WO2023052658A1 - Sistema de fondeo - Google Patents

Sistema de fondeo Download PDF

Info

Publication number
WO2023052658A1
WO2023052658A1 PCT/ES2022/070466 ES2022070466W WO2023052658A1 WO 2023052658 A1 WO2023052658 A1 WO 2023052658A1 ES 2022070466 W ES2022070466 W ES 2022070466W WO 2023052658 A1 WO2023052658 A1 WO 2023052658A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating platform
fixing means
anchoring
subline
mooring
Prior art date
Application number
PCT/ES2022/070466
Other languages
English (en)
French (fr)
Inventor
Antonio Luís GARCÍA FERRÁNDEZ
Original Assignee
Gazelle Wind Power Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gazelle Wind Power Limited filed Critical Gazelle Wind Power Limited
Publication of WO2023052658A1 publication Critical patent/WO2023052658A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/20Adaptations of chains, ropes, hawsers, or the like, or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation

Definitions

  • the object of the present invention is an anchoring system especially suitable for floating platforms that serve as the base of wind turbines located in the sea, although it can also be used for floating platforms intended to support leisure or recreational structures or facilities.
  • the anchoring system object of the present invention comprises a set of anchoring cables or chains (anchoring lines) attached to piles buried in the seabed or to weights located or deposited on the seabed.
  • the anchoring system object of the present invention has unique characteristics that make it ideal to be used on floating platforms that serve as a base for maritime structures where it is important to avoid pitching or rolling, also solving some drawbacks of other anchoring systems. anchoring for floating platforms of the state of the art.
  • the anchoring system object of the present invention can be applied to any type of structure intended to float on the surface of the sea, and that needs to have several anchor points on the seabed, to hold the anchoring cables or chains of the floating platforms.
  • Floating platforms especially those dedicated to supporting wind turbines for the generation of electrical energy from wind energy at sea, need anchoring systems that keep them in their position and contribute to their stability.
  • Platforms of the type called TLP (for the acronym in English of "Tension Leg Platform”) are known in the state of the art. These platforms comprise three or more anchoring lines (usually chains or cables that connect the platform with piles anchored to the seabed).
  • the mooring lines of the TLP platforms are designed to be placed in tension, joining the platform in a vertical position with each one of the piles anchored in the seabed.
  • TLP platforms comprise a set of floats designed to produce excess buoyancy of the platform (taking into account the weight of the structure that sits on the platform). This excess buoyancy guarantees a high level of tension in the cables, which in turn guarantees that they are always arranged in a vertical position. In this way, pitch and roll movements of the platform and of the structure that sits on the platform are avoided.
  • a drawback of the TLP platforms is that the high tension of the cables necessary to keep them in a vertical position and thus avoid pitching and/or rolling movements also causes a blockage of the platform's movements in the vertical direction.
  • the platform cannot move up (because the mooring lines have little or no extensibility) and therefore the tension on the mooring lines increases considerably. This causes a high risk of breaking the anchoring lines and makes it necessary to have anchoring lines with a high section or to increase the number of anchoring lines.
  • the platform in situations of very low tide, the platform also lowers (the cables cannot work in compression) and the anchoring lines can become very loose, increasing the risk of the platform moving both vertically and laterally from in an uncontrolled manner, and also increasing the risk of pitching and/or rolling movements (due to the push of the wind and/or waves on the platform and the structure that rests on it) that can lead to overturning from the platform.
  • semi-submersible platforms Another type of floating platforms are semi-submersible platforms. If the platform needs large habitable surfaces, semi-submersible platforms are usually used, which have acceptable wave behavior and have large free surfaces. They are suitable with states of sea, mild and medium. When more severe sea states are expected, larger and heavier platforms are used that move less than small ones. In any case, semi-submersible platforms do not prevent pitch/roll movement, they only reduce it.
  • SPAR type platform Another type of floating platforms are the so-called SPAR type platform. It is a floating platform in which stability is obtained by placing large weights at a great depth. Normally they use conventional anchoring systems with chains and anchors, their shape is usually cylindrical, with a small diameter and great length. They are used almost exclusively as bases for wind turbines and their pitch angles are significantly greater than in other types of platforms. They are especially sensitive to the push of the wind and are less affected by the presence of waves.
  • the present invention refers to an anchoring system.
  • the anchoring system object of the present invention comprises a floating platform and at least three anchoring lines, configured to fix or anchor the floating platform to the seabed by means of at least one bottom section of each anchoring line.
  • Each mooring line also includes a central section attached to a counterweight.
  • the anchoring system comprises at least one first rotating fixing means (also called direct pulley) for each anchoring line, where each first rotating fixing means (or external pulley) is fixed to a first point of the floating platform and is configured to fix each mooring line to the floating platform at said first point of the floating platform, allowing the slipping of the mooring line by said first rotating fixing means.
  • first rotating fixing means also called direct pulley
  • Each anchoring line comprises at least a first subline and a second subline, each of them comprising its own anchoring cable or chain.
  • the floating platform includes a central axis (it can be a central axis of symmetry or a vertical axis that passes through a center of gravity of the platform and/or the counterweight) that defines, together with the bottom section of each mooring line, an anchoring plan for each anchoring line.
  • a central axis it can be a central axis of symmetry or a vertical axis that passes through a center of gravity of the platform and/or the counterweight
  • the system comprises at least one second rotating fixing means (also called a crossed pulley) for each anchoring line.
  • This at least one second rotary fixing means of each anchor line is fixed to a second point of the floating platform and is configured to fix at least one sub-anchoring line of each anchor line to the floating platform at said second point of the floating platform allowing the sliding of said subline by said second rotary fixing means, in such a way that said subline comprises an intermediate section between the first rotary fastening means and the second rotary fastening means and where said subline runs from the first rotary fastening means to the counterweight, passing and sliding through the second rotary fastening means.
  • the at least one second rotating fixing means of each mooring line is not included in the mooring plane of said mooring line.
  • first subline of each anchoring line can also be called “direct subline”, since it runs from the first rotating fixing means directly towards the counterweight (although optionally in this path it can pass through a third means rotary fixing included in the anchoring plane of said anchoring line).
  • the second anchor subline is, in all embodiments of the invention, a crossed subline or a diagonal subline, according to each embodiment.
  • the second subline whose intermediate section runs from the first rotating fixing means to the second rotating fixing means passing through a position close to the central axis of the floating platform is called the crossed subline.
  • the second subline whose intermediate section runs from the first rotating fixing means towards the second rotating fixing means without passing through a position close to the central axis of the floating platform is called the diagonal subline.
  • the pitching and/or rolling of the floating platform is canceled or drastically reduced, with respect to other anchoring systems such as the one described in document ES 2629867 A2., while leaving freedom for the floating platform can move vertically, also allowing restricted horizontal movements. Additionally, through the anchoring system described above, the pendulum movement, characteristic of the central counterweight, induced by the horizontal movements of the platform due to the waves, is eliminated.
  • the first subline (direct subline) of each anchor line is completely included in the anchor plane of said line of anchorage.
  • anchoring and the at least one first rotatable fixing means of each anchoring line is fixed to the floating platform in correspondence with a first point located on a periphery of the floating platform.
  • the at least one second rotary fixing means (crossed pulley) is fixed to the floating platform at the second point that is preferably also located on the periphery of the floating platform.
  • the intermediate section of the second subline (crossed subline) runs between the first rotating fixing means and the second rotating fixing means passing through the least one rotary guide means located in proximity to the central axis of the floating platform.
  • the intermediate section of the second subline runs between the first rotary fixing means and the second rotary fixing means, passing through at least two rotary guide means located in proximity. to the central axis of the floating platform.
  • the intermediate section of the second subline passes through two rotary guide means located close to the central axis of the floating platform.
  • the intermediate section of the second subline passes through a single rotary guide means located close to the central axis of the floating platform.
  • the intermediate section of the second subline runs between the first rotating fixing means and the second rotating fixing means in a straight line.
  • the intermediate section of the second subline (diagonal subline) runs between the first rotating fixing means and the second rotating fixing means, passing through at least one rotary guide means located in correspondence with the periphery of the floating platform.
  • the rotary guide means (or the rotary guide means), in those embodiments in which it is present, is fixed to at least a fourth point of the floating platform and is configured to guide the course of the corresponding sub-line of each line of anchoring allowing the sliding of said subline by said rotary guide means, in such a way that said subline runs between the first rotary fixing means and the second rotary fixing means passing and sliding through the rotary guiding means.
  • the rotary guide means allow the corresponding subline to avoid obstacles on its way from the first rotary fixing means to the second rotary fixing means.
  • This rotary guiding means it can be prevented that the sublines of all mooring lines collide with each other, or that the sublines collide with the main structure of the floating platform. It can also be achieved by means of the rotary guidance means that the sublines run according to a determined route, for example following the contour, perimeter or periphery of the floating platform.
  • the at least one second rotatable fixing means of each mooring line is fixed to the floating platform at a point located in proximity to the first rotatable fixing means of a mooring line. adjacent.
  • the anchoring system can comprise at least one third rotary fixing means (direct internal pulley) for each anchoring line, where each third rotary fixing means is fixed to a third anchoring point.
  • the floating platform and is configured to fix the first subline (direct subline) to the floating platform at said third point of the floating platform allowing the sliding of the first subline by said third rotary fixing means, in such a way that each first subline (direct subline) runs from the first rotary fixing means (outer pulley) to the counterweight passing and sliding through the third means rotary fixing (direct inner pulley).
  • the anchoring system comprises a second rotating fixing means (crossed pulley) for each anchoring subline of each anchoring line, in such a way that both the first subline and the second subline respectively comprise a section intermediate between the first rotary fixing means and the corresponding second rotary fixing means and where each sub-mooring line runs from the first rotary fixing means to the counterweight sliding through the corresponding second rotary fixing means.
  • neither the first subline nor the second subline are direct sublines. Both sublines are diagonal sublines.
  • the intermediate section of each subline runs between the first rotatable fixing means and the second rotatable fixing means in a straight line.
  • the counterweight comprises at least one floodable chamber. This characteristic also facilitates the transport of the counterweight (which can be transported without flooding with less weight), and also facilitates a progressive contribution of tension to the anchoring lines, as the at least one floodable flotation chamber fills up.
  • each bottom section of each mooring line comprises a buoy that divides the bottom section into a first portion that runs between the seabed and the buoy and a second portion that runs between the buoy and the seabed. least one first rotatable fixing means.
  • the floating platform comprises as many protruding structural arms as mooring lines, where each protruding structural arm is attached to a main structure (or hull) of the floating platform, where each protruding structural arm runs radially from a first end attached to the main structure of the floating platform to a second end projecting outward from the floating platform, where the at least one first rotating fixing means of each line anchor is fixed to the floating platform in correspondence with the second end of a first arm, and where the at least one second rotatable fixing means is fixed to the floating platform at a point located in correspondence with a second arm.
  • the at least one second rotatable fixing means is fixed to the floating platform at a point located in correspondence with the second end of the second arm.
  • the main structure (or hull) of the floating platform preferably comprises a geometry in the form of a cylindrical, conical or pyramidal shaft.
  • the anchoring system can comprise a plurality of spokes connected to the main structure, where there is a flotation element at each free end of each spoke.
  • These flotation elements can comprise at least one floodable chamber.
  • the main structure of the floating platform can comprise at least one flotation element, which in turn can comprise at least one floodable chamber.
  • the flotation elements provide buoyancy and, when they are floodable, allow the floating platform to be moved or towed to its place or installation location, with a reduced weight and, later, flood the corresponding flotation elements, to adjust the final draft. from the platform to its project value.
  • the structure is particularly stable and appropriate to guarantee the stability of the floating platform during the installation maneuver.
  • the floating platform can comprise a main structure with three between-decks, where the rotating fixing means and rotary guiding means are fixed to the floating platform at points located under a first between-deck.
  • the main structure comprises six columns projecting below the floating platform under the first steerage and configured to be partially submerged. These six columns cross a second tweendeck and a third tweendeck. Three of the six columns are projected above the third deck up from the floating platform, on an upper deck.
  • the second deck comprises a glazed perimeter surface that can be unfolded and retracted, with a perimeter annular balcony that projects beyond the glazed perimeter surface.
  • a vaulted upper enclosure projects above the third tweendeck in correspondence with the center of the third tweendeck.
  • the present invention refers to an improvement in the anchoring system that constitutes the international application PCT/IB2022/000334, applicable to all types of marine floating platforms, which allows its movement, both horizontally and vertically. , but that completely cancels the pitch and roll motion of the platform.
  • the pendulum movement of the central counterweight is also eliminated.
  • the specific object of the present invention is to adapt the system described in the international application PCT/IB2022/000334 so that it is applicable to platforms with any number of protruding structural arms (especially for platforms with three protruding structural arms (with their corresponding anchoring lines). )).
  • the floating platform on which this new type of anchoring is installed does not need to rest on the seabed, making it suitable for areas of any sea depth, both near the coast (70 m depth), as far from it (up to depths of 400 m or more) and at any intermediate distance, since it is capable of withstanding very severe storms.
  • the anchoring system that is the object of the present invention is applicable to any floating marine installation, in which movement requirements are an important determinant of the design. Especially for the following cases:
  • a platform designed with this type of anchoring is ideal for the hotel and recreation industry, since most of the potential clients of this type of facility are not expert sailors and the fact that it moves very little is a great attraction.
  • a hotel can be installed, placing it in extraterritorial waters more than 10 nautical miles from the coast, so it could have rest, recreation, casino and game rooms, theme parks or any type of facility for which an equivalent facility on land You could encounter urban-related impediments or have difficulties obtaining opening permits or have problems with current municipal regulations. Being away from the coast, the depth of the sea is greater and it is not possible to rest the hotel on the seabed. Also, the swell is higher, so a conventional platform would move too much for this application. - Wind farms.
  • Windmills need a base that moves as little as possible, in fact, beyond a certain level of inclination (pitch) or a certain level of acceleration, the wind turbines must stop for safety reasons. The fact that it moves less than there are currently, increases the profitability of the installation, by having more net hours per year to generate electricity.
  • the main preferred embodiment presented in this patent application refers to a floating platform specifically designed as a support for offshore wind turbines.
  • the invention presented aims to solve a problem inherent to all floating structures.
  • These structures or floating platforms due to the waves or the wind, have pitching or rolling movements, which are detrimental to their operation, annoying to the personnel on board and that can endanger the safety of people and structures.
  • This invention allows you to cancel said movements, leaving you free to move vertically; it also allows horizontal movements in a restricted way (like conventional anchoring systems using chains).
  • the anchoring system object of the present invention presents several advantageous characteristics.
  • the optimal depths are between 70m and 400m, but it can reach greater depths.
  • Figure 1 Shows a schematic front view of the anchoring system described in the international application PCT/IB2022/000334, where two anchoring lines (arranged on the same plane) are observed, in the rest position, according to a possible embodiment of said funding system.
  • Figure 2 Shows a detailed view of a single mooring line of the mooring system of Figure 1, where it can be seen that the two sublines of the mooring line are entirely contained in a single mooring plane.
  • Figure 3 Shows a view, similar to that of Figure 2, but in this case according to a possible embodiment of the anchoring system object of the present invention. The two sublines of a mooring line are shown, being able to observe that part of the intermediate section of a subline is not included in the mooring plane of said mooring line.
  • Figure 4 Shows a view, similar to that of Figure 1, but in this case according to a possible embodiment of the anchoring system object of the present invention. Only two contiguous or adjacent mooring lines of a three mooring line system are shown. A complete anchoring line can be seen with its two sublines, being able to observe that part of the intermediate section of a subline is not included in the anchoring plane of said anchoring line.
  • Figure 5 Shows a schematic view of an anchoring system according to Figure 4, where the three anchoring lines of the anchoring system are observed.
  • Figure 6 Shows a schematic view of the theoretical displacement of two central mooring lines, in a counterweight mooring system according to the state of the art.
  • Figure 7 Shows the scheme of forces that act on a structure that uses the anchoring system object of the present invention.
  • the force scheme has been represented in the same plane (although the two anchoring lines are really in two different planes).
  • Figure 8 Shows a schematic view similar to that of Figure 1, where the buoys of the bottom sections of the anchoring lines have been removed.
  • Figure 9 Shows a schematic view of the anchoring system of Figure 8, where said anchoring system has been displaced horizontally and vertically by the effect of waves and wind.
  • Figure 10 Shows a schematic view of the displacement of a mooring system in which the bottom sections of diametrically opposed mooring lines are parallel.
  • Figure 11 Shows a schematic view of the displacement of a mooring system in which the bottom sections of diametrically opposed mooring lines are divergent.
  • Figure 12 Shows a perspective schematic view of a first embodiment of the anchoring system object of the present invention.
  • Figure 13 Shows a schematic plan view of the anchoring system of Figure 12.
  • Figure 14 Shows a perspective schematic view of a second embodiment of the anchoring system object of the present invention.
  • Figure 15 Shows a schematic plan view of the anchoring system of Figure 14.
  • Figure 16 Shows a perspective schematic view of a third embodiment of the anchoring system object of the present invention.
  • Figure 17 Shows a schematic plan view of the anchoring system of Figure 16.
  • Figure 18 Shows a perspective schematic view of a fourth embodiment of the anchoring system object of the present invention.
  • Figure 19 Shows a schematic plan view of the anchoring system of Figure 18.
  • Figure 20 Shows a perspective schematic view of a fifth embodiment of the anchoring system object of the present invention.
  • Figure 21 Shows a schematic plan view of the anchoring system of Figure 20.
  • Figure 22 Shows a schematic front view of a floating platform according to the second embodiment of the anchoring system according to the present invention, where a floating platform is observed that comprises a main structure in the form of a cylindro-conical shaft with three structural arms projections that support three mooring lines, and where the main structure of the floating platform comprises three spokes connected to said main structure, each of the spokes comprising a flotation element at its end.
  • Figure 23 Shows a perspective view of the anchoring system of Figure 22.
  • Figure 24 Shows a schematic profile view of the anchoring system of Figure 22 and Figure 23.
  • Figure 25 Shows a schematic top perspective view of a floating platform intended for a recreational and/or leisure facility.
  • Figure 26 Shows a schematic front view of the floating platform of Figure 25, where said floating platform is used with an anchoring system according to the third embodiment shown in Figure 16 and Figure 17.
  • Figure 27 Shows a schematic view in lower perspective of the floating platform of Figure 26.
  • Figure 28 Shows a schematic view in lower perspective, similar to that of Figure 27, but where the floating platform is used with an anchoring system according to the fourth embodiment shown in Figure 18 and Figure 19. Detailed description
  • the present invention refers, as previously mentioned, to a mooring system comprising a floating platform (100).
  • Float or flotation element 500: it is a closed and watertight envelope, totally or partially submerged in the water and that can be subjected to hydrostatic or hydrodynamic forces due to the effect of waves or marine currents. If partially submerged, it may also be subjected to wind forces on its side or superstructures.
  • Hull or main structure (400) it is one or several floats or watertight flotation elements (500) that form a rigid and resistant assembly, in which at least one of them is partially submerged.
  • Floating platform (100) it is a hull or main structure (400) of any shape or configuration, with several additional elements or structures, dedicated to any function (accommodation, industrial or recreational facilities, support for windmills, etc.), equipped with the anchoring system proposed here.
  • External agents they are the wind, sea currents, waves, internal load movements or any element foreign to the floating platform (100) that tries to move it away from its projected position or tries to make it have pitching or rolling movements.
  • Tension of the anchoring cable or line (200) tensile force to which the anchoring cable or line (200) is subjected (due to its flexible nature, the anchoring cable or line (200) cannot be subjected to forces of compression).
  • Central counterweight (1) it is a totally submerged hull, with an average density greater than 1.8 kg/dm 3 , which keeps the anchoring lines (200) that connect to it taut. In simple installations like the ones presented here, there is only one counterweight (1) located in the central axis (300) of the floating platform (100).
  • Anchoring block or bottom weight (4) It is a (large) weight resting on the seabed (5), to which the anchoring cables or lines (200) of the anchoring system are attached. In other conventional installations, it is equivalent to the anchor, to the 'dead' that keep buoys or other marine elements in their position or to any other type of anchoring by means of piles.
  • Anchor cable or anchor line (200) is a cable, chain or mooring of any type that keeps the floating platform (100) attached to the bottom weight (4), preventing the floating platform (100) from being dragged by external agents. It is composed of the following elements:
  • Bottom section (8) is the part of the anchoring line (200) that joins the bottom weight (4) with the first rotating fixing means (3) (or external pulley) of the anchoring line (200) .
  • the bottom section (8) is completely vertical, although in special cases it may be slightly divergent. In some cases it can be in one piece down to the seabed (5); in other cases, the bottom section (8) is split or divided into a first portion (lower portion) and a second portion (upper portion), and both portions (upper and lower) are joined together by a buoy (9). intermediate.
  • the anchoring line (200) it is the part of the anchoring line (200) that joins the outer pulley (the first rotating fixing means (3)) with the inner pulley or pulleys (the second rotating fixing means (2c) (or crossed pulley) and, possibly, the third rotating fixing means (2d)) that hold the cable; it can be horizontal or it can have a slight slope (if the pulleys are not at the same height). More specifically, as will be seen later, the anchoring line (200) comprises a first subline (200d) and a second subline (200c).
  • the intermediate section (7) is the part of the second subline (200c) of the anchoring line (200) that joins the first rotary fixing means (3) (or external pulley) with the second rotary fixing means (2c) (or crossed pulley).
  • the first subline (200d) also includes an intermediate section (7) located between the first rotary fixing means (3) and the second rotary fixing means (2c).
  • the central section (6) of the first subline (200d) joins the first rotary fixing means ( 3) (outer pulley) with the central counterweight (1).
  • the central section (6) of the first subline (200d) joins the second rotary fixing means (2c) with the counterweight ( 1) middle.
  • the central section (6) is the section that joins the second rotating fixing means (2c) with the central counterweight (1).
  • the buoy (9) is an optional element, which can be inserted in the bottom section (8) of each anchoring line (200).
  • the buoy (9) is connected to the seabed (5) by means of a cable (a first portion of the bottom section (8) of the anchoring line (200)).
  • the first portion of the bottom section (8) can comprise one or more cables or chains in parallel.
  • this buoy (9) can be pre-installed when the ground is conditioned and the bottom weights (4) are placed, leveling it at the correct height so that later, when installing the floating platform (100), there is only to connect the anchoring lines (200) (the second portion of the bottom section (8) of each anchoring line (200)) to the buoy (9), which are prepared with their correct length, significantly speeding up the installation process of the floating platform (100).
  • Central axis (300) of the anchoring system a vertical axis that passes through the center of gravity of the counterweight (1) in its rest (or project) position.
  • this central axis (300) constitutes a central axis (300) of symmetry of the floating platform (100).
  • Anchoring subline it is the basic unit of the anchoring system, it is made up of the following elements: o An anchoring weight (or bottom weight (4)) resting on the seabed (5) (which can be shared by several funding sublines); o A first rotating fixing means (3) (or external or external pulley): fixed to the floating platform (100) in a fixed or partially flexible way (or rotating/tilting), close to the vertical of the bottom weight (4) ; o One or two internal or internal pulleys (2) (at least a second rotating fixing means (2c) (crossed pulley) and, optionally, a third rotating fixing means (2d) (direct internal pulley)): subject/sa the floating platform (100) in a fixed or partially flexible (or rotating/tilting) manner, at some point in the structure of the floating platform (100).
  • a first rotating fixing means (3) or external or external pulley: fixed to the floating platform (100) in a fixed or partially flexible way (or rotating/tilting), close to the vertical of the bottom weight
  • central counterweight (1) severe cables (at least three) must compulsorily share the same counterweight (1)); o A cable that joins all these elements, made up of the previously defined sections (central section (6), intermediate section (7) and bottom section (8)); o Optionally there can be an intermediate buoy (9) inserted in the bottom section (8); o Optionally, there may be some (preferably one or two) intermediate pulleys (rotating guide means (11)), which serve as support for the intermediate section (7) of the cable of the sub-mooring lines, and/or that help guide the cable by the most appropriate path. o Some of the pulleys described above can be self-orienting, so that they adapt to the variations in direction suffered by the central section (6) and the bottom section (8), due to the movements of the floating platform (100).
  • - Direct subline (it is the first subline (200d) in the first, second, third and fourth embodiments): It is an anchoring subline in which, if there is a third rotating fixing means (2d) (internal pulley direct), said third rotary fixing means (2d) is close to the first rotary fixing means (3) (external pulley), specifically between the first rotary fixing means (3) and the central axis (300) of symmetry of the counterweight (1).
  • This subline does not have rotary guidance means (11) (intermediate support pulleys for the intermediate section (7)); The reason is because the intermediate section (7) of this type of subline is very short and the entire subline is in the same plane (it is not necessary to reorient it).
  • Diagonal subline (it is the second subline (200c) in the first, third and fifth embodiments, and it is also the first subline (200d) in the fifth embodiment): It is an anchoring subline in which (for the floating platforms (100) with protruding structural arms (12)) the second rotating fixing means (2c) (the internal crossed pulley) is in a first protruding structural arm (12) different from the protruding structural arm (12) of the first means of rotary fixing (3) (the outer pulley), and is located near the outer pulley (first rotary fixing means (3)) of that protruding structural arm.
  • the intermediate section (7) of the diagonal subline is straight, without rotary guide means (11) (without support pulleys). Dynamically it behaves in a similar way to crossed sublines, because it doesn't matter what the route of the intermediate section (7) is. What really matters are the positions of the inner and outer pulleys.
  • the intermediate section (7) of the diagonal subline does comprise at least one rotary guide means (11) (intermediate pulley), to allow the diagonal subline to follow a path close to the perimeter, contour or periphery. of the floating platform (100).
  • the complete anchoring line (200) is the set of two anchoring sublines (a first subline (200d) and a second subline (200c)), which share the same fund weight (4), a part of the fund section ( 8) of the anchoring cables and the corresponding part of the central counterweight (1).
  • Its external or external pulleys (first rotating fixing means (3)) are very close to each other, they are generally parallel with the same axis of rotation. On platforms that use projecting structural arms (12), these outer pulleys hang from the end of the projecting structural arm (12) itself.
  • it can comprise a single external pulley with at least two sheaves (one sheave for the first subline (200d) and another sheave for the second subline (200c)).
  • Parallel anchoring line (200) It is an anchoring line (200) in which its bottom section (8) is vertical (in its rest position), as it appears represented in the Figures 1 to 10; all the bottom sections (8) remain parallel (even when they are on different planes) even if the platform moves.
  • Divergent anchoring line (200) It is an anchoring line (200) in which its bottom section (8) (the one that is attached to the seabed (5)) is not vertical, but is inclined outwards ( forming an angle (A) with the vertical), that is, the lower end of the anchoring line (200) is further from the central counterweight (1) than the outer pulley ( Figure 11).
  • Group of mooring lines (200) It is the set of several mooring lines (200) that share a common central counterweight (1).
  • the resulting layout is necessarily radial, although each branch can have a different size (distance between the center line axis and the outer pulley). All the internal pulleys of the group must be at the same distance from the central axis (300) of the floating platform (100) (which coincides with the vertical of the counterweight (1)).
  • Floating platforms (100) with very elongated geometries can have several groups of anchoring lines (200) installed acting on the same counterweight (1) (the central lines of each group of anchoring lines (200) are attached to different points on the counterweight (1), which is also elongated).
  • anchoring lines there may be several groups of anchoring lines (200), each group with its corresponding counterweight (1).
  • the anchoring system has only one group of anchoring lines (and therefore a single counterweight (1)).
  • SLP Platform Soft Leg Platform: it is a floating platform (100) in which the anchoring system proposed in this patent application has been installed.
  • each complete mooring line (200) there are two sub-mooring lines (200d, 200c), whose inner pulleys (second rotating fixing means (2c) and third rotating fixing means (2d)) are at the same distance from the central axis. (300) of the floating platform (100).
  • Each mooring line (200) is made up of a direct subline (200d) and a crossed subline (200c), whose internal pulleys (second rotary fixing means (2c) and third rotary fixing means (2d)) are located symmetrically with respect to to the vertical central axis (300) that passes through the central counterweight (1), as can be seen in Figures 8 and 9.
  • Central Well (optional, not represented in the Figures): it is a hole that vertically crosses the entire floating platform (100), just below the interior pulleys (as seen in figure 6), for the passage of the pendulum (cables of the central section (6) and counterweight (1)); If the inner pulleys are too far apart from the vertical of the central counterweight (1), the central well is unnecessary.
  • the simplest configuration is made up of three blocking anchoring lines (200), each of which is made up of two sublines (a first subline (200d) and a second subline (200c)), each of which includes:
  • a central counterweight (1) common to the three anchoring lines (200);
  • the central section (6) of the anchoring cable which joins the interior pulley (second rotating fixing means (2c) or third rotating fixing means (2d)) with the central counterweight (1). Its length depends on the vertical position of the central counterweight (1).
  • the part of the cable closest to the central counterweight (1) has been called the mooring cable adjustment section (it has not been identified in the figures, as it is not relevant to this invention) and can be used to adjust the total length of the anchoring cable.
  • the intermediate section (7) of the anchoring cable which joins the inner pulley (second rotating fixing means (2c) or third rotating fixing means (2d)) with the outer pulley (first rotating fixing means (3)) , passing (if applicable) through the rotary guide means(s) (11) (intermediate support and guide pulleys of the intermediate section (7)); by its nature it has a constant length, but that length does not have to be the same in all sublines;
  • the anchoring lines (200) generate an opposing horizontal force that tends to return the floating platform (100) to its original position.
  • the vertical forces on the floating platform (100) hardly vary.
  • the counterweight (1) moves slightly up.
  • the floating platform (100) When all the anchoring lines (200) except one have been released, the floating platform (100) will possibly begin to capsize. This overturning will be reversible or irreversible depending on the particular geometry of the entire set.
  • the floating platform (100), depending on its geometry, may need some elements that facilitate the proper functioning of the anchoring system. Some can be seen in Figure 17 (perspective (3D) view) and Figure 18 (plan view); Other elements are normal in shipbuilding and have not been represented in the Figures. Among others we can cite:
  • the intermediate section (7) of the first subline (200d) (direct subline in the first, second, third and fourth embodiments) can be suppressed in some configurations, by matching the pulleys interior and exterior of this first subline (200d) on the same pulley.
  • the floating platform (100) does not need a large deck surface, it can be a small buoy that supports the weight of the wind turbine and its tower (13).
  • the main design force is the aerodynamic thrust of the wind on the rotor blades of the wind turbine.
  • the force of the wind exerts a bending moment on the base of the very large tower (13).
  • the anchoring lines (200) in the design condition are not vertical (as seen in Figure 10), but slightly divergent (as seen in Figure 11), then when the floating platform (100) looks dragged by the wind, the leeward pulley rises with respect to the windward one, as a consequence, the floating platform (100) has a pitch angle opposite to the wind force, this pitch angle is proportional to the horizontal displacement of the floating platform (100) and is hardly sensitive to its vertical movement.
  • This angle causes the weight (Q) of the nacelle (14) to have an axial component opposite to the wind thrust on the rotor blades, which is proportional to the angle rotated, which in turn is proportional to the horizontal movement of the floating platform. (100), which in turn is proportional to the force exerted by the wind. If these proportionality constants are properly synchronized, it can be achieved that the axial component of the nacelle weight (14) exactly cancels the wind force, whatever the wind speed (actually this is only true until the cable is slackened). from the leeward anchor line (200).
  • a divergent anchoring system may be used, producing pitch opposite to horizontal motion. This pitching can generate a longitudinal acceleration that opposes the acceleration of the horizontal movement, so that the resultant is perpendicular to the deck and therefore less than if the floating platform (100) moves without pitching; this improves the comfort of the people on board.
  • a terrestrial analogy of this reverse pitching and horizontal movement would be the movement of a swing or a hammock: it has large movements and turns, but does not produce the psychological sensation that there are accelerations. In fact, the accelerations remain perpendicular to the surface of the deck of the floating platform (100) (perpendicular to the surface of the seat, in the case of the swing).
  • the anchoring line cable (200) is quite long, it measures at least the draft in the area of operation, plus the length of the outgoing structural arms (12) (usually between 30 and 40m), plus double the the height between the outer pulleys (first rotating fixing means (3)) with respect to the sea surface, plus twice the maximum vertical travel of the floating platform (100) (tidal height + maximum wave height), plus 20% of the sea depth in the installation area and the margin that is deemed appropriate for other reasons.
  • the cables of the bottom sections (8) do not reach the sea bed or bottom (5), but are attached to an intermediate buoy (9) located relatively close to the sea surface and which It is anchored to the seabed (5) by means of chains or cables, so that in the event of wear it is only necessary to change the upper part of the cable, which is the part that wears out the most and is most subject to corrosion (it is also the most accessible part ).
  • the length of the detachable cables (or what is the same, the depth of the buoys) must be such that, with the greatest foreseeable movements of the floating platform (100), the buoys (9) never come close to the outer pulleys (first fixing means rotaries (3)); if they touch, a major failure may occur.
  • the cable material can be any that is suitable for cables, among others:
  • the intermediate section (7) and the upper part of the other two sections should be made of textile material, because with waves, it is constantly moving and would behave more silently than if it is made of chain with links (which could cause noise problems in the structure).
  • the pulleys are double, triple or with more sheaves.
  • the cables run parallel throughout their length (in each of their sections).
  • the joints to the counterweight (1) and anchoring ring are very close to each other.
  • anchoring sublines 200d, 200c
  • SLP Soft Leg Platform
  • anchoring lines (200) each formed by two anchoring sublines (200d, 200c), uniformly distributed around the central counterweight (1).
  • each system consists of three anchoring lines (200), although it can have a greater number of them if the floating platform (100) is large enough.
  • the central sections (6) of cable that exit towards the central counterweight (1) from the inner pulley (2) (second rotary fixing means (2c) and, possibly, third rotary fixing means (2d) ) of all the sublines (200d, 200c), have to be at the same distance from the central axis (300) of the floating platform (100); the outer pulleys (first rotary fixing means (3)) can be at different distances.
  • the bottom sections (8) can reach the sea bed or bottom (5), or be connected to an intermediate buoy (9), whose anchor cable connects it to the corresponding bottom weight (4).
  • each mooring line (200) there is a first subline (200d) (direct subline) (with or without internal pulleys (third rotating fixing means (2d))) and a second subline (200c) (which can be a crossed subline or a diagonal subline), which must have its internal crossed pulley (second rotary fixing means (2c)) that is on a protruding structural arm (12) different from that of the outer pulley (first rotating fixing means (3)).
  • first subline (200d) direct subline
  • second subline (200c) which must have its internal crossed pulley (second rotary fixing means (2c)) that is on a protruding structural arm (12) different from that of the outer pulley (first rotating fixing means (3)).
  • the intermediate section (7) of the cable of the second subline (200c) passes through one or several intermediate pulleys (rotating guide means (11)) that serve as support and help to maintain the alignment of the pulleys with the mooring cables when the floating platform (100) changes position.
  • the intermediate pulleys are fixed to the protruding structural arms (12) of the floating platform (100), as can be seen in Figures 14 and 15.
  • the main pulleys (interior ( second rotary fixing means (2c) and outer (first rotary fixing means (3)) are all parallel in the design condition and that the outer pulleys of the two sublines (200d, 200c) can be mounted on the same tilting support .
  • the outer pulleys (first rotating fixing means (3) of the two sublines (200d, 200c), in case there are two outer pulleys for the same anchoring line (200)) are parallel and they can be installed on the same tilting support under the first twilight deck (26) of the floating platform hull (100), and the inner pulley (second rotating fixing means (2c)) is parallel to the outer pulleys, so that it can be installed on a fixed axis attached to the bottom of the first tweendeck (26) of the platform.
  • An example of this type of anchoring can be seen in Figures 18 and 19, which has also been used to build a platform for marine leisure (Figure 28).
  • the last two possibilities are particular cases for large floating platforms (100).
  • the third embodiment is indicated for floating platforms (100) with a large deck area and the fourth embodiment is also valid for floating platforms (100) with protruding structural arms (12).
  • This type of funding system does not have direct sub-lines; the two sublines (200d, 200c) are diagonals. Its intermediate sections (7) are directed to the two protruding structural arms (12) adjacent to the protruding structural arm (12) from which the external pulleys hang (first rotating fixing means (3)) of each mooring line (200). In Figures 20 and 21 you can see two projections of this anchoring system.
  • the floating platform (100) has two anchoring lines (200) (if the movement is assumed to be flat, if it is considered three-dimensional there would be at least three anchoring lines (200), but the result is the same). If we compare the lengths of the sections in two different positions of the platform:
  • Project condition it has two lines (P and Q), each one with its three aforementioned sections;
  • T8(P) T8(Q)
  • T8(R) T8(S)
  • the two outer pulleys (first rotating fixing means (3)) and the two bottom weights (4) form an "articulated" quadrilateral in which their opposite sides are equal and therefore the upper side is always parallel to the bottom side, regardless of the position of the center of the floating platform (100).
  • two anchoring lines (200) are sufficient, as seen in Figure 6.
  • two lines are needed anchoring cable (200) in a longitudinal plane, with an outer pulley in the bow and an outer pulley in the stern, with the two inner pulleys between them (it is not necessary that the intermediate sections of the anchoring cable are the same).
  • the two mooring lines (200) must be in a transverse plane to the waves.
  • FIGS. 8 and 9 show a diagram of a complete anchoring line (200) formed by a direct subline (first subline (200d)) and a crossed subline (second subline (200c)), which represent the positions of the floating platform (100) in its design condition ( Figure 8) and in any other position ( Figure 9).
  • the two inner pulleys (2d: direct and 2c: crossed) are at the same distance from the central axis (300) of the floating platform (100) (actually the axes of the pulleys are at different distances, but so that the sections (7) seem to come from symmetrical points: the point of contact of the cable with the pulley).
  • the lengths of the two sublines (200c, 200d) are different, but they are such that the central sections (6d, 6c) are the same, so that the central counterweight (1) is located in correspondence with the central axis (300) of the floating platform (100).
  • the bottom sections (8d and 8c) change in length, but remain equal to each other.
  • the intermediate sections (7d and 7c) do not vary in length (the pulleys move rigidly with the platform). Since the total length of each subline (200c, 200d) does not vary, the central sections (6d and 6c) also vary in length, but remain equal to each other, that is, the central counterweight (1) moves vertically, but it is kept located in correspondence with the central axis (300) of the floating platform (100). In this way, the pendulum movement that the counterweight (1) could have in the original version of the anchoring system is totally eliminated.
  • each complete anchoring line (200) is combined (each one with a direct subline (first subline (200d)) and crossed subline (second subline (200c))), applying the same reasoning as when the lines are central (in platforms of the state of the art with a central well through which the central lines pass), the bottom sections (8) of each complete anchoring line (200) remain equal to each other, whatever the position of the floating platform (100). In this sense, the anchoring system (with direct (200d) and crossed (200c) sublines) behaves as if all the sublines were central.
  • Figure 1 shows the mooring lines of two opposite arms (as described in the international application PCT/IB2022/000334); As can be seen, all its elements are still on the same plane. To have a three-dimensional effect, two such groups arranged in perpendicular planes are required, that is, the anchoring system of the international application PCT/IB2022/000334 requires an even number of arms.
  • Figure 3 represents the diagram of a complete mooring line (200), as proposed in the present patent application. As can be seen, it is almost identical to that of Figure 2, but part of the elements of the crossed subline (second subline (200c)) are rotated, to align them with two consecutive or adjacent arms of the floating platform (100).
  • the direct subline (first subline (200d) (represented by dashed line) is all in the same plane (anchoring plane of the anchoring line (200) defined by the central axis (300) and the bottom section (8)
  • This direct subline (first subline (200d) goes from the ground weight (4) to the intermediate buoy (9), and from there to one of the outer pulleys (first rotating fixing means (3)), then to the direct inner pulley (third rotating fixing means (2d)) and from there to the central counterweight (1).
  • the central sections (6) will always be the same (they can change length, but just by the same amount); this means that the central counterweight (1) can only move in a plane that is the perpendicular bisector between the two inner pulleys (2d and 2c).
  • This bisector is precisely the central axis (300) of symmetry of the floating platform (100);
  • the central counterweight (1) will always move on the central axis (300) of the floating platform (100): it can move up or down, but without lateral movements.
  • the movement of the floating platform (100) and the central counterweight (1) is exactly the same as with the invention proposed in the international application PCT/IB2022/000334, but with the advantage that it can be applied to any number of funding lines (200); Specifically, it is valid for floating platforms (100) with three protruding structural arms (12). On the contrary, the anchoring system of the international application PCT/IB2022/000334 was only valid for floating platforms (100) with an even number of protruding structural arms (12) (four arms in most applications).
  • the scheme is flat (although the anchoring lines (200) are in different planes, at 0 e and at ⁇ 120 e ); all the sections of the background lines have been rotated 60 e so that the crossed sublines are seen in the same plane as the direct sublines (the plane of the drawing).
  • the central counterweight (1) has a net weight (dry weight minus hydrostatic thrust) that tensions the two anchoring line cables (200) generating two forces, windward (F1) and leeward (F2). . Neglecting the inertial forces due to the movements of the floating platform (100) and the counterweight (1), the forces in the direct and crossed cables on each side are equal:
  • the pitch angle imposed by external forces acting on the floating platform (100) can be corrected.
  • the elasticity of the mooring lines (200) means that when the floating platform (100) is subjected to external forces, the windward cables lengthen and the leeward cables shrink; As a consequence of these deformations, the floating platform (100) acquires a small pitch angle towards leeward.
  • the variant indicated consists of giving an angle to the bottom sections (8) of the anchoring lines (200), separating the anchoring points from the vertical of the external pulleys (first rotary fixing means (3)) outwards), as can be seen in Figure 11.
  • the deck of the floating platform (100) is not kept horizontal, but is turned to the windward.
  • This turning angle is geometrically related to the angle of the bottom sections (8) and to the depth of the seabed (5), being approximately proportional to the magnitude of the horizontal movement.
  • intermediate buoys (9) can be included in the bottom sections (8) (located at a depth similar to that of the counterweight (1), in its project position) attached by cables or chains to the bottom anchorage. marine (5).
  • An anchoring ring can be used, for example by joining all the bottom weights (4) by means of a rigid structure, which includes fixing points for the cables in the appropriate places.
  • This structure includes several ballast tanks, which are initially empty so that the whole has slightly positive buoyancy. This structure is moved to the wind farm and is sunk in the place where the floating platform (100) is to be installed. This operation does not require great precision, since it is certain that the anchoring points will be correctly placed, whatever the position in which the ring remains on the seabed (5).
  • the floating platform (100) is placed in its place or installation location, it is enough to hold the cables in the anchors and the floating platform (100) is operational; - Piles driven into the seabed can be used (5).
  • This system is copied from the foundations of the TLP-type platforms.
  • the seabed (5) is prepared and piles are driven in, which include the anchoring points for the anchoring lines (200).
  • the fundamental difference with the TLP system is that the traction stresses that must be supported with the anchoring system of the present invention are much lower than in a TLP platform, in fact, for an equal installed power, the stresses are of the order of one fifth or less. This makes anchoring preparation much cheaper and easier.
  • Bottom weights (4) previously located on the seabed (5) can be used. Due to the low tensions of the cables, individual bottom weights (4) can be used precisely located on the seabed (5), on a pre-prepared esplanade. It is an intermediate solution between the anchoring ring (which is a very large structure but easy to place) and the use of piles (you have to slightly prepare the ground and place the bottom weights (4) precisely).
  • the floating platforms (100) with the TLP-type anchoring system serve the same purpose as a floating platform (100) with the anchoring system of the present invention. Its objective is to nullify the pitch/roll movement of the floating platform (100).
  • the operating principle of both is radically different and so are their kinematic and dynamic characteristics, as can be seen in the following table: The Figures of this patent application are described and commented below.
  • Figure 1 shows a basic scheme of the anchoring lines (200) (according to the anchoring system of the international application PCT/IB2022/000334).
  • An installation of this type consists of a floating platform (100) floating in the sea, equipped with an even number of anchoring lines (200) (the minimum is two anchoring lines (200) when you only want to cancel the turning movement in one direction, such as pitching; the minimum is four anchor lines (200) when you want to simultaneously cancel pitch and roll).
  • Each anchoring line (200) is made up of two sublines (200d, 200c), each of which consists of: an inner pulley (second rotating fixing means (2c) and, possibly, third rotating fixing means (2d)) ) and an external pulley (first rotary fixing means (3)), which support an anchoring cable made up of three sections: a bottom section (8) that reaches a bottom weight (4) resting on the seabed ( 5); another central section (6) subject to the central counterweight (1), and; an intermediate section (7) that joins the other two sections (6, 8).
  • the central counterweight (1) is shared by all the anchoring lines (200).
  • the bottom section (8) can be divided into two subsections or portions, which are attached to an intermediate buoy (9); In this case, the lower part or first portion of this bottom section (8) is common to all the sublines (200d, 200c) that hang from the same protruding structural arm (12).
  • two complete mooring lines (200) have been simultaneously represented, one by means of a continuous line (the one of the arm on the right) and the other (that of an opposite arm) by means of a dashed line.
  • Figure 1 corresponds to the arrangement of mooring lines (200) of two opposite projecting structural arms (12) (since the international application PCT/IB2022/000334 requires an even number of projecting structural arms (12)).
  • Figure 2 the sublines (200d, 200c) of a single mooring line (200) of the same mooring system of Figure 1 have been represented.
  • the elements of the anchoring line (200) can be seen more clearly, as well as the difference between the direct subline (dashed) and the crossed subline (continuous line).
  • the bottom section (8) goes from the bottom weight (4) to an intermediate buoy (9) where the cables of each of the two sublines (200d, 200c) that reach the outer pulleys (first rotary fixing means (3)); This pulley is double (with the same axis of rotation. From there the two sections go to the interior pulleys:
  • the intermediate section (7d) of the direct subline (200d) reaches the direct inner pulley (2d) and is directed through its central section (6d) directly towards the central counterweight (1), which is common to all the sublines (200d). , 200c).
  • the intermediate section (7c) of the crossed subline (200c) passes to the opposite protruding structural arm (12), reaching the internal crossed pulley (2c), which is at the same distance from the central axis (300) as the internal pulley direct (2d); in this pulley it changes its name and is called the central section (6c) reaching the central counterweight (1).
  • the complete anchoring system (according to the international application PCT/IB2022/000334) is made up of an even number of lines like the one described in Figure 2, which hang from their respective protruding structural arms (12). In the rest position, the entire anchor line (200) and all its elements are in the same plane and the intermediate section (7) crosses the hull or main structure (400) of the floating platform (100) for its part. superior.
  • FIG. 3 shows the basic scheme of the anchoring system of the present invention.
  • a single mooring line (200) of a mooring line (200) is represented (similarly to Figure 2).
  • This anchoring line (200) includes a first subline (200d) (in this case, a direct subline (represented by the dashed line)) and a second subline (200c) (in this case, a crossed subline (represented by by continuous line)).
  • the scheme is very similar to the scheme of the international application PCT/IB2022/000334, but with a fundamental difference: at least one section of the second subline (200c) is not in the defined anchoring plane. by the central axis (300) of the platform and the bottom section (8) of the anchoring line in question.
  • a first part of the second subline (200c) is in the same anchoring plane as the first subline (200d), but close to the central axis (300) of the floating platform (100), it changes direction helped by one or two vapors.
  • rotary guide means (11) intermediate support pulleys of the intermediate section (7)
  • is aligned with the vertical plane of the adjacent outgoing structural arm (12) (on a floating platform (100) of three outgoing structural arms (12) is oriented 120 e from the first arm; if the floating platform (100) had five protruding structural arms (12), the angle between the two protruding structural arms (12) would be 72 e ).
  • the rest of the elements are the same, arranged in a similar way, but oriented in two different planes.
  • the rotary guide means (11) intermediate support pulley for the intermediate section (7)
  • Figure 4 the mooring lines (200) that rest on two protruding structural arms (12) adjacent or consecutive are represented together. It is a scheme similar to that of Figure 1, but in this case Figure 4 appears folded 60 e so that the mooring lines (200) are maintained in the three protruding structural arms (12) of the floating platform (100). If it is analyzed in detail (and strictly) it can be misleading, since in this image you can also see parts of the sublines of the third protruding structural arm (12), but it has the advantage that it is more intuitive to get an idea! of the funding system. Plus each arm looks just like the actual rig would look like.
  • Figure 5 shows a diagram of the complete anchoring system of a floating platform (100) with three protruding structural arms (12), according to an embodiment of the anchoring system of the present invention. It includes all the elements that have been described in Figures 3 and Figure 4.
  • Figure 6 shows a diagram of the geometric principle that regulates the lengths of each section of the mooring lines (200) and justifies that the floating platform (100) always moves parallel to its initial position.
  • the scheme corresponds to central anchoring sublines (as defined in document ES 2629867 A2) and has been maintained for compatibility.
  • Figure 7 shows a diagram of the dynamic principle, with the forces that act on the anchoring line cables (200) when the floating platform (100) is subjected to a force (Fx) and a bending moment (Mf) originated by external agents (wind, waves or marine currents).
  • the sum of the tensions in all the mooring lines (200) is always constant (equal to the apparent weight of the central counterweight (1), divided by the cosine of the angle IB);
  • the difference between the tensions of the lines is proportional to the applied bending moment and the horizontal force (FH) that the floating platform (100) is capable of supporting is proportional to the sine of the angle (a) of the anchoring lines (200) with the vertical.
  • Figure 8 and Figure 9 show a basic diagram of the anchoring system, similar to that of Figure 1, in which the intermediate buoys (9) have been removed, so that the bottom sections (8) of the direct sublines (8d) and the crossed sublines (8c) reach the bottom weight (4) on the sea bed or bottom (5).
  • Figure 8 represents the floating platform (100) in its rest position and Figure 9 corresponds to the floating platform (100) when it has changed its position (horizontal and vertical) due to the effect of the wind and waves.
  • Figure 10 shows an operating diagram of the anchoring system with parallel lines, in which the bottom sections (8) are vertical in their rest position (dashed lines); when the floating platform (100) moves (solid line), the cover of the floating platform (100) is always kept horizontal. The position of the pulleys has been intentionally slightly altered, to make the schematic easier to interpret.
  • Figure 11 shows an operating scheme of the anchoring system with divergent lines, in which the bottom sections (8) do not descend vertically to the seabed (5), but rather their layout forms an angle (A) with the vertical. When the floating platform (100) moves horizontally, it tilts to the windward. In a first approximation it is as if it rotated around the point of intersection of the two bottom sections (8).
  • the floating platform (100) is a support for offshore wind turbines, with a tower (13) and a nacelle (14) of a wind turbine, it can be achieved that the axial component of the weight of the nacelle (14) (due to the inclination of the the tower (13)) exactly compensates the wind thrust on the rotor blades, so that the bending moment in the entire tower (13) of the wind turbine is canceled (and therefore the bending moments transmitted by the wind turbine are also cancelled). tower (13) to the floating platform (100)).
  • Figure 12 and Figure 13 show a first embodiment of the anchoring system according to the present invention.
  • FIG 12 and Figure 13 show a diagram of the anchoring system (SLP or Soft Leg Platform), of a floating platform (100) with three anchoring lines (200).
  • the second subline (200c) of each anchoring line (200) is a direct diagonal subline (without rotary guide means (11), that is, without intermediate support pulleys for the intermediate section (7)).
  • Each anchoring line (200) consists of a first subline (200d) (in this case a direct subline), in which the direct inner pulley has been removed (third rotary fixing means (2d)) and a second subline (200d ) (in this case, a diagonal subline), with the internal crossed pulley (second rotating fixing means (2c)) located in another of the protruding structural arms (not shown) of the floating platform (100).
  • Figures 12 and 13 any reference to the floating platform (100) has been suppressed and only the anchoring lines (200), the central counterweight (1), the intermediate buoys (9) of the anchoring lines ( 200) and background weights (4).
  • Figure 12 represents a perspective view
  • Figure 13 represents a plan view of the anchoring system, according to this first embodiment. Only the sections of the direct anchoring sublines (6d, 7d and 8d) and the sections of the crossed anchoring sublines (6c, 7c, and 8c) have been labelled; the bottom sections (8c and 8d) are barely distinguishable in plan view, as they are almost vertical.
  • Figure 14 and Figure 15 show a second embodiment of the anchoring system object of the present invention.
  • FIG 14 and Figure 15 show a schematic of the anchoring system (SLP) of a floating platform (100) with three anchoring lines (200).
  • the second subline (200c) of each anchoring line (200) is a crossed subline that passes through two rotating guide means (11) (two intermediate return and support pulleys for the intermediate sections (7)), so that said sections run parallel to the protruding structural arms (12) that hold the inner pulleys (second rotary fixing means (2c) and, possibly, third rotary fixing means (2d) (not shown)) and the outer pulleys (first fixing means).
  • rotary fixing (3) three rotating guide means
  • Figure 14 represents a perspective view of this second embodiment of the anchoring system and Figure 15 represents a plan view of this second embodiment of the anchoring system.
  • This second embodiment of the anchoring system is the preferred basic configuration for floating platforms (100) that are to serve as support for offshore wind turbines.
  • Figure 22, Figure 23 and Figure 24 show a floating platform (100) supporting a marine wind turbine, according to this second embodiment of the invention.
  • FIG 16 and Figure 17 show a third embodiment of the anchoring system object of the present invention. It is a diagonal anchoring system.
  • An anchoring system for a floating platform (100) with six anchoring lines (200) is shown, where each anchoring line (200) comprises a first subline (200d) (or direct subline) and a second subline (200c) ( or diagonal subline).
  • each second subline passes through a rotating guide means (11) (intermediate support pulley for the intermediate section (7)) located near the periphery of the floating platform (100) and configured to reorient the path of this intermediate section (7) (in this particular case to avoid the columns of the floating platform (100)).
  • a rotating guide means (11) intermediate support pulley for the intermediate section (7) located near the periphery of the floating platform (100) and configured to reorient the path of this intermediate section (7) (in this particular case to avoid the columns of the floating platform (100)).
  • Figure 18 and Figure 19 show a fourth embodiment of the anchoring system object of the present invention. It is a star cross anchoring system. Although it looks very different, the scheme is the same as in figures 16 and 17 in which the idler pulleys have been moved from the periphery to the center of the platform (keeping them at the same height).
  • each anchoring line (200) comprises a first subline (200d) (or direct subline) and a second subline (200c) ( or crossed subline).
  • each second subline passes through two rotating guide means (11) (intermediate pulleys supporting the intermediate section (7)) located close to the central axis (300) of the floating platform (100 ) and configured to redirect the path of this intermediate section (7). (in this particular case to avoid the hull of the floating platform (100)).
  • the third and fourth embodiments of the anchoring system are suitable for leisure platforms, with a large deck, in which the anchoring system anchorage is below the superstructure.
  • Direct lines do not have intermediate pulleys, because if there were, the crossed inner pulley (2c) would have to be much closer to the center axis (300) of the floating platform (100) (2c and 2d pulleys have to be together ), undoing the 'circular' effect of the intermediate cable sections (7).
  • FIGS. 1-10 show a scheme of the anchoring system (CLP or Cross soft Leg Platform) for a floating platform (100) with three anchoring lines (200), in which there are no direct sublines and the two sublines (200d, 200c ) of each protruding structural arm (12) (not shown) are diagonal sublines.
  • CLP Cross soft Leg Platform
  • FIG 22, Figure 23 and Figure 24 show a floating platform (100) supporting a wind turbine tower (13) (the nacelle (14) is not shown).
  • This floating platform (100) is used with a mooring system according to the second embodiment of the invention.
  • FIG. 1 corresponds to the preferred embodiment of a floating platform (100) supporting offshore wind turbines, which is stable in its ballast condition, with three mooring lines (200).
  • FIGs include the complete anchoring system (SLP) with direct sublines (but without intermediate cable sections) and crossed sublines (with two rotating guide means (11) (intermediate support pulleys for the intermediate section (7))) in each crossed subline).
  • SLP complete anchoring system
  • the Figures represent three views of the platform: Figure 24 is a profile view of the assembly, Figure 22 is a front view, and Figure 23 is a perspective view of the assembly.
  • Figure 25, Figure 26, Figure 27 and Figure 28 show a floating platform (100) intended for sports, recreational and/or marine leisure facilities.
  • the hull or main structure (400) is made up of six cylindrical columns (800), each of which has a submerged part (29) and another emerging part (30) above the operating draft line (22). This emerging area (30) joins each column (800) to the first tween deck (26) of the hull of the floating platform (100).
  • This first tweendeck (26) is formed by a disc, the roof of which forms the main deck (35) of the floating platform (100) and includes an annular perimeter balcony of the second tweendeck (27).
  • the columns (800) include extension sections (31) through the different between decks (26, 27, 28), to hold together the entire superstructure of the floating platform (100). Three of these columns (800) continue above the upper deck (36), forming three accommodation buildings (32) for visitors to the floating platform (100).
  • the superstructure is made up of three tweendecks (26, 27, 28).
  • the first mid-deck (26) is the lowest, forming the resistant hull of the floating platform (100), which extends downwards in its central part, to form a large central room or lower enclosure (37).
  • the second middeck (27) is totally diaphanous, with its glass outline, although its panels are folding (retractable) to leave the second middeck (27) completely open to the outside.
  • the third deck (28) is also closed (to guarantee the structural resistance of the platform) and in its central area there is another central room or upper enclosure (33) covered by a tinted glass dome (34).
  • the roofs (38) of the three upper buildings (32) are conditioned as heliports.
  • the floating platform (100) is provided with a mooring system (SLP) of circular diagonal lines (according to the third embodiment) or star (according to the fourth embodiment).
  • SLP mooring system
  • Figure 25 shows a top perspective view of the floating platform (100), cut to %, to appreciate its interior distribution. The view does not include the anchoring system.
  • Figure 26 shows a profile view of the platform, cut to % (the sectioned part is on the right), which includes the circular diagonal anchoring system (according to the third embodiment) (although some of its elements are partially hidden by the columns (800) that form the submerged hull of the floating platform (100)).
  • the horizontal line that appears in the drawing is the operating draft (22) or project waterline of the floating platform (100).
  • Figure 27 shows a bottom perspective view of the floating platform (100), cut to %, to appreciate its interior distribution.
  • the view includes the circular diagonal mooring system (according to the third embodiment) and above all its interaction with the columns (800) of the hull.
  • the diagonal sublines surround the columns (800), to join in the central counterweight (1);
  • the rotary guide means (11) intermediate pulleys
  • Figure 28 shows a bottom perspective view of the floating platform (100), similar to that of Figure 27, but with the star diagonal anchoring system (according to the fourth embodiment of the anchoring system).
  • the proposed anchoring system is valid for any floating platform (100) (intended to support any type of structure), the present invention is especially indicated for two specific applications, as support for offshore wind turbines and as a platform for maritime leisure.
  • the main difference between the two applications is the covered area of the floating platform (100), which means that in the platforms designed to support wind turbines, the outer pulleys hang from protruding structural arms (12) arranged radially, which protrude quite a bit from the deck of the floating platform (100), and in platforms designed for marine leisure, it causes the outer pulleys to hang from very short arms that protrude of the main steerage (first steerage (26) of the floating platform (100).
  • the anchoring system comprises the following elements:
  • each of which is made up of two anchoring sublines (200c, 200d)
  • each of the sublines (200d, 200c) consists of an anchoring cable hung from an external pulley (first rotating fixing means (3)) and another inner pulley (2c, 2d), which in turn hang from a protruding structural arm (12) that serves as support for the mooring lines (200).
  • the bottom section (8) of the anchoring cable of all the sublines (of the same anchoring line/arm) is subject to a bottom weight (4) directly or through an intermediate buoy (9) and a section common fund (first portion or lower portion of the fund section (8)).
  • the central section (6) of all the mooring lines (200) is subject to a central counterweight (1) that is common to all the mooring lines (200).
  • the crossed line (second subline (200c)) includes two rotary guide means (11) (intermediate support pulleys for the intermediate section (7)), to divert the path of the intermediate section (7) of the second subline (200c), from the protruding structural arm (12) from which the external pulleys hang (first rotatable fixing means (3)), to one of the other two protruding structural arms (12).
  • the other mooring systems described could be used.
  • Floating platform (100) its hull or main structure (400) is attached to three cylindrical floats or flotation elements (500) with a vertical axis arranged in the vertices of an equilateral triangle, sufficiently separated from each other so that the central counterweight (1) fits in the center of the platform with the necessary clearances.
  • the flotation elements (500) are attached to the hull or main structure (400) of the floating platform (100) by means of three 'legs' or inclined spokes (600) that coincide in a reinforced structural ring (19) located below the superstructure. (20) of the floating platform (100), well above its operating draft (22).
  • the waterline (21) is located approximately at half height of the flotation elements (500) (which have a submerged area (15) and an emerging area (16)) and the floating platform (100) is stable by itself.
  • the operating draft (22) is located halfway up the spokes (600) (which have a submerged radius zone in operating condition (17) and a zone never submerged (18)) and the flotation elements (500) are totally submerged.
  • Central counterweight (1) It is a cylindrical tank with a vertical axis, ballasted, but with such a volume that completely empty it has a positive buoyancy of the order of 10% of its volume. Internally it is divided into vapor ballast tanks or floodable chambers that can be filled or emptied independently. With one of its chambers flooded, it has slightly negative buoyancy. On its roof, there are three pairs of anchors where the ends of the central sections (6) of all the sublines (200c, 200d) of the anchoring lines (200) are attached.
  • Wind turbine composed of a tower (13) of the wind turbine that rests on the main structure (400) of the floating platform (100) (on the superstructure (20) that is on the reinforced structural ring (19)) where they are attached the protruding structural arms (12) and the upper part of the spokes (600).
  • the tower (13) supports the gondola (14), where the wind turbine, proper. It is a commercial component, so it is not described in more detail.
  • the submerged flotation elements (500) are accessible (for maintenance operations) through stairs located inside the spokes (600) of the floating platform (100). Said legs or spokes (600) are accessed through watertight doors located in the corresponding rectangular faces of the reinforced structural ring (19).
  • This floating platform (100) has two modes of operation: o The transfer (or ballast) condition, in which all its floodable chambers are empty, all the anchoring lines (200) collected and it floats freely with no ties other than the cable that connects it to the tugboat. In this condition, the floating platform (100) is stable by itself. o The operating (or project) condition, in which one of its ballast tanks or floodable chambers is partially filled to make the platform float at its operating (22) or project draft.
  • the floating platform (100) is connected to the central counterweight (1) through the central sections (6) of all the anchoring lines (200) and to the seabed (5) through the bottom sections (8) of the anchoring lines. (200). In this condition, the floating platform (100) does not have stability on its own and depends exclusively on the stability provided by the anchoring lines (200).
  • FIGS 22 to 24 show three views of this floating platform (100) (in which its main elements have been identified), with the anchoring system according to the second proposed embodiment.
  • the anchoring system preferably intended to be used with floating platforms (100) to serve as support for maritime leisure activities
  • the main requirement of this embodiment is that it needs a lot of living space and must maintain a level of movements very low, since most of the people who visit it are not professionals of the sea and are not used to the movements of marine artifacts.
  • This floating platform (100) for maritime leisure activities (shown in Figures 25 to 28) is preferably used with anchoring systems (SLP) according to the third or fourth proposed embodiments.
  • SLP anchoring systems
  • a hull or main structure (400) made up of six columns (800), each of which has a submerged part (29) and another emerging part (30) that is above the operating draft (22).
  • the central sections (6) of all the anchoring lines (200) pass through the gaps between the columns (800).
  • the essential equipment of the floating platform (100) considered as a ship, that is, generators, air conditioning, water treatment plants, ship services, pumps, vapor equipment, etc.
  • the higher levels or floors include the crew quarters.
  • a first circular middeck (26) forms the structural hull of the floating platform (100) and is dedicated to common spaces of all kinds, such as shops, restaurants, kitchens, commercial or leisure premises. In the central area there is a lower enclosure (37) with a room with a great height for activities such as theatre, cinema, exhibitions, museum, etc.
  • a ring Around it, on the main deck (35) there is a ring that can be set up as a solarium or as viewpoints.
  • the content of this third tween deck (28) depends on the activities to which the floating platform (100) is going to be used.
  • the room of the upper enclosure (33) can be enabled as a swimming pool.
  • the upper deck (36) On the third deck (28) is the upper deck (36), fitted out as a solarium, promenade area or sports spaces, especially if the room of the upper enclosure (33) is a swimming pool.
  • Figures 25 to 28 include four views of this floating platform (100):
  • Figure 25 is a perspective view of the floating platform (100) sectioned at % without the anchoring system;
  • Figure 26 is a profile view, which also includes the upper part of the anchoring system (from the counterweight (1) upwards);
  • Figure 27 is a bottom perspective view, in which the circular diagonal mooring lines (200) can be seen in more detail;
  • Figure 28 is a bottom perspective view, in which the intermediate sections (7) of the diagonal star-shaped mooring lines (200) can be seen in more detail.
  • the anchoring system for marine floating platforms (100), object of the present invention is formed by three or more anchoring lines (200), arranged radially around a common point or central axis (300) of the platform.
  • floating (100), each of which is formed by two sublines (200d, 200c) of funding that include the following elements:
  • An anchoring ring common to all the anchoring lines (200), or several anchoring weights (4) (one for each anchoring line (200)), with several ballast tanks such that, when the ballast tanks of the mooring ring are empty, it has a small positive buoyancy (less than 20% of the total volume of the mooring ring) and when the ballast tanks of the mooring ring are fully flooded, it has a very large apparent weight (greater than 15% of the total displacement of the floating platform (100)).
  • the anchoring ring rests on the seabed (5) and performs the functions of the anchor of a conventional ship, preventing the wind, sea currents or waves from dragging the floating platform (100). In some applications, it can be replaced by several conventional anchors on the seabed (5), in which the cables of the anchoring system are attached.
  • One or more intermediate pulleys (rotary guide means (11)), support for the intermediate section (7) of the cable or anchor line (200), inserted between the inner pulley (second rotary fixing means (2c) or, possibly, third rotary fixing means (2d)) and the outer pulley (first rotary fixing means (3)), whose main mission is to change the path of said intermediate section (7).
  • the intermediate section (7) of the anchoring line (200) is not straight and goes from the outgoing structural arm (12) of an anchoring line (200) to the outgoing structural arm (12). from the nearest mooring line (200) (located on a plane oriented at 120 e or 72 e depending on the total number of protruding structural arms (12)).
  • the floating platform (100) can have an odd number of protruding structural arms (12).
  • each anchor line (200) can also include any of the following elements:
  • An intermediate buoy (9) inserted in the bottom section (8) of the anchoring lines (200). If there is one, it is connected to the bottom weight (4) by means of another cable segment.
  • auxiliary elements common to conventional anchoring systems and that help the installation/uninstallation maneuver of the floating platform (100) in its place of operation, such as winches, windlasses, bollards or other typical elements of any system. traditional funding.
  • the anchoring system comprises, for each anchoring line (200), a first subline (200d) and a second subline (200c).
  • the first subline can be a direct or diagonal subline.
  • the second subline can be a crossed subline or a diagonal subline.
  • the second subline comprises an inner pulley (second rotary fixing means (2c)) that is located outside the plane (anchoring plane) defined by the central counterweight (1) (which passes through the central axis ( 300)), the bottom weight (4) and the pulley outer (first rotary fixing means (3)) (where the bottom weight (4) and the outer pulley are attached by the bottom section (8) of the anchoring line).
  • each anchoring line (200) has two diagonal sublines, whose internal pulleys (second rotary fixing means (2c)) are located symmetrical to each other, with respect to the anchoring plane defined by the central counterweight (1), the bottom weight (4) and the outer pulley (first rotary fixing means (3)).
  • the bottom sections (8) of all the sublines (200d, 200c) of each anchoring line (200) are vertical (and parallel to each other).
  • the bottom section (8) of all the sublines (200d, 200c) of each anchor line (200) can be slightly divergent, that is, the anchor point of the cable or anchor line. (200) in the bottom weights (4) is more horizontally separated from the central counterweight (1) than the outer pulley (first rotary fixing means (3)).
  • the floating platform (100), when used as a support for wind turbines, can comprise at least the following elements:
  • a complete marinized wind turbine whose nacelle (14) is installed on top of the corresponding tower (13).
  • a central counterweight (1) located in the central axis (300) of symmetry of the floating platform (100), hung from the central sections (6) of all anchoring lines (200).
  • ballast tanks or floodable chambers
  • the central counterweight (1) has a slightly positive buoyancy (floats). With one or more of the tanks flooded, the buoyancy of the central counterweight (1) is slightly negative (it sinks). With all the ballast tanks flooded, the apparent weight of the central counterweight (1) is large (at least equal to 15% of the total weight of the floating platform (100)).
  • Each anchoring line (200) is formed by two sublines (first subline (200d) and second subline (200c)) (which can be direct, crossed or diagonal sublines).
  • Each subline (200d, 200c) can be simple (a single cable, with pulleys with one sheave) or multiple (with several cables and with pulleys with several sheaves, mounted on the same axis).
  • the hull or main structure (400) of the floating platform (100) has two main loading conditions, a transportation condition, in which all its ballast tanks are empty and it floats freely with a characteristic waterline (21), and an operating condition, in which all anchoring lines (200) are connected to the seabed (5) and support the net weight of the central counterweight (1); Some of its ballast tanks may be totally or partially full so that its waterline (21) coincides with the operating draft (22) or project draft.
  • This floating platform (100) for supporting offshore wind turbines can be self-stable, where its hull can include the following elements: - Three or five cylindrical floats or flotation elements (500), separated from the central axis (300) of the floating platform (100), evenly distributed around it.
  • the ballast waterline (21) is located at half height of these floats, defining two volumes in them, the submerged zone (15) and emerging zone (16). In ballast, its flotation surface provides all the stability you need for transfer operations. In the operating condition, the floats are totally submerged.
  • this anchoring system can include three or five complete anchoring lines (200), one in each protruding structural arm (12), with a central counterweight (1) and its sublines (200d, 200c) ( direct, crossed and diagonal).
  • the floating platform (100) can be used to support structures for leisure or marine tourism, including sports activities.
  • the floating platform (100) can comprise intermediate pulleys (rotating guide means (11)) for the support of the intermediate section (7), which divert the intermediate sections (7) from the cable all the diagonal or crossed sublines and give them the appearance of a circular line or a star.
  • the system includes a large number of anchoring lines (200) (five lines or more) and is installed on platforms dedicated to large marine leisure.
  • All the pulleys hang from the bottom of the first twilight deck (26) of the floating platform (100), so that it does not use protruding structural arms (12) for this work. All the central sections (6) of all the anchoring sublines (200d, 200c) are joined at the central counterweight (1).
  • This funding system (of the "SLP" type) may comprise six funding lines (200) and, additionally, may comprise the following elements:
  • a hull or main structure (400) made up of six columns (800), each of which has a submerged part (29) and another emerging part (30) that is above the project floatation or operating draft ( 22);
  • the central sections (6) of all the anchoring lines (200) pass through the gaps between the columns (800).
  • the essential equipment of the floating platform (100) considered as a ship, that is, generators, air conditioning, water treatment plants, ship services, pumps, various equipment, etc.
  • the higher levels include the crew quarters.
  • a first circular middeck (26) forms the structural hull of the floating platform (100) and is dedicated to common spaces of all kinds, such as shops, restaurants, kitchens, commercial or leisure premises.
  • a lower enclosure (37) with a room with a greater free height for activities such as theatre, cinema, exhibitions, museum, etc.
  • a ring Around it, on the main deck (35) there is a ring that can be set up as a solarium, walking areas or as viewpoints.
  • the content of this third tween deck (28) depends on the activities to which the floating platform (100) is going to be used.
  • this third twilight deck (28) there is an upper enclosure (33) with a room covered by a special glass dome (34) for social gatherings of the people staying on the floating platform (100).
  • the room of the upper enclosure (33) can be enabled as a swimming pool, accessible from the upper deck (36).
  • the upper deck (36) fitted out as a solarium, promenade area or sports spaces, especially if the room of the upper enclosure (33) is a swimming pool.

Abstract

Sistema de fondeo para plataforma flotante (100) que elimina los movimientos de cabeceo y de balance de la plataforma flotante (100), mediante varias líneas de fondeo (200) unidas al fondo marino (5), que se apoyan en varios medios de fijación rotativos (2, 3) o poleas de la plataforma flotante (100) y se unen todas en un contrapeso (1) común que cuelga de la plataforma (100). Cada línea de fondeo (200) comprende sublíneas (200d, 200c) (directas, cruzadas o diagonales), que mantienen el contrapeso (1) siempre en correspondencia con el eje central (300) de la plataforma flotante (100). También elimina el movimiento pendular del contrapeso (1) y es válido para plataformas flotantes (100) con un número impar de brazos estructurales salientes (12). El sistema es aplicable a cualquier tipo de plataforma flotante (100), aunque está especialmente indicado para plataformas flotantes que sirven de soporte de aerogeneradores marinos y plataformas de ocio marino.

Description

Sistema de fondeo
DESCRIPCIÓN
Objeto de la invención
La presente invención tiene por objeto un sistema de fondeo especialmente indicado para plataformas flotantes que sirven de base de aerogeneradores situados en el mar, aunque también puede ser utilizado para plataformas flotantes destinadas a soportar estructuras o instalaciones de ocio o recreativas. El sistema de fondeo objeto de la presente invención comprende un conjunto de cables o cadenas de fondeo (líneas de fondeo) sujetas a pilotes enterrados en el fondo marino o a pesos situados o depositados sobre el fondo marino.
El sistema de fondeo objeto de la presente invención posee características singulares que lo hacen idóneo para poder ser utilizado en plataformas flotantes que sirvan de base a estructuras marítimas en donde es importante evitar el movimiento de cabeceo o balanceo, solventando igualmente algunos inconvenientes de otros sistemas de fondeo para plataformas flotantes del estado de la técnica.
El sistema de fondeo objeto de la presente invención tiene aplicación en cualquier tipo de estructura destinada a situarse flotando sobre la superficie del mar, y que necesite disponer de vahos puntos de anclaje en el fondo marino, para sujetar los cables o cadenas de fondeo de las plataformas flotantes.
Antecedentes de la invención y problema técnico a resolver
Las plataformas flotantes, especialmente las dedicadas a soportar aerogeneradores para la generación de energía eléctrica a partir de energía eólica en el mar, necesitan sistemas de fondeo que las mantengan en su posición y contribuyan a la estabilidad de las mismas. En el estado de la técnica se conocen plataformas del tipo denominado TLP (por las siglas en inglés de “Tension Leg Platform”). Estas plataformas comprenden tres o más líneas de fondeo (normalmente cadenas o cables que unen la plataforma con pilotes anclados al fondo marino). Las líneas de fondeo de las plataformas TLP están diseñadas para disponerse en tensión, uniendo en posición vertical la plataforma con cada uno de los pilotes anclados en el fondo marino. Las plataformas TLP comprenden un conjunto de flotadores diseñados para producir un exceso de flotabilidad de la plataforma (teniendo en cuenta el peso de la estructura que se asienta sobre la plataforma). Este exceso de flotabilidad garantiza un elevado nivel de tensión en los cables, que a su vez garantiza que éstos estén siempre dispuestos en posición vertical. De esta forma, se evitan los movimientos de cabeceo y balance de la plataforma y de la estructura que se asienta sobre la plataforma.
El documento EP 2743170 A1 describe una plataforma TLP como la descrita en el párrafo anterior.
Un inconveniente de las plataformas TLP es que la elevada tensión de los cables necesaria para mantenerlos en posición vertical y evitar así los movimientos de cabeceo y/o de balance produce también un bloqueo de los desplazamientos en dirección vertical de la plataforma. Así pues, al subir la marea, la plataforma no puede desplazarse hacia arriba (debido a que las líneas de fondeo tienen una extensibilidad reducida o nula) y, por tanto, la tensión en las líneas de fondeo aumenta considerablemente. Esto provoca un elevado riesgo de rotura de las líneas de fondeo y obliga a disponer de líneas de fondeo de sección elevada o a aumentar el número de líneas de fondeo. Adicionalmente, en las plataformas TLP, en situaciones de marea muy baja, la plataforma baja también (los cables no pueden trabajar a compresión) y las líneas de fondeo pueden destensarse mucho, aumentando el riesgo de que la plataforma se desplace tanto vertical como lateralmente de manera descontrolada, y aumentando también el riesgo de que se produzcan movimientos de cabeceo y/o balanceo (debido al empuje del viento y/o de las olas sobre la plataforma y la estructura que se asienta sobre ella) que pueden llegar a producir el vuelco de la plataforma.
Otro tipo de plataformas flotantes son las plataformas semisumergibles. Si la plataforma necesita grandes superficies habitables, se suele recurrir a plataformas semisumergibles, que tienen un comportamiento en olas aceptable y disponen de grandes superficies libres. Son adecuadas con estados de mar, suaves y medios. Cuando se espera estados de mar más severos, se recurre a plataformas más grandes y pesadas que se mueven menos que las pequeñas. En cualquier caso las plataformas semisumergibles no impiden el movimiento de cabeceo/balance, sólo lo reducen.
Otro tipo de plataformas flotantes son las denominadas plataforma tipo SPAR. Es una plataforma flotante en la que la estabilidad se obtiene colocando pesos grandes a gran profundidad. Normalmente usan sistemas de fondeo convencionales con cadenas y anclas, su forma suele ser cilindrica, de pequeño diámetro y gran longitud. Se emplean casi exclusivamente como bases de aerogeneradores y sus ángulos de cabeceo son sensiblemente mayores que en los demás tipos de plataformas. Son especialmente sensibles al empuje del viento y se ven menos afectadas por la presencia de olas.
Para evitar los inconvenientes mencionados en las plataformas TLP, se conocen otro tipo de plataformas flotantes en donde las líneas de fondeo están conectadas con un contrapeso a través de poleas situadas en la plataforma. Este tipo de plataformas permiten el desplazamiento vertical y lateral de la plataforma ante las mareas, las olas y el viento, haciendo por tanto que no sea necesario disponer de un número elevado de líneas de fondeo o de líneas de fondeo de una sección elevada.
El documento ES 2629867 A2 describe una plataforma como la descrita en el párrafo anterior.
Un problema existente con el sistema de fondeo descrito en el documento mencionado en el párrafo anterior es que las plataformas que emplean dicho sistema de fondeo se ven sometidas a movimientos de cabeceo y/o de balance, y el contrapeso que utilizan se ve sometido a constantes movimientos pendulares que pueden llegar a ser importantes pudiendo producir problemas de fatiga en los cables, lo que hacen que el sistema de fondeo descrito en dicho documento no sea el óptimo para: - aplicaciones en las que embarquen personas propensas a marearse con los movimientos de la plataforma (es decir, que no sean profesionales marinos), tales como niños pequeños, turistas, científicos, huéspedes y visitantes en general;
- plataformas flotantes sobre las cuales se instalen aerogeneradores marinos offshore, en donde es importante evitar el balanceo y/o cabeceo excesivo de la plataforma;
- aplicaciones en las que los equipos instalados y en las que la actividad a que se dedican (laboratorios, centros de investigación, factorías), requieran que los movimientos y las aceleraciones de la plataforma sean pequeños;
- plataformas flotantes que puedan estar sometidas (en algún momento) a temporales de extrema severidad, que pudieran poner en peligro la seguridad de la misma estructura o que puedan llegar a volcarla (si su movimiento de cabeceo fuera muy grande);
- especialmente en plataformas que se vayan a instalar en señe (en grandes cantidades) y en las que los costes de mantenimiento de los cables puedan ser una parte importante de los costes totales (si hay que inspeccionar los cables, y tal vez sustituirlos por fatiga cada dos años, en un parque eólico de 200 unidades, la plataforma deja de ser rentable económicamente).
Para solucionar los problemas anteriores, se conoce también un tipo de plataforma como la descrita en el documento de solicitud internacional PCT/IB2022/000334. Este tipo de plataforma flotante comprende siempre un número par de líneas de fondeo. Si se quiere poder eliminar los movimientos de cabeceo y balanceo en plataformas flotantes con brazos estructurales salientes, se necesita siempre un número mínimo de cuatro brazos estructurales salientes, lo cual supone un coste considerable de fabricación e instalación de la plataforma flotante (la instalación se complica porque se necesita una precisión extrema en la colocación de los pesos de fondo, se necesitan embarcaciones y equipos muy sofisticados). Descripción de la invención
Con objeto de solucionar los inconvenientes anteriormente mencionados, la presente invención se refiere a un sistema de fondeo.
El sistema de fondeo objeto de la presente invención comprende una plataforma flotante y al menos tres líneas de fondeo, configuradas para fijar o anclar la plataforma flotante al fondo marino mediante al menos un tramo de fondo de cada línea de fondeo. Cada línea de fondeo comprende también un tramo central unido a un contrapeso.
El sistema de fondeo comprende al menos un primer medio de fijación rotativo (también denominado polea directa) por cada línea de fondeo, donde cada primer medio de fijación rotativo (o polea exterior) está fijado a un primer punto de la plataforma flotante y está configurado para fijar cada línea de fondeo a la plataforma flotante en dicho primer punto de la plataforma flotante, permitiendo el deslizamiento de la línea de fondeo por dicho primer medio de fijación rotativo.
Cada línea de fondeo comprende al menos una primera sublínea y una segunda sublínea, cada una de ellas comprendiendo su propio cable o cadena de fondeo.
La plataforma flotante comprende un eje central (puede ser un eje central de simetría o un eje vertical que pasa por un centro de gravedad de la plataforma y/o del contrapeso) que define, junto con el tramo de fondo de cada línea de fondeo, un plano de fondeo de cada línea de fondeo.
El sistema comprende al menos un segundo medio de fijación rotativo (también denominado polea cruzada) por cada línea de fondeo. Este al menos un segundo medio de fijación rotativo de cada línea de fondeo está fijado a un segundo punto de la plataforma flotante y está configurado para fijar al menos una sublínea de fondeo de cada línea de fondeo a la plataforma flotante en dicho segundo punto de la plataforma flotante permitiendo el deslizamiento de dicha sublínea por dicho segundo medio de fijación rotativo, de tal forma que dicha sublínea comprende un tramo intermedio entre el primer medio de fijación rotativo y el segundo medio de fijación rotativo y donde dicha sublínea discurre desde el primer medio de fijación rotativo hasta el contrapeso pasando y deslizando por el segundo medio de fijación rotativo.
De manera novedosa, en el sistema de fondeo objeto de la presente invención, el al menos un segundo medio de fijación rotativo de cada línea de fondeo no se encuentra comprendido en el plano de fondeo de dicha línea de fondeo.
Salvo en la quinta forma de realización, la primera sublínea de cada línea de fondeo puede también denominarse “sublínea directa”, ya que discurre desde el primer medio de fijación rotativo directamente hacia el contrapeso (aunque opcionalmente en este trayecto puede pasar por un tercer medio de fijación rotativo comprendido en el plano de fondeo de dicha línea de fondeo).
La segunda sublínea de fondeo es, en todas las formas de realización de la invención, una sublínea cruzada o una sublínea diagonal, según cada forma de realización.
Se denomina sublínea cruzada a aquella segunda sublínea cuyo tramo intermedio discurre desde el primer medio de fijación rotativo hacia el segundo medio de fijación rotativo pasando por una posición próxima al eje central de la plataforma flotante.
Se denomina sublínea diagonal a aquella segunda sublínea cuyo tramo intermedio discurre desde el primer medio de fijación rotativo hacia el segundo medio de fijación rotativo sin pasar por una posición próxima al eje central de la plataforma flotante.
Mediante el sistema de fondeo descrito anteriormente, se anula o reduce drásticamente el cabeceo y/o balanceo de la plataforma flotante, con respecto a otros sistemas de fondeo como el descrito en el documento ES 2629867 A2., dejando al mismo tiempo libertad para que la plataforma flotante pueda moverse verticalmente, permitiendo también movimientos horizontales de forma restringida. Adicionalmente, mediante el sistema de fondeo descrito anteriormente, se elimina el movimiento pendular, característico del contrapeso central, inducido por los movimientos horizontales de la plataforma por causa de las olas.
Asimismo, mediante el sistema de fondeo descrito anteriormente, se elimina la necesidad de disponer de un pozo central en el casco (estructura principal o estructura central) de la plataforma, que en el estado de la técnica resultaba necesario para el paso de los tramos centrales de las líneas de fondeo (las que sujetan el contrapeso central).
Mediante el sistema de fondeo descrito anteriormente, se permite minimizar o anular los movimientos de cabeceo y balanceo de una plataforma flotante, y se permite también utilizar plataformas flotantes que comprenden hasta un mínimo de tres brazos estructurales salientes, o un número par o impar genérico de brazos estructurales salientes que soportan las líneas de fondeo.
De esta forma, se permite construir plataformas flotantes de brazos estructurales salientes que comprenden únicamente tres brazos estructurales salientes, lo cual era imposible en sistemas de fondeo anteriores (como el descrito en la solicitud internacional PCT/IB2022/000334), que requerían un mínimo de cuatro brazos estructurales salientes. Esto permite reducir el coste de fabricación e instalación de la plataforma flotante (una plataforma con sólo tres puntos de anclaje en el fondo necesita mucha menos precisión de instalación que una de cuatro, y no necesita equipos especiales para su instalación).
Esto se consigue gracias a las sublíneas cruzadas y/o diagonales, que permiten distribuir las tensiones de las líneas de fondeo en planos distintos, permitiendo lograr un equilibrio de fuerzas que anulen los movimientos de cabeceo y balanceo de la plataforma con tres únicos planos de fondeo (tres líneas de fondeo).
Salvo en la quinta forma de realización propuesta, la primera sublínea (sublínea directa) de cada línea de fondeo está totalmente comprendida en el plano de fondeo de dicha línea de fondeo y el al menos un primer medio de fijación rotativo de cada línea de fondeo está fijado a la plataforma flotante en correspondencia con un primer punto situado en una periferia de la plataforma flotante.
Adicionalmente a lo comentado en el párrafo anterior, el al menos un segundo medio de fijación rotativo (polea cruzada) está fijado a la plataforma flotante en el segundo punto que está situado preferentemente también en la periferia de la plataforma flotante.
De acuerdo con la segunda y la cuarta formas de realización de la invención, para cada línea de fondeo, el tramo intermedio de la segunda sublínea (sublínea cruzada) discurre entre el primer medio de fijación rotativo y el segundo medio de fijación rotativo pasando por al menos un medio de guiado rotativo situado en proximidad al eje central de la plataforma flotante.
Como continuación de lo comentado en el párrafo anterior, opcionalmente, el tramo intermedio de la segunda sublínea (sublínea cruzada) discurre entre el primer medio de fijación rotativo y el segundo medio de fijación rotativo pasando por al menos dos medios de guiado rotativo situados en proximidad al eje central de la plataforma flotante.
En el caso de la segunda forma de realización propuesta, el tramo intermedio de la segunda sublínea (sublínea cruzada) pasa por dos medios de guiado rotativo situados en proximidad al eje central de la plataforma flotante.
En el caso de la cuarta forma de realización propuesta, el tramo intermedio de la segunda sublínea (sublínea cruzada) pasa por un único medio de guiado rotativo situado en proximidad al eje central de la plataforma flotante.
Según la primera forma de realización propuesta para el sistema de fondeo, para cada línea de fondeo, el tramo intermedio de la segunda sublínea (sublínea diagonal) discurre entre el primer medio de fijación rotativo y el segundo medio de fijación rotativo en línea recta. Según la tercera forma de realización propuesta para el sistema de fondeo, para cada línea de fondeo, el tramo intermedio de la segunda sublínea (sublínea diagonal) discurre entre el primer medio de fijación rotativo y el segundo medio de fijación rotativo pasando por al menos un medio de guiado rotativo situado en correspondencia con la periferia de la plataforma flotante.
El medio de guiado rotativo (o los medios de guiado rotativo), en aquellas realizaciones en las que está presente, está fijado a al menos un cuarto punto de la plataforma flotante y está configurado para guiar el curso de la correspondiente sublínea de cada línea de fondeo permitiendo el deslizamiento de dicha sublínea por dicho medio de guiado rotativo, de tal forma que dicha sublínea discurre entre el primer medio de fijación rotativo y el segundo medio de fijación rotativo pasando y deslizando por el medio de guiado rotativo.
Los medios de guiado rotativo permiten que la correspondiente sublínea evite obstáculos en su recorrido desde el primer medio de fijación rotativo hasta el segundo medio de fijación rotativo. Mediante este medio de guiado rotativo, se puede evitar que las sublíneas de todas las líneas de fondeo choquen entre sí, o que las sublíneas choquen contra la estructura principal de la plataforma flotante. También se puede lograr mediante los medios de guiado rotativo que las sublíneas discurran según un recorrido determinado, por ejemplo siguiendo el contorno, perímetro o periferia de la plataforma flotante.
De manera preferente, en cualquiera de las formas de realización propuestas, el al menos un segundo medio de fijación rotativo de cada línea de fondeo está fijado a la plataforma flotante en un punto situado en proximidad al primer medio de fijación rotativo de una línea de fondeo adyacente.
Como ya se ha comentado, exceptuando la quinta forma de realización propuesta, la primera sublínea (sublínea directa) de cada línea de fondeo está totalmente comprendida en el plano de fondeo de dicha línea de fondeo. En esta situación, como también se ha comentado ya, el sistema de fondeo puede comprender al menos un tercer medio de fijación rotativo (polea interior directa) por cada línea de fondeo, donde cada tercer medio de fijación rotativo está fijado a un tercer punto de la plataforma flotante y está configurado para fijar la primera sublínea (sublínea directa) a la plataforma flotante en dicho tercer punto de la plataforma flotante permitiendo el deslizamiento de la primera sublínea por dicho tercer medio de fijación rotativo, de tal forma que cada primera sublínea (sublínea directa) discurre desde el primer medio de fijación rotativo (polea exterior) hasta el contrapeso pasando y deslizando por el tercer medio de fijación rotativo (polea interior directa).
Según la quinta forma de realización propuesta, el sistema de fondeo comprende un segundo medio de fijación rotativo (polea cruzada) por cada sublínea de fondeo de cada línea de fondeo, de tal forma que tanto la primera sublínea como la segunda sublínea comprenden respectivamente un tramo intermedio entre el primer medio de fijación rotativo y el correspondiente segundo medio de fijación rotativo y donde cada sublínea de fondeo discurre desde el primer medio de fijación rotativo hasta el contrapeso deslizando por el correspondiente segundo medio de fijación rotativo.
En esta quinta forma de realización, ni la primera sublínea ni la segunda sublínea son sublíneas directas. Ambas sublíneas son sublíneas diagonales.
De manera preferente, en la quinta forma de realización, el tramo intermedio de cada sublínea discurre entre el primer medio de fijación rotativo y el segundo medio de fijación rotativo en línea recta.
Según un aspecto de la invención, el contrapeso comprende al menos una cámara inundable. Esta característica facilita también el transporte del contrapeso (el cual puede transportarse sin inundar con menor peso), y facilita también un aporte progresivo de tensión a las líneas de fondeo, a medida que la al menos una cámara de flotación inundable va llenándose.
Según otro aspecto de la invención, cada tramo de fondo de cada línea de fondeo comprende una boya que divide el tramo de fondo en una primera porción que discurre entre el fondo marino y la boya y una segunda porción que discurre entre la boya y el al menos un primer medio de fijación rotativo. La característica anterior facilita la instalación de la plataforma flotante, ya que se puede disponer el peso de fondo, pilote o anillo de fondeo unido a una primera porción del tramo de fondo (con la boya) en una maniobra de preinstalación (una vez elegido el emplazamiento de la plataforma flotante) y, posteriormente, conectar la segunda porción del tramo de fondo directamente a la boya, cuando la plataforma flotante y el contrapeso se hayan desplazado hasta el emplazamiento de instalación.
Según algunas realizaciones de la invención (preferentes en el caso de plataformas flotantes destinadas a soportar aerogeneradores marinos), la plataforma flotante comprende tantos brazos estructurales salientes como líneas de fondeo, donde cada brazo estructural saliente está unido a una estructura principal (o casco) de la plataforma flotante, donde cada brazo estructural saliente discurre radialmente desde un primer extremo unido a la estructura principal de la plataforma flotante hasta un segundo extremo proyectado hacia el exterior de la plataforma flotante, donde el al menos un primer medio de fijación rotativo de cada línea de fondeo está fijado a la plataforma flotante en correspondencia con el segundo extremo de un primer brazo, y donde el al menos un segundo medio de fijación rotativo está fijado a la plataforma flotante en un punto situado en correspondencia con un segundo brazo. Preferentemente el al menos un segundo medio de fijación rotativo está fijado a la plataforma flotante en un punto situado en correspondencia con el segundo extremo del segundo brazo.
Según estas realizaciones mencionadas en el párrafo anterior, la estructura principal (o casco) de la plataforma flotante comprende preferentemente una geometría en forma de fuste cilindrico, cónico o piramidal.
Adicionalmente a lo comentado en el párrafo anterior, el sistema de fondeo puede comprender una pluralidad de radios conectados con la estructura principal, donde en cada extremo libre de cada radio existe un elemento de flotación. Estos elementos de flotación pueden comprender al menos una cámara inundable.
También adicionalmente, según las realizaciones comentadas en los tres párrafos anteriores, la estructura principal de la plataforma flotante puede comprender al menos un elemento de flotación que a su vez puede comprender al menos una cámara inundable. Los elementos de flotación aportan flotabilidad y, cuando son inundables, permiten que la plataforma flotante pueda ser desplazada o remolcada hasta su lugar o emplazamiento de instalación, con un peso reducido y, posteriormente, inundar los correspondientes elementos de flotación, para ajustar el calado final de la plataforma a su valor de proyecto.
Cuando los elementos de flotación están situados en el extremo de radios unidos al fuste, la estructura resulta especialmente estable, y apropiada para garantizar la estabilidad de la plataforma flotante en la maniobra de instalación.
Por último, existen realizaciones en las que el sistema de fondeo se emplea con plataformas flotantes destinadas a un uso de ocio o recreativo.
Según lo comentado en el párrafo anterior, la plataforma flotante puede comprender una estructura principal con tres entrepuentes, donde los medios de fijación rotativos y medios de guiado rotativos están fijados a la plataforma flotante en puntos situados bajo un primer entrepuente. La estructura principal comprende seis columnas proyectadas hacia debajo de la plataforma flotante bajo el primer entrepuente y configuradas para quedar parcialmente sumergidas. Estas seis columnas atraviesan un segundo entrepuente y un tercer entrepuente. Tres de las seis columnas están proyectadas por encima del tercer entrepuente hacia arriba de la plataforma flotante, sobre una cubierta superior.
El segundo entrepuente comprende una superficie perimetral acristalada susceptible de desplegarse y replegarse, con un balcón anular perimetral que se proyecta más allá de la superficie perimetral acristalada.
Un recinto superior abovedado (con una bóveda de cristal) se proyecta por encima del tercer entrepuente en correspondencia con el centro del tercer entrepuente.
Un recinto inferior se proyecta por debajo del primer entrepuente en correspondencia con el centro del primer entrepuente. Así pues, la presente invención se refiere a una mejora en el sistema de fondeo que constituye la solicitud internacional PCT/IB2022/000334, aplicable a todo tipo de plataformas flotantes marinas, que permite el movimiento de la misma, tanto en dirección horizontal como vertical, pero que anula completamente el movimiento de cabeceo y el de balance de la plataforma. Al igual que en dicha solicitud de patente, también se elimina el movimiento pendular del contrapeso central.
Por su propia filosofía, la invención recogida en la solicitud internacional PCT/IB2022/000334 sólo es aplicable a plataformas con un número par de brazos, pues debe haber dos grupos de poleas y de cables enfrentados entre sí (de forma simétrica). El problema es que hoy en día las plataformas eólicas suelen tener tres brazos (con sus correspondientes líneas de fondeo), es decir, no se puede aplicar el sistema allí propuesto.
El objeto concreto de la presente invención es adaptar el sistema descrito en la solicitud internacional PCT/IB2022/000334 para que sea aplicable a plataformas con cualquier número de brazos estructurales salientes (especialmente para plataformas de tres brazos estructurales salientes (con sus correspondientes líneas de fondeo)).
El hecho de que la plataforma flotante en la que se instala el presente sistema de fondeo no tenga movimientos de cabeceo ni de balance (incluso con olas grandes), hace que sea especialmente adecuado para las siguientes instalaciones:
- En las que embarquen personas propensas a marearse con los movimientos de la plataforma (es decir, que no sean profesionales marinos), tales como niños pequeños, turistas, científicos, huéspedes y visitantes en general;
Sobre las cuales se instalen aerogeneradores marinos offshore. Esta utilización se ha potenciado en la presente solicitud de patente, con una nueva aplicación preferente, referida a plataformas para aerogeneradores marinos flotantes; En las que los equipos instalados y en las que la actividad a que se dedican (laboratorios, centros de investigación, factorías), requieran que los movimientos y las aceleraciones de la plataforma sean pequeños;
- En aquellas instalaciones que puedan estar sometidas (en algún momento) a temporales de extrema severidad, que pudieran poner en peligro la seguridad de la misma estructura o que puedan llegar a volcarla (si su movimiento de cabeceo fuera muy grande).
Al igual que en la versión anterior, la plataforma flotante en la que se instala este nuevo tipo de fondeo no necesita apoyarse en el fondo marino, por lo que es adecuada para zonas de cualquier profundidad marina, tanto cerca de la costa (70 m de profundidad), como alejada de ella (hasta profundidades de 400 m o más) y a cualquier distancia intermedia, ya que es capaz de soportar temporales muy severos.
Así pues, el sistema de fondeo objeto de la presente invención es aplicable a cualquier instalación marina flotante, en la que los requisitos de movimientos sean un condicionante importante del diseño. Especialmente para los siguientes casos:
- Turismo, ocio marítimo y deportes náuticos; una plataforma diseñada con este tipo de fondeo es ideal para la industria hotelera y de recreación, ya que la mayor parte de los clientes potenciales de este tipo de instalaciones no son marineros expertos y el hecho de que se mueva muy poco supone un gran atractivo. Se puede instalar un hotel, situándolo en aguas extraterritoriales a más de 10 millas náuticas de la costa, así podría tener instalaciones de descanso, recreo, casino y salas de juego, parques temáticos o cualquier tipo de instalaciones para las que una instalación equivalente en tierra podría encontrar impedimentos de tipo urbanístico o tener dificultades para conseguir los permisos de apertura o tener problemas con las normativas municipales vigentes. Al estar alejado de la costa, la profundidad del mar es mayor y no es posible apoyar el hotel en el fondo marino. Además, el oleaje es mayor, por lo que una plataforma convencional se movería demasiado para esta aplicación. - Parques eólicos. Los molinos de viento, necesitan una base que se mueva lo menos posible, de hecho, sobrepasado un cierto nivel de inclinación (cabeceo) o un cierto nivel de aceleraciones, deben pararse los aerogeneradores por motivos de seguridad. El hecho de que se mueva menos que las que hay actualmente, aumenta la rentabilidad de la instalación, al disponer de más horas netas al año para generar electricidad. De hecho, la realización preferente principal presentada en esta solicitud de patente (la segunda forma de realización, correspondiente con la Figura 14, Figura 15, Figura 22, Figura 23 y Figura 24), hacen referencia a una plataforma flotante diseñada específicamente como soporte de aerogeneradores marinos.
Así pues, la invención que se presenta pretende resolver un problema inherente a todas las estructuras flotantes. Estas estructuras o plataformas flotantes, debido a las olas o al viento tienen movimientos de cabeceo o balance, que son perjudiciales para la operación de las mismas, molestas para el personal embarcado y que pueden poner en peligro la seguridad de las personas y las estructuras.
Esta invención permite anular dichos movimientos, dejándole libertad para moverse verticalmente; también permite movimientos horizontales de forma restringida (como los sistemas de fondeo convencionales mediante cadenas).
Con respecto a otros sistemas de fondeo conocidos, el sistema de fondeo objeto de la presente invención presenta varias características ventajosas.
- Se puede aplicar a cualquier tipo de plataforma, especialmente para molinos de viento y para plataformas dedicadas a actividades de ocio marítimo
- Impide totalmente el movimiento de cabeceo y balance de la plataforma, pero permite cualquier movimiento horizontal o vertical.
No necesita cimentaciones, ni preparación especial del fondo marino (se pueden usar cimentaciones convencionales más sencillas de lo habitual). Los calados óptimos están entre 70m y 400m, pero puede alcanzar profundidades mayores.
- Se puede instalar o reubicar (tantas veces como se quiera) sin necesidad de buques especiales, tan sólo necesita un remolcador para trasladarlo.
- Las fuerzas que aparecen en las líneas de fondeo, son menores que en las plataformas de tipo TLP; si se rompe alguna línea, sigue funcionando con las demás. Se puede reparar / sustituir in situ.
- Permite diseñar plataformas mucho más ligeras (y por tanto más económicas) y de puntal reducido (con menor impacto visual).
Breve descripción de las figuras
Como parte de la explicación de al menos una forma de realización de la invención se han incluido, con carácter ilustrativo y no limitativo, las siguientes figuras.
Figura 1 : Muestra una vista esquemática frontal del sistema de fondeo descrito en la solicitud internacional PCT/IB2022/000334, en donde se observan, en posición de reposo, dos líneas de fondeo (dispuestas en un mismo plano) según una posible realización de dicho sistema de fondeo.
Figura 2: Muestra una vista en detalle de una única línea de fondeo del sistema de fondeo de la Figura 1 , en donde se observa que las dos sublíneas de la línea de fondeo están íntegramente contenidas en un único plano de fondeo. Figura 3: Muestra una vista, análoga a la de la Figura 2, pero en este caso de acuerdo a una posible realización del sistema de fondeo objeto de la presente invención. Se muestran las dos sublíneas de una línea de fondeo, pudiéndose observar que parte del tramo intermedio de una sublínea no se encuentra comprendido en el plano de fondeo de dicha línea de fondeo.
Figura 4: Muestra una vista, análoga a la de la Figura 1 , pero en este caso de acuerdo a una posible realización del sistema de fondeo objeto de la presente invención. Se muestran sólo dos líneas de fondeo contiguas o adyacentes de un sistema de fondeo de tres líneas de fondeo. Se puede ver una línea de fondeo completa con sus dos sublíneas, pudiéndose observar que parte del tramo intermedio de una sublínea no se encuentra comprendido en el plano de fondeo de dicha línea de fondeo.
Figura 5: Muestra una vista esquemática de un sistema de fondeo según la Figura 4, en donde se observan las tres líneas de fondeo del sistema de fondeo.
Figura 6: Muestra una vista esquemática del desplazamiento teórico de dos líneas de fondeo centrales, en un sistema de fondeo con contrapeso según el estado de la técnica.
Figura 7: Muestra el esquema de fuerzas que actúan sobre una estructura que emplea el sistema de fondeo objeto de la presente invención. El esquema de fuerzas se ha representado en un mismo plano (aunque las dos líneas de fondeo estén realmente en dos planos diferentes).
Figura 8: Muestra una vista esquemática similar a la de la Figura 1 , en donde se han suprimido las boyas de los tramos de fondo de las líneas de fondeo.
Figura 9: Muestra una vista esquemática del sistema de fondeo de la Figura 8, en donde dicho sistema de fondeo ha sido desplazado horizontal y verticalmente por efecto de las olas y el viento. Figura 10: Muestra una vista esquemática del desplazamiento de un sistema de fondeo en el que los tramos de fondo de líneas de fondeo diametralmente opuestas son paralelos.
Figura 11 : Muestra una vista esquemática del desplazamiento de un sistema de fondeo en el que los tramos de fondo de líneas de fondeo diametralmente opuestas son divergentes.
Figura 12: Muestra una vista esquemática en perspectiva de una primera forma de realización del sistema de fondeo objeto de la presente invención.
Figura 13: Muestra una vista esquemática en planta del sistema de fondeo de la Figura 12.
Figura 14: Muestra una vista esquemática en perspectiva de una segunda forma de realización del sistema de fondeo objeto de la presente invención.
Figura 15: Muestra una vista esquemática en planta del sistema de fondeo de la Figura 14.
Figura 16: Muestra una vista esquemática en perspectiva de una tercera forma de realización del sistema de fondeo objeto de la presente invención.
Figura 17: Muestra una vista esquemática en planta del sistema de fondeo de la Figura 16.
Figura 18: Muestra una vista esquemática en perspectiva de una cuarta forma de realización del sistema de fondeo objeto de la presente invención.
Figura 19: Muestra una vista esquemática en planta del sistema de fondeo de la Figura 18.
Figura 20: Muestra una vista esquemática en perspectiva de una quinta forma de realización del sistema de fondeo objeto de la presente invención. Figura 21 : Muestra una vista esquemática en planta del sistema de fondeo de la Figura 20.
Figura 22: Muestra una vista esquemática frontal de una plataforma flotante según la segunda forma de realización del sistema de fondeo según la presente invención, en donde se observa una plataforma flotante que comprende una estructura principal en forma de fuste cilindro-cónico con tres brazos estructurales salientes que soportan tres líneas de fondeo, y donde la estructura principal de la plataforma flotante comprende tres radios conectados con dicha estructura principal, cada uno de los radios comprendiendo un elemento de flotación en su extremo.
Figura 23: Muestra una vista en perspectiva del sistema de fondeo de la Figura 22.
Figura 24: Muestra una vista esquemática de perfil del sistema de fondeo de la Figura 22 y de la Figura 23.
Figura 25: Muestra una vista esquemática en perspectiva superior de una plataforma flotante destinada a una instalación recreativa y/o de ocio.
Figura 26: Muestra una vista esquemática frontal de la plataforma flotante de la Figura 25, en donde dicha plataforma flotante se utiliza con un sistema de fondeo según la tercera forma de realización mostrada en la Figura 16 y en la Figura 17.
Figura 27: Muestra una vista esquemática en perspectiva inferior de la plataforma flotante de la Figura 26.
Figura 28: Muestra una vista esquemática en perspectiva inferior, análoga a la de la Figura 27, pero donde la plataforma flotante se utiliza con un sistema de fondeo según la cuarta forma de realización mostrada en la Figura 18 y en la Figura 19. Descripción detallada
La presente invención se refiere, tal y como se ha mencionado anteriormente, a un sistema de fondeo que comprende una plataforma flotante (100).
A continuación, se definen algunos elementos que se citan en esta descripción.
Flotador o elemento de flotación (500): es un envoltorio cerrado y estanco, sumergido total o parcialmente en el agua y que puede estar sometido a fuerzas hidrostáticas o hidrodinámicas por efecto de las olas o las corrientes marinas. Si está parcialmente sumergido, también puede estar sometido a las fuerzas originadas por el viento sobre su costado o superestructuras.
Casco o estructura principal (400): es uno o varios flotadores o elementos de flotación (500) estancos que forman un conjunto rígido y resistente, en los que al menos uno de ellos está parcialmente sumergido.
Plataforma flotante (100): es un casco o estructura principal (400) de cualquier forma o configuración, con vahos elementos o estructuras adicionales, dedicada a cualquier función (alojamientos, instalaciones industriales o de recreo, soporte de molinos de viento, etc), dotado del sistema de fondeo aquí propuesto.
Agentes externos: son el viento, las corrientes marinas, las olas, movimientos de carga internos o cualquier elemento ajeno a la plataforma flotante (100) que intente alejarla de su posición de proyecto o intente que tenga movimientos de cabeceo o de balance.
Tensión del cable o línea de fondeo (200): fuerza de tracción a la que está sometida el cable o línea de fondeo (200) (por su naturaleza flexible, el cable o línea de fondeo (200) no puede estar sometido a fuerzas de compresión). Contrapeso (1) central: es un casco totalmente sumergido, de densidad media superior a 1 ,8 kg/dm3, que mantiene tensadas las líneas de fondeo (200) que se conectan a él. En instalaciones simples como las que aquí se presentan, sólo hay un contrapeso (1 ) situado en el eje central (300) de la plataforma flotante (100).
Bloque de fondeo o peso de fondo (4): Es un peso (grande) apoyado en el fondo marino (5), al que se sujetan los cables o líneas de fondeo (200) del sistema de fondeo. En otras instalaciones convencionales, equivale al ancla, a los ‘muertos’ que mantienen en su posición boyas u otros elementos marinos o a cualquier otro tipo se anclaje mediante pilotes.
Cable de fondeo o línea de fondeo (200): es un cable, cadena o amarra de cualquier tipo que mantiene a la plataforma flotante (100) unida al peso de fondo (4), evitando que la plataforma flotante (100) sea arrastrada por agentes externos. Está compuesto de los siguientes elementos:
- Tramo de fondo (8) es la parte de la línea de fondeo (200) que une el peso de fondo (4) con el primer medio de fijación rotativo (3) (o polea externa) de la línea de fondeo (200). En la mayoría de las aplicaciones, cuando están en la condición de proyecto el tramo de fondo (8) es totalmente vertical, aunque en casos especiales puede ser ligeramente divergente. En algunos casos puede ser de una sola pieza hasta el fondo marino (5); en otros casos, el tramo de fondo (8) está partido o dividido en una primera porción (porción inferior) y una segunda porción (porción superior), y ambas porciones (superior e inferior) están unidas entre sí mediante una boya (9) intermedia.
- Tramo intermedio (7): es la parte de la línea de fondeo (200) que une la polea exterior (el primer medio de fijación rotativo (3)) con la polea o poleas interiores (el segundo medio de fijación rotativo (2c) (o polea cruzada) y, eventualmente, el tercer medio de fijación rotativo (2d)) que sujetan el cable; puede ser horizontal o puede tener una ligera pendiente (si las poleas no están a la misma altura). Más concretamente, como se verá más adelante, la línea de fondeo (200) comprende una primera sublínea (200d) y una segunda sublínea (200c). El tramo intermedio (7) es la parte de la segunda sublínea (200c) de la línea de fondeo (200) que une el primer medio de fijación rotativo (3) (o polea externa) con el segundo medio de fijación rotativo (2c) (o polea cruzada). Eventualmente, como en el caso de la quinta forma de realización propuesta, también la primera sublínea (200d) comprende un tramo intermedio (7) situado entre el primer medio de fijación rotativo (3) y el segundo medio de fijación rotativo (2c).
Por otra parte, en caso de existir un tercer medio de fijación rotativo (2d) (o polea interna), se denomina también tramo intermedio (7) a la parte de la primera sublínea (200d) de la línea de fondeo (200) que une el primer medio de fijación rotativo (3) con el tercer medio de fijación rotativo (2d).
- Tramo central (6): es la parte de la línea de fondeo (200) que conecta con el contrapeso (1) central.
En la primera sublínea (200d), en caso de existir un tercer medio de fijación rotativo (2d), el tramo central (6) une dicho tercer medio de fijación rotativo (2d) (polea interior) con el contrapeso (1 ) central. En ninguna de las formas de realización mostradas en las Figuras 12 a 21 se muestra dicho tercer medio de fijación rotativo (2d).
En caso de que no exista el tercer medio de fijación rotativo (2d), en las formas de realización primera, segunda, tercera y cuarta, el tramo central (6) de la primera sublínea (200d) une el primer medio de fijación rotativo (3) (polea exterior) con el contrapeso (1) central.
En caso de que no exista el tercer medio de fijación rotativo (2d), en la quinta forma de realización, el tramo central (6) de la primera sublínea (200d) une el segundo medio de fijación rotativo (2c) con el contrapeso (1) central. En la segunda sublínea (2c), el tramo central (6) es el tramo que une el segundo medio de fijación rotativo (2c) con el contrapeso (1) central.
- Boya (9) intermedia: es un elemento opcional, que se puede intercalar en el tramo de fondo (8) de cada línea de fondeo (200). La boya (9) está unida al fondo marino (5) mediante un cable (una primera porción del tramo de fondo (8) de la línea de fondeo (200)). La primera porción del tramo de fondo (8) puede comprender uno o varios cables o cadenas en paralelo. La ventaja de utilizar esta boya (9) es que se puede preinstalar cuando se acondiciona el terreno y se colocan los pesos de fondo (4), nivelándola a la altura correcta para que luego, al instalar la plataforma flotante (100), sólo haya que conectar las líneas de fondeo (200) (la segunda porción del tramo de fondo (8) de cada línea de fondeo (200)) a la boya (9), que vienen preparados con su longitud correcta, acelerando sensiblemente el proceso de instalación de la plataforma flotante (100).
Eje central (300) del sistema de fondeo: un eje vertical que pasa por el centro de gravedad del contrapeso (1 ) en su posición de reposo (o de proyecto). De manera preferente, este eje central (300) constituye un eje central (300) de simetría de la plataforma flotante (100).
- Sublínea de fondeo (genérica): es la unidad básica del sistema de fondeo, está compuesta por los siguientes elementos: o Un peso de fondeo (o peso de fondo (4)) apoyado en el fondo marino (5) (que puede ser compartido por vahas sublíneas de fondeo); o Un primer medio de fijación rotativo (3) (o polea externa o exterior): sujeta a la plataforma flotante (100) de forma fija o parcialmente flexible (o giratoria/basculante), cerca de la vertical del peso de fondo (4); o Una o dos poleas interiores o internas (2) (al menos un segundo medio de fijación rotativo (2c) (polea cruzada) y, opcionalmente, un tercer medio de fijación rotativo (2d) (polea interior directa)): sujeta/s a la plataforma flotante (100) de forma fija o parcialmente flexible (o giratoria/basculante), en algún punto de la estructura de la plataforma flotante (100). A pesar de su nombre, se encuentran a cierta distancia del eje central (300) de la plataforma flotante (100); o La parte correspondiente del contrapeso (1) central (varios cables (al menos tres) deben compartir obligatoriamente el mismo contrapeso (1)); o Un cable que une todos estos elementos, compuesto por los tramos definidos anteriormente (tramo central (6), tramo intermedio (7) y tramo de fondo (8)); o Opcionalmente puede haber una boya (9) intermedia intercalada en el tramo de fondo (8); o Opcionalmente puede haber algunas (preferentemente una o dos) poleas intermedias (medios de guiado rotativo (11 )), que sirven de apoyo al tramo intermedio (7) del cable de las sublíneas de fondeo, y/o que ayudan a orientar el cable por el camino más adecuado. o Algunas de las poleas descritas anteriormente pueden ser auto orientadles, para que se adapten a las variaciones de dirección que sufren el tramo central (6) y el tramo de fondo (8), debidas a los movimientos de la plataforma flotante (100).
Brazos estructurales salientes (12): en plataformas flotantes (100) en que las poleas externas (primeros medios de fijación rotativos (3)) están más alejadas del contrapeso (1) central que el perímetro de la estructura principal (400) de la plataforma flotante (100), estos brazos estructurales salientes (12) son extensiones del casco con forma de ménsula (o cualquier otro tipo de estructura), que sirven para sujetar las poleas externas (primeros medios de fijación rotativos (3)), poleas interiores (2) (segundos medios de fijación rotativos (2c) y, opcionalmente, terceros medios de fijación rotativos (2d)), o poleas intermedias (medios de guiado rotativos (11)).
- Sublínea central: Es una sublínea de fondeo en la que la polea interior está muy cerca del eje de la plataforma (al mismo lado que la polea externa). Es el elemento fundamental del sistema de fondeo descrito en el documento del estado de la técnica ES 2629867 A2, precursora del sistema de fondeo propuesto.
- Sublínea directa (es la primera sublínea (200d) en las formas de realización primera, segunda, tercera y cuarta): Es una sublínea de fondeo en la que, en caso de existir un tercer medio de fijación rotativo (2d) (polea interior directa), dicho tercer medio de fijación rotativo (2d) está próximo al primer medio de fijación rotativo (3) (polea externa), concretamente entre el primer medio de fijación rotativo (3) y el eje central (300) de simetría del contrapeso (1). Esta sublínea no tiene medios de guiado rotativo (11) (poleas intermedias soporte del tramo intermedio (7)); la razón es porque el tramo intermedio (7) de este tipo de sublíneas es muy corto y toda la sublínea está en el mismo plano (no es necesario reorientarla).
- Sublínea cruzada (es la segunda sublínea (200c) en las formas de realización segunda y cuarta): Es una sublínea de fondeo en la que el segundo medio de fijación rotativo (2c) (la polea interior cruzada) está más allá del eje central (300) de la plataforma flotante (100), y en un plano diferente al plano de la sublínea directa (plano de fondeo de la línea de fondeo (200)); esta sublínea cruzada siempre se apoya en uno o vahos medios de guiado rotativos (11 ) (poleas intermedias de soporte del tramo intermedio (7)). Su tramo intermedio (7) es bastante más largo que en las sublíneas directas y no sigue una trayectoria recta. - Sublínea diagonal (es la segunda sublínea (200c) en las formas de realización primera, tercera y quinta, y también es la primera sublínea (200d) en la quinta forma de realización): Es una sublínea de fondeo en la que (para las plataformas flotantes (100) con brazos estructurales salientes (12)) el segundo medio de fijación rotativo (2c) (la polea interior cruzada) está en un primer brazo estructural saliente (12) diferente al brazo estructural saliente (12) del primer medio de fijación rotativo (3) (la polea exterior), y está situada cerca de la polea exterior (primer medio de fijación rotativo (3)) de ese brazo estructural saliente.
En las formas de realización primera y quinta, el tramo intermedio (7) de la sublínea diagonal es recto, sin medios de guiado rotativo (11) (sin poleas soporte). Dinámicamente se comporta de forma parecida a las sublíneas cruzadas, porque no importa cuál sea el recorrido del tramo intermedio (7). Lo realmente importante son las posiciones de las poleas interiores y exteriores.
En la tercera forma de realización, el tramo intermedio (7) de la sublínea diagonal sí comprende al menos un medio de guiado rotativo (11 ) (polea intermedia), para permitir que la sublínea diagonal siga un trazado próximo al perímetro, contorno o periferia de la plataforma flotante (100).
Se denomina línea de fondeo (200) completa al conjunto de dos sublíneas de fondeo (una primera sublínea (200d) y una segunda sublínea (200c)), que comparten el mismo peso de fondo (4), una parte del tramo de fondo (8) de los cables de fondeo y la parte correspondiente del contrapeso (1) central. Sus poleas externas o exteriores (primeros medios de fijación rotativos (3)) están muy próximas entre sí, en general son paralelas con el mismo eje de giro. En plataformas que usan brazos estructurales salientes (12), estas poleas exteriores cuelgan del extremo del mismo brazo estructural saliente (12). En lugar de dos poleas exteriores, puede comprender una única polea exterior con al menos dos roldanas (una roldana para la primera sublínea (200d) y otra roldana para la segunda sublínea (200c)).
Línea de fondeo (200) paralela: Es una línea de fondeo (200) en la que su tramo de fondo (8) es vertical (en su posición de reposo), tal como aparece representado en las Figuras 1 a 10; todos los tramos de fondo (8) se mantienen paralelos (incluso estando en planos diferentes) aunque la plataforma se mueva.
Línea de fondeo (200) divergente: Es una línea de fondeo (200) en la que su tramo de fondo (8) (el que se sujeta en el fondo marino (5)) no es vertical, sino que está inclinada hacia fuera (formando un ángulo (A) con la vertical), es decir, el extremo inferior de la línea de fondeo (200) está más lejos del contrapeso (1) central que la polea exterior (Figura 11).
Grupo de líneas de fondeo (200): Es el conjunto de varias líneas de fondeo (200) que comparten un contrapeso (1) central común. La disposición resultante es obligatoriamente radial, aunque cada rama puede tener diferente tamaño (distancia entre el eje de la línea central y la polea exterior). Todas las poleas interiores del grupo, tienen que estar a la misma distancia del eje central (300) de la plataforma flotante (100) (que coincide con la vertical del contrapeso (1)).
Las plataformas flotantes (100) con geometrías muy alargadas pueden tener instalados varios grupos de líneas de fondeo (200) actuando sobre el mismo contrapeso (1 ) (las líneas centrales de cada grupo de líneas de fondeo (200) se sujetan a puntos diferentes del contrapeso (1), que también es alargado).
En plataformas flotantes (100) especialmente grandes, puede haber vahos grupos de líneas de fondeo (200), cada grupo con su contrapeso (1 ) correspondiente.
En todas las realizaciones preferentes mostradas en las Figuras, el sistema de fondeo tiene sólo un grupo de líneas de fondeo (y por tanto un solo contrapeso (1)).
Plataforma SLP (Soft Leg Platform): es una plataforma flotante (100) en la que se ha instalado el sistema de fondeo propuesto en esta solicitud de patente. En cada línea de fondeo (200) completa hay dos sublíneas de fondeo (200d, 200c), cuyas poleas interiores (segundo medio de fijación rotativo (2c) y tercer medio de fijación rotativo (2d)) están a la misma distancia del eje central (300) de la plataforma flotante (100). Cada línea de fondeo (200) está compuesta de una sublínea directa (200d) y una sublínea cruzada (200c), cuyas poleas interiores (segundo medio de fijación rotativo (2c) y tercer medio de fijación rotativo (2d)) están situadas simétricamente respecto al eje central (300) vertical que pasa por el contrapeso (1) central, tal como se puede ver en las Figuras 8 y 9.
Pozo Central (opcional, no representado en las Figuras): es un hueco que atraviesa verticalmente toda la plataforma flotante (100), justo debajo de las poleas interiores (tal como se ven en la figura 6), para el paso del péndulo (cables del tramo central (6) y contrapeso (1 )); si las poleas interiores están muy separadas de la vertical del contrapeso (1 ) central, el pozo central es innecesario.
La mayoría de los elementos que componen el sistema propuesto se han descrito anteriormente. Hay otros elementos opcionales que pueden ayudar al correcto funcionamiento de los elementos principales y otros elementos que pueden ayudar a la implementación real en una plataforma dada.
La configuración más simple está compuesta por tres líneas de fondeo (200) de bloqueo, cada una de las cuales está compuesta por dos sublíneas (una primera sublínea (200d) y una segunda sublínea (200c)), cada una de las cuales incluye:
Un peso de fondo (4) apoyado en el fondo marino (5);
Dos poleas o medios de fijación rotativos (2, 3): una polea exterior (o primer medio de fijación rotativo (3)) y otra polea interior (segundo medio de fijación rotativo (2c)); opcionalmente, puede haber una segunda polea interior (o tercer medio de fijación rotativo (2d)) para la primera sublínea (200d) de cada línea de fondeo (200); - Una o dos poleas intermedias de soporte del tramo intermedio (7) (medios de guiado rotativo (11)), colocados en el tramo intermedio de la segunda sublínea (200c) en la segunda, tercera y cuarta formas de realización.
Un contrapeso (1) central, común a las tres líneas de fondeo (200);
- Un cable (en cada sublínea) que une el peso de fondo (4) con el contrapeso (1) central, pasando por la polea exterior (primer medio de fijación rotativo (3)), una o vahas poleas intermedias (medios de guiado rotativo (11)) y la polea interior (segundo medio de fijación rotativo (2c) o tercer medio de fijación rotativo (2d)), definiendo tres tramos (6, 7, 8) en aquellas sublíneas (200c, 200d) que posean poleas interiores: o El tramo central (6) del cable de fondeo, que une la polea interior (segundo medio de fijación rotativo (2c) o tercer medio de fijación rotativo (2d)) con el contrapeso (1) central. Su longitud depende de la posición vertical del contrapeso (1 ) central. Opcionalmente la parte del cable más próxima al contrapeso (1 ) central se ha denominado tramo de ajuste del cable de fondeo (no se ha identificado en las figuras, pues es poco relevante para esta invención) y se puede utilizar para ajustar la longitud total del cable a las irregularidades del lecho o fondo marino (5) en el punto donde se vaya a colocar la plataforma flotante (100); o El tramo intermedio (7) del cable de fondeo, que une la polea interior (segundo medio de fijación rotativo (2c) o tercer medio de fijación rotativo (2d)) con la polea exterior (primer medio de fijación rotativo (3)), pasando (en su caso) por el/los medio/s de guiado rotativo (11 ) (poleas intermedias de soporte y guiado del tramo intermedio (7)); por su naturaleza tiene una longitud constante, pero esa longitud no tiene por qué ser la misma en todas las sublíneas; o Un tramo de fondo (8) del cable de fondeo, que une la polea exterior (primer medio de fijación rotativo (3)) con el peso de fondo (4). Su longitud depende de la posición geográfica de la plataforma (es decir de la profundidad del fondo marino (5)). Opcionalmente, este tramo de fondo (8) puede estar dividido en dos partes o porciones que se unen a una boya (9) intermedia. De esta forma se facilitan las operaciones de instalación y mantenimiento de los cables.
Puesto que los tres tramos (6, 7, 8) son parte del mismo cable, la suma de sus longitudes es constante. La misión de estos elementos es impedir el movimiento de balance y cabeceo de la plataforma flotante (100), permitiendo que se pueda mover horizontal o verticalmente.
Si la plataforma flotante (100) se mueve verticalmente una altura V, el contrapeso se mueve verticalmente una altura 2V, pero las fuerzas sobre la plataforma flotante (100) apenas si se alteran.
Si la plataforma flotante (100) se mueve horizontalmente una cantidad H, las líneas de fondeo (200) generan una fuerza horizontal opuesta que tiende a devolver la plataforma flotante (100) a su posición original. Las fuerzas verticales sobre la plataforma flotante (100) apenas varían. El contrapeso (1) se mueve ligeramente hacia arriba.
Si se aplica un momento flector que intenta hacer que la plataforma flotante (100) gire en el sentido del cabeceo, las tensiones de los cables de las líneas de fondeo (200) varían para compensarlo e impedir el giro; si ese momento flector aumenta lo suficiente, una de las líneas de fondeo (200) se destensará y la plataforma flotante (100) queda sujeta sólo por las demás líneas de fondeo (200). En general el casco o estructura central (400) de la plataforma flotante (100) comenzará a sumergirse levemente.
Cuando se hayan destensado todas las líneas de fondeo (200) menos una, posiblemente se iniciará el vuelco de la plataforma flotante (100). Ese vuelco será reversible o irreversible según sea la geometría particular de todo el conjunto. La plataforma flotante (100), según como sea su geometría, puede necesitar algunos elementos que facilitan el correcto funcionamiento del sistema de fondeo. Algunos se pueden ver en la Figura 17 (vista en perspectiva (3D)) y en la Figura 18 (vista en planta); otros elementos son normales en la construcción naval y no se han representado en las Figuras. Entre otros se pueden citar:
- Dos medios de guiado rotativos (11) (poleas de soporte del tramo intermedio (7)): El tramo intermedio (7) de la línea cruzada o de la línea diagonal no sigue una trayectoria recta, así que se han incluido dos poleas soporte del tramo intermedio (7) (medios de guiado rotativo (11)), para orientar este tramo intermedio (7) y evitar la estructura principal (400) de la plataforma flotante (100).
- Supresión del tramo intermedio (7): El tramo intermedio (7) de la primera sublínea (200d) (sublínea directa en la primera, segunda, tercera y cuarta formas de realización) se puede suprimir en algunas configuraciones, al hacer coincidir las poleas interior y exterior de esta primera sublínea (200d) en la misma polea.
Brazos estructurales salientes (12) para soporte de la polea exterior (primer medio de fijación rotativo (3)): en plataformas flotantes (100) que sirven de soporte de aerogeneradores, el diámetro de la plataforma flotante (100) es mucho menor que la distancia óptima para colocar la polea exterior (primer medio de fijación rotativo (3)). Se necesitan entonces unos brazos estructurales salientes (12), radiales, que sobresalen de la estructura principal (400) de la plataforma flotante (100) y de los que cuelga la polea exterior (primer medio de fijación rotativo (3)); este brazo estructural saliente (12) puede ser una estructura reticulada (los elementos quedan expuestos a la intemperie) o una estructura cerrada (los elementos quedan protegidos de la intemperie); la elección de un tipo u otro dependerá de la filosofía de cada diseño concreto.
En el caso de las plataformas flotantes (100) que sirven de soporte para aerogeneradores, se tienen vahas particularidades: - La plataforma flotante (100) no necesita una superficie de cubierta grande, puede ser una pequeña boya que soporte el peso del aerogenerador y de su torre (13).
La fuerza principal de diseño es el empuje aerodinámico del viento sobre las palas del rotor del aerogenerador.
La fuerza del viento ejerce un momento flector sobre la base de la torre (13) muy grande.
Si las líneas de fondeo (200) en la condición de proyecto no son verticales (como se ven en la Figura 10), sino ligeramente divergentes (como se ven en la Figura 11), entonces, cuando la plataforma flotante (100) se ve arrastrada por el viento, la polea de sotavento se eleva respecto a la de barlovento, como consecuencia de ello, la plataforma flotante (100) tiene un ángulo de cabeceo opuesto a la fuerza del viento, este ángulo de cabeceo es proporcional al desplazamiento horizontal de la plataforma flotante (100) y es apenas sensible al movimiento vertical de la misma.
Este ángulo hace que el peso (Q) de la góndola (14) tenga una componente axial opuesta al empuje del viento sobre las aspas del rotor, que es proporcional al ángulo girado, que a su vez es proporcional al movimiento horizontal de la plataforma flotante (100), que a su vez es proporcional a la fuerza ejercida por el viento. Si se sincronizan adecuadamente estas constantes de proporcionalidad, se puede conseguir que la componente axial del peso de la góndola (14) anule exactamente la fuerza del viento, sea cual sea la velocidad del viento (realmente esto solo es cierto hasta que se destense el cable de la línea de fondeo (200) de sotavento).
De esta forma se podría anular totalmente el momento flector en la base de la torre (13) debido al viento. Quedarían todavía las fuerzas y momentos debidos a las olas, pero son fuerzas y momentos menores. Como consecuencia de ello: - Se podría aligerar la torre (13), dándole menos espesor a sus elementos estructurales.
- Se reducen las fuerzas que actúan en los cojinetes de carga de la góndola (14).
- Se reducen las cargas sobre el fondeo, y la estructura de la plataforma flotante (100) podría ser más ligera (y barata de construir).
En plataformas flotantes (100) dedicadas al ocio marino, el agente externo que más influencia tiene en el confort de los pasajeros, es el efecto de las olas. Con el sistema propuesto, se anulan los movimientos de giro de la plataforma flotante (100), el movimiento vertical tiene poca influencia (sobre todo si se usa una plataforma flotante (100) de tipo semisumergible), pero queda el efecto del movimiento horizontal de las olas, que con mares severas puede generar aceleraciones importantes (hasta 1 .5 m/s2).
En algunas aplicaciones, se puede utilizar un sistema de fondeo divergente, que produzca un cabeceo opuesto al movimiento horizontal. Este cabeceo puede generar una aceleración longitudinal que se oponga a la aceleración del movimiento horizontal, de forma que la resultante sea perpendicular a la cubierta y por tanto menor que si la plataforma flotante (100) se mueve sin cabecear; esto mejora el confort de las personas embarcadas.
Una analogía terrestre de este movimiento horizontal y de cabeceo inverso, sería el movimiento de un columpio o de una hamaca: tiene movimientos y giros grandes, pero no producen la sensación psicológica de que haya aceleraciones. De hecho, las aceleraciones se mantienen perpendiculares a la superficie de la cubierta de la plataforma flotante (100) (perpendiculares a la superficie del asiento, en el caso del columpio).
El esquema de funcionamiento sería similar al de la Figura 11 , pero con un ángulo (A) de divergencia algo mayor que el mostrado de esta Figura. Una dificultad que aparece es que la anulación de las aceleraciones longitudinales sólo se puede conseguir para un rango de olas relativamente pequeño, por ejemplo se puede conseguir esta anulación para olas entre 8s y 10s; se trata entonces de sintonizar estos periodos con los periodos de las olas más probables; esta sintonización depende de:
- La geometría de la plataforma flotante (100) y de su estabilidad e inercia.
La geometría de las líneas de fondeo (200) y de sus características elásticas.
El cable de la línea de fondeo (200) es bastante largo, mide al menos el calado en la zona de operación, más la longitud de los brazos estructurales salientes (12) (por lo general entre 30 y 40m), más el doble de la altura entre las poleas exteriores (primeros medios de fijación rotativos (3)) respecto a la superficie de mar, más el doble del máximo recorrido vertical de la plataforma flotante (100) (altura de la marea + altura de la ola máxima), más un 20% del calado del mar en la zona de instalación y el margen que se crea conveniente por otros motivos.
De esta longitud, hay una parte que no sufre desgastes de ningún tipo, pero otra parte está sometida a rozamientos, flexión (en las poleas) y a fenómenos de fatiga.
Por ello, en algunas aplicaciones, los cables de los tramos de fondo (8) no llegan hasta el lecho o fondo marino (5), sino que se sujetan a una boya (9) intermedia situada relativamente cerca de la superficie del mar y que está anclada al fondo marino (5) mediante cadenas o cables, de forma que en caso de desgaste sólo haya que cambiar la parte superior del cable, que es la que más se desgasta y está más sometida a corrosión (además es la parte más accesible).
La longitud de los cables desmontables (o lo que es lo mismo, la profundidad de las boyas) debe ser tal que, con los mayores movimientos previsibles de la plataforma flotante (100), las boyas (9) nunca se acerquen a las poleas exteriores (primeros medios de fijación rotativos (3)); si se tocan, puede producirse una avería importante. El material del cable puede ser cualquiera que sea apto para cables, ente otros:
- Cable metálico trenzado: no hay posibilidad de que se retuerza, pues la tensión de las líneas de fondeo (200) (aplicada según las aristas de un prisma vertical) impide el giro de guiñada de la plataforma flotante (100).
- Cable de material sintético o textil.
- Cadenas de eslabones: esta es ideal para el tramo intermedio (7) (y la parte superior de los otros dos tramos) de las plataformas flotantes (100) que sirven de soporte de aerogeneradores, pues permite usar poleas dentadas y tienen radios de giro relativamente pequeños. Su inconveniente es que es más ruidosa. Para instalaciones de ocio es menos recomendable y debería estar muy bien aislada acústicamente.
En las plataformas de ocio marino, el tramo intermedio (7) y la parte superior de los otros dos tramos deberían ser de material textil, pues con olas, se está moviendo continuamente y tendría un comportamiento más silencioso que si es de cadena con eslabones (que podría originar problemas de ruido en la estructura).
En las plataformas flotantes (100) de gran tamaño o en las que sólo tienen tres líneas de fondeo (200), las fuerzas que aparecen en los cables pueden ser bastante elevadas. En ese caso, se puede desdoblar la línea en dos, tres o más líneas paralelas de menor dimensión. En ese caso:
Las poleas son dobles, triples o de más roldanas.
Los cables corren paralelos en todo su recorrido (en cada uno de sus tramos). Las uniones al contrapeso (1) y anillo de fondeo están muy próximas entre sí.
Aunque de alguna manera ya se han descrito, se resumen a continuación los tipos de fondeo que se pueden diseñar, utilizando sublíneas (200d, 200c) de fondeo agrupadas de formas diferentes. Todos son casos particulares del sistema de fondeo “SLP” (Soft Leg Platform) objeto de la presente invención.
En todos los casos se supone que hay un cierto número de líneas de fondeo (200) (formada cada una de ellas por dos sublíneas (200d, 200c) de fondeo, distribuidas uniformemente alrededor del contrapeso (1) central. En general cada sistema consta de tres líneas de fondeo (200), aunque puede tener un número mayor de ellas si la plataforma flotante (100) es suficientemente grande.
En todos los casos, los tramos centrales (6) de cable que salen hacia el contrapeso (1 ) central desde la polea interior (2) (segundo medio de fijación rotativo (2c) y, eventualmente, tercer medio de fijación rotativo (2d)) de todas las sublíneas (200d, 200c), tienen que estar a la misma distancia del eje central (300) de la plataforma flotante (100); las poleas exteriores (primeros medios de fijación rotativos (3)) pueden estar a distancias diferentes.
Los tramos de fondo (8) pueden llegar hasta el lecho o fondo marino (5), o estar conectados a una boya (9) intermedia, cuyo cable de anclaje la une al peso de fondo (4) correspondiente.
Fondeo SLP (Soft Leg Platform):
Este es el sistema de fondeo de acuerdo con la primera, segunda, tercera y cuarta formas de realización propuestas.
En este caso, en cada línea de fondeo (200) hay una primera sublínea (200d) (sublínea directa) (con o sin poleas interiores (terceros medios de fijación rotativos (2d)) y una segunda sublínea (200c) (que puede ser una sublínea cruzada o una sublínea diagonal), que tiene que tener su polea interior cruzada (segundo medio de fijación rotativo (2c)) que está en un brazo estructural saliente (12) diferente al de la polea exterior (primer medio de fijación rotativo (3)). Atendiendo a las características de la segunda sublínea (200c), hay cuatro posibilidades:
- Sublínea diagonal directa: El tramo intermedio (7) de cable de la segunda sublínea (200c) (que ahora se denomina diagonal) va directamente desde la polea exterior (primer medio de fijación rotativo (3)) a la polea interior (segundo medio de fijación rotativo (2c)); estas poleas están orientadas de forma tal que están en el plano que definen los dos tramos de cable que inciden en cada polea. En las Figuras 12 y 13 se pueden ver dos proyecciones (3D y planta) de un fondeo de este tipo, para una plataforma flotante (100) de tres brazos estructurales salientes (12).
- Sublínea cruzada: El tramo intermedio (7) de cable de la segunda sublínea (200c) (que ahora se denomina cruzada) pasa por una o vahas poleas intermedias (medios de guiado rotativo (11)) que le sirven de apoyo y ayudan a mantener la alineación de las poleas con los cables del fondeo cuando la plataforma flotante (100) cambia de posición. En una de sus versiones posibles, las poleas intermedias están fijadas a los brazos estructurales salientes (12) de la plataforma flotante (100), tal como se puede ver en las Figuras 14 y 15. Se consigue así que las poleas principales (interior (segundo medio de fijación rotativo (2c) y exterior (primer medio de fijación rotativo (3)) sean todas paralelas en la condición de proyecto y que las poleas exteriores de las dos sublíneas (200d, 200c) puedan estar montadas en el mismo soporte basculante.
- Sublínea diagonal circular: Esta es una versión para un número elevado de líneas de fondeo (200) (cinco o más). Es especialmente adecuada para plataformas flotantes (100) de ocio marino, que posean una cubierta de gran superficie, de forma más o menos circular. Consta de vahas líneas de fondeo (200) compuestas, cuya segunda sublínea (200c) (sublínea diagonal) incluye poleas intermedias (medios de guiado rotativo (11)) que desvían el tramo intermedio (7) de la segunda sublínea (200c) de la línea de fondeo (200), más o menos por debajo del contorno de la superestructura de la plataforma flotante (100). Estas poleas permiten además que los cables esquiven columnas (800) que formen parte de la estructura de la plataforma flotante (100). En las Figuras 16 y 17 se puede ver un ejemplo de este tipo de fondeo, que se ha utilizado también para la realización de una plataforma para ocio marino (Figuras 26 y 27).
- Sublínea cruzada en estrella: Esta es una versión para un número elevado de líneas de fondeo (200) (cinco o más). Es especialmente adecuada para plataformas flotantes (100) de ocio marino, que posean una cubierta de gran superficie; es muy similar a la disposición circular, pero la polea de reenvío (polea intermedia o medio de guiado rotativo (11)) está situada muy cerca del eje central (300) de la plataforma flotante (100), de forma tal que los dos tramos en que se divide el tramo intermedio (7) de cable quedan paralelos a los planos definidos por el eje central (300) de la plataforma flotante (100) y los tramos de fondo (8) de dos líneas de fondeo (200) adyacentes (los respectivos planos de fondeo de dos líneas de fondeo (200) adyacentes). La ventaja de este sistema es que así, las poleas exteriores (primeros medios de fijación rotativos (3) de las dos sublíneas (200d, 200c), en caso de existir dos poleas exteriores para una misma línea de fondeo (200)) son paralelas y se pueden instalar sobre el mismo soporte basculante bajo el primer entrepuente (26) del casco de la plataforma flotante (100), y la polea interior (segundo medio de fijación rotativo (2c)) es paralela a las poleas exteriores, de forma que se puede instalar sobre un eje fijo unido al fondo del primer entrepuente (26) de la plataforma. En las Figuras 18 y 19 se puede ver un ejemplo de este tipo de fondeo, que se ha utilizado también para la realización de una plataforma para ocio marino (Figura 28).
Las dos últimas posibilidades son casos particulares para plataformas flotantes (100) de gran tamaño. La tercera forma de realización está indicada para plataformas flotantes (100) de gran superficie de cubierta y la cuarta forma de realización es válida también para plataformas flotantes (100) con brazos estructurales salientes (12).
Fondeo CLP (Cross Lea Platform)-. Este es el sistema de fondeo de acuerdo con la quinta forma de realización propuesta.
Este tipo de sistema de fondeo no tiene sublíneas directas; las dos sublíneas (200d, 200c) son diagonales. Sus tramos intermedios (7) se dirigen a los dos brazos estructurales salientes (12) contiguos al brazo estructural saliente (12) del que cuelgan las poleas exteriores (primeros medios de fijación rotativos (3)) de cada línea de fondeo (200). En las Figuras 20 y 21 se pueden ver dos proyecciones de este sistema de fondeo.
El fundamento teórico de la invención se basa en una construcción geométrica, tal como se puede ver en la Figura 6.
Cada cable de fondeo puede considerarse casi inextensible. Si lo suponemos formado por tres tramos con longitudes: T6 (longitud del tramo central), T7 (longitud del tramo intermedio) y T8 (longitud del tramo de fondo), la suma de longitudes (T6, T7, T8) de los tres tramos (6, 7, 8) es constante: T6 + T7 + T8 = constante.
Puesto que el tramo intermedio (7) no varía de longitud, también se cumple que: T6 + T8 = constante.
La plataforma flotante (100), tiene dos líneas de fondeo (200) (si se supone el movimiento plano, si se plantea tridimensional habría al menos tres líneas de fondeo (200), pero el resultado es el mismo). Si comparamos las longitudes de los tramos en dos posiciones distintas de la plataforma:
Condición de proyecto: tiene dos líneas (P y Q), cada una con sus tres tramos citados;
Otra posición cualquiera: las líneas se transforman en (R y S). Puesto que cada línea (P, Q, R, S) mantiene su longitud:
T6(P) + T8(P) = T6(R) + T8(R) y T6(Q) + T8(Q) = T6(S) + T8(S)
Puesto que T6(P) = T6(Q) y T6(R) = T6(S) (representan la misma medida).
Si partimos de dos líneas simétricas, es decir T8(P) = T8(Q), entonces T8(R) = T8(S)
Es decir las dos poleas exteriores (primeros medios de fijación rotativos (3)) y los dos pesos de fondo (4) forman un cuadrilátero “articulado” en que sus lados opuestos son ¡guales y por tanto el lado superior se mantiene siempre paralelo al lado inferior, independientemente de la posición del centro de la plataforma flotante (100).
Para bloquear el giro de la plataforma flotante (100) en un plano, son suficientes dos líneas de fondeo (200), tal como se ven en la Figura 6. Por ejemplo, si se quiere evitar el ángulo de cabeceo, se necesitan dos líneas de fondeo (200) en un plano longitudinal, con una polea exterior en proa y otra exterior en popa, con las dos poleas interiores entre ellas (no es necesario que los tramos intermedios del cable de fondeo sean ¡guales). Si se quiere evitar el ángulo de balance, las dos líneas de fondeo (200) deben estar en un plano transversal a las olas.
Para bloquear simultáneamente los dos giros (cabeceo y balance) se necesitan al menos tres líneas de fondeo, con las poleas exteriores (primeros medios de fijación rotativos (3)) dispuestas preferentemente en los vértices de un triángulo equilátero, aunque también podría ser un triángulo isósceles si la plataforma flotante (100) fuese más larga que ancha o si la distribución general de los locales del interior de la plataforma flotante (100) no permite una solución con simetría circular. En las Figuras 8 y 9 se puede ver un esquema de una línea de fondeo (200) completa formada por una sublínea directa (primera sublínea (200d)) y una sublínea cruzada (segunda sublínea (200c)), que representan las posiciones de la plataforma flotante (100) en su condición de proyecto (Figura 8) y en otra posición cualquiera (Figura 9).
Las dos poleas interiores (2d: directa y 2c: cruzada) están a la misma distancia del eje central (300) de la plataforma flotante (100) (en realidad los ejes de las poleas están a distancias diferentes, pero de forma que los tramos centrales (7) parezcan provenir de puntos simétricos: el punto de contacto del cable con la polea). En la condición de proyecto (Figura 8), las longitudes de las dos sublíneas (200c, 200d) son diferentes, pero son tales que los tramos centrales (6d, 6c) son ¡guales, de forma que el contrapeso (1) central está situado en correspondencia con el eje central (300) de la plataforma flotante (100).
Cuando se mueve la plataforma flotante (100) (Figura 9), los tramos de fondo (8d y 8c) cambian de longitud, pero siguen siendo ¡guales entre sí. Los tramos intermedios (7d y 7c) no varían de longitud (las poleas se mueven rígidamente con la plataforma). Puesto que la longitud total de cada sublínea (200c, 200d) no varía, los tramos centrales (6d y 6c) también varían de longitud, pero se mantienen ¡guales entre sí, es decir el contrapeso (1 ) central se mueve verticalmente, pero se mantiene situado en correspondencia con el eje central (300) de la plataforma flotante (100). De esta forma se elimina totalmente el movimiento pendular que podía tener el contrapeso (1) en la versión original del sistema de fondeo.
Cuando se combinan dos líneas de fondeo (200) completas (cada una de ellas con sublínea directa (primera sublínea (200d)) y sublínea cruzada (segunda sublínea (200c))), aplicando el mismo razonamiento que cuando las líneas son centrales (en plataformas del estado de la técnica con pozo central por el que pasan las líneas centrales), los tramos de fondo (8) de cada línea de fondeo (200) completa se mantienen ¡guales entre sí, sea cual sea la posición de la plataforma flotante (100). En este sentido el sistema de fondeo (con sublíneas directas (200d) y cruzadas (200c)) se comporta como si todas las sublíneas fuesen centrales.
El esquema de funcionamiento no se puede analizar mediante un esquema plano, pues todas las sublíneas son tridimensionales; no obstante funciona exactamente igual que en la solicitud internacional PCT/IB2022/000334. En la Figura 2 se puede ver el esquema de una línea de fondeo completa, como se puede ver todos sus elementos están en el mismo plano.
En la Figura 1 se pueden ver las líneas de fondeo de dos brazos opuestos (tal como se describían en la solicitud internacional PCT/IB2022/000334); como se puede comprobar, todos sus elementos siguen estando en el mismo plano. Para tener un efecto tridimensional, hacen falta dos grupos de este tipo dispuestos en planos perpendiculares, es decir, el sistema de fondeo de la solicitud internacional PCT/IB2022/000334 necesita un número par de brazos.
La Figura 3 representa el esquema de una línea de fondeo (200) completa, tal como se propone en la presente solicitud de patente. Como se puede comprobar es casi idéntico al de la Figura 2, pero parte de los elementos de la sublínea cruzada (segunda sublínea (200c)) están girados, para alinearlos a dos brazos consecutivos o adyacentes de la plataforma flotante (100).
La sublínea directa (primera sublínea (200d) (representada mediante línea de trazos) está toda en el mismo plano (plano de fondeo de la línea de fondeo (200) definido por el eje central (300) y el tramo de fondo (8)). Esta sublínea directa (primera sublínea (200d) va desde el peso de fondo (4) hasta la boya (9) intermedia, y desde ahí a una de las poleas exteriores (primeros medios de fijación rotativos (3)), luego a la polea interior directa (tercer medio de fijación rotativo (2d)) y desde ahí al contrapeso (1) central.
La sublínea cruzada (segunda sublínea (200c) (representada mediante línea continua), está en dos planos diferentes: uno coincide con el plano de la sublínea directa (plano de fondeo de la línea de fondeo (200), pero el otro plano está girado 120e (si la plataforma flotante (100) tiene tres brazos estructurales salientes (12); si la plataforma tiene más de tres brazos estructurales salientes (12), este ángulo será menor = 360e/número de brazos). La sublínea cruzada comprende su tramo de fondo (8) que arranca en el peso de fondo (4) y pasa por la boya (9) intermedia; a continuación la sublínea cruzada pasa por otra polea exterior (primer medio de fijación rotativo (3)) y desde ahí se dirige a un medio de guiado rotativo (11) (polea intermedia de soporte del tramo intermedio (7)), que está orientada según un plano horizontal (su eje de giro es vertical); en este medio de guiado rotativo (11), el cable cambia de dirección y pasa al plano secundario, en dirección a la polea interior cruzada (segundo medio de fijación rotativo (2c)) y desde ahí se dirige al contrapeso (1) central.
Utilizando un razonamiento similar al de los sistemas de fondeo anteriores, sea cual sea el movimiento de la plataforma flotante (100), los tramos centrales (6) siempre serán ¡guales (pueden cambiar de longitud, pero justo en la misma cantidad); esto quiere decir que el contrapeso (1) central sólo se puede mover en un plano que es la mediatriz entre las dos poleas interiores (2d y 2c).
Con una sola línea de fondeo (200) esto es poco útil, pero si se añade la línea de fondeo (200) correspondiente a otro de los brazos estructurales salientes (12) (tal como se puede ver en la Figura 5), entonces se garantiza que las poleas exteriores (primeros medios de fijación rotativos (3)) estarán siempre a la misma altura y que el contrapeso (1 ) también se mantendrá en el plano bisectriz de la segunda línea. Esto significa que el contrapeso (1 ) se tiene que mover en la intersección de los dos planos bisectrices de las dos líneas de fondeo (200). Esta bisectriz es precisamente el eje central (300) de simetría de la plataforma flotante (100); así pues, el contrapeso (1 ) central se va a mover siempre en el eje central (300) de la plataforma flotante (100): puede moverse hacia arriba o hacia abajo, pero sin movimientos laterales.
Al añadir una tercera línea de fondeo (200), se garantiza que todas las poleas exteriores (primeros medios de fijación rotativos (3)) se mantienen a la misma altura; la plataforma flotante (100) puede moverse verticalmente, pero se elimina totalmente el ángulo de cabeceo y de balance. Al estar la plataforma flotante (100) siempre vertical, su eje central (300) de simetría se mantiene siempre vertical (aunque se puede mover libremente en dirección horizontal), lo que implica que el contrapeso (1 ) siempre va a estar en la misma vertical de la plataforma flotante (100). Así se elimina totalmente el movimiento pendular que caracteriza el fondeo tradicional con sublíneas centrales.
En resumidas cuentas, el movimiento de la plataforma flotante (100) y del contrapeso (1) central es exactamente el mismo que con la invención propuesta en la solicitud internacional PCT/IB2022/000334, pero con la ventaja de que se puede aplicar a cualquier número de líneas de fondeo (200); concretamente es válido para plataformas flotantes (100) de tres brazos estructurales salientes (12). Por el contrario, el sistema de fondeo de la solicitud internacional PCT/IB2022/000334 sólo era válido para plataformas flotantes (100) con un número par de brazos estructurales salientes (12) (cuatro brazos en la mayor parte de las aplicaciones).
El esquema de funcionamiento del sistema con sublíneas directas (200d) y cruzadas (200c), se puede ver en la Figura 6. Si tuviese sólo sublíneas centrales sería el mismo esquema, con el ángulo (Í3) entre los tramos centrales (6) nulo (es decir serían verticales).
Como se puede ver, el esquema es plano (aunque las líneas de fondeo (200) están en planos diferentes, a 0e y a ±120e); todos los tramos de las líneas de fondo se han girado 60e para que las sublíneas cruzadas se vean en el mismo plano que las sublíneas directas (el plano del dibujo).
Cuando los agentes externos (vientos, olas o corrientes marinas) actúan sobre la plataforma flotante (100), generan un momento flector (Mf) y una fuerza (Fx) que empuja a la plataforma flotante (100) hasta la posición que se ve en la Figura.
Por otro lado, el contrapeso (1) central tiene un peso neto (peso en seco menos empuje hidrostático) que tensa los dos cables de las líneas de fondeo (200) generando dos fuerzas, en barlovento (F1 ) y en sotavento (F2). Si se prescinde de las fuerzas de inercia debidas a los movimientos de la plataforma flotante (100) y del contrapeso (1), las fuerzas en los cables directos y cruzados en cada lado son ¡guales:
F1c = F1d = F1/2, y F2c = F2d = F2/2
Por el equilibrio de fuerzas en el contrapeso se cumple que: (F1 + F2) x Coseno (Í3) = P
Estas fuerzas se transmiten por el cable hasta los pesos de fondo (4).
Para que la plataforma flotante (100) esté en equilibrio, las dos fuerzas F1 y F2 aplicadas en los tramos de fondo (8) deben compensar totalmente el momento fleeter de tes agentes externos (Mf).
(F1-F2) x Distancia poleas exteriores x coseno (a) = Mf
Puesto que tes cables no trabajan a compresión, mientras F2 sea positiva, la plataforma flotante (100) mantendrá la horizontalidad, luego empezará a inclinarse hacia sotavento (cuando F2 se anule).
Por otro lado, el equilibrio de las fuerzas horizontales impone que:
FH = F1 x seno (a) + F2 x seno (a) = P x seno (a) / coseno (B)= Fx
Según una vahante del sistema de fondeo en donde las líneas de fondeo (200) son divergentes, se puede corregir el ángulo de cabeceo impuesto por fuerzas externas que actúan sobre la plataforma flotante (100). La elasticidad de las líneas de fondeo (200) hace que cuando la plataforma flotante (100) está sometida a fuerzas exteriores, tes cables de barlovento se alarguen y tes de sotavento se encojan; como consecuencia de estas deformaciones la plataforma flotante (100) adquiere un pequeño ángulo de cabeceo hacia sotavento.
La variante indicada consiste en dar un ángulo a los tramos de fondo (8) de las líneas de fondeo (200), separando hacia afuera los puntos de anclaje de la vertical de las poleas exteriores (primeros medios de fijación rotativos (3)), tal como se puede ver en la Figura 11 . Cuando la plataforma flotante (100) se mueve horizontalmente arrastrada por el viento, la cubierta de la plataforma flotante (100) no se mantiene horizontal, sino que se gira hacia barlovento. Este ángulo de giro está relacionado geométricamente con el ángulo de los tramos de fondo (8) y con la profundidad del fondo marino (5), siendo aproximadamente proporcional a la magnitud del movimiento horizontal. Ajustando el ángulo de los tramos de fondo (8) de las líneas de fondeo (200), se puede anular exactamente el cabeceo de la plataforma flotante (100) debido a la elasticidad de las líneas de fondeo (200), sea cual sea la fuerza horizontal aplicada (hasta que se destense alguna de las líneas).
A continuación se proponen, a modo de ejemplo, tres alternativas para sujetar los cables del tramo de fondo (8) en el lecho o fondo marino (5). En todas ellas se pueden incluir unas boyas (9) intermedias en los tramos de fondo (8) (situadas a una profundidad similar a la del contrapeso (1), en su posición de proyecto) unidas mediante cables o cadenas al anclaje en el fondo marino (5).
De esta manera, la instalación final es muy sencilla, ya que basta sujetar los cables en las boyas (9) y la plataforma flotante (100) queda totalmente operativa.
- Se puede usar un anillo de fondeo, por ejemplo uniendo todos los pesos de fondo (4) mediante una estructura rígida, que incluya unos puntos de sujeción para los cables en los lugares adecuados. Esta estructura incluye varios tanques de lastre, que inicialmente están vacíos para que el conjunto tenga una flotabilidad ligeramente positiva. Esta estructura se traslada al parque eólico y se hunde en el lugar donde se desee instalar la plataforma flotante (100). Esta operación no necesita una gran precisión, pues se tiene la seguridad de que los puntos de anclaje van a estar correctamente colocados, sea cual sea la posición en la que quede el anillo en el fondo marino (5). Cuando se coloque la plataforma flotante (100) en su lugar o emplazamiento de instalación, basta sujetar los cables en los anclajes y la plataforma flotante (100) queda operativa; - Se pueden emplear pilotes clavados en el fondo marino (5). Este sistema está copiado de las cimentaciones de las plataformas tipo TLP. Se prepara el fondo marino (5) y se clavan pilotes que incluyen los puntos de anclaje de las líneas de fondeo (200). La diferencia fundamental con el sistema TLP, es que las tensiones de tracción que deben soportar con el sistema de fondeo de la presente invención son mucho menores que en una plataforma TLP, de hecho, para una potencia instalada igual, las tensiones son del orden de la quinta parte o menores. Esto hace que la preparación del fondeo sea mucho más económica y sencilla.
- Se pueden emplear pesos de fondo (4) situados previamente en el fondo marino (5). Debido a las bajas tensiones de los cables, se pueden utilizar pesos de fondo (4) individuales situados con precisión en el fondo marino (5), sobre una explanada preparada con antelación. Es una solución intermedia entre el anillo de fondeo (que es una estructura muy grande pero sencilla de colocar) y el uso de pilotes (hay que preparar ligeramente el terreno y situar los pesos de fondo (4) con precisión).
Comparación del sistema de fondeo de la presente invención con las plataformas TLP (Tension Leg Platform):
Aparentemente las plataformas flotantes (100) con sistema de fondeo tipo TLP sirven para lo mismo que una plataforma flotante (100) con el sistema de fondeo de la presente invención. Su objetivo es anular el movimiento de cabeceo/balance de la plataforma flotante (100). Sin embargo, el principio de funcionamiento de ambas es radicalmente diferente y sus características cinemáticas y dinámicas también lo son, tal como se puede ver en la tabla siguiente:
Figure imgf000050_0001
A continuación se describen y comentan las Figuras de la presente solicitud de patente.
En todas las Figuras se ha reducido la profundidad a la que se encuentra el fondo marino (5), para que las imágenes sean más proporcionadas y fáciles de interpretar. Si el lecho marino estuviese tan cerca, no merecería la pena que fuesen plataformas flotantes (100), ya que sería mejor que estuvieran directamente apoyadas en el fondo marino (5). En proyectos reales, el contrapeso (1) también estaría proporcionalmente a mayor profundidad de lo que se muestra en las Figuras.
En la Figura 1 se muestra un esquema básico de las líneas de fondeo (200) (según el sistema de fondeo de la solicitud internacional PCT/IB2022/000334). Una instalación de este tipo consta de una plataforma flotante (100) flotando en el mar, dotada de un número par de líneas de fondeo (200) (el mínimo es dos líneas de fondeo (200) cuando sólo se quiere anular el movimiento de giro en una dirección, como por ejemplo el cabeceo; el mínimo es cuatro líneas de fondeo (200) cuando se quiere anular simultáneamente el cabeceo y el balance). Cada línea de fondeo (200) está compuestas por dos sublíneas (200d, 200c), cada una de las cuales consta de: una polea interior (segundo medio de fijación rotativo (2c) y, eventualmente, tercer medio de fijación rotativo (2d)) y una polea exterior (primer medio de fijación rotativo (3)), que soportan un cable de fondeo compuesto por tres tramos: un tramo de fondo (8) que llega hasta un peso de fondo (4) apoyado en el fondo marino (5); otro tramo central (6) sujeto al contrapeso (1 ) central, y; un tramo intermedio (7) que une los otros dos tramos (6, 8). El contrapeso (1) central está compartido por todas las líneas de fondeo (200). El tramo de fondo (8) puede estar dividido en dos subtramos o porciones, que se unen a una boya (9) intermedia; en este caso, la parte inferior o primera porción de este tramo de fondo (8) es común a todas las sublíneas (200d, 200c) que cuelgan del mismo brazo estructural saliente (12). En la Figura se han representado simultáneamente dos líneas de fondeo (200) completas, una mediante línea continua (la del brazo de la derecha) y la otra (la de un brazo opuesto) mediante línea discontinua.
La Figura 1 se corresponde con la disposición de líneas de fondeo (200) de dos brazos estructurales salientes (12) opuestos (puesto que la solicitud internacional PCT/IB2022/000334 requiere un número par de brazos estructurales salientes (12)). En la Figura 2 se han representado las sublíneas (200d, 200c) de una sola línea de fondeo (200) del mismo sistema de fondeo de la Figura 1 . En la Figura 2 se pueden ver con más claridad los elementos de la línea de fondeo (200) así como la diferencia entre la sublínea directa (de trazos) y la sublínea cruzada (línea continua).
El tramo de fondo (8) va desde el peso de fondo (4) a una boya (9) intermedia en la que se bifurca en los cables de cada una de las dos sublíneas (200d, 200c) que llegan hasta las poleas exteriores (primeros medios de fijación rotativos (3)); esta polea es doble (con el mismo eje de giro. Desde ahí los dos tramos van hacia las poleas interiores:
- El tramo intermedio (7d) de la sublínea directa (200d) llega hasta la polea interior directa (2d) y se dirige por su tramo central (6d) directamente hacia el contrapeso (1) central que es común a todas las sublíneas (200d, 200c).
El tramo intermedio (7c) de la sublínea cruzada (200c) pasa hasta el brazo estructural saliente (12) opuesto, llegando a la polea interior cruzada (2c), que está a la misma distancia del eje central (300) que la polea interior directa (2d); en esta polea cambia de nombre y se denomina tramo central (6c) llegando hasta el contrapeso (1) central.
El sistema de fondeo completo (según la solicitud internacional PCT/IB2022/000334) está formado por un número par de líneas como la descrita en la Figura 2, que cuelgan de sus respectivos brazos estructurales salientes (12). En la posición de reposo, toda la línea de fondeo (200) y todos sus elementos, están en el mismo plano y el tramo intermedio (7) atraviesa el casco o estructura principal (400) de la plataforma flotante (100) por su parte superior.
En la Figura 3 se muestra el esquema básico del sistema de fondeo de la presente invención. En esta Figura 3 se representa (de manera análoga a la Figura 2) una única línea de fondeo (200) de una línea de fondeo (200). Esta línea de fondeo (200) incluye una primera sublínea (200d) (en este caso, una sublínea directa (representada mediante línea de trazos)) y una segunda sublínea (200c) (en este caso, una sublínea cruzada (representada mediante línea continua)). Como se puede ver, el esquema es muy parecido al esquema de la solicitud internacional PCT/IB2022/000334, pero con una diferencia que es fundamental: al menos un tramo de la segunda sublínea (200c) no se encuentra en el plano de fondeo definido por el eje central (300) de la plataforma y el tramo de fondo (8) de la línea de fondeo en cuestión.
Una primera parte de la segunda sublínea (200c) sí está en el mismo plano de fondeo que la primera sublínea (200d), pero cerca del eje central (300) de la plataforma flotante (100), cambia de dirección ayudada por uno o vahos medios de guiado rotativo (11) (poleas intermedias de soporte del tramo intermedio (7)) y se alinea con el plano vertical del brazo estructural saliente (12) adyacente (en una plataforma flotante (100) de tres brazos estructurales salientes (12) está orientada a 120e del primer brazo; si la plataforma flotante (100) tuviese cinco brazos estructurales salientes (12), el ángulo entre los dos brazos estructurales salientes (12) sería de 72e).
El resto de elementos son ¡guales, dispuestos de forma similar, pero orientados en dos planos diferentes. El medio de guiado rotativo (11 ) (polea intermedia soporte del tramo intermedio (7)) puede desdoblarse en dos poleas, colocadas en los dos brazos estructurales salientes (12) adyacentes, para alejar el tramo intermedio (7) de la segunda sublínea (200c) del casco o estructura principal (400) de la plataforma flotante (100), tal y como puede verse en la Figura 14 y en la Figura 15.
En la Figura 4 se representan juntas las líneas de fondeo (200) que se apoyan en dos brazos estructurales salientes (12) adyacentes o consecutivos. Es un esquema análogo al de la Figura 1 , pero en este caso la Figura 4 aparece plegada 60e para que las líneas de fondeo (200) se mantengan en los tres brazos estructurales salientes (12) de la plataforma flotante (100). Si se analiza con detalle (y de forma estricta) puede llevar a error, pues en esta imagen también se ven partes de las sublíneas del tercer brazo estructural saliente (12), pero tiene la ventaja de que es más intuitiva para hacerse una ¡dea del sistema de fondeo. Además cada brazo se ve tal como se vería la plataforma real.
En la Figura 5 se muestra un esquema del sistema de fondeo completo de una plataforma flotante (100) de tres brazos estructurales salientes (12), según una forma de realización del sistema de fondeo de la presente invención. Incluye todos los elementos que se han descrito en la Figuras 3 y en la Figura 4.
En la Figura 6 se muestra un esquema del principio geométrico que regula las longitudes de cada tramo de las líneas de fondeo (200) y justifica que la plataforma flotante (100) siempre se mueve paralelamente a la posición inicial de la misma. El esquema se corresponde con sublíneas de fondeo centrales (tal como se definían en el documento ES 2629867 A2) y se ha mantenido por compatibilidad.
En la Figura 7 se muestra un esquema del principio dinámico, con las fuerzas que actúan sobre los cables de las líneas de fondeo (200) cuando la plataforma flotante (100) está sometida a una fuerza (Fx) y un momento flector (Mf) originados por los agentes externos (viento, olas o corrientes marinas). La suma de las tensiones en todas las líneas de fondeo (200) es siempre constante (igual al peso aparente del contrapeso (1) central, dividido por el coseno del ángulo IB); la diferencia entre las tensiones de las líneas es proporcional a momento flector aplicado y la fuerza horizontal (FH) que es capaz de soportar la plataforma flotante (100) es proporcional al seno del ángulo (a) de las líneas de fondeo (200) con la vertical. Cuando las dos sublíneas de sotavento se destensan, la plataforma flotante (100) pierde la horizontalidad (aparecen movimientos de cabeceo o balance).
En la Figura 8 y en la Figura 9 se muestra un esquema básico del sistema de fondeo, similar al de la Figura 1 , en el que se han suprimido las boyas (9) intermedias, de forma que los tramos de fondo (8) de las sublíneas directas (8d) y de las sublíneas cruzadas (8c) llegan hasta el peso de fondo (4) que hay en el lecho o fondo marino (5). La Figura 8 representa a la plataforma flotante (100) en su posición de reposo y la Figura 9 corresponde a la plataforma flotante (100) cuando ha cambiado de posición (horizontal y vertical) por efecto del viento y las olas.
La Figura 10 muestra un esquema de funcionamiento del sistema de fondeo con líneas paralelas, en el que los tramos de fondo (8) son verticales en su posición de reposo (líneas de trazos); cuando la plataforma flotante (100) se mueve (línea continua), la cubierta de la plataforma flotante (100) se mantiene siempre horizontal. La posición de las poleas se ha alterado un poco intencionadamente, para facilitar la interpretación del esquema. En la Figura 11 se muestra un esquema de funcionamiento del sistema de fondeo con líneas divergentes, en el cual los tramos de fondo (8) no bajan verticales hasta el fondo marino (5), sino que su trazado forma un ángulo (A) con la vertical. Cuando la plataforma flotante (100) se mueve horizontalmente, se inclina hacia barlovento. En primera aproximación es como si girase alrededor del punto de intersección de los dos tramos de fondo (8). Si la plataforma flotante (100) es un soporte de aerogeneradores marinos, con una torre (13) y una góndola (14) de aerogenerador, se puede conseguir que la componente axial del peso de la góndola (14) (debida a la inclinación de la torre (13)) compense exactamente el empuje del viento sobre las palas del rotor, de forma que se anule el momento flector en toda la torre (13) del aerogenerador (y por tanto que se anulen también los momentos de flexión que trasmite la torre (13) a la plataforma flotante (100)).
En la Figura 12 y en la Figura 13 se muestra una primera forma de realización del sistema de fondeo según la presente invención.
En la Figura 12 y en la Figura 13 se muestra un esquema del sistema de fondeo (SLP o Soft Leg Platform), de una plataforma flotante (100) con tres líneas de fondeo (200). La segunda sublínea (200c) de cada línea de fondeo (200) es una sublínea diagonal directa (sin medios de guiado rotativo (11), es decir, sin poleas intermedias de soporte del tramo intermedio (7)).
Cada línea de fondeo (200) consta de una primera sublínea (200d) (en este caso una sublínea directa), en la que se ha suprimido la polea interior directa (tercer medio de fijación rotativo (2d)) y una segunda sublínea (200d) (en este caso, una sublínea diagonal), con la polea interior cruzada (segundo medio de fijación rotativo (2c)) situada en otro de los brazos estructurales salientes (no representados) de la plataforma flotante (100).
En las Figuras 12 y 13 se ha suprimido cualquier referencia a la plataforma flotante (100) y sólo se han representado las líneas de fondeo (200), el contrapeso (1) central, las boyas (9) intermedias de las líneas de fondeo (200) y los pesos de fondo (4). La Figura 12 representa una vista en perspectiva y la Figura 13 representa una vista en planta del sistema de fondeo, según esta primera forma de realización. Sólo se han rotulado los tramos de las sublíneas de fondeo directas (6d, 7d y 8d) y los tramos de las sublíneas de fondeo cruzadas (6c, 7c, y 8c); los tramos de fondo (8c y 8d) apenas si se distinguen en la vista en planta, pues son casi verticales.
En la Figura 14 y en la Figura 15 se muestra una segunda forma de realización del sistema de fondeo objeto de la presente invención.
En la Figura 14 y en la Figura 15 se muestra un esquema del sistema de fondeo (SLP) de una plataforma flotante (100) con tres líneas de fondeo (200). La segunda sublínea (200c) de cada línea de fondeo (200) es una sublínea cruzada que pasa por dos medios de guiado rotativo (11) (dos poleas intermedias de reenvío y de soporte de los tramos intermedios (7)), para que dichos tramos discurran paralelos a los brazos estructurales salientes (12) que sujetan las poleas interiores (segundo medio de fijación rotativo (2c) y, eventualmente, tercer medio de fijación rotativo (2d) (no representado)) y las poleas exteriores (primer medio de fijación rotativo (3)).
La Figura 14 representa una vista en perspectiva de esta segunda forma de realización del sistema de fondeo y la Figura 15 representa una vista en planta de esta segunda forma de realización del sistema de fondeo.
Esta segunda forma de realización del sistema de fondeo es la configuración básica preferente para plataformas flotantes (100) que han de servir como soporte para aerogeneradores marinos.
La Figura 22, la Figura 23 y la Figura 24 muestran una plataforma flotante (100) soporte de un aerogenerador marino, según esta segunda forma de realización de la invención.
La Figura 16 y la Figura 17 muestran una tercera forma de realización del sistema de fondeo objeto de la presente invención. Se trata de un sistema de fondeo diagonal. Se muestra un sistema de fondeo para una plataforma flotante (100) con seis líneas de fondeo (200), donde cada línea de fondeo (200) comprende una primera sublínea (200d) (o sublínea directa) y una segunda sublínea (200c) (o sublínea diagonal).
El tramo intermedio (7) de cada segunda sublínea (sublínea diagonal) pasa por un medio de guiado rotativo (11) (polea intermedia soporte del tramo intermedio (7)) situada en proximidad a la periferia de la plataforma flotante (100) y configurada para reorientar el trayecto de este tramo intermedio (7) (en este caso particular para evitar las columnas de la plataforma flotante (100)). Aunque la figura hace referencia a un sistema con un número par de brazos, sería exactamente igual para 5 o para 7 brazos, y es claramente diferente de la solución resultante de aplicar la patente PCT/IB2022/000334.
La Figura 18 y la Figura 19 muestran una cuarta forma de realización del sistema de fondeo objeto de la presente invención. Se trata de un sistema de fondeo cruzado en estrella. Aunque se ve muy diferente, el esquema es el mismo que en las figuras 16 y 17 en las que las poleas de reenvío se han movido de la periferia al centro de la plataforma (manteniéndolas a la misma altura).
Se muestra un sistema de fondeo para una plataforma flotante (100) con seis líneas de fondeo (200), donde cada línea de fondeo (200) comprende una primera sublínea (200d) (o sublínea directa) y una segunda sublínea (200c) (o sublínea cruzada).
El tramo intermedio (7) de cada segunda sublínea (sublínea cruzada) pasa por dos medios de guiado rotativo (11 ) (poleas intermedias soporte del tramo intermedio (7)) situadas en proximidad al eje central (300) de la plataforma flotante (100) y configuradas para reorientar el trayecto de este tramo intermedio (7). (en este caso particular para evitar el casco de la plataforma flotante (100)).
La tercera y la cuarta formas de realización del sistema de fondeo son adecuadas para plataformas de ocio, con una cubierta de grandes dimensiones, en las que el sistema de fondeo queda por debajo de la superestructura. Las líneas directas no tienen poleas intermedias, ya que si la hubiera, la polea interior cruzada (2c) tendría que estar mucho más cerca del eje central (300) de la plataforma flotante (100) (las poleas 2c y 2d tienen que estar juntas), deshaciendo el efecto ‘circular’ de los tramos de cable intermedios (7).
En la Figura 20 y en la Figura 21 se muestra una quinta forma de realización del sistema de fondeo.
En estas Figuras se muestra un esquema del sistema de fondeo (CLP o Cross soft Leg Platform) para una plataforma flotante (100) con tres líneas de fondeo (200), en el que no hay sublíneas directas y las dos sublíneas (200d, 200c) de cada brazo estructural saliente (12) (no representados) son sublíneas diagonales.
En la Figura 22, la Figura 23 y la Figura 24 se representa una plataforma flotante (100) que soporta una torre (13) de aerogenerador (la góndola (14) no aparece representada). Esta plataforma flotante (100) se emplea con un sistema de fondeo de acuerdo con la segunda forma de realización de la invención.
Estas Figuras se corresponden con la realización preferente de una plataforma flotante (100) soporte de aerogeneradores marinos, que es estable en su condición de lastre, con tres líneas de fondeo (200). En estas Figura se ha incluido el sistema de fondeo (SLP) completo con sublíneas directas (pero sin tramos de cable intermedios) y sublíneas cruzadas (con dos medios de guiado rotativo (11) (poleas intermedias de soporte del tramo intermedio (7)) en cada sublínea cruzada). Las Figuras representan tres vistas de la plataforma: la Figura 24 es una vista de perfil del conjunto, la Figura 22 es una vista frontal, y la Figura 23 es una vista en perspectiva del conjunto.
En la Figura 25, la Figura 26, la Figura 27 y la Figura 28 se representa una plataforma flotante (100) destinada a instalaciones deportivas, recreativas y/o de ocio marino. El casco o estructura principal (400) está formado por seis columnas (800) cilindricas, cada una de las cuales tiene una parte sumergida (29) y otra parte emergente (30) por encima de la línea de calado de operación (22). Esta zona emergente (30) une cada columna (800) al primer entrepuente (26) del casco de la plataforma flotante (100).
Este primer entrepuente (26) está formado por un disco, cuyo techo forma la cubierta principal (35) de la plataforma flotante (100) y comprende un balcón anular perimetral del segundo entrepuente (27).
Las columnas (800) comprenden tramos de prolongación (31) a través de los distintos entrepuentes (26, 27, 28), para mantener unida toda la superestructura de la plataforma flotante (100). Tres de estas columnas (800) siguen por encima de la cubierta superior (36), formando tres edificios (32) de alojamientos para los visitantes de la plataforma flotante (100).
La superestructura está formada por tres entrepuentes (26, 27, 28).
El primer entrepuente (26) es el más bajo, formando el casco resistente de la plataforma flotante (100), que en su parte central se prolonga hacia abajo, para formar una gran sala central o recinto inferior (37).
El segundo entrepuente (27) es totalmente diáfano, con su contorno acristalado aunque sus paneles son abatibles (replegables) para dejar el segundo entrepuente (27) totalmente abierto al exterior.
El tercer entrepuente (28) también es cerrado (para garantizar la resistencia estructural de la plataforma) y en su zona central hay otra sala central o recinto superior (33) cubierta por una cúpula (34) de cristal tintado.
Los techos (38) de los tres edificios (32) superiores están acondicionados como helipuertos. La plataforma flotante (100) está dotada de un sistema de fondeo (SLP) de líneas diagonales circulares (según la tercera forma de realización) o en estrella (según la cuarta forma de realización).
En la Figura 25 se muestra una vista en perspectiva superior de la plataforma flotante (100), cortada a %, para apreciar la distribución interior de la misma. La vista no incluye el sistema de fondeo.
En la Figura 26 se muestra una vista de perfil de la plataforma, cortada a % (la parte seccionada queda a la derecha), que incluye el sistema de fondeo diagonal circular (según la tercera forma de realización) (aunque alguno de sus elementos está parcialmente oculto por las columnas (800) que forman el casco sumergido de la plataforma flotante (100)). La línea horizontal que aparece en el dibujo es el calado de operación (22) o flotación de proyecto de la plataforma flotante (100).
En la Figura 27 se muestra una vista en perspectiva inferior de la plataforma flotante (100), cortada a %, para apreciar la distribución interior de la misma. La vista incluye el sistema de fondeo diagonal circular (según la tercera forma de realización) y sobre todo su interacción con las columnas (800) del casco. Como se puede ver, las sublíneas diagonales rodean las columnas (800), para unirse en el contrapeso (1 ) central; los medios de guiado rotativo (11) (poleas intermedias) desvían el tramo intermedio (7) de las segundas sublíneas (200c) para que las columnas (800) puedan estar más separadas entre sí.
En la Figura 28 se muestra una vista en perspectiva inferior de la plataforma flotante (100), análoga a la de la Figura 27, pero con el sistema de fondeo diagonal en estrella (según la cuarta forma de realización del sistema de fondeo).
Aunque el sistema de fondeo propuesto es válido para cualquier plataforma flotante (100) (destinada a soportar cualquier tipo de estructura), la presente invención está especialmente indicada para dos aplicaciones concretas, como soporte para aerogeneradores marinos y como plataforma para ocio marítimo. En lo que respecta al objeto de la patente propuesta (el sistema de fondeo), la diferencia principal entre las dos aplicaciones es el área de cubierta de la plataforma flotante (100), que hace que en las plataformas diseñadas como soporte de aerogeneradores, las poleas exteriores cuelguen de brazos estructurales salientes (12) dispuestos de forma radial, que sobresalen bastante de la cubierta de la plataforma flotante (100), y en las plataformas diseñadas para ocio marino, hace que las poleas exteriores cuelguen de brazos muy cortos que sobresalen del entrepuente principal (primer entrepuente (26) de la plataforma flotante (100).
En el caso del sistema de fondeo destinado preferentemente a emplearse con plataformas flotantes (100) para servir de soporte para aerogeneradores marinos (según la segunda forma de realización propuesta), el sistema de fondeo comprende los siguientes elementos:
- Tres líneas de fondeo (200), cada una de las cuales está formada por dos sublíneas (200c, 200d) de fondeo, cada una de las sublíneas (200d, 200c) consta de un cable de fondeo colgado de una polea exterior (primer medio de fijación rotativo (3)) y otra polea interior (2c, 2d), que a su vez cuelgan de un brazo estructural saliente (12) que sirve de soporte de las líneas de fondeo (200). El tramo de fondo (8) del cable de fondeo de todas las sublíneas (de la misma línea de fondeo/brazo), está sujeto a un peso de fondo (4) directamente o a través de una boya intermedia (9) y de un tramo de fondo común (primera porción o porción inferior del tramo de fondo (8)). El tramo central (6) de todas las líneas de fondeo (200) está sujeto a un contrapeso (1) central que es común para todas las líneas de fondeo (200). La línea cruzada (segunda sublínea (200c)) incluye dos medios de guiado rotativo (11) (poleas intermedias de soporte del tramo intermedio (7)), para desviar el recorrido del tramo intermedio (7) de la segunda sublínea (200c), desde el brazo estructural saliente (12) del que cuelgan las poleas exteriores (primeros medios de fijación rotativos (3)), hasta uno de los otros dos brazos estructurales salientes (12). De forma alternativa, podrían emplearse los otros sistemas de fondeo descritos (variantes de SLP o CLP).
Plataforma flotante (100): su casco o estructura principal (400) está unido a tres flotadores o elementos de flotación (500) cilindricos de eje vertical dispuestos en los vértices de un triángulo equilátero, suficientemente separados entre sí para que el contrapeso (1 ) central quepa en el centro de la plataforma con las holguras necesarias. Los elementos de flotación (500) están unidos al casco o estructura principal (400) de la plataforma flotante (100) mediante tres ‘patas’ o radios (600) inclinados que coinciden en un anillo estructural (19) reforzado situado debajo de la superestructura (20) de la plataforma flotante (100), bastante por encima de su calado de operación (22). En este anillo estructural (19) también se unen los tres brazos estructurales salientes (12) que sujetan las poleas de las líneas de fondeo (200) (las poleas exteriores (primeros medios de fijación rotativos (3)) y las poleas interiores (segundos medios de fijación rotativos (2c) y terceros medios de fijación rotativos (2d) si los hubiera). Sobre este anillo estructural (19) reforzado hay una superestructura (20) sobre la que se apoya la torre (13) del aerogenerador. En la condición de lastre, la línea de flotación (21) está situada aproximadamente a media altura de los elementos de flotación (500) (los cuales presentan una zona sumergida (15) y una zona emergente (16)) y la plataforma flotante (100) es estable por sí misma. En la condición de operación, el calado de operación (22) está situado a media altura de los radios (600) (los cuales presentan una zona de radio sumergida en condición de operación (17) y una zona nunca sumergida (18)) y los elementos de flotación (500) están totalmente sumergidos.
- Contrapeso (1 ) central: Es un tanque cilindrico de eje vertical, lastrado, pero con un volumen tal que completamente vacío tiene una flotabilidad positiva del orden del 10% de su volumen. Internamente está dividido en vahos tanques de lastre o cámaras inundables que se pueden llenar o vaciar de forma independiente. Con una de sus cámaras inundada, tiene una flotabilidad ligeramente negativa. En su techo, hay tres pares de anclajes donde se sujetan los extremos de los tramos centrales (6) de todas las sublíneas (200c, 200d) de las líneas de fondeo (200).
- Aerogenerador: compuesto por una torre (13) del aerogenerador que apoya sobre la estructura principal (400) de la plataforma flotante (100) (sobre la superestructura (20) que hay sobre el anillo estructural (19) reforzado) en donde se sujetan los brazos estructurales salientes (12) y la parte superior de los radios (600). La torre (13) sujeta la góndola (14), en donde se encuentra el aerogenerador, propiamente dicho. Es un componente comercial, por lo que no se describe con más detalle.
- Los elementos de flotación (500) sumergidos son accesibles (para operaciones de mantenimiento) a través de escaleras situadas en el interior de los radios (600) de la plataforma flotante (100). Se accede a dichas patas o radios (600) a través de puertas estancas situadas en las caras rectangulares correspondientes del anillo estructural (19) reforzado. Esta plataforma flotante (100) tiene dos modos de funcionamiento: o La condición de traslado (o de lastre), en la que todas sus cámaras inundables están vacías, todas las líneas de fondeo (200) recogidas y flota libremente sin más ataduras que el cable que le une al remolcador. En esta condición, la plataforma flotante (100) es estable por si sola. o La condición de operación (o de proyecto), en la que alguno de sus tanques de lastre o cámaras inundables está parcialmente lleno para conseguir que la plataforma flote en su calado de operación (22) o de proyecto. La plataforma flotante (100) está conectada al contrapeso (1) central mediante los tramos centrales (6) de todas las líneas de fondeo (200) y al fondo marino (5) mediante los tramos de fondo (8) de las líneas de fondeo (200). En esta condición la plataforma flotante (100) no tiene estabilidad por sí sola y depende exclusivamente de la estabilidad que le proporcionan las líneas de fondeo (200).
En las Figuras 22 a 24 se pueden ver tres vistas de esta plataforma flotante (100) (en la que se han identificado sus elementos principales), con el sistema de fondeo según la segunda forma de realización propuesta.
En el caso del sistema de fondeo destinado preferentemente a emplearse con plataformas flotantes (100) para servir de soporte para actividades de ocio marítimo, el requisito principal de esta realización es que necesita mucha superficie habitable y debe mantener un nivel de movimientos muy bajo, ya que la mayoría de las personas que la visiten no son profesionales de la mar y no están acostumbrados a los movimientos de los artefactos marinos.
Esta plataforma flotantes (100) para actividades de ocio marítimo (mostrada en las Figuras 25 a 28) se emplean preferentemente con sistemas de fondeo (SLP) según la tercera o cuarta formas de realización propuestas.
Los elementos principales de esta plataforma flotante con su correspondiente sistema de fondeo son:
- Seis líneas de fondeo (200), con los tramos intermedios (7) de las segundas sublíneas (200c) (sublíneas diagonales en círculo en la tercera forma de realización o sublíneas cruzadas en estrella en la cuarta forma de realización) reorientados mediante medios de guiado rotativos (11) (poleas intermedias de soporte del tramo intermedio (7)) para separarlos de las columnas (800) que forman el casco o estructura principal (400) de la plataforma flotante (100). En el fondeo en círculo (tercera forma de realización), los tramos intermedios (7) de las segundas sublíneas (200c) se desvían hacia afuera y en el fondeo en estrella (cuarta forma de realización) los tramos intermedios (7) de las segundas sublíneas (200c) se desvían hacia adentro.
Un casco o estructura principal (400) formado por seis columnas (800), cada una de las cuales tiene una parte sumergida (29) y otra parte emergente (30) que está por encima del calado de operación (22). Por los huecos que hay entre las columnas (800) pasan los tramos centrales (6) de todas las líneas de fondeo (200). En la parte inferior de las columnas (800) están los equipos esenciales de la plataforma flotante (100), considerada como buque, es decir generadores, aire acondicionado, potabilizadoras, servicios del buque, bombas, equipos vahos, etc. Los niveles o pisos más altos incluyen los alojamientos de la tripulación. - Tres de las columnas (800) que forman el casco o estructura principal (400), continúan hacia arriba, sujetando los distintos entrepuentes (26, 27, 28) que forman la superestructura de la plataforma flotante (100); las otras tres columnas (800) acaban en la cubierta principal (35). En la parte central de las columnas (800) hay ascensores y escaleras y todo el contorno está ocupado por alojamientos, dispuestos radialmente alrededor del tronco de ascensores/escaleras.
- Un primer entrepuente (26) circular forma el casco estructural de la plataforma flotante (100) y está dedicada a espacios comunes de todo tipo, tales como tiendas, restaurantes, cocinas, locales de comerciales o de ocio. En la zona central hay un recinto inferior (37) con una sala con una gran altura libre para actividades de tipo teatro, cine, exposiciones, museo, etc.
Un segundo entrepuente (27) diáfano acristalado, pero cuyo contorno se puede abrir para que todo el espacio interior quede comunicado con el exterior, incluye zonas de paseo, restaurantes y cafeterías exteriores, zonas ajardinadas, fuentes, etc. A su alrededor, en la cubierta principal (35) hay un anillo que se puede acondicionar como solárium o como miradores.
Un tercer entrepuente (28) cerrado, soportado por las tres columnas (800) que forman los edificios (32) de alojamientos. El contenido de este tercer entrepuente (28) depende de las actividades a las que se vaya a dedicar la plataforma flotante (100). En el centro de este tercer entrepuente (28) hay un recinto superior (33) con una sala, cubierta por una cúpula (34) de cristal, especial para reuniones sociales de las personas alojadas en la plataforma flotante (100). Según el uso de la plataforma flotante (100), la sala del recinto superior (33) se puede habilitar como piscina.
- Sobre el tercer entrepuente (28) está la cubierta superior (36), acondicionada como solárium, zona de paseo o espacios de deporte, especialmente si la sala del recinto superior (33) es una piscina. Alrededor están las tres columnas (800) dedicadas a alojamientos de los visitantes, cuyos techos están habilitados como pista de aterrizaje de helicópteros (helipuertos (38)).
En las Figuras 25 a 28 se han incluido cuatro vistas de esta plataforma flotante (100): la Figura 25 es una vista en perspectiva de la plataforma flotante (100) seccionada a % sin el sistema de fondeo; la Figura 26 es una vista de perfil, que incluye además la parte superior del sistema de fondeo (del contrapeso (1) hacia arriba); la Figura 27 es una vista en perspectiva inferior, en la que se pueden apreciar con más detalle las líneas de fondeo (200) diagonal circular; la Figura 28 es una vista en perspectiva inferior, en la que se pueden ver con más detalle los tramos intermedios (7) de las líneas del fondeo (200) diagonal en estrella. Aunque todas las imágenes y descripciones se han hecho sobre un modelo de 6 columnas (con seis líneas de fondeo), es perfectamente válido para una plataforma con 5 o con 7 columnas, se ha elegido la versión de seis, por razones puramente estéticas.
Así pues, el sistema de fondeo para plataformas flotantes (100) marinas, objeto de la presente invención, está formado por tres o más líneas de fondeo (200), dispuestas radialmente alrededor de un punto común o eje central (300) de la plataforma flotante (100), cada una de las cuales está formada por dos sublíneas (200d, 200c) de fondeo que incluyen los siguientes elementos:
Una polea interior (segundo medio de fijación rotativo (2c) y, eventualmente, tercer medio de fijación rotativo (2d)) y otra polea exterior (primer medio de fijación rotativo (3)), situadas en la parte superior de la línea de fondeo (200); pueden ser sencillas (con una sola roldana) o múltiples (con vahas roldanas paralelas superpuestas).
Un contrapeso (1) central común a todas las líneas de fondeo (200), situado debajo del punto de intersección de todas las líneas de fondeo (200), con varios tanques de lastre (cámaras inundables), tales que, cuando los tanques de lastre del contrapeso (1 ) central están vacíos, tiene una flotabilidad positiva pequeña (inferior al 20% del volumen total del contrapeso (1 )) y cuando todos los tanques de lastres del contrapeso (1 ) central están inundados, tiene un peso aparente grande (superior al 15% del desplazamiento total de la plataforma flotante (100)). - Un anillo de fondeo común a todas las líneas de fondeo (200), o vahos pesos de fondeo (4) (uno por cada línea de fondeo (200)), con varios tanques de lastre tales que, cuando los tanques de lastre del anillo de fondeo están vacíos, tiene una flotabilidad positiva pequeña (inferior al 20% del volumen total del anillo de fondeo) y cuando los tanques de lastres del anillo de fondeo están totalmente inundados, tiene un peso aparente muy grande (superior al 15% del desplazamiento total de la plataforma flotante (100)). En la condición de operación, el anillo de fondeo reposa sobre el fondo marino (5) y realiza las funciones del ancla de un buque convencional, impidiendo que el viento, las corrientes marinas o las olas arrastren la plataforma flotante (100). En algunas aplicaciones, puede sustituirse por varios anclajes convencionales en el fondo marino (5), en los que se sujetan los cables del sistema de fondeo.
- Un cable de fondeo, que une el contrapeso (1) central con el anillo de fondeo (o con cada uno de los pesos de fondo (4) o anclajes de fondeo) y que se apoya en la/s polea/s intehor/es (segundo medio de fijación rotativo (2c) y, eventualmente, tercer medio de fijación rotativo (2d)) y extehor/es (primer medio de fijación rotativo (3)) de cada línea de fondeo (200), dividido virtualmente en tres zonas o tramos: el tramo central (6) del cable o línea de fondeo (200), que va desde el contrapeso (1) central hasta la polea interior (segundo medio de fijación rotativo (2c) o, eventualmente, tercer medio de fijación rotativo (2d)) de esa línea de fondeo (200); el tramo intermedio (7) del cable o línea de fondeo (200), comprendido entre la polea interior (segundo medio de fijación rotativo (2c) o, eventualmente, tercer medio de fijación rotativo (2d)) y la polea exterior (primer medio de fijación rotativo (3)), y; el tramo de fondo (8) del cable o línea de fondeo (200), que va desde la polea exterior (primer medio de fijación rotativo (3)) hasta el anillo de fondeo o peso de fondo (4).
Una o varias poleas intermedias (medios de guiado rotativo (11)), soporte del tramo intermedio (7) del cable o línea de fondeo (200), intercaladas entre la polea interior (segundo medio de fijación rotativo (2c) o, eventualmente, tercer medio de fijación rotativo (2d)) y la polea exterior (primer medio de fijación rotativo (3)), cuya misión principal es cambiar el recorrido de dicho tramo intermedio (7). Una diferencia con otros sistemas de fondeo es que el tramo intermedio (7) de la línea de fondeo (200) no es recto y va desde el brazo estructural saliente (12) de una línea de fondeo (200) al brazo estructural saliente (12) de la línea de fondeo (200) más próxima (situado en un plano orientado a 120e o a 72e según sea el número total de brazos estructurales salientes (12)).
- Un brazo estructural saliente (12) soporte de la línea de fondeo (200), apoyado (o empotrado) en la cubierta o en el casco o en la superestructura (estructura principal (400) de la plataforma flotante (100), del que cuelgan: la polea exterior, la polea interior y las poleas intermedias de soporte del tramo intermedio si las hubiera. La plataforma flotante (100) puede tener un número impar de brazos estructurales salientes (12).
Como elementos auxiliares, cada línea de fondeo (200) puede incluir también alguno de los siguientes elementos:
Una boya (9) intermedia intercalada en el tramo de fondo (8) de las líneas de fondeo (200). Si la hubiera, está unida al peso de fondo (4) mediante otro segmento de cable.
También incluye otros elementos auxiliares, comunes a los sistemas de fondeo convencionales y que ayudan a la maniobra de instalación/desinstalación de la plataforma flotante (100) en su lugar de operación, tales como chigres, molinetes, bitas u otros elementos típicos de cualquier sistema de fondeo tradicional.
El sistema de fondeo comprende, por cada línea de fondeo (200), una primera sublínea (200d) y una segunda sublínea (200c). La primera sublínea puede ser una sublínea directa o diagonal. La segunda sublínea puede ser una sublínea cruzada o una sublínea diagonal. En cualquiera de los casos, la segunda sublínea comprende una polea interior (segundo medio de fijación rotativo (2c)) que está situada fuera del plano (plano de fondeo) definido por el contrapeso (1 ) central (que pasa por el eje central (300)), el peso de fondo (4) y la polea exterior (primer medio de fijación rotativo (3)) (donde el peso de fondo (4) y la polea exterior están unidos mediante el tramo de fondo (8) de la línea de fondeo).
En el sistema de fondeo según su quinta forma de realización (o sistema “CLP”), cada línea de fondeo (200) tiene dos sublíneas diagonales, cuyas poleas interiores (segundos medios de fijación rotativos (2c)) están situadas simétricas entre sí, respecto al plano de fondeo definido por el contrapeso (1) central, el peso de fondo (4) y la polea exterior (primer medio de fijación rotativo (3)).
Según una posible forma de realización del sistema de fondeo, en la posición de proyecto, en reposo y con mar en calma, los tramos de fondo (8) de todas las sublíneas (200d, 200c) de cada línea de fondeo (200) son verticales (y paralelos entre sí).
Alternativamente a lo mencionado en el párrafo anterior, el tramo de fondo (8) de todas las sublíneas (200d, 200c) de cada línea de fondeo (200) pueden ser ligeramente divergentes, es decir el punto de anclaje del cable o línea de fondeo (200) en los pesos de fondo (4) está más separado horizontalmente del contrapeso (1) central que la polea exterior (primer medio de fijación rotativo (3)).
La plataforma flotante (100), cuando se usa como soporte para aerogeneradores, puede comprender al menos los siguientes elementos:
- Un casco o estructura principal (400) parcialmente sumergido con cualquier geometría.
Una torre (13) soporte de un aerogenerador marino, situada justo encima del casco de la plataforma flotante (100).
Un aerogenerador marinizado completo, cuya góndola (14) está instalada encima de la torre (13) correspondiente. - Un contrapeso (1 ) central, situado en el eje central (300) de simetría de la plataforma flotante (100), colgado de los tramos centrales (6) de todas las líneas de fondeo (200). En su interior hay una serie de tanques de lastre (o cámaras inundables), que cumplen las siguientes restricciones: Con todos los tanques de lastre vacíos, el contrapeso (1) central tiene una flotabilidad ligeramente positiva (flota). Con uno o varios de los tanques inundados, la flotabilidad del contrapeso (1) central es ligeramente negativa (se hunde). Con todos los tanques de lastre inundados, el peso aparente del contrapeso (1) central es grande (al menos equivale al 15% del peso total de la plataforma flotante (100)).
- Tres o más brazos estructurales salientes (12), que sirven de soporte de las líneas de fondeo (200), dispuestos radialmente alrededor del eje central (300) de simetría del casco o estructura principal (400) de la plataforma flotante (100). Cada línea de fondeo (200) está formada por dos sublíneas (primera sublínea (200d) y segunda sublínea (200c)) (que pueden ser sublíneas directa, cruzadas o diagonales). Cada sublínea (200d, 200c) puede ser simple (un solo cable, con poleas de una roldana) o múltiples (con varios cables y con poleas de varias roldanas, montada sobre le mismo eje).
El casco o estructura principal (400) de la plataforma flotante (100) tiene dos condiciones de carga principales, una condición de transporte, en la que todos sus tanques de lastre están vacíos y flota libremente con una línea de flotación (21 ) característica y una condición de operación, en la que todas las líneas de fondeo (200) están conectadas al fondo marino (5) y soportan el peso neto del contrapeso (1 ) central; alguno de sus tanques de lastre puede estar total o parcialmente lleno para que su línea de flotación (21) coincida con el calado de operación (22) o calado de proyecto.
Esta plataforma flotante (100) para soporte de aerogeneradores marinos puede ser auto estable, donde su casco puede comprender los siguientes elementos: - Tres o cinco flotadores o elementos de flotación (500) cilindricos, separados del eje central (300) de la plataforma flotante (100), distribuidos uniformemente por todo su alrededor. La línea de flotación (21) de lastre está situada a media altura de estos flotadores, definiendo en ellos dos volúmenes, la zona sumergida (15) y zona emergente (16). En lastre la superficie de su flotación le proporciona toda la estabilidad que necesita para las operaciones de traslado. En la condición de operación, los flotadores están totalmente sumergidos.
- Tres o cinco patas o radios (600), de forma aproximadamente prismática, inclinadas respecto a la vertical, que unen cada uno de los flotadores con el resto de la plataforma flotante (100). En la condición de lastre están totalmente fuera del agua, pero en la condición de operación, tienen una zona de radio sumergida en condición de operación (17) y una zona nunca sumergida (18) por encima del calado de operación (22). En la condición de operación (o proyecto) la plataforma flotante (100) no tiene estabilidad ‘per se’.
- Tres o cinco brazos estructurales salientes (12) dispuestos radialmente, aproximadamente horizontales, que sirven de soporte de las poleas del sistema de fondeo.
Un anillo estructural (19) resistente en la base de la superestructura, en el que se sujetan las patas o radios (600) que van a los flotadores (elementos de flotación (500)) y los brazos estructurales salientes (12) que soportan el sistema de fondeo.
Una superestructura (20) sobre el anillo estructural (19) resistente, que sirve como base para la torre (13) del aerogenerador y en cuyo interior se pueden situar los equipos eléctricos del aerogenerador o los sistemas de conexión eléctrica con el resto de aerogeneradores del parque eólico.
Una torre (13) y un aerogenerador, tal como se han descrito anteriormente. Tal y como se ha descrito, este sistema de fondeo puede incluir tres o cinco líneas de fondeo (200) completas, una en cada brazo estructural saliente (12), con un contrapeso (1) central y sus sublíneas (200d, 200c) (directas, cruzadas y diagonales).
La plataforma flotante (100) puede emplearse para soportar estructuras destinadas al ocio o turismo marino, incluyendo actividades deportivas.
Cuando se usa como soporte para estructuras de ocio marino, la plataforma flotante (100) puede comprender unas poleas intermedias (medios de guiado rotativo (11 )) para el soporte del tramo intermedio (7), que desvían los tramos intermedios (7) del cable de todas las sublíneas diagonales o cruzadas y les dan el aspecto de una línea circular o de una estrella.
El sistema incluye un número elevado de líneas de fondeo (200) (cinco líneas o más) y se instala en plataformas dedicadas a ocio marino de gran tamaño.
Todas las poleas cuelgan del fondo del primer entrepuente (26) de la plataforma flotante (100), de forma que no emplea brazos estructurales salientes (12) para esta labor. Todos los tramos centrales (6) de todas las sublíneas (200d, 200c) de fondeo se unen en el contrapeso (1) central.
Este sistema de fondeo (de tipo “SLP”) puede comprender seis líneas de fondeo (200) y, adicionalmente, puede comprender los siguientes elementos:
- Un casco o estructura principal (400) compuesto por seis columnas (800), cada una de las cuales tiene una parte sumergida (29) y otra parte emergente (30) que está por encima de la flotación de proyecto o calado de operación (22); por los huecos que hay entre las columnas (800) pasan los tramos centrales (6) de todas las líneas de fondeo (200). En la parte inferior de las columnas (800) están los equipos esenciales de la plataforma flotante (100), considerada como buque, es decir generadores, aire acondicionado, potabilizadoras, servicios del buque, bombas, equipos varios, etc. Los niveles más altos incluyen los alojamientos de la tripulación.
- Tres de las columnas (800) que forman el casco, continúan hacia arriba, sujetando los distintos entrepuentes (26, 27, 28) que forman la superestructura de la plataforma flotante (100); las otras tres columnas (800) acaban en la cubierta principal (35). En la parte central de las columnas (800) hay ascensores y escaleras y todo el contorno está ocupado por alojamientos, dispuestos radialmente alrededor del tronco de ascensores/escaleras.
Un primer entrepuente (26) circular forma el casco estructural de la plataforma flotante (100) y está dedicada a espacios comunes de todo tipo, tales como tiendas, restaurantes, cocinas, locales de comerciales o de ocio. En la zona central hay un recinto inferior (37) con una sala con una mayor altura libre para actividades de tipo teatro, cine, exposiciones, museo, etc.
- Un segundo entrepuente (27) diáfano acristalado, pero cuyo contorno se puede abrir para que todo el espacio interior quede comunicado con el exterior, incluye zonas de paseo, restaurantes y cafeterías exteriores, zonas ajardinadas, fuentes, etc. A su alrededor, en la cubierta principal (35) hay un anillo que se puede acondicionar como solárium, zonas de paseo o como miradores.
- Un tercer entrepuente (28) cerrado, soportado por las tres columnas (800) que forman los edificios (32) de alojamientos. El contenido de este tercer entrepuente (28) depende de las actividades a las que se vaya a dedicar la plataforma flotante (100). En el centro de este tercer entrepuente (28) hay un recinto superior (33) con una sala cubierta por una cúpula (34) de cristal especial para reuniones sociales de las personas alojadas en la plataforma flotante (100). Según el uso de la plataforma flotante (100), la sala del recinto superior (33) se puede habilitar como piscina, accesible desde la cubierta superior (36). - Sobre el tercer entrepuente (28) está la cubierta superior (36), acondicionada como solárium, zona de paseo o espacios de deporte, especialmente si la sala del recinto superior (33) es una piscina. Alrededor están las tres columnas (800) dedicadas a alojamientos de los visitantes, cuyos techos están habilitados como pista de aterrizaje de helicópteros (helipuertos (38)).
Aunque toda la descripción y figuras se corresponden con un sistema de fondeo de seis líneas y con seis flotadores, la plataforma podría tener cinco o siete líneas, cambiando el número de flotadores y modificando ligeramente la descripción de los entrepuentes.

Claims

73
REIVINDICACIONES Sistema de fondeo que comprende una plataforma flotante (100) y al menos tres líneas de fondeo (200), configuradas para fijar o anclar la plataforma flotante (100) al fondo marino (5) mediante al menos un tramo de fondo (8) de cada línea de fondeo (200), donde cada línea de fondeo (200) comprende también un tramo central (6) unido a un contrapeso (1 ), donde el sistema de fondeo comprende al menos un primer medio de fijación rotativo (3) por cada línea de fondeo (200), donde cada primer medio de fijación rotativo (3) está fijado a un primer punto de la plataforma flotante (100) y está configurado para fijar cada línea de fondeo (200) a la plataforma flotante (100) en dicho primer punto de la plataforma flotante (100), permitiendo el deslizamiento de la línea de fondeo (200) por dicho primer medio de fijación rotativo (3), donde cada línea de fondeo (200) comprende al menos una primera sublínea (200d) y una segunda sublínea (200c), cada una de ellas comprendiendo su propio cable o cadena de fondeo, donde un eje central (300) de la plataforma flotante (100) define junto con el tramo de fondo (8) de cada línea de fondeo (200) un plano de fondeo de cada línea de fondeo (200), donde el sistema comprende al menos un segundo medio de fijación rotativo (2c) por cada línea de fondeo (200), donde cada segundo medio de fijación rotativo (2c) está fijado a un segundo punto de la plataforma flotante (100) y está configurado para fijar una sublínea (200d, 200c) de cada línea de fondeo (200) a la plataforma flotante (100) en dicho segundo punto de la plataforma flotante (100) permitiendo el deslizamiento de dicha sublínea (200d, 200c) por dicho segundo medio de fijación rotativo (2c), de tal forma que dicha sublínea (200d, 200c) comprende un tramo intermedio (7) entre el primer medio de fijación rotativo (3) y el segundo medio de fijación rotativo (2c) y donde dicha sublínea (200d, 200c) discurre desde el primer medio de fijación rotativo (3) hasta el contrapeso (1) deslizando por el segundo medio de fijación rotativo (2c), caracterizado por que el al menos un segundo medio de fijación rotativo (2c) de cada línea de fondeo (200) no se encuentra comprendido en el plano de fondeo de dicha línea de fondeo (200). Sistema de fondeo según la reivindicación 1 , caracterizado por que la primera sublínea (200d) de cada línea de fondeo (200) está totalmente comprendida en el plano de fondeo de dicha línea de fondeo (200), donde el al menos un primer medio 74 de fijación rotativo (3) de cada línea de fondeo (200) está fijado a la plataforma flotante (100) en correspondencia con un primer punto situado en una periferia de la plataforma flotante (100).
3. Sistema de fondeo según la reivindicación 2, caracterizado por que el al menos un segundo medio de fijación rotativo (2c) está fijado a la plataforma flotante (100) en un segundo punto situado también en la periferia de la plataforma flotante (100).
4. Sistema de fondeo según la reivindicación 2 ó 3, caracterizado por que para cada línea de fondeo (200), el tramo intermedio (7) de la segunda sublínea (200c) discurre entre el primer medio de fijación rotativo (3) y el segundo medio de fijación rotativo (2c) pasando por al menos un medio de guiado rotativo (11) situado en proximidad al eje central (300) de la plataforma flotante (100).
5. Sistema de fondeo según la reivindicación 4, caracterizado por que el tramo intermedio (7) de la segunda sublínea (200c) discurre entre el primer medio de fijación rotativo (3) y el segundo medio de fijación rotativo (2c) pasando por al menos dos medios de guiado rotativo (11) situados en proximidad al eje central (300) de la plataforma flotante (100).
6. Sistema de fondeo según la reivindicación 2 ó 3, caracterizado por que para cada línea de fondeo (200), el tramo intermedio (7) de la segunda sublínea (200c) discurre entre el primer medio de fijación rotativo (3) y el segundo medio de fijación rotativo (2c) en línea recta.
7. Sistema de fondeo según la reivindicación 2 ó 3, caracterizado por que el tramo intermedio (7) de la segunda sublínea (200c) discurre entre el primer medio de fijación rotativo (3) y el segundo medio de fijación rotativo (2c) pasando por al menos un medio de guiado rotativo (11) situado en correspondencia con la periferia de la plataforma flotante (100).
8. Sistema de fondeo según cualquiera de las reivindicaciones anteriores, caracterizado por que el segundo medio de fijación rotativo (2c) de cada línea de 75 fondeo (200) está fijado a la plataforma flotante (100) en un punto situado en proximidad al primer medio de fijación rotativo (3) de una línea de fondeo (200) adyacente.
9. Sistema de fondeo según cualquiera de las reivindicaciones anteriores, caracterizado por que la primera sublínea (200d) de cada línea de fondeo (200) está totalmente comprendida en el plano de fondeo de dicha línea de fondeo (200), donde el sistema de fondeo comprende al menos un tercer medio de fijación rotativo (2d) por cada línea de fondeo (200), donde cada tercer medio de fijación rotativo (2d) está fijado a un tercer punto de la plataforma flotante (100) y está configurado para fijar la primera sublínea (200d) a la plataforma flotante (100) en dicho tercer punto de la plataforma flotante (100) permitiendo el deslizamiento de la primera sublínea (200d) por dicho tercer medio de fijación rotativo (2d), de tal forma que cada primera sublínea (200d) discurre desde el primer medio de fijación rotativo (3) hasta el contrapeso (1) pasando y deslizando por el tercer medio de fijación rotativo (2d).
10. Sistema de fondeo según la reivindicación 1 , caracterizado por que comprende un segundo medio de fijación rotativo (2c) por cada sublínea de fondeo (200d, 200c) de cada línea de fondeo (200), de tal forma que tanto la primera sublínea (200d) como la segunda sublínea (200c) comprenden respectivamente un tramo intermedio (7) entre el primer medio de fijación rotativo (3) y el correspondiente segundo medio de fijación rotativo (2c) y donde cada sublínea (200d, 200c) discurre desde el primer medio de fijación rotativo (3) hasta el contrapeso (1 ) deslizando por el correspondiente segundo medio de fijación rotativo (2c).
11. Sistema de fondeo según la reivindicación 10, caracterizado por que el tramo intermedio (7) de cada sublínea (200d, 200c) discurre entre el primer medio de fijación rotativo (3) y el segundo medio de fijación rotativo (2c) en línea recta.
12. Sistema de fondeo según cualquiera de las reivindicaciones anteriores, caracterizado por que el contrapeso (1 ) comprende al menos una cámara inundable. 76
13. Sistema de fondeo según cualquiera de las reivindicaciones anteriores, caracterizado por que cada tramo de fondo (8) de cada línea de fondeo (200) comprende una boya (9) que divide el tramo de fondo (8) en una primera porción que discurre entre el fondo marino (5) y la boya (9) y una segunda porción que discurre entre la boya (9) y el al menos un primer medio de fijación rotativo (3).
14. Sistema de fondeo según cualquiera de las reivindicaciones 3 a 5, caracterizado por que la plataforma flotante (100) comprende tantos brazos estructurales salientes (12) como líneas de fondeo (200), donde cada brazo estructural saliente (12) está unido a una estructura principal (400) de la plataforma flotante (100), donde cada brazo estructural saliente (12) discurre radialmente desde un primer extremo (121) unido a la estructura principal (400) de la plataforma flotante (1) hasta un segundo extremo (122) proyectado hacia el exterior de la plataforma flotante (1), donde el al menos un primer medio de fijación rotativo (3) de cada línea de fondeo (200) está fijado a la plataforma flotante (100) en correspondencia con el segundo extremo (122) de un primer brazo (12a), y donde el al menos un segundo medio de fijación rotativo (2c) está fijado a la plataforma flotante (100) en un punto situado en correspondencia con un segundo brazo (12b).
15. Sistema de fondeo según la reivindicación 14, caracterizado por que el al menos un segundo medio de fijación rotativo (2c) está fijado a la plataforma flotante (100) en un punto situado en correspondencia con un segundo extremo (122) del segundo brazo (12b).
16. Sistema de fondeo según la reivindicación 14 ó 15, caracterizado por que la estructura principal (400) de la plataforma flotante (100) comprende una geometría en forma de fuste cilindrico, cónico o piramidal.
17. Sistema de fondeo según la reivindicación 16, caracterizado por que comprende una pluralidad de radios (600) conectados con la estructura principal (400), donde en cada extremo libre de cada radio (600) existe un elemento de flotación (500). 77 Sistema de fondeo según la reivindicación 17, caracterizado por que los elementos de flotación (500) comprenden al menos una cámara inundable. Sistema de fondeo según la reivindicación 16, caracterizado por que la estructura principal (400) comprende al menos un elemento de flotación (500). Sistema de fondeo según la reivindicación 19, caracterizado por que el al menos un elemento de flotación (500) comprende al menos una cámara inundable. Sistema de fondeo según cualquiera de las reivindicaciones 2 a 13, caracterizado por que la plataforma flotante (100) comprende una estructura principal (400) con tres entrepuentes (26, 27, 28), donde los medios de fijación rotativos (3, 2c, 2d) y medios de guiado rotativos (11) están fijados a la plataforma flotante (100) en puntos situados bajo un primer entrepuente (26), donde la estructura principal (400) comprende seis columnas (800) que se proyectan bajo el primer entrepuente (26) y configuradas para quedar parcialmente sumergidas, donde las seis columnas (800) atraviesan un segundo entrepuente (27) y un tercer entrepuente (28), y donde tres de las seis columnas se proyectan por encima del tercer entrepuente (27) sobre una cubierta superior (36), donde el segundo entrepuente (27) comprende una superficie perimetral acristalada susceptible de desplegarse y replegarse, con un balcón anular perimetral que se proyecta más allá de la superficie perimetral acristalada, donde un recinto superior (33) abovedado se proyecta por encima del tercer entrepuente (27) en correspondencia con el centro del tercer entrepuente (27), y donde un recinto inferior (37) se proyecta por debajo del primer entrepuente (26) en correspondencia con el centro del primer entrepuente (26).
PCT/ES2022/070466 2021-10-03 2022-07-18 Sistema de fondeo WO2023052658A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202130922 2021-10-03
ESP202130922 2021-10-03

Publications (1)

Publication Number Publication Date
WO2023052658A1 true WO2023052658A1 (es) 2023-04-06

Family

ID=85780459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070466 WO2023052658A1 (es) 2021-10-03 2022-07-18 Sistema de fondeo

Country Status (3)

Country Link
AR (1) AR127290A1 (es)
TW (1) TW202323141A (es)
WO (1) WO2023052658A1 (es)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986889A (en) * 1958-06-25 1961-06-06 California Research Corp Anchoring systems
US4437794A (en) * 1981-01-29 1984-03-20 Conoco Inc. Pyramidal offshore structure
US20120121340A1 (en) * 2007-09-13 2012-05-17 Floating Windfarms Corporation Offshore vertical-axis wind turbine and associated systems and methods
EP2743170A1 (en) 2012-12-14 2014-06-18 Alstom Wind, S.L.U. Tension leg platform structure for a wind turbine with pre-stressed tendons
ES2629867A2 (es) 2015-11-24 2017-08-16 Antonio Luis GARCÍA FERRÁNDEZ Sistema y procedimiento de fondeo para plataformas marinas flotantes, que evita el movimiento de cabeceo y permite captar la energía de las olas
US20190078556A1 (en) * 2016-03-15 2019-03-14 Stiesdal Offshore Technologies A/G A floating wind turbine and a method for the installation of such floating wind turbine
US20190315438A1 (en) * 2018-04-11 2019-10-17 Jitendra Prasad Self-restoring motion compensating mooring system
WO2022000334A1 (zh) 2020-06-30 2022-01-06 北京小米移动软件有限公司 生物特征识别方法、装置、设备及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986889A (en) * 1958-06-25 1961-06-06 California Research Corp Anchoring systems
US4437794A (en) * 1981-01-29 1984-03-20 Conoco Inc. Pyramidal offshore structure
US20120121340A1 (en) * 2007-09-13 2012-05-17 Floating Windfarms Corporation Offshore vertical-axis wind turbine and associated systems and methods
EP2743170A1 (en) 2012-12-14 2014-06-18 Alstom Wind, S.L.U. Tension leg platform structure for a wind turbine with pre-stressed tendons
ES2629867A2 (es) 2015-11-24 2017-08-16 Antonio Luis GARCÍA FERRÁNDEZ Sistema y procedimiento de fondeo para plataformas marinas flotantes, que evita el movimiento de cabeceo y permite captar la energía de las olas
US20190078556A1 (en) * 2016-03-15 2019-03-14 Stiesdal Offshore Technologies A/G A floating wind turbine and a method for the installation of such floating wind turbine
US20190315438A1 (en) * 2018-04-11 2019-10-17 Jitendra Prasad Self-restoring motion compensating mooring system
WO2022000334A1 (zh) 2020-06-30 2022-01-06 北京小米移动软件有限公司 生物特征识别方法、装置、设备及存储介质

Also Published As

Publication number Publication date
AR127290A1 (es) 2024-01-10
TW202323141A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
ES2797104T3 (es) Plataforma marítima flotante
ES2718934T3 (es) Base de turbina eólica flotante con patas de tensión de tipo abocinado, turbina eólica marina y método de construcción
ES2962758T3 (es) Plataforma eólica flotante con dispositivo de patas tensoras
ES2772950A2 (es) Plataforma flotante autoalineable al viento que soporta multiples turbinas eolicas y solares para la generacion de energia eolica y solar y metodo de construccion del mismo
ES2637142T3 (es) Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas
EP1196320B8 (en) Extended-base tension leg platform substructure
WO2013084546A1 (ja) 浮体式風力発電装置
ES2424834T3 (es) Disposición del anclaje para instalaciones de turbina eólica flotante
JP6607867B2 (ja) 海上風力タービンまたは他のデバイスのための浮動可能支持構造
JP6935471B2 (ja) 海上トンネル
ES2629867B1 (es) Sistema y procedimiento de fondeo para plataformas marinas flotantes, que evita el movimiento de cabeceo y permite captar la energía de las olas
ES2231576T3 (es) Embarcacion que comprende faldones transversales.
CN108248783A (zh) 一种新型海上风电潜式浮式基础及其施工方法
CN108407986A (zh) 一种可浮运的海上风电浮式基础及其施工方法
CN108454799B (zh) 一种海上风电浮式基础浮运施工方法
ES2348523T3 (es) Sistema de anclaje para una construcción flotante.
WO2023052658A1 (es) Sistema de fondeo
ES2348451T3 (es) Módulo flotador.
WO2022259042A2 (es) Sistema de fondeo y procedimiento de instalación de una plataforma flotante empleando dicho sistema de fondeo
WO2018134779A2 (en) Mooring system for a photovoltaic floating platform
EP3571762B1 (en) Mooring system for a photovoltaic floating platform
TW202411118A (zh) 錨固系統與使用此錨固系統安裝浮動平台的方法
US4674916A (en) Offshore platform designed in particular to constitute a pleasure center
ES2938666B2 (es) Plataforma flotante semisumergible para aerogenerador marino
CN114275110B (zh) 一种水母冰山式的海中建筑结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875235

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P202490018

Country of ref document: ES