WO2023053235A1 - Patch antenna device - Google Patents

Patch antenna device Download PDF

Info

Publication number
WO2023053235A1
WO2023053235A1 PCT/JP2021/035736 JP2021035736W WO2023053235A1 WO 2023053235 A1 WO2023053235 A1 WO 2023053235A1 JP 2021035736 W JP2021035736 W JP 2021035736W WO 2023053235 A1 WO2023053235 A1 WO 2023053235A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
waveguide
pair
ridge
ridges
Prior art date
Application number
PCT/JP2021/035736
Other languages
French (fr)
Japanese (ja)
Inventor
成洋 中本
将一 谷口
徹 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/035736 priority Critical patent/WO2023053235A1/en
Priority to JP2023546203A priority patent/JP7408024B2/en
Priority to PCT/JP2022/035560 priority patent/WO2023054216A1/en
Publication of WO2023053235A1 publication Critical patent/WO2023053235A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/103Hollow-waveguide/coaxial-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the present disclosure relates to a patch antenna device that propagates a first radio wave and a second radio wave orthogonal to the first radio wave.
  • a quad-ridge horn antenna is known as a cross-polarized antenna having broadband characteristics
  • Patent Document 1 discloses a quad-ridge horn antenna.
  • the quad ridge horn antenna shown in Patent Document 1 includes a double ridge waveguide portion in which a pair of first ridges are arranged to face each other in which a first radio wave propagates in the pipe, and a first radio wave propagates in the pipe. Then, a second radio wave propagates in the pipe, and power is supplied between the quad-ridge waveguide portion in which a pair of second ridges are arranged to face each other and a pair of third ridges are arranged to face each other, and the first ridges. and a second power feeding probe that feeds between the third ridges.
  • the quad-ridge horn antenna disclosed in Patent Document 1 requires high-precision manufacturing in order to obtain an ideal structure free from dimensional errors with respect to the quad-ridge waveguide portion of the second feeding probe. Under such circumstances, there is a demand for a quad-ridge horn antenna that has some tolerance for dimensional errors with respect to the quad-ridge waveguide portion of the second feeding probe.
  • the present disclosure has been made in view of the above points, and an object of the present disclosure is to obtain a patch antenna device having tolerance for dimensional errors associated with manufacturing errors for the quad-ridge waveguide portion in the second signal conductor. do.
  • a patch antenna device has a pair of first ridges arranged to face each other, propagates a first radio wave that propagates in a first propagation mode, and propagates a second radio wave that is different from the first propagation mode.
  • a double ridge waveguide section in which the cutoff frequency in the second propagation mode of the second radio wave propagating in the propagation mode is set to a frequency higher than the frequency of the second radio wave;
  • a double ridge waveguide portion having a first signal conductor for inputting a high frequency signal to be converted into radio waves to the double ridge waveguide portion, and the other end communicating with one end portion of the double ridge waveguide portion, respectively.
  • a quad-ridge waveguide portion that propagates the first radio wave and the second radio wave; and a high-frequency signal converted into the second radio wave by the quad-ridge waveguide portion is input to the quad-ridge waveguide portion.
  • a quad-ridge waveguide portion having a second signal conductor, and a patch-conductor holding portion having a patch conductor disposed at one end of the quad-ridge waveguide portion, the pair of first ridges and the pair of The pair of continuum including the second ridge has a notch portion at the boundary between the double ridge waveguide portion and the quad ridge waveguide portion to widen the gap between the end faces of the pair of continuum facing each other.
  • the second signal conductor since the second signal conductor has a design margin of dimensional error with respect to the quad-ridge waveguide portion, it is possible to obtain a patch antenna device that is easy to manufacture.
  • FIG. 1 is a partially schematic perspective view showing a patch antenna device according to Embodiment 1.
  • FIG. 1 is an exploded perspective view showing a double ridge waveguide according to Embodiment 1;
  • FIG. 4 is an exploded perspective view showing a quad-ridge waveguide and a patch conductor holding portion according to Embodiment 1;
  • FIG. 2 is a front view showing the configuration of the patch antenna device (excluding the first dielectric substrate) according to Embodiment 1, viewed from the opening;
  • FIG. FIG. 5 is a cross-sectional view taken along line AA of FIG. 4;
  • FIG. 5 is a cross-sectional view taken along the line BB of FIG. 4;
  • FIG. 6 is a diagram showing an electric field distribution of higher-order modes in the cross section shown in FIG. 5;
  • FIG. 5 is exploded perspective view showing a double ridge waveguide according to Embodiment 1
  • FIG. 4 is an exploded perspective view showing a quad-ridge waveguide and a patch conductor holding portion
  • FIG. 6 is a diagram showing an electric field distribution of a higher-order mode in the cross section shown in FIG. 5 when the second feeding probe is displaced in the -y direction in the figure;
  • FIG. 8 is a diagram showing an electric field distribution in a higher-order mode corresponding to FIG. 7 when there is no notch;
  • FIG. 9 is a diagram showing an electric field distribution in a higher-order mode corresponding to FIG. 8 when there is no notch;
  • 6 is a cross-sectional view corresponding to FIG. 5 showing a second example of a pair of continuous bodies including a pair of first ridges and a pair of second ridges in the patch antenna device according to Embodiment 1;
  • FIG. 6 is a cross-sectional view corresponding to FIG.
  • FIG. 4 is a perspective view of a first dielectric substrate showing a second example of patch conductors
  • FIG. 11 is a perspective view of the first dielectric substrate showing a third example of patch conductors
  • FIG. 11 is a perspective view of a first dielectric substrate showing a fourth example of patch conductors
  • FIG. 11 is a perspective view of a first dielectric substrate showing a fifth example of patch conductors
  • FIG. 11 is a perspective view of a first dielectric substrate showing a sixth example of patch conductors;
  • FIG. 4 is a perspective view of a first dielectric substrate showing a second example of patch conductors
  • FIG. 11 is a perspective view of the first dielectric substrate showing a third example of patch conductors
  • FIG. 11 is a perspective view of a first dielectric substrate showing a fourth example of patch conductors
  • FIG. 11 is a perspective view of a first dielectric substrate showing a fifth example of patch conductors
  • FIG. 11 is a perspective view of a first
  • FIG. 11 is a perspective view of a first dielectric substrate showing a seventh example of patch conductors;
  • FIG. 11 is a perspective view of a first dielectric substrate showing an eighth example of patch conductors;
  • FIG. 20 is a perspective view of a first dielectric substrate showing a ninth example of patch conductors;
  • FIG. 11 is an exploded perspective view showing a second example of the patch conductor holding portion;
  • FIG. 11 is an exploded perspective view showing a third example of a patch conductor holding portion;
  • FIG. 11 is an exploded perspective view showing a fourth example of a patch conductor holding portion;
  • FIG. 11 is an exploded perspective view showing a fifth example of a patch conductor holding portion;
  • FIG. 11 is an exploded perspective view showing a sixth example of a patch conductor holding portion;
  • FIG. 11 is a perspective view showing a patch antenna apparatus according to Embodiment 2, with a part thereof also shown;
  • FIG. 11 is an exploded perspective view showing a double ridge waveguide according to Embodiment 2;
  • FIG. 11 is an exploded perspective view showing a quad-ridge waveguide and a patch conductor holding portion according to Embodiment 2;
  • FIG. 10 is a front view showing the configuration of the patch antenna device (excluding the first dielectric substrate) according to the second embodiment, viewed from the opening;
  • FIG. 30 is a cross-sectional view taken along the line AA of FIG. 29;
  • FIG. 30 is a cross-sectional view taken along the line BB of FIG. 29;
  • FIG. 31 is a diagram showing the electric field distribution of a higher-order mode in the cross section shown in FIG.
  • FIG. 31 is a diagram showing an electric field distribution of a higher-order mode in the cross section shown in FIG. 30 when the second feeding probe is displaced in the ⁇ y direction in the figure
  • FIG. 33 is a diagram showing an electric field distribution of a higher-order mode corresponding to FIG. 32 when there is no notch
  • FIG. 34 is a diagram showing an electric field distribution in a higher-order mode corresponding to FIG. 33 when there is no notch
  • 31 is a cross-sectional view corresponding to FIG. 30 showing a second example of a pair of continuous bodies including a pair of first ridges and a pair of second ridges in the patch antenna device according to Embodiment 2
  • FIG. . 305 is a cross-sectional view corresponding to FIG.
  • FIG. 11 is a partially schematic perspective view showing a patch antenna device according to Embodiment 3;
  • FIG. 11 is an exploded perspective view showing a double ridge waveguide according to Embodiment 3;
  • FIG. 11 is an exploded perspective view showing a quad-ridge waveguide and a patch conductor holding portion according to Embodiment 3;
  • 41 is a diagram showing the electric field distribution of higher-order modes in a plane parallel to the yz plane in the drawing shown in FIG. 40 and passing through the center of the tube axis;
  • FIG. 11 is a partially schematic perspective view showing a patch antenna device according to Embodiment 3;
  • FIG. 11 is an exploded perspective view showing a double ridge waveguide according to Embodiment 3;
  • FIG. 11 is an exploded perspective view showing a quad-ridge waveguide and a patch conductor holding portion according to Embodiment 3;
  • 41 is a diagram showing the electric field distribution of higher-order modes in a plane parallel to the yz plane in the drawing shown
  • FIG. 41 is a diagram showing an electric field distribution of a higher-order mode on a plane parallel to the yz plane shown in FIG. 40 and passing through the center of the tube axis when the second feeder line is displaced in the ⁇ y direction in the figure.
  • FIG. 41 is a diagram showing an electric field distribution of a higher-order mode on a plane parallel to the yz plane shown in FIG. 40 and passing through the center of the tube axis when the second feeder line is displaced in the ⁇ y direction in the figure.
  • Embodiment 1 A patch antenna apparatus according to Embodiment 1 will be described with reference to FIGS. 1 to 25.
  • FIG. Note that the patch antenna device according to Embodiment 1 functions as one patch antenna device that propagates a first radio wave and a second radio wave whose propagation modes are orthogonal to each other. It can also be applied as an element antenna in a patch array antenna device in which a plurality of element antennas are arranged in parallel in a direction perpendicular to the propagation direction.
  • a patch antenna device will be described, but an element antenna has the same configuration, and a patch array antenna device will also be generically described as a patch antenna device. Also, mainly, the case of operating as a transmitting antenna will be described.
  • the patch antenna apparatus includes a double ridge waveguide 1, a quad ridge waveguide 2, and a patch conductor holding portion 3, as shown in FIG.
  • the double ridge waveguide 1, the quad ridge waveguide 2, and the patch conductor holding portion 3 are arranged on a straight line along the central axis, as can be understood from FIGS. 4 to 6 as well. That is, the tube axes CA of the double-ridge waveguide portion 1, the quad-ridge waveguide portion 2, and the patch conductor holding portion 3 are coaxial.
  • the double-ridge waveguide section 1 includes a double-ridge waveguide section 11, a first signal conductor 12, and a short-circuit waveguide section 13, as shown in FIG.
  • FIG. 2 shows an exploded perspective view for each function.
  • the double-ridge waveguide 1 converts a high-frequency signal (high-frequency current) input to a first feeding probe, which is a first signal conductor 12, into a first radio wave, and converts the first radio wave into a first propagation mode.
  • a first feeding probe which is a first signal conductor 12
  • the cutoff frequency in the second propagation mode of the second radio wave propagating in the second propagation mode which is different from the first propagation mode and orthogonal in this example, is higher than the frequency of the second radio wave. set to a high frequency.
  • the first signal conductor 12 will be described as the first feeding probe 12 .
  • the double-ridge waveguide portion 11 includes a pair of first ridges 112a and 112b arranged to face the first waveguide portion 111, as shown in FIG.
  • the first waveguide section 111 is a rectangular waveguide having a square cross section and opening at both ends, and has four first sidewalls 111a to 111d clockwise.
  • the cross-sectional shape of the rectangular waveguide is not limited to a square, and may be a quadrilateral such as a rectangle.
  • a circular waveguide having a circular cross section may be used instead of the rectangular waveguide.
  • the pair of first protrusions 112a and 112b are provided on the inner wall surfaces of the first side wall 111a and the third side wall 111c, which are the side walls facing each other of the first waveguide section 111.
  • one first protrusion 112b extends from one end to the other end of the first waveguide portion 111 along the tube axis CA in the center in the vertical direction on the inner wall surface of the third side wall 111c, It is provided upright toward the first side wall 111a.
  • the other first protrusion 112a extends from one end to the other end of the first waveguide portion 111 along the tube axis CA in the center in the vertical direction on the inner wall surface of the first side wall 111a, It is provided upright toward the third side wall 111c.
  • the vertical direction is represented by the x-axis, the horizontal direction by the y-axis, and the tube axial direction by the z-axis.
  • the tube axis CA is the central axis of the first waveguide section 111 .
  • Each of the first protrusions 112a and 112b is provided with first notches a11 and b11 at one end of the side where the opening of one end of the first waveguide portion 111 is located to widen the gap between the end faces. It is That is, each of the first protrusions 112a and 112b has a height L1 from the other end where the opening of the other end of the first waveguide portion 111 is located, and a height L1 from the height L1. It is composed of an upright portion having a height L2 that is lower than the height L1 to the one end where the opening of one waveguide portion 111 is located.
  • the gap G2 between the standing portion of the first protrusion 112a having a height L2 and the standing portion having a height L2 of the first protrusion 112b is the same as the standing portion having a height L1 of the first protrusion 112a. It is wider than the gap G1 between the first protrusion 112b and the standing portion having the height L1.
  • the first cutout portion a11 is formed in the standing portion of the first protrusion 112a having the height L2
  • the first cutout portion b11 is formed in the standing portion of the first protrusion 112b having the height L2. It will be established.
  • the first protrusions 112a and 112b will be described as first ridges 112a and 112b.
  • the double-ridge waveguide portion 11 propagates a first radio wave in a first propagation mode, which is an electromagnetic field distribution in which the direction of the electric field is mainly along the y-axis in the drawing due to the gap between the first ridge portions 112a and 112b. propagates along the tube axis CA.
  • a first propagation mode which is an electromagnetic field distribution in which the direction of the electric field is mainly along the y-axis in the drawing due to the gap between the first ridge portions 112a and 112b. propagates along the tube axis CA.
  • the double ridge waveguide portion 11 extends along the vertical and horizontal directions orthogonal to the direction of the tube axis CA of the first waveguide portion 111 and the first ridge portions 112a and 112b, the x-axis and the y-axis shown in FIG.
  • the cutoff frequency in the second propagation mode which is the form of the electromagnetic field distribution of the second radio wave that propagates, that is, the second 2 is set to a frequency higher than the frequency of the second radio wave.
  • the double ridge waveguide portion 11 is provided with a first probe insertion hole 113 penetrating from the outer wall surface of the third side wall 111c to the side surface of the erected portion having the height L1 in one first ridge portion 112b.
  • the first probe insertion hole 113 is located on the other end side of the double ridge waveguide portion 11 and is a through hole penetrating in the horizontal direction, that is, the y-axis direction shown in FIG.
  • the first power supply probe 12 is a rod-shaped conductor and is inserted into the first probe insertion hole 113 along the axis of the first probe insertion hole 113 .
  • One end portion 12a of the first power supply probe 12 protrudes from one open end of the first probe insertion hole 113, that is, protrudes from the side surface of the standing portion having a height L1 in one first ridge portion 112b, It is arranged between the first ridge portion 112a and the first ridge portion 112b.
  • the axial center of the first feeding probe 12 is arranged so as to be positioned on a cross section including the tube axis CA of the double-ridge waveguide portion 11 parallel to the yz plane shown in FIG. Moreover, as shown in FIGS. 4 and 5, the end surface of the one end portion 12a of the first power supply probe 12 is in contact with the side surface of the other first ridge portion 112a.
  • the other end 12b of the first feeding probe 12 is, as shown in FIG. there is
  • the first feeding circuit 4 outputs a high frequency signal (high frequency current) for the first radio wave to the first feeding probe 12 via the transmission line 5 .
  • the transmission line 5 is a coaxial line having a tubular outer conductor, an inner conductor provided along the axis of the outer conductor, and an insulator filled between the outer conductor and the inner conductor.
  • the first waveguide part 111 when the first waveguide part 111 is a circular waveguide, the first waveguide part 111 divides the circumference of the side wall clockwise into four parts. It has a first virtual line to a fourth virtual line parallel to CA, and the pair of first ridges 112a and 112b are virtual lines facing each other on the first virtual line and the third virtual line, It is provided similarly to the rectangular waveguide described above.
  • the short-circuit waveguide portion 13 in the double-ridge waveguide portion 1 includes a second waveguide portion 131 and a short-circuit conductor portion 132 .
  • the second waveguide section 131 is a rectangular waveguide having a square cross section, one end of which communicates with the other end of the first waveguide section 111 , and both ends of which are open.
  • the second waveguide part 131 is a quadrilateral rectangular waveguide if the first waveguide part 111 is a quadrilateral rectangular waveguide like the first waveguide part 111. , if it is a circular waveguide, it is a circular waveguide.
  • the tube axis CA of the second waveguide section 131 is coaxial with the tube axis CA of the first waveguide section 111 .
  • the short-circuit conductor portion 132 is a plate-shaped conductor that closes the opening at the other end of the second waveguide portion 131 and electrically short-circuits the second waveguide portion 131 .
  • the outer shape of the short-circuit conductor portion 132 is the same as the outer shape of the second waveguide portion 131 .
  • the quad-ridge waveguide section 2 includes a quad-ridge waveguide section 21 and a second signal conductor 22, as shown in FIG.
  • the quad-ridge waveguide portion 2 propagates the first radio wave propagated from the double-ridge waveguide portion 1, and the high-frequency signal (high-frequency current) input to the second power supply probe, which is the second signal conductor 22. is converted into a second radio wave, and the second radio wave is propagated.
  • the frequency of the high frequency signal input to the second power supply probe 22 is different from the frequency of the high frequency signal input to the first power supply probe 12 .
  • the second signal conductor 22 will be described as the second feeding probe 22 .
  • the second propagation mode which indicates the form of the electromagnetic field distribution of the second radio wave propagating through the portion 2, has an orthogonal relationship.
  • the quad-ridge waveguide portion 21 includes a third waveguide portion 211 and a pair of second waveguide portions 211 and 212a, 112b and a pair of second waveguide portions 212a and 112b, respectively, arranged to face each other continuously.
  • ridges 212a and 212b, and a pair of third ridges 213a and 213b disposed facing each other between the pair of second ridges 212a and 212b.
  • the third waveguide section 211 is a rectangular waveguide having a square cross section and opening at both ends, the other end of which communicates with one end of the first waveguide section 111. It has four first side walls 211a to 4th side walls 211d corresponding to the first side walls 111a to 4th side walls 111d.
  • the third waveguide section 211 is a quadrilateral rectangular waveguide if the first waveguide section 111 is a quadrilateral rectangular waveguide, similar to the first waveguide section 111. , if it is a circular waveguide, it is a circular waveguide.
  • the tube axis CA of the third waveguide section 211 is coaxial with the tube axis CA of the first waveguide section 111 .
  • the pair of second ridges 212a and 212b are formed on the inner wall surfaces of the first side wall 211a and the third side wall 211c, which are the side walls of the third waveguide section 211 facing each other. 211 on a line perpendicular to the tube axis CA, that is, on a line (longitudinal direction) along the x-axis shown in FIG. 3 on a line along the z-axis shown in FIG. 3 and standing inward from the inner wall surface with a gap between the end faces in the direction (horizontal direction) along the y-axis shown in FIG.
  • the pair of second protrusions 212a and 212b and the pair of first protrusions 112a and 112b form a pair of continuous bodies.
  • One second protrusion 212b extends from one end to the other end of the third waveguide portion 211 along the tube axis CA in the center in the vertical direction on the inner wall surface of the third side wall 211c. is provided upright toward the side wall 211a of the .
  • the other second protrusion 212a extends from one end to the other end of the third waveguide portion 211 along the tube axis CA in the center in the vertical direction on the inner wall surface of the first side wall 211a, It is provided upright toward the third side wall 211c.
  • the vertical direction is shown as the x-axis, the horizontal direction as the y-axis, and the tube axial direction as the z-axis.
  • a tube axis CA is the central axis of the third waveguide section 211 .
  • Each of the second protrusions 212a and 212b has second cutouts a12 and b12 that widen the gap between the end faces at the other end of the side where the opening of the other end of the third waveguide portion 211 is located. is provided. That is, each of the second protrusions 212a and 212b has a standing portion with a height L1 from one end where the opening of the one end of the third waveguide portion 211 is located, and a third standing portion from the standing portion with a height L1. It is composed of an upright portion having a height L2 lower than the height L1 to one end where the opening of the other end of the waveguide portion 211 is located.
  • the gap G2 between the upright portion of the second ridge 212a with the height L2 and the upright portion of the second ridge 212b with the height L2 is the same as the upright portion with the height L1 of the second ridge 212a. It is wider than the gap G1 between the second protrusion 212b and the standing portion having the height L1.
  • the second cutout portion a12 is formed in the raised portion of the second protrusion 212a with the height L2
  • the second cutout portion b12 is formed in the raised portion of the second protrusion 212b with the height L2. It will be established.
  • one continuum of the pair of continuities constituted by the first ridge 112a and the second ridge 212a is located at the boundary between the double ridge waveguide section 11 and the quad ridge waveguide section 21.
  • a notch portion is provided by a first notch portion a11 and a second notch portion a12 that are continuous.
  • the other continuum of the pair of continuities constituted by the first ridge 112b and the second ridge 212b is located at the boundary between the double ridge waveguide section 11 and the quad ridge waveguide section 21.
  • a notch portion is provided by a first notch portion b11 and a second notch portion b12 that are continuous.
  • the pair of continuities constituted by the pair of first ridges 112a and 112b and the pair of second ridges 212a and 212b are the double ridge waveguide section 11 and the quad ridge waveguide section 21.
  • a notch for widening the gap between the end surfaces of the pair of continuum bodies facing each other.
  • the second ridges 212a and 212b will be described as second ridges 212a and 212b.
  • the second ridge portions 212a and 212b form a continuum with the first ridge portions 112a and 112b, respectively. propagates along the tube axis CA in the first propagation mode, which is an electromagnetic field distribution in which the direction of the electric field is mainly along the y-axis in the figure due to the gap between the second ridges 212a and 212b.
  • the pair of third ridges 213a and 213b are the side walls 211a and 211c on which the pair of second ridges 212a and 212b are positioned.
  • On a line along the tube axis CA of the third waveguide part 211 that is, on a line along the illustrated z-axis of FIG. and is provided so as to stand inwardly from the inner wall surface.
  • one third protrusion 213a extends from one end to the other end of the third waveguide portion 211 along the tube axis CA in the center in the lateral direction on the inner wall surface of the second side wall 211b, It is provided upright toward the fourth side wall 211d.
  • the other third protrusion 213b extends from one end to the other end of the third waveguide portion 211 along the tube axis CA at the center in the lateral direction of the tube on the inner wall surface of the fourth side wall 211d. , are provided upright toward the second side wall 211b.
  • the plane containing the pair of third ridges 213a and 213b is orthogonal to the plane containing the pair of second ridges 212a and 212b.
  • Each of the third protrusions 213a and 213b has the same height L3 from the other end to the one end of the third waveguide portion 211, and the gap between the third protrusions 213a and 213b is the entire is the same gap G3 through.
  • the pair of third ridges 213a, 213b is arranged between the pair of second ridges 212a, 212b, that is, arranged perpendicular to the pair of second ridges 212a, 212b.
  • the third protrusions 213a and 213b will be described as third ridges 213a and 213b.
  • the quad-ridge waveguide portion 21 propagates the second radio waves in the second propagation mode, which is an electromagnetic field distribution in which the direction of the electric field is mainly along the x-axis in the figure due to the gap between the third ridge portions 213a and 213b. propagates along the tube axis CA.
  • the quad-ridge waveguide portion 21 is provided with a second probe insertion hole 214 penetrating from the outer wall surface of the second side wall 211b to the side surface of one third ridge portion 213a.
  • the second probe insertion hole 214 is located on the other end side of the quad-ridge waveguide portion 21 and is a through hole penetrating in the vertical direction, ie, the x-axis direction shown in FIG.
  • the second probe insertion hole 214 is formed by a second notch portion a12 in the second ridge portion 212a and a second notch portion b12 in the second ridge portion 212b. located between In short, the second probe insertion hole 214 corresponds to the first notch a11 and the second notch in a pair of continuous bodies composed of the first ridges 112a, 112b and the second ridges 212a, 212b. It is positioned between the cutout portion formed by the cutout portion a12 and the cutout portions formed by the first cutout portion b11 and the second cutout portion b12.
  • the second power supply probe 22 is a rod-shaped conductor and is inserted into the second probe insertion hole 214 along the axis of the second probe insertion hole 214 .
  • the second feeding probe 22 is positioned on the other end side of the quad-ridge waveguide section 21 .
  • the second feeding probe 22 is arranged on the other end side of the quad-ridge waveguide section 21 located at the boundary between the quad-ridge waveguide section 21 and the double-ridge waveguide section 11 .
  • One end portion 22a of the second power supply probe 22 protrudes from one open end of the second probe insertion hole 214, that is, protrudes from the side surface of one third ridge portion 213a. 3 are arranged between the ridge portions 213b.
  • the axis of the second feeding probe 22 is arranged in a longitudinal section including the tube axis CA of the quad-ridge waveguide section 21 parallel to the xz plane shown in FIG. 4 and 6, the end surface of the one end portion 22a of the second feeding probe 22 is in contact with the side surface of the other third ridge portion 213b.
  • the second feeding probe 22 has a second notch portion a12 in the second ridge 212a and a second notch portion b12 in the second ridge 212b.
  • the axis of the second feeding probe 22 is perpendicular to the axis of the first feeding probe 12 as shown in FIG. 4 in the projected longitudinal section, that is, the xy plane shown in FIGS. do.
  • the other end 22b of the second feeding probe 22 is electrically connected via a transmission line 7 to the second feeding circuit 6 provided outside the quad-ridge waveguide section 21, as shown in FIG. .
  • the second feeding circuit 6 outputs a high frequency signal (high frequency current) for the second radio wave to the second feeding probe 22 via the transmission line 7 .
  • the transmission line 7 is a coaxial line having a tubular outer conductor, an inner conductor provided along the axis of the outer conductor, and an insulator filled between the outer conductor and the inner conductor.
  • the third waveguide portion 211 when the third waveguide portion 211 is a circular waveguide, the third waveguide portion 211 extends from the first virtual line to the fourth virtual line of the first waveguide portion 111. Correspondingly, it has first to fourth virtual lines parallel to the tube axis CA of the third waveguide section 211 that divides the circumference of the side wall clockwise into four, and has a pair of second ridges. 212a and 212b are on first and third imaginary lines that are imaginary lines facing each other, and a pair of third protrusions 213a and 213b are on second and fourth imaginary lines that are imaginary lines facing each other. , respectively, in the same manner as the rectangular waveguides described above.
  • the patch conductor holding portion 3 functions as a radio wave radiating portion that radiates a first radio wave and a second radio wave having main polarization directions orthogonal to each other to the external space. Therefore, hereinafter, the patch conductor holding portion 3 will be described as the radio wave radiating portion 3 .
  • the radio wave radiating section 3 is arranged at one end of the quad-ridge waveguide section 21, and includes a conductor flat plate 31, a spacer 32, and a first antenna having a patch conductor 332 on its inner surface.
  • a dielectric substrate 33 is provided.
  • the conductor flat plate 31 has a back surface provided at one end of the quadridge waveguide portion 21, has an opening 311 communicating with an opening located at one end of the quadridge waveguide portion 21, and has an outer shape of a quadridge waveguide. It is a square plate-shaped conductor larger than the external shape of the third waveguide portion 211 in the portion 21 .
  • the opening 311 has the same shape as the opening located at one end of the quad-ridge waveguide section 21 .
  • the center of the conductor flat plate 31 is on the extension line of the tube axis CA of the third waveguide section 211 .
  • the conductor flat plate 31 has a frame portion 312 surrounding the opening 311 and four projecting pieces 313a, 313b, 314a, and 314b projecting from the inner sides of the frame portion 312 into the opening 311 respectively.
  • the four projecting pieces 313a, 313b, 314a, 314b are provided corresponding to the pair of second ridges 212a, 212b and the pair of third ridges 213a, 213b in the quad ridge waveguide section 21, respectively.
  • the rear surfaces of the respective ridges 212a, 212b, 213a, and 213b are joined to the side surfaces located at one ends of the corresponding ridges 212a, 212b, 213a, and 213b in conformity with the shapes of the side surfaces located at one ends of the corresponding ridges 212a, 212b, 213a, and 213b.
  • the frame portion 312 is joined to one end surface of the third waveguide portion 211
  • the projecting piece 313a is connected to the side surface located at one end of the ridge portion 212a
  • the projecting piece 313b is connected to the side surface located at one end of the ridge portion 212b
  • the projecting piece 314a is joined to the side surface located at one end of the ridge portion 213a
  • the projecting piece 314b is joined to the side surface located at one end of the ridge portion 213b.
  • the opening 311 includes an opening 311a separated by a projecting piece 313a and a projecting piece 314a, an opening 311b separated by a projecting piece 314a and a projecting piece 313b, an opening 311c separated by a projecting piece 313b and a projecting piece 314b, and a projection. It is composed of an opening 311d separated by a piece 314b and a projecting piece 313a.
  • the opening 311a is an opening separated by the second ridge portion 212a and the third ridge portion 213a
  • the opening 311b is an opening separated by the third ridge portion 213a and the second ridge portion 212b
  • the opening 311c is an opening separated by the third ridge portion 213a and the second ridge portion 212b.
  • the opening separated by the second ridge 212b and the third ridge 213b, and the opening 311d communicated with the opening separated by the third ridge 213b and the second ridge 212a.
  • the gap between the protruding piece 313a and the protruding piece 313b is the same as the gap G1 between the standing portion of the second ridge portion 212a with a height L1 and the standing portion of the second ridge portion 212b with a height L1,
  • the gap between the projecting piece 314a and the projecting piece 314b is the same as the gap G3 between the third ridge portion 213a and the third ridge portion 213b.
  • the external shape of the conductor plate 31 is preferably a quadrilateral if the third waveguide portion 211 is a quadrilateral, and a circular shape if the third waveguide portion 211 is circular, like the external shape of the third waveguide portion 211 .
  • four projecting pieces 313a, 313b, 314a, and 314b are provided corresponding to the second ridges 212a, 212b and the third ridges 213a, 213b in the quad-ridge waveguide section 21, respectively.
  • the outer shape of the conductor flat plate 31 may be the same shape and size as the outer shape of the third waveguide section 211 .
  • the spacer 32 is a conductor cylinder having a square cross section and opening at both ends.
  • the outer shape of the spacer 32 is the same as the outer shape of the conductor flat plate 31 , and the tube axis CA of the spacer 32 is coaxial with the tube axis CA of the third waveguide section 211 .
  • the outer shape of the spacer 32 is quadrilateral if the third waveguide portion 211 is quadrilateral, and circular if the third waveguide portion 211 is circular.
  • the first dielectric substrate 33 comprises a first dielectric 331 and a patch conductor 332, which is a strip conductor having a conductive foil adhered to the center of the inner surface of one surface of the first dielectric 331 in this example. It is a printed circuit board with The first dielectric substrate 33 is attached to the conductor flat plate 31 parallel to the conductor flat plate 31 with a constant space therebetween via a spacer 32 .
  • the outer shape of the first dielectric substrate 33 is the same as the outer shape of the spacer 32, and one end of the spacer 32 is joined to the inner surface.
  • the center of the first dielectric substrate 33 is on the extension line of the tube axis CA of the spacer 32 .
  • the outline of the patch conductor 332 is a square that is the same as or larger than the outline of the opening 311 of the spacer 32 .
  • the patch conductor 332 may be formed on one side of the first dielectric 331 by vapor deposition.
  • the patch conductor 332 may be formed on the outer surface, which is one surface of the first dielectric 331 , and the first dielectric substrate 33 is arranged so that the patch conductor 332 is formed on the inner surface or the outer surface of the first dielectric 331 . provided on at least one side of the When the patch conductors 332 are provided on both the inner surface and the outer surface of the first dielectric 331 , the patch conductors provided on the inner surface and the patch conductors provided on the outer surface of the first dielectric 331 are electrically connected by through vias passing through the .
  • the double ridge waveguide 1 converts the input high frequency signal into a first radio wave having a frequency corresponding to the first power supply. Radio waves are propagated through the double ridge waveguide portion 11 in the first propagation mode by the pair of first ridge portions 112a and 112b.
  • the short-circuited waveguide portion 13 causes the first radio waves propagating in the double-ridged waveguide portion 11 to pass through one end of the double-ridged waveguide portion 11 located on the opposite side of the short-circuited waveguide portion 13 . It propagates to the aperture and is output to the quad-ridge waveguide section 2 .
  • the first radio waves output to the quad-ridge waveguide portion 2 are quad-ridge guided in a first propagation mode by a pair of second ridge portions 212a and 212b that are continuous with the pair of first ridge portions 112a and 112b. It propagates through the wave tube portion 21 to an opening at one end of the quadridge waveguide portion 21 and is output to the radio wave emitting portion 3 .
  • the first radio wave output to the radio wave radiating section 3 propagates through the flat conductor plate 31 and the spacer 32, excites the patch conductor 332, and is radiated to the external space of the patch antenna apparatus. Since the first radio wave propagating in the antenna device is propagated in the first propagation mode, the direction of the electric field is mainly along the y-axis shown in FIGS. 2 and 3 (horizontal direction). distribution, and the main polarized wave of the first radio wave radiated to the external space of the patch antenna device is the polarized wave component in the direction along the y-axis direction.
  • the quad-ridge waveguide 2 converts the input high-frequency signal into a second radio wave having a frequency corresponding to the second power supply. 2 are propagated through the quad-ridge waveguide portion 21 in the second propagation mode by the pair of third ridge portions 213a and 213b.
  • the cut-off frequency in the second propagation mode of the second radio waves is set to a frequency higher than the frequency of the second radio waves, so the second radio waves pass through the double-ridge waveguide. It does not propagate in the direction toward the wave tube portion 11 . Therefore, the second radio wave propagating in the quad-ridge waveguide portion 21 propagates to the opening at one end of the quad-ridge waveguide portion 21 in the second propagation mode and is output to the radio wave emitting portion 3 .
  • a part of the second radio wave has a higher-order mode radio wave whose frequency is a predetermined multiple of the frequency of the second radio wave.
  • the second radio wave output to the radio wave radiating section 3 propagates through the flat conductor plate 31 and the spacer 32, excites the patch conductor 332, and is radiated to the external space of the patch antenna apparatus. Since the second radio wave propagating in the antenna device is propagated in the second propagation mode, the direction of the electric field is mainly along the x-axis shown in FIGS. 2 and 3 (longitudinal direction). distribution, and the main polarized wave of the second radio wave radiated to the external space of the patch antenna apparatus is the polarized wave component in the direction along the x-axis direction.
  • the first radio wave and the second radio wave whose directions of main polarized waves are orthogonal to each other are radiated (emitted) from the radio wave radiating section 3, and an antenna device for common use of orthogonal polarized waves is obtained.
  • the radio waves generated in the quad-ridge waveguide section 21 due to the higher-order mode of the second radio waves will be described.
  • the radio waves of the higher-order mode of the second radio wave have a symmetrical distribution with respect to a longitudinal section parallel to the xz plane (longitudinal section) in FIG.
  • the axial center of the second feeding probe 22 is arranged so as to be ideally positioned on the longitudinal section including the tube axis CA of the quad-ridge waveguide section 21 without any dimensional error associated with the manufacturing error.
  • the radio waves generated in the quad-ridge waveguide portion 21 due to the higher-order mode of the second radio waves are, as shown in FIG. , the distance from the axial center of the second feeding probe 22 to the second ridge portion 212b is equal, and due to the symmetry of the electric field distribution, radio waves in higher modes radiated from the antenna device to the external space cancel each other, As a result, radio wave radiation due to higher-order modes is not observed in the front direction of the antenna device.
  • the second power supply probe 22 is a pair of continuous bodies composed of the first ridges 112a and 112b and the second ridges 212a and 212b. Since it is located between the notch part by a12 and the notch part by the first notch b11 and the second notch b12, the second feeding probe 22 and the second ridges 212a, 212b and Since the distance between the first ridges 112a and 112b is long, the amplitude of the radio wave due to the higher-order mode is short.
  • the radio wave due to the high-order mode is transmitted to the antenna device. Even if it is radiated to the external space from the antenna device, the radio wave having a polarization component in the direction along the y-axis shown in FIG. 8 in the front direction of the antenna device, that is, the Radiation can be kept small.
  • the first ridges 112a and 112b and the second ridges 212a and 212b do not have the first notches a11 and b11 and the second notches a12 and b12, respectively.
  • the axis of the second feeding probe 22 is ideally the quad-ridge waveguide 21.
  • 112b is short, and the amplitude of the radio wave due to the high-order mode is relatively large.
  • the quad-ridge waveguide portion 21 has a length in the direction of the tube axis CA of need to be longer.
  • the patch antenna device according to Embodiment 1 is different from the reference example in that the second radio wave propagating in the quad-ridge waveguide section 21 is transmitted in a higher-order mode. Even if the amplitude is short and there is a difference between the distance from the second feeding probe 22 to the second ridge 212a and the distance from the second feeding probe 22 to the second ridge 212b, the higher-order mode The difference in amplitude between the second ridge portion 212a side and the second ridge portion 212b side in the radio wave caused by the The length of the ridge waveguide portion 21 in the tube axis CA direction can be shortened.
  • the second feeding probe 22 since the second feeding probe 22 has a design margin of dimensional error with respect to the quad-ridge waveguide section 21, it is easy to manufacture, thin, and low cross-polarization characteristics can be maintained. , it is possible to obtain a cross-polarized patch antenna device.
  • the patch antenna apparatus according to Embodiment 1 operates according to the same principle as when operating as a transmitting antenna even when operating as a receiving antenna due to so-called "antenna reversibility". A description of the case of operation is omitted.
  • the patch antenna device has a pair of first ridges 112a and 112b arranged to face each other, and propagates the first radio waves propagating in the first propagation mode, a double-ridge waveguide section 11 in which the cutoff frequency in the second propagation mode of the second radio wave propagating in the second propagation mode different from the first propagation mode is set to a frequency higher than the frequency of the second radio wave; , a double ridge waveguide portion 1 having a first feeding probe 12 for transmitting a high frequency signal for a first radio wave, and the other end communicating with one end portion of the double ridge waveguide portion 11, each of which is a pair of A pair of second ridges 212a, 212b arranged continuously to face the first ridges 112a, 112b, and a pair of ridges 212a, 212b arranged between the pair of second ridges 212a, 212b and arranged to face each other.
  • a quad ridge waveguide portion 21 having third ridge portions 213a and 213b and propagating the first radio wave and the second radio wave, and a second feeding probe 22 transmitting the high frequency signal for the second radio wave.
  • a radio wave emitting portion 3 having a patch conductor 332 disposed at one end of the quad-ridge waveguide portion 21, and a pair of first ridge portions 112a and 112b and a pair of A pair of continuities including the second ridges 212 a and 212 b provide a gap between the end faces of the pair of continuities that face each other at the boundary between the double ridge waveguide section 11 and the quad ridge waveguide section 21 .
  • a widening cutout is provided.
  • the patch antenna apparatus has low cross-polarization characteristics even when the second feeding probe 22 is displaced from the quad-ridge waveguide section 21 due to dimensional errors associated with manufacturing errors. Further, the length of the quad-ridge waveguide portion 21 in the direction of the tube axis CA can be shortened as the quad-ridge waveguide portion 21, and as a result, a thin cross-polarized patch antenna device can be provided. Obtainable.
  • the notch portion in the pair of continuous bodies constituted by the pair of first ridge portions 112a and 112b and the pair of second ridge portions 212a and 212b is a pair of The first ridges 112a and 112b or one of the pair of second ridges 212a and 212b is aligned with the first cutouts a11 and b11 or the second ridges over the entire area in the direction along the tube axis CA. notches a12 and b12.
  • each of the pair of second ridges 212a and 212b has a height L2 lower than the height L1 over the entire area in the direction along the tube axis CA.
  • the cutout portions a11 and b11 of the pair of first ridge portions 112a and 112b are formed continuously with the upright portion having the height L2.
  • each of the pair of first ridges 112a and 112b is a raised portion having a height L2 lower than the height L1 over the entire area in the direction along the tube axis CA.
  • the cutout portions a12 and b12 of the pair of second ridge portions 212a and 212b are formed continuously with the standing portion having a height L2.
  • the notch portion in the pair of continuous bodies configured by the pair of first ridge portions 112a and 112b and the pair of second ridge portions 212a and 212b is at least the pair of second ridge portions 212a and 212b. It may be configured by the provided second notch portions a12 and b12.
  • the external shape of the patch conductor 332 provided on one surface of the first dielectric 331 is not limited to a square, and may be the external shapes shown in FIGS. 13 to 19 .
  • the external shape of the patch conductor 332 shown in FIG. 13 is rectangular, and may be quadrilateral.
  • the external shape of the patch conductor 332 shown in FIG. 14 is circular, and the external shape of the patch conductor 332 shown in FIG. 15 is elliptical.
  • the patch conductor 332 shown in FIG. 16 has a cross shape.
  • the external shape of the patch conductor 332 shown in FIG. 17 is a square a with a cross-shaped slot b in the center.
  • the shape of the slot b is not limited to the square a, but may be a quadrilateral a or a circle a, and the slot b is not limited to a cross.
  • the external shape of the patch conductor 332 shown in FIG. 18 is a shape in which rectangular cuts d are provided on four sides of a square c. It should be noted that a quadrilateral c or a circle c having a pair of notches d facing each other on the circumference may be used.
  • the external shape of the patch conductor 332 shown in FIG. 19 is a shape in which small squares f are provided at two opposing points on the outer periphery of the circle e, and protrusions f are provided at two opposing points of the circle e. It should be noted that a quadrilateral c or a circle c having a pair of protruding portions f provided facing each other around the circumference may be used.
  • a ground conductor 333 is provided on the outer peripheral portion of one surface of the first dielectric 331 .
  • the ground conductor 333 provided in the outer peripheral portion and the patch conductor 332 provided in the central portion are connected to the outer periphery of the patch conductor 332 and the inner periphery of the ground conductor 333 on each of the four sides by four connecting conductors 334 . , and the ground potential through spacers 32, which are conductors.
  • the patch conductor 332, the ground conductor 333, and the connection conductor 334 may be integrally formed of a strip conductor to which conductor foil is adhered, or may be formed by vapor deposition.
  • the patch antenna device using the first dielectric substrate 33 shown in FIG. 20 is suitable for application to a satellite antenna device or the like in which the use of floating conductors is restricted.
  • the spacer 32 in the radio wave radiating section 3 is a conductor cylinder, but it may be a dielectric cylinder provided separately from the conductor flat plate 31, and a first dielectric substrate 33 having a patch conductor 332 may be used. Any spacer 32 shown in FIGS. 21 to 25 may be used as long as it holds the conductor plate 31 parallel to the conductor plate 31 at a predetermined interval.
  • the spacers 32 shown in FIG. 21 are arranged on two opposite sides of the first dielectric substrate 33 and the conductor flat plate 31, one end is bonded to the inner surface of the first dielectric substrate 33, and the other end is the conductor flat plate. It is two parallel plates joined to the surface of the conductor plate 31 , and parallel to the two opposite sides of the conductor plate 31 .
  • the two parallel plates have the same shape, and the end face (one end) of the two parallel plates is joined to the inner surface of the first dielectric 331 of the first dielectric substrate 33 .
  • the parallel plate may be a dielectric provided separately from the conductor plate 31 .
  • the spacers 32 shown in FIG. 22 are arranged on two opposite sides of the first dielectric substrate 33 and the conductor flat plate 31, one end is bonded to the inner surface of the first dielectric substrate 33, and the other end is the conductor flat plate. 31, and are composed of two conductors integrally erected from the conductor flat plate 31 in parallel with the peripheral portions of the two opposite sides of the conductor flat plate 31.
  • the two pillars are cylinders of the same shape, and the end faces of the two pillars are joined to the inner surface of the first dielectric 331 of the first dielectric substrate 33 .
  • the pillars may be dielectrics, and in the case of dielectrics, one end face is joined to the surface of the conductor plate 31 and the other end face is joined to the inner surface of the first dielectric 331 .
  • the spacers 32 shown in FIG. 23 are arranged at four corners of the first dielectric substrate 33 and the conductor flat plate 31, one end is bonded to the inner surface of the first dielectric substrate 33, and the other end is connected to the surface of the conductor flat plate 31. , and are composed of four conductors integrally erected from the conductor flat plate 31 in parallel with the periphery of the four corners of the conductor flat plate 31 .
  • the four pillars are cylinders of the same shape, and the end faces of the four pillars are joined to the inner surface of the first dielectric 331 of the first dielectric substrate 33 .
  • the pillars may be dielectrics, and in the case of dielectrics, one end face is joined to the surface of the conductor plate 31 and the other end face is joined to the inner surface of the first dielectric 331 .
  • the spacer 32 shown in FIG. 24 and the spacer 32 shown in FIG. 25 are dielectric flat plates made of dielectric material.
  • the spacer 32 shown in FIG. 25 is made of another dielectric.
  • the spacer 32 shown in FIG. 24 and the spacer 32 shown in FIG. 25 have the patch conductor 332 provided on the outer surface of the first dielectric 331, and the surface of the dielectric constituting the spacer 32 is directly bonded to the surface of the conductor flat plate 31. be done.
  • each of the first signal conductor 12 and the second signal conductor 22 in the patch antenna device according to the first embodiment is configured by a feeding probe, whereas the first The signal conductor 12 and the second signal conductor 22 of the second embodiment are different in that they are each constructed of a dielectric substrate having a feeder line on the dielectric, and other points are the same.
  • the same reference numerals as in FIGS. 1 to 6 indicate the same or corresponding parts.
  • the patch antenna apparatus according to Embodiment 2 functions as one patch antenna apparatus in the same manner as the patch antenna apparatus according to Embodiment 1, and also functions as an element in a patch array antenna apparatus in which a plurality of element antennas are arranged in parallel. It can also be used as an antenna.
  • the patch antenna device includes a double ridge waveguide 1, a quad ridge waveguide 2, and a patch conductor holding portion 3.
  • the double ridge waveguide 1 and the quad ridge As understood from FIGS. 30 and 31, the waveguide portion 2 and the patch conductor holding portion 3 are arranged on a straight line along the central axis.
  • the double-ridge waveguide section 1 includes a double-ridge waveguide section 11, a first signal conductor 12, and a short-circuit waveguide section 13, as shown in FIG.
  • the double ridge waveguide portion 11 includes a pair of first ridges 112a and 112b arranged opposite to the first waveguide portion 111, and is the double ridge waveguide in the patch antenna device according to Embodiment 1. It has the same configuration as the part 11 .
  • the first waveguide is located on the other end side of the double ridge waveguide portion 11.
  • a first portion 51a of the first outer conductor 51 constituting a portion of the transmission line 5 protrudes outward from the third side wall 111c in the y-axis direction (horizontal direction) of FIG.
  • a line orthogonal to the tube axis CA of the first waveguide section 111 that is, , constitutes part of the transmission line 7 projecting outward from the second side wall 111b in the y-axis direction (vertical direction) of FIG.
  • a first portion 71a of the second outer conductor 71 is provided.
  • the first outer conductor 51 is a cylindrical conductor having a quadrilateral cross section, and the first portion 51a has an open shape at the other end.
  • the other end face of the first waveguide portion 111 and the end face of the first portion 51a are on the same plane, i.e., the xy plane shown in FIG.
  • the second outer conductor 71 is a cylindrical conductor having a quadrilateral cross section, and the first portion 71a has an open end.
  • One end face of the first waveguide portion 111 and the end face of the first portion 71a are on the same plane, i.e., the xy plane shown in FIG.
  • the short-circuit waveguide portion 13 includes a second waveguide portion 131 and a short-circuit conductor portion 132, as shown in FIG. Configuration.
  • the second waveguide portion 131 is provided with a second portion 51b of the first outer conductor 51 protruding outside facing the first portion 51a of the first waveguide portion 111.
  • One end face of the second waveguide portion 131 and the end face of the second portion 51b are on the same plane, i.e., the xy plane shown in FIG.
  • the first signal conductor 12 is a printed circuit board with a second dielectric 121, a first feed line 122, a first signal line 52 and a first connecting conductor 123, as shown in FIG. A second dielectric substrate by a substrate.
  • the first signal conductor 12 has the same external shape as the cross-sectional shape of the first waveguide portion 111 and the second waveguide portion 131, and is the first conductor except for the first outer conductor 51. If the wave tube portion 111 and the second waveguide portion 131 are quadrilateral, they are quadrilateral, and if they are circular, they are circular.
  • the first signal conductor 12 is interposed between the other end surface of the first waveguide portion 111 and one end surface of the second waveguide portion 131 and joined at the peripheral portion.
  • the first signal conductor 12 will be described as the second dielectric substrate 12 .
  • the first feeder line 122 is provided on the back surface of the second dielectric 121 (on the side of the second waveguide section 131) in parallel with the end surface of the standing portion having the height L1 of the other first ridge section 112b. one end of which reaches the side surface of the standing portion of height L1 of one first ridge portion 112a, and the other end is a linear conductor foil which is continuously connected to one end of the first signal line 52. .
  • the first feeder line 122 is located on the back surface of the second dielectric 121 on a line orthogonal to the tube axis CA of the first waveguide section 111, that is, on a line along the x-axis shown in FIG. It extends in the center (vertical direction) in the direction along the y-axis (horizontal direction).
  • the first feed line 122 may be provided inside the second dielectric 121 instead of on the back surface of the second dielectric 121 .
  • the first signal line 52 is provided on the back surface of the second dielectric 121 inside the first outer conductor 51, and is a linear conductor foil provided continuously with the other end of the first feeder line 122. It is a strip line consisting of The first connection conductor 123 electrically connects peripheral conductors 123a and 123b of conductor foils provided around the front and back surfaces of the second dielectric 121 and both peripheral conductors 123a and 123b. It has a plurality of through vias 123 c penetrating the dielectric 121 .
  • the peripheral conductor 123a on the surface of the second dielectric substrate 12 is joined to the other end surface of the first waveguide portion 111, the peripheral conductor 123b on the back surface is joined to one end surface of the second waveguide portion 131,
  • the first connection conductor 123 extends between the other end surface of the first waveguide portion 111 and one end surface of the second waveguide portion 131 and between the end surface of the first portion 51a and the second portion 51b. electrically connect the end face of the
  • the first portion 51a and the second portion 51b are electrically connected by the first connecting conductor 123, and constitute a part of the transmission line 5, forming the first outer conductor 51 functioning as a ground conductor. do.
  • the first outer conductor 51 and the first signal line 52 which is a strip line provided inside the first outer conductor 51 constitute the transmission line 5 which is a suspended strip line.
  • the first feeding line 122 in the second dielectric substrate 12 is, as shown in FIG. are electrically connected via a signal line 52 of .
  • the quad-ridge waveguide section 2 includes a quad-ridge waveguide section 21 and a second signal conductor 22, as shown in FIG.
  • the quad-ridge waveguide portion 21 includes a third waveguide portion 211 and a pair of second ridges 212a and 212b arranged to face the pair of first ridges 112a and 112b, respectively. , and a pair of third ridges 213a and 213b arranged to face each other between the pair of second ridges 212a and 212b. is the configuration.
  • the third waveguide is located on the other end side of the quad ridge waveguide section 21.
  • the second portion 71b has an open shape at the other end, and the other end face of the third waveguide portion 211 and the second portion 71b are on the xy plane shown in FIG.
  • the second signal conductor 22 is a printed circuit board with a third dielectric 221, a second feed line 222, a second signal line 72, and a second connecting conductor 223, as shown in FIG. A third dielectric substrate according to the substrate.
  • the second signal conductor 22 has the same external shape as the cross-sectional shape of the first waveguide section 111 and the third waveguide section 211, and is the same as the first conductor except for the second outer conductor 71. If the wave tube portion 111 and the second waveguide portion 131 are quadrilateral, they are quadrilateral, and if they are circular, they are circular.
  • the second signal conductor 22 is interposed between one end face of the first waveguide portion 111 and the other end face of the third waveguide portion 211 and joined at the peripheral portion.
  • the second signal conductor 22 will be described as the third dielectric substrate 22 .
  • the second feeder line 222 is provided on the back surface of the third dielectric 221 (on the side of the first waveguide section 111) in parallel with the end surface of one third ridge section 213a, and one end 3, and the other end is a linear conductor foil that is continuously connected to one end of the second signal line 72 .
  • the second feeder line 222 is arranged on the back surface of the third dielectric 221 on a line orthogonal to the tube axis CA of the third waveguide section 211, that is, in the direction along the y-axis shown in FIG. It extends in the middle (horizontal direction) and along a line (vertical direction) along the x-axis.
  • the second feed line 222 may be provided inside the third dielectric 221 instead of on the back surface of the third dielectric 221 .
  • the second feedline 222 is orthogonal to the first feedline 122 as shown in FIG. 29 in the projected longitudinal section, ie the xy plane shown in FIGS.
  • the second signal line 72 is a linear conductor foil provided on the surface of the third dielectric 221 inside the second outer conductor 71 and provided continuously with the other end of the second feeder line 222. It is a strip line consisting of The second connection conductor 223 electrically connects peripheral conductors 223a and 223b of conductor foils provided around the front and back surfaces of the third dielectric 221 and both peripheral conductors 223a and 223b. It has a plurality of through vias 223c penetrating the dielectric 221 .
  • the second connecting conductor 223 has an end face of the standing portion of height L2 of one first ridge portion 112a and an end face of the standing portion of height L2 of one second ridge portion 212a facing each other.
  • the end surface of the standing portion of the other first ridge portion 112b having the height L2 and the end surface of the standing portion having the height L2 of the other second ridge portion 212b face each other. It penetrates the third dielectric 221 that electrically connects the protrusion connection conductors 223d2 and 223e2 of the conductor foil and the both protrusion connection conductors 223d2 and 223e2 at respective positions on the front and back surfaces of the third dielectric 221. and a plurality of through vias 223f2.
  • the peripheral conductor 223a on the surface of the third dielectric substrate 22 is joined to the other end surface of the third waveguide section 211, the peripheral conductor 223b on the back surface is joined to one end surface of the first waveguide section 111,
  • the second connection conductor 223 extends between the other end surface of the third waveguide portion 211 and one end surface of the first waveguide portion 111 and between the end surface of the first portion 71a and the second portion 71b. electrically connect the end face of the
  • the ridge-connecting conductor 223d1 on the front surface of the third dielectric substrate 22 is joined to the end surface of the upright portion having the height L2 of the second ridge portion 212a on one side, and the ridge-connecting conductor 223e1 on the back surface is connected to one of the second ridge portions 212a.
  • the second ridge 212a on one side and the first ridge 112a on one side are electrically connected by joining to the end face of the standing portion of height L2 of one ridge portion 112a. That is, one first ridge portion 112a and one second ridge portion 212a constitute one continuous body by the protrusion-connecting conductor 223d1, the protrusion-connecting conductor 223e1, and the plurality of through vias 223f1.
  • the ridge-connecting conductor 223d2 on the front surface of the third dielectric substrate 22 is joined to the end surface of the standing portion of the second ridge portion 212b having a height L2, and the ridge-connecting conductor 223e2 on the back surface is connected to the other second ridge portion 212b.
  • the second ridge 212b and the first ridge 112b are electrically connected by joining to the end surface of the standing portion of the first ridge 112b having the height L2. That is, the other first ridge portion 112b and the other second ridge portion 212b constitute the other continuous body by the protrusion-connecting conductor 223d2, the protrusion-connecting conductor 223e2, and the plurality of through vias 223f2.
  • the first portion 71a and the second portion 71b are electrically connected by a second connection conductor 223 to constitute a second outer conductor 71 that constitutes a part of the transmission line 7 and functions as a ground conductor. do. Further, the second outer conductor 71 and the second signal line 72 which is a strip line provided inside the second outer conductor 71 constitute the transmission line 7 which is a suspended strip line.
  • the second feeder line 222 in the third dielectric substrate 22 constitutes the transmission line 7 in the second feeder circuit 6 provided outside the quad-ridge waveguide section 21 . are electrically connected via a signal line 72 of .
  • the radio wave radiating portion 3 which is the patch conductor holding portion 3, includes a first dielectric substrate 33 having a conductor flat plate 31, a spacer 32, and a patch conductor 332. It has the same configuration as the radio wave radiating section 3 in the patch antenna device.
  • the operation of the patch antenna apparatus according to Embodiment 2 will be described mainly when it operates as a transmitting antenna.
  • a high frequency signal is input from the first feeding circuit 4 to the first feeding line 122 of the second dielectric substrate 12 through the first signal line 52 of the transmission line 5, the double ridge waveguide portion 1
  • the input high-frequency signal is converted into a first radio wave having a frequency corresponding to the frequency, and the first radio wave is passed through the double-ridge waveguide portion 11 in the first propagation mode by the pair of first ridge portions 112a and 112b.
  • Propagate Propagate.
  • the short-circuited waveguide portion 13 causes the first radio waves propagating in the double-ridged waveguide portion 11 to pass through one end of the double-ridged waveguide portion 11 located on the opposite side of the short-circuited waveguide portion 13 . It propagates to the aperture and is output to the quad-ridge waveguide section 2 .
  • the first radio waves output to the quad-ridge waveguide portion 2 are quad-ridge guided in a first propagation mode by a pair of second ridge portions 212a and 212b that are continuous with the pair of first ridge portions 112a and 112b. It propagates through the wave tube portion 21 to an opening at one end of the quadridge waveguide portion 21 and is output to the radio wave emitting portion 3 .
  • the first radio wave output to the radio wave radiating section 3 propagates through the flat conductor plate 31 and the spacer 32, excites the patch conductor 332, and is radiated to the external space of the patch antenna apparatus. Since the first radio wave propagating in the antenna device is propagated in the first propagation mode, the direction of the electric field is mainly along the y-axis shown in FIGS. 27 and 28 (lateral direction). distribution, and the main polarized wave of the first radio wave radiated to the external space of the patch antenna device is the polarized wave component in the direction along the y-axis direction.
  • the quad ridge waveguide portion 2 converts the input high-frequency signal into a second radio wave having a frequency corresponding to the input high-frequency signal, and the second radio wave is transmitted to the quad-ridge waveguide portion 21 in a second propagation mode by a pair of third ridge portions 213a and 213b. Propagate inside.
  • the cut-off frequency in the second propagation mode of the second radio waves is set to a frequency higher than the frequency of the second radio waves, so the second radio waves pass through the double-ridge waveguide. It does not propagate in the direction toward the wave tube portion 11 . Therefore, the second radio wave propagating in the quad-ridge waveguide portion 21 propagates to the opening at one end of the quad-ridge waveguide portion 21 in the second propagation mode and is output to the radio wave emitting portion 3 .
  • a part of the second radio wave has a higher-order mode radio wave whose frequency is a predetermined multiple of the frequency of the second radio wave.
  • the second radio wave input to the radio wave radiating section 3 propagates through the conductor plate 31 and the spacer 32, excites the patch conductor 332, and is radiated to the external space of the patch antenna apparatus. Since the second radio wave propagating in the antenna device is propagated in the second propagation mode, the direction of the electric field is mainly along the x-axis shown in FIGS. 2 and 3 (longitudinal direction). distribution, and the main polarized wave of the second radio wave radiated to the external space of the patch antenna apparatus is the polarized wave component in the direction along the x-axis direction.
  • the first radio wave and the second radio wave whose directions of main polarized waves are orthogonal to each other are radiated (emitted) from the radio wave radiating section 3, and an antenna device for common use of orthogonal polarized waves is obtained.
  • the radio waves generated in the quad-ridge waveguide section 21 due to the higher-order mode of the second radio waves will be described.
  • the radio waves of the higher-order mode of the second radio wave have a symmetrical distribution with respect to a longitudinal section parallel to the xz plane (longitudinal section) in FIG.
  • the center line of the second feeder line 222 of the third dielectric substrate 22 is ideally in the longitudinal section including the tube axis CA of the quad-ridge waveguide section 21 without any dimensional errors due to manufacturing errors.
  • radio waves generated in the quad-ridge waveguide portion 21 due to the higher-order mode of the second radio wave are distributed from the center line of the second feeder line 222 to the second feed line 222 as shown in FIG.
  • the distance to the second ridge portion 212a is equal to the distance from the center line of the second feed line 222 to the second ridge portion 212b. Radio waves due to modes cancel each other, and as a result, radiation of radio waves due to higher modes is not observed in the front direction of the antenna device.
  • the second feeder line 222 is the first notch part a11 and the second notch part in a pair of continuous bodies composed of the first ridges 112a, 112b and the second ridges 212a, 212b. Since it is positioned between the cutout portion by a12 and the cutout portions by the first cutout portion b11 and the second cutout portion b12, the center line of the second feeder line 222 and the second ridge portion 212a , 212b and the first ridges 112a and 112b, the amplitude of the radio wave due to the higher-order mode is short.
  • the center line of the second feed line 222 has a dimensional error due to a manufacturing error, for example, as shown in FIG.
  • the influence of the positional deviation of the second feeder line 222 is relative to the - direction and the + direction on the y-axis shown in FIG.
  • radio waves in a higher mode with slightly strong amplitude appear on the side of the second ridge portion 212b, which is small and has a shorter distance to the center line of the second feeder line 222 than the second ridge portion 212a.
  • the radio wave due to the high-order mode is transmitted to the antenna device. 33 in the front direction of the antenna device, that is, the cross polarization component with respect to the main polarization of the second radio wave. Radiation can be kept small.
  • the first ridges 112a and 112b and the second ridges 212a and 212b do not have the first notches a11 and b11 and the second notches a12 and b12, respectively.
  • the height of the ridges 112a, 112b and the second ridges 212a, 212b is L1 over the entire region, the center line of the second feeder line 222 ideally coincides with the height of the quad ridge waveguide 21.
  • 112b is short, and the amplitude of the radio wave due to the high-order mode is relatively large.
  • a radio wave in a higher mode is radiated from the antenna device to the external space
  • a radio wave having a polarization component in a direction along the y-axis shown in FIG. 35 in the front direction of the antenna device is radiated.
  • the polarized wave component in the direction along the y-axis shown in FIG. 35 becomes a so-called cross-polarized wave component that is orthogonal to the main polarized wave of the second radio wave, and unnecessary components are radiated.
  • the quad-ridge waveguide portion 21 has a length in the direction of the tube axis CA of need to be longer.
  • the patch antenna device has a higher-order mode of the second radio wave propagating in the quad-ridge waveguide section 21 than the reference example.
  • the amplitude is short, and for example, there is a difference between the distance from the center line of the second feed line 222 to the second ridge portion 212a and the distance from the center line of the second feed line 222 to the second ridge portion 212b.
  • the difference in amplitude between the second ridge portion 212a side and the second ridge portion 212b side in the radio wave due to the higher-order mode is slight, and low cross-polarization characteristics can be maintained.
  • the length of the quad-ridge waveguide portion 21 in the tube axis CA direction can be shortened.
  • the second feeder line 222 has a design margin of dimensional error with respect to the quad-ridge waveguide portion 21, it is easy to manufacture, thin, and low cross-polarization characteristics can be maintained. , it is possible to obtain a cross-polarized patch antenna device.
  • the patch antenna apparatus according to Embodiment 2 operates according to the same principle as when operating as a transmitting antenna even when operating as a receiving antenna due to so-called "antenna reversibility". A description of the case of operation is omitted.
  • the patch antenna device according to the second embodiment has a pair of first ridges 112a and 112b and a pair of second ridges 212a and 212b, similarly to the patch antenna device according to the first embodiment.
  • a pair of continuum including and is provided with a notch portion at the boundary between the double ridge waveguide portion 11 and the quad ridge waveguide portion 21 to widen the gap between the end faces of the pair of opposing continuities. Therefore, even when the second feed line 222 of the third dielectric substrate 22 is misaligned with respect to the quad-ridge waveguide portion 21 due to a dimensional error due to a manufacturing error, the low cross-polarization characteristic is maintained. Further, the length of the quad-ridge waveguide portion 21 in the tube axis CA direction can be shortened as the quad-ridge waveguide portion 21, and as a result, a thin cross-polarized patch antenna device can be obtained. can be done.
  • the notch portion in the pair of continuous bodies constituted by the pair of first ridges 112a and 112b and the pair of second ridges 212a and 212b is a pair of The first ridges 112a and 112b or one of the pair of second ridges 212a and 212b is aligned with the first cutouts a11 and b11 or the second ridges over the entire area in the direction along the tube axis CA. notches a12 and b12.
  • each of the pair of second ridges 212a and 212b has a height L2 lower than the height L1 over the entire area in the direction along the tube axis CA.
  • the cutout portions a11 and b11 of the pair of first ridge portions 112a and 112b are formed continuously with the upright portion having the height L2.
  • each of the pair of first ridges 112a and 112b is a raised portion having a height L2 lower than the height L1 over the entire area in the direction along the tube axis CA.
  • the cutout portions a12 and b12 of the pair of second ridge portions 212a and 212b are formed continuously with the standing portion having a height L2.
  • the notch portion in the pair of continuous bodies constituted by the pair of first ridge portions 112a and 112b and the pair of second ridge portions 212a and 212b is at least the pair of second ridge portions 212a and 212b. It may be configured by the provided second notch portions a12 and b12.
  • the outer shape of the patch conductor 332 provided on one surface of the first dielectric 331 is not limited to a square. It may be in shape. Further, as shown in FIG. 20, a ground conductor 333 may be provided on the outer peripheral portion of one surface of the first dielectric 331 .
  • the spacer 32 in the radio wave radiating section 3 is not limited to the above-described conductor tube as described in the patch antenna device according to the first embodiment, and may be a dielectric tube provided separately from the conductor plate 31. Also, the spacers 32 shown in FIGS. 21 to 25 may be used as long as they hold the first dielectric substrate 33 having the patch conductors 332 and the conductor flat plate 31 in parallel with a predetermined gap.
  • Embodiment 3 A patch antenna apparatus according to Embodiment 3 will be described with reference to FIGS. 38 to 42.
  • FIG. The patch antenna apparatus according to Embodiment 3 is a patch array antenna apparatus in which two patch antenna apparatuses according to Embodiment 2 are arranged in parallel as element antennas.
  • the same reference numerals as in FIGS. 26 to 33 denote the same or corresponding parts.
  • the reference numerals for the first element antenna are prefixed with A
  • the reference numerals for the second element antenna are prefixed with B to represent the relationship with the constituent elements in the patch antenna apparatus according to the second embodiment.
  • the first and second are omitted to avoid complication of the explanation.
  • the patch antenna apparatus includes a double ridge waveguide 1, a quad ridge waveguide 2, and a patch conductor holding portion 3, as shown in FIG.
  • the double-ridge waveguide portion 1, the quad-ridge waveguide portion 2, and the patch conductor holding portion 3 are arranged on a straight line along the central axis of the first element antenna and the central axis of the second element antenna.
  • the double ridge waveguide portion 1 includes a double ridge waveguide portion A1 that constitutes a first element antenna, a double ridge waveguide portion B1 that constitutes a second element antenna, and a double ridge waveguide portion A1 and a double ridge waveguide. It is provided with a connecting portion R1 that connects the wave portions B1, and is arranged in parallel with the horizontal direction (y-axis) in FIG.
  • the quad-ridge waveguide portion 2 includes a quad-ridge waveguide portion A2 constituting a first element antenna, a quad-ridge waveguide portion B2 constituting a second element antenna, a quad-ridge waveguide portion A2 and a quad-ridge waveguide portion.
  • a connecting portion R2 for connecting the wave portions B2 is provided, and arranged in parallel in the horizontal direction in FIG.
  • the patch conductor holding portion 3 connects the patch conductor holding portion A3 forming the first element antenna, the patch conductor holding portion B3 forming the second element antenna, and the patch conductor holding portion A3 and the patch conductor holding portion B3. 38, and arranged in parallel in the horizontal direction in FIG.
  • the double-ridge waveguide section 1 comprises a double-ridge waveguide section 11 , a first signal conductor 12 and a short-circuit waveguide section 13 .
  • the double ridge waveguide portion 11 includes a double ridge waveguide portion A11 constituting a first element antenna, a double ridge waveguide portion B11 constituting a second element antenna, A first connecting portion R11 that connects the double-ridge waveguide portion A11 and the double-ridge waveguide portion B11 is provided, and an integrally formed first conductor block is configured.
  • the double ridge waveguide portion A11 and the double ridge waveguide portion B11 each have the same configuration as the double ridge waveguide portion 11 in the patch array antenna device according to Embodiment 2, and are each the first waveguide portion.
  • the first portions A51a and B51a of the first outer conductors A51 and B51 provided in the double-ridge waveguide portions A11 and B11 are provided to protrude outward from the second sidewalls A111b and B111b along the arrangement direction, respectively. .
  • the first portion A71a of the second outer conductor A71 provided in the double-ridge waveguide portion A11 extends along the vertical direction (x-axis) in FIG. 2 projecting outward from the side wall A111b.
  • the first portion B71a of the second outer conductor B71 provided in the double-ridge waveguide portion B11 is arranged in a direction opposite to that of the first portion A71a, that is, in a direction perpendicular to the propagation direction and arrangement direction of radio waves. is provided so as to protrude outside from the fourth side wall B111d along the vertical direction of the figure.
  • the short-circuit waveguide section 13 includes a second waveguide section 131 and a short-circuit conductor section 132 .
  • the second waveguide section 131 includes a second waveguide section A131 forming the first element antenna and a second waveguide section A131 forming the second element antenna.
  • B131 and a second connecting portion R131 that connects the second waveguide portion A131 and the second waveguide portion B131 to constitute an integrally formed second conductor block.
  • the second waveguide portion A131 and the second waveguide portion B131 each have the same configuration as the second waveguide portion 131 in the patch array antenna device according to the second embodiment, Second portions A51b and B51b facing the first portions A51a and B51a of the conductors A51 and B51 are provided.
  • the short-circuit conductor portion 132 includes a short-circuit conductor portion A132 forming the first element antenna, a short-circuit conductor portion B132 forming the second element antenna, a short-circuit conductor portion A132 and a short-circuit conductor portion B132. It is an integrally formed plate-shaped conductor provided with a third connecting portion R132 for connecting them.
  • the first signal conductor 12 is a printed circuit board having a second dielectric 121, a first feed line 122, a first signal line 52, and a first connection conductor 123. is the substrate.
  • the first signal conductor 12 is located between the other end of the first conductor block and one end of the second conductor block, that is, between the other end surface of the double ridge waveguide section 11 and the second waveguide section 131. It is interposed between the one end surface and joined at the peripheral portion.
  • the second dielectric 121 includes a second dielectric A121 forming the first element antenna, a second dielectric B121 forming the second element antenna, a second dielectric A121 and the second dielectric A121. It has a connecting portion R12 that connects the dielectrics B121, and is composed of a single dielectric.
  • the first feeding line 122 has a first feeding line A122 forming a first element antenna and a first feeding line B122 forming a second element antenna.
  • Each of the feeder lines B122 has the same configuration as the first feeder line 122 in the patch array antenna apparatus according to the second embodiment.
  • B112b one end of which reaches the side surface of one of the first protrusions A112a and B112a with height L1, and the other end of which is the first signal It is a linear conductor foil continuously connected to one ends of the wires A52 and B52.
  • the first connection conductor 123 has a first connection conductor A 123 forming the first element antenna and a first connection conductor B 123 forming the second element antenna.
  • A123 and the first connection conductor B123 each have the same configuration as the first connection conductor 123 in the patch array antenna device according to the second embodiment, and the front and back surfaces of the second dielectrics A121 and B121 are respectively Peripheral conductors A123a, A123b, B123a, B123b of conductor foils provided on the periphery and a plurality of through vias A123c penetrating second dielectrics A121, B121 electrically connecting both peripheral conductors A123a, A123b, B123a, B123b , B123c.
  • the first connection conductor A123 and the first connection conductor B123 are respectively between the other end surface of the first waveguide portions A111 and B111 and one end surface of the second waveguide portions A131 and B131, and The end surfaces of the first portions A51a and B51a and the end surfaces of the second portions A51b and B21b are electrically connected.
  • the first power supply line A122 is connected to the same first power supply circuit or a different first power supply circuit via the first signal line A52, and the first power supply line B122 is connected to the first power supply circuit via the first signal line B52. be.
  • the quad-ridge waveguide section 2 comprises a quad-ridge waveguide section 21 and a second signal conductor 22 .
  • the quad-ridge waveguide portion 21 includes a quad-ridge waveguide portion A21 constituting a first element antenna, a quad-ridge waveguide portion B21 constituting a second element antenna, A fourth connecting portion R21 connecting the quad-ridge waveguide portion A21 and the quad-ridge waveguide portion B21 is provided to form an integrally formed third conductor block.
  • the quad-ridge waveguide portion A21 and the quad-ridge waveguide portion B21 each have the same configuration as the quad-ridge waveguide portion 21 in the patch array antenna device according to the second embodiment, and the third waveguide portion A211 , B211, a pair of second ridges A212a, A212b, B212a, B212b, each of which is continuously opposed to a pair of first ridges A112a, A112b, B112a, B112b, and a pair of second ridges.
  • a pair of third ridges A213a, A213b, B213a, B213b are provided facing each other between the ridges A212a, A212b, B212a, B212b.
  • the second portions A71b and B71b of the second outer conductors A71 and B71 provided in the quad-ridge waveguide portions A21 and B21 are the second portions A71b and B71b provided in the double-ridge waveguide portions A11 and B11. is provided to face the first portions A71a and B71a of.
  • the second signal conductor 22 is a printed circuit board with a third dielectric 221, a second feed line 222, a second signal line 72, and a second connecting conductor 223, as shown in FIG. A third dielectric substrate according to the substrate.
  • the second signal conductor 22 is located between the other end of the third conductor block and one end of the second conductor block, that is, between the other end face of the quad-ridge waveguide section 21 and one end of the double-ridge waveguide section 11 . It is interposed between the end face and joined at the peripheral portion.
  • the third dielectric 221 includes a third dielectric A221 forming the first element antenna, a third dielectric B221 forming the second element antenna, a third dielectric A221 and a third dielectric A221 forming the second element antenna. It has a connecting portion R22 that connects the dielectrics B221, and is composed of a single dielectric.
  • the second feeding line 222 has a second feeding line A222 forming a first element antenna and a second feeding line B222 forming a second element antenna.
  • feeder line B222 has the same configuration as the second feeder line 222 in the patch array antenna apparatus according to the second embodiment.
  • the second feed line A222 is provided on the back surface of the third dielectric A221 in parallel with the end face of one third ridge A213a, one end reaching the side surface of the other third ridge A213b, and the other It is a linear conductor foil whose end is continuously connected to one end of the second signal line A72.
  • the second feed line B222 is provided on the back surface of the third dielectric B221 in parallel with the end face of the other third ridge B213b, one end reaching the side surface of the one third ridge B213a, and the other It is a linear conductor foil whose end is continuously connected to one end of the second signal line B72.
  • the second feeder line A222 and the second feeder line B222 extend in directions opposite to each other.
  • the second connection conductor 223 has a second connection conductor A 223 forming the first element antenna and a second connection conductor B 223 forming the second element antenna.
  • A223 and second connection conductor B223 each have the same configuration as second connection conductor 223 in the patch array antenna apparatus according to the second embodiment.
  • the second connection conductor A223 and the second connection conductor B223 are peripheral conductors A223a, A223b, B223a, and B223b of conductor foils provided around the front and back surfaces of the third dielectrics A221 and B221, respectively. It has a plurality of through vias A223c, B223c penetrating the third dielectrics A221, B221 electrically connecting both peripheral conductors A223a, A223b, B223a, B223b.
  • the second connection conductor A223 and the second connection conductor B223 are respectively the end surfaces of the standing portions of the other first protrusions A112b and B112b having a height L2 and the other second protrusions A212b and B212b.
  • Conductors A223d2, A223e, B2223d2, B223e2 for connecting ridges of conductor foil and conductors A223d2, A223e, B2223d2, B223e2 for connecting ridges on both sides of the third dielectrics A221, B221 facing the end faces of the standing portions of height L2 face each other. It has a plurality of through vias A223f2, B223f2 passing through the third dielectric A221, B221 electrically connecting the conductors A223d2, A223e, B223d2, B223e2.
  • the second connection conductor A223 and the second connection conductor B223 are respectively between the other end surfaces of the third waveguide portions A211 and B211 and one end surface of the first waveguide portions A111 and B111, and The end surfaces of the first portions A71a and B71a and the end surfaces of the second portions A71b and B71b are electrically connected.
  • One of the first protrusions A112a and B112a and one of the second protrusions A212a and B212a are connected to one another by the protrusion connection conductors A223d1 and B223d1, the protrusion connection conductors A223e1 and B223e1, and the plurality of through vias A223f1 and A223f1.
  • the other first protrusions A112b and B112b and the other second protrusions A212b and B212b are connected to each other by the protrusion connection conductors A223d2 and B223d2, the protrusion connection conductors A223e2 and B223e2, and the plurality of through vias A223f2 and B223f2. constitute a continuum of
  • the first portions A71a and B71a and the second portions A71b and B71b are electrically connected by second connection conductors A223 and B223, and constitute a part of the transmission line and function as a second ground conductor. It constitutes the outer conductors A71 and B71. Further, the second outer conductors A71 and B71 and the second signal lines A72 and B72 which are strip lines provided inside the second outer conductors A71 and B71 constitute a transmission line which is a suspended strip line. do.
  • the second outer conductor A71 and the second outer conductor B71 extend in directions opposite to each other.
  • the second feeder line A222 is connected to the same second feeder circuit or a different second feeder circuit via a second signal line A72, and the second feeder line B222 is connected to a different second feeder circuit via a second signal line B72. be.
  • the radio wave radiating portion 3, which is the patch conductor holding portion 3, includes a first dielectric substrate 33 having a conductor flat plate 31, spacers 32, and patch conductors 332.
  • the conductive flat plate 31 includes a conductive flat plate A31 constituting a first element antenna, a conductive flat plate B31 constituting a second element antenna, and a connecting portion R31 connecting the conductive flat plate A31 and the conductive flat plate B31. Consists of a dielectric.
  • the conductive flat plate A31 and the conductive flat plate B31 have the same configuration as the conductive flat plate 31 in the patch array antenna apparatus according to the second embodiment.
  • the spacer 32 is provided with a spacer A32 constituting the first element antenna, a spacer B32 constituting the second element antenna, and a connecting portion R32 connecting the spacer A32 and the spacer B32, and is integrally formed. Construct a conductor block.
  • the spacer A32 and the spacer B32 have the same configuration as the spacer 32 in the patch array antenna apparatus according to the second embodiment.
  • a first dielectric substrate 33 having a patch conductor 332 includes a first dielectric substrate A33 having a patch conductor A332 constituting a first element antenna and a second dielectric substrate A33 having a patch conductor B332 constituting a second element antenna. It comprises one dielectric substrate B33 and a connecting portion R33 that connects the first dielectric substrate A33 and the first dielectric substrate B33, and is composed of one printed substrate integrally formed.
  • a first dielectric substrate A33 having patch conductors A332 and a first dielectric substrate B33 having patch conductors B332 are the first dielectric substrates having patch conductors 332 in the patch array antenna device according to the second embodiment. It has the same configuration as 33.
  • the first element antenna and the second element antenna are the same as the first element antenna and the second element antenna, except that the second feed line A222 and the second feed line B222 extend in opposite directions to each other.
  • the dimensions of each component of the element antenna are the same as each other.
  • each of the first element antenna and the second element antenna has the same configuration as that of the patch array antenna apparatus according to the second embodiment, it operates in the same manner as the first feed circuit 4 to the transmission line 5.
  • the double ridge waveguides A1, B1 are input.
  • the high-frequency signal is converted into a first radio wave having a frequency corresponding to the first propagation mode, and the first radio wave in the first propagation mode is guided through the quad-ridge waveguides in the double-ridge waveguide portions A11 and B11 and in the quad-ridge waveguide portions A2 and B2. It propagates through the tube portions A21 and B21 and radiates from the radio wave radiating portions A3 and B3 to the external space of the patch antenna apparatus.
  • each of the first element antenna and the second element antenna is fed from the second feeding circuit 6 via the second signal lines A72 and B72 of the transmission line 7 to the second signal lines A22 and B22 of the third dielectric substrates A22 and B22.
  • the quad-ridge waveguides A2 and B2 convert the input high-frequency signal into a second radio wave having a frequency corresponding to the second propagation mode. propagates through the quad-ridge waveguide portions A21 and B21, and is radiated from the radio wave radiating portions A3 and B3 to the external space of the patch antenna apparatus.
  • the first radio wave radiated from the first element antenna and the first radio wave radiated from the second element antenna are input to the first feeding lines A122 and B122 so that they are in phase in the radiation direction.
  • the phase of the high-frequency signal input to the second feeder lines A222 and B222 is controlled so that the phase of the high-frequency signal is controlled and the second radio waves are also in phase in the radiation direction.
  • the first feed line A122 and the first feed line B122 have the same phase. Input a high frequency signal.
  • the second feed line A222 and the second feed line B222 are opposite to each other. Since the second feeder line A222 and the second feeder line B222 are configured to extend in the same direction, high-frequency signals having phases opposite to each other, that is, having a phase difference of 180 degrees, are input to the second feeder line A222 and the second feeder line B222.
  • the first radio waves and the second radio waves radiated from the radio wave radiating part A3 and the radio wave radiating part B3 are synthesized in the same phase, and the directions of the main polarized waves from the radio wave radiating part 3 are orthogonal to each other.
  • the first radio wave and the second radio wave thus generated are radiated (emitted), and a patch array antenna device for both orthogonally polarized waves is obtained.
  • radio waves generated in the quad-ridge waveguide portions A21 and B21 due to the second higher-order mode of radio waves will be described.
  • the radio waves of the higher-order mode of the second radio wave have distributions symmetrical with respect to a longitudinal section parallel to the xz plane (longitudinal section) in FIG. 41 in the first element antenna and the second element antenna.
  • the center lines of the second feeder lines A222 and B222 of the third dielectric substrates A22 and B22 are ideally free from dimensional errors due to manufacturing errors.
  • the quad-ridge waveguide portions A21 and B21 are arranged so as to be positioned in the longitudinal section including the tube axis CA, the second radio wave generated in the quad-ridge waveguide portions A21 and B21 is caused by a higher-order mode As shown in FIG. 41, the radio waves travel a distance from the center lines of the second feed lines A222 and B222 to the second ridges A212a and B212a and a distance from the center lines of the second feed lines A222 and B222 to a second distance.
  • the distances to the ridges A212b and B212b are equal, and due to the symmetry of the electric field distribution, the high-order mode radio waves radiated from the first element antenna and the second element antenna to the external space cancel each other, and as a result, the patch Radiation of radio waves by higher modes is not observed in the front direction of the antenna device.
  • the second feeder lines A222, B222 are the first cuts in a pair of continuous bodies composed of the first ridges A112a, A112b, B112a, B112b and the second ridges A212a, A212b, B212a, B212b. It is located between the cutout portion formed by the cutout portions Aa11 and Ba11 and the second cutout portions Aa12 and Ba12 and the cutout portion formed by the first cutout portions Ab11 and Bb11 and the second cutout portions Ab12 and Bb12.
  • the center line of the second feeder lines A222 and B222 of the third dielectric substrates A22 and B22 has a dimensional error due to a manufacturing error, for example, As shown in FIG. 42, the center lines of the second feeder lines A222 and B222 are aligned in the -direction along the y-axis shown in FIG.
  • the amplitude of the radio wave due to the higher-order mode is short, and the difference in the amplitude of the radio wave due to the higher-order mode between the second ridges A212a and B212a and the second ridges A212b and B212b is small. Even if radio waves are radiated from the antenna device to the external space, they have polarization components from the first element antenna and the second element antenna in the direction along the y-axis shown in FIG. 44 in the front direction of the patch antenna device. Radiation of the radio wave, that is, the cross-polarization component with respect to the main polarization of the second radio wave can be kept small.
  • the electric field phase difference between the polarized wave component from the first element antenna and the polarized wave component from the second element antenna is 180 degrees, that is, the directions of the electric fields are opposite to each other, the first The polarized wave component from the first element antenna and the polarized wave component from the second element antenna are canceled, and as a result, radio wave radiation in higher-order modes is not observed in the front direction of the patch antenna apparatus.
  • the patch antenna apparatus according to Embodiment 3 operates according to the same principle as when operating as a transmitting antenna even when operating as a receiving antenna due to so-called "antenna reversibility". A description of the case of operation is omitted.
  • the third dielectric substrate 22 is Low cross polarization characteristics can be maintained even when the second feed lines A222 and B222 are misaligned with respect to the quad-ridge waveguide portion 21 due to dimensional errors associated with manufacturing errors. Since the feeder line A 222 and the second feeder line B 222 are configured to extend in directions opposite to each other, even if the external space of the patch antenna device cancels the polarization component in the higher order mode of the second radio wave, Low cross-polarization characteristics can be maintained.
  • the length of the quad-ridge waveguide portion 21 in the direction of the tube axis CA can be shortened as the quad-ridge waveguide portion 21.
  • a patch antenna device can be obtained.
  • the arrangement direction of the first element antenna and the second element antenna is the direction along the y-axis shown in FIGS. 38 to 40, it may be the direction along the x-axis. It is sufficient that the first element antenna and the second element antenna are arranged in parallel on a straight line in a direction orthogonal to the tube axis CA of the element antenna and the second element antenna.
  • the number of element antennas is not limited to two, and three or more element antennas having the same configuration may be arranged in parallel in a straight line in a direction perpendicular to the tube axis CA of the element antenna.
  • the feed lines are divided into two.
  • the second feeder line which is one less, is configured to extend in directions opposite to each other with respect to the remaining second feeder lines.
  • the second feed lines of even-numbered element antennas of the plurality of element antennas may be configured to extend in the opposite direction to the second feed lines of odd-numbered element antennas.
  • each of the element antennas has a notch shape in a pair of continuous bodies composed of a pair of first ridges and a pair of second ridges, similarly to the patch antenna device according to the second embodiment.
  • the external shape of the patch conductor, and the structure of the spacer in the radio wave radiating portion 3 may be changed.
  • the patch antenna device according to the present disclosure is suitable for satellite communication or radar antenna devices, particularly for orthogonally polarized antenna devices mounted on moving bodies such as satellites, aircraft, and vehicles.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

The present invention comprises: a double-ridge wave guide (1) having a double-ridge wave guide tube part (11) that has first protrusions (112a, 112b) disposed opposing each other, through which a first radio wave propagating in a first propagation mode propagates, and in which the cut-off frequency, of a second radio wave, in a second propagation mode different from the first propagation mode is set at a frequency higher than the frequency of the second radio wave, and having a first signal conductor (12) that inputs, to the double-ridge wave guide tube part (11), a high frequency signal to be converted to the first radio wave by the double-ridge wave guide tube part (11); a quad-ridge wave guide (2) having a quad-ridge wave guide tube part (21) that is connected, at the other end thereof, to one end of the double-ridge wave guide tube part (11), that has second protrusions (212a, 212b) disposed opposing each other in a manner continuous to the first protrusions (112a, 112b) and has third protrusions (213a, 213b) disposed opposing each other between the second protrusions (212a, 212b), and through which the first and second radio waves propagate, and having a second signal conductor 22 that inputs, to the quad-ridge wave guide tube part (21), a high frequency signal to be converted to the second radio wave by the quad-ridge wave guide tube part (21); and a patch conductor holder (3) that is disposed to one end of the quad-ridge wave guide tube part (21) and that has a patch conductor (332). Continuous bodies including the first protrusions (112a, 112b) and the second protrusions (212a, 212b) are provided with, at a boundary portion between the double-ridge wave guide tube part (11) and the quad-ridge wave guide tube part (21), notches (a11, b11, a12, b12) that cause intervals between end faces of opposing pairs of the continuous bodies.

Description

パッチアンテナ装置patch antenna device
 本開示は、第1の電波と第1の電波に直交する第2の電波を伝搬するパッチアンテナ装置に関する。 The present disclosure relates to a patch antenna device that propagates a first radio wave and a second radio wave orthogonal to the first radio wave.
 衛星通信用あるいはレーダ用のアンテナ装置において、航空機、車両及び衛星等の移動体への搭載を容易にするために、薄型なアレーアンテナが使用されている。
 また、近年、より高機能なアンテナ装置の要求が高まっており、広い周波数範囲にわたって動作し、かつ直交する2つの偏波で使用可能な、広帯域特性を有する直交偏波共用のアンテナが求められている。
2. Description of the Related Art In satellite communication or radar antenna devices, thin array antennas are used in order to facilitate mounting on mobile objects such as aircraft, vehicles and satellites.
In addition, in recent years, the demand for more sophisticated antenna devices has increased, and there is a demand for a cross-polarized antenna that operates over a wide frequency range and can be used with two orthogonal polarized waves, and has wideband characteristics. there is
 広帯域特性を有する直交偏波共用のアンテナとしてクアッドリッジホーンアンテナが知られており、特許文献1にクアッドリッジホーンアンテナが示されている。
 特許文献1に示されたクアッドリッジホーンアンテナは、第1の電波が管内を伝搬する、一対の第1の突条を対向配置したダブルリッジ導波管部と、第1の電波が管内を伝搬するとともに第2の電波が管内を伝搬する、一対の第2の突条を対向配置し、一対の第3の突条を対向配置したクアッドリッジ導波管部と、第1突条間に給電する第1給電プローブと、第3突条間に給電する第2給電プローブを備えたものである。
A quad-ridge horn antenna is known as a cross-polarized antenna having broadband characteristics, and Patent Document 1 discloses a quad-ridge horn antenna.
The quad ridge horn antenna shown in Patent Document 1 includes a double ridge waveguide portion in which a pair of first ridges are arranged to face each other in which a first radio wave propagates in the pipe, and a first radio wave propagates in the pipe. Then, a second radio wave propagates in the pipe, and power is supplied between the quad-ridge waveguide portion in which a pair of second ridges are arranged to face each other and a pair of third ridges are arranged to face each other, and the first ridges. and a second power feeding probe that feeds between the third ridges.
特開2015-185893号公報JP 2015-185893 A
 特許文献1に示されたクアッドリッジホーンアンテナは、第2給電プローブにおけるクアッドリッジ導波管部に対する寸法誤差のない理想的な構造を得るために精度が高い製造が求められる。
 このような状況の下、第2給電プローブにおけるクアッドリッジ導波管部に対する寸法誤差に対して若干の裕度を持つクアッドリッジホーンアンテナが望まれている。
The quad-ridge horn antenna disclosed in Patent Document 1 requires high-precision manufacturing in order to obtain an ideal structure free from dimensional errors with respect to the quad-ridge waveguide portion of the second feeding probe.
Under such circumstances, there is a demand for a quad-ridge horn antenna that has some tolerance for dimensional errors with respect to the quad-ridge waveguide portion of the second feeding probe.
 本開示は上記した点に鑑みてなされたものであり、第2の信号導体におけるクアッドリッジ導波管部に対する製造誤差に伴う寸法誤差に対して裕度を持つパッチアンテナ装置を得ることを目的とする。 The present disclosure has been made in view of the above points, and an object of the present disclosure is to obtain a patch antenna device having tolerance for dimensional errors associated with manufacturing errors for the quad-ridge waveguide portion in the second signal conductor. do.
 本開示に係るパッチアンテナ装置は、対向配置された一対の第1の突条を有し、第1の伝搬モードで伝搬する第1の電波を伝搬し、第1の伝搬モードと異なる第2の伝搬モードで伝搬する第2の電波の第2の伝搬モードにおける遮断周波数が第2の電波の周波数より高い周波数に設定されたダブルリッジ導波管部と、ダブルリッジ導波管部により第1の電波に変換される高周波信号をダブルリッジ導波管部に入力する第1の信号導体を具備するダブルリッジ導波部と、他端部がダブルリッジ導波管部の一端部と連通し、それぞれが一対の第1の突条と連続して対向配置された一対の第2の突条、及び一対の第2の突条の間に配置され、対向配置された一対の第3の突条を有し、第1の電波及び第2の電波を伝搬するクアッドリッジ導波管部と、クアッドリッジ導波管部により第2の電波に変換される高周波信号をクアッドリッジ導波管部に入力する第2の信号導体を具備するクアッドリッジ導波部と、クアッドリッジ導波管部の一端部に配置され、パッチ導体を有するパッチ導体保有部とを備え、一対の第1の突条と一対の第2の突条とを含む一対の連続体は、ダブルリッジ導波管部とクアッドリッジ導波管部との境界部に、対向する一対の連続体の端面間の間隙を広くする切り欠き部が設けられている。 A patch antenna device according to the present disclosure has a pair of first ridges arranged to face each other, propagates a first radio wave that propagates in a first propagation mode, and propagates a second radio wave that is different from the first propagation mode. a double ridge waveguide section in which the cutoff frequency in the second propagation mode of the second radio wave propagating in the propagation mode is set to a frequency higher than the frequency of the second radio wave; A double ridge waveguide portion having a first signal conductor for inputting a high frequency signal to be converted into radio waves to the double ridge waveguide portion, and the other end communicating with one end portion of the double ridge waveguide portion, respectively. is a pair of second ridges that are continuously opposed to the pair of first ridges, and a pair of third ridges that are disposed between the pair of second ridges and are opposed to each other a quad-ridge waveguide portion that propagates the first radio wave and the second radio wave; and a high-frequency signal converted into the second radio wave by the quad-ridge waveguide portion is input to the quad-ridge waveguide portion. A quad-ridge waveguide portion having a second signal conductor, and a patch-conductor holding portion having a patch conductor disposed at one end of the quad-ridge waveguide portion, the pair of first ridges and the pair of The pair of continuum including the second ridge has a notch portion at the boundary between the double ridge waveguide portion and the quad ridge waveguide portion to widen the gap between the end faces of the pair of continuum facing each other. is provided.
 本開示によれば、第2の信号導体がクアッドリッジ導波管部に対して寸法誤差の設計裕度を持つため、製造が容易なパッチアンテナ装置を得ることができる。 According to the present disclosure, since the second signal conductor has a design margin of dimensional error with respect to the quad-ridge waveguide portion, it is possible to obtain a patch antenna device that is easy to manufacture.
実施の形態1に係るパッチアンテナ装置を示す一部模式した斜視図である。1 is a partially schematic perspective view showing a patch antenna device according to Embodiment 1. FIG. 実施の形態1に係るダブルリッジ導波部を示す分解斜視図である。1 is an exploded perspective view showing a double ridge waveguide according to Embodiment 1; FIG. 実施の形態1に係るクアッドリッジ導波部及びパッチ導体保有部を示す分解斜視図である。4 is an exploded perspective view showing a quad-ridge waveguide and a patch conductor holding portion according to Embodiment 1; FIG. 実施の形態1に係るパッチアンテナ装置(除く第1の誘電体基板)の開口部から見た構成を示す正面図である。2 is a front view showing the configuration of the patch antenna device (excluding the first dielectric substrate) according to Embodiment 1, viewed from the opening; FIG. 図4のA-A断面図である。FIG. 5 is a cross-sectional view taken along line AA of FIG. 4; 図4のB-B断面図である。FIG. 5 is a cross-sectional view taken along the line BB of FIG. 4; 図5に示した断面における高次モードの電界分布を示す図である。FIG. 6 is a diagram showing an electric field distribution of higher-order modes in the cross section shown in FIG. 5; 第2の給電プローブが図中-y方向に位置ずれした場合の図5に示した断面における高次モードの電界分布を示す図である。FIG. 6 is a diagram showing an electric field distribution of a higher-order mode in the cross section shown in FIG. 5 when the second feeding probe is displaced in the -y direction in the figure; 切り欠き部がない場合の図7に対応した高次モードの電界分布を示す図である。FIG. 8 is a diagram showing an electric field distribution in a higher-order mode corresponding to FIG. 7 when there is no notch; 切り欠き部がない場合の図8に対応した高次モードの電界分布を示す図である。FIG. 9 is a diagram showing an electric field distribution in a higher-order mode corresponding to FIG. 8 when there is no notch; 実施の形態1に係るパッチアンテナ装置において、一対の第1の突条と一対の第2の突条を含む一対の連続体の第2の例を示す図5相当に相当する断面図である。6 is a cross-sectional view corresponding to FIG. 5 showing a second example of a pair of continuous bodies including a pair of first ridges and a pair of second ridges in the patch antenna device according to Embodiment 1; FIG. 実施の形態1に係るパッチアンテナ装置において、一対の第1の突条と一対の第2の突条とを含む一対の連続体の第3の例を示す図5相当に相当する断面図である。6 is a cross-sectional view corresponding to FIG. 5 showing a third example of a pair of continuous bodies including a pair of first ridges and a pair of second ridges in the patch antenna device according to Embodiment 1; FIG. . パッチ導体の第2の例を示す第1の誘電体基板の斜視図である。FIG. 4 is a perspective view of a first dielectric substrate showing a second example of patch conductors; パッチ導体の第3の例を示す第1の誘電体基板の斜視図である。FIG. 11 is a perspective view of the first dielectric substrate showing a third example of patch conductors; パッチ導体の第4の例を示す第1の誘電体基板の斜視図である。FIG. 11 is a perspective view of a first dielectric substrate showing a fourth example of patch conductors; パッチ導体の第5の例を示す第1の誘電体基板の斜視図である。FIG. 11 is a perspective view of a first dielectric substrate showing a fifth example of patch conductors; パッチ導体の第6の例を示す第1の誘電体基板の斜視図である。FIG. 11 is a perspective view of a first dielectric substrate showing a sixth example of patch conductors; パッチ導体の第7の例を示す第1の誘電体基板の斜視図である。FIG. 11 is a perspective view of a first dielectric substrate showing a seventh example of patch conductors; パッチ導体の第8の例を示す第1の誘電体基板の斜視図である。FIG. 11 is a perspective view of a first dielectric substrate showing an eighth example of patch conductors; パッチ導体の第9の例を示す第1の誘電体基板の斜視図である。FIG. 20 is a perspective view of a first dielectric substrate showing a ninth example of patch conductors; パッチ導体保有部の第2の例を示す分解斜視図である。FIG. 11 is an exploded perspective view showing a second example of the patch conductor holding portion; パッチ導体保有部の第3の例を示す分解斜視図である。FIG. 11 is an exploded perspective view showing a third example of a patch conductor holding portion; パッチ導体保有部の第4の例を示す分解斜視図である。FIG. 11 is an exploded perspective view showing a fourth example of a patch conductor holding portion; パッチ導体保有部の第5の例を示す分解斜視図である。FIG. 11 is an exploded perspective view showing a fifth example of a patch conductor holding portion; パッチ導体保有部の第6の例を示す分解斜視図である。FIG. 11 is an exploded perspective view showing a sixth example of a patch conductor holding portion; 実施の形態2に係るパッチアンテナ装置を示す一部も指揮した斜視図である。FIG. 11 is a perspective view showing a patch antenna apparatus according to Embodiment 2, with a part thereof also shown; 実施の形態2に係るダブルリッジ導波部を示す分解斜視図である。FIG. 11 is an exploded perspective view showing a double ridge waveguide according to Embodiment 2; 実施の形態2に係るクアッドリッジ導波部及びパッチ導体保有部を示す分解斜視図である。FIG. 11 is an exploded perspective view showing a quad-ridge waveguide and a patch conductor holding portion according to Embodiment 2; 実施の形態2に係るパッチアンテナ装置(除く第1の誘電体基板)の開口部から見た構成を示す正面図である。FIG. 10 is a front view showing the configuration of the patch antenna device (excluding the first dielectric substrate) according to the second embodiment, viewed from the opening; 図29のA-A断面図である。FIG. 30 is a cross-sectional view taken along the line AA of FIG. 29; 図29のB-B断面図である。FIG. 30 is a cross-sectional view taken along the line BB of FIG. 29; 図30に示した断面における高次モードの電界分布を示す図である。FIG. 31 is a diagram showing the electric field distribution of a higher-order mode in the cross section shown in FIG. 30; 第2の給電プローブが図中-y方向に位置ずれした場合の図30に示した断面における高次モードの電界分布を示す図である。FIG. 31 is a diagram showing an electric field distribution of a higher-order mode in the cross section shown in FIG. 30 when the second feeding probe is displaced in the −y direction in the figure; 切り欠き部がない場合の図32に対応した高次モードの電界分布を示す図である。FIG. 33 is a diagram showing an electric field distribution of a higher-order mode corresponding to FIG. 32 when there is no notch; 切り欠き部がない場合の図33に対応した高次モードの電界分布を示す図である。FIG. 34 is a diagram showing an electric field distribution in a higher-order mode corresponding to FIG. 33 when there is no notch; 実施の形態2に係るパッチアンテナ装置において、一対の第1の突条と一対の第2の突条とを含む一対の連続体の第2の例を示す図30相当に相当する断面図である。31 is a cross-sectional view corresponding to FIG. 30 showing a second example of a pair of continuous bodies including a pair of first ridges and a pair of second ridges in the patch antenna device according to Embodiment 2; FIG. . 実施の形態2に係るパッチアンテナ装置において、一対の第1の突条と一対の第2の突条とを含む一対の連続体の第3の例を示す図305相当に相当する断面図である。305 is a cross-sectional view corresponding to FIG. 305 showing a third example of a pair of continuous bodies including a pair of first ridges and a pair of second ridges in the patch antenna device according to Embodiment 2; FIG. . 実施の形態3に係るパッチアンテナ装置を示す一部模式した斜視図である。FIG. 11 is a partially schematic perspective view showing a patch antenna device according to Embodiment 3; 実施の形態3に係るダブルリッジ導波部を示す分解斜視図である。FIG. 11 is an exploded perspective view showing a double ridge waveguide according to Embodiment 3; 実施の形態3に係るクアッドリッジ導波部及びパッチ導体保有部を示す分解斜視図である。FIG. 11 is an exploded perspective view showing a quad-ridge waveguide and a patch conductor holding portion according to Embodiment 3; 図40に示した図中y-z平面に平行で管軸中心を通る平面における高次モードの電界分布を示す図である。41 is a diagram showing the electric field distribution of higher-order modes in a plane parallel to the yz plane in the drawing shown in FIG. 40 and passing through the center of the tube axis; FIG. 第2の給電線路が図中-y方向に位置ずれした場合の図40に示したy-z平面に平行で管軸中心を通る平面における高次モードの電界分布を示す図である。41 is a diagram showing an electric field distribution of a higher-order mode on a plane parallel to the yz plane shown in FIG. 40 and passing through the center of the tube axis when the second feeder line is displaced in the −y direction in the figure. FIG.
実施の形態1.
 実施の形態1に係るパッチアンテナ装置を図1から図25に従い説明する。
 なお、実施の形態1に係るパッチアンテナ装置は伝搬モードが互いに直交する第1の電波及び第2の電波を伝搬する1つのパッチアンテナ装置として機能する他、第1の電波及び第2の電波の伝搬方向と直交する方向に複数個並行して素子アンテナが配列されたパッチアレイアンテナ装置における素子アンテナとしても適用される。
Embodiment 1.
A patch antenna apparatus according to Embodiment 1 will be described with reference to FIGS. 1 to 25. FIG.
Note that the patch antenna device according to Embodiment 1 functions as one patch antenna device that propagates a first radio wave and a second radio wave whose propagation modes are orthogonal to each other. It can also be applied as an element antenna in a patch array antenna device in which a plurality of element antennas are arranged in parallel in a direction perpendicular to the propagation direction.
 以下の説明では、1つのパッチアンテナ装置として説明するものの、素子アンテナとしても同様の構成であり、パッチアレイアンテナ装置もパッチアンテナ装置として総称して説明する。
 また、主として、送信アンテナとして動作する場合について説明する。
In the following description, one patch antenna device will be described, but an element antenna has the same configuration, and a patch array antenna device will also be generically described as a patch antenna device.
Also, mainly, the case of operating as a transmitting antenna will be described.
 実施の形態1に係るパッチアンテナ装置は、図1に示すように、ダブルリッジ導波部1とクアッドリッジ導波部2とパッチ導体保有部3とを備える。
 ダブルリッジ導波部1とクアッドリッジ導波部2とパッチ導体保有部3は、図4から図6からも理解されるように、中心軸に沿って直線上に配置される。
 すなわち、ダブルリッジ導波部1とクアッドリッジ導波部2とパッチ導体保有部3それぞれの管軸CAは同軸である。
The patch antenna apparatus according to Embodiment 1 includes a double ridge waveguide 1, a quad ridge waveguide 2, and a patch conductor holding portion 3, as shown in FIG.
The double ridge waveguide 1, the quad ridge waveguide 2, and the patch conductor holding portion 3 are arranged on a straight line along the central axis, as can be understood from FIGS. 4 to 6 as well.
That is, the tube axes CA of the double-ridge waveguide portion 1, the quad-ridge waveguide portion 2, and the patch conductor holding portion 3 are coaxial.
 ダブルリッジ導波部1は、図2に示すように、ダブルリッジ導波管部11と第1の信号導体12と短絡導波管部13を備える。
 図2は、説明の都合上、機能別に分解斜視図として示している。
The double-ridge waveguide section 1 includes a double-ridge waveguide section 11, a first signal conductor 12, and a short-circuit waveguide section 13, as shown in FIG.
For convenience of explanation, FIG. 2 shows an exploded perspective view for each function.
 ダブルリッジ導波部1は、第1の信号導体12である第1の給電プローブに入力された高周波信号(高周波電流)を第1の電波に変換し、第1の電波を第1の伝搬モードで伝搬する。
 ダブルリッジ導波部1は、第1の伝搬モードと異なる、この例では直交する第2の伝搬モードで伝搬する第2の電波の第2の伝搬モードにおける遮断周波数が第2の電波の周波数より高い周波数に設定されている。
 以下、第1の信号導体12を第1の給電プローブ12として説明する。
The double-ridge waveguide 1 converts a high-frequency signal (high-frequency current) input to a first feeding probe, which is a first signal conductor 12, into a first radio wave, and converts the first radio wave into a first propagation mode. Propagate with
In the double ridge waveguide 1, the cutoff frequency in the second propagation mode of the second radio wave propagating in the second propagation mode, which is different from the first propagation mode and orthogonal in this example, is higher than the frequency of the second radio wave. set to a high frequency.
Hereinafter, the first signal conductor 12 will be described as the first feeding probe 12 .
 ダブルリッジ導波管部11は、図2に示すように、第1の導波管部111と対向配置された一対の第1の突条112a、112bを備える。
 第1の導波管部111は断面が正方形の両端が開口した方形導波管であり、時計周りに4つの第1の側壁111aから第4の側壁111dを有する。
 なお、方形導波管の断面形状は正方形に限られるものではなく、矩形などの四辺形でもよく、また、方形導波管ではなく、断面が円形の円形導波管でもよい。
The double-ridge waveguide portion 11 includes a pair of first ridges 112a and 112b arranged to face the first waveguide portion 111, as shown in FIG.
The first waveguide section 111 is a rectangular waveguide having a square cross section and opening at both ends, and has four first sidewalls 111a to 111d clockwise.
The cross-sectional shape of the rectangular waveguide is not limited to a square, and may be a quadrilateral such as a rectangle. A circular waveguide having a circular cross section may be used instead of the rectangular waveguide.
 一対の第1の突条112a、112bは、第1の導波管部111の互いに対向する側壁である第1の側壁111a及び第3の側壁111cの内壁面における、第1の導波管部111の管軸CAと直交する線上、つまり、図2の図示x軸に沿った線上(縦方向)の中央に、第1の導波管部111の管軸CAに沿った線上、つまり、図2の図示z軸に沿った線上に、図2の図示y軸に沿った方向(横方向)に端面に間隙を有して内壁面から内方に立設して設けられている。 The pair of first protrusions 112a and 112b are provided on the inner wall surfaces of the first side wall 111a and the third side wall 111c, which are the side walls facing each other of the first waveguide section 111. 111 on a line perpendicular to the tube axis CA, that is, on a line (longitudinal direction) along the x-axis shown in FIG. 2 on a line along the z-axis shown in FIG. 2 with a gap at the end face in the direction (horizontal direction) along the y-axis shown in FIG.
 すなわち、一方の第1の突条112bは第3の側壁111cの内壁面に、縦方向の中央に管軸CAに沿って第1の導波管部111の一端から他端まで延在し、第1の側壁111aに向かって立設して設けられている。
 また、他方の第1の突条112aは第1の側壁111aの内壁面に、縦方向の中央に管軸CAに沿って第1の導波管部111の一端から他端まで延在し、第3の側壁111cに向かって立設して設けられている。
 図2において、縦方向をx軸、横方向をy軸、管軸方向をz軸として現わしている。管軸CAは第1の導波管部111の中心軸である。
That is, one first protrusion 112b extends from one end to the other end of the first waveguide portion 111 along the tube axis CA in the center in the vertical direction on the inner wall surface of the third side wall 111c, It is provided upright toward the first side wall 111a.
The other first protrusion 112a extends from one end to the other end of the first waveguide portion 111 along the tube axis CA in the center in the vertical direction on the inner wall surface of the first side wall 111a, It is provided upright toward the third side wall 111c.
In FIG. 2, the vertical direction is represented by the x-axis, the horizontal direction by the y-axis, and the tube axial direction by the z-axis. The tube axis CA is the central axis of the first waveguide section 111 .
 第1の突条112a、112bそれぞれは、第1の導波管部111の一端の開口が位置する側の一端部に、端面間の間隙を広くする第1の切り欠き部a11、b11が設けられている。
 すなわち、第1の突条112a、112bそれぞれは、第1の導波管部111の他端の開口が位置する他端から高さL1の立設部と、高さL1の立設部から第1の導波管部111の一端の開口が位置する一端までの高さL1より低い高さL2の立設部により構成される。
Each of the first protrusions 112a and 112b is provided with first notches a11 and b11 at one end of the side where the opening of one end of the first waveguide portion 111 is located to widen the gap between the end faces. It is
That is, each of the first protrusions 112a and 112b has a height L1 from the other end where the opening of the other end of the first waveguide portion 111 is located, and a height L1 from the height L1. It is composed of an upright portion having a height L2 that is lower than the height L1 to the one end where the opening of one waveguide portion 111 is located.
 第1の突条112aの高さL2の立設部と第1の突条112bの高さL2の立設部との間隙G2が、第1の突条112aの高さL1の立設部と第1の突条112bの高さL1の立設部との間隙G1より広い。
 その結果、第1の突条112aの高さL2の立設部に第1の切り欠き部a11が、第1の突条112bの高さL2の立設部に第1の切り欠き部b11が設けられていることになる。
 以下、第1の突条112a、112bを第1のリッジ部112a、112bとして説明する。
The gap G2 between the standing portion of the first protrusion 112a having a height L2 and the standing portion having a height L2 of the first protrusion 112b is the same as the standing portion having a height L1 of the first protrusion 112a. It is wider than the gap G1 between the first protrusion 112b and the standing portion having the height L1.
As a result, the first cutout portion a11 is formed in the standing portion of the first protrusion 112a having the height L2, and the first cutout portion b11 is formed in the standing portion of the first protrusion 112b having the height L2. It will be established.
Hereinafter, the first protrusions 112a and 112b will be described as first ridges 112a and 112b.
 ダブルリッジ導波管部11は、第1のリッジ部112a、112bの間の間隙により電界の方向が主に図示y軸に沿う電磁界分布である第1の伝搬モードで伝搬する第1の電波が管軸CAに沿って伝搬する。 The double-ridge waveguide portion 11 propagates a first radio wave in a first propagation mode, which is an electromagnetic field distribution in which the direction of the electric field is mainly along the y-axis in the drawing due to the gap between the first ridge portions 112a and 112b. propagates along the tube axis CA.
 ダブルリッジ導波管部11は、第1の導波管部111及び第1のリッジ部112a、112bの管軸CAの方向と直交する縦方向及び横方向、図2の図示x軸及びy軸の方向の寸法などを調整することにより、第2の電波が伝搬する第2の電波の電磁界分布の形態である第2の伝搬モードにおける遮断周波数、つまり、第2の伝搬モードで伝搬する第2の電波が伝搬する最低周波数が、第2の電波の周波数より高い周波数に設定されている。 The double ridge waveguide portion 11 extends along the vertical and horizontal directions orthogonal to the direction of the tube axis CA of the first waveguide portion 111 and the first ridge portions 112a and 112b, the x-axis and the y-axis shown in FIG. By adjusting the dimension in the direction of the second radio wave, the cutoff frequency in the second propagation mode, which is the form of the electromagnetic field distribution of the second radio wave that propagates, that is, the second 2 is set to a frequency higher than the frequency of the second radio wave.
 ダブルリッジ導波管部11は、第3の側壁111cの外壁面から一方の第1のリッジ部112bにおける高さL1の立設部の側面まで貫通した第1のプローブ挿通孔113が設けられている。
 第1のプローブ挿通孔113は、ダブルリッジ導波管部11の他端側に位置し、横方向、つまり、図2の図示y軸方向に貫通した貫通孔である。
The double ridge waveguide portion 11 is provided with a first probe insertion hole 113 penetrating from the outer wall surface of the third side wall 111c to the side surface of the erected portion having the height L1 in one first ridge portion 112b. there is
The first probe insertion hole 113 is located on the other end side of the double ridge waveguide portion 11 and is a through hole penetrating in the horizontal direction, that is, the y-axis direction shown in FIG.
 第1の給電プローブ12は棒状の導体であり、第1のプローブ挿通孔113の軸心に沿うように第1のプローブ挿通孔113に挿入される。
 第1の給電プローブ12の一端部12aは、第1のプローブ挿通孔113の一方の開放端から突出、つまり、一方の第1のリッジ部112bにおける高さL1の立設部の側面から突出し、第1のリッジ部112aと第1のリッジ部112bの間に配置されている。
The first power supply probe 12 is a rod-shaped conductor and is inserted into the first probe insertion hole 113 along the axis of the first probe insertion hole 113 .
One end portion 12a of the first power supply probe 12 protrudes from one open end of the first probe insertion hole 113, that is, protrudes from the side surface of the standing portion having a height L1 in one first ridge portion 112b, It is arranged between the first ridge portion 112a and the first ridge portion 112b.
 第1の給電プローブ12の軸心は、図2の図示y-z平面に平行なダブルリッジ導波管部11の管軸CAを含む横断面に位置するように配置されている。
 また、第1の給電プローブ12の一端部12aの端面は、図4及び図5に示すように、他方の第1のリッジ部112aの側面に接している。
The axial center of the first feeding probe 12 is arranged so as to be positioned on a cross section including the tube axis CA of the double-ridge waveguide portion 11 parallel to the yz plane shown in FIG.
Moreover, as shown in FIGS. 4 and 5, the end surface of the one end portion 12a of the first power supply probe 12 is in contact with the side surface of the other first ridge portion 112a.
 第1の給電プローブ12の他端12bは、図1に示すように、ダブルリッジ導波管部11の外部に設けた第1の給電回路4に伝送線路5を介して電気的に接続されている。
 第1の給電回路4は、伝送線路5を介して第1の給電プローブ12に第1の電波に対する高周波信号(高周波電流)を出力する。
 伝送線路5は、管状の外部導体と、この外部導体の軸心に沿うように設けた内部導体と、外部導体と内部導体の間に充填された絶縁体を有する同軸線路である。
The other end 12b of the first feeding probe 12 is, as shown in FIG. there is
The first feeding circuit 4 outputs a high frequency signal (high frequency current) for the first radio wave to the first feeding probe 12 via the transmission line 5 .
The transmission line 5 is a coaxial line having a tubular outer conductor, an inner conductor provided along the axis of the outer conductor, and an insulator filled between the outer conductor and the inner conductor.
 なお、第1の導波管部111が円形導波管である場合、第1の導波管部111は、側壁の周囲を時計周りに4分割する第1の導波管部111の管軸CAに平行な第1の仮想線から第4の仮想線を有し、一対の第1の突条112a、112bは互いに対向する仮想線である第1の仮想線及び第3の仮想線上に、上記で説明した方形導波管と同様に設けられる。 In addition, when the first waveguide part 111 is a circular waveguide, the first waveguide part 111 divides the circumference of the side wall clockwise into four parts. It has a first virtual line to a fourth virtual line parallel to CA, and the pair of first ridges 112a and 112b are virtual lines facing each other on the first virtual line and the third virtual line, It is provided similarly to the rectangular waveguide described above.
 ダブルリッジ導波部1における短絡導波管部13は、第2の導波管部131と短絡導体部132を備える。
 第2の導波管部131は、一端が第1の導波管部111の他端と連通した断面が正方形の両端が開口した方形導波管である。
 第2の導波管部131は、第1の導波管部111と同様に、第1の導波管部111が四辺形の方形導波管であれば四辺形の方形導波管であり、円形導波管であれば円形導波管である。
 第2の導波管部131の管軸CAは第1の導波管部111の管軸CAと同軸である。
The short-circuit waveguide portion 13 in the double-ridge waveguide portion 1 includes a second waveguide portion 131 and a short-circuit conductor portion 132 .
The second waveguide section 131 is a rectangular waveguide having a square cross section, one end of which communicates with the other end of the first waveguide section 111 , and both ends of which are open.
The second waveguide part 131 is a quadrilateral rectangular waveguide if the first waveguide part 111 is a quadrilateral rectangular waveguide like the first waveguide part 111. , if it is a circular waveguide, it is a circular waveguide.
The tube axis CA of the second waveguide section 131 is coaxial with the tube axis CA of the first waveguide section 111 .
 短絡導体部132は、第2の導波管部131の他端の開口を閉塞し、第2の導波管部131を電気的に短絡する板状の導体である。
 短絡導体部132の外形形状は第2の導波管部131の外形形状と同じである。
The short-circuit conductor portion 132 is a plate-shaped conductor that closes the opening at the other end of the second waveguide portion 131 and electrically short-circuits the second waveguide portion 131 .
The outer shape of the short-circuit conductor portion 132 is the same as the outer shape of the second waveguide portion 131 .
 クアッドリッジ導波部2は、図3に示すように、クアッドリッジ導波管部21と第2の信号導体22を備える。
 クアッドリッジ導波部2は、ダブルリッジ導波部1から伝搬された第1の電波を伝搬するとともに、第2の信号導体22である第2の給電プローブに入力された高周波信号(高周波電流)を第2の電波に変換し、第2の電波を伝搬する。
 第2の給電プローブ22に入力される高周波信号の周波数は、第1の給電プローブ12に入力される高周波信号の周波数とは異なる。
 以下、第2の信号導体22を第2の給電プローブ22として説明する。
The quad-ridge waveguide section 2 includes a quad-ridge waveguide section 21 and a second signal conductor 22, as shown in FIG.
The quad-ridge waveguide portion 2 propagates the first radio wave propagated from the double-ridge waveguide portion 1, and the high-frequency signal (high-frequency current) input to the second power supply probe, which is the second signal conductor 22. is converted into a second radio wave, and the second radio wave is propagated.
The frequency of the high frequency signal input to the second power supply probe 22 is different from the frequency of the high frequency signal input to the first power supply probe 12 .
Hereinafter, the second signal conductor 22 will be described as the second feeding probe 22 .
 第1の電波がダブルリッジ導波部1及びクアッドリッジ導波部2内を伝搬する第1の電波の電磁界分布の形態を示す第1の伝搬モードと、第2の電波がクアッドリッジ導波部2内を伝搬する第2の電波の電磁界分布の形態を示す第2の伝搬モードは、直交する関係にある。 A first propagation mode showing the form of the electromagnetic field distribution of the first radio wave in which the first radio wave propagates in the double ridge waveguide part 1 and the quad ridge waveguide part 2, and a second radio wave in the quad ridge waveguide The second propagation mode, which indicates the form of the electromagnetic field distribution of the second radio wave propagating through the portion 2, has an orthogonal relationship.
 クアッドリッジ導波管部21は、図3に示すように、第3の導波管部211と、それぞれが一対の第1の突条112a、112bと連続して対向配置された一対の第2の突条212a、212bと、一対の第2の突条212a、212bの間に対向配置された一対の第3の突条213a、213bを備える。 As shown in FIG. 3, the quad-ridge waveguide portion 21 includes a third waveguide portion 211 and a pair of second waveguide portions 211 and 212a, 112b and a pair of second waveguide portions 212a and 112b, respectively, arranged to face each other continuously. ridges 212a and 212b, and a pair of third ridges 213a and 213b disposed facing each other between the pair of second ridges 212a and 212b.
 第3の導波管部211は、他端が第1の導波管部111の一端と連通した断面が正方形の両端が開口した方形導波管であり、第1の導波管部111の第1の側壁111aから第4の側壁111dと対応して時計周りに4つの第1の側壁211aから第4の側壁211dを有する。 The third waveguide section 211 is a rectangular waveguide having a square cross section and opening at both ends, the other end of which communicates with one end of the first waveguide section 111. It has four first side walls 211a to 4th side walls 211d corresponding to the first side walls 111a to 4th side walls 111d.
 第3の導波管部211は、第1の導波管部111と同様に、第1の導波管部111が四辺形の方形導波管であれば四辺形の方形導波管であり、円形導波管であれば円形導波管である。
 第3の導波管部211の管軸CAは第1の導波管部111の管軸CAと同軸である。
The third waveguide section 211 is a quadrilateral rectangular waveguide if the first waveguide section 111 is a quadrilateral rectangular waveguide, similar to the first waveguide section 111. , if it is a circular waveguide, it is a circular waveguide.
The tube axis CA of the third waveguide section 211 is coaxial with the tube axis CA of the first waveguide section 111 .
 一対の第2の突条212a、212bは、第3の導波管部211の互いに対向する側壁である第1の側壁211a及び第3の側壁211cの内壁面における、第3の導波管部211の管軸CAと直交する線上、つまり、図3の図示x軸に沿った線上(縦方向)の中央に、第3の導波管部211の管軸CAに沿った線上、つまり、図3の図示z軸に沿って線上に、図3の図示y軸に沿った方向(横方向)に端面間に間隙を有して内壁面から内方に立設して設けられている。
 一対の第2の突条212a、212bそれぞれは一対の第1の突条112a、112bそれぞれとにより一対の連続体を構成する。
The pair of second ridges 212a and 212b are formed on the inner wall surfaces of the first side wall 211a and the third side wall 211c, which are the side walls of the third waveguide section 211 facing each other. 211 on a line perpendicular to the tube axis CA, that is, on a line (longitudinal direction) along the x-axis shown in FIG. 3 on a line along the z-axis shown in FIG. 3 and standing inward from the inner wall surface with a gap between the end faces in the direction (horizontal direction) along the y-axis shown in FIG.
The pair of second protrusions 212a and 212b and the pair of first protrusions 112a and 112b form a pair of continuous bodies.
 一方の第2の突条212bは第3の側壁211cの内壁面に、縦方向の中央に管軸CAに沿って第3の導波管部211の一端から他端まで延在し、第1の側壁211aに向かって立設して設けられている。
 また、他方の第2の突条212aは第1の側壁211aの内壁面に、縦方向の中央に管軸CAに沿って第3の導波管部211の一端から他端まで延在し、第3の側壁211cに向かって立設して設けられている。
 図3において、縦方向をx軸、横方向をy軸、管軸方向をz軸として現わしている。管軸CAは第3の導波管部211の中心軸である。
One second protrusion 212b extends from one end to the other end of the third waveguide portion 211 along the tube axis CA in the center in the vertical direction on the inner wall surface of the third side wall 211c. is provided upright toward the side wall 211a of the .
The other second protrusion 212a extends from one end to the other end of the third waveguide portion 211 along the tube axis CA in the center in the vertical direction on the inner wall surface of the first side wall 211a, It is provided upright toward the third side wall 211c.
In FIG. 3, the vertical direction is shown as the x-axis, the horizontal direction as the y-axis, and the tube axial direction as the z-axis. A tube axis CA is the central axis of the third waveguide section 211 .
 第2の突条212a、212bそれぞれは、第3の導波管部211の他端の開口が位置する側の他端部に、端面間の間隙を広くする第2の切り欠き部a12、b12が設けられている。
 すなわち、第2の突条212a、212bそれぞれは、第3の導波管部211の一端の開口が位置する一端から高さL1の立設部と、高さL1の立設部から第3の導波管部211の他端の開口が位置する一端までの高さL1より低い高さL2の立設部により構成される。
Each of the second protrusions 212a and 212b has second cutouts a12 and b12 that widen the gap between the end faces at the other end of the side where the opening of the other end of the third waveguide portion 211 is located. is provided.
That is, each of the second protrusions 212a and 212b has a standing portion with a height L1 from one end where the opening of the one end of the third waveguide portion 211 is located, and a third standing portion from the standing portion with a height L1. It is composed of an upright portion having a height L2 lower than the height L1 to one end where the opening of the other end of the waveguide portion 211 is located.
 第2の突条212aの高さL2の立設部と第2の突条212bの高さL2の立設部との間隙G2が、第2の突条212aの高さL1の立設部と第2の突条212bの高さL1の立設部との間隙G1より広い。
 その結果、第2の突条212aの高さL2の立設部に第2の切り欠き部a12が、第2の突条212bの高さL2の立設部に第2の切り欠き部b12が設けられていることになる。
The gap G2 between the upright portion of the second ridge 212a with the height L2 and the upright portion of the second ridge 212b with the height L2 is the same as the upright portion with the height L1 of the second ridge 212a. It is wider than the gap G1 between the second protrusion 212b and the standing portion having the height L1.
As a result, the second cutout portion a12 is formed in the raised portion of the second protrusion 212a with the height L2, and the second cutout portion b12 is formed in the raised portion of the second protrusion 212b with the height L2. It will be established.
 要するに、第1の突条112aと第2の突条212aにより構成される一対の連続体の一方の連続体は、ダブルリッジ導波管部11とクアッドリッジ導波管部21との境界部に、連続する第1の切り欠き部a11と第2の切り欠き部a12による切り欠き部が設けられる。
 また、第1の突条112bと第2の突条212bにより構成される一対の連続体の他方の連続体は、ダブルリッジ導波管部11とクアッドリッジ導波管部21との境界部に、連続する第1の切り欠き部b11と第2の切り欠き部b12による切り欠き部が設けられる。
In short, one continuum of the pair of continuities constituted by the first ridge 112a and the second ridge 212a is located at the boundary between the double ridge waveguide section 11 and the quad ridge waveguide section 21. , a notch portion is provided by a first notch portion a11 and a second notch portion a12 that are continuous.
The other continuum of the pair of continuities constituted by the first ridge 112b and the second ridge 212b is located at the boundary between the double ridge waveguide section 11 and the quad ridge waveguide section 21. , a notch portion is provided by a first notch portion b11 and a second notch portion b12 that are continuous.
 従って、一対の第1の突条112a、112bと一対の第2の突条212a、212bとにより構成される一対の連続体は、ダブルリッジ導波管部11とクアッドリッジ導波管部21との境界部に、対向する一対の連続体の端面間の間隙を広くする切り欠き部が設けられていることになる。
 以下、第2の突条212a、212bを第2のリッジ部212a、212bとして説明する。
Therefore, the pair of continuities constituted by the pair of first ridges 112a and 112b and the pair of second ridges 212a and 212b are the double ridge waveguide section 11 and the quad ridge waveguide section 21. At the boundary between the two continuum bodies, there is provided a notch for widening the gap between the end surfaces of the pair of continuum bodies facing each other.
Hereinafter, the second ridges 212a and 212b will be described as second ridges 212a and 212b.
 クアッドリッジ導波管部21は、第2のリッジ部212a、212bそれぞれが第1のリッジ部112a、112bと連続体を構成しているので、ダブルリッジ導波管部11から出力された第1の電波は、第2のリッジ部212a、212bの間の間隙により電界の方向が主に図示y軸に沿う電磁界分布である第1の伝搬モードにより管軸CAに沿って伝搬する。 In the quad-ridge waveguide portion 21, the second ridge portions 212a and 212b form a continuum with the first ridge portions 112a and 112b, respectively. propagates along the tube axis CA in the first propagation mode, which is an electromagnetic field distribution in which the direction of the electric field is mainly along the y-axis in the figure due to the gap between the second ridges 212a and 212b.
 一対の第3の突条213a、213bは、一対の第2の突条212a、212bが位置する側壁211a、211cと直交する互いに対向する側壁である第3の導波管部211の第2の側壁211b及び第4の側壁211dの内壁面における、第3の導波管部211の管軸CAと直交する線上、つまり、図3の図示y軸に沿った線上(横方向)の中央に、第3の導波管部211の管軸CAに沿った線上、つまり、図3の図示z軸に沿って線上に、図3の図示x軸に沿った方向(縦方向)に端面間に間隙を有して内壁面から内方に立設して設けられている。 The pair of third ridges 213a and 213b are the side walls 211a and 211c on which the pair of second ridges 212a and 212b are positioned. On the inner wall surface of the side wall 211b and the fourth side wall 211d, on a line orthogonal to the tube axis CA of the third waveguide part 211, that is, on a line (horizontal direction) along the y-axis shown in FIG. On a line along the tube axis CA of the third waveguide part 211, that is, on a line along the illustrated z-axis of FIG. and is provided so as to stand inwardly from the inner wall surface.
 すなわち、一方の第3の突条213aは第2の側壁211bの内壁面に、横方向の中央に管軸CAに沿って第3の導波管部211の一端から他端まで延在し、第4の側壁211dに向かって立設して設けられている。
 また、他方の第3の突条213bは第4の側壁211dの内壁面に、管横方向の中央に管軸CAに沿って第3の導波管部211の一端から他端まで延在し、第2の側壁211bに向かって立設して設けられている。
 要するに、一対の第3の突条213a、213bを含む平面が一対の第2の突条212a、212bを含む平面に対して直交している。
That is, one third protrusion 213a extends from one end to the other end of the third waveguide portion 211 along the tube axis CA in the center in the lateral direction on the inner wall surface of the second side wall 211b, It is provided upright toward the fourth side wall 211d.
The other third protrusion 213b extends from one end to the other end of the third waveguide portion 211 along the tube axis CA at the center in the lateral direction of the tube on the inner wall surface of the fourth side wall 211d. , are provided upright toward the second side wall 211b.
In short, the plane containing the pair of third ridges 213a and 213b is orthogonal to the plane containing the pair of second ridges 212a and 212b.
 第3の突条213a、213bそれぞれは、第3の導波管部211の他端から一端まで同じ高さL3であり、第3の突条213aと第3の突条213bとの間隙は全体を通して同じ間隙G3である。
 一対の第3の突条213a、213bは一対の第2の突条212a、212bの間に配置、つまり、一対の第2の突条212a、212bと直交して配置されている。
 以下、第3の突条213a、213bを第3のリッジ部213a、213bとして説明する。
Each of the third protrusions 213a and 213b has the same height L3 from the other end to the one end of the third waveguide portion 211, and the gap between the third protrusions 213a and 213b is the entire is the same gap G3 through.
The pair of third ridges 213a, 213b is arranged between the pair of second ridges 212a, 212b, that is, arranged perpendicular to the pair of second ridges 212a, 212b.
Hereinafter, the third protrusions 213a and 213b will be described as third ridges 213a and 213b.
 クアッドリッジ導波管部21は、第3のリッジ部213a、213bの間の間隙により電界の方向が主に図示x軸に沿う電磁界分布である第2の伝搬モードで伝搬する第2の電波が管軸CAに沿って伝搬する。 The quad-ridge waveguide portion 21 propagates the second radio waves in the second propagation mode, which is an electromagnetic field distribution in which the direction of the electric field is mainly along the x-axis in the figure due to the gap between the third ridge portions 213a and 213b. propagates along the tube axis CA.
 クアッドリッジ導波管部21は、第2の側壁211bの外壁面から一方の第3のリッジ部213aの側面まで貫通した第2のプローブ挿通孔214が設けられている。
 第2のプローブ挿通孔214は、クアッドリッジ導波管部21の他端側に位置し、縦方向、つまり、図3の図示x軸方向に貫通した貫通孔である。
The quad-ridge waveguide portion 21 is provided with a second probe insertion hole 214 penetrating from the outer wall surface of the second side wall 211b to the side surface of one third ridge portion 213a.
The second probe insertion hole 214 is located on the other end side of the quad-ridge waveguide portion 21 and is a through hole penetrating in the vertical direction, ie, the x-axis direction shown in FIG.
 また、第2のプローブ挿通孔214は、図5及び図6に示すように、第2のリッジ部212aにおける第2の切り欠き部a12と第2のリッジ部212bにおける第2の切り欠き部b12との間に位置する。
 要は、第2のプローブ挿通孔214は、第1のリッジ部112a、112bと第2のリッジ部212a、212bにより構成される一対の連続体における第1の切り欠き部a11及び第2の切り欠き部a12による切り欠き部と第1の切り欠き部b11及び第2の切り欠き部b12による切り欠き部の間に位置することになる。
5 and 6, the second probe insertion hole 214 is formed by a second notch portion a12 in the second ridge portion 212a and a second notch portion b12 in the second ridge portion 212b. located between
In short, the second probe insertion hole 214 corresponds to the first notch a11 and the second notch in a pair of continuous bodies composed of the first ridges 112a, 112b and the second ridges 212a, 212b. It is positioned between the cutout portion formed by the cutout portion a12 and the cutout portions formed by the first cutout portion b11 and the second cutout portion b12.
 第2の給電プローブ22は棒状の導体であり、第2のプローブ挿通孔214の軸心に沿うように第2のプローブ挿通孔214に挿入される。
 その結果、第2の給電プローブ22はクアッドリッジ導波管部21の他端側に位置して配置される。第2の給電プローブ22はクアッドリッジ導波管部21とダブルリッジ導波管部11との境界部に位置するクアッドリッジ導波管部21の他端側に配置される。
 第2の給電プローブ22の一端部22aは、第2のプローブ挿通孔214の一方の開放端から突出、つまり、一方の第3のリッジ部213aの側面から突出し、第3のリッジ部213aと第3のリッジ部213bの間に配置されている。
The second power supply probe 22 is a rod-shaped conductor and is inserted into the second probe insertion hole 214 along the axis of the second probe insertion hole 214 .
As a result, the second feeding probe 22 is positioned on the other end side of the quad-ridge waveguide section 21 . The second feeding probe 22 is arranged on the other end side of the quad-ridge waveguide section 21 located at the boundary between the quad-ridge waveguide section 21 and the double-ridge waveguide section 11 .
One end portion 22a of the second power supply probe 22 protrudes from one open end of the second probe insertion hole 214, that is, protrudes from the side surface of one third ridge portion 213a. 3 are arranged between the ridge portions 213b.
 第2の給電プローブ22の軸心は、図3の図示x-z平面に平行なクアッドリッジ導波管部21の管軸CAを含む縦断面に配置されている。
 また、第2の給電プローブ22の一端部22aの端面は、図4及び図6に示すように、他方の第3のリッジ部213bの側面に接している。
The axis of the second feeding probe 22 is arranged in a longitudinal section including the tube axis CA of the quad-ridge waveguide section 21 parallel to the xz plane shown in FIG.
4 and 6, the end surface of the one end portion 22a of the second feeding probe 22 is in contact with the side surface of the other third ridge portion 213b.
 また、第2の給電プローブ22は、図5及び図6に示すように、第2の突条212aにおける第2の切り欠き部a12と第2の突条212bにおける第2の切り欠き部b12との間に位置し、第1の突条112a、112bと第2の突条212a、212bにより構成される一対の連続体における第1の切り欠き部a11及び第2の切り欠き部a12による切り欠き部と第1の切り欠き部b11及び第2の切り欠き部b12による切り欠き部の間に位置することになる。 5 and 6, the second feeding probe 22 has a second notch portion a12 in the second ridge 212a and a second notch portion b12 in the second ridge 212b. A notch by a first notch part a11 and a second notch part a12 in a pair of continuous bodies positioned between and composed of the first protrusions 112a, 112b and the second protrusions 212a, 212b , and between the notches formed by the first notch b11 and the second notch b12.
 第2の給電プローブ22の軸心は、投影された縦断面、つまり、図2及び図3の図示x-y面において、図4に示すように、第1の給電プローブ12の軸心と直交する。 The axis of the second feeding probe 22 is perpendicular to the axis of the first feeding probe 12 as shown in FIG. 4 in the projected longitudinal section, that is, the xy plane shown in FIGS. do.
 第2の給電プローブ22の他端22bは、図1に示すように、クアッドリッジ導波管部21の外部に設けた第2の給電回路6に伝送線路7を介して電気的に接続される。
 第2の給電回路6は、伝送線路7を介して第2の給電プローブ22に第2の電波に対する高周波信号(高周波電流)を出力する。
 伝送線路7は、管状の外部導体と、この外部導体の軸心に沿うように設けた内部導体と、外部導体と内部導体の間に充填された絶縁体を有する同軸線路である。
The other end 22b of the second feeding probe 22 is electrically connected via a transmission line 7 to the second feeding circuit 6 provided outside the quad-ridge waveguide section 21, as shown in FIG. .
The second feeding circuit 6 outputs a high frequency signal (high frequency current) for the second radio wave to the second feeding probe 22 via the transmission line 7 .
The transmission line 7 is a coaxial line having a tubular outer conductor, an inner conductor provided along the axis of the outer conductor, and an insulator filled between the outer conductor and the inner conductor.
 なお、第3の導波管部211が円形導波管である場合、第3の導波管部211は、第1の導波管部111の第1の仮想線から第4の仮想線と対応して側壁の周囲を時計周りに4分割する第3の導波管部211の管軸CAに平行な第1の仮想線から第4の仮想線を有し、一対の第2の突条212a、212bは互いに対向する仮想線である第1の仮想線及び第3の仮想線上に、一対の第3の突条213a、213bは互いに対向する仮想線である第2の仮想線及び第4の仮想線上に、上記で説明した方形導波管と同様にそれぞれ設けられる。 Note that when the third waveguide portion 211 is a circular waveguide, the third waveguide portion 211 extends from the first virtual line to the fourth virtual line of the first waveguide portion 111. Correspondingly, it has first to fourth virtual lines parallel to the tube axis CA of the third waveguide section 211 that divides the circumference of the side wall clockwise into four, and has a pair of second ridges. 212a and 212b are on first and third imaginary lines that are imaginary lines facing each other, and a pair of third protrusions 213a and 213b are on second and fourth imaginary lines that are imaginary lines facing each other. , respectively, in the same manner as the rectangular waveguides described above.
 パッチ導体保有部3は、パッチアンテナ装置が送信アンテナとして機能、動作する場合、主偏波の向きが互いに直交した第1の電波及び第2の電波を外部空間に放射する電波放射部として機能するので、以下、パッチ導体保有部3を電波放射部3として説明する。 When the patch antenna device functions and operates as a transmission antenna, the patch conductor holding portion 3 functions as a radio wave radiating portion that radiates a first radio wave and a second radio wave having main polarization directions orthogonal to each other to the external space. Therefore, hereinafter, the patch conductor holding portion 3 will be described as the radio wave radiating portion 3 .
 電波放射部3は、図3に示すように、クアッドリッジ導波管部21の一端部に配置され、導体平板31と、スペーサ32と、一面である内表面にパッチ導体332を有する第1の誘電体基板33を備える。 As shown in FIG. 3, the radio wave radiating section 3 is arranged at one end of the quad-ridge waveguide section 21, and includes a conductor flat plate 31, a spacer 32, and a first antenna having a patch conductor 332 on its inner surface. A dielectric substrate 33 is provided.
 導体平板31は、裏面がクアッドリッジ導波管部21の一端に設けられ、クアッドリッジ導波管部21の一端に位置する開口と連通する開口311を有し、外形形状がクアッドリッジ導波管部21における第3の導波管部211の外形形状より大きい正方形の板状の導体である。
 開口311はクアッドリッジ導波管部21の一端に位置する開口と同一形状である。
 導体平板31の中心は第3の導波管部211の管軸CAの延長線上にある。
The conductor flat plate 31 has a back surface provided at one end of the quadridge waveguide portion 21, has an opening 311 communicating with an opening located at one end of the quadridge waveguide portion 21, and has an outer shape of a quadridge waveguide. It is a square plate-shaped conductor larger than the external shape of the third waveguide portion 211 in the portion 21 .
The opening 311 has the same shape as the opening located at one end of the quad-ridge waveguide section 21 .
The center of the conductor flat plate 31 is on the extension line of the tube axis CA of the third waveguide section 211 .
 導体平板31は、開口311を囲う枠部312と、枠部312の内辺それぞれから開口311に突出した4つの突出片313a、313b、314a、314bを有する。
 4つの突出片313a、313b、314a、314bはそれぞれ、クアッドリッジ導波管部21における一対の第2のリッジ部212a、212b及び一対の第3のリッジ部213a、213bそれぞれに対応して設けられ、それぞれの裏面が対応したリッジ部212a、212b、213a、213bそれぞれの一端に位置する側面の形状と一致して対応したリッジ部212a、212b、213a、213bそれぞれの一端に位置する側面に接合される。
The conductor flat plate 31 has a frame portion 312 surrounding the opening 311 and four projecting pieces 313a, 313b, 314a, and 314b projecting from the inner sides of the frame portion 312 into the opening 311 respectively.
The four projecting pieces 313a, 313b, 314a, 314b are provided corresponding to the pair of second ridges 212a, 212b and the pair of third ridges 213a, 213b in the quad ridge waveguide section 21, respectively. , the rear surfaces of the respective ridges 212a, 212b, 213a, and 213b are joined to the side surfaces located at one ends of the corresponding ridges 212a, 212b, 213a, and 213b in conformity with the shapes of the side surfaces located at one ends of the corresponding ridges 212a, 212b, 213a, and 213b. be.
 すなわち、枠部312は第3の導波管部211の一端面に接合し、突出片313aはリッジ部212aの一端に位置する側面に、突出片313bはリッジ部212bの一端に位置する側面に、突出片314aはリッジ部213aの一端に位置する側面に、突出片314bはリッジ部213bの一端に位置する側面に、それぞれ接合される。 That is, the frame portion 312 is joined to one end surface of the third waveguide portion 211, the projecting piece 313a is connected to the side surface located at one end of the ridge portion 212a, and the projecting piece 313b is connected to the side surface located at one end of the ridge portion 212b. , the projecting piece 314a is joined to the side surface located at one end of the ridge portion 213a, and the projecting piece 314b is joined to the side surface located at one end of the ridge portion 213b.
 開口311は、突出片313aと突出片314aにより区切られた開口311aと、突出片314aと突出片313bにより区切られた開口311bと、突出片313bと突出片314bにより区切られた開口311cと、突出片314bと突出片313aにより区切られた開口311dにより構成される。 The opening 311 includes an opening 311a separated by a projecting piece 313a and a projecting piece 314a, an opening 311b separated by a projecting piece 314a and a projecting piece 313b, an opening 311c separated by a projecting piece 313b and a projecting piece 314b, and a projection. It is composed of an opening 311d separated by a piece 314b and a projecting piece 313a.
 開口311aは第2のリッジ部212aと第3のリッジ部213aにより区切られた開口に、開口311bは第3のリッジ部213aと第2のリッジ部212bとにより区切られた開口に、開口311cは第2のリッジ部212bと第3のリッジ部213bにより区切られた開口に、開口311dは第3のリッジ部213bと第2のリッジ部212aにより区切られた開口に、それぞれ連通する。 The opening 311a is an opening separated by the second ridge portion 212a and the third ridge portion 213a, the opening 311b is an opening separated by the third ridge portion 213a and the second ridge portion 212b, and the opening 311c is an opening separated by the third ridge portion 213a and the second ridge portion 212b. The opening separated by the second ridge 212b and the third ridge 213b, and the opening 311d communicated with the opening separated by the third ridge 213b and the second ridge 212a.
 突出片313aと突出片313bとの間隙は、第2のリッジ部212aの高さL1の立設部と第2のリッジ部212bの高さL1の立設部との間隙G1と同じであり、突出片314aと突出片314bとの間隙は、第3のリッジ部213aと第3のリッジ部213bとの間隙G3と同じである。 The gap between the protruding piece 313a and the protruding piece 313b is the same as the gap G1 between the standing portion of the second ridge portion 212a with a height L1 and the standing portion of the second ridge portion 212b with a height L1, The gap between the projecting piece 314a and the projecting piece 314b is the same as the gap G3 between the third ridge portion 213a and the third ridge portion 213b.
 導体平板31の外形は、第3の導波管部211の外形と同様に、第3の導波管部211が四辺形であれば四辺形であり、円形であれば円形であるのが好ましく、4つの突出片313a、313b、314a、314bがそれぞれ、クアッドリッジ導波管部21における第2のリッジ部212a、212b及び第3のリッジ部213a、213bそれぞれに対応して設けられ、開口311がクアッドリッジ導波管部21の開口と同一形状であるので、外形は異なっていてもよい。
 また、導体平板31の外形が第3の導波管部211の外形と同一形状、同一大きさであってもよい。
The external shape of the conductor plate 31 is preferably a quadrilateral if the third waveguide portion 211 is a quadrilateral, and a circular shape if the third waveguide portion 211 is circular, like the external shape of the third waveguide portion 211 . , four projecting pieces 313a, 313b, 314a, and 314b are provided corresponding to the second ridges 212a, 212b and the third ridges 213a, 213b in the quad-ridge waveguide section 21, respectively. has the same shape as the opening of the quad-ridge waveguide portion 21, the outer shape may be different.
Further, the outer shape of the conductor flat plate 31 may be the same shape and size as the outer shape of the third waveguide section 211 .
 スペーサ32は、断面が正方形の両端が開口した導体筒であり、他端が導体平板31の表面に接合して導体平板31の開口311の周囲を囲う。
 スペーサ32の外形は導体平板31の外形と同じであり、スペーサ32の管軸CAは第3の導波管部211の管軸CAと同軸である。
 スペーサ32の外形は、導体平板31の外形と同様に、第3の導波管部211が四辺形であれば四辺形であり、円形であれば円形である。
The spacer 32 is a conductor cylinder having a square cross section and opening at both ends.
The outer shape of the spacer 32 is the same as the outer shape of the conductor flat plate 31 , and the tube axis CA of the spacer 32 is coaxial with the tube axis CA of the third waveguide section 211 .
Like the conductor flat plate 31, the outer shape of the spacer 32 is quadrilateral if the third waveguide portion 211 is quadrilateral, and circular if the third waveguide portion 211 is circular.
 第1の誘電体基板33は、第1の誘電体331と、第1の誘電体331の一面、この例では内表面の中央に導体箔が貼着されたストリップ導体であるパッチ導体332とを有するプリント基板である。
 第1の誘電体基板33は、スペーサ32を介して一定間隔をあけて導体平板31に平行にした導体平板31に装着される。
The first dielectric substrate 33 comprises a first dielectric 331 and a patch conductor 332, which is a strip conductor having a conductive foil adhered to the center of the inner surface of one surface of the first dielectric 331 in this example. It is a printed circuit board with
The first dielectric substrate 33 is attached to the conductor flat plate 31 parallel to the conductor flat plate 31 with a constant space therebetween via a spacer 32 .
 第1の誘電体基板33の外形はスペーサ32の外形と同じであり、内表面にスペーサ32の一端が接合される。
 第1の誘電体基板33の中心はスペーサ32の管軸CAの延長線上にある。
The outer shape of the first dielectric substrate 33 is the same as the outer shape of the spacer 32, and one end of the spacer 32 is joined to the inner surface.
The center of the first dielectric substrate 33 is on the extension line of the tube axis CA of the spacer 32 .
 パッチ導体332の外形は、スペーサ32の開口311の外形と同じもしくは開口311の外形より大きい正方形である。
 パッチ導体332は第1の誘電体331の一面に蒸着によって形成されてもよい。
The outline of the patch conductor 332 is a square that is the same as or larger than the outline of the opening 311 of the spacer 32 .
The patch conductor 332 may be formed on one side of the first dielectric 331 by vapor deposition.
 また、パッチ導体332は第1の誘電体331の一面である外表面に形成されてもよく、第1の誘電体基板33は、パッチ導体332が第1の誘電体331の内表面又は外表面の少なくとも一面に設けられていればよい。
 パッチ導体332が第1の誘電体331の内表面及び外表面の両面に設けられている場合、内表面に設けられたパッチ導体と外表面に設けられたパッチ導体は、第1の誘電体331を貫通する貫通ビアによって電気的に接続される。
Also, the patch conductor 332 may be formed on the outer surface, which is one surface of the first dielectric 331 , and the first dielectric substrate 33 is arranged so that the patch conductor 332 is formed on the inner surface or the outer surface of the first dielectric 331 . provided on at least one side of the
When the patch conductors 332 are provided on both the inner surface and the outer surface of the first dielectric 331 , the patch conductors provided on the inner surface and the patch conductors provided on the outer surface of the first dielectric 331 are electrically connected by through vias passing through the .
 次に、実施の形態1に係るパッチアンテナ装置の動作について、主として送信アンテナとして動作した場合の動作について説明する。
 第1の給電回路4から第1の給電プローブ12に高周波信号が入力されると、ダブルリッジ導波部1は入力された高周波信号に応じた周波数の第1の電波に変換し、第1の電波を一対の第1のリッジ部112a、112bにより第1の伝搬モードにてダブルリッジ導波管部11内を伝搬する。
Next, the operation of the patch antenna apparatus according to Embodiment 1, mainly when operating as a transmitting antenna, will be described.
When a high frequency signal is input from the first power supply circuit 4 to the first power supply probe 12, the double ridge waveguide 1 converts the input high frequency signal into a first radio wave having a frequency corresponding to the first power supply. Radio waves are propagated through the double ridge waveguide portion 11 in the first propagation mode by the pair of first ridge portions 112a and 112b.
 この時、短絡導波管部13により、ダブルリッジ導波管部11内を伝搬する第1の電波は、短絡導波管部13の反対側に位置するダブルリッジ導波管部11の一端の開口へ伝搬し、クアッドリッジ導波部2に出力される。
 クアッドリッジ導波部2に出力された第1の電波は、一対の第1のリッジ部112a、112bに連続した一対の第2のリッジ部212a、212bにより第1の伝搬モードにてクアッドリッジ導波管部21内を、クアッドリッジ導波管部21の一端の開口へ伝搬し、電波放射部3に出力される。
At this time, the short-circuited waveguide portion 13 causes the first radio waves propagating in the double-ridged waveguide portion 11 to pass through one end of the double-ridged waveguide portion 11 located on the opposite side of the short-circuited waveguide portion 13 . It propagates to the aperture and is output to the quad-ridge waveguide section 2 .
The first radio waves output to the quad-ridge waveguide portion 2 are quad-ridge guided in a first propagation mode by a pair of second ridge portions 212a and 212b that are continuous with the pair of first ridge portions 112a and 112b. It propagates through the wave tube portion 21 to an opening at one end of the quadridge waveguide portion 21 and is output to the radio wave emitting portion 3 .
 電波放射部3に出力された第1の電波は、導体平板31及びスペーサ32を伝搬し、パッチ導体332を励振し、パッチアンテナ装置の外部空間に放射される。
 アンテナ装置内を伝搬する第1の電波は、第1の伝搬モードにより伝搬されるため、電界の方向が主に図2及び図3の図示y軸に沿った方向(横方向)に沿う電磁界分布であり、パッチアンテナ装置の外部空間に放射される第1の電波の主偏波は、y軸方向に沿った方向の偏波成分となる。
The first radio wave output to the radio wave radiating section 3 propagates through the flat conductor plate 31 and the spacer 32, excites the patch conductor 332, and is radiated to the external space of the patch antenna apparatus.
Since the first radio wave propagating in the antenna device is propagated in the first propagation mode, the direction of the electric field is mainly along the y-axis shown in FIGS. 2 and 3 (horizontal direction). distribution, and the main polarized wave of the first radio wave radiated to the external space of the patch antenna device is the polarized wave component in the direction along the y-axis direction.
 一方、第2の給電回路6から第2の給電プローブ22に高周波信号が入力されると、クアッドリッジ導波部2は入力された高周波信号に応じた周波数の第2の電波に変換し、第2の電波を一対の第3のリッジ部213a、213bにより第2の伝搬モードにてクアッドリッジ導波管部21内を伝搬する。 On the other hand, when a high-frequency signal is input from the second power supply circuit 6 to the second power supply probe 22, the quad-ridge waveguide 2 converts the input high-frequency signal into a second radio wave having a frequency corresponding to the second power supply. 2 are propagated through the quad-ridge waveguide portion 21 in the second propagation mode by the pair of third ridge portions 213a and 213b.
 この時、ダブルリッジ導波管部11は、第2の電波の第2の伝搬モードにおける遮断周波数が第2の電波の周波数より高い周波数に設定されているため、第2の電波はダブルリッジ導波管部11に向かう方向には伝搬しない。
 従って、クアッドリッジ導波管部21内を伝搬する第2の電波は、第2の伝搬モードによりクアッドリッジ導波管部21の一端の開口へ伝搬し、電波放射部3に出力される。
At this time, in the double-ridge waveguide section 11, the cut-off frequency in the second propagation mode of the second radio waves is set to a frequency higher than the frequency of the second radio waves, so the second radio waves pass through the double-ridge waveguide. It does not propagate in the direction toward the wave tube portion 11 .
Therefore, the second radio wave propagating in the quad-ridge waveguide portion 21 propagates to the opening at one end of the quad-ridge waveguide portion 21 in the second propagation mode and is output to the radio wave emitting portion 3 .
 第2の電波は、一部に第2の電波の周波数の所定倍数である高次モードの電波を有するが、高次モードの電波はクアッドリッジ導波管部21内を伝搬しながら、減衰する。 A part of the second radio wave has a higher-order mode radio wave whose frequency is a predetermined multiple of the frequency of the second radio wave. .
 電波放射部3に出力された第2の電波は、導体平板31及びスペーサ32を伝搬し、パッチ導体332を励振し、パッチアンテナ装置の外部空間に放射される。
 アンテナ装置内を伝搬する第2の電波は、第2の伝搬モードにより伝搬されるため、電界の方向が主に図2及び図3の図示x軸に沿った方向(縦方向)に沿う電磁界分布であり、パッチアンテナ装置の外部空間に放射される第2の電波の主偏波は、x軸方向に沿った方向の偏波成分となる。
The second radio wave output to the radio wave radiating section 3 propagates through the flat conductor plate 31 and the spacer 32, excites the patch conductor 332, and is radiated to the external space of the patch antenna apparatus.
Since the second radio wave propagating in the antenna device is propagated in the second propagation mode, the direction of the electric field is mainly along the x-axis shown in FIGS. 2 and 3 (longitudinal direction). distribution, and the main polarized wave of the second radio wave radiated to the external space of the patch antenna apparatus is the polarized wave component in the direction along the x-axis direction.
 これにより、電波放射部3からは、主偏波の向きが互いに直交した第1の電波と第2の電波が放射(出射)され、直交偏波共用のアンテナ装置が得られる。 As a result, the first radio wave and the second radio wave whose directions of main polarized waves are orthogonal to each other are radiated (emitted) from the radio wave radiating section 3, and an antenna device for common use of orthogonal polarized waves is obtained.
 次に、クアッドリッジ導波管部21に発生する第2の電波の高次モードによる電波について説明する。
 第2の電波の高次モードによる電波は、図3におけるx-z平面(縦断面)に平行な縦断面に対して対称な分布を有する。
Next, the radio waves generated in the quad-ridge waveguide section 21 due to the higher-order mode of the second radio waves will be described.
The radio waves of the higher-order mode of the second radio wave have a symmetrical distribution with respect to a longitudinal section parallel to the xz plane (longitudinal section) in FIG.
 今、第2の給電プローブ22の軸心が、製造誤差に伴う寸法誤差がなく、理想的に、クアッドリッジ導波管部21の管軸CAを含む縦断面に位置するように配置されていると、クアッドリッジ導波管部21に発生する第2の電波の高次モードによる電波は、図7に示すように、第2の給電プローブ22の軸心から第2のリッジ部212aまでの距離と、第2の給電プローブ22の軸心から第2のリッジ部212bまでの距離が等しく、電界分布の対称性から、アンテナ装置から外部空間に放射される高次モードによる電波は互いにキャンセルされ、結果として、アンテナ装置の正面方向では高次モードによる電波の放射は観測されない。 Now, the axial center of the second feeding probe 22 is arranged so as to be ideally positioned on the longitudinal section including the tube axis CA of the quad-ridge waveguide section 21 without any dimensional error associated with the manufacturing error. 7, the radio waves generated in the quad-ridge waveguide portion 21 due to the higher-order mode of the second radio waves are, as shown in FIG. , the distance from the axial center of the second feeding probe 22 to the second ridge portion 212b is equal, and due to the symmetry of the electric field distribution, radio waves in higher modes radiated from the antenna device to the external space cancel each other, As a result, radio wave radiation due to higher-order modes is not observed in the front direction of the antenna device.
 また、第2の給電プローブ22が、第1のリッジ部112a、112bと第2のリッジ部212a、212bにより構成される一対の連続体における第1の切り欠き部a11及び第2の切り欠き部a12による切り欠き部と第1の切り欠き部b11及び第2の切り欠き部b12による切り欠き部の間に位置しているので、第2の給電プローブ22と第2のリッジ部212a、212b及び第1のリッジ部112a、112bとの間の距離が離れているため、高次モードによる電波の振幅は短い振幅となる。 In addition, the second power supply probe 22 is a pair of continuous bodies composed of the first ridges 112a and 112b and the second ridges 212a and 212b. Since it is located between the notch part by a12 and the notch part by the first notch b11 and the second notch b12, the second feeding probe 22 and the second ridges 212a, 212b and Since the distance between the first ridges 112a and 112b is long, the amplitude of the radio wave due to the higher-order mode is short.
 一方、第2の給電プローブ22の軸心に製造誤差に伴う寸法誤差が生じた場合、例えば、図8に示すように、第2の給電プローブ22の軸心が、クアッドリッジ導波管部21の管軸CAを含む縦断面に対して、図8の図示y軸において-方向に位置ずれして配置されたとしても、第2の給電プローブ22と第2のリッジ部212a、212b及び第1のリッジ部112a、112bとの間の距離が離れているため、第2の給電プローブ22の位置ずれによる影響は、図8の図示y軸において-方向と+方向とで相対的に小さく、第2の給電プローブ22までの距離が第2のリッジ部212aより短い第2のリッジ部212b側に、わずかに強い振幅の高次モードによる電波が現れる。 On the other hand, if a dimensional error due to a manufacturing error occurs in the axial center of the second feeding probe 22, for example, as shown in FIG. With respect to the longitudinal section including the tube axis CA of FIG. Since the distance between the ridges 112a and 112b of the second feeding probe 22 is long, the influence of the positional deviation of the second feeding probe 22 is relatively small in the - direction and the + direction on the y-axis shown in FIG. On the side of the second ridge portion 212b, which is closer to the feeding probe 22 than the second ridge portion 212a, radio waves in a higher-order mode with slightly strong amplitude appear.
 高次モードによる電波の振幅が短く、第2のリッジ部212a側と第2のリッジ部212b側との高次モードによる電波の振幅の差がわずかであるため、高次モードによる電波がアンテナ装置から外部空間に放射されたとしても、アンテナ装置の正面方向における図8の図示y軸に沿った方向の偏波成分を有する電波、つまり、第2の電波の主偏波に対する交差偏波成分の放射は小さく抑えることができる。 Since the amplitude of the radio wave due to the high-order mode is short and the difference in the amplitude of the radio wave due to the high-order mode between the second ridge portion 212a side and the second ridge portion 212b side is small, the radio wave due to the high-order mode is transmitted to the antenna device. Even if it is radiated to the external space from the antenna device, the radio wave having a polarization component in the direction along the y-axis shown in FIG. 8 in the front direction of the antenna device, that is, the Radiation can be kept small.
 さらに、図7及び図8に示すように、クアッドリッジ導波管部21内を伝搬する高次モードによる電波の振幅は短い振幅であるため、クアッドリッジ導波管部21内の伝搬による減衰が早く、クアッドリッジ導波管部21として、管軸CA方向の長さを短くできる。 Furthermore, as shown in FIGS. 7 and 8, since the amplitude of the radio wave due to the higher-order mode propagating in the quad-ridge waveguide portion 21 is short, attenuation due to propagation in the quad-ridge waveguide portion 21 is reduced. As the quad-ridge waveguide section 21, the length in the direction of the tube axis CA can be shortened quickly.
 例えば、参考例として、第1のリッジ部112a、112b及び第2のリッジ部212a、212bにそれぞれに第1の切り欠き部a11、b11及び第2の切り欠き部a12、b12がなく、第1のリッジ部112a、112b及び第2のリッジ部212a、212bの高さを全域に亘ってL1とすると、第2の給電プローブ22の軸心が、理想的に、クアッドリッジ導波管部21の管軸CAを含む縦断面に位置するように配置されている場合、図9に示すように、第2の給電プローブ22の軸心と第2のリッジ部212a、212b及び第1のリッジ部112a、112bとの間の距離が短く、高次モードによる電波の振幅は比較的大きな振幅となる。 For example, as a reference example, the first ridges 112a and 112b and the second ridges 212a and 212b do not have the first notches a11 and b11 and the second notches a12 and b12, respectively. If the height of the ridges 112a, 112b and the second ridges 212a, 212b is L1 over the entire region, the axis of the second feeding probe 22 is ideally the quad-ridge waveguide 21. When arranged so as to be located on a longitudinal section including the tube axis CA, as shown in FIG. , 112b is short, and the amplitude of the radio wave due to the high-order mode is relatively large.
 また、第2の給電プローブ22の軸心が、クアッドリッジ導波管部21の管軸CAを含む縦断面に対して、図10の図示y軸において-方向に位置ずれして配置された場合、第2の給電プローブ22の軸心までの距離が第2のリッジ部212aより短い第2のリッジ部212b側に、強い振幅の高次モードによる電波が現れる。 Further, when the axial center of the second feeding probe 22 is displaced in the − direction on the y-axis shown in FIG. , a high-order mode radio wave with strong amplitude appears on the side of the second ridge 212b whose distance to the axis of the second feeding probe 22 is shorter than that of the second ridge 212a.
 その結果、高次モードによる電波がアンテナ装置から外部空間に放射されると、アンテナ装置の正面方向における図10の図示y軸に沿った方向の偏波成分を有する電波が放射される。
 図10の図示y軸に沿った方向の偏波成分は、第2の電波の主偏波と直交する、いわゆる交差偏波成分となり、不要な成分が放射されることになる。
As a result, when a radio wave in a higher mode is radiated from the antenna device to the external space, a radio wave having a polarization component in the direction along the y-axis in FIG. 10 in the front direction of the antenna device is radiated.
The polarized wave component in the direction along the y-axis shown in FIG. 10 becomes a so-called cross-polarized wave component that is orthogonal to the main polarized wave of the second radio wave, and unnecessary components are radiated.
 この不要な成分の放射を抑えるためには、クアッドリッジ導波管部21内の伝搬により減衰させることが考えられ、この場合はクアッドリッジ導波管部21として、管軸CA方向の長さを長くする必要がある。 In order to suppress the radiation of this unnecessary component, it is conceivable to attenuate it by propagation in the quad-ridge waveguide portion 21. In this case, the quad-ridge waveguide portion 21 has a length in the direction of the tube axis CA of need to be longer.
 以上のことから理解されるように、実施の形態1に係るパッチアンテナ装置は、参考例に比較して、クアッドリッジ導波管部21内に伝搬する第2の電波の高次モードによる電波の振幅が短く、例え、第2の給電プローブ22から第2のリッジ部212aまでの距離と第2の給電プローブ22から第2のリッジ部212bまでの距離に差が生じたとしても、高次モードによる電波における第2のリッジ部212a側と第2のリッジ部212b側との振幅の差はわずかであり、低交差偏波特性が維持可能であり、クアッドリッジ導波管部21として、クアッドリッジ導波管部21の管軸CA方向の長さを短くできる。 As can be understood from the above, the patch antenna device according to Embodiment 1 is different from the reference example in that the second radio wave propagating in the quad-ridge waveguide section 21 is transmitted in a higher-order mode. Even if the amplitude is short and there is a difference between the distance from the second feeding probe 22 to the second ridge 212a and the distance from the second feeding probe 22 to the second ridge 212b, the higher-order mode The difference in amplitude between the second ridge portion 212a side and the second ridge portion 212b side in the radio wave caused by the The length of the ridge waveguide portion 21 in the tube axis CA direction can be shortened.
 従って、第2の給電プローブ22がクアッドリッジ導波管部21に対して寸法誤差の設計裕度を持つため、製造が容易であり、薄型にして、低交差偏波特性が維持可能である、直交偏波共用のパッチアンテナ装置を得ることができる。 Therefore, since the second feeding probe 22 has a design margin of dimensional error with respect to the quad-ridge waveguide section 21, it is easy to manufacture, thin, and low cross-polarization characteristics can be maintained. , it is possible to obtain a cross-polarized patch antenna device.
 なお、実施の形態1に係るパッチアンテナ装置は、いわゆる「アンテナの可逆性」により、受信アンテナとして動作する場合も、送信アンテナとして動作する場合と同様に同様の原理により動作するので、受信アンテナとして動作する場合についての説明は省略する。 Note that the patch antenna apparatus according to Embodiment 1 operates according to the same principle as when operating as a transmitting antenna even when operating as a receiving antenna due to so-called "antenna reversibility". A description of the case of operation is omitted.
 以上のように、実施の形態1に係るパッチアンテナ装置は、対向配置された一対の第1のリッジ部112a、112bを有し、第1の伝搬モードで伝搬する第1の電波を伝搬し、第1の伝搬モードと異なる第2の伝搬モードで伝搬する第2の電波の第2の伝搬モードにおける遮断周波数が第2の電波の周波数より高い周波数に設定されたダブルリッジ導波管部11と、第1の電波に対する高周波信号を伝達する第1の給電プローブ12を具備するダブルリッジ導波部1と、他端部がダブルリッジ導波管部11の一端部と連通し、それぞれが一対の第1のリッジ部112a、112bと連続して対向配置された一対の第2のリッジ部212a、212b、及び一対の第2のリッジ部212a、212bの間に配置され、対向配置された一対の第3のリッジ部213a、213bを有し、第1の電波及び第2の電波を伝搬するクアッドリッジ導波管部21と、第2の電波に対する高周波信号を伝達する第2の給電プローブ22を具備するクアッドリッジ導波部2と、クアッドリッジ導波管部21の一端部に配置され、パッチ導体332を有する電波放射部3とを備え、一対の第1のリッジ部112a、112bと一対の第2のリッジ部212a、212bとを含む一対の連続体は、ダブルリッジ導波管部11とクアッドリッジ導波管部21との境界部に、対向する一対の連続体の端面間の間隙を広くする切り欠き部が設けられている。 As described above, the patch antenna device according to Embodiment 1 has a pair of first ridges 112a and 112b arranged to face each other, and propagates the first radio waves propagating in the first propagation mode, a double-ridge waveguide section 11 in which the cutoff frequency in the second propagation mode of the second radio wave propagating in the second propagation mode different from the first propagation mode is set to a frequency higher than the frequency of the second radio wave; , a double ridge waveguide portion 1 having a first feeding probe 12 for transmitting a high frequency signal for a first radio wave, and the other end communicating with one end portion of the double ridge waveguide portion 11, each of which is a pair of A pair of second ridges 212a, 212b arranged continuously to face the first ridges 112a, 112b, and a pair of ridges 212a, 212b arranged between the pair of second ridges 212a, 212b and arranged to face each other. A quad ridge waveguide portion 21 having third ridge portions 213a and 213b and propagating the first radio wave and the second radio wave, and a second feeding probe 22 transmitting the high frequency signal for the second radio wave. and a radio wave emitting portion 3 having a patch conductor 332 disposed at one end of the quad-ridge waveguide portion 21, and a pair of first ridge portions 112a and 112b and a pair of A pair of continuities including the second ridges 212 a and 212 b provide a gap between the end faces of the pair of continuities that face each other at the boundary between the double ridge waveguide section 11 and the quad ridge waveguide section 21 . A widening cutout is provided.
 これにより、実施の形態1に係るパッチアンテナ装置は、第2の給電プローブ22がクアッドリッジ導波管部21に対して製造誤差に伴う寸法誤差により位置ずれがある場合においても低交差偏波特性が維持可能であり、さらに、クアッドリッジ導波管部21として、クアッドリッジ導波管部21の管軸CA方向の長さを短くでき、結果として薄型の直交偏波共用のパッチアンテナ装置を得ることができる。 As a result, the patch antenna apparatus according to the first embodiment has low cross-polarization characteristics even when the second feeding probe 22 is displaced from the quad-ridge waveguide section 21 due to dimensional errors associated with manufacturing errors. Further, the length of the quad-ridge waveguide portion 21 in the direction of the tube axis CA can be shortened as the quad-ridge waveguide portion 21, and as a result, a thin cross-polarized patch antenna device can be provided. Obtainable.
 なお、一対の第1のリッジ部112a、112bと一対の第2のリッジ部212a、212bとにより構成される一対の連続体における切り欠き部は、図11及び図12に示すように、一対の第1のリッジ部112a、112b又は一対の第2のリッジ部212a、212bの一方のリッジ部が、管軸CAに沿った方向の全域に亘って第1の切り欠き部a11、b11又は第2の切り欠き部a12、b12としたものでもよい。 11 and 12, the notch portion in the pair of continuous bodies constituted by the pair of first ridge portions 112a and 112b and the pair of second ridge portions 212a and 212b is a pair of The first ridges 112a and 112b or one of the pair of second ridges 212a and 212b is aligned with the first cutouts a11 and b11 or the second ridges over the entire area in the direction along the tube axis CA. notches a12 and b12.
 すなわち、図11に示すように、一対の第2のリッジ部212a、212bそれぞれは、管軸CAに沿った方向の全域に亘って高さL1より低い高さL2の立設部とし、対応する一対の第1のリッジ部112a、112bにおける切り欠き部a11、b11が形成される高さL2の立設部に連続して形成される。 That is, as shown in FIG. 11, each of the pair of second ridges 212a and 212b has a height L2 lower than the height L1 over the entire area in the direction along the tube axis CA. The cutout portions a11 and b11 of the pair of first ridge portions 112a and 112b are formed continuously with the upright portion having the height L2.
 また、図12に示すように、一対の第1のリッジ部112a、112bそれぞれは、管軸CAに沿った方向の全域に亘って高さL1より低い高さL2の立設部とし、対応する一対の第2のリッジ部212a、212bにおける切り欠き部a12、b12が形成される高さL2の立設部に連続して形成される。 Further, as shown in FIG. 12, each of the pair of first ridges 112a and 112b is a raised portion having a height L2 lower than the height L1 over the entire area in the direction along the tube axis CA. The cutout portions a12 and b12 of the pair of second ridge portions 212a and 212b are formed continuously with the standing portion having a height L2.
 なお、一対の第1のリッジ部112a、112bと一対の第2のリッジ部212a、212bとにより構成される一対の連続体における切り欠き部は、少なくとも一対の第2のリッジ部212a、212bに設けられた第2の切り欠き部a12、b12によって構成されたものでよい。 Note that the notch portion in the pair of continuous bodies configured by the pair of first ridge portions 112a and 112b and the pair of second ridge portions 212a and 212b is at least the pair of second ridge portions 212a and 212b. It may be configured by the provided second notch portions a12 and b12.
 第1の誘電体331の一面に設けられたパッチ導体332の外形形状は正方形に限られるものではなく、図13から図19に示す外形形状であってもよい。
 図13に示すパッチ導体332の外形形状は矩形であり、4辺形の形状であってもよい。
 図14に示すパッチ導体332の外形形状は円形、図15に示すパッチ導体332の外形形状は楕円形である。
The external shape of the patch conductor 332 provided on one surface of the first dielectric 331 is not limited to a square, and may be the external shapes shown in FIGS. 13 to 19 .
The external shape of the patch conductor 332 shown in FIG. 13 is rectangular, and may be quadrilateral.
The external shape of the patch conductor 332 shown in FIG. 14 is circular, and the external shape of the patch conductor 332 shown in FIG. 15 is elliptical.
 図16に示すパッチ導体332の外形形状は十字形である。
 図17に示すパッチ導体332の外形形状は中央に十字形のスロットbを有する正方形aである。なお、正方形aに限られるものではなく、四辺形a又は円形aでもよく、また、スロットbは十字形に限られるものではない。
The patch conductor 332 shown in FIG. 16 has a cross shape.
The external shape of the patch conductor 332 shown in FIG. 17 is a square a with a cross-shaped slot b in the center. The shape of the slot b is not limited to the square a, but may be a quadrilateral a or a circle a, and the slot b is not limited to a cross.
 図18に示すパッチ導体332の外形形状は、正方形cの4辺に長方形の切り込みdを設けた形状である。なお、周囲に対向して設けられた対の切り込みdを有する四辺形c又は円形cであればよい。
 図19に示すパッチ導体332の外形形状は、円形eの外周の対向する2点に小さい正方形fを設け、円形eの対向する2点に突出部fを設けた形状である。なお、周囲に対向して設けられた対の突出部fを有する四辺形c又は円形cであればよい。
The external shape of the patch conductor 332 shown in FIG. 18 is a shape in which rectangular cuts d are provided on four sides of a square c. It should be noted that a quadrilateral c or a circle c having a pair of notches d facing each other on the circumference may be used.
The external shape of the patch conductor 332 shown in FIG. 19 is a shape in which small squares f are provided at two opposing points on the outer periphery of the circle e, and protrusions f are provided at two opposing points of the circle e. It should be noted that a quadrilateral c or a circle c having a pair of protruding portions f provided facing each other around the circumference may be used.
 図20は、第1の誘電体331の一面における外周部にグランド導体333を設けたものである。
 外周部に設けられたグランド導体333と中央部に設けられたパッチ導体332とは、4つの接続用導体334によりそれぞれの4辺においてパッチ導体332の外周とグランド導体333の内周とが接続され、導体であるスペーサ32を介して接地電位とされる。
In FIG. 20, a ground conductor 333 is provided on the outer peripheral portion of one surface of the first dielectric 331 .
The ground conductor 333 provided in the outer peripheral portion and the patch conductor 332 provided in the central portion are connected to the outer periphery of the patch conductor 332 and the inner periphery of the ground conductor 333 on each of the four sides by four connecting conductors 334 . , and the ground potential through spacers 32, which are conductors.
 パッチ導体332とグランド導体333と接続用導体334は、導体箔が貼着されたストリップ導体により一体的に形成されてもよく、蒸着によって形成されてもよい。
 図20に示す第1の誘電体基板33を用いたパッチアンテナ装置は、浮遊導体の使用に制限がある衛星搭載用アンテナ装置などに適用するのが好適である。
The patch conductor 332, the ground conductor 333, and the connection conductor 334 may be integrally formed of a strip conductor to which conductor foil is adhered, or may be formed by vapor deposition.
The patch antenna device using the first dielectric substrate 33 shown in FIG. 20 is suitable for application to a satellite antenna device or the like in which the use of floating conductors is restricted.
 電波放射部3におけるスペーサ32を、上記した例では導体筒としたが、導体平板31と別体に設けられた誘電体筒でもよく、また、パッチ導体332を有する第1の誘電体基板33と導体平板31とを所定の間隔をあけて平行に保持するものであればよく、図21から図25に示すスペーサ32でもよい。 In the above example, the spacer 32 in the radio wave radiating section 3 is a conductor cylinder, but it may be a dielectric cylinder provided separately from the conductor flat plate 31, and a first dielectric substrate 33 having a patch conductor 332 may be used. Any spacer 32 shown in FIGS. 21 to 25 may be used as long as it holds the conductor plate 31 parallel to the conductor plate 31 at a predetermined interval.
 図21に示すスペーサ32は、第1の誘電体基板33及び導体平板31の対向した2辺部に配置され、一端が第1の誘電体基板33の内表面に接合し、他端が導体平板31の表面に接合した2枚の平行平板であり、導体平板31の対向する2辺に平行に、導体平板31から一体的に立設された2枚の導体からなる平行平板である。
 2枚の平行平板は同一形状であり、2枚の平行平板の端面(一端)に第1の誘電体基板33の第1の誘電体331の内表面に接合される。
 平行平板は導体平板31と別体に設けられた誘電体でもよい。
The spacers 32 shown in FIG. 21 are arranged on two opposite sides of the first dielectric substrate 33 and the conductor flat plate 31, one end is bonded to the inner surface of the first dielectric substrate 33, and the other end is the conductor flat plate. It is two parallel plates joined to the surface of the conductor plate 31 , and parallel to the two opposite sides of the conductor plate 31 .
The two parallel plates have the same shape, and the end face (one end) of the two parallel plates is joined to the inner surface of the first dielectric 331 of the first dielectric substrate 33 .
The parallel plate may be a dielectric provided separately from the conductor plate 31 .
 図22に示すスペーサ32は、第1の誘電体基板33及び導体平板31の対向した2辺部に配置され、一端が第1の誘電体基板33の内表面に接合し、他端が導体平板31の表面に接合した2本の支柱であり、導体平板31の対向する2辺の周辺部に平行に、導体平板31から一体的に立設された2本の導体からなる支柱である。
 2本の支柱は同一形状の円柱であり、2本の支柱の端面に第1の誘電体基板33の第1の誘電体331の内表面に接合される。
 支柱は誘電体でもよく、誘電体の場合は一方の端面が導体平板31の表面に、他方の端面が第1の誘電体331の内表面に接合される。
The spacers 32 shown in FIG. 22 are arranged on two opposite sides of the first dielectric substrate 33 and the conductor flat plate 31, one end is bonded to the inner surface of the first dielectric substrate 33, and the other end is the conductor flat plate. 31, and are composed of two conductors integrally erected from the conductor flat plate 31 in parallel with the peripheral portions of the two opposite sides of the conductor flat plate 31. As shown in FIG.
The two pillars are cylinders of the same shape, and the end faces of the two pillars are joined to the inner surface of the first dielectric 331 of the first dielectric substrate 33 .
The pillars may be dielectrics, and in the case of dielectrics, one end face is joined to the surface of the conductor plate 31 and the other end face is joined to the inner surface of the first dielectric 331 .
 図23に示すスペーサ32は、第1の誘電体基板33及び導体平板31の4隅に配置され、一端が第1の誘電体基板33の内表面に接合し、他端が導体平板31の表面に接合した4本の支柱であり、導体平板31の4隅の周辺部に平行に、導体平板31から一体的に立設された4本の導体からなる支柱である。
 4本の支柱は同一形状の円柱であり、4本の支柱の端面に第1の誘電体基板33の第1の誘電体331の内表面に接合される。
 支柱は誘電体でもよく、誘電体の場合は一方の端面が導体平板31の表面に、他方の端面が第1の誘電体331の内表面に接合される。
The spacers 32 shown in FIG. 23 are arranged at four corners of the first dielectric substrate 33 and the conductor flat plate 31, one end is bonded to the inner surface of the first dielectric substrate 33, and the other end is connected to the surface of the conductor flat plate 31. , and are composed of four conductors integrally erected from the conductor flat plate 31 in parallel with the periphery of the four corners of the conductor flat plate 31 .
The four pillars are cylinders of the same shape, and the end faces of the four pillars are joined to the inner surface of the first dielectric 331 of the first dielectric substrate 33 .
The pillars may be dielectrics, and in the case of dielectrics, one end face is joined to the surface of the conductor plate 31 and the other end face is joined to the inner surface of the first dielectric 331 .
 図24に示すスペーサ32及び図25に示すスペーサ32は、誘電体からなる誘電体平板であり、図24に示すスペーサ32は第1の誘電体331を一体的にスペーサの厚さ分厚く形成してスペーサ32としたものであり、図25に示すスペーサ32は別の誘電体にて形成したものである。
 図24に示すスペーサ32及び図25に示すスペーサ32は、パッチ導体332が第1の誘電体331の外表面に設けられ、スペーサ32を構成する誘電体の表面が導体平板31の表面に直接接合される。
The spacer 32 shown in FIG. 24 and the spacer 32 shown in FIG. 25 are dielectric flat plates made of dielectric material. The spacer 32 shown in FIG. The spacer 32 shown in FIG. 25 is made of another dielectric.
The spacer 32 shown in FIG. 24 and the spacer 32 shown in FIG. 25 have the patch conductor 332 provided on the outer surface of the first dielectric 331, and the surface of the dielectric constituting the spacer 32 is directly bonded to the surface of the conductor flat plate 31. be done.
実施の形態2.
 実施の形態2に係るパッチアンテナ装置を図26から図37に従い説明する。
 実施の形態2に係るパッチアンテナ装置は、実施の形態1に係るパッチアンテナ装置における第1の信号導体12及び第2の信号導体22それぞれが給電プローブにより構成しているのに対して、第1の信号導体12及び第2の信号導体22をそれぞれ誘電体に給電線路を有した誘電体基板により構成した点が相違し、その他の点については同様の構成である。
 図26から図31中、図1から図6と同一符号は同一又は相当部分を示す。
Embodiment 2.
A patch antenna apparatus according to Embodiment 2 will be described with reference to FIGS. 26 to 37. FIG.
In the patch antenna device according to the second embodiment, each of the first signal conductor 12 and the second signal conductor 22 in the patch antenna device according to the first embodiment is configured by a feeding probe, whereas the first The signal conductor 12 and the second signal conductor 22 of the second embodiment are different in that they are each constructed of a dielectric substrate having a feeder line on the dielectric, and other points are the same.
26 to 31, the same reference numerals as in FIGS. 1 to 6 indicate the same or corresponding parts.
 実施の形態2に係るパッチアンテナ装置は、実施の形態1に係るパッチアンテナ装置と同様に1つのパッチアンテナ装置として機能する他、複数個並行して素子アンテナが配列されたパッチアレイアンテナ装置における素子アンテナとしても適用される。 The patch antenna apparatus according to Embodiment 2 functions as one patch antenna apparatus in the same manner as the patch antenna apparatus according to Embodiment 1, and also functions as an element in a patch array antenna apparatus in which a plurality of element antennas are arranged in parallel. It can also be used as an antenna.
 実施の形態2に係るパッチアンテナ装置は、図26に示すように、ダブルリッジ導波部1とクアッドリッジ導波部2とパッチ導体保有部3とを備え、ダブルリッジ導波部1とクアッドリッジ導波部2とパッチ導体保有部3は、図30及び図31からも理解されるように、中心軸に沿って直線上に配置される。 As shown in FIG. 26, the patch antenna device according to Embodiment 2 includes a double ridge waveguide 1, a quad ridge waveguide 2, and a patch conductor holding portion 3. The double ridge waveguide 1 and the quad ridge As understood from FIGS. 30 and 31, the waveguide portion 2 and the patch conductor holding portion 3 are arranged on a straight line along the central axis.
 ダブルリッジ導波部1は、図27に示すように、ダブルリッジ導波管部11と第1の信号導体12と短絡導波管部13を備える。
 ダブルリッジ導波管部11は、第1の導波管部111と対向配置された一対の第1の突条112a、112bを備え、実施の形態1に係るパッチアンテナ装置におけるダブルリッジ導波管部11と同様の構成である。
The double-ridge waveguide section 1 includes a double-ridge waveguide section 11, a first signal conductor 12, and a short-circuit waveguide section 13, as shown in FIG.
The double ridge waveguide portion 11 includes a pair of first ridges 112a and 112b arranged opposite to the first waveguide portion 111, and is the double ridge waveguide in the patch antenna device according to Embodiment 1. It has the same configuration as the part 11 .
 ただし、実施の形態1に係るパッチアンテナ装置におけるダブルリッジ導波管部11における第1のプローブ挿通孔113はなく、ダブルリッジ導波管部11の他端側に位置し、第1の導波管部111の第3の側壁111cに、第1の導波管部111の管軸CAと直交する線上、つまり、図27の図示x軸に沿った線上(縦方向)の中央に、図27の図示y軸方向(横方向)に第3の側壁111cから外部に突出した伝送線路5の一部を構成する第1の外導体51の第1の部分51aが設けられている。 However, there is no first probe insertion hole 113 in the double ridge waveguide portion 11 in the patch antenna device according to Embodiment 1, and the first waveguide is located on the other end side of the double ridge waveguide portion 11. On the third side wall 111c of the tube portion 111, on a line perpendicular to the tube axis CA of the first waveguide portion 111, that is, on a line (vertical direction) along the x-axis shown in FIG. A first portion 51a of the first outer conductor 51 constituting a portion of the transmission line 5 protrudes outward from the third side wall 111c in the y-axis direction (horizontal direction) of FIG.
 また、ダブルリッジ導波管部11の一端側に位置し、第1の導波管部111の第2の側壁111bに、第1の導波管部111の管軸CAと直交する線上、つまり、図27の図示y軸に沿った線上(横方向)の中央に、図27の図示y軸方向(縦方向)に第2の側壁111bから外部に突出した伝送線路7の一部を構成する第2の外導体71の第1の部分71aが設けられている。 Further, on the second side wall 111b of the first waveguide section 111 located on one end side of the double ridge waveguide section 11, a line orthogonal to the tube axis CA of the first waveguide section 111, that is, , constitutes part of the transmission line 7 projecting outward from the second side wall 111b in the y-axis direction (vertical direction) of FIG. A first portion 71a of the second outer conductor 71 is provided.
 第1の外導体51は断面が四辺形の筒状の導体になり、第1の部分51aは他端が開放された形状である。
 第1の導波管部111の他端面と第1の部分51aの端面は同一面、図27の図示x-y面にある。
The first outer conductor 51 is a cylindrical conductor having a quadrilateral cross section, and the first portion 51a has an open shape at the other end.
The other end face of the first waveguide portion 111 and the end face of the first portion 51a are on the same plane, i.e., the xy plane shown in FIG.
 第2の外導体71は断面が四辺形の筒状の導体になり、第1の部分71aは一端が開放された形状である。
 第1の導波管部111の一端面と第1の部分71aの端面は同一面、図27の図示x-y面にある。
The second outer conductor 71 is a cylindrical conductor having a quadrilateral cross section, and the first portion 71a has an open end.
One end face of the first waveguide portion 111 and the end face of the first portion 71a are on the same plane, i.e., the xy plane shown in FIG.
 短絡導波管部13は、図27に示すように、第2の導波管部131と短絡導体部132を備え、実施の形態1に係るパッチアンテナ装置における短絡導波管部13と同様の構成である。
 ただし、第2の導波管部131は、第1の導波管部111の第1の部分51aと対向して外部に突出した第1の外導体51の第2の部分51bが設けられている。
 第2の導波管部131の一端面と第2の部分51bの端面は同一面、図27の図示x-y面にある。
The short-circuit waveguide portion 13 includes a second waveguide portion 131 and a short-circuit conductor portion 132, as shown in FIG. Configuration.
However, the second waveguide portion 131 is provided with a second portion 51b of the first outer conductor 51 protruding outside facing the first portion 51a of the first waveguide portion 111. there is
One end face of the second waveguide portion 131 and the end face of the second portion 51b are on the same plane, i.e., the xy plane shown in FIG.
 第1の信号導体12は、図27に示すように、第2の誘電体121と、第1の給電線路122と、第1の信号線52と、第1の接続用導体123を備えたプリント基板による第2の誘電体基板である。
 第1の信号導体12は、外形形状が第1の導波管部111及び第2の導波管部131の断面形状と同じ形状であり、第1の外導体51を除いた第1の導波管部111及び第2の導波管部131が四辺形であれば四辺形であり、円形であれば円形である。
The first signal conductor 12 is a printed circuit board with a second dielectric 121, a first feed line 122, a first signal line 52 and a first connecting conductor 123, as shown in FIG. A second dielectric substrate by a substrate.
The first signal conductor 12 has the same external shape as the cross-sectional shape of the first waveguide portion 111 and the second waveguide portion 131, and is the first conductor except for the first outer conductor 51. If the wave tube portion 111 and the second waveguide portion 131 are quadrilateral, they are quadrilateral, and if they are circular, they are circular.
 第1の信号導体12は、第1の導波管部111の他端面と第2の導波管部131の一端面との間に介在し、周辺部において接合する。
 以下、第1の信号導体12を第2の誘電体基板12として説明する。
The first signal conductor 12 is interposed between the other end surface of the first waveguide portion 111 and one end surface of the second waveguide portion 131 and joined at the peripheral portion.
Hereinafter, the first signal conductor 12 will be described as the second dielectric substrate 12 .
 第1の給電線路122は、第2の誘電体121の裏面(第2の導波管部131側)に他方の第1のリッジ部112bの高さL1の立設部の端面と平行に設けられ、一端が一方の第1のリッジ部112aの高さL1の立設部の側面まで達し、他端が第1の信号線52の一端に連続的に接続される線状の導体箔である。 The first feeder line 122 is provided on the back surface of the second dielectric 121 (on the side of the second waveguide section 131) in parallel with the end surface of the standing portion having the height L1 of the other first ridge section 112b. one end of which reaches the side surface of the standing portion of height L1 of one first ridge portion 112a, and the other end is a linear conductor foil which is continuously connected to one end of the first signal line 52. .
 言い換えれば、第1の給電線路122は、第2の誘電体121の裏面における、第1の導波管部111の管軸CAと直交する線上、つまり、図27の図示x軸に沿った線上(縦方向)の中央に、y軸に沿った方向(横方向)に延在する。
 第1の給電線路122は、第2の誘電体121の裏面ではなく、第2の誘電体121の内部に設けてもよい。
In other words, the first feeder line 122 is located on the back surface of the second dielectric 121 on a line orthogonal to the tube axis CA of the first waveguide section 111, that is, on a line along the x-axis shown in FIG. It extends in the center (vertical direction) in the direction along the y-axis (horizontal direction).
The first feed line 122 may be provided inside the second dielectric 121 instead of on the back surface of the second dielectric 121 .
 第1の信号線52は、第1の外導体51の内部における第2の誘電体121の裏面に設けられ、第1の給電線路122の他端と連続的に設けられた線状の導体箔からなるストリップ線路である。
 第1の接続用導体123は、第2の誘電体121の表面及び裏面それぞれの周辺に設けられた導体箔の周辺導体123a、123bと両周辺導体123a、123bを電気的に接続する第2の誘電体121を貫通する複数の貫通ビア123cを有する。
The first signal line 52 is provided on the back surface of the second dielectric 121 inside the first outer conductor 51, and is a linear conductor foil provided continuously with the other end of the first feeder line 122. It is a strip line consisting of
The first connection conductor 123 electrically connects peripheral conductors 123a and 123b of conductor foils provided around the front and back surfaces of the second dielectric 121 and both peripheral conductors 123a and 123b. It has a plurality of through vias 123 c penetrating the dielectric 121 .
 第2の誘電体基板12における表面の周辺導体123aは第1の導波管部111の他端面と接合し、裏面の周辺導体123bは第2の導波管部131の一端面と接合し、第1の接続用導体123は、第1の導波管部111の他端面と第2の導波管部131の一端面との間、及び第1の部分51aの端面と第2の部分51bの端面とを電気的に接続する。 The peripheral conductor 123a on the surface of the second dielectric substrate 12 is joined to the other end surface of the first waveguide portion 111, the peripheral conductor 123b on the back surface is joined to one end surface of the second waveguide portion 131, The first connection conductor 123 extends between the other end surface of the first waveguide portion 111 and one end surface of the second waveguide portion 131 and between the end surface of the first portion 51a and the second portion 51b. electrically connect the end face of the
 第1の部分51aと第2の部分51bは、第1の接続用導体123により電気的に接続され、伝送線路5の一部を構成する、グランド導体として機能する第1の外導体51を構成する。
 また、第1の外導体51と、第1の外導体51の内部に設けられたストリップ線路である第1の信号線52により、サスペンデッドストリップ線路である伝送線路5を構成する。
The first portion 51a and the second portion 51b are electrically connected by the first connecting conductor 123, and constitute a part of the transmission line 5, forming the first outer conductor 51 functioning as a ground conductor. do.
The first outer conductor 51 and the first signal line 52 which is a strip line provided inside the first outer conductor 51 constitute the transmission line 5 which is a suspended strip line.
 第2の誘電体基板12における第1の給電線路122は、図26に示すように、ダブルリッジ導波管部11の外部に設けた第1の給電回路4に伝送線路5を構成する第1の信号線52を介して電気的に接続されている。 The first feeding line 122 in the second dielectric substrate 12 is, as shown in FIG. are electrically connected via a signal line 52 of .
 クアッドリッジ導波部2は、図28に示すように、クアッドリッジ導波管部21と第2の信号導体22を備える。
 クアッドリッジ導波管部21は、第3の導波管部211と、それぞれが一対の第1の突条112a、112bと連続して対向配置された一対の第2の突条212a、212bと、一対の第2の突条212a、212bの間に対向配置された一対の第3の突条213a、213bを備え、実施の形態1に係るパッチアンテナ装置におけるクアッドリッジ導波管部21と同様の構成である。
The quad-ridge waveguide section 2 includes a quad-ridge waveguide section 21 and a second signal conductor 22, as shown in FIG.
The quad-ridge waveguide portion 21 includes a third waveguide portion 211 and a pair of second ridges 212a and 212b arranged to face the pair of first ridges 112a and 112b, respectively. , and a pair of third ridges 213a and 213b arranged to face each other between the pair of second ridges 212a and 212b. is the configuration.
 ただし、実施の形態1に係るパッチアンテナ装置におけるクアッドリッジ導波管部21における第2のプローブ挿通孔214はなく、クアッドリッジ導波管部21の他端側に位置し、第3の導波管部211の第2の側壁211bに、第3の導波管部211の管軸CAと直交する線上、つまり、図28の図示y軸に沿った線上(横方向)の中央に、図28の図示x軸方向(縦方向)に第2の側壁211bから外部に突出した伝送線路7の一部を構成する第2の外導体71の第2の部分71bが設けられている。
 第2の部分71bは他端が開放された形状であり、第3の導波管部211の他端面と第2の部分71bは図28の図示x-y面にある。
However, there is no second probe insertion hole 214 in the quad ridge waveguide section 21 in the patch antenna device according to the first embodiment, and the third waveguide is located on the other end side of the quad ridge waveguide section 21. On the second side wall 211b of the tube portion 211, on a line perpendicular to the tube axis CA of the third waveguide portion 211, that is, on a line (horizontal direction) along the y-axis shown in FIG. A second portion 71b of the second outer conductor 71, which constitutes a portion of the transmission line 7, protrudes outward from the second side wall 211b in the x-axis direction (longitudinal direction) of the figure.
The second portion 71b has an open shape at the other end, and the other end face of the third waveguide portion 211 and the second portion 71b are on the xy plane shown in FIG.
 第2の信号導体22は、図28に示すように、第3の誘電体221と、第2の給電線路222と、第2の信号線72と、第2の接続用導体223を備えたプリント基板による第3の誘電体基板である。
 第2の信号導体22は、外形形状が第1の導波管部111及び第3の導波管部211の断面形状と同じ形状であり、第2の外導体71を除いた第1の導波管部111及び第2の導波管部131が四辺形であれば四辺形であり、円形であれば円形である。
The second signal conductor 22 is a printed circuit board with a third dielectric 221, a second feed line 222, a second signal line 72, and a second connecting conductor 223, as shown in FIG. A third dielectric substrate according to the substrate.
The second signal conductor 22 has the same external shape as the cross-sectional shape of the first waveguide section 111 and the third waveguide section 211, and is the same as the first conductor except for the second outer conductor 71. If the wave tube portion 111 and the second waveguide portion 131 are quadrilateral, they are quadrilateral, and if they are circular, they are circular.
 第2の信号導体22は、第1の導波管部111の一端面と第3の導波管部211の他端面との間に介在し、周辺部において接合する。
 以下、第2の信号導体22を第3の誘電体基板22として説明する。
The second signal conductor 22 is interposed between one end face of the first waveguide portion 111 and the other end face of the third waveguide portion 211 and joined at the peripheral portion.
Hereinafter, the second signal conductor 22 will be described as the third dielectric substrate 22 .
 第2の給電線路222は、第3の誘電体221の裏面(第1の導波管部111側)に、一方の第3のリッジ部213aの端面と平行に設けられ、一端が他方の第3のリッジ部213bの側面まで達し、他端が第2の信号線72の一端に連続的に接続される線状の導体箔である。 The second feeder line 222 is provided on the back surface of the third dielectric 221 (on the side of the first waveguide section 111) in parallel with the end surface of one third ridge section 213a, and one end 3, and the other end is a linear conductor foil that is continuously connected to one end of the second signal line 72 .
 言い換えれば、第2の給電線路222は、第3の誘電体221の裏面における、第3の導波管部211の管軸CAと直交する線上、つまり、図28の図示y軸に沿った方向(横方向)の中央に、x軸に沿った線上(縦方向)に延在する。
 第2の給電線路222は、第3の誘電体221の裏面ではなく、第3の誘電体221の内部に設けてもよい。
 第2の給電線路222は、投影された縦断面、つまり、図27及び図28の図示x-y面において、図29に示すように、第1の給電線路122と直交する。
In other words, the second feeder line 222 is arranged on the back surface of the third dielectric 221 on a line orthogonal to the tube axis CA of the third waveguide section 211, that is, in the direction along the y-axis shown in FIG. It extends in the middle (horizontal direction) and along a line (vertical direction) along the x-axis.
The second feed line 222 may be provided inside the third dielectric 221 instead of on the back surface of the third dielectric 221 .
The second feedline 222 is orthogonal to the first feedline 122 as shown in FIG. 29 in the projected longitudinal section, ie the xy plane shown in FIGS.
 第2の信号線72は、第2の外導体71の内部における第3の誘電体221の表面に設けられ、第2の給電線路222の他端と連続的に設けられた線状の導体箔からなるストリップ線路である。
 第2の接続用導体223は、第3の誘電体221の表面及び裏面それぞれの周辺に設けられた導体箔の周辺導体223a、223bと両周辺導体223a、223bを電気的に接続する第3の誘電体221を貫通する複数の貫通ビア223cを有する。
The second signal line 72 is a linear conductor foil provided on the surface of the third dielectric 221 inside the second outer conductor 71 and provided continuously with the other end of the second feeder line 222. It is a strip line consisting of
The second connection conductor 223 electrically connects peripheral conductors 223a and 223b of conductor foils provided around the front and back surfaces of the third dielectric 221 and both peripheral conductors 223a and 223b. It has a plurality of through vias 223c penetrating the dielectric 221 .
 第2の接続用導体223は、一方の第1のリッジ部112aの高さL2の立設部の端面と一方の第2のリッジ部212aの高さL2の立設部の端面が対向する第3の誘電体221の表面及び裏面それぞれの位置に導体箔のリッジ接続用導体223d1、223e1と両リッジ接続用導体223d1、223d2を電気的に接続する第3の誘電体221を貫通する複数の貫通ビア223f1を有する。 The second connecting conductor 223 has an end face of the standing portion of height L2 of one first ridge portion 112a and an end face of the standing portion of height L2 of one second ridge portion 212a facing each other. A plurality of vias penetrating through the third dielectric 221 for electrically connecting the ridge connection conductors 223d1 and 223e1 of the conductor foil and both the ridge connection conductors 223d1 and 223d2 at respective positions on the front and rear surfaces of the dielectric 221 of No. 3. It has a via 223f1.
 また、第2の接続用導体223は、他方の第1のリッジ部112bの高さL2の立設部の端面と他方の第2のリッジ部212bの高さL2の立設部の端面が対向する第3の誘電体221の表面及び裏面それぞれの位置に導体箔の突条接続用導体223d2、223e2と両突条接続用導体223d2、223e2を電気的に接続する第3の誘電体221を貫通する複数の貫通ビア223f2を有する。 In the second connection conductor 223, the end surface of the standing portion of the other first ridge portion 112b having the height L2 and the end surface of the standing portion having the height L2 of the other second ridge portion 212b face each other. It penetrates the third dielectric 221 that electrically connects the protrusion connection conductors 223d2 and 223e2 of the conductor foil and the both protrusion connection conductors 223d2 and 223e2 at respective positions on the front and back surfaces of the third dielectric 221. and a plurality of through vias 223f2.
 第3の誘電体基板22における表面の周辺導体223aは第3の導波管部211の他端面と接合し、裏面の周辺導体223bは第1の導波管部111の一端面と接合し、第2の接続用導体223は、第3の導波管部211の他端面と第1の導波管部111の一端面との間、及び第1の部分71aの端面と第2の部分71bの端面とを電気的に接続する。 The peripheral conductor 223a on the surface of the third dielectric substrate 22 is joined to the other end surface of the third waveguide section 211, the peripheral conductor 223b on the back surface is joined to one end surface of the first waveguide section 111, The second connection conductor 223 extends between the other end surface of the third waveguide portion 211 and one end surface of the first waveguide portion 111 and between the end surface of the first portion 71a and the second portion 71b. electrically connect the end face of the
 第3の誘電体基板22における表面の突条接続用導体223d1は一方の第2のリッジ部212aの高さL2の立設部の端面と接合し、裏面のリッジ接続用導体223e1は一方の第1のリッジ部112aの高さL2の立設部の端面と接合し、一方の第2のリッジ部212aと一方の第1のリッジ部112aとを電気的に接続する。
 すなわち、突条接続用導体223d1と突条接続用導体223e1と複数の貫通ビア223f1により、一方の第1のリッジ部112aと一方の第2のリッジ部212aは一方の連続体を構成する。
The ridge-connecting conductor 223d1 on the front surface of the third dielectric substrate 22 is joined to the end surface of the upright portion having the height L2 of the second ridge portion 212a on one side, and the ridge-connecting conductor 223e1 on the back surface is connected to one of the second ridge portions 212a. The second ridge 212a on one side and the first ridge 112a on one side are electrically connected by joining to the end face of the standing portion of height L2 of one ridge portion 112a.
That is, one first ridge portion 112a and one second ridge portion 212a constitute one continuous body by the protrusion-connecting conductor 223d1, the protrusion-connecting conductor 223e1, and the plurality of through vias 223f1.
 第3の誘電体基板22における表面の突条接続用導体223d2は他方の第2のリッジ部212bの高さL2の立設部の端面と接合し、裏面の突条接続用導体223e2は他方の第1のリッジ部112bの高さL2の立設部の端面と接合し、他方の第2のリッジ部212bと他方の第1のリッジ部112bとを電気的に接続する。
 すなわち、突条接続用導体223d2と突条接続用導体223e2と複数の貫通ビア223f2により、他方の第1のリッジ部112bと他方の第2のリッジ部212bは他方の連続体を構成する。
The ridge-connecting conductor 223d2 on the front surface of the third dielectric substrate 22 is joined to the end surface of the standing portion of the second ridge portion 212b having a height L2, and the ridge-connecting conductor 223e2 on the back surface is connected to the other second ridge portion 212b. The second ridge 212b and the first ridge 112b are electrically connected by joining to the end surface of the standing portion of the first ridge 112b having the height L2.
That is, the other first ridge portion 112b and the other second ridge portion 212b constitute the other continuous body by the protrusion-connecting conductor 223d2, the protrusion-connecting conductor 223e2, and the plurality of through vias 223f2.
 第1の部分71aと第2の部分71bは、第2の接続用導体223により電気的に接続され、伝送線路7の一部を構成する、グランド導体として機能する第2の外導体71を構成する。
 また、第2の外導体71と、第2の外導体71の内部に設けられたストリップ線路である第2の信号線72とにより、サスペンデッドストリップ線路である伝送線路7を構成する。
The first portion 71a and the second portion 71b are electrically connected by a second connection conductor 223 to constitute a second outer conductor 71 that constitutes a part of the transmission line 7 and functions as a ground conductor. do.
Further, the second outer conductor 71 and the second signal line 72 which is a strip line provided inside the second outer conductor 71 constitute the transmission line 7 which is a suspended strip line.
 第3の誘電体基板22における第2の給電線路222は、図26に示すように、クアッドリッジ導波管部21の外部に設けた第2の給電回路6に伝送線路7を構成する第2の信号線72を介して電気的に接続されている。 As shown in FIG. 26, the second feeder line 222 in the third dielectric substrate 22 constitutes the transmission line 7 in the second feeder circuit 6 provided outside the quad-ridge waveguide section 21 . are electrically connected via a signal line 72 of .
 パッチ導体保有部3である電波放射部3は、図28に示すように、導体平板31と、スペーサ32と、パッチ導体332を有する第1の誘電体基板33を備え、実施の形態1に係るパッチアンテナ装置における電波放射部3と同様の構成である。 As shown in FIG. 28, the radio wave radiating portion 3, which is the patch conductor holding portion 3, includes a first dielectric substrate 33 having a conductor flat plate 31, a spacer 32, and a patch conductor 332. It has the same configuration as the radio wave radiating section 3 in the patch antenna device.
 次に、実施の形態2に係るパッチアンテナ装置の動作について、主として送信アンテナとして動作した場合の動作について説明する。
 第1の給電回路4から伝送線路5の第1の信号線52を介して第2の誘電体基板12の第1の給電線路122に高周波信号が入力されると、ダブルリッジ導波部1は入力された高周波信号に応じた周波数の第1の電波に変換し、第1の電波を一対の第1のリッジ部112a、112bにより第1の伝搬モードにてダブルリッジ導波管部11内を伝搬する。
Next, the operation of the patch antenna apparatus according to Embodiment 2 will be described mainly when it operates as a transmitting antenna.
When a high frequency signal is input from the first feeding circuit 4 to the first feeding line 122 of the second dielectric substrate 12 through the first signal line 52 of the transmission line 5, the double ridge waveguide portion 1 The input high-frequency signal is converted into a first radio wave having a frequency corresponding to the frequency, and the first radio wave is passed through the double-ridge waveguide portion 11 in the first propagation mode by the pair of first ridge portions 112a and 112b. Propagate.
 この時、短絡導波管部13により、ダブルリッジ導波管部11内を伝搬する第1の電波は、短絡導波管部13の反対側に位置するダブルリッジ導波管部11の一端の開口へ伝搬し、クアッドリッジ導波部2に出力される。
 クアッドリッジ導波部2に出力された第1の電波は、一対の第1のリッジ部112a、112bに連続した一対の第2のリッジ部212a、212bにより第1の伝搬モードにてクアッドリッジ導波管部21内を、クアッドリッジ導波管部21の一端の開口へ伝搬し、電波放射部3に出力される。
At this time, the short-circuited waveguide portion 13 causes the first radio waves propagating in the double-ridged waveguide portion 11 to pass through one end of the double-ridged waveguide portion 11 located on the opposite side of the short-circuited waveguide portion 13 . It propagates to the aperture and is output to the quad-ridge waveguide section 2 .
The first radio waves output to the quad-ridge waveguide portion 2 are quad-ridge guided in a first propagation mode by a pair of second ridge portions 212a and 212b that are continuous with the pair of first ridge portions 112a and 112b. It propagates through the wave tube portion 21 to an opening at one end of the quadridge waveguide portion 21 and is output to the radio wave emitting portion 3 .
 電波放射部3に出力された第1の電波は、導体平板31及びスペーサ32を伝搬し、パッチ導体332を励振し、パッチアンテナ装置の外部空間に放射される。
 アンテナ装置内を伝搬する第1の電波は、第1の伝搬モードにより伝搬されるため、電界の方向が主に図27及び図28の図示y軸に沿った方向(横方向)に沿う電磁界分布であり、パッチアンテナ装置の外部空間に放射される第1の電波の主偏波は、y軸方向に沿った方向の偏波成分となる。
The first radio wave output to the radio wave radiating section 3 propagates through the flat conductor plate 31 and the spacer 32, excites the patch conductor 332, and is radiated to the external space of the patch antenna apparatus.
Since the first radio wave propagating in the antenna device is propagated in the first propagation mode, the direction of the electric field is mainly along the y-axis shown in FIGS. 27 and 28 (lateral direction). distribution, and the main polarized wave of the first radio wave radiated to the external space of the patch antenna device is the polarized wave component in the direction along the y-axis direction.
 一方、第1の給電回路4から伝送線路7の第2の信号線72を介して第3の誘電体基板22の第2の給電線路222に高周波信号が入力されると、クアッドリッジ導波部2は入力された高周波信号に応じた周波数の第2の電波に変換し、第2の電波を一対の第3のリッジ部213a、213bにより第2の伝搬モードにてクアッドリッジ導波管部21内を伝搬する。 On the other hand, when a high frequency signal is input from the first feeding circuit 4 to the second feeding line 222 of the third dielectric substrate 22 through the second signal line 72 of the transmission line 7, the quad ridge waveguide portion 2 converts the input high-frequency signal into a second radio wave having a frequency corresponding to the input high-frequency signal, and the second radio wave is transmitted to the quad-ridge waveguide portion 21 in a second propagation mode by a pair of third ridge portions 213a and 213b. Propagate inside.
 この時、ダブルリッジ導波管部11は、第2の電波の第2の伝搬モードにおける遮断周波数が第2の電波の周波数より高い周波数に設定されているため、第2の電波はダブルリッジ導波管部11に向かう方向には伝搬しない。
 従って、クアッドリッジ導波管部21内を伝搬する第2の電波は、第2の伝搬モードによりクアッドリッジ導波管部21の一端の開口へ伝搬し、電波放射部3に出力される。
At this time, in the double-ridge waveguide section 11, the cut-off frequency in the second propagation mode of the second radio waves is set to a frequency higher than the frequency of the second radio waves, so the second radio waves pass through the double-ridge waveguide. It does not propagate in the direction toward the wave tube portion 11 .
Therefore, the second radio wave propagating in the quad-ridge waveguide portion 21 propagates to the opening at one end of the quad-ridge waveguide portion 21 in the second propagation mode and is output to the radio wave emitting portion 3 .
 第2の電波は、一部に第2の電波の周波数の所定倍数である高次モードの電波を有するが、高次モードの電波はクアッドリッジ導波管部21内を伝搬しながら、減衰する。 A part of the second radio wave has a higher-order mode radio wave whose frequency is a predetermined multiple of the frequency of the second radio wave. .
 電波放射部3に入力された第2の電波は、導体平板31及びスペーサ32を伝搬し、パッチ導体332を励振し、パッチアンテナ装置の外部空間に放射される。
 アンテナ装置内を伝搬する第2の電波は、第2の伝搬モードにより伝搬されるため、電界の方向が主に図2及び図3の図示x軸に沿った方向(縦方向)に沿う電磁界分布であり、パッチアンテナ装置の外部空間に放射される第2の電波の主偏波は、x軸方向に沿った方向の偏波成分となる。
The second radio wave input to the radio wave radiating section 3 propagates through the conductor plate 31 and the spacer 32, excites the patch conductor 332, and is radiated to the external space of the patch antenna apparatus.
Since the second radio wave propagating in the antenna device is propagated in the second propagation mode, the direction of the electric field is mainly along the x-axis shown in FIGS. 2 and 3 (longitudinal direction). distribution, and the main polarized wave of the second radio wave radiated to the external space of the patch antenna apparatus is the polarized wave component in the direction along the x-axis direction.
 これにより、電波放射部3からは、主偏波の向きが互いに直交した第1の電波と第2の電波が放射(出射)され、直交偏波共用のアンテナ装置が得られる。 As a result, the first radio wave and the second radio wave whose directions of main polarized waves are orthogonal to each other are radiated (emitted) from the radio wave radiating section 3, and an antenna device for common use of orthogonal polarized waves is obtained.
 次に、クアッドリッジ導波管部21に発生する第2の電波の高次モードによる電波について説明する。
 第2の電波の高次モードによる電波は、図27におけるx-z平面(縦断面)に平行な縦断面に対して対称な分布を有する。
Next, the radio waves generated in the quad-ridge waveguide section 21 due to the higher-order mode of the second radio waves will be described.
The radio waves of the higher-order mode of the second radio wave have a symmetrical distribution with respect to a longitudinal section parallel to the xz plane (longitudinal section) in FIG.
 今、第3の誘電体基板22の第2の給電線路222の中心線が、製造誤差に伴う寸法誤差がなく、理想的に、クアッドリッジ導波管部21の管軸CAを含む縦断面に位置するように配置されていると、クアッドリッジ導波管部21に発生する第2の電波の高次モードによる電波は、図32に示すように、第2の給電線路222の中心線から第2のリッジ部212aまでの距離と、第2の給電線路222の中心線から第2のリッジ部212bまでの距離が等しく、電界分布の対称性から、アンテナ装置から外部空間に放射される高次モードによる電波は互いにキャンセルされ、結果として、アンテナ装置の正面方向では高次モードによる電波の放射は観測されない。 Now, the center line of the second feeder line 222 of the third dielectric substrate 22 is ideally in the longitudinal section including the tube axis CA of the quad-ridge waveguide section 21 without any dimensional errors due to manufacturing errors. As shown in FIG. 32, radio waves generated in the quad-ridge waveguide portion 21 due to the higher-order mode of the second radio wave are distributed from the center line of the second feeder line 222 to the second feed line 222 as shown in FIG. The distance to the second ridge portion 212a is equal to the distance from the center line of the second feed line 222 to the second ridge portion 212b. Radio waves due to modes cancel each other, and as a result, radiation of radio waves due to higher modes is not observed in the front direction of the antenna device.
 また、第2の給電線路222が、第1のリッジ部112a、112bと第2のリッジ部212a、212bにより構成される一対の連続体における第1の切り欠き部a11及び第2の切り欠き部a12による切り欠き部と第1の切り欠き部b11及び第2の切り欠き部b12による切り欠き部の間に位置しているので、第2の給電線路222の中心線と第2のリッジ部212a、212b及び第1のリッジ部112a、112bとの間の距離が離れているため、高次モードによる電波の振幅は短い振幅となる。 In addition, the second feeder line 222 is the first notch part a11 and the second notch part in a pair of continuous bodies composed of the first ridges 112a, 112b and the second ridges 212a, 212b. Since it is positioned between the cutout portion by a12 and the cutout portions by the first cutout portion b11 and the second cutout portion b12, the center line of the second feeder line 222 and the second ridge portion 212a , 212b and the first ridges 112a and 112b, the amplitude of the radio wave due to the higher-order mode is short.
 一方、第2の給電線路222の中心線に製造誤差に伴う寸法誤差が生じた場合、例えば、図33に示すように、第2の給電線路222の中心線が、クアッドリッジ導波管部21の管軸CAを含む縦断面に対して、図33の図示y軸において-方向に位置ずれして配置されたとしても、第2の給電線路222の中心線と第2のリッジ部212a、212b及び第1のリッジ部112a、112bとの間の距離が離れているため、第2の給電線路222の位置ずれによる影響は、図33の図示y軸において-方向と+方向とで相対的に小さく、第2の給電線路222の中心線までの距離が第2のリッジ部212aより短い第2のリッジ部212b側に、わずかに強い振幅の高次モードによる電波が現れる。 On the other hand, when the center line of the second feed line 222 has a dimensional error due to a manufacturing error, for example, as shown in FIG. With respect to the longitudinal section including the tube axis CA of FIG. and the first ridges 112a and 112b, the influence of the positional deviation of the second feeder line 222 is relative to the - direction and the + direction on the y-axis shown in FIG. On the side of the second ridge portion 212b, which is small and has a shorter distance to the center line of the second feeder line 222 than the second ridge portion 212a, radio waves in a higher mode with slightly strong amplitude appear.
 高次モードによる電波の振幅が短く、第2のリッジ部212a側と第2のリッジ部212b側との高次モードによる電波の振幅の差がわずかであるため、高次モードによる電波がアンテナ装置から外部空間に放射されたとしても、アンテナ装置の正面方向における図33の図示y軸に沿った方向の偏波成分を有する電波、つまり、第2の電波の主偏波に対する交差偏波成分の放射は小さく抑えることができる。 Since the amplitude of the radio wave due to the high-order mode is short and the difference in the amplitude of the radio wave due to the high-order mode between the second ridge portion 212a side and the second ridge portion 212b side is small, the radio wave due to the high-order mode is transmitted to the antenna device. 33 in the front direction of the antenna device, that is, the cross polarization component with respect to the main polarization of the second radio wave. Radiation can be kept small.
 さらに、図32及び図33に示すように、クアッドリッジ導波管部21内を伝搬する高次モードによる電波の振幅は短い振幅であるため、クアッドリッジ導波管部21内の伝搬による減衰が早く、クアッドリッジ導波管部21として、管軸CA方向の長さを短くできる。 Furthermore, as shown in FIGS. 32 and 33, since the amplitude of the radio wave due to the higher-order mode propagating in the quad-ridge waveguide portion 21 is short, attenuation due to propagation in the quad-ridge waveguide portion 21 is reduced. As the quad-ridge waveguide section 21, the length in the direction of the tube axis CA can be shortened quickly.
 例えば、参考例として、第1のリッジ部112a、112b及び第2のリッジ部212a、212bにそれぞれに第1の切り欠き部a11、b11及び第2の切り欠き部a12、b12がなく、第1のリッジ部112a、112b及び第2のリッジ部212a、212bの高さを全域に亘ってL1とすると、第2の給電線路222の中心線が、理想的に、クアッドリッジ導波管部21の管軸CAを含む縦断面に位置するように配置されている場合、図34に示すように、第2の給電線路222の中心線と第2のリッジ部212a、212b及び第1のリッジ部112a、112bとの間の距離が短く、高次モードによる電波の振幅は比較的大きな振幅となる。 For example, as a reference example, the first ridges 112a and 112b and the second ridges 212a and 212b do not have the first notches a11 and b11 and the second notches a12 and b12, respectively. If the height of the ridges 112a, 112b and the second ridges 212a, 212b is L1 over the entire region, the center line of the second feeder line 222 ideally coincides with the height of the quad ridge waveguide 21. When arranged so as to be positioned in a longitudinal section including the tube axis CA, as shown in FIG. , 112b is short, and the amplitude of the radio wave due to the high-order mode is relatively large.
 また、第2の給電線路222の中心線が、クアッドリッジ導波管部21の管軸CAを含む縦断面に対して、図35の図示y軸において-方向に位置ずれして配置された場合、第2の給電線路222の中心線までの距離が第2のリッジ部212aより短い第2のリッジ部212b側に、強い振幅の高次モードによる電波が現れる。 Also, when the center line of the second feeder line 222 is displaced in the - direction on the y-axis shown in FIG. , on the second ridge portion 212b side where the distance to the center line of the second feeder line 222 is shorter than that on the second ridge portion 212a, radio waves in a high-order mode with strong amplitude appear.
 その結果、高次モードによる電波がアンテナ装置から外部空間に放射されると、アンテナ装置の正面方向における図35の図示y軸に沿った方向の偏波成分を有する電波が放射される。
 図35の図示y軸に沿った方向の偏波成分は、第2の電波の主偏波と直交する、いわゆる交差偏波成分となり、不要な成分が放射されることになる。
As a result, when a radio wave in a higher mode is radiated from the antenna device to the external space, a radio wave having a polarization component in a direction along the y-axis shown in FIG. 35 in the front direction of the antenna device is radiated.
The polarized wave component in the direction along the y-axis shown in FIG. 35 becomes a so-called cross-polarized wave component that is orthogonal to the main polarized wave of the second radio wave, and unnecessary components are radiated.
 この不要な成分の放射を抑えるためには、クアッドリッジ導波管部21内の伝搬により減衰させることが考えられ、この場合はクアッドリッジ導波管部21として、管軸CA方向の長さを長くする必要がある。 In order to suppress the radiation of this unnecessary component, it is conceivable to attenuate it by propagation in the quad-ridge waveguide portion 21. In this case, the quad-ridge waveguide portion 21 has a length in the direction of the tube axis CA of need to be longer.
 以上のことから理解されるように、実施の形態2に係るパッチアンテナ装置は、参考例に比較して、クアッドリッジ導波管部21内に伝搬する第2の電波の高次モードによる電波の振幅が短く、例え、第2の給電線路222の中心線から第2のリッジ部212aまでの距離と第2の給電線路222の中心線から第2のリッジ部212bまでの距離に差が生じたとしても、高次モードによる電波における第2のリッジ部212a側と第2のリッジ部212b側との振幅の差はわずかであり、低交差偏波特性が維持可能であり、クアッドリッジ導波管部21として、クアッドリッジ導波管部21の管軸CA方向の長さを短くできる。 As can be understood from the above, the patch antenna device according to the second embodiment has a higher-order mode of the second radio wave propagating in the quad-ridge waveguide section 21 than the reference example. The amplitude is short, and for example, there is a difference between the distance from the center line of the second feed line 222 to the second ridge portion 212a and the distance from the center line of the second feed line 222 to the second ridge portion 212b. , the difference in amplitude between the second ridge portion 212a side and the second ridge portion 212b side in the radio wave due to the higher-order mode is slight, and low cross-polarization characteristics can be maintained. As the tube portion 21, the length of the quad-ridge waveguide portion 21 in the tube axis CA direction can be shortened.
 従って、第2の給電線路222がクアッドリッジ導波管部21に対して寸法誤差の設計裕度を持つため、製造が容易であり、薄型にして、低交差偏波特性が維持可能である、直交偏波共用のパッチアンテナ装置を得ることができる。 Therefore, since the second feeder line 222 has a design margin of dimensional error with respect to the quad-ridge waveguide portion 21, it is easy to manufacture, thin, and low cross-polarization characteristics can be maintained. , it is possible to obtain a cross-polarized patch antenna device.
 なお、実施の形態2に係るパッチアンテナ装置は、いわゆる「アンテナの可逆性」により、受信アンテナとして動作する場合も、送信アンテナとして動作する場合と同様に同様の原理により動作するので、受信アンテナとして動作する場合についての説明は省略する。 Note that the patch antenna apparatus according to Embodiment 2 operates according to the same principle as when operating as a transmitting antenna even when operating as a receiving antenna due to so-called "antenna reversibility". A description of the case of operation is omitted.
 以上のように、実施の形態2に係るパッチアンテナ装置は、実施の形態1に係るパッチアンテナ装置と同様に、一対の第1のリッジ部112a、112bと一対の第2のリッジ部212a、212bとを含む一対の連続体は、ダブルリッジ導波管部11とクアッドリッジ導波管部21との境界部に、対向する一対の連続体の端面間の間隙を広くする切り欠き部が設けられているので、第3の誘電体基板22の第2の給電線路222がクアッドリッジ導波管部21に対して製造誤差に伴う寸法誤差により位置ずれがある場合においても低交差偏波特性が維持可能であり、さらに、クアッドリッジ導波管部21として、クアッドリッジ導波管部21の管軸CA方向の長さを短くでき、結果として薄型の直交偏波共用のパッチアンテナ装置を得ることができる。 As described above, the patch antenna device according to the second embodiment has a pair of first ridges 112a and 112b and a pair of second ridges 212a and 212b, similarly to the patch antenna device according to the first embodiment. A pair of continuum including and is provided with a notch portion at the boundary between the double ridge waveguide portion 11 and the quad ridge waveguide portion 21 to widen the gap between the end faces of the pair of opposing continuities. Therefore, even when the second feed line 222 of the third dielectric substrate 22 is misaligned with respect to the quad-ridge waveguide portion 21 due to a dimensional error due to a manufacturing error, the low cross-polarization characteristic is maintained. Further, the length of the quad-ridge waveguide portion 21 in the tube axis CA direction can be shortened as the quad-ridge waveguide portion 21, and as a result, a thin cross-polarized patch antenna device can be obtained. can be done.
 なお、一対の第1のリッジ部112a、112bと一対の第2のリッジ部212a、212bとにより構成される一対の連続体における切り欠き部は、図36及び図37に示すように、一対の第1のリッジ部112a、112b又は一対の第2のリッジ部212a、212bの一方のリッジ部が、管軸CAに沿った方向の全域に亘って第1の切り欠き部a11、b11又は第2の切り欠き部a12、b12としたものでもよい。 36 and 37, the notch portion in the pair of continuous bodies constituted by the pair of first ridges 112a and 112b and the pair of second ridges 212a and 212b is a pair of The first ridges 112a and 112b or one of the pair of second ridges 212a and 212b is aligned with the first cutouts a11 and b11 or the second ridges over the entire area in the direction along the tube axis CA. notches a12 and b12.
 すなわち、図36に示すように、一対の第2のリッジ部212a、212bそれぞれは、管軸CAに沿った方向の全域に亘って高さL1より低い高さL2の立設部とし、対応する一対の第1のリッジ部112a、112bにおける切り欠き部a11、b11が形成される高さL2の立設部に連続して形成される。 That is, as shown in FIG. 36, each of the pair of second ridges 212a and 212b has a height L2 lower than the height L1 over the entire area in the direction along the tube axis CA. The cutout portions a11 and b11 of the pair of first ridge portions 112a and 112b are formed continuously with the upright portion having the height L2.
 また、図37に示すように、一対の第1のリッジ部112a、112bそれぞれは、管軸CAに沿った方向の全域に亘って高さL1より低い高さL2の立設部とし、対応する一対の第2のリッジ部212a、212bにおける切り欠き部a12、b12が形成される高さL2の立設部に連続して形成される。 Further, as shown in FIG. 37, each of the pair of first ridges 112a and 112b is a raised portion having a height L2 lower than the height L1 over the entire area in the direction along the tube axis CA. The cutout portions a12 and b12 of the pair of second ridge portions 212a and 212b are formed continuously with the standing portion having a height L2.
 なお、一対の第1のリッジ部112a、112bと一対の第2のリッジ部212a、212bとにより構成される一対の連続体における切り欠き部は、少なくとも一対の第2のリッジ部212a、212bに設けられた第2の切り欠き部a12、b12によって構成されたものでよい。 Note that the notch portion in the pair of continuous bodies constituted by the pair of first ridge portions 112a and 112b and the pair of second ridge portions 212a and 212b is at least the pair of second ridge portions 212a and 212b. It may be configured by the provided second notch portions a12 and b12.
 第1の誘電体331の一面に設けられたパッチ導体332の外形形状は正方形に限られるものではなく、実施の形態1に係るパッチアンテナ装置により説明したように、図13から図19に示す外形形状であってもよい。
 また、図20に示すように、第1の誘電体331の一面における外周部にグランド導体333を設けたものであってもよい。
The outer shape of the patch conductor 332 provided on one surface of the first dielectric 331 is not limited to a square. It may be in shape.
Further, as shown in FIG. 20, a ground conductor 333 may be provided on the outer peripheral portion of one surface of the first dielectric 331 .
 電波放射部3におけるスペーサ32は、実施の形態1に係るパッチアンテナ装置により説明したように、上記した導体筒に限られるものではなく、導体平板31と別体に設けられた誘電体筒でもよく、また、パッチ導体332を有する第1の誘電体基板33と導体平板31とを所定の間隔をあけて平行に保持するものであればよく、図21から図25に示すスペーサ32でもよい。 The spacer 32 in the radio wave radiating section 3 is not limited to the above-described conductor tube as described in the patch antenna device according to the first embodiment, and may be a dielectric tube provided separately from the conductor plate 31. Also, the spacers 32 shown in FIGS. 21 to 25 may be used as long as they hold the first dielectric substrate 33 having the patch conductors 332 and the conductor flat plate 31 in parallel with a predetermined gap.
実施の形態3.
 実施の形態3に係るパッチアンテナ装置を図38から図42に従い説明する。
 実施の形態3に係るパッチアンテナ装置は、実施の形態2に係るパッチアンテナ装置を素子アンテナとして2つ並行して配列されたパッチアレイアンテナ装置である。
Embodiment 3.
A patch antenna apparatus according to Embodiment 3 will be described with reference to FIGS. 38 to 42. FIG.
The patch antenna apparatus according to Embodiment 3 is a patch array antenna apparatus in which two patch antenna apparatuses according to Embodiment 2 are arranged in parallel as element antennas.
 なお、図38から図42中、図26から図33に付された符号と同一符号は同一又は相当部分を示す。
 また、第1の素子アンテナに対する符号は頭にAを付し、第2の素子アンテナに対する符号は頭にBを付して実施の形態2に係るパッチアンテナ装置における構成要素との関連性を表し、説明の煩雑さを避けるため第1及び第2を省略している。
38 to 42, the same reference numerals as in FIGS. 26 to 33 denote the same or corresponding parts.
In addition, the reference numerals for the first element antenna are prefixed with A, and the reference numerals for the second element antenna are prefixed with B to represent the relationship with the constituent elements in the patch antenna apparatus according to the second embodiment. , the first and second are omitted to avoid complication of the explanation.
 実施の形態3に係るパッチアンテナ装置は、図38に示すように、ダブルリッジ導波部1とクアッドリッジ導波部2とパッチ導体保有部3とを備える。
 ダブルリッジ導波部1とクアッドリッジ導波部2とパッチ導体保有部3は、第1の素子アンテナの中心軸及び第2の素子アンテナの中心軸に沿って直線上に配置される。
The patch antenna apparatus according to Embodiment 3 includes a double ridge waveguide 1, a quad ridge waveguide 2, and a patch conductor holding portion 3, as shown in FIG.
The double-ridge waveguide portion 1, the quad-ridge waveguide portion 2, and the patch conductor holding portion 3 are arranged on a straight line along the central axis of the first element antenna and the central axis of the second element antenna.
 ダブルリッジ導波部1は、第1の素子アンテナを構成するダブルリッジ導波部A1と、第2の素子アンテナを構成するダブルリッジ導波部B1と、ダブルリッジ導波部A1とダブルリッジ導波部B1を連結する連結部R1とを備え、電波の伝搬方向(z軸)に直交する方向、図38の図示横方向(y軸)に並行して配列される。 The double ridge waveguide portion 1 includes a double ridge waveguide portion A1 that constitutes a first element antenna, a double ridge waveguide portion B1 that constitutes a second element antenna, and a double ridge waveguide portion A1 and a double ridge waveguide. It is provided with a connecting portion R1 that connects the wave portions B1, and is arranged in parallel with the horizontal direction (y-axis) in FIG.
 クアッドリッジ導波部2は、第1の素子アンテナを構成するクアッドリッジ導波部A2と、第2の素子アンテナを構成するクアッドリッジ導波部B2と、クアッドリッジ導波部A2とクアッドリッジ導波部B2を連結する連結部R2とを備え、電波の伝搬方向に直交する方向、図38の図示横方向に並行して配列される。 The quad-ridge waveguide portion 2 includes a quad-ridge waveguide portion A2 constituting a first element antenna, a quad-ridge waveguide portion B2 constituting a second element antenna, a quad-ridge waveguide portion A2 and a quad-ridge waveguide portion. A connecting portion R2 for connecting the wave portions B2 is provided, and arranged in parallel in the horizontal direction in FIG.
 パッチ導体保有部3は、第1の素子アンテナを構成するパッチ導体保有部A3と、第2の素子アンテナを構成するパッチ導体保有部B3と、パッチ導体保有部A3とパッチ導体保有部B3を連結する連結部R3とを備え、電波の伝搬方向に直交する方向、図38の図示横方向に並行して配列される。 The patch conductor holding portion 3 connects the patch conductor holding portion A3 forming the first element antenna, the patch conductor holding portion B3 forming the second element antenna, and the patch conductor holding portion A3 and the patch conductor holding portion B3. 38, and arranged in parallel in the horizontal direction in FIG.
 ダブルリッジ導波部1は、ダブルリッジ導波管部11と第1の信号導体12と短絡導波管部13を備える。
 ダブルリッジ導波管部11は、図39に示すように、第1の素子アンテナを構成するダブルリッジ導波管部A11と、第2の素子アンテナを構成するダブルリッジ導波管部B11と、ダブルリッジ導波管部A11とダブルリッジ導波管部B11を連結する第1の連結部R11を備え、一体的に形成された第1の導体ブロックを構成する。
The double-ridge waveguide section 1 comprises a double-ridge waveguide section 11 , a first signal conductor 12 and a short-circuit waveguide section 13 .
As shown in FIG. 39, the double ridge waveguide portion 11 includes a double ridge waveguide portion A11 constituting a first element antenna, a double ridge waveguide portion B11 constituting a second element antenna, A first connecting portion R11 that connects the double-ridge waveguide portion A11 and the double-ridge waveguide portion B11 is provided, and an integrally formed first conductor block is configured.
 ダブルリッジ導波管部A11及びダブルリッジ導波管部B11はそれぞれ、実施の形態2に係るパッチアレイアンテナ装置におけるダブルリッジ導波管部11と同じ構成であり、それぞれ第1の導波管部A111、B111と、対向配置された一対の第1の突条A112a、A112b、B112a、B112bを備える。 The double ridge waveguide portion A11 and the double ridge waveguide portion B11 each have the same configuration as the double ridge waveguide portion 11 in the patch array antenna device according to Embodiment 2, and are each the first waveguide portion. A111, B111 and a pair of first ridges A112a, A112b, B112a, B112b arranged to face each other.
 ダブルリッジ導波管部A11、B11に設けられる第1の外導体A51、B51の第1の部分A51a、B51aはそれぞれ、配列方向に沿って第2の側壁A111b、B111bから外部に突出して設けられる。 The first portions A51a and B51a of the first outer conductors A51 and B51 provided in the double-ridge waveguide portions A11 and B11 are provided to protrude outward from the second sidewalls A111b and B111b along the arrangement direction, respectively. .
 ダブルリッジ導波管部A11に設けられる第2の外導体A71の第1の部分A71aは、電波の伝搬方向及び配列方向に直交する方向、図38の図示縦方向(x軸)に沿って第2の側壁A111bから外部に突出して設けられる。
 ダブルリッジ導波管部B11に設けられる第2の外導体B71の第1の部分B71aは、第1の部分A71aとは逆方向、つまり、電波の伝搬方向及び配列方向に直交する方向、図38の図示縦方向に沿って第4の側壁B111dから外部に突出して設けられる。
The first portion A71a of the second outer conductor A71 provided in the double-ridge waveguide portion A11 extends along the vertical direction (x-axis) in FIG. 2 projecting outward from the side wall A111b.
The first portion B71a of the second outer conductor B71 provided in the double-ridge waveguide portion B11 is arranged in a direction opposite to that of the first portion A71a, that is, in a direction perpendicular to the propagation direction and arrangement direction of radio waves. is provided so as to protrude outside from the fourth side wall B111d along the vertical direction of the figure.
 短絡導波管部13は、第2の導波管部131と短絡導体部132備える。
 第2の導波管部131は、図39に示すように、第1の素子アンテナを構成する第2の導波管部A131と、第2の素子アンテナを構成する第2の導波管部B131と、第2の導波管部A131と第2の導波管部B131を連結する第2の連結部R131を備え、一体的に形成された第2の導体ブロックを構成する。
The short-circuit waveguide section 13 includes a second waveguide section 131 and a short-circuit conductor section 132 .
As shown in FIG. 39, the second waveguide section 131 includes a second waveguide section A131 forming the first element antenna and a second waveguide section A131 forming the second element antenna. B131 and a second connecting portion R131 that connects the second waveguide portion A131 and the second waveguide portion B131 to constitute an integrally formed second conductor block.
 第2の導波管部A131及び第2の導波管部B131はそれぞれ、実施の形態2に係るパッチアレイアンテナ装置における第2の導波管部131と同じ構成であり、それぞれ第1の外導体A51、B51の第1の部分A51a、B51aと対向した第2の部分A51b、B51bが設けられている。 The second waveguide portion A131 and the second waveguide portion B131 each have the same configuration as the second waveguide portion 131 in the patch array antenna device according to the second embodiment, Second portions A51b and B51b facing the first portions A51a and B51a of the conductors A51 and B51 are provided.
 短絡導体部132は、図39に示すように、第1の素子アンテナを構成する短絡導体部A132と、第2の素子アンテナを構成する短絡導体部B132と、短絡導体部A132と短絡導体部B132それぞれを連結する第3の連結部R132を備え、一体形成された板状の導体である。 As shown in FIG. 39, the short-circuit conductor portion 132 includes a short-circuit conductor portion A132 forming the first element antenna, a short-circuit conductor portion B132 forming the second element antenna, a short-circuit conductor portion A132 and a short-circuit conductor portion B132. It is an integrally formed plate-shaped conductor provided with a third connecting portion R132 for connecting them.
 第1の信号導体12は、第2の誘電体121と、第1の給電線路122と、第1の信号線52と、第1の接続用導体123を備えたプリント基板による第2の誘電体基板である。
 第1の信号導体12は、第1の導体ブロックの他端と第2の導体ブロックの一端との間、つまり、ダブルリッジ導波管部11の他端面と第2の導波管部131の一端面との間に介在し、周辺部において接合する。
The first signal conductor 12 is a printed circuit board having a second dielectric 121, a first feed line 122, a first signal line 52, and a first connection conductor 123. is the substrate.
The first signal conductor 12 is located between the other end of the first conductor block and one end of the second conductor block, that is, between the other end surface of the double ridge waveguide section 11 and the second waveguide section 131. It is interposed between the one end surface and joined at the peripheral portion.
 第2の誘電体121は、第1の素子アンテナを構成する第2の誘電体A121と、第2の素子アンテナを構成する第2の誘電体B121と、第2の誘電体A121と第2の誘電体B121を連結する連結部R12を備え、一枚の誘電体により構成される。 The second dielectric 121 includes a second dielectric A121 forming the first element antenna, a second dielectric B121 forming the second element antenna, a second dielectric A121 and the second dielectric A121. It has a connecting portion R12 that connects the dielectrics B121, and is composed of a single dielectric.
 第1の給電線路122は、第1の素子アンテナを構成する第1の給電線路A122と第2の素子アンテナを構成する第1の給電線路B122を有し、第1の給電線路A122及び第1の給電線路B122はそれぞれ、実施の形態2に係るパッチアレイアンテナ装置における第1の給電線路122と同じ構成であり、第2の誘電体A121、121の裏面に、他方の第1の突条A112b、B112bの高さL1の立設部の端面と平行に設けられ、一端が一方の第1の突条A112a、B112aの高さL1の立設部の側面まで達し、他端が第1の信号線A52、B52の一端に連続的に接続される線状の導体箔である。 The first feeding line 122 has a first feeding line A122 forming a first element antenna and a first feeding line B122 forming a second element antenna. Each of the feeder lines B122 has the same configuration as the first feeder line 122 in the patch array antenna apparatus according to the second embodiment. , B112b, one end of which reaches the side surface of one of the first protrusions A112a and B112a with height L1, and the other end of which is the first signal It is a linear conductor foil continuously connected to one ends of the wires A52 and B52.
 第1の接続用導体123は、第1の素子アンテナを構成する第1の接続用導体A123と第2の素子アンテナを構成する第1の接続用導体B123を有し、第1の接続用導体A123及び第1の接続用導体B123はそれぞれ、実施の形態2に係るパッチアレイアンテナ装置における第1の接続用導体123と同じ構成であり、第2の誘電体A121、B121の表面及び裏面それぞれの周辺に設けられた導体箔の周辺導体A123a、A123b、B123a、B123bと両周辺導体A123a、A123b、B123a、B123bを電気的に接続する第2の誘電体A121、B121を貫通する複数の貫通ビアA123c、B123cを有する。 The first connection conductor 123 has a first connection conductor A 123 forming the first element antenna and a first connection conductor B 123 forming the second element antenna. A123 and the first connection conductor B123 each have the same configuration as the first connection conductor 123 in the patch array antenna device according to the second embodiment, and the front and back surfaces of the second dielectrics A121 and B121 are respectively Peripheral conductors A123a, A123b, B123a, B123b of conductor foils provided on the periphery and a plurality of through vias A123c penetrating second dielectrics A121, B121 electrically connecting both peripheral conductors A123a, A123b, B123a, B123b , B123c.
 第1の接続用導体A123及び第1の接続用導体B123はそれぞれ、第1の導波管部A111、B111の他端面と第2の導波管部A131、B131の一端面との間、及び第1の部分A51a、B51aの端面と第2の部分A51b、B21bの端面とを電気的に接続する。 The first connection conductor A123 and the first connection conductor B123 are respectively between the other end surface of the first waveguide portions A111 and B111 and one end surface of the second waveguide portions A131 and B131, and The end surfaces of the first portions A51a and B51a and the end surfaces of the second portions A51b and B21b are electrically connected.
 第1の給電線路A122は第1の信号線A52を介して、第1の給電線路B122は第1の信号線B52を介して、同じ第1の給電回路もしくは異なる第1の給電回路に接続される。 The first power supply line A122 is connected to the same first power supply circuit or a different first power supply circuit via the first signal line A52, and the first power supply line B122 is connected to the first power supply circuit via the first signal line B52. be.
 クアッドリッジ導波部2はクアッドリッジ導波管部21と第2の信号導体22を備える。
 クアッドリッジ導波管部21は、図40に示すように、第1の素子アンテナを構成するクアッドリッジ導波管部A21と、第2の素子アンテナを構成するクアッドリッジ導波管部B21と、クアッドリッジ導波管部A21とクアッドリッジ導波管部B21を連結する第4の連結部R21を備え、一体的に形成された第3の導体ブロックを構成する。
The quad-ridge waveguide section 2 comprises a quad-ridge waveguide section 21 and a second signal conductor 22 .
As shown in FIG. 40, the quad-ridge waveguide portion 21 includes a quad-ridge waveguide portion A21 constituting a first element antenna, a quad-ridge waveguide portion B21 constituting a second element antenna, A fourth connecting portion R21 connecting the quad-ridge waveguide portion A21 and the quad-ridge waveguide portion B21 is provided to form an integrally formed third conductor block.
 クアッドリッジ導波管部A21及びクアッドリッジ導波管部B21はそれぞれ、実施の形態2に係るパッチアレイアンテナ装置におけるクアッドリッジ導波管部21と同じ構成であり、第3の導波管部A211、B211と、それぞれが一対の第1の突条A112a、A112b、B112a、B112bと連続して対向配置された一対の第2の突条A212a、A212b、B212a、B212bと、一対の第2の突条A212a、A212b、B212a、B212bの間に対向配置された一対の第3の突条A213a、A213b、B213a、B213bを備える。 The quad-ridge waveguide portion A21 and the quad-ridge waveguide portion B21 each have the same configuration as the quad-ridge waveguide portion 21 in the patch array antenna device according to the second embodiment, and the third waveguide portion A211 , B211, a pair of second ridges A212a, A212b, B212a, B212b, each of which is continuously opposed to a pair of first ridges A112a, A112b, B112a, B112b, and a pair of second ridges. A pair of third ridges A213a, A213b, B213a, B213b are provided facing each other between the ridges A212a, A212b, B212a, B212b.
 クアッドリッジ導波管部A21、B21に設けられる第2の外導体A71、B71の第2の部分A71b、B71bは、ダブルリッジ導波管部A11、B11に設けられる第2の外導体A71、B71の第1の部分A71a、B71aに対向して設けられる。 The second portions A71b and B71b of the second outer conductors A71 and B71 provided in the quad-ridge waveguide portions A21 and B21 are the second portions A71b and B71b provided in the double-ridge waveguide portions A11 and B11. is provided to face the first portions A71a and B71a of.
 第2の信号導体22は、図40に示すように、第3の誘電体221と、第2の給電線路222と、第2の信号線72と、第2の接続用導体223を備えたプリント基板による第3の誘電体基板である。
 第2の信号導体22は、第3の導体ブロックの他端と第2の導体ブロックの一端との間、つまり、クアッドリッジ導波管部21の他端面とダブルリッジ導波管部11の一端面との間に介在し、周辺部において接合する。
The second signal conductor 22 is a printed circuit board with a third dielectric 221, a second feed line 222, a second signal line 72, and a second connecting conductor 223, as shown in FIG. A third dielectric substrate according to the substrate.
The second signal conductor 22 is located between the other end of the third conductor block and one end of the second conductor block, that is, between the other end face of the quad-ridge waveguide section 21 and one end of the double-ridge waveguide section 11 . It is interposed between the end face and joined at the peripheral portion.
 第3の誘電体221は、第1の素子アンテナを構成する第3の誘電体A221と、第2の素子アンテナを構成する第3の誘電体B221と、第3の誘電体A221と第3の誘電体B221を連結する連結部R22を備え、一枚の誘電体により構成される。 The third dielectric 221 includes a third dielectric A221 forming the first element antenna, a third dielectric B221 forming the second element antenna, a third dielectric A221 and a third dielectric A221 forming the second element antenna. It has a connecting portion R22 that connects the dielectrics B221, and is composed of a single dielectric.
 第2の給電線路222は、第1の素子アンテナを構成する第2の給電線路A222と第2の素子アンテナを構成する第2の給電線路B222を有し、第2の給電線路A222及び第2の給電線路B222はそれぞれ、実施の形態2に係るパッチアレイアンテナ装置における第2の給電線路222と同じ構成である。 The second feeding line 222 has a second feeding line A222 forming a first element antenna and a second feeding line B222 forming a second element antenna. feeder line B222 has the same configuration as the second feeder line 222 in the patch array antenna apparatus according to the second embodiment.
 第2の給電線路A222は、第3の誘電体A221の裏面に、一方の第3の突条A213aの端面と平行に設けられ、一端が他方の第3の突条A213bの側面まで達し、他端が第2の信号線A72の一端に連続的に接続される線状の導体箔である。
 第2の給電線路B222は、第3の誘電体B221の裏面に、他方の第3の突条B213bの端面と平行に設けられ、一端が一方の第3の突条B213aの側面まで達し、他端が第2の信号線B72の一端に連続的に接続される線状の導体箔である。
 第2の給電線路A222と第2の給電線路B222は互いに逆方向に延在する。
The second feed line A222 is provided on the back surface of the third dielectric A221 in parallel with the end face of one third ridge A213a, one end reaching the side surface of the other third ridge A213b, and the other It is a linear conductor foil whose end is continuously connected to one end of the second signal line A72.
The second feed line B222 is provided on the back surface of the third dielectric B221 in parallel with the end face of the other third ridge B213b, one end reaching the side surface of the one third ridge B213a, and the other It is a linear conductor foil whose end is continuously connected to one end of the second signal line B72.
The second feeder line A222 and the second feeder line B222 extend in directions opposite to each other.
 第2の接続用導体223は、第1の素子アンテナを構成する第2の接続用導体A223と第2の素子アンテナを構成する第2の接続用導体B223を有し、第2の接続用導体A223及び第2の接続用導体B223はそれぞれ、実施の形態2に係るパッチアレイアンテナ装置における第2の接続用導体223と同じ構成である。 The second connection conductor 223 has a second connection conductor A 223 forming the first element antenna and a second connection conductor B 223 forming the second element antenna. A223 and second connection conductor B223 each have the same configuration as second connection conductor 223 in the patch array antenna apparatus according to the second embodiment.
 第2の接続用導体A223及び第2の接続用導体B223はそれぞれ、第3の誘電体A221、B221の表面及び裏面それぞれの周辺に設けられた導体箔の周辺導体A223a、A223b、B223a、B223bと両周辺導体A223a、A223b、B223a、B223bを電気的に接続する第3の誘電体A221、B221を貫通する複数の貫通ビアA223c、B223cを有する。 The second connection conductor A223 and the second connection conductor B223 are peripheral conductors A223a, A223b, B223a, and B223b of conductor foils provided around the front and back surfaces of the third dielectrics A221 and B221, respectively. It has a plurality of through vias A223c, B223c penetrating the third dielectrics A221, B221 electrically connecting both peripheral conductors A223a, A223b, B223a, B223b.
 第2の接続用導体A223及び第2の接続用導体B223はそれぞれ、他方の第1の突条A112b、B112bの高さL2の立設部の端面と他方の第2の突条A212b、B212bの高さL2の立設部の端面が対向する第3の誘電体A221、B221の表面及び裏面それぞれの位置に導体箔の突条接続用導体A223d2、A223e、B2223d2、B223e2と、両突条接続用導体A223d2、A223e、B2223d2、B223e2を電気的に接続する第3の誘電体A221、B221を貫通する複数の貫通ビアA223f2、B223f2を有する。 The second connection conductor A223 and the second connection conductor B223 are respectively the end surfaces of the standing portions of the other first protrusions A112b and B112b having a height L2 and the other second protrusions A212b and B212b. Conductors A223d2, A223e, B2223d2, B223e2 for connecting ridges of conductor foil and conductors A223d2, A223e, B2223d2, B223e2 for connecting ridges on both sides of the third dielectrics A221, B221 facing the end faces of the standing portions of height L2 face each other. It has a plurality of through vias A223f2, B223f2 passing through the third dielectric A221, B221 electrically connecting the conductors A223d2, A223e, B223d2, B223e2.
 第2の接続用導体A223及び第2の接続用導体B223はそれぞれ、第3の導波管部A211、B211の他端面と第1の導波管部A111、B111の一端面との間、及び第1の部分A71a、B71aの端面と第2の部分A71b、B71bの端面とを電気的に接続する。 The second connection conductor A223 and the second connection conductor B223 are respectively between the other end surfaces of the third waveguide portions A211 and B211 and one end surface of the first waveguide portions A111 and B111, and The end surfaces of the first portions A71a and B71a and the end surfaces of the second portions A71b and B71b are electrically connected.
 突条接続用導体A223d1、B223d1と突条接続用導体A223e1、B223e1と複数の貫通ビアA223f1、A223f1により、一方の第1の突条A112a、B112aと一方の第2の突条A212a、B212aは一方の連続体を構成する。
 突条接続用導体A223d2、B223d2と突条接続用導体A223e2、B223e2と複数の貫通ビアA223f2、B223f2により、他方の第1の突条A112b、B112bと他方の第2の突条A212b、B212bは他方の連続体を構成する。
One of the first protrusions A112a and B112a and one of the second protrusions A212a and B212a are connected to one another by the protrusion connection conductors A223d1 and B223d1, the protrusion connection conductors A223e1 and B223e1, and the plurality of through vias A223f1 and A223f1. constitute a continuum of
The other first protrusions A112b and B112b and the other second protrusions A212b and B212b are connected to each other by the protrusion connection conductors A223d2 and B223d2, the protrusion connection conductors A223e2 and B223e2, and the plurality of through vias A223f2 and B223f2. constitute a continuum of
 第1の部分A71a、B71aと第2の部分A71b、B71bは、第2の接続用導体A223、B223により電気的に接続され、伝送線路の一部を構成する、グランド導体として機能する第2の外導体A71、B71を構成する。
 また、第2の外導体A71、B71と、第2の外導体A71、B71の内部に設けられたストリップ線路である第2の信号線A72、B72とにより、サスペンデッドストリップ線路である伝送線路を構成する。
 第2の外導体A71と第2の外導体B71は互いに逆方向に延在する。
The first portions A71a and B71a and the second portions A71b and B71b are electrically connected by second connection conductors A223 and B223, and constitute a part of the transmission line and function as a second ground conductor. It constitutes the outer conductors A71 and B71.
Further, the second outer conductors A71 and B71 and the second signal lines A72 and B72 which are strip lines provided inside the second outer conductors A71 and B71 constitute a transmission line which is a suspended strip line. do.
The second outer conductor A71 and the second outer conductor B71 extend in directions opposite to each other.
 第2の給電線路A222は第2の信号線A72を介して、第2の給電線路B222は第2の信号線B72を介して、同じ第2の給電回路もしくは異なる第2の給電回路に接続される。 The second feeder line A222 is connected to the same second feeder circuit or a different second feeder circuit via a second signal line A72, and the second feeder line B222 is connected to a different second feeder circuit via a second signal line B72. be.
 パッチ導体保有部3である電波放射部3は、導体平板31と、スペーサ32と、パッチ導体332を有する第1の誘電体基板33を備える。
 導体平板31は、第1の素子アンテナを構成する導体平板A31と、第2の素子アンテナを構成する導体平板B31と、導体平板A31と導体平板B31を連結する連結部R31を備え、一枚の誘電体により構成される。
 導体平板A31及び導体平板B31は、それぞれ実施の形態2に係るパッチアレイアンテナ装置における導体平板31と同じ構成である。
The radio wave radiating portion 3, which is the patch conductor holding portion 3, includes a first dielectric substrate 33 having a conductor flat plate 31, spacers 32, and patch conductors 332. FIG.
The conductive flat plate 31 includes a conductive flat plate A31 constituting a first element antenna, a conductive flat plate B31 constituting a second element antenna, and a connecting portion R31 connecting the conductive flat plate A31 and the conductive flat plate B31. Consists of a dielectric.
The conductive flat plate A31 and the conductive flat plate B31 have the same configuration as the conductive flat plate 31 in the patch array antenna apparatus according to the second embodiment.
 スペーサ32は、第1の素子アンテナを構成するスペーサA32と、第2の素子アンテナを構成するスペーサB32と、スペーサA32とスペーサB32を連結する連結部R32を備え、一体的に形成された1つの導体ブロックを構成する。
 スペーサA32及びスペーサB32は、それぞれ実施の形態2に係るパッチアレイアンテナ装置におけるスペーサ32と同じ構成である。
The spacer 32 is provided with a spacer A32 constituting the first element antenna, a spacer B32 constituting the second element antenna, and a connecting portion R32 connecting the spacer A32 and the spacer B32, and is integrally formed. Construct a conductor block.
The spacer A32 and the spacer B32 have the same configuration as the spacer 32 in the patch array antenna apparatus according to the second embodiment.
 パッチ導体332を有する第1の誘電体基板33は、第1の素子アンテナを構成するパッチ導体A332を有する第1の誘電体基板A33と、第2の素子アンテナを構成するパッチ導体B332を有する第1の誘電体基板B33と、第1の誘電体基板A33と第1の誘電体基板B33を連結する連結部R33を備え、一体的に形成された1枚のブリント基板によって構成される。
 パッチ導体A332を有する第1の誘電体基板A33及びパッチ導体B332を有する第1の誘電体基板B33は、それぞれ実施の形態2に係るパッチアレイアンテナ装置におけるパッチ導体332を有する第1の誘電体基板33と同じ構成である。
A first dielectric substrate 33 having a patch conductor 332 includes a first dielectric substrate A33 having a patch conductor A332 constituting a first element antenna and a second dielectric substrate A33 having a patch conductor B332 constituting a second element antenna. It comprises one dielectric substrate B33 and a connecting portion R33 that connects the first dielectric substrate A33 and the first dielectric substrate B33, and is composed of one printed substrate integrally formed.
A first dielectric substrate A33 having patch conductors A332 and a first dielectric substrate B33 having patch conductors B332 are the first dielectric substrates having patch conductors 332 in the patch array antenna device according to the second embodiment. It has the same configuration as 33.
 第1の素子アンテナと第2の素子アンテナは、第2の給電線路A222と第2の給電線路B222が互いに逆方向に延在している点を除いて、第1の素子アンテナと第2の素子アンテナの各構成要素の寸法は互いに同一である。 The first element antenna and the second element antenna are the same as the first element antenna and the second element antenna, except that the second feed line A222 and the second feed line B222 extend in opposite directions to each other. The dimensions of each component of the element antenna are the same as each other.
 次に、実施の形態3に係るパッチアンテナ装置の動作について、主として送信アンテナとして動作した場合の動作について説明する。
 第1の素子アンテナと第2の素子アンテナそれぞれは、実施の形態2に係るパッチアレイアンテナ装置と同じ構成をしているので、同様の動作をし、第1の給電回路4から伝送線路5の第1の信号線A52、B52を介して第2の誘電体基板A12、B12の第1の給電線路A122、B122に高周波信号が入力されると、ダブルリッジ導波部A1、B1は入力された高周波信号に応じた周波数の第1の電波に変換し、第1の伝搬モードによる第1の電波をダブルリッジ導波管部A11、B11内及びクアッドリッジ導波部A2、B2におけるクアッドリッジ導波管部A21、B21内を伝搬し、電波放射部A3、B3からパッチアンテナ装置の外部空間に放射する。
Next, the operation of the patch antenna apparatus according to Embodiment 3 will be described mainly when it operates as a transmitting antenna.
Since each of the first element antenna and the second element antenna has the same configuration as that of the patch array antenna apparatus according to the second embodiment, it operates in the same manner as the first feed circuit 4 to the transmission line 5. When a high frequency signal is input to the first feeding lines A122, B122 of the second dielectric substrates A12, B12 via the first signal lines A52, B52, the double ridge waveguides A1, B1 are input. The high-frequency signal is converted into a first radio wave having a frequency corresponding to the first propagation mode, and the first radio wave in the first propagation mode is guided through the quad-ridge waveguides in the double-ridge waveguide portions A11 and B11 and in the quad-ridge waveguide portions A2 and B2. It propagates through the tube portions A21 and B21 and radiates from the radio wave radiating portions A3 and B3 to the external space of the patch antenna apparatus.
 一方、第1の素子アンテナと第2の素子アンテナそれぞれは、第2の給電回路6から伝送線路7の第2の信号線A72、B72を介して第3の誘電体基板A22、B22の第2の給電線路A222、B222に高周波信号が入力されると、クアッドリッジ導波部A2、B2は入力された高周波信号に応じた周波数の第2の電波に変換し、第2の伝搬モードによる第2の電波をクアッドリッジ導波管部A21、B21内を伝搬し、電波放射部A3、B3からパッチアンテナ装置の外部空間に放射する。 On the other hand, each of the first element antenna and the second element antenna is fed from the second feeding circuit 6 via the second signal lines A72 and B72 of the transmission line 7 to the second signal lines A22 and B22 of the third dielectric substrates A22 and B22. When a high-frequency signal is input to the feeder lines A222 and B222 of the quad-ridge waveguides A2 and B2, the quad-ridge waveguides A2 and B2 convert the input high-frequency signal into a second radio wave having a frequency corresponding to the second propagation mode. propagates through the quad-ridge waveguide portions A21 and B21, and is radiated from the radio wave radiating portions A3 and B3 to the external space of the patch antenna apparatus.
 第1の素子アンテナから放射される第1の電波と第2の素子アンテナから放射される第1の電波は放射方向で同位相となるように、第1の給電線路A122、B122に入力される高周波信号の位相が制御され、第2の電波も放射方向で同位相となるように、第2の給電線路A222、B222に入力される高周波信号の位相が制御される。 The first radio wave radiated from the first element antenna and the first radio wave radiated from the second element antenna are input to the first feeding lines A122 and B122 so that they are in phase in the radiation direction. The phase of the high-frequency signal input to the second feeder lines A222 and B222 is controlled so that the phase of the high-frequency signal is controlled and the second radio waves are also in phase in the radiation direction.
 パッチアンテナ装置の正面、管軸CAに沿った方向、つまり、図38から図40の図示のz軸に沿った方向において、第1の素子アンテナからの第1の電波と第2の素子アンテナからの第1の電波を同位相で合成し、第1の素子アンテナからの第2の電波と第2の素子アンテナからの第2の電波を同位相で合成する。 In the front of the patch antenna apparatus, in the direction along the tube axis CA, that is, in the direction along the z-axis shown in FIGS. are combined in phase, and the second radio wave from the first element antenna and the second radio wave from the second element antenna are combined in phase.
 第1の素子アンテナからの第1の電波と第2の素子アンテナからの第1の電波を同位相で合成するために、第1の給電線路A122と第1の給電線路B122には同位相の高周波信号を入力する。
 一方、第1の素子アンテナからの第2の電波と第2の素子アンテナからの第2の電波を同位相で合成するために、第2の給電線路A222と第2の給電線路B222が互いに逆方向に延在させる構成をとっているため、第2の給電線路A222と第2の給電線路B222には互いに逆位相、つまり、位相差が180度となる高周波信号を入力する。
In order to synthesize the first radio wave from the first element antenna and the first radio wave from the second element antenna in the same phase, the first feed line A122 and the first feed line B122 have the same phase. Input a high frequency signal.
On the other hand, in order to synthesize the second radio wave from the first element antenna and the second radio wave from the second element antenna in the same phase, the second feed line A222 and the second feed line B222 are opposite to each other. Since the second feeder line A222 and the second feeder line B222 are configured to extend in the same direction, high-frequency signals having phases opposite to each other, that is, having a phase difference of 180 degrees, are input to the second feeder line A222 and the second feeder line B222.
 これにより、電波放射部A3及び電波放射部B3から放射された第1の電波及び第2の電波は同位相にて合成され、電波放射部3からは主偏波の向きが互いに直交し、合成された第1の電波と第2の電波が放射(出射)され、直交偏波共用のパッチアレイアンテナ装置が得られる。 As a result, the first radio waves and the second radio waves radiated from the radio wave radiating part A3 and the radio wave radiating part B3 are synthesized in the same phase, and the directions of the main polarized waves from the radio wave radiating part 3 are orthogonal to each other. The first radio wave and the second radio wave thus generated are radiated (emitted), and a patch array antenna device for both orthogonally polarized waves is obtained.
 次に、クアッドリッジ導波管部A21、B21に発生する第2の電波の高次モードによる電波について説明する。
 第2の電波の高次モードによる電波は、第1の素子アンテナ及び第2の素子アンテナにおいて、図41におけるx-z平面(縦断面)に平行な縦断面に対して対称な分布を有する。
Next, radio waves generated in the quad-ridge waveguide portions A21 and B21 due to the second higher-order mode of radio waves will be described.
The radio waves of the higher-order mode of the second radio wave have distributions symmetrical with respect to a longitudinal section parallel to the xz plane (longitudinal section) in FIG. 41 in the first element antenna and the second element antenna.
 今、第1の素子アンテナ及び第2の素子アンテナにおいて、第3の誘電体基板A22、B22の第2の給電線路A222、B222の中心線が、製造誤差に伴う寸法誤差がなく、理想的に、クアッドリッジ導波管部A21、B21の管軸CAを含む縦断面に位置するように配置されていると、クアッドリッジ導波管部A21、B21に発生する第2の電波の高次モードによる電波は、図41に示すように、第2の給電線路A222、B222の中心線から第2の突条A212a、B212aまでの距離と、第2の給電線路A222、B222の中心線から第2の突条A212b、B212bまでの距離が等しく、電界分布の対称性から、第1の素子アンテナ及び第2の素子アンテナから外部空間に放射される高次モードによる電波は互いにキャンセルされ、結果として、パッチアンテナ装置の正面方向では高次モードによる電波の放射は観測されない。 Now, in the first element antenna and the second element antenna, the center lines of the second feeder lines A222 and B222 of the third dielectric substrates A22 and B22 are ideally free from dimensional errors due to manufacturing errors. , the quad-ridge waveguide portions A21 and B21 are arranged so as to be positioned in the longitudinal section including the tube axis CA, the second radio wave generated in the quad-ridge waveguide portions A21 and B21 is caused by a higher-order mode As shown in FIG. 41, the radio waves travel a distance from the center lines of the second feed lines A222 and B222 to the second ridges A212a and B212a and a distance from the center lines of the second feed lines A222 and B222 to a second distance. The distances to the ridges A212b and B212b are equal, and due to the symmetry of the electric field distribution, the high-order mode radio waves radiated from the first element antenna and the second element antenna to the external space cancel each other, and as a result, the patch Radiation of radio waves by higher modes is not observed in the front direction of the antenna device.
 また、第2の給電線路A222、B222が、第1の突条A112a、A112b、B112a、B112bと第2の突条A212a、A212b、B212a、B212bにより構成される一対の連続体における第1の切り欠き部Aa11、Ba11及び第2の切り欠き部Aa12、Ba12による切り欠き部と第1の切り欠き部Ab11、Bb11及び第2の切り欠き部Ab12、Bb12による切り欠き部の間に位置しているので、第2の給電線路A222、B222の中心線と第2の突条A212a、A212b、B212a、B212b及び第1の突条A112a、A112b、B112a、B112bとの間の距離が離れているため、高次モードによる電波の振幅は短い振幅となる。 Further, the second feeder lines A222, B222 are the first cuts in a pair of continuous bodies composed of the first ridges A112a, A112b, B112a, B112b and the second ridges A212a, A212b, B212a, B212b. It is located between the cutout portion formed by the cutout portions Aa11 and Ba11 and the second cutout portions Aa12 and Ba12 and the cutout portion formed by the first cutout portions Ab11 and Bb11 and the second cutout portions Ab12 and Bb12. Therefore, since the distances between the center lines of the second feeder lines A222 and B222 and the second ridges A212a, A212b, B212a and B212b and the first ridges A112a, A112b, B112a and B112b are long, The amplitude of radio waves due to higher-order modes is short.
 一方、第1の素子アンテナ及び第2の素子アンテナにおいて、第3の誘電体基板A22、B22の第2の給電線路A222、B222の中心線に製造誤差に伴う寸法誤差が生じた場合、例えば、図42に示すように、第2の給電線路A222、B222の中心線が、クアッドリッジ導波管部A21、B21の管軸CAを含む縦断面に対して、図42の図示y軸において-方向に位置ずれして配置されたとしても、第2の給電線路A222、B222の中心線と第2の突条A212a、A212b、B212a、B212b及び第1の突条A112a、A112b、B112a、B112bとの間の距離が離れているため、第2の給電線路A222、B222の位置ずれによる影響は、図42の図示y軸において-方向と+方向とで相対的に小さく、第2の給電線路A222、B222の中心線までの距離が第2の突条A212a、B212aより短い第2の突条A212b、B212b側に、わずかに強い振幅の高次モードによる電波が現れる。 On the other hand, in the first element antenna and the second element antenna, if the center line of the second feeder lines A222 and B222 of the third dielectric substrates A22 and B22 has a dimensional error due to a manufacturing error, for example, As shown in FIG. 42, the center lines of the second feeder lines A222 and B222 are aligned in the -direction along the y-axis shown in FIG. Even if it is arranged with a positional deviation, the center line of the second feeder lines A222, B222 and the second ridges A212a, A212b, B212a, B212b and the first ridges A112a, A112b, B112a, B112b Since the distance between the second feed lines A222 and B222 is long, the influence of the positional deviation of the second feed lines A222 and B222 is relatively small in the - direction and the + direction on the y-axis shown in FIG. On the side of the second ridges A212b and B212b whose distance to the center line of B222 is shorter than that of the second ridges A212a and B212a, radio waves due to higher modes with slightly strong amplitude appear.
 高次モードによる電波の振幅が短く、第2の突条A212a、B212a側と第2の突条A212b、B212b側との高次モードによる電波の振幅の差がわずかであるため、高次モードによる電波がアンテナ装置から外部空間に放射されたとしても、パッチアンテナ装置の正面方向における図44の図示y軸に沿った方向の第1の素子アンテナ及び第2の素子アンテナからの偏波成分を有する電波、つまり、第2の電波の主偏波に対する交差偏波成分の放射は小さく抑えることができる。 The amplitude of the radio wave due to the higher-order mode is short, and the difference in the amplitude of the radio wave due to the higher-order mode between the second ridges A212a and B212a and the second ridges A212b and B212b is small. Even if radio waves are radiated from the antenna device to the external space, they have polarization components from the first element antenna and the second element antenna in the direction along the y-axis shown in FIG. 44 in the front direction of the patch antenna device. Radiation of the radio wave, that is, the cross-polarization component with respect to the main polarization of the second radio wave can be kept small.
 また、第1の素子アンテナからの偏波成分と第2の素子アンテナからの偏波成分における電界の位相の差が180度、すなわち、電界の向きが互い逆向きになっているため、第1の素子アンテナからの偏波成分と第2の素子アンテナからの偏波成分がキャンセルされ、結果として、パッチアンテナ装置の正面方向では高次モードによる電波の放射は観測されない。 In addition, since the electric field phase difference between the polarized wave component from the first element antenna and the polarized wave component from the second element antenna is 180 degrees, that is, the directions of the electric fields are opposite to each other, the first The polarized wave component from the first element antenna and the polarized wave component from the second element antenna are canceled, and as a result, radio wave radiation in higher-order modes is not observed in the front direction of the patch antenna apparatus.
 なお、実施の形態3に係るパッチアンテナ装置は、いわゆる「アンテナの可逆性」により、受信アンテナとして動作する場合も、送信アンテナとして動作する場合と同様に同様の原理により動作するので、受信アンテナとして動作する場合についての説明は省略する。 Note that the patch antenna apparatus according to Embodiment 3 operates according to the same principle as when operating as a transmitting antenna even when operating as a receiving antenna due to so-called "antenna reversibility". A description of the case of operation is omitted.
 以上のように、実施の形態3に係るパッチアンテナ装置は、実施の形態2に係るパッチアンテナ装置と同様に、第1の素子アンテナ及び第2の素子アンテナにおいて、第3の誘電体基板22の第2の給電線路A222、B222がクアッドリッジ導波管部21に対して製造誤差に伴う寸法誤差により位置ずれがある場合においても低交差偏波特性が維持可能であり、しかも、第2の給電線路A222と第2の給電線路B222が互いに逆方向に延在させる構成をとっているため、例え、パッチアンテナ装置の外部空間に第2の電波の高次モードにおける偏波成分がキャンセルされ、低交差偏波特性が維持可能である。 As described above, in the patch antenna device according to the third embodiment, in the first element antenna and the second element antenna, the third dielectric substrate 22 is Low cross polarization characteristics can be maintained even when the second feed lines A222 and B222 are misaligned with respect to the quad-ridge waveguide portion 21 due to dimensional errors associated with manufacturing errors. Since the feeder line A 222 and the second feeder line B 222 are configured to extend in directions opposite to each other, even if the external space of the patch antenna device cancels the polarization component in the higher order mode of the second radio wave, Low cross-polarization characteristics can be maintained.
 さらに、実施の形態3に係るパッチアンテナ装置は、クアッドリッジ導波管部21として、クアッドリッジ導波管部21の管軸CA方向の長さを短くでき、結果として薄型の直交偏波共用のパッチアンテナ装置を得ることができる。 Further, in the patch antenna apparatus according to the third embodiment, the length of the quad-ridge waveguide portion 21 in the direction of the tube axis CA can be shortened as the quad-ridge waveguide portion 21. A patch antenna device can be obtained.
 なお、第1の素子アンテナ及び第2の素子アンテナの配列方向を、図38から図40の図示y軸に沿った方向としたが、x軸に沿った方向でもよく、要は、第1の素子アンテナ及び第2の素子アンテナの管軸CAに直交する方向に直線上に第1の素子アンテナと第2の素子アンテナを並行して配列されたものであればよい。 Although the arrangement direction of the first element antenna and the second element antenna is the direction along the y-axis shown in FIGS. 38 to 40, it may be the direction along the x-axis. It is sufficient that the first element antenna and the second element antenna are arranged in parallel on a straight line in a direction orthogonal to the tube axis CA of the element antenna and the second element antenna.
 また、素子アンテナは2つに限るものではなく、3つ以上の同じ構成の素子アンテナを素子アンテナの管軸CAに直交する方向に直線上に並行して配列されたものでもよい。
 この場合、個数が偶数であれば、第2の給電線路の半数は残りの半数の第2の給電線路に対して互いに逆方向に延在させる構成とし、個数が奇数であれば、2分割した1つ少ない第2の給電線路は残りの他の第2の給電線路に対して互いに逆方向に延在させる構成とする。
Also, the number of element antennas is not limited to two, and three or more element antennas having the same configuration may be arranged in parallel in a straight line in a direction perpendicular to the tube axis CA of the element antenna.
In this case, if the number is even, half of the second feed lines are configured to extend in opposite directions to the remaining half of the second feed lines, and if the number is odd, the feed lines are divided into two. The second feeder line, which is one less, is configured to extend in directions opposite to each other with respect to the remaining second feeder lines.
 複数の素子アンテナを有する場合、複数の素子アンテナの偶数番目の素子アンテナの第2の給電線路は、奇数番目の素子アンテナの第2の給電線路に対して逆方向に延在させる構成でもよい。 When a plurality of element antennas are provided, the second feed lines of even-numbered element antennas of the plurality of element antennas may be configured to extend in the opposite direction to the second feed lines of odd-numbered element antennas.
 さらに、素子アンテナそれぞれは、実施の形態2に係るパッチアンテナ装置と同様に、一対の第1の突条と一対の第2の突条とにより構成される一対の連続体における切り欠き部の形状、パッチ導体の外形形状、電波放射部3におけるスペーサの構成を変更したものでもよい。 Further, each of the element antennas has a notch shape in a pair of continuous bodies composed of a pair of first ridges and a pair of second ridges, similarly to the patch antenna device according to the second embodiment. , the external shape of the patch conductor, and the structure of the spacer in the radio wave radiating portion 3 may be changed.
 なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component from each embodiment.
 本開示に係るパッチアンテナ装置は、衛星通信用あるいはレーダ用アンテナ装置、特に、衛星、航空機、及び車両等の移動体に搭載される直交偏波共用のアンテナ装置に好適である。 The patch antenna device according to the present disclosure is suitable for satellite communication or radar antenna devices, particularly for orthogonally polarized antenna devices mounted on moving bodies such as satellites, aircraft, and vehicles.
 1 ダブルリッジ導波部、11 ダブルリッジ導波管部、111 第1の導波管部、112a、112b 第1の突条、113 第1のプローブ挿通孔、a11、b11 第1の切り欠き部、a12、b12 第2の切り欠き部、12 第1の信号導体、122 第1の給電線路、13 短絡導波管部、131 第2の導波管部、132 短絡導体部、2 クアッドリッジ導波部、21 クアッドリッジ導波管部、211 第3の導波管部、212a、212b 第2の突条、213a、213b 第3の突条、22 第2の信号導体、222 第2の給電線路、3 パッチ導体保有部、31 導体平板、32 スペーサ、33 第1の誘電体基板、331 誘電体、332 パッチ導体、4 第1の給電回路、5 伝送線路、51 第1の外導体、52 第1の信号線、6 第2の給電回路、7 伝送線路、71 第2の外導体、72 第2の信号線。 1 double ridge waveguide portion, 11 double ridge waveguide portion, 111 first waveguide portion, 112a, 112b first ridges, 113 first probe insertion hole, a11, b11 first notch portion , a12, b12 second notch portion, 12 first signal conductor, 122 first feeding line, 13 short-circuit waveguide portion, 131 second waveguide portion, 132 short-circuit conductor portion, 2 quad ridge conductor wave portion 21 quadridge waveguide portion 211 third waveguide portion 212a, 212b second ridges 213a, 213b third ridges 22 second signal conductor 222 second feeding line, 3 patch conductor holding part, 31 conductor flat plate, 32 spacer, 33 first dielectric substrate, 331 dielectric, 332 patch conductor, 4 first feeding circuit, 5 transmission line, 51 first outer conductor, 52 1st signal line 6 2nd feeding circuit 7 transmission line 71 second outer conductor 72 second signal line.

Claims (26)

  1.  対向配置された一対の第1の突条を有し、第1の伝搬モードで伝搬する第1の電波を伝搬し、前記第1の伝搬モードと異なる第2の伝搬モードで伝搬する第2の電波の第2の伝搬モードにおける遮断周波数が前記第2の電波の周波数より高い周波数に設定されたダブルリッジ導波管部と、前記ダブルリッジ導波管部により前記第1の電波に変換される高周波信号を前記ダブルリッジ導波管部に入力する第1の信号導体を具備するダブルリッジ導波部と、
     他端部が前記ダブルリッジ導波管部の一端部と連通し、それぞれが前記一対の第1の突条と連続して対向配置された一対の第2の突条、及び前記一対の第2の突条の間に配置され、対向配置された一対の第3の突条を有し、前記第1の電波及び前記第2の電波を伝搬するクアッドリッジ導波管部と、前記クアッドリッジ導波管部により前記第2の電波に変換される高周波信号を前記クアッドリッジ導波管部に入力する第2の信号導体を具備するクアッドリッジ導波部と、
     前記クアッドリッジ導波管部の一端部に配置され、パッチ導体を有するパッチ導体保有部とを備え、
     前記一対の第1の突条と前記一対の第2の突条とを含む一対の連続体は、前記ダブルリッジ導波管部と前記クアッドリッジ導波管部との境界部に、対向する前記一対の連続体の端面間の間隙を広くする切り欠き部が設けられた、
     パッチアンテナ装置。
    Having a pair of first ridges arranged to face each other, propagating a first radio wave propagating in a first propagation mode, and propagating in a second propagation mode different from the first propagation mode a double ridge waveguide section in which a cutoff frequency in a second propagation mode of the radio wave is set to a frequency higher than the frequency of the second radio wave; and the double ridge waveguide section converts the radio wave into the first radio wave. a double ridge waveguide section comprising a first signal conductor for inputting a high frequency signal into the double ridge waveguide section;
    A pair of second ridges, the other end of which communicates with one end of the double-ridge waveguide portion and which are continuously opposed to the pair of first ridges, and the pair of second ridges. a quad-ridge waveguide portion having a pair of third ridges disposed between the ridges and opposed to each other and propagating the first radio wave and the second radio wave; a quad-ridge waveguide section including a second signal conductor for inputting a high-frequency signal converted into the second radio wave by the wave tube section into the quad-ridge waveguide section;
    a patch conductor holding portion disposed at one end of the quadridge waveguide portion and having a patch conductor;
    A pair of continuum bodies including the pair of first ridges and the pair of second ridges are provided at the boundary between the double-ridge waveguide section and the quad-ridge waveguide section, and face the A notch is provided to widen the gap between the end faces of the pair of continuum,
    patch antenna device.
  2.  前記第2の信号導体は、前記クアッドリッジ導波管部の他端側に位置して配置された請求項1に記載のパッチアンテナ装置。 The patch antenna device according to claim 1, wherein the second signal conductor is positioned on the other end side of the quad-ridge waveguide section.
  3.  前記ダブルリッジ導波部の管軸と前記クアッドリッジ導波部の管軸は中心軸にあり、前記ダブルリッジ導波部と前記クアッドリッジ導波部と前記パッチ導体保有部は前記中心軸に沿って直線上に配置された請求項1又は請求項2に記載のパッチアンテナ装置。 The tube axis of the double-ridge waveguide and the tube axis of the quad-ridge waveguide are on the central axis, and the double-ridge waveguide, the quad-ridge waveguide, and the patch conductor holding section are arranged along the central axis. 3. The patch antenna device according to claim 1, wherein the patch antenna device is arranged on a straight line.
  4.  前記一対の第3の突条を含む平面が前記一対の第2の突条を含む平面に対して直交している請求項1から請求項3のいずれか1項に記載のパッチアンテナ装置。 The patch antenna device according to any one of claims 1 to 3, wherein the plane containing the pair of third ridges is orthogonal to the plane containing the pair of second ridges.
  5.  前記切り欠き部は、前記一対の連続体における前記一対の第2の突条に少なくとも設けられた切り欠き部である請求項1から請求項4のいずれか1項に記載のパッチアンテナ装置。 The patch antenna device according to any one of claims 1 to 4, wherein the notch portion is a notch portion provided at least in the pair of second ridges in the pair of continuous bodies.
  6.  前記パッチ導体は、外形形状が正方形又は矩形の四辺形、円形、楕円形、十字形、中央にスロットを有する四辺形又は円形、周囲に対向して設けられた対の切り込みを有する四辺形又は円形、あるいは、周囲に対向して設けられた対の突出部を有する四辺形又は円形のいずれかから選択された形状である請求項1から請求項5のいずれか1項に記載のパッチアンテナ装置。 The patch conductor may be a quadrilateral with a square or rectangular outer shape, a circle, an oval, a cross, a quadrilateral or a circle with a slot in the center, a quadrilateral or a circle with a pair of notches provided oppositely on the periphery. 6. The patch antenna device according to any one of claims 1 to 5, wherein the patch antenna device has a shape selected from either a quadrilateral or a circle having a pair of protrusions provided facing each other around the circumference.
  7.  前記ダブルリッジ導波管部は、両端が開口した第1の導波管部、及び前記第1の導波管部の対向した側壁に、前記第1の導波管部の一端から他端まで延在した内方に突出した前記一対の第1の突条を有し、
     ダブルリッジ導波部はさらに短絡導波管部を備え、
     前記短絡導波管部は、一端が前記第1の導波管部の他端と連通した第2の導波管部、及び前記第2の導波管部の他端の開口を閉塞し、前記第2の導波管部を電気的に短絡する短絡導体部を備え、
     前記クアッドリッジ導波管部は、他端が前記第1の導波管部の一端と連通し、両端が開口した第3の導波管部、前記第3の導波管部の対向した側壁に、前記第3の導波管部の一端から他端まで延在した内方に突出した前記一対の第2の突条、及び前記第3の導波管部における前記一対の第2の突条が位置する側壁と直交する対向した側壁に、前記第3の導波管部の一端から他端まで延在した内方に突出した前記一対の第3の突条を備え、
     前記パッチ導体保有部は、前記クアッドリッジ導波管部の一端に設けられ、前記クアッドリッジ導波管部の一端に位置する開口と連通する開口を有する導体平板、及びスペーサを介して前記導体平板に装着され、前記導体平板の開口に対向する位置にパッチ導体を有する第1の誘電体基板を備え、前記第1の電波及び前記第2の電波を外部空間に放射する電波放射部である、
     請求項1から請求項6のいずれか1項に記載のパッチアンテナ装置。
    The double-ridge waveguide section includes a first waveguide section that is open at both ends, and an opposing side wall of the first waveguide section from one end to the other end of the first waveguide section. Having the pair of first ridges extending inwardly protruding,
    The double ridge waveguide further comprises a short waveguide section,
    The short-circuit waveguide part closes an opening of a second waveguide part having one end communicating with the other end of the first waveguide part and the other end of the second waveguide part, A short-circuiting conductor portion that electrically short-circuits the second waveguide portion,
    The quad-ridge waveguide section has a third waveguide section whose other end communicates with one end of the first waveguide section, both ends of which are open, and sidewalls of the third waveguide section facing each other. a pair of second ridges protruding inwardly extending from one end to the other end of the third waveguide section, and a pair of second protrusions in the third waveguide section; The pair of third protrusions extending from one end to the other end of the third waveguide portion and protruding inward are provided on opposing side walls perpendicular to the side wall where the ridges are located,
    The patch conductor holding portion includes a conductor flat plate provided at one end of the quad-ridge waveguide portion and having an opening communicating with an opening located at one end of the quad-ridge waveguide portion, and the conductor flat plate via a spacer. A radio wave radiating part that is mounted on a device, includes a first dielectric substrate having a patch conductor at a position facing the opening of the conductor plate, and radiates the first radio wave and the second radio wave to an external space.
    The patch antenna device according to any one of claims 1 to 6.
  8.  前記第1の導波管部は、断面形状が正方形又は矩形の四辺形である方形導波管であり、
     前記第2の導波管部は、断面形状が正方形又は矩形の四辺形である方形導波管であり、
     前記第3の導波管部は、断面形状が正方形又は矩形の四辺形である方形導波管である、
     請求項7に記載のパッチアンテナ装置。
    The first waveguide section is a rectangular waveguide having a square or rectangular quadrilateral cross-sectional shape,
    the second waveguide section is a rectangular waveguide having a square or rectangular quadrilateral cross-sectional shape,
    The third waveguide section is a rectangular waveguide having a square or rectangular quadrilateral cross-sectional shape,
    The patch antenna device according to claim 7.
  9.  前記第1の導波管部は時計周りに第1の側壁から第4の側壁を有し、前記一対の第1の突条は互いに対向する側壁である第1の側壁及び第3の側壁の内壁面における前記第1の導波管部の管軸に直交する線上の中央に設けられ、
     前記第3の導波管部は前記第1の導波管部の第1の側壁から第4の側壁と対応して時計周りに第1の側壁から第4の側壁を有し、前記一対の第2の突条は互いに対向する側壁である第1の側壁及び第3の側壁の内壁面における前記第3の導波管部の管軸に直交する線上の中央に設けられ、前記一対の第3の突条は互いに対向する側壁である第2の側壁及び第4の側壁の内壁面における前記第3の導波管部の管軸に直交する線上の中央に設けられる、
     請求項8に記載のパッチアンテナ装置。
    The first waveguide section has first to fourth side walls in a clockwise direction, and the pair of first ridges are the first side wall and the third side wall, which are side walls facing each other. provided at the center of a line perpendicular to the tube axis of the first waveguide section on the inner wall surface,
    The third waveguide section has first to fourth side walls in a clockwise direction corresponding to the first to fourth side walls of the first waveguide section, and the pair of The second ridge is provided at the center of a line orthogonal to the tube axis of the third waveguide section on the inner wall surfaces of the first side wall and the third side wall, which are side walls facing each other. 3 protrusions are provided at the center of a line perpendicular to the tube axis of the third waveguide section on the inner wall surfaces of the second side wall and the fourth side wall, which are side walls facing each other,
    The patch antenna device according to claim 8.
  10.  前記第1の導波管部は、断面形状が円形である円形導波管であり、
     前記第2の導波管部は、断面形状が円形である円形導波管であり、
     前記第3の導波管部は、断面形状が円形である円形導波管である、
     請求項7に記載のパッチアンテナ装置。
    The first waveguide section is a circular waveguide having a circular cross-sectional shape,
    The second waveguide section is a circular waveguide having a circular cross-sectional shape,
    The third waveguide section is a circular waveguide having a circular cross-sectional shape,
    The patch antenna device according to claim 7.
  11.  前記第1の導波管部は、側壁の周囲を時計周りに4分割する前記第1の導波管部の管軸に平行な第1の仮想線から第4の仮想線を有し、前記一対の第1の突条は互いに対向する仮想線である第1の仮想線及び第3の仮想線上に設けられ、
     前記第3の導波管部は、前記第1の導波管部の第1の仮想線から第4の仮想線と対応して側壁の周囲を時計周りに4分割する第3の導波管部211の管軸CAに平行な第1の仮想線から第4の仮想線を有し、前記一対の第2の突条は互いに対向する仮想線である第1の仮想線及び第3の仮想線上に設けられ、前記一対の第3の突条は互いに対向する仮想線である第2の仮想線及び第4の仮想線上に設けられる、
     請求項10に記載のパッチアンテナ装置。
    The first waveguide section has first to fourth virtual lines parallel to the tube axis of the first waveguide section dividing the periphery of the side wall clockwise into four, and The pair of first ridges are provided on a first virtual line and a third virtual line that are virtual lines facing each other,
    The third waveguide portion is a third waveguide that divides the circumference of the side wall into four clockwise portions corresponding to the first virtual line to the fourth virtual line of the first waveguide portion. It has first to fourth virtual lines parallel to the tube axis CA of the portion 211, and the pair of second ridges is a first virtual line and a third virtual line that are virtual lines facing each other. provided on a line, and the pair of third ridges are provided on a second virtual line and a fourth virtual line that are virtual lines facing each other,
    The patch antenna device according to claim 10.
  12.  前記スペーサは前記導体平板と前記第1の誘電体基板とを平行に保持する請求項7から請求項11のいずれか1項に記載のパッチアンテナ装置。 The patch antenna device according to any one of claims 7 to 11, wherein the spacer holds the conductor flat plate and the first dielectric substrate in parallel.
  13.  前記スペーサは、両端が開口し、一端が前記第1の誘電体基板の内表面に接合し、他端が前記導体平板の表面に接合し、前記導体平板の開口の周囲を囲う導体筒、前記第1の誘電体基板及び前記導体平板の対向した2辺部に配置され、一端が前記第1の誘電体基板の内表面に接合し、他端が前記導体平板の表面に接合した導体である2枚の平行平板、前記第1の誘電体基板及び前記導体平板の対向した2辺部に配置され、一端が前記第1の誘電体基板の内表面に接合し、他端が前記導体平板の表面に接合した導体である2本の支柱、あるいは、前記第1の誘電体基板及び前記導体平板の4隅に配置され、一端が前記第1の誘電体基板の内表面に接合し、他端が前記導体平板の表面に接合した導体である4本の支柱のいずれかから選択されたスペーサである請求項12に記載のパッチアンテナ装置。 The spacer has open ends, one end of which is bonded to the inner surface of the first dielectric substrate, and the other end of which is bonded to the surface of the conductor plate, and surrounds the opening of the conductor plate. A conductor disposed on two opposite sides of a first dielectric substrate and said conductor plate, one end of which is joined to the inner surface of said first dielectric substrate and the other end of which is joined to the surface of said conductor plate. Two parallel flat plates, the first dielectric substrate and the conductor flat plate are arranged on two opposite sides, one end of which is bonded to the inner surface of the first dielectric substrate, and the other end of the conductor flat plate. Two pillars that are conductors bonded to the surface, or are arranged at four corners of the first dielectric substrate and the conductor plate, one end bonded to the inner surface of the first dielectric substrate, and the other end 13. The patch antenna apparatus according to claim 12, wherein is a spacer selected from one of four pillars which are conductors joined to the surface of the conductor plate.
  14.  前記第1の誘電体基板は、一面の中央部に設けられた前記パッチ導体と、前記パッチ導体が設けられた同じ一面の外周部に設けられたグランド導体と、前記パッチ導体の外周と前記グランド導体の内周とを電気的に接続する接続用導体とを有し、前記パッチ導体と前記グランド導体は前記スペーサを介して前記導体平板と電気的に接続される請求項13に記載のパッチアンテナ装置。 The first dielectric substrate includes: the patch conductor provided in the central portion of one surface; a ground conductor provided in the outer peripheral portion of the same surface on which the patch conductor is provided; 14. The patch antenna according to claim 13, further comprising a connecting conductor for electrically connecting the inner periphery of the conductor, wherein the patch conductor and the ground conductor are electrically connected to the conductor flat plate via the spacer. Device.
  15.  前記スペーサは、両端が開口し、一端が前記第1の誘電体基板の内表面に接合し、他端が前記導体平板の表面に接合し、前記導体平板の開口の周囲を囲う誘電体筒、前記第1の誘電体基板及び前記導体平板の対向した2辺部に配置され、一端が前記第1の誘電体基板の内表面に接合し、他端が前記導体平板の表面に接合した誘電体である2枚の平行平板、前記第1の誘電体基板及び前記導体平板の対向した2辺部に配置され、一端が前記第1の誘電体基板の内表面に接合し、他端が前記導体平板の表面に接合した誘電体である2本の支柱、前記第1の誘電体基板及び前記導体平板の4隅に配置され、一端が前記第1の誘電体基板の内表面に接合し、他端が前記導体平板の表面に接合した誘電体である4本の支柱、あるいは、一端面が前記第1の誘電体基板の内表面に接合し、他端面が前記導体平板の表面に接合した誘電体平板のいずれかから選択されたスペーサである請求項12に記載のパッチアンテナ装置。 the spacer has both ends opened, one end bonded to the inner surface of the first dielectric substrate, the other end bonded to the surface of the conductor plate, and a dielectric cylinder surrounding the opening of the conductor plate; Dielectrics arranged on two opposite sides of the first dielectric substrate and the conductor plate, one end of which is bonded to the inner surface of the first dielectric substrate and the other end of which is bonded to the surface of the conductor plate. are arranged on two opposite sides of the first dielectric substrate and the conductor flat plate, one end of which is bonded to the inner surface of the first dielectric substrate, and the other end of which is the conductor Two pillars which are dielectric bonded to the surface of a flat plate, arranged at four corners of the first dielectric substrate and the conductive flat plate, one end bonded to the inner surface of the first dielectric substrate, and the other Four pillars whose ends are dielectrics bonded to the surface of the conductor plate, or dielectrics having one end surface bonded to the inner surface of the first dielectric substrate and the other end surface bonded to the surface of the conductor plate 13. The patch antenna device according to claim 12, wherein the spacer is selected from any of the body plates.
  16.  前記一対の第1の突条の一方の第1の突条及び前記一方の第1の突条が位置する前記第1の導波管部の側壁を貫通し、一方の開口端が前記一対の第1の突条の他方の第1の突条の端面に対向する第1のプローブ挿通孔が設けられ、
     前記第1の信号導体は、前記第1のプローブ挿通孔に挿入され、一端部が前記一対の第1の突条の間に配置され、他端が前記第1のプローブ挿通孔の他方の開口端から突出した、前記第1の電波に対する高周波信号を伝達する第1の給電プローブであり、
     前記一対の第3の突条の一方の第3の突条及び前記一方の第3の突条が位置する前記第3の導波管部の側壁を貫通し、一方の開口端が前記一対の第3の突条の他方の第3の突条の端面に対向する第2のプローブ挿通孔が設けられ、
     前記第2の信号導体は、前記第2のプローブ挿通孔に挿入され、一端部が前記一対の第3の突条の間に配置され、他端が前記第2のプローブ挿通孔の他方の開口端から突出した、前記第2の電波に対する高周波信号を伝達する第2の給電プローブである、
     請求項7から請求項15のいずれか1項に記載のパッチアンテナ装置。
    One first protrusion of the pair of first protrusions and the side wall of the first waveguide section where the one first protrusion is located, one open end of the pair of A first probe insertion hole facing the end surface of the other first protrusion of the first protrusion is provided,
    The first signal conductor is inserted into the first probe insertion hole, has one end disposed between the pair of first ridges, and has the other end located at the other opening of the first probe insertion hole. A first power supply probe projecting from the end and transmitting a high frequency signal for the first radio wave,
    One third protrusion of the pair of third protrusions and the side wall of the third waveguide section where the one third protrusion is located are penetrated, and one open end of the pair of A second probe insertion hole facing the end surface of the other third protrusion of the third protrusion is provided,
    The second signal conductor is inserted into the second probe insertion hole, has one end disposed between the pair of third ridges, and has the other end located at the other opening of the second probe insertion hole. A second power supply probe projecting from the end and transmitting a high frequency signal for the second radio wave,
    The patch antenna device according to any one of claims 7 to 15.
  17.  前記ダブルリッジ導波部と前記クアッドリッジ導波部は一体的に形成された請求項8から請求項16のいずれか1項に記載のパッチアンテナ装置。 The patch antenna device according to any one of claims 8 to 16, wherein the double ridge waveguide and the quad ridge waveguide are integrally formed.
  18.  前記ダブルリッジ導波部の外部に設けられ、前記第1の給電プローブの他端に電気的に接続された第1の給電回路と、
     前記クアッドリッジ導波部の外部に設けられ、前記第2の給電プローブの他端に電気的に接続された第2の給電回路と、
     をさらに備えた請求項16に記載のパッチアンテナ装置。
    a first feeding circuit provided outside the double-ridge waveguide and electrically connected to the other end of the first feeding probe;
    a second feeding circuit provided outside the quad-ridge waveguide and electrically connected to the other end of the second feeding probe;
    17. The patch antenna apparatus of claim 16, further comprising:
  19.  前記第1の給電プローブの他端と前第1の給電回路との電気的接続は同軸線路により行われ、前記第2の給電プローブの他端と前第2の給電回路との電気的接続は同軸線路により行われる請求項18に記載のパッチアンテナ装置。 Electrical connection between the other end of the first feeding probe and the front first feeding circuit is made by a coaxial line, and electrical connection between the other end of the second feeding probe and the front second feeding circuit is 19. The patch antenna device according to claim 18, wherein the patch antenna device is implemented by a coaxial line.
  20.  前記第1の信号導体は、前記第1の導波管部の他端と前記第2の導波管部の一端との間に介在し、第1の誘電体と、第1の給電線路と、第1の接続用導体を有する第2の誘電体基板であり、
     前記第1の給電線路は、前記第1の誘電体の裏面に前記一対の第1の突条の一方の第1の突条における前記第2の導波管部の側面に対向して線状に設けられ、前記第1の電波に対する高周波信号を伝達する線路であり、
     前記第1の接続用導体は、前記第1の誘電体の表面及び裏面それぞれの周辺に設けられた表面の第1の周辺導体及び裏面の第1の周辺導体と前記表面の第1の周辺導体と前記裏面の第1の周辺導体を電気的に接続する前記第1の誘電体を貫通する複数の貫通ビアを有し、前記表面の第1の周辺導体が前記第1の導波管部の他端面と接合し、前記裏面の第1の周辺導体が第2の導波管部の一端面と接合し、
     前記第2の信号導体は、前記第1の導波管部の一端と前記第3の導波管部の他端との間に介在し、第2の誘電体と、第2の給電線路と、第2の接続用導体を有する第3の誘電体基板であり、
     前記第2の給電線路は、前記第2の誘電体の裏面に前記一対の第3の突条の一方の第3の突条における前記第1の導波管部の側面に対向して線状に設けられ、前記第2の電波に対する高周波信号を伝達する線路であり、
     前記第2の接続用導体は、前記第2の誘電体の表面及び裏面それぞれの周辺に設けられた表面の第2の周辺導体及び裏面の第2の周辺導体と、前記表面の第2の周辺導体と前記裏面の第2の周辺導体を電気的に接続する前記第2の誘電体を貫通する複数の貫通ビアと、前記一対の第1の突条と前記一対の第2の突条が対向する端面に対向する前記第2の誘電体の表面及び裏面に設けられた表面の一対の突条接続用導体及び裏面の一対の突条接続用導体と、前記表面の一対の突条接続用導体と前記裏面の一対の突条接続用導体を電気的に接続する前記第2の誘電体を貫通する複数の貫通ビアとを有し、前記表面の第2の周辺導体が前記第3の導波管部の他端面と接合し、前記裏面の第2の周辺導体が前記第1の導波管部の一端面と接合し、前記表面の一対の突条接続用導体が前記一対の第2の突条の端面と接合し、前記裏面の一対のリッジ部接続用導体が前記一対の第1の突条の端面と接合する、
     請求項7から請求項15のいずれか1項に記載のパッチアンテナ装置。
    The first signal conductor is interposed between the other end of the first waveguide section and one end of the second waveguide section, and includes a first dielectric and a first feeding line. , a second dielectric substrate having a first connecting conductor;
    The first feed line is linear on the back surface of the first dielectric body and faces the side surface of the second waveguide portion in one of the pair of first protrusions. A line that is provided in and transmits a high-frequency signal for the first radio wave,
    The first connection conductor includes a first peripheral conductor on the front surface and a first peripheral conductor on the back surface and a first peripheral conductor on the front surface provided around the front surface and the back surface of the first dielectric. and a plurality of through vias passing through the first dielectric electrically connecting the first peripheral conductor on the back surface, the first peripheral conductor on the front surface being the first peripheral conductor of the first waveguide section joined to the other end surface, the first peripheral conductor on the back surface joining to one end surface of the second waveguide part;
    The second signal conductor is interposed between one end of the first waveguide portion and the other end of the third waveguide portion, and is connected to a second dielectric and a second feeder line. , a third dielectric substrate having a second connecting conductor;
    The second feeder line is linear on the back surface of the second dielectric body and faces the side surface of the first waveguide part in one of the pair of third ridges. A line that is provided in and transmits a high-frequency signal for the second radio wave,
    The second connection conductor includes a second peripheral conductor on the front surface and a second peripheral conductor on the back surface provided around the front surface and the back surface of the second dielectric, respectively, and a second peripheral conductor on the front surface. A plurality of through vias passing through the second dielectric electrically connecting the conductor and the second peripheral conductor on the back surface, and the pair of first ridges and the pair of second ridges are opposed to each other. a pair of ridge-connecting conductors on the front surface and a pair of ridge-connecting conductors on the back surface provided on the front surface and the back surface of the second dielectric facing the end face of the second dielectric, and the pair of ridge-connecting conductors on the front surface and a plurality of through vias passing through the second dielectric for electrically connecting the pair of ridge connection conductors on the back surface, and the second peripheral conductor on the front surface is the third waveguide. The second peripheral conductor on the back surface is joined to one end surface of the first waveguide portion, and the pair of ridge-connecting conductors on the front surface are connected to the pair of second conductors. The pair of ridge connecting conductors on the back surface are joined to the end faces of the pair of first protrusions,
    The patch antenna device according to any one of claims 7 to 15.
  21.  前記ダブルリッジ導波部の外部に設けられ、前記第2の誘電体基板における第1の給電線路の他端に電気的に接続された第1の給電回路と、
     前記クアッドリッジ導波部の外部に設けられ、前記第3の誘電体基板における第2の給電線路の他端に電気的に接続された第2の給電回路と、
     をさらに備えた請求項20に記載のパッチアンテナ装置。
    a first feeding circuit provided outside the double-ridge waveguide and electrically connected to the other end of the first feeding line on the second dielectric substrate;
    a second feed circuit provided outside the quad-ridge waveguide and electrically connected to the other end of the second feed line on the third dielectric substrate;
    21. The patch antenna apparatus of claim 20, further comprising:
  22.  前記第1の給電線路の他端と前第1の給電回路との電気的接続はサスペンデッドストリップ線路により行われ、前記第2の給電線路の他端と前第2の給電回路との電気的接続はサスペンデッドストリップ線路により行われる請求項21に記載のパッチアンテナ装置。 Electrical connection between the other end of the first feed line and the front first feed circuit is performed by a suspended strip line, and electrical connection between the other end of the second feed line and the front second feed circuit. 22. The patch antenna device according to claim 21, wherein is performed by a suspended stripline.
  23.  請求項1から請求項22のいずれか1項に記載のパッチアンテナ装置を素子アンテナとし、前記素子アンテナが、前記素子アンテナの管軸に直交する方向に直線上に並行して複数配列されたパッチアンテナ装置。 The patch antenna device according to any one of claims 1 to 22 is used as an element antenna, and a plurality of the element antennas are arranged in parallel on a straight line in a direction orthogonal to the tube axis of the element antenna. antenna device.
  24.  請求項16から請求項19のいずれか1項に記載のパッチアンテナ装置を素子アンテナとし、
     前記素子アンテナが、前記素子アンテナの管軸に直交する方向に直線上に並行して複数配列され、
     前記素子アンテナの個数が偶数である場合、半数の前記素子アンテナにおける第2の給電プローブが残りの半数の前記素子アンテナにおける第2の給電プローブに対して互いに逆方向に延在させる構成とし、
     前記素子アンテナの個数が奇数である場合、2分割した1つ少ない前記素子アンテナにおける第2の給電プローブが残り他の前記素子アンテナにおける第2の給電プローブに対して互いに逆方向に延在させる構成とした、
     パッチアンテナ装置。
    Using the patch antenna device according to any one of claims 16 to 19 as an element antenna,
    A plurality of the element antennas are arranged in parallel on a straight line in a direction orthogonal to the tube axis of the element antennas,
    When the number of the element antennas is an even number, the second feeding probes in half of the element antennas are configured to extend in opposite directions to the second feeding probes in the remaining half of the element antennas,
    When the number of the element antennas is an odd number, the second feeding probe in the element antenna that is divided into two, which is one less, is the remaining second feeding probe and extends in opposite directions to the second feeding probes in the other element antennas. and
    patch antenna device.
  25.  請求項20から請求項22のいずれか1項に記載のパッチアンテナ装置を素子アンテナとし、
     前記素子アンテナが、前記素子アンテナの管軸に直交する方向に直線上に並行して複数配列され、
     前記素子アンテナの個数が偶数である場合、半数の前記素子アンテナにおける第2の給電線路が残りの半数の前記素子アンテナにおける第2の給電線路に対して互いに逆方向に延在させる構成とし、
     前記素子アンテナの個数が奇数である場合、2分割した1つ少ない前記素子アンテナにおける第2の給電線路が残り他の前記素子アンテナにおける第2の給電線路に対して互いに逆方向に延在させる構成とした、
     パッチアンテナ装置。
    Using the patch antenna device according to any one of claims 20 to 22 as an element antenna,
    A plurality of the element antennas are arranged in parallel on a straight line in a direction orthogonal to the tube axis of the element antennas,
    When the number of element antennas is an even number, the second feed lines in half of the element antennas are configured to extend in opposite directions to the second feed lines in the remaining half of the element antennas,
    When the number of the element antennas is an odd number, the second feed line of the element antenna that is divided into two, which is less by one, remains and extends in opposite directions to the second feed lines of the other element antennas. and
    patch antenna device.
  26.  第1の素子アンテナ及び第2の素子アンテナを備えたパッチアンテナ装置において、
     前記第1の素子アンテナ及び第2の素子アンテナはそれぞれ、ダブルリッジ導波部とクアッドリッジ導波部とパッチ導体保有部を備え、
     前記ダブルリッジ導波部は、
     第1の導波管部、及び、対向配置された一対の第1の突条を有し、第1の伝搬モードで伝搬する第1の電波を伝搬し、前記第1の伝搬モードと異なる第2の伝搬モードで伝搬する第2の電波の第2の伝搬モードにおける遮断周波数が前記第2の電波の周波数より高い周波数に設定されたダブルリッジ導波管部と、
     一端が前記第1の導波管部の他端と連通した第2の導波管部、及び、前記第2の導波管部の他端の開口を閉塞し、前記第2の導波管部を電気的に短絡する短絡導体部を有する短絡導波管部と、
     前記ダブルリッジ導波管部により前記第1の電波に変換される高周波信号を前記ダブルリッジ導波管部に入力する第1の給電線路を具備し、
     前記クアッドリッジ導波部は、
     他端が前記第1の導波管部の一端と連通した前記第3の導波管部、それぞれが前記一対の第1の突条と連続して対向配置された一対の第2の突条、及び前記一対の第2の突条の間に配置され、対向配置された一対の第3の突条を有し、前記第1の電波及び前記第2の電波を伝搬するクアッドリッジ導波管部と、
     前記クアッドリッジ導波管部により前記第2の電波に変換される高周波信号を前記クアッドリッジ導波管部に入力する第2の給電線路を具備し、
     前記パッチ導体保有部は、前記クアッドリッジ導波管部の一端部に配置され、パッチ導体を有し、
     前記一対の第1の突条と前記一対の第2の突条とを含む一対の連続体は、前記ダブルリッジ導波管部と前記クアッドリッジ導波管部との境界部に、対向する前記一対の連続体の端面間の間隙を広くする切り欠き部が設けられ、
     前記第1の素子アンテナを構成する前記ダブルリッジ導波管部と前記第2の素子アンテナを構成する前記ダブルリッジ導波管部は、一直線上に第1の連結部にて連結された第1の導体ブロックにより構成され、
     前記第1の素子アンテナを構成する前記第2の導波管部と前記第2の素子アンテナを構成する前記第2の導波管部は、一直線上に第2の連結部にて連結された第2の導体ブロックにより構成され、
     前記第1の素子アンテナを構成する前記短絡導体部と前記第2の素子アンテナを構成する前記短絡導体部は、一直線上に第3の連結部にて連結された一体形成された板状の導体により構成され、
     前記第1の導体ブロックの他端と前記第2の導体ブロックの一端との間に介在し、前記第1の素子アンテナを構成する前記第1の給電線路と前記第2の素子アンテナを構成する前記第1の給電線路が第2の誘電体の一面に設けられた第2の誘電体基板により構成され、
     前記第1の素子アンテナを構成する前記クアッドリッジ導波管部と前記第2の素子アンテナを構成する前記クアッドリッジ導波管部は、一直線上に第4の連結部にて連結された第3の導体ブロックにより構成され、
     前記第2の導体ブロックの一端と前記第3の導体ブロックの他端との間に介在し、前記第1の素子アンテナを構成する前記第2の給電線路と前記第2の素子アンテナを構成する前記第2の給電線路が第3の誘電体の一面に設けられた第3の誘電体基板により構成され、
     前記第1の素子アンテナを構成する前記パッチ導体と前記第2の素子アンテナを構成する前記パッチ導体が第1の誘電体の一面に設けられた第1の誘電体基板により構成された、
     パッチアンテナ装置。
    In a patch antenna device comprising a first element antenna and a second element antenna,
    Each of the first element antenna and the second element antenna includes a double ridge waveguide, a quad ridge waveguide, and a patch conductor holding portion,
    The double ridge waveguide is
    a first waveguide portion, and a pair of first ridges arranged to face each other, propagating a first radio wave propagating in a first propagation mode and different from the first propagation mode; a double ridge waveguide section in which the cutoff frequency in the second propagation mode of the second radio wave propagating in two propagation modes is set to a frequency higher than the frequency of the second radio wave;
    a second waveguide part having one end communicating with the other end of the first waveguide part, and closing the opening of the other end of the second waveguide part, the second waveguide a shorting waveguide section having a shorting conductor section electrically shorting the section;
    a first feeding line for inputting a high-frequency signal converted into the first radio wave by the double-ridge waveguide portion to the double-ridge waveguide portion;
    The quad ridge waveguide is
    Said third waveguide part, the other end of which communicates with one end of said first waveguide part, and a pair of second ridges arranged continuously opposite to said pair of first ridges, respectively. , and a quad-ridge waveguide having a pair of third ridges disposed between the pair of second ridges and facing each other, and propagating the first radio wave and the second radio wave. Department and
    a second feed line for inputting the high-frequency signal converted into the second radio wave by the quad-ridge waveguide portion to the quad-ridge waveguide portion;
    the patch conductor holding portion is disposed at one end of the quadridge waveguide portion and has a patch conductor;
    A pair of continuum bodies including the pair of first ridges and the pair of second ridges are arranged at the boundary between the double-ridge waveguide section and the quad-ridge waveguide section, and face the A notch is provided to widen the gap between the end faces of the pair of continuum,
    The double ridge waveguide portion constituting the first element antenna and the double ridge waveguide portion constituting the second element antenna are connected in a straight line by a first connecting portion. It consists of a conductor block of
    The second waveguide portion constituting the first element antenna and the second waveguide portion constituting the second element antenna are connected in a straight line by a second connecting portion. Consists of a second conductor block,
    The short-circuit conductor portion forming the first element antenna and the short-circuit conductor portion forming the second element antenna are integrally formed plate-like conductors connected in a straight line by a third connecting portion. is composed of
    The first feeder line interposed between the other end of the first conductor block and one end of the second conductor block and constituting the first element antenna and the second element antenna The first feed line is composed of a second dielectric substrate provided on one surface of a second dielectric,
    The quad-ridge waveguide portion forming the first element antenna and the quad-ridge waveguide portion forming the second element antenna are connected in a straight line by a fourth connecting portion. It consists of a conductor block of
    The second feed line interposed between one end of the second conductor block and the other end of the third conductor block and constituting the first element antenna and the second element antenna The second feed line is composed of a third dielectric substrate provided on one surface of the third dielectric,
    The patch conductor constituting the first element antenna and the patch conductor constituting the second element antenna are composed of a first dielectric substrate provided on one surface of a first dielectric,
    patch antenna device.
PCT/JP2021/035736 2021-09-29 2021-09-29 Patch antenna device WO2023053235A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/035736 WO2023053235A1 (en) 2021-09-29 2021-09-29 Patch antenna device
JP2023546203A JP7408024B2 (en) 2021-09-29 2022-09-26 patch antenna device
PCT/JP2022/035560 WO2023054216A1 (en) 2021-09-29 2022-09-26 Patch antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035736 WO2023053235A1 (en) 2021-09-29 2021-09-29 Patch antenna device

Publications (1)

Publication Number Publication Date
WO2023053235A1 true WO2023053235A1 (en) 2023-04-06

Family

ID=85781525

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/035736 WO2023053235A1 (en) 2021-09-29 2021-09-29 Patch antenna device
PCT/JP2022/035560 WO2023054216A1 (en) 2021-09-29 2022-09-26 Patch antenna device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035560 WO2023054216A1 (en) 2021-09-29 2022-09-26 Patch antenna device

Country Status (2)

Country Link
JP (1) JP7408024B2 (en)
WO (2) WO2023053235A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501035A (en) * 1986-10-20 1989-04-06 ヒューズ・エアクラフト・カンパニー Orthogonal mode electromagnetic wave emitting device
JP2015185893A (en) * 2014-03-20 2015-10-22 三菱電機株式会社 antenna device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6687469B2 (en) * 2016-06-14 2020-04-22 日立オートモティブシステムズ株式会社 Millimeter wave communication device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501035A (en) * 1986-10-20 1989-04-06 ヒューズ・エアクラフト・カンパニー Orthogonal mode electromagnetic wave emitting device
JP2015185893A (en) * 2014-03-20 2015-10-22 三菱電機株式会社 antenna device

Also Published As

Publication number Publication date
WO2023054216A1 (en) 2023-04-06
JP7408024B2 (en) 2024-01-04
JPWO2023054216A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
CN107210533B (en) Waveguide slot array antenna
US7724200B2 (en) Antenna device, array antenna, multi-sector antenna, high-frequency wave transceiver
US3761936A (en) Multi-beam array antenna
JP4343982B2 (en) Waveguide notch antenna
JP6490397B2 (en) Power splitter with a T coupler in the E-plane, a radiating array, and an antenna with such a radiating array
US8860612B2 (en) Antenna device for generating reconfigurable high-order mode conical beam
US11705614B2 (en) Coupling device and antenna
US8325099B2 (en) Methods and apparatus for coincident phase center broadband radiator
JP2019047238A (en) Array antenna
CN114050410A (en) Circularly polarized antenna and reference station
JP2011244260A (en) Antenna device
WO2023053235A1 (en) Patch antenna device
JP2004112700A (en) Vehicle-mounted millimeter-wave radar antenna
Adamiuk et al. Differential feeding as a concept for the realization of broadband dual-polarized antennas with very high polarization purity
WO2022085653A1 (en) Antenna device and radar device
US10680307B2 (en) Waveguide to strip line transducer including a waveguide wall forming substrate having an end surface bonded to a second conductor, and a power feed circuit formed therefrom
JPWO2006027828A1 (en) Power distribution device, power combining device, monopulse signal combining circuit, array antenna feeding circuit and beam forming circuit
JPH0722833A (en) Crossing-slot microwave antenna
US10403982B2 (en) Dual-mode antenna array system
JP3181326B2 (en) Microstrip and array antennas
JPS5829203A (en) Multilayered microstrip diversity antenna
Raza et al. A compact UWB passive balun solution for cryogenic 2-13 GHz Eleven feed for future wideband radio telescopes
JP4903100B2 (en) Waveguide power combiner / distributor and array antenna device using the same
JPH08116211A (en) Plane antenna system
US4476470A (en) Three horn E-plane monopulse feed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959283

Country of ref document: EP

Kind code of ref document: A1