WO2023053207A1 - 宇宙機搭載の推進装置 - Google Patents
宇宙機搭載の推進装置 Download PDFInfo
- Publication number
- WO2023053207A1 WO2023053207A1 PCT/JP2021/035644 JP2021035644W WO2023053207A1 WO 2023053207 A1 WO2023053207 A1 WO 2023053207A1 JP 2021035644 W JP2021035644 W JP 2021035644W WO 2023053207 A1 WO2023053207 A1 WO 2023053207A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- propellant
- gas
- storage
- heater
- spacecraft
- Prior art date
Links
- 239000003380 propellant Substances 0.000 claims abstract description 119
- 230000007246 mechanism Effects 0.000 claims abstract description 58
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 45
- 230000007723 transport mechanism Effects 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 239000007791 liquid phase Substances 0.000 claims abstract description 4
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 230000001965 increasing effect Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 11
- 210000000352 storage cell Anatomy 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 81
- 235000019441 ethanol Nutrition 0.000 description 13
- 238000007710 freezing Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000008014 freezing Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 5
- 238000003303 reheating Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 241001489705 Aquarius Species 0.000 description 1
- 108091092878 Microsatellite Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/40—Arrangements or adaptations of propulsion systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H—PRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the present invention relates to a propulsion engine mounted on a spacecraft.
- a propulsion engine that uses liquefied gas as a propellant and generates gas by electrically heating it has a simple system, so it is used in small or ultra-small spacecraft. Furthermore, a propulsion engine (resist jet engine) that reheats the generated gas to raise its temperature can increase the specific impulse, so it is applied when a large impulse is required.
- pressurized supply is often used by using or using their own vapor pressure.
- a typical thrust for a propellant pressurized by vapor pressure or another push gas to produce gas is a thrust factor several times the pressurized supply pressure multiplied by the nozzle throat area. is multiplied by This is the same for the resist jet engine, and the gas pressure in the reheating process is almost equal to the pressure that pressurizes the propellant.
- the actual magnitude of thrust depends on the vapor pressure of the liquefied gas used. Typically, it allows storage under very low vapor pressures, less than 1 atmosphere at normal temperature, so that, for example, water propellant engines have very low thrust.
- a method of pressurizing and supplying the propellant as a pushing gas such as nitrogen gas is also adopted.
- this method causes an increase in the mass of the propellant container. Therefore, supply at a remarkably high pressure will conversely reduce the advantages of the resist jet engine, and naturally there is a limit.
- Patent Document 1 discloses a space propulsion system that has a resist jet and an electrostatic thruster and selects which of these to activate by a switch.
- Patent Document 2 discloses an electrothermal propulsion device that uses low vapor pressure liquefied gas as a propellant.
- the propellant is limited to organic compounds, and water is not listed as a substance constituting the propellant.
- Patent Document 3 discloses an invention about an electrothermal thruster equipped with a heating section, relating to a resist jet using a photovoltaic cell.
- Non-Patent Document 1 discloses an invention related to a resist jet that uses water as a propellant and supplies the propellant with vapor pressure.
- a liquid with a very low vapor pressure of less than 1 atm at room temperature that is, a liquefied gas
- a propellant electrically heated to generate a gas
- reheated to raise the temperature Resist jet engines of the thrust enhancing type have the following problems.
- the present invention has been made in view of the above problems, and aims to provide a spacecraft-mounted propulsion device (resist jet engine) that solves these three problems at the same time.
- a propulsion device mounted on a spacecraft uses ethanol or an ethanol aqueous solution as a propellant, and includes a propellant storage mechanism including a propellant storage container that stores the propellant in a gas-liquid equilibrium state or a liquid phase.
- a heater comprising a propellant transport mechanism for pressurizing and supplying the propellant to a pressure exceeding 1 atm at room temperature by an electric pump, and a separate heater for temperature increase connected via a check valve.
- a gas heating mechanism consisting of a thruster head mechanism having a nozzle for generating thrust by the heated gas, and a power supply provided with a storage battery for driving the electric pump and the heating heater , wherein the propellant storage mechanism, the propellant transport mechanism, the gas temperature raising mechanism, and the thruster head mechanism are connected in series.
- the present invention uses ethanol (ethyl alcohol) or an aqueous solution of ethanol (ethyl alcohol), which has a very low vapor pressure well below 1 atmosphere at normal temperature, as a propellant, and the propellant is pumped by an electric pump to a pressure typically exceeding 1 atmosphere at normal temperature. It relates to a resist jet engine equipped with a large-capacity storage battery that pressurizes and supplies it to a heater or heater for gas generation and stores the energy required for gas generation or reheating according to the time of acceleration. be.
- the vapor pressure of the propellant is sufficiently low. Therefore, the propellant container can be made thin and extremely light.
- the thrust can be set by the heater for gas generation and the boosting capacity of the electric pump that supplies the heater, regardless of the vapor pressure of the propellant and the pressure of the pushing gas. Therefore, a large thrust can be obtained by increasing the pressure to over 1 atm at room temperature.
- the storage battery By charging the storage battery over a long period of time using only a portion of the power that can be constantly supplied on board the spacecraft, the large amount of energy necessary to drive the propulsion system can be secured for a certain amount of time without being restricted by the power generated by the solar battery. can do.
- a secondary storage battery is mounted as the storage battery.
- a primary storage battery may be installed to omit the charging device on the spacecraft.
- An aqueous solution with ethanol as a solute can easily lower the freezing point. Therefore, it is possible to eliminate the need to secure electric power for anti-freezing.
- the average molecular weight of the mixed gas obtained by gasification of the propellant can be secured in a wide range between pure ethanol and water.
- the decrease in the density of the aqueous solution can be kept to a minor level. Therefore, it is possible to minimize the decrease in the mass of propellant that can be stored in the same propellant storage container.
- the present invention is a method that originated from a different idea from the conventional resist jet engine that vaporizes and heats up liquefied gas to obtain thrust.
- lithium polymer batteries for example, have very high energy densities and may be well suited for onboard even very small spacecraft.
- Water has a low molecular weight and a high specific impulse, but it has a high freezing point, which poses a practical problem in that more power must be secured.
- the freezing point can be sufficiently lowered, and the need to secure electric power necessary for anti-freezing can be released.
- the weight of the propellant container can be reduced.
- High thrust can be obtained regardless of propellant vapor pressure or push gas pressure.
- a high-power propulsion engine can be operated while maintaining the power that can always be supplied on the spacecraft.
- the freezing point temperature of the propellant can be well below zero.
- Each of the inventions described in the above-mentioned patent documents and non-patent documents uses a low vapor pressure non-freezing liquefied gas as a propellant in the present invention, uses a pump to increase thrust instead of vapor pressure, and uses a storage battery for power supply. It is completely different from the invention related to the resist jet that is covered by the
- FIG. 1 is a configuration diagram of a resist jet propulsion system combining an electric pump and a storage battery using ethanol or its aqueous solution as a propellant according to the present invention
- FIG. 1 shows the configuration of a resist-jet propulsion engine according to the present invention, which combines an electric pump and a high-energy-density storage battery using ethanol or an aqueous solution of ethanol, which has a very low vapor pressure of well below 1 atm at room temperature, as a propellant.
- a propulsion device 1000 the resist jet propulsion system according to the present invention will be referred to as a propulsion device 1000.
- the propulsion device 1000 electrically heats the propellant to generate gas and reheats the gas to raise the temperature, thereby improving the specific impulse.
- the propulsion device 1000 is intended, for example, to be mounted on a spacecraft.
- the propulsion device 1000 includes a propellant storage container 10 (propellant storage mechanism), an electric pump 20 (propellant transport mechanism), an air storage tank 30 (gas storage mechanism), and a heater 40 (gas temperature raising mechanism). , a nozzle 50 (thruster head mechanism), a storage battery 60 (power supply mechanism), and a gas generation heater 70 (gas generation mechanism).
- the propulsion device 1000 according to the invention is characterized by the following mode of construction. That is, as shown in FIG. 1, the propellant container 10, the electric pump 20, the heater 40, and the nozzle 50 are connected in series. The gas generating heater 70 and the storage tank 30 are connected in series, and are inserted and connected in series between the electric pump 20 and the nozzle 50 .
- the propellant containing container 10 contains the propellant in a gas-liquid equilibrium state or a liquid phase.
- the propellant containing container 10 contains a propellant.
- the propellant container 10 has a propellant bladder 11 inside, as shown in FIG.
- the propellant bladder 11 is a bag-like member that has a role of separating gas and liquid of the propellant.
- the push gas consists of a substance different from the propellant, for example nitrogen is used.
- Push gas is charged to and discharged from the non-propellant side of the propellant bladder 11 through a first valve 100 shown in FIG.
- the non-propellant side of the propellant bladder 11 is the side of the propellant container 10 on which the first valve 100 shown in FIG. 1 is located.
- the first valve 100 is a valve for charging and discharging push gas.
- the electric pump 20 pressurizes and supplies the propellant to a pressure exceeding 1 atm at room temperature.
- the propellant stored in the propellant storage container 10 is supplied to the electric pump 20 via the second valve 200 .
- a known pump is used as the electric pump 20 .
- the second valve 200 and the later-described third valve 400 are valves that can be opened and closed manually or remotely from the spacecraft side.
- the propellant that has passed through the second valve 200 is boosted by the electric pump 20 to a pressure typically exceeding 1 atm at room temperature.
- the pressurized gas passes through a gas generation heater 70 for gas generation, passes through a pressure reducer 300 and is stored in the storage tank 30 .
- the pressure value of the storage tank 30 is read on the spacecraft side.
- the spacecraft controls the second valve 200 to decompress the inside of the storage tank 30 to maintain a predetermined pressure.
- this pressure regulation mechanism may be omitted.
- the gas storage tank 30 is a container for storing the gas generated by the gas generation heater 70 via the pressure reducer 300 at a predetermined pressure.
- a known decompressor 300 is used.
- the storage tank 30 functions as a buffer tank for reducing pressure fluctuations that occur when the propellant is discharged from the nozzle 50 . At the same time, it has a role of avoiding a gas-liquid mixed phase in the temperature riser 40 .
- the heater 40 includes another heater 80 for temperature increase connected via a check valve 500 .
- the check valve 500 serves to prevent backflow of gas within the heater 40 .
- the heater 40 accommodates the heater 80 for heating, and serves to raise the temperature of the gasified propellant to a prescribed temperature at which the expected specific impulse can be exhibited.
- the temperature of heater 40 ranges from about 100 degrees Celsius to 1000 degrees Celsius, but is adjusted according to specifications.
- the nozzle 50 generates thrust from the heated gas.
- the propellant heated by the heater 40 is discharged from the nozzle 50 .
- the propulsion device 1000 generates thrust by reaction when the propellant is discharged.
- the storage battery 60 drives the electric pump 20, the gas generation heater 70, and the temperature raising heater 80.
- a lithium polymer battery for example, is used for the storage battery 60 .
- the storage battery 60 is not limited to this, and any known battery may be used.
- the spacecraft or the like on which the propulsion device 1000 is mounted may be provided with a solar battery.
- the electric pump 20, the gas generating heater 70, and the heating heater 80 are powered by the discharge of the storage battery 60 having a high energy density, and are basically normal spacecraft power for onboard equipment. It is operated in a mode that does not consume 90.
- the storage battery 60 is charged with part of the spacecraft power 90 while the propulsion system is stopped.
- a remotely controlled valve may be inserted between the heater 40 and the nozzle 50 as long as the heat resistance function can be exhibited.
- the gas generation heater 70 functions by receiving power supply from the storage battery 60 .
- Gas production heater 70 electrically heats the propellant to produce gas.
- each mechanism of the propulsion device 1000 having the above configuration is connected in series. That is, the propellant passes through one path from the propellant container 10 to the nozzle 50 .
- a plurality of paths may be provided in parallel in the propulsion device 1000 .
- the above mechanisms may be shared by the plurality of routes.
- the propulsion device 1000 having the above-described configuration, at least a part of each mechanism of the propellant container 10, the electric pump 20, the heater 40, and the nozzle 50 are connected in parallel.
- a plurality of the above configurations connected in parallel will be referred to as a first propulsion unit.
- a plurality of first propulsion units may be provided.
- a plurality of first propulsion units may be connected in series.
- At least some of the propellant container 10, the electric pump 20, the gas generating heater 70, the gas storage tank 30, the heater 40, and the nozzle 50 are arranged in parallel. may be connected.
- a plurality of the above configurations connected in parallel will be referred to as a second propulsion unit.
- a plurality of second propulsion units may be provided.
- a plurality of second propulsion units may be connected in series.
- the gas generating heater 70, the pressure reducer 300, the gas storage tank 30 and the third valve 400 are omitted, and the electric pump 20 and the check valve 500 are directly connected, and the heater 40 A simpler form in which the liquid propellant is supplied directly to the is also possible.
- the propellant storage mechanism is the propellant storage container 10
- the propellant transport mechanism is the electric pump 20
- the gas storage mechanism is the storage tank 30
- the gas temperature raising mechanism is the heater 40
- the propellant containing mechanism may have other configurations in addition to the propellant containing container 10
- the propellant transport mechanism may have other configurations in addition to the electric pump 20
- the gas storage mechanism may have other configurations in addition to the storage tank 30
- the gas temperature raising mechanism may have other configurations in addition to the temperature raising device 40
- the thruster head mechanism may have other configurations in addition to nozzles 50
- the power supply mechanism may have other configurations in addition to the storage battery 60 .
- the gas generating mechanism may have other configurations in addition to the gas generating warmer 70 .
- the weight of the propellant container 10 can be reduced, a high thrust can be obtained regardless of the vapor pressure of the propellant and the pressure of the pushing gas, and the propellant can be constantly supplied on the spacecraft. It is industrially useful because it is possible to operate a high-power propulsion engine while maintaining a reasonable amount of power, and to make the freezing point temperature of the propellant sufficiently lower than 0 degrees, making it unnecessary to secure anti-freezing power. be.
- Propellant storage container 11 Propellant bladder 20 Electric pump 30 Storage tank 40 Heater 50 Nozzle 60 Storage battery 70 Gas generation heater 80 Heater 90 Spacecraft power 100 First valve 200 Second valve 300 Pressure reducer 400 Third valve 500 Check valve 1000 Propulsion device
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
本発明の一態様に係る宇宙機搭載の推進装置は、エタノールないしエタノール水溶液を推進剤とし、気液平衡状態ないし液相で前記推進剤を収容する推進剤収容容器を備えた推進剤収容機構と、電動ポンプにより前記推進剤を常温で1気圧を超える圧力まで加圧して供給する推進剤輸送機構と、逆止弁を介して接続される別の昇温用加温器を備えた昇温器で構成されるガス昇温機構と、加熱されたガスにより推力を発生するノズルを備えたスラスタヘッド機構と、前記電動ポンプと前記昇温用加温器を駆動するための蓄電池を備えた電力供給機構と、を備え、前記推進剤収容機構と、前記推進剤輸送機構と、前記ガス昇温機構と、前記スラスタヘッド機構と、が直列に接続される構成様式を特徴とする。
推力を、同推進剤の蒸気圧や押しガスの圧力に無関係に、ガス生成用加温器、昇温器に供給する電動ポンプの昇圧能力で設定できる。よって、常温で1気圧を超える圧力にまで昇圧させることで、大きな推力を得ることができる。
推進剤収容容器10は、推進剤を収容する。推進剤収容容器10は、図1に示すように、内部に推進剤ブラダ11を備える。推進剤ブラダ11は、推進剤を気液分離する役割を有する袋状の部材である。推進剤ブラダ11の非推進剤側、すなわち推進剤収容容器10において推進剤が収容されない側には、推進剤側に気液混合の平衡状態を起こさせないために、推進剤の蒸気圧をわずかに上回る圧力で押しガスを充てんする。押しガスは、推進剤と異なる物質からなり、例えば窒素が用いられる。押しガスは、図1に示す第1弁100から推進剤ブラダ11の非推進剤側に充填、排気される。つまり、推進剤ブラダ11の非推進剤側とは、推進剤収容容器10において、図1に示す第1弁100が位置する側である。第1弁100は、押しガスを充填、排気するための弁である。
貯気タンク30は、ノズル50より推進剤が排出される過程で発生する圧力変動を緩和するためのバッファタンクの役割を有する。同時に、昇温器40内で気液混相となることを回避する役割を有する。
例えば、推進剤収容機構が推進剤収容容器10に加えて他の構成を備えていてもよい。推進剤輸送機構が電動ポンプ20に加えて他の構成を備えていてもよい。ガス貯蔵機構が貯気タンク30に加えて他の構成を備えていてもよい。ガス昇温機構が昇温器40に加えて他の構成を備えていてもよい。スラスタヘッド機構がノズル50に加えて他の構成を備えていてもよい。電力供給機構が蓄電池60に加えて他の構成を備えていてもよい。ガス生成機構がガス生成用加温器70に加えて他の構成を備えていてもよい。
11 推進剤ブラダ
20 電動ポンプ
30 貯気タンク
40 昇温器
50 ノズル
60 蓄電池
70 ガス生成用加温器
80 昇温用加温器
90 宇宙機電力
100 第1弁
200 第2弁
300 減圧器
400 第3弁
500 逆止弁
1000 推進装置
Claims (4)
- エタノールないしエタノール水溶液を推進剤とし、
気液平衡状態ないし液相で前記推進剤を収容する推進剤収容容器を備えた推進剤収容機構と、
電動ポンプにより前記推進剤を常温で1気圧を超える圧力まで加圧して供給する推進剤輸送機構と、
逆止弁を介して接続される別の昇温用加温器を備えた昇温器で構成されるガス昇温機構と、
加熱されたガスにより推力を発生するノズルを備えたスラスタヘッド機構と、
前記電動ポンプと前記昇温用加温器を駆動するための蓄電池を備えた電力供給機構と、
を備え、
前記推進剤収容機構と、前記推進剤輸送機構と、前記ガス昇温機構と、前記スラスタヘッド機構と、が直列に接続される構成様式を特徴とする、
宇宙機搭載の推進装置。 - 前記蓄電池から電力の供給を受けて機能するガス生成用加温器を備えたガス生成機構と、
減圧器を介して、前記ガス生成機構により生成されたガスを所定の圧力で貯蔵する貯気タンクを備えたガス貯蔵機構と、
を更に備え、
前記ガス生成機構と前記ガス貯蔵機構とが直列に接続され、
前記推進剤輸送機構と前記スラスタヘッド機構との間に直列に挿入され接続される構成様式を特徴とする、
請求項1に記載の宇宙機搭載の推進装置。 - 前記推進剤収容機構と、前記推進剤輸送機構と、前記ガス昇温機構と、前記スラスタヘッド機構と、の少なくとも一部が複数かつ並列に接続された第1推進ユニットが、直列に接続される構成様式を特徴とする、
請求項1に記載の推進装置。 - 前記推進剤収容機構と、前記推進剤輸送機構と、前記ガス生成機構と、前記ガス貯蔵機構と、前記ガス昇温機構と、前記スラスタヘッド機構と、の少なくとも一部が複数かつ並列に接続された第2推進ユニットが、直列に接続される構成様式を特徴とする、
請求項2に記載の宇宙機搭載の推進装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023550792A JPWO2023053207A1 (ja) | 2021-09-28 | 2021-09-28 | |
PCT/JP2021/035644 WO2023053207A1 (ja) | 2021-09-28 | 2021-09-28 | 宇宙機搭載の推進装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/035644 WO2023053207A1 (ja) | 2021-09-28 | 2021-09-28 | 宇宙機搭載の推進装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023053207A1 true WO2023053207A1 (ja) | 2023-04-06 |
Family
ID=85781495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/035644 WO2023053207A1 (ja) | 2021-09-28 | 2021-09-28 | 宇宙機搭載の推進装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023053207A1 (ja) |
WO (1) | WO2023053207A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4821508A (en) * | 1985-06-10 | 1989-04-18 | Gt-Devices | Pulsed electrothermal thruster |
WO2014024966A1 (ja) * | 2012-08-10 | 2014-02-13 | 株式会社Ihi | 蒸気噴射装置及び宇宙機 |
DE102018114868A1 (de) * | 2018-06-20 | 2019-12-24 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Antriebssystem für ein Raumfahrzeug und Verfahren zum Antrieb eines Raumfahrzeugs |
US20200283174A1 (en) * | 2019-03-04 | 2020-09-10 | Momentus Inc. | Spacecraft thermal and fluid management systems |
-
2021
- 2021-09-28 WO PCT/JP2021/035644 patent/WO2023053207A1/ja active Application Filing
- 2021-09-28 JP JP2023550792A patent/JPWO2023053207A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4821508A (en) * | 1985-06-10 | 1989-04-18 | Gt-Devices | Pulsed electrothermal thruster |
WO2014024966A1 (ja) * | 2012-08-10 | 2014-02-13 | 株式会社Ihi | 蒸気噴射装置及び宇宙機 |
DE102018114868A1 (de) * | 2018-06-20 | 2019-12-24 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Antriebssystem für ein Raumfahrzeug und Verfahren zum Antrieb eines Raumfahrzeugs |
US20200283174A1 (en) * | 2019-03-04 | 2020-09-10 | Momentus Inc. | Spacecraft thermal and fluid management systems |
Non-Patent Citations (1)
Title |
---|
WIRZ, RICHARD E. ET AL.: "Electrospray Thruster Performance and Lifetime Investigation for the LISA Mission", CONFERENCE PAPER, AIAA PROPULSION AND ENERGY 2019 FORUM, 19 August 2019 (2019-08-19), pages 7 - 12, XP009544947, DOI: 10.2514/6.2019-3816 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023053207A1 (ja) | 2023-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11181076B2 (en) | Rocket engine bipropellant supply system including an electrolyzer | |
US9850008B2 (en) | Integrated vehicle fluids | |
JP6289652B2 (ja) | 流体を加圧し供給する装置、システム、および方法。 | |
US11459130B2 (en) | Integration of fuel cell with cryogenic source for cooling and reactant | |
US8281566B2 (en) | Thermally-integrated fluid storage and pressurization system | |
JPH0723120B2 (ja) | 宇宙船の低圧反応制御推進システム | |
US20130196273A1 (en) | Thermal Pressurant | |
US10371098B2 (en) | Device for pressurizing a propellant tank of a rocket engine | |
WO2023053207A1 (ja) | 宇宙機搭載の推進装置 | |
US20070144140A1 (en) | High propellant mass fraction hybrid rocket propulsion | |
RU2447313C1 (ru) | Жидкостный ракетный двигатель многократного включения (варианты) | |
US11897636B2 (en) | Rocket propulsion system, method, and spacecraft | |
EP2150694A1 (fr) | Dispositif cryotechnique de propulsion dans l'espace et son procede de commande | |
JP2000248994A (ja) | ロケットエンジンの推薬加圧装置 | |
RU2492342C1 (ru) | Безнасосный криогенный жидкостный ракетный двигатель (варианты) | |
KR102261776B1 (ko) | 원유 운반선 | |
ES2940823T3 (es) | Sistema de propulsión para un vehículo espacial y procedimiento para hacer funcionar un vehículo espacial | |
RU2299160C2 (ru) | Способ доставки на орбиту сырьевого продукта, ракетная двигательная установка, ракета на ее основе, способ выведения космических аппаратов на геостационарную орбиту, транспортная система для его осуществления и транспортно-заправочная система | |
Tamilselvan et al. | Innovation in Cryogenic Engine for Rapid Transit by NOS Propulsion | |
JP4815601B2 (ja) | 電熱式ロケット推進装置 | |
Valentian et al. | Cryogenic and LOX Based Propulsion Systems for Robotic Planetary Missions | |
Whitehead | Self pressuring HTP feed systems | |
MacLean et al. | A low-risk, reliable, operationally efficient auxiliary propulsion system for the Reusable Launch Vehicle | |
Brennan | Space station propulsion-ECLSS interaction study | |
Valentian et al. | A Low Cost Cryogenic Propulsion Module for Commercial and Planetary Missions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21959255 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18695223 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023550792 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21959255 Country of ref document: EP Kind code of ref document: A1 |