the output control section controls the output of the power unit based on the target vehicle speed corresponding to the gradient and the vehicle speed. 2.
  • An operation detection unit that detects an accelerator operation by a rider is provided, and the output control unit detects when the vehicle body passes the slope when the accelerator is not operated for a predetermined time.
  • a saddle-ride type vehicle according to configuration 1 or 2 wherein the output of the power unit is controlled so as to suppress the lifting of the vehicle body. According to configuration 3, it is possible to prevent execution of output control related to a jump unintended by the rider.
  • (Arrangement 4) A step detection unit that detects a step before the vehicle body reaches the slope, and the output control unit detects that the vehicle body jumps after the vehicle body has passed the step.
  • the straddle-type vehicle according to any one of configurations 1 to 3, wherein the output of the power unit is controlled until the state is reached. According to Configuration 4, more accurate control is possible without being affected by steps.
  • (Configuration 5) A photographing unit for photographing the traveling direction of the vehicle body, and a bank angle detection unit for detecting a bank angle of the vehicle body, wherein the slope detection unit is set in advance with respect to the image photographed by the photographing unit.
  • an image processing means for detecting the slope from the detected range and specifying the shape of the slope, wherein the image processing means changes the detection range according to the size of the bank angle.
  • the straddle-type vehicle according to any one of configurations 1 to 4, wherein the slope is detected from the detection range and the shape of the slope is specified. According to configuration 5, even when the vehicle body is tilted, it is possible to prevent a decrease in the calculation accuracy of the shape of the slope.
  • the image processing means expands the detection range according to the size of the bank angle, detects the slope from the expanded detection range, and specifies the shape of the slope.
  • the expansion of the detection range H is performed when the bank angle .theta. It is possible to maintain the calculation accuracy of the shape.
  • a mode selection input section for receiving an input of mode selection is provided, and the output control section changes the output control of the power unit according to the mode input to the mode selection input section.
  • the output control section controls the output of the power unit so as to suppress the lifting of the vehicle body when the vehicle body passes the slope.
  • Travel path information detection means for detecting travel path information relating to the travel path on which the vehicle body travels while passing through the slope; and environment information detection means for detecting environment information relating to the surrounding environment of the vehicle body. and a difficulty determination unit that determines the difficulty of jumping due to passing through the slope based on the traveling path information and the environment information, and a display unit provided on the vehicle body or equipment worn by the rider, and an output section that outputs the difficulty determined by the difficulty determination section.
  • the rider can know the difficulty of the jump and decide in advance whether to jump according to the difficulty.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Provided is a saddle-type vehicle with which it is possible for a rider to experience a more enjoyable jump. A saddle-type vehicle (10) equipped with a power unit (12) for driving a vehicle body comprises: a slope detection unit (62) which detects a slope (M) where the vehicle body comes into a jumping state by passing the slope; and an output control unit (68) which controls, on the basis of the inclination angle (α) of the slope (M), the output of the power unit (12) during a period until the vehicle body comes into a jump state.

Description

鞍乗り型車両saddle-riding vehicle
 本発明は、鞍乗り型車両に関する。 The present invention relates to a saddle-ride type vehicle.
 自動二輪車などの鞍乗り型車両において、ライダーが車体をジャンプさせて楽しめる仕様の車両が知られている。例えば、オフロード仕様の自動二輪車は、競技コースに設けられたジャンプ台を用いて車体をジャンプさせることを考慮して設計されている。また、車体がジャンプしている期間に亘り、エンジンの回転数を抑制する技術(例えば、特許文献1参照)や、当該期間に亘り車体の姿勢を制御する技術(例えば、特許文献2、特許文献3参照)が知られている。 Among saddle-riding vehicles such as motorcycles, there are known vehicles that allow riders to enjoy jumping the body. For example, off-road motorcycles are designed in consideration of jumping the vehicle body using a jumping table provided on a competition course. In addition, a technique for suppressing the number of revolutions of the engine over a period in which the vehicle body is jumping (see, for example, Patent Document 1), and a technique for controlling the attitude of the vehicle body over the period (for example, Patent Document 2, Patent Document 3) are known.
特開2008-144685号公報JP 2008-144685 A 特開2013-173426号公報JP 2013-173426 A 国際公開第2020/016675号WO2020/016675
 しかしながら、ライダーの技能や経験によっては、ジャンプ台における走行状態が適切ではないために、ライダーが好むジャンプを実現できず、ジャンプを十分に楽しめない場合がある。
 本発明は、ライダーがジャンプをより楽しむことができる鞍乗り型車両を提供することを目的とする。
However, depending on the skill and experience of the rider, the riding condition on the jumping hill may not be appropriate, and the rider may not be able to perform the jump desired by the rider, and may not be able to fully enjoy the jump.
SUMMARY OF THE INVENTION An object of the present invention is to provide a saddle riding type vehicle that allows a rider to enjoy jumping more.
 本発明の一態様は、パワーユニットを備えた鞍乗り型車両において、通過によって車体がジャンプ状態となる斜面を検出する斜面検出部と、前記車体がジャンプ状態となるまでの間に、前記斜面の斜度に基づいて前記パワーユニットの出力を制御する出力制御部と、を備えることを特徴とする。 According to one aspect of the present invention, in a saddle-ride type vehicle having a power unit, a slope detection unit detects a slope on which a vehicle body jumps when it passes through, and a slope detector detects the slope of the slope until the vehicle body jumps. and an output control section that controls the output of the power unit based on the power.
 本発明によれば、ライダーがジャンプをより楽しむことができる。 According to the present invention, riders can enjoy jumping more.
図1は、本発明の実施の形態に係る鞍乗り型車両の側面図である。FIG. 1 is a side view of a straddle-type vehicle according to an embodiment of the invention. 図2は、鞍乗り型車両におけるジャンプ制御に係る制御システムの構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of a control system for jump control in a saddle type vehicle. 図3は、車体のジャンプを模式的に示す図である。FIG. 3 is a diagram schematically showing jumping of the vehicle body. 図4は、ジャンプレベル設定データの一例を示す図である。FIG. 4 is a diagram showing an example of jump level setting data. 図5は、ジャンプレベルごとのジャンプ態様を模式的に示す図である。FIG. 5 is a diagram schematically showing jump modes for each jump level. 図6は、ジャンプ制御のフローチャートである。FIG. 6 is a flow chart of jump control. 図7は、画像処理部による検出動作の説明図である。FIG. 7 is an explanatory diagram of the detection operation by the image processing unit. 図8は、本発明の変形例に係る制御システムの構成を示すブロック図である。FIG. 8 is a block diagram showing the configuration of a control system according to a modification of the invention. 図9は、本発明の変形例に係る画像処理部による検出動作の説明図である。FIG. 9 is an explanatory diagram of the detection operation by the image processing unit according to the modification of the present invention.
 以下、図面を参照して本発明の実施の形態について説明する。なお、説明中、前後左右および上下といった方向の記載は、特に記載がなければ車体に対する方向と同一とする。また、各図に示す符号FRは車体前方を示し、符号UPは車体上方を示し、符号LHは車体左方を示す。 Embodiments of the present invention will be described below with reference to the drawings. In the description, directions such as front, rear, left, right, and up and down are the same as the directions with respect to the vehicle body unless otherwise specified. In each figure, FR indicates the front of the vehicle body, UP indicates the upper side of the vehicle body, and LH indicates the left side of the vehicle body.
[実施の形態]
 図1は、本発明の実施の形態に係る鞍乗り型車両10の側面図である。
 鞍乗り型車両10は、車体フレーム11と、車体フレーム11に支持されるパワーユニット12と、前輪13を操舵自在に支持するフロントフォーク14と、後輪15を支持するスイングアーム16と、乗員用のシート17とを備える車両である。
 鞍乗り型車両10は、乗員がシート17に跨るようにして着座する車両である。シート17は、車体フレーム11の後部の上方に設けられる。
[Embodiment]
FIG. 1 is a side view of a straddle-type vehicle 10 according to an embodiment of the invention.
A straddle-type vehicle 10 includes a body frame 11, a power unit 12 supported by the body frame 11, a front fork 14 supporting a front wheel 13 in a steerable manner, a swing arm 16 supporting a rear wheel 15, and a passenger seat. The vehicle includes a seat 17 .
The saddle-ride type vehicle 10 is a vehicle in which an occupant sits astride a seat 17 . The seat 17 is provided above the rear portion of the body frame 11 .
 車体フレーム11は、車体フレーム11の前端部に設けられるヘッドパイプと、ヘッドパイプの後方に位置するフロントフレームと、フロントフレームの後方に位置するリアフレームとを備える。フロントフレームの前端部は、ヘッドパイプに接続される。
 シート17は、リアフレームに支持される。
The body frame 11 includes a head pipe provided at the front end of the body frame 11, a front frame positioned behind the head pipe, and a rear frame positioned behind the front frame. A front end of the front frame is connected to the head pipe.
The seat 17 is supported by the rear frame.
 フロントフォーク14は、ヘッドパイプによって左右に操舵自在に支持される。前輪13は、フロントフォーク14の下端部に設けられる車軸13aに支持される。乗員が把持する操舵用のハンドル21は、フロントフォーク14の上端部に取り付けられる。 The front fork 14 is supported by the head pipe so that it can be steered left and right. The front wheel 13 is supported by an axle 13 a provided at the lower end of the front fork 14 . A steering handle 21 gripped by a passenger is attached to the upper end of the front fork 14 .
 スイングアーム16は、車体フレーム11に支持されるピボット軸22に支持される。ピボット軸22は、車幅方向に水平に延びる軸である。スイングアーム16の前端部には、ピボット軸22が挿通される。スイングアーム16は、ピボット軸22を中心に上下に揺動する。
 後輪15は、スイングアーム16の後端部に設けられる車軸15aに支持される。
The swing arm 16 is supported by a pivot shaft 22 supported by the vehicle body frame 11 . The pivot shaft 22 is a shaft extending horizontally in the vehicle width direction. A pivot shaft 22 is inserted through the front end of the swing arm 16 . The swing arm 16 swings up and down around the pivot shaft 22 .
The rear wheel 15 is supported by an axle 15 a provided at the rear end of the swing arm 16 .
 パワーユニット12は、前輪13と後輪15との間に配置され、車体フレーム11に支持される。
 パワーユニット12は、内燃機関である。パワーユニット12は、クランクケース23と、往復運動するピストンを収容するシリンダー部とを備える。シリンダー部の排気ポートには、排気装置25が接続される。
 パワーユニット12の出力は、パワーユニット12と後輪15とを接続する駆動力伝達部材によって後輪15に伝達される。
Power unit 12 is arranged between front wheel 13 and rear wheel 15 and supported by body frame 11 .
Power unit 12 is an internal combustion engine. The power unit 12 includes a crankcase 23 and a cylinder portion that houses reciprocating pistons. An exhaust device 25 is connected to the exhaust port of the cylinder portion.
The output of power unit 12 is transmitted to rear wheels 15 by a driving force transmission member that connects power unit 12 and rear wheels 15 .
 また、鞍乗り型車両10は、前輪13を上方から覆うフロントフェンダー26と、後輪15を上方から覆うリアフェンダー27と、乗員が足を載せるステップ28と、パワーユニット12が使用する燃料を蓄える燃料タンク29とを備える。
 フロントフェンダー26は、フロントフォーク14に取り付けられる。リアフェンダー27及びステップ28は、シート17よりも下方に設けられる。燃料タンク29は、車体フレーム11に支持される。
The straddle-type vehicle 10 also includes a front fender 26 that covers the front wheels 13 from above, a rear fender 27 that covers the rear wheels 15 from above, a step 28 on which the passenger puts his or her feet, and a fuel for storing the fuel used by the power unit 12. and a tank 29 .
A front fender 26 is attached to the front fork 14 . The rear fender 27 and step 28 are provided below the seat 17 . The fuel tank 29 is supported by the vehicle body frame 11 .
 また、鞍乗り型車両10は、後輪15を制動する後輪制動装置30を備え、また、当該後輪制動装置30を動作させるブレーキアクチュエータ32(図2参照)を備えている。 The straddle-type vehicle 10 also includes a rear wheel braking device 30 that brakes the rear wheels 15 and a brake actuator 32 (see FIG. 2) that operates the rear wheel braking device 30 .
 さらに、鞍乗り型車両10は、ハンドル21に対して回動可能なアクセルグリップと、当該アクセルグリップの回動角度を検出するアクセルポジションセンサ42A(図2参照)と、を備え、ライダーがアクセルグリップを回動操作することでアクセル操作を行い、当該アクセル操作がアクセルポジションセンサ42Aによって検出される。 Further, the saddle-ride type vehicle 10 includes an accelerator grip rotatable with respect to the steering wheel 21 and an accelerator position sensor 42A (see FIG. 2) that detects the rotation angle of the accelerator grip. is operated to operate the accelerator, and the accelerator operation is detected by the accelerator position sensor 42A.
 本実施の形態の鞍乗り型車両10は、自動二輪車であり、不整地(オフロード)の走行性能が高い不整地走行車両として構成されている。この鞍乗り型車両10は、不整地に設置されたジャンプ台などのジャンプ用斜面M(図3参照)を通過することで車体がジャンプ状態となるのに適した仕様で構成されており、ライダーがジャンプを楽しめるようになっている。なお、車体は、鞍乗り型車両10において、車体フレーム11、及び、当該車体フレーム11とともにジャンプ状態となる各構成部によって構成される。 The straddle-type vehicle 10 of the present embodiment is a motorcycle, and is configured as an off-road off-road vehicle with high running performance. This saddle-ride type vehicle 10 is configured with specifications suitable for jumping the vehicle body by passing through a jumping slope M (see FIG. 3) such as a jumping table installed on uneven terrain. can enjoy jumping. The vehicle body of the saddle-ride type vehicle 10 is composed of a body frame 11 and components that are in a jump state together with the body frame 11 .
 また、本実施の形態の鞍乗り型車両10は、車体がジャンプ用斜面Mの通過によってジャンプ状態となるまでの間に、当該ジャンプ用斜面Mに基づいてパワーユニット12の出力を制御し、また、車体がジャンプしているときに車体姿勢を制御することで、ライダーがジャンプをより楽しむことができるようになっている。
 以下では、車体がジャンプ状態となるまでの間の出力制御をジャンプ前出力制御と言い、ジャンプ中における車体の姿勢制御をジャンプ中姿勢制御と言い、これらジャンプ前出力制御、及びジャンプ中姿勢制御を含む制御をジャンプ制御と言う。
Further, the straddle-type vehicle 10 of the present embodiment controls the output of the power unit 12 based on the jump slope M until the vehicle body enters the jump state by passing the jump slope M, and By controlling the body posture when the body is jumping, the rider can enjoy jumping more.
Hereinafter, the output control until the vehicle body enters the jump state is referred to as pre-jump output control, and the attitude control of the vehicle body during the jump is referred to as posture control during jump. The control including is called jump control.
 図2は、鞍乗り型車両10におけるジャンプ制御に係る制御システム35の構成を示すブロック図である。
 同図に示すように、制御システム35は、車速検出部40と、アクセル操作検出部42と、モード選択入力部44と、撮影部46と、IMU48と、制御装置50と、を備える。
FIG. 2 is a block diagram showing the configuration of a control system 35 related to jump control in the saddle type vehicle 10. As shown in FIG.
As shown in the figure, the control system 35 includes a vehicle speed detection section 40, an accelerator operation detection section 42, a mode selection input section 44, an imaging section 46, an IMU 48, and a control device 50.
 車速検出部40は、車体の車速を検出する車速センサ40Aを備え、車速検出情報D1を制御装置50に出力する。
 アクセル操作検出部42は、上記アクセルポジションセンサ42Aを備え、ライダーのアクセル操作を検出し、アクセル操作検出情報D2を制御装置50に出力する。
The vehicle speed detection unit 40 includes a vehicle speed sensor 40A that detects the vehicle speed of the vehicle body, and outputs vehicle speed detection information D1 to the control device 50 .
The accelerator operation detection unit 42 includes the accelerator position sensor 42A, detects the rider's accelerator operation, and outputs accelerator operation detection information D2 to the control device 50. FIG.
 モード選択入力部44は、ライダーによって操作される操作スイッチ44Aを備え、当該操作スイッチ44Aの操作を通じてモード選択の入力を受け付け、選択されたモードを示すモード選択情報D3を制御装置50に出力する。操作スイッチ44Aは、例えばアクセルグリップに隣接して車体中央側に設けられたスイッチボックス等に配設される。選択対象のモードは、ジャンプの技量ごとに設定されており、本実施の形態では、技量が低い順に、初心者モード、中級者モード、及び上級者モードの3つのモードが予め選択となっている。なお、モード選択の入力手法は、操作スイッチ44Aの操作に限らず、音声入力といった他の任意の入力手法でもよい。 The mode selection input unit 44 includes an operation switch 44A operated by the rider, receives input for mode selection through operation of the operation switch 44A, and outputs mode selection information D3 indicating the selected mode to the control device 50. The operation switch 44A is arranged, for example, in a switch box or the like provided on the central side of the vehicle body adjacent to the accelerator grip. Modes to be selected are set for each jump skill, and in the present embodiment, three modes of beginner mode, intermediate player mode, and advanced player mode are selected in descending order of skill. The input method for mode selection is not limited to the operation of the operation switch 44A, and any other input method such as voice input may be used.
 撮影部46は、車体から前方を撮影するカメラ46Aを備え、撮影データD4を制御装置50(斜面検出部62)に出力する。
 IMU48は、車体における3次元の慣性運動を検出する慣性計測装置(Inertial Measurement Unit)である。具体的には、IMU48は、車体における3軸(ロール軸、ピッチ軸、ヨー軸)の角速度および加速度を検出し、これらの検出値D5を制御装置50(バンク角検出部60)に出力する。
The photographing unit 46 includes a camera 46A that photographs the forward direction from the vehicle body, and outputs photographing data D4 to the control device 50 (slope detector 62).
The IMU 48 is an inertial measurement unit that detects three-dimensional inertial motion in the vehicle body. Specifically, IMU 48 detects the angular velocity and acceleration of three axes (roll axis, pitch axis, yaw axis) of the vehicle body, and outputs these detection values D5 to control device 50 (bank angle detection unit 60).
 制御装置50は、例えば一または複数のコンピュータの一例である電子制御装置(ECU:Electronic Control Unit)を備えている。すなわち、ECUは、CPUやMPUなどのプロセッサと、ROMやRAMなどのメモリデバイスと、車速検出部40などの各部を接続するインターフェース回路と、を備えている。なお、制御装置50は、少なくとも一部がソフトウェアとハードウェアとの協働によって実現されてもよい。 The control device 50 includes, for example, an electronic control unit (ECU: Electronic Control Unit), which is an example of one or more computers. Specifically, the ECU includes a processor such as a CPU or MPU, a memory device such as a ROM or RAM, and an interface circuit that connects each unit such as the vehicle speed detection unit 40 . At least a part of the control device 50 may be implemented by cooperation of software and hardware.
 制御装置50は、メモリデバイスに記憶されているプログラムをプロセッサが実行することで、ジャンプ制御に用いられる各種の機能的構成を実現する。かかる機能的構成として、制御装置50は、バンク角検出部60と、斜面検出部62と、段差検出部64と、レベル設定部66と、出力制御部68と、ジャンプ実行意思判定部70と、姿勢制御部72と、を備えている。 The control device 50 realizes various functional configurations used for jump control by causing the processor to execute programs stored in the memory device. As such functional configuration, the control device 50 includes a bank angle detection unit 60, a slope detection unit 62, a step detection unit 64, a level setting unit 66, an output control unit 68, a jump execution intention determination unit 70, and an attitude control unit 72 .
 バンク角検出部60は、IMU48の検出値D5に基づいて車体のバンク角θ(図5参照)を検出する。
 斜面検出部62は、車体の進行方向前方に存在するジャンプ用斜面Mを検出し、当該ジャンプ用斜面Mの幅Pa(図5参照)や高さPb(図3、図5参照)、斜度α(図3参照)といった形状や構造に係るパラメータ(以下、「形状パラメータ」と言う)を算出する。本実施の形態の斜面検出部62は、画像処理部62Aを備え、当該画像処理部62Aが撮影データD4に映ったジャンプ用斜面Mを画像認識によって検出し、ジャンプ用斜面Mの形状パラメータや、ジャンプ用斜面Mまでの距離を算出する。また、画像処理部62Aは、バンク角θを画像処理に反映することで形状パラメータの算出精度を高めており、この画像処理については後述する。
A bank angle detection unit 60 detects a bank angle θ (see FIG. 5) of the vehicle body based on the detection value D5 of the IMU 48 .
The slope detection unit 62 detects a jump slope M that exists in front of the vehicle body in the traveling direction, and determines the width Pa (see FIG. 5), height Pb (see FIGS. 3 and 5), and the slope of the jump slope M. A parameter (hereinafter referred to as "shape parameter") relating to shape and structure such as α (see FIG. 3) is calculated. The slope detection unit 62 of the present embodiment includes an image processing unit 62A. The image processing unit 62A detects the jump slope M shown in the image data D4 by image recognition, and determines the shape parameters of the jump slope M, The distance to the jump slope M is calculated. The image processing unit 62A also reflects the bank angle θ in image processing to improve the accuracy of shape parameter calculation, and this image processing will be described later.
 段差検出部64は、車体の進行方向前方において、車体からジャンプ用斜面Mの間にある段差を検出する。本実施の形態では、段差検出部64は、上記画像処理部62Aと同様に、撮影データD4を画像認識処理することで段差を検出する。この場合において、車体が通過したときに、車速に急激な変化が生じる程度の凹凸が段差として検出される。 The step detection unit 64 detects a step between the vehicle body and the jump slope M in front of the vehicle body in the traveling direction. In the present embodiment, the level difference detection section 64 detects a level difference by performing image recognition processing on the photographed data D4 in the same manner as the image processing section 62A. In this case, when the vehicle passes through, unevenness that causes a sudden change in vehicle speed is detected as a step.
 なお、ジャンプ用斜面Mや段差の検出手法には、画像認識処理に限らず、LiDAR(light detection and ranging)を用いた検出手法といった公知又は周知の任意の手法を用いることができる。 It should be noted that the method of detecting the slope M for jumping and the step is not limited to image recognition processing, and any known or well-known method such as a detection method using LiDAR (light detection and ranging) can be used.
 レベル設定部66は、モード選択入力部44のモード選択情報D3に基づいて、ジャンプレベル設定値を設定する。ジャンプレベル設定値は、ジャンプ時の飛距離及び車体姿勢の目標値である。これらの目標値はジャンプの難易度に応じて設定されている。 The level setting unit 66 sets the jump level setting value based on the mode selection information D3 of the mode selection input unit 44. The jump level set value is the target value of the flight distance and the body posture at the time of jumping. These target values are set according to the difficulty of the jump.
 図3は、車体のジャンプを模式的に示す図である。
 一般に、飛距離Eが所定の一定距離以内になるようにジャンプすることは難易度が高く、また、地面Gへの着時時に、後輪15の着地タイミングが前輪13の着地タイミングよりも先になる姿勢で着地することは難易度が高い。本実施の形態では、かかる難易度に基づき、上述の初心者モード、中級者モード、及び上級者モードごとに、飛距離E及び着地姿勢の目標値が予め設定され、かかる設定がジャンプレベル設定データ75として予めメモリデバイスに記憶されている。
FIG. 3 is a diagram schematically showing jumping of the vehicle body.
In general, it is difficult to jump so that the flight distance E is within a predetermined constant distance, and when landing on the ground G, the landing timing of the rear wheels 15 precedes the landing timing of the front wheels 13. It is very difficult to land in such a posture. In the present embodiment, target values for the flight distance E and the landing posture are set in advance for each of the beginner mode, the intermediate player mode, and the advanced player mode based on the difficulty level. is stored in advance in the memory device as
 図4はジャンプレベル設定データ75の一例を示す図であり、図5はジャンプレベルごとのジャンプ態様を模式的に示す図である。
 図4に示すように、初心者モードの飛距離Eにはゼロが設定されている。この設定においては、図5のジャンプ態様Aに示すように、車体がジャンプ用斜面Mを通過したときに車体の浮き上がりが抑えられるように(ジャンプしないように)、パワーユニット12の出力が制御される。
 また、図4に示すように、中級者モード及び上級者モードの飛距離Eには、飛び過ぎにならない所定の一定距離の飛距離が設定されている。さらに、中級者モードの着地姿勢には、前輪13及び後輪15が同時に地面に着地する前輪-後輪同時着地(図5:ジャンプ態様B)が設定され、上級者モードの着地姿勢には、前輪13よりも後輪15が先に地面に着地する後輪着地(図5:ジャンプ態様C)が設定されている。
FIG. 4 is a diagram showing an example of the jump level setting data 75, and FIG. 5 is a diagram schematically showing jump modes for each jump level.
As shown in FIG. 4, the flying distance E in beginner mode is set to zero. In this setting, as shown in jump mode A in FIG. 5, the output of power unit 12 is controlled so that the vehicle body is prevented from rising (so as not to jump) when the vehicle body passes the jump slope M. .
Further, as shown in FIG. 4, the flying distance E in the intermediate player mode and the advanced player mode is set to a predetermined fixed distance that does not cause excessive flying. Furthermore, the landing posture of the intermediate mode is set to the front wheel-rear wheel simultaneous landing (Fig. 5: jump mode B) in which the front wheels 13 and the rear wheels 15 touch the ground at the same time, A rear wheel landing (FIG. 5: jump mode C) is set in which the rear wheels 15 land on the ground before the front wheels 13 do.
 図2に戻り、出力制御部68は、ジャンプ用斜面Mの形状パラメータ、及び、ジャンプレベル設定値に基づいて、少なくとも車体がジャンプ用斜面Mによってジャンプ状態となるまでの間、目標の飛距離Eが得られる車速で車体がジャンプ用斜面Mを通過するようにパワーユニット12の出力を制御する。本実施の形態のパワーユニット12はエンジンであり、出力制御部68は、鞍乗り型車両10に設けられたスロットルボディを制御し、パワーユニット12に供給する吸気量を調整することでパワーユニット12の出力を制御する。 Returning to FIG. 2, the output control unit 68 determines the target flight distance E based on the shape parameter of the jump slope M and the jump level set value until at least the vehicle body enters the jump state due to the jump slope M. The output of the power unit 12 is controlled so that the vehicle body passes the jumping slope M at a vehicle speed at which is obtained. The power unit 12 of the present embodiment is an engine, and the output control section 68 controls the throttle body provided in the saddle type vehicle 10 and adjusts the amount of intake air supplied to the power unit 12 to increase the output of the power unit 12. Control.
 ジャンプ実行意思判定部70は、出力制御部68による制御の間、ライダーが車体をジャンプさせる意思を有しているか否かを判定する。本実施の形態において、ジャンプ実行意思判定部70は、出力制御部68による制御の間、アクセルグリップの回動操作が行われていない時間が判定タイミングの時点で所定の閾値時間を超えている場合に、ライダーが車体をジャンプさせる意思を有していないと判定する。なお、ジャンプ実行意思判定部70は、所定のスイッチなどに対するライダーの操作の有無の検出や、ライダーの運転操作状態に基づく判定といった他の任意の手法を用いて、ライダーが車体をジャンプさせる意思を有しているか否かを判定してもよい。 The jump execution intention determination unit 70 determines whether or not the rider intends to jump the vehicle body during control by the output control unit 68 . In the present embodiment, the jump execution intention determination unit 70 determines that, during the control by the output control unit 68, if the time during which the accelerator grip is not rotated exceeds a predetermined threshold time at the determination timing. Then, it is determined that the rider has no intention of jumping the vehicle body. Note that the jump execution intention determination unit 70 detects the presence or absence of the rider's operation on a predetermined switch or the like, or uses other arbitrary methods such as determination based on the rider's driving operation state to determine the rider's intention to jump the vehicle body. You may judge whether it has.
 出力制御部68は、ジャンプ実行意思判定部70によって、ライダーが車体をジャンプさせる意思を有していないと判定されている場合には、車体がジャンプ用斜面Mを通過したときにジャンプが生じないように、すなわち車体の浮き上がりが抑えられるように(図5:ジャンプ態様A)、車速を制御する。 The output control unit 68 does not cause a jump when the vehicle body passes the jump slope M when the jump execution intention determination unit 70 determines that the rider does not have the intention to jump the vehicle body. In other words, the vehicle speed is controlled so as to prevent the vehicle body from floating (Fig. 5: jump mode A).
 姿勢制御部72は、ジャンプレベル設定値で設定された着地姿勢で車体が着地するように、車体がジャンプしている間、車体の姿勢を制御する。本実施の形態では、姿勢制御部72は、パワーユニット12、及び後輪制動装置30を制御して後輪15の回転速度を上昇又は下降させることで車体の姿勢を制御する。具体的には、車体が目標の姿勢に対して後転傾向(車体のピッチ角が目標値よりも後転方向の値を示している状態)である場合、姿勢制御部72は、後輪15の回転速度が低下するように、パワーユニット12、及び後輪制動装置30を制御する。車体が目標の姿勢に対して前転傾向(車体のピッチ角が目標値よりも前転方向の値を示している状態)である場合、姿勢制御部72は、後輪15の回転速度が増加するように、パワーユニット12、及び後輪制動装置30を制御する。 The posture control unit 72 controls the posture of the vehicle body while it is jumping so that the vehicle body lands in the landing posture set by the jump level setting value. In this embodiment, the posture control section 72 controls the power unit 12 and the rear wheel braking device 30 to increase or decrease the rotational speed of the rear wheels 15, thereby controlling the posture of the vehicle body. Specifically, when the vehicle body tends to roll backwards with respect to the target posture (a state in which the pitch angle of the vehicle body indicates a value in the backward rolling direction rather than the target value), the posture control unit 72 controls the rear wheels 15 The power unit 12 and the rear wheel braking device 30 are controlled so that the rotational speed of the When the vehicle body tends to roll forward with respect to the target posture (a state in which the pitch angle of the vehicle body indicates a value in the forward rolling direction rather than the target value), the posture control unit 72 increases the rotational speed of the rear wheels 15. The power unit 12 and the rear wheel braking device 30 are controlled so as to do so.
 姿勢制御部72において、車体がジャンプしているか否かの判定には、前輪13と後輪15の回転速度の差に基づく判定、IMU48の検出値D5に基づく判定、フロントサスペンションおよびリアサスペンションのストローク量に基づく判定といった任意の手法を用いることができる。 In the attitude control unit 72, determination as to whether or not the vehicle body is jumping is made based on the difference in rotation speed between the front wheels 13 and the rear wheels 15, based on the detection value D5 of the IMU 48, and the strokes of the front and rear suspensions. Any technique, such as determination based on quantity, can be used.
 次いで、制御システム35によるジャンプ制御の動作を説明する。かかるジャンプ制御は、鞍乗り型車両10が不整地を走行しているときに行われる。なお、ライダーによるモード選択は事前に完了しているものとする。 Next, the operation of jump control by the control system 35 will be described. Such jump control is performed when the saddle-ride type vehicle 10 is traveling on uneven terrain. It is assumed that mode selection by the rider has been completed in advance.
 図6は、ジャンプ制御のフローチャートである。
 鞍乗り型車両10が不整地を走行している間、斜面検出部62がジャンプ用斜面Mの検出を継続的に実行する(ステップS1)。上述の通り、斜面検出部62は、撮影部46の撮影データD4を画像処理部62Aが画像処理することでジャンプ用斜面Mを検出する。
FIG. 6 is a flow chart of jump control.
While the saddle-ride type vehicle 10 is traveling on uneven ground, the slope detector 62 continuously detects the jump slope M (step S1). As described above, the slope detection unit 62 detects the jump slope M by image processing the photographed data D4 of the photographing unit 46 by the image processing unit 62A.
 図7は、画像処理部62Aによる検出動作の説明図である。
 本実施の形態の撮影データD4は、所定フレームレートで画像が撮像された動画データであり、画像処理部62Aは、撮影データD4の各撮影像D4fに対して画像認識処理を施し、撮影像D4fに映っているジャンプ用斜面Mを検出し、当該ジャンプ用斜面Mの形状パラメータ(高さPaや幅Pb、斜度αなど)を特定する。本実施の形態では、画像処理部62Aは、撮影像D4fの中に設定された検出範囲Hに対して画像認識処理を施し、当該検出範囲Hに映ったジャンプ用斜面Mを検出する。検出範囲Hは、撮影像D4fのサイズよりも小さな範囲(すなわち、周囲に所定のマージンを有するサイズ)に設定される。
FIG. 7 is an explanatory diagram of the detection operation by the image processing section 62A.
The photographic data D4 of the present embodiment is moving image data in which images are captured at a predetermined frame rate. is detected, and the shape parameters (height Pa, width Pb, inclination α, etc.) of the jump slope M are specified. In the present embodiment, the image processing unit 62A performs image recognition processing on the detection range H set in the captured image D4f, and detects the jump slope M reflected in the detection range H. The detection range H is set to a range smaller than the size of the captured image D4f (that is, a size having a predetermined margin around it).
 鞍乗り型車両10がコーナリングに入る等して車体が左側又は右側に傾いた場合、図7の検出態様Aに示すように、車体の傾き(バンク角θ)に応じて車体前方の風景が傾いて撮影され、車体前方のジャンプ用斜面Mの一部が検出範囲Hからはみ出すことがある。この場合、ジャンプ用斜面Mが検出できたとしても、当該ジャンプ用斜面Mの形状パラメータ(図示例では、幅Pa)の精度が低下する。そこで、画像処理部62Aは、バンク角θが所定値以上となった場合、検出範囲Hを変更し、変更後の検出範囲Hに対して画像認識処理を施すことでジャンプ用斜面Mを検出する。本実施形態では、検出範囲Hの変更の一態様として「拡張」が用いられる。具体的には、画像処理部62Aは、図7の検出態様Bに示すように、検出範囲Hを拡張し、拡張後の検出範囲Hに対して画像認識処理を施すことでジャンプ用斜面Mを検出する。これにより、ジャンプ用斜面Mの全体が検出範囲Hに収まり、形状パラメータが精度良く求められる。また、検出範囲Hが撮影像D4fのサイズよりも小さな範囲に設定されているため、撮影像D4fの全体を画像認識処理する場合に比べ、演算負荷を下げることができる。これに加え、検出範囲Hの拡張は、バンク角θが所定値以上となった場合、すなわち、ジャンプ用斜面Mの形状パラメータの精度が低下し得る場合に限って行われるため、検出範囲Hの拡張による演算負荷の増加が、必要時のみに限定される。これにより、演算負荷の軽減と形状パラメータの精度の維持とを両立できる。 When the saddle type vehicle 10 enters cornering and the vehicle body tilts to the left or right, the scenery in front of the vehicle body tilts according to the tilt of the vehicle body (bank angle θ), as shown in detection mode A in FIG. A part of the slope M for jumping in front of the vehicle body may protrude from the detection range H. In this case, even if the jump slope M can be detected, the accuracy of the shape parameter (the width Pa in the illustrated example) of the jump slope M decreases. Therefore, when the bank angle θ becomes equal to or greater than a predetermined value, the image processing unit 62A changes the detection range H, and performs image recognition processing on the changed detection range H to detect the jump slope M. . In this embodiment, "expansion" is used as one mode of changing the detection range H. FIG. Specifically, the image processing unit 62A expands the detection range H as shown in the detection mode B in FIG. To detect. As a result, the entire jump slope M falls within the detection range H, and the shape parameter can be obtained with high accuracy. Moreover, since the detection range H is set to be smaller than the size of the captured image D4f, the computational load can be reduced compared to the case where the entire captured image D4f is subjected to image recognition processing. In addition, the expansion of the detection range H is performed only when the bank angle θ is equal to or greater than a predetermined value, that is, when the precision of the shape parameter of the jumping slope M may be lowered. Increased computational load due to expansion is limited to when necessary. This makes it possible to both reduce the computational load and maintain the accuracy of the shape parameters.
 前掲図6に戻り、ジャンプ用斜面Mが検出された場合(ステップS2:Yes)、出力制御部68は、レベル設定部66からレベル設定値を取得する(ステップS3)。そして、出力制御部68は、ジャンプ時の飛距離E及び着地姿勢の目標値をレベル設定値に基づいて特定し、当該目標値にしたがったジャンプが達成されるように、ジャンプ前出力制御を実行する(ステップS4)。具体的には、出力制御部68は、ジャンプ用斜面Mの斜度αと、飛距離Eの目標値とに基づいて、ジャンプ用斜面Mを通過するときの目標車速を決定する。そして、出力制御部68は、少なくとも車体がジャンプ状態となるまでの間に、車体がジャンプ用斜面Mを目標車速で通過するように車速をフィードバック制御する。フィードバック制御において、出力制御部68は、パワーユニット12の出力、及び後輪制動装置30の制動力を制御することで車速を制御する。
 これにより、レベル設定値(ライダーの選択モード)に応じた飛距離Eで車体がジャンプすることとなる。
Returning to FIG. 6, when the jump slope M is detected (step S2: Yes), the output control section 68 acquires the level setting value from the level setting section 66 (step S3). Then, the output control unit 68 specifies target values for the flight distance E and the landing posture at the time of the jump based on the level setting values, and executes pre-jump output control so that the jump is achieved according to the target values. (step S4). Specifically, the output control unit 68 determines the target vehicle speed when passing through the jump slope M based on the slope α of the jump slope M and the target value of the flight distance E. Then, the output control unit 68 feedback-controls the vehicle speed so that the vehicle body passes the jump slope M at the target vehicle speed at least until the vehicle body enters the jump state. In feedback control, the output control section 68 controls the vehicle speed by controlling the output of the power unit 12 and the braking force of the rear wheel braking device 30 .
As a result, the vehicle body jumps at a flight distance E corresponding to the level set value (rider's selection mode).
 このステップS4において、段差検出部64によって車体前方に段差が検出されている場合、出力制御部68は、段差が通過した後に、車速をフィードバック制御する。
 これにより、車体が段差を通過したことによって走行状態が急激に変わった場合でも、走行状態が安定した後に、フィードバック制御が行われるため、段差の影響がない、より正確な制御が可能となる。
In this step S4, if the step detector 64 detects a step ahead of the vehicle body, the output control unit 68 feedback-controls the vehicle speed after the step has passed.
As a result, even if the running condition changes abruptly due to the vehicle passing over a bump, feedback control is performed after the running condition stabilizes, so more accurate control is possible without the influence of the bump.
 また、ステップS4において、出力制御部68が車速をフィードバック制御している間、ジャンプ実行意思判定部70によって、ライダーがジャンプを実行する意思を有していないと判定された場合、出力制御部68は、車体がジャンプ用斜面Mを通過したときにジャンプを生じさせない(車体の浮き上がりが抑制される)目標車速を求め、当該目標車速で車体がジャンプ用斜面Mを通過するようにフィードバック制御を行う。
 これにより、ライダーが意図していない状態で車体がジャンプすることを防止できる。
Further, in step S4, when the jump execution intention determination unit 70 determines that the rider does not have the intention to execute a jump while the output control unit 68 is feedback-controlling the vehicle speed, the output control unit 68 obtains a target vehicle speed that does not cause a jump when the vehicle body passes the jump slope M (the vehicle body is suppressed from rising), and performs feedback control so that the vehicle body passes the jump slope M at the target vehicle speed. .
This prevents the body from jumping unintentionally by the rider.
 その後、車体がジャンプ用斜面Mを通過してジャンプ状態になると、姿勢制御部72によって車体のジャンプが検出される(ステップS5:Yes)。そして、姿勢制御部72は、車体がジャンプしている間、後輪15の回転速度を制御することで、着地姿勢の目標値通りに車体が着地するように車体の姿勢を制御する(ステップS6)。
 これにより、レベル設定値(ライダーの選択モード)に応じた着地姿勢で車体が着地することとなる。
After that, when the vehicle body passes through the jump slope M and enters a jump state, the jump of the vehicle body is detected by the attitude control section 72 (step S5: Yes). Then, the attitude control unit 72 controls the rotational speed of the rear wheels 15 while the vehicle body is jumping, thereby controlling the attitude of the vehicle body so that the vehicle body lands in accordance with the target value of the landing attitude (step S6). ).
As a result, the vehicle body lands in a landing posture corresponding to the level set value (rider's selection mode).
 このように、図6のジャンプ制御によれば、ライダーの選択モード(レベル設定値)に対応した飛距離E及び着地姿勢でのジャンプが行われるので、ライダーは、自身の技量や好みに応じたジャンプを楽しむことができる。 As described above, according to the jump control in FIG. 6, the jump is performed with the flight distance E and the landing attitude corresponding to the rider's selection mode (level set value), so that the rider can choose the jump according to his/her skill and preference. You can enjoy jumping.
 本実施の形態によれば次の効果を奏する。 According to this embodiment, the following effects are obtained.
 本実施の形態の鞍乗り型車両10は、ジャンプ用斜面Mによって車体がジャンプ状態となるまでの間、ジャンプ用斜面Mの斜度αに基づいてパワーユニット12の出力を制御する。
 これにより、車体のジャンプに適切な車速で車体がジャンプ用斜面Mを通過し、ライダーがジャンプをより楽しむことができる。
The saddle-ride type vehicle 10 of the present embodiment controls the output of the power unit 12 based on the slope α of the jumping slope M until the vehicle body jumps due to the jumping slope M. FIG.
As a result, the vehicle body passes through the jump slope M at a vehicle speed suitable for the jump of the vehicle body, and the rider can enjoy jumping more.
 本実施の形態の鞍乗り型車両10は、ジャンプ用斜面Mの斜度αに対応する目標車速と、車速とに基づいて、パワーユニット12の出力を制御する。
 この構成によれば、ジャンプ用斜面Mの斜度αに応じた車速で車体がジャンプ用斜面Mを通過するため、ジャンプ用斜面Mの斜度αが変わっても、ライダーはジャンプを楽しむことができる。
The straddle-ride type vehicle 10 of the present embodiment controls the output of the power unit 12 based on the target vehicle speed corresponding to the slope α of the jump slope M and the vehicle speed.
According to this configuration, the vehicle body passes over the jump slope M at a vehicle speed corresponding to the slope α of the jump slope M. Therefore, even if the slope α of the jump slope M changes, the rider can enjoy jumping. can.
 本実施の形態の鞍乗り型車両10は、アクセルが操作されていない時間が一定時間を超えている場合、車体がジャンプ用斜面Mを通過したときの車体の浮き上がりを抑えるようにパワーユニットの出力を制御する。
 この構成によれば、ライダーがジャンプをする意思がないことをアクセル操作に基づき自動で判定され、ライダーが意図しないジャンプに係る出力制御が実行されるのを防止できる。
The straddle-type vehicle 10 of the present embodiment reduces the output of the power unit so as to suppress the lifting of the vehicle body when the vehicle body passes the jump slope M when the accelerator is not operated for more than a certain period of time. Control.
According to this configuration, it is automatically determined based on the accelerator operation that the rider has no intention of jumping, and it is possible to prevent execution of output control related to a jump that the rider does not intend.
 本実施の形態の鞍乗り型車両10は、車体が段差を通過した後であって、ジャンプ用斜面Mによってジャンプ状態となるまでの間に、に到るまでの間にパワーユニット12の出力の制御を行う。
 この構成によれば、車体が段差を通過したことによって走行状態が急激に変わった場合でも、走行状態が安定した後に、フィードバック制御が行われるため、段差の影響がない、より正確な制御が可能となる。
The saddle-ride type vehicle 10 of the present embodiment controls the output of the power unit 12 after the vehicle body has passed through the step and before it enters a jump state due to the jump slope M. I do.
According to this configuration, even if the running condition suddenly changes due to the vehicle passing over a bump, the feedback control is performed after the running condition stabilizes, so more accurate control is possible without the influence of the bump. becomes.
 本実施の形態の鞍乗り型車両10は、撮影像D4fに対して予め設定された検出範囲Hを、車体のバンク角θに応じて拡張し、拡張後の検出範囲Hからジャンプ用斜面Mを検出し、当該ジャンプ用斜面Mの形状パラメータを特定する。
 この構成によれば、車体が左又は右に傾くことで、撮影像D4fの中でジャンプ用斜面Mの一部が検出範囲Hからはみ出た場合でも、ジャンプ用斜面Mの全体を検出範囲Hに収めることができ、形状パラメータの算出精度の低下を防止できる。
 また、検出範囲Hの拡張は、バンク角θが所定値以上となった場合、すなわち、ジャンプ用斜面Mの形状パラメータの精度が低下し得る場合に限って行われるため、検出範囲Hの拡張による演算負荷の増加が、必要時のみに限定され、演算負荷の軽減と形状パラメータの算出精度の維持とを両立できる。
The straddle-type vehicle 10 of the present embodiment expands the detection range H preset with respect to the photographed image D4f in accordance with the bank angle θ of the vehicle body, and determines the jump slope M from the expanded detection range H. Then, the shape parameters of the jump slope M are specified.
According to this configuration, even if part of the jumping slope M protrudes from the detection range H in the photographed image D4f due to the vehicle body tilting to the left or right, the entire jumping slope M is within the detection range H. can be accommodated, and deterioration of the calculation accuracy of the shape parameter can be prevented.
Further, the expansion of the detection range H is performed only when the bank angle .theta. An increase in the computational load is limited only when necessary, and both the reduction of the computational load and the maintenance of the calculation accuracy of the shape parameters can be achieved.
 本実施の形態の鞍乗り型車両10は、パワーユニット12のジャンプ前出力制御を、ライダーのモード選択によって入力されたモードに応じて変更する。
 この構成によれば、ライダーは自身の技量や好みに応じてモードを選択し、選択されたモードに対応したジャンプを楽しむことができる。
The straddle-type vehicle 10 of the present embodiment changes the pre-jump output control of the power unit 12 according to the mode input by the rider's mode selection.
According to this configuration, the rider can select a mode according to his/her own skill and preference, and enjoy jumping corresponding to the selected mode.
 本実施の形態の鞍乗り型車両10は、初心者モード(第1モード)がモード選択されている場合、車体がジャンプ用斜面Mを通過したときの車体の浮き上がりを抑えるように(すなわち、ジャンプしないように)、パワーユニット12の出力を制御する。
 この構成によれば、ジャンプを望まないライダーは、初心者モードを選択しておくことで、車体がジャンプ用斜面Mを走行して通過した場合でもジャンプが生じるのを回避できる。
When the beginner mode (first mode) is selected, the saddle-ride type vehicle 10 of the present embodiment suppresses the uplift of the vehicle body when the vehicle body passes the jump slope M (that is, does not jump). ) to control the output of the power unit 12 .
According to this configuration, a rider who does not want to jump can avoid a jump even when the vehicle body travels and passes the jump slope M by selecting the beginner mode.
 なお、上述した実施の形態は、あくまでも本発明の一態様の例示であり、本発明の主旨を逸脱しない範囲において任意に変形、及び応用が可能である。 It should be noted that the above-described embodiment is merely an example of one aspect of the present invention, and can be arbitrarily modified and applied without departing from the gist of the present invention.
 例えば、鞍乗り型車両10が、ジャンプの困難性を判定し、ライダーに通知してもよい。
 図8は、本変形例に係る制御システム135の構成を示す図である。なお、同図において、上述した実施の形態で説明した構成部には同一の符号を付し、その説明を省略する。
 同図に示すように、本変形例に係る制御システム135は、上述した実施の形態の構成に加え、環境情報検出部149と、出力部180と、表示部182と、を備え、また、制御装置50は、走行路情報検出部174、及び困難性判定部176として機能する。
For example, the saddle-riding vehicle 10 may determine the difficulty of the jump and notify the rider.
FIG. 8 is a diagram showing the configuration of a control system 135 according to this modification. In addition, in the same figure, the same reference numerals are assigned to the components described in the above-described embodiment, and the description thereof will be omitted.
As shown in the figure, a control system 135 according to this modification includes an environment information detection unit 149, an output unit 180, and a display unit 182 in addition to the configuration of the above-described embodiment. The device 50 functions as a road information detection section 174 and a difficulty determination section 176 .
 環境情報検出部149は、走行時の車体の周辺の環境に係る環境情報を検出するセンサ類149Aを備え、検出情報D6を制御装置50に出力する。環境情報は、ジャンプを困難性に影響を与える環境要因であって、地面(路面)及びジャンプ用斜面M以外の環境要因の情報であり、例えば、風の有無や強さ、降雨の有無や雨量、鞍乗り型車両10の周辺を走行している他の車両の有無、といった情報が挙げられる。センサ類149Aは、かかる環境要因の情報を検出するセンサであり、例えば、風速センサや降雨センサ、周辺車両検出センサなどである。 The environment information detection unit 149 includes sensors 149A that detect environment information related to the environment around the vehicle body during running, and outputs detection information D6 to the control device 50. The environmental information is environmental factors that affect the difficulty of jumping, and is information on environmental factors other than the ground (road surface) and the slope M for jumping. , whether or not there is another vehicle running around the saddle-ride type vehicle 10 . The sensors 149A are sensors that detect information on such environmental factors, such as wind speed sensors, rainfall sensors, and peripheral vehicle detection sensors.
 走行路情報検出部174は、ジャンプ用斜面Mの到るまでに車体が走行する走行路に係る走行路情報を検出する。走行路情報は、車体の走行状態に影響を及ぼす要因に関する情報であり、例えば、走行路面における凹凸の有無及び凹凸の程度や、摩擦係数などである。走行路情報検出部174は、例えば、IMU48の検出値D5に基づいて車体に生じている振動を特定し、当該振動に基づいて凹凸の有無及び凹凸の程度を特定する。また、走行路情報検出部174は、例えば、駆動輪である後輪15のスリップ状態などに基づいて摩擦係数を特定する。 The travel path information detection unit 174 detects travel path information related to the travel path along which the vehicle body travels until it reaches the jumping slope M. The travel road information is information relating to factors that affect the running state of the vehicle body, and includes, for example, the presence or absence of unevenness on the travel road surface, the degree of unevenness, the coefficient of friction, and the like. The traveling road information detection unit 174, for example, identifies vibration occurring in the vehicle body based on the detection value D5 of the IMU 48, and identifies the presence or absence of unevenness and the degree of unevenness based on the vibration. Further, the road information detection unit 174 identifies the friction coefficient based on, for example, the slipping state of the rear wheels 15 that are driving wheels.
 困難性判定部176は、車体がジャンプ用斜面Mに到達する前に、環境情報の検出情報D6、及び、路面の状態に基づいて、前方のジャンプ用斜面Mによるジャンプの困難性を判定する。例えば、路面の状態が悪く(いわゆる悪路)であったり、風雨が強かったり、前方のジャンプ用斜面Mに向かう他の走行車両が存在したりする場合、困難性判定部176は、ジャンプの困難性が高いと判定する。
 なお、困難性判定部176は、環境情報、及び、走行路情報に加え、ジャンプ用斜面Mの形状パラメータ(斜度αや高さPb)を参照し、例えば、斜度αが大きかったり、高さPbが高かったりした場合に、困難性が高いと判定してもよい。
Before the vehicle body reaches the jump slope M, the difficulty determination unit 176 determines the difficulty of the jump on the forward jump slope M based on the detection information D6 of the environment information and the road surface condition. For example, when the condition of the road surface is bad (so-called bad road), when the wind and rain are strong, or when there are other traveling vehicles heading for the jump slope M in front, the difficulty determination unit 176 determines whether the jump is difficult. judged to be of high quality.
The difficulty determination unit 176 refers to the shape parameters (slope α and height Pb) of the jumping slope M in addition to the environment information and the running path information. It may be determined that the difficulty is high when the weight Pb is high.
 出力部180は、表示部182に信号を出力する信号出力回路を含み、困難性判定部176によって判定された困難性の情報を表示部182に出力する。
 表示部182は、車体に設けられた表示パネルやインジケーターであり、出力部180から出力された困難性の情報を表示する。
Output unit 180 includes a signal output circuit that outputs a signal to display unit 182 , and outputs information on the difficulty determined by difficulty determination unit 176 to display unit 182 .
The display unit 182 is a display panel or an indicator provided on the vehicle body, and displays the difficulty information output from the output unit 180 .
 この構成によれば、ライダーは、ジャンプの困難性を表示部182の表示から知ることができ、困難性に応じてジャンプするか否かを判断することができる。 According to this configuration, the rider can know the difficulty of the jump from the display on the display unit 182, and can determine whether or not to jump according to the difficulty.
 なお、本変形例において、出力部180は、表示部182ではなく、ライダーが装着する装備に、困難性を示す信号を出力し、当該装置が困難性に係る情報をライダーに提供してもよい。かかる装備としては、例えば、ヘルメットやヘッドアップディスプレイ(HUD:Head-Up Display)などが挙げられる。 In addition, in this modification, the output unit 180 may output a signal indicating the difficulty to the equipment worn by the rider instead of the display unit 182, and the device may provide the rider with information regarding the difficulty. . Such equipment includes, for example, a helmet and a head-up display (HUD).
 例えば、鞍乗り型車両10において、斜面検出部62の画像処理部62Aは、バンク角θが所定値以上の場合、検出範囲Hを拡張することで当該検出範囲Hを変更した。しかしながら、これに限らず、画像処理部62Aは、バンク角θが所定値以上の場合、検出範囲Hのサイズを変えずに、ジャンプ用斜面Mの位置に合わせて、当該検出範囲Hを撮影像D4fの中で移動してもよい。
 例えば、図9の検出態様Cのように、バンク角θが所定値以上となってジャンプ用斜面Mが検出範囲Hからはみ出ている場合、画像処理部62Aは、図9の検出態様Dのように、ジャンプ用斜面Mがはみ出る方向(図9では右下方向)に検出範囲Hを撮影像D4fの中で移動し、ジャンプ用斜面Mの全体が検出範囲Hに収まるようにする。
 本変形例によれば、車体が左又は右に傾くことで、撮影像D4fの中でジャンプ用斜面Mの一部が検出範囲Hからはみ出た場合でも、ジャンプ用斜面Mの全体を検出範囲Hに収めることができ、形状パラメータの算出精度の低下を防止できる。
For example, in the saddle-ride type vehicle 10, the image processing section 62A of the slope detection section 62 changes the detection range H by expanding the detection range H when the bank angle θ is equal to or greater than a predetermined value. However, not limited to this, when the bank angle θ is equal to or greater than a predetermined value, the image processing unit 62A does not change the size of the detection range H, but adjusts the detection range H to match the position of the jump slope M. You may move in D4f.
For example, as in detection mode C in FIG. 9, when the bank angle θ is equal to or greater than a predetermined value and jump slope M protrudes from detection range H, the image processing unit 62A performs detection mode D in FIG. Next, the detection range H is moved in the photographed image D4f in the direction in which the jumping slope M protrudes (lower right direction in FIG. 9) so that the entire jumping slope M falls within the detection range H.
According to this modification, even if part of the jump slope M in the photographed image D4f protrudes from the detection range H due to the body tilting to the left or right, the entire jump slope M is detected within the detection range H. , and a decrease in the calculation accuracy of the shape parameter can be prevented.
 なお、鞍乗り型車両10がカメラ46Aの撮影方向を中心にカメラ46Aを機械的に回転させる回転装置を備え、斜面検出部62が回転装置を制御して、バンク角θに合わせてカメラ46Aを回転させることで、撮影像D4fからバンク角θの影響を除く構成としてもよい。 The saddle-ride type vehicle 10 is provided with a rotation device for mechanically rotating the camera 46A around the photographing direction of the camera 46A. By rotating the image D4f, the effect of the bank angle θ may be removed from the photographed image D4f.
 上述した実施の形態、及び変形例における水平、及び垂直等の方向や各種の数値、形状、材料は、特段の断りがない限り、それら方向や数値、形状、材料と同じ作用効果を奏する範囲(いわゆる均等の範囲)を含む。 Unless otherwise specified, the horizontal and vertical directions, various numerical values, shapes, and materials in the above-described embodiments and modifications are within the range that produces the same effects as those directions, numerical values, shapes, and materials ( so-called equal range).
[上記実施の形態によりサポートされる構成]
 上記実施の形態は、以下の構成の具体例である。
[Configuration supported by the above embodiment]
The above embodiment is a specific example of the following configuration.
 (構成1)車体を駆動するパワーユニットを備えた鞍乗り型車両において、通過によって前記車体がジャンプ状態となる斜面を検出する斜面検出部と、車体がジャンプ状態となるまでの間に、前記斜面の斜度に基づいて前記パワーユニットの出力を制御する出力制御部と、を備えることを特徴とする鞍乗り型車両。
 構成1によれば、ライダーがジャンプをより楽しむことができる。
(Arrangement 1) In a saddle-riding vehicle having a power unit for driving a vehicle body, a slope detection unit for detecting a slope on which the vehicle body jumps when it passes through, and a slope detector for detecting the slope until the vehicle body jumps. and an output control section that controls the output of the power unit based on the gradient.
According to Configuration 1, the rider can enjoy jumping more.
 (構成2)車速を検出する車速検出部を備え、前記出力制御部は、前記斜度に対応する目標車速と、前記車速とに基づいて、前記パワーユニットの出力を制御することを特徴とする構成1に記載の鞍乗り型車両。
 構成2によれば、斜面の斜度が変わっても、ライダーはジャンプを楽しむことができる。
(Configuration 2) A configuration characterized by comprising a vehicle speed detection section that detects a vehicle speed, wherein the output control section controls the output of the power unit based on the target vehicle speed corresponding to the gradient and the vehicle speed. 2. The straddle-type vehicle according to 1.
According to Configuration 2, the rider can enjoy jumping even if the slope changes.
 (構成3)ライダーのアクセル操作を検出する操作検出部を備え、前記出力制御部は、前記アクセルが操作されていない時間が一定時間を超えている場合、前記車体が前記斜面を通過したときの前記車体の浮き上がりを抑えるように前記パワーユニットの出力を制御することを特徴とする構成1または2に記載の鞍乗り型車両。
 構成3によれば、ライダーが意図しないジャンプに係る出力制御が実行されるのを防止できる。
(Arrangement 3) An operation detection unit that detects an accelerator operation by a rider is provided, and the output control unit detects when the vehicle body passes the slope when the accelerator is not operated for a predetermined time. A saddle-ride type vehicle according to configuration 1 or 2, wherein the output of the power unit is controlled so as to suppress the lifting of the vehicle body.
According to configuration 3, it is possible to prevent execution of output control related to a jump unintended by the rider.
 (構成4)前記車体が前記斜面に到るまでの間にある段差を検出する段差検出部を備え、前記出力制御部は、前記車体が前記段差を通過した後であって、前記車体がジャンプ状態となるまでの間に、前記パワーユニットの出力の制御を行うことを特徴とする構成1から3のいずれかに記載の鞍乗り型車両。
 構成4によれば、段差の影響を受けずに、より正確な制御が可能となる。
(Arrangement 4) A step detection unit that detects a step before the vehicle body reaches the slope, and the output control unit detects that the vehicle body jumps after the vehicle body has passed the step. The straddle-type vehicle according to any one of configurations 1 to 3, wherein the output of the power unit is controlled until the state is reached.
According to Configuration 4, more accurate control is possible without being affected by steps.
 (構成5)前記車体の進行方向を撮影する撮影部と、前記車体のバンク角を検出するバンク角検出部と、を備え、前記斜面検出部は、前記撮影部の撮影像に対して予め設定された検出範囲から前記斜面を検出し、当該斜面の形状を特定する画像処理手段を備え、前記画像処理手段は、前記バンク角の大きさに応じて前記検出範囲を変更し、変更後の前記検出範囲から前記斜面を検出し、当該斜面の形状を特定することを特徴とする構成1から4のいずれかに記載の鞍乗り型車両。
 構成5によれば、車体が傾いている場合でも、斜面の形状の算出精度の低下を防止できる。
(Configuration 5) A photographing unit for photographing the traveling direction of the vehicle body, and a bank angle detection unit for detecting a bank angle of the vehicle body, wherein the slope detection unit is set in advance with respect to the image photographed by the photographing unit. an image processing means for detecting the slope from the detected range and specifying the shape of the slope, wherein the image processing means changes the detection range according to the size of the bank angle, The straddle-type vehicle according to any one of configurations 1 to 4, wherein the slope is detected from the detection range and the shape of the slope is specified.
According to configuration 5, even when the vehicle body is tilted, it is possible to prevent a decrease in the calculation accuracy of the shape of the slope.
 (構成6)前記画像処理手段は、前記バンク角の大きさに応じて前記検出範囲を拡張し、拡張後の前記検出範囲から前記斜面を検出し、当該斜面の形状を特定することを特徴とする構成5に記載の鞍乗り型車両。
 構成6によれば、検出範囲Hの拡張は、バンク角θが所定値以上となった場合に行われるため、検出範囲Hの拡張による演算負荷の増加が抑えられ、演算負荷の軽減と斜面の形状の算出精度の維持とを両立できる。
(Arrangement 6) The image processing means expands the detection range according to the size of the bank angle, detects the slope from the expanded detection range, and specifies the shape of the slope. A straddle-type vehicle according to configuration 5.
According to configuration 6, the expansion of the detection range H is performed when the bank angle .theta. It is possible to maintain the calculation accuracy of the shape.
 (構成7)モード選択の入力を受け付けるモード選択入力部を備え、前記出力制御部は、前記パワーユニットの出力制御を、前記モード選択入力部に入力されたモードに応じて変更することを特徴とする構成1から6のいずれかに記載の鞍乗り型車両。
 構成7によれば、ライダーは自身の技量や好みに応じてモードを選択し、選択されたモードに対応したジャンプを楽しむことができる。
(Arrangement 7) A mode selection input section for receiving an input of mode selection is provided, and the output control section changes the output control of the power unit according to the mode input to the mode selection input section. A straddle-type vehicle according to any one of configurations 1 to 6.
According to Configuration 7, the rider can select a mode according to his/her own skill and preference, and enjoy jumping corresponding to the selected mode.
 (構成8)前記出力制御部は、第1モードが前記モード選択入力部に入力されている場合、前記車体が前記斜面を通過したときの前記車体の浮き上がりを抑えるように前記パワーユニットの出力を制御することを特徴とする構成7に記載の鞍乗り型車両。
 構成8によれば、ジャンプを望まないライダーは、第1モードを選択しておくことで、車体が斜面を走行して通過した場合でもジャンプが生じるのを回避できる。
(Arrangement 8) When the first mode is input to the mode selection input section, the output control section controls the output of the power unit so as to suppress the lifting of the vehicle body when the vehicle body passes the slope. The straddle-type vehicle according to configuration 7, characterized in that
According to configuration 8, a rider who does not want to jump can avoid jumping even when the vehicle body travels over a slope by selecting the first mode.
 (構成9)前記車体が前記斜面を通過する間に走行する走行路に係る走行路情報を検出する走行路情報検出手段と、前記車体の周辺の環境に係る環境情報を検出する環境情報検出手段と、前記走行路情報、及び前記環境情報に基づいて、前記斜面の通過によるジャンプの困難性を判定する困難性判定部と、前記車体に設けられた表示部、又はライダーが装着する装備に、前記困難性判定部によって判定された困難性を出力する出力部と、を備えることを特徴とする構成1から8のいずれかに記載の鞍乗り型車両。
 構成9によれば、ライダーは、ジャンプの困難性を知ることができ、困難性に応じてジャンプするか否かを事前に決めることができる。
(Arrangement 9) Travel path information detection means for detecting travel path information relating to the travel path on which the vehicle body travels while passing through the slope; and environment information detection means for detecting environment information relating to the surrounding environment of the vehicle body. and a difficulty determination unit that determines the difficulty of jumping due to passing through the slope based on the traveling path information and the environment information, and a display unit provided on the vehicle body or equipment worn by the rider, and an output section that outputs the difficulty determined by the difficulty determination section.
According to configuration 9, the rider can know the difficulty of the jump and decide in advance whether to jump according to the difficulty.
 10 鞍乗り型車両
 11 車体フレーム
 12 パワーユニット
 15 後輪
 30 後輪制動装置
 32 ブレーキアクチュエータ
 35、135 制御システム
 40 車速検出部
 42 アクセル操作検出部
 44 モード選択入力部
 46 撮影部
 48 IMU
 50 制御装置
 60 バンク角検出部
 62 斜面検出部
 64 段差検出部
 68 出力制御部
 70 ジャンプ実行意思判定部
 149 環境情報検出部
 174 走行路情報検出部
 176 困難性判定部
 180 出力部
 D4f 撮影像
 H 検出範囲
 M ジャンプ用斜面(斜面)
 α 斜度
 θ バンク角
REFERENCE SIGNS LIST 10 saddle type vehicle 11 body frame 12 power unit 15 rear wheel 30 rear wheel braking device 32 brake actuator 35, 135 control system 40 vehicle speed detector 42 accelerator operation detector 44 mode selection input unit 46 photographing unit 48 IMU
50 control device 60 bank angle detection unit 62 slope detection unit 64 step detection unit 68 output control unit 70 jump execution intention determination unit 149 environment information detection unit 174 running path information detection unit 176 difficulty determination unit 180 output unit D4f photographed image H detection Range M Jump Slope (Slope)
α Inclination θ Bank angle

Claims (9)

  1.  車体を駆動するパワーユニット(12)を備えた鞍乗り型車両(10)において、
     通過によって前記車体がジャンプ状態となる斜面(M)を検出する斜面検出部(62)と、
     前記車体がジャンプ状態となるまでの間に、前記斜面(M)の斜度(α)に基づいて前記パワーユニット(12)の出力を制御する出力制御部(68)と、
     を備えることを特徴とする鞍乗り型車両。
    In a straddle-type vehicle (10) having a power unit (12) for driving a vehicle body,
    a slope detection unit (62) for detecting a slope (M) on which the vehicle body jumps when passing;
    an output control section (68) for controlling the output of the power unit (12) based on the slope (α) of the slope (M) until the vehicle body enters a jump state;
    A straddle-type vehicle comprising:
  2.  車速を検出する車速検出部(40)を備え、
     前記出力制御部(68)は、
     前記斜度(α)に対応する目標車速と、前記車速とに基づいて、前記パワーユニット(12)の出力を制御する
     ことを特徴とする請求項1に記載の鞍乗り型車両。
    A vehicle speed detection unit (40) for detecting vehicle speed,
    The output control section (68)
    The straddle-type vehicle according to claim 1, wherein the output of the power unit (12) is controlled based on a target vehicle speed corresponding to the gradient (α) and the vehicle speed.
  3.  ライダーのアクセル操作を検出する操作検出部(42)を備え、
     前記出力制御部(68)は、
     前記アクセルが操作されていない時間が一定時間を超えている場合、前記車体が前記斜面(M)を通過したときの前記車体の浮き上がりを抑えるように前記パワーユニット(12)の出力を制御する
     ことを特徴とする請求項1または2に記載の鞍乗り型車両。
    An operation detection unit (42) that detects a rider's accelerator operation,
    The output control section (68)
    controlling the output of the power unit (12) so as to suppress the lifting of the vehicle body when the vehicle body passes the slope (M) when the accelerator has not been operated for a certain period of time; A straddle-type vehicle according to claim 1 or 2.
  4.  前記車体が前記斜面(M)に到るまでの間にある段差を検出する段差検出部(64)を備え、
     前記出力制御部(68)は、
     前記車体が前記段差を通過した後であって、前記車体がジャンプ状態となるまでの間に、前記パワーユニット(12)の出力の制御を行う
     ことを特徴とする請求項1から3のいずれかに記載の鞍乗り型車両。
    a step detection unit (64) for detecting a step between the vehicle body and the slope (M);
    The output control section (68)
    Any one of claims 1 to 3, wherein the output of the power unit (12) is controlled after the vehicle body has passed through the step and before the vehicle body enters a jump state. A saddle-riding vehicle as described.
  5.  前記車体の進行方向を撮影する撮影部(46)と、
     前記車体のバンク角(θ)を検出するバンク角検出部(60)と、を備え、
     前記斜面検出部(62)は、
     前記撮影部(46)の撮影像(D4f)に対して予め設定された検出範囲(H)から前記斜面(M)を検出し、当該斜面(M)の形状を特定する画像処理手段(62A)を備え、
     前記画像処理手段(62A)は、前記バンク角(θ)の大きさに応じて前記検出範囲(H)を変更し、変更後の前記検出範囲(H)から前記斜面(M)を検出し、当該斜面(M)の形状を特定する
     ことを特徴とする請求項1から4のいずれかに記載の鞍乗り型車両。
    a photographing unit (46) for photographing the traveling direction of the vehicle body;
    a bank angle detection unit (60) for detecting the bank angle (θ) of the vehicle body,
    The slope detector (62)
    Image processing means (62A) for detecting the slope (M) from a detection range (H) set in advance for the photographed image (D4f) of the photographing unit (46) and specifying the shape of the slope (M). with
    The image processing means (62A) changes the detection range (H) according to the size of the bank angle (θ), detects the slope (M) from the changed detection range (H), The straddle-type vehicle according to any one of claims 1 to 4, characterized in that the shape of said slope (M) is specified.
  6.  前記画像処理手段(62A)は、前記バンク角(θ)の大きさに応じて前記検出範囲(H)を拡張し、拡張後の前記検出範囲(H)から前記斜面(M)を検出し、当該斜面(M)の形状を特定する
     ことを特徴とする請求項5に記載の鞍乗り型車両。
    The image processing means (62A) expands the detection range (H) according to the size of the bank angle (θ), detects the slope (M) from the expanded detection range (H), The straddle-type vehicle according to claim 5, characterized in that the shape of said slope (M) is specified.
  7.  モード選択の入力を受け付けるモード選択入力部(44)を備え、
     前記出力制御部(68)は、
     前記パワーユニット(12)の出力制御を、前記モード選択入力部(44)に入力されたモードに応じて変更する
     ことを特徴とする請求項1から6のいずれかに記載の鞍乗り型車両。
    A mode selection input unit (44) for accepting input of mode selection,
    The output control section (68)
    The straddle-type vehicle according to any one of claims 1 to 6, wherein the output control of the power unit (12) is changed according to the mode input to the mode selection input section (44).
  8.  前記出力制御部(68)は、
     第1モードが前記モード選択入力部(44)に入力されている場合、前記車体が前記斜面(M)を通過したときの前記車体の浮き上がりを抑えるように前記パワーユニット(12)の出力を制御する
     ことを特徴とする請求項7に記載の鞍乗り型車両。
    The output control section (68)
    When the first mode is input to the mode selection input section (44), the output of the power unit (12) is controlled so as to suppress the lifting of the vehicle body when the vehicle body passes the slope (M). The straddle-type vehicle according to claim 7, characterized in that:
  9.  前記車体が前記斜面(M)を通過する間に走行する走行路に係る走行路情報を検出する走行路情報検出手段(174)と、
     前記車体の周辺の環境に係る環境情報を検出する環境情報検出手段(149)と、
     前記走行路情報、及び前記環境情報に基づいて、前記斜面の通過によるジャンプの困難性を判定する困難性判定部(176)と、
     前記車体に設けられた表示部(182)、又はライダーが装着する装備に、前記困難性判定部(176)によって判定された困難性を出力する出力部(180)と、
     を備えることを特徴とする請求項1から8のいずれかに記載の鞍乗り型車両。
    a travel path information detection means (174) for detecting travel path information relating to a travel path on which the vehicle body travels while passing through the slope (M);
    environment information detection means (149) for detecting environment information relating to the environment around the vehicle body;
    a difficulty determination unit (176) that determines the difficulty of a jump due to passing through the slope based on the travel path information and the environment information;
    an output unit (180) that outputs the difficulty determined by the difficulty determining unit (176) to a display unit (182) provided on the vehicle body or equipment worn by a rider;
    A straddle-type vehicle according to any one of claims 1 to 8, characterized by comprising:
PCT/JP2021/035872 2021-09-29 2021-09-29 Saddle-type vehicle WO2023053270A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035872 WO2023053270A1 (en) 2021-09-29 2021-09-29 Saddle-type vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035872 WO2023053270A1 (en) 2021-09-29 2021-09-29 Saddle-type vehicle

Publications (1)

Publication Number Publication Date
WO2023053270A1 true WO2023053270A1 (en) 2023-04-06

Family

ID=85781526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035872 WO2023053270A1 (en) 2021-09-29 2021-09-29 Saddle-type vehicle

Country Status (1)

Country Link
WO (1) WO2023053270A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105777A (en) * 1997-10-02 1999-04-20 Honda Motor Co Ltd Electric motor-assisted bicycle
WO2013051195A1 (en) * 2011-10-06 2013-04-11 ヤマハ発動機株式会社 Electric vehicle
KR20200032892A (en) * 2018-09-19 2020-03-27 주식회사 보루제 Electric bikes with dual motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105777A (en) * 1997-10-02 1999-04-20 Honda Motor Co Ltd Electric motor-assisted bicycle
WO2013051195A1 (en) * 2011-10-06 2013-04-11 ヤマハ発動機株式会社 Electric vehicle
KR20200032892A (en) * 2018-09-19 2020-03-27 주식회사 보루제 Electric bikes with dual motor

Similar Documents

Publication Publication Date Title
JP6991434B2 (en) Saddle-type vehicle control device
JP7285673B2 (en) Attitude control device for saddle type vehicle
JP7170125B2 (en) Driving support device for saddle type vehicle
JP7106752B2 (en) Driving support device for saddle type vehicle
US11312367B2 (en) Controller and control method
JP7253422B2 (en) Automatic control device for saddle type vehicle
WO2021079997A1 (en) Leaning vehicle data output apparatus
JP7106751B2 (en) Driving support device for saddle type vehicle
US20220203979A1 (en) Controller and control method
WO2023053270A1 (en) Saddle-type vehicle
JP7170149B2 (en) Steering assist device for saddle type vehicle
JP2020203654A (en) Control apparatus and control method
WO2020016675A1 (en) Controller and control method
JP7262603B2 (en) Steering assist device for saddle type vehicle
JP7123241B2 (en) Driving support device for saddle type vehicle
WO2021065671A1 (en) Saddle-type vehicle
JP7134304B1 (en) Driving support control device
JP7413572B2 (en) vehicle
JP7197551B2 (en) vehicle
JP6623246B2 (en) Saddle riding vehicle
JP6694117B2 (en) Motorcycle
JP2023175515A (en) Control device and control method
WO2024003648A1 (en) Controller and control method
JP2022100679A (en) vehicle
JP2022077041A (en) Image data generation device, lean vehicle and generation method of image data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959316

Country of ref document: EP

Kind code of ref document: A1