WO2023051861A1 - Laminated electrical steel core for an electric machine and method for producing a laminated electrical steel core - Google Patents

Laminated electrical steel core for an electric machine and method for producing a laminated electrical steel core Download PDF

Info

Publication number
WO2023051861A1
WO2023051861A1 PCT/DE2022/100635 DE2022100635W WO2023051861A1 WO 2023051861 A1 WO2023051861 A1 WO 2023051861A1 DE 2022100635 W DE2022100635 W DE 2022100635W WO 2023051861 A1 WO2023051861 A1 WO 2023051861A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated core
electrical
individual sheets
casting element
openings
Prior art date
Application number
PCT/DE2022/100635
Other languages
German (de)
French (fr)
Inventor
Wilfried Schwenk
Jürgen Seifermann
Tobias Doll
Martin Bühler
Volker Lang
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2023051861A1 publication Critical patent/WO2023051861A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines

Definitions

  • Electrical laminated core for an electrical machine and method for producing an electrical laminated core
  • the invention relates to an electrical laminated core for a stator or rotor of an electrical machine. Furthermore, the invention relates to a method for producing an electrical laminated core which is suitable for use in an electrical machine.
  • EP 0 729 665 B1 discloses a method for producing an armature for an electric motor. This method may include creating a plastic fill by injection molding, transfer molding, or compression molding. In the case of EP 0 729 665 B1, the plastic filling is attributable to a commutator which, like a laminated core, is arranged on a shaft.
  • duroplastic material is processed in transfer molding. This can be done by using a piston to introduce molding compound from a heated antechamber into a cavity and hardens there. Also known in principle is the production of fiber-reinforced workpieces by transfer molding.
  • stator of an electrical machine with a duroplastic compound is described, for example, in DE 10 2013 227 054 A1.
  • a floating bearing is molded into the overmolding.
  • a fiber matrix semi-finished product with a duroplastic matrix should also be usable.
  • the stator can in particular be designed as a segmented stator.
  • DE 10 2015 212 007 A1 discloses a device for forming an overmolding at least in sections.
  • a rotor shaft is overmoulded with a duroplastic or thermoplastic material. The device after
  • SUBSTITUTE SHEET (RULE 26) DE 10 2015 212 007 A1 includes a clamping element which is designed to fix an insert in an insertion recess.
  • slot wall insulation for a stator of an electric motor.
  • the slot wall insulation should be able to be formed directly on a surface of a stator lamination in an injection molding process.
  • the slot wall insulation is tooth-shaped. Due to the tooth-shaped design, a recess is formed which is suitable for receiving an electrical conductor.
  • DE 10 2008 032 214 B4 discloses a reluctance motor, the rotor of which has recess areas arranged regularly in the circumferential direction.
  • the rotor is designed as a laminated core, with the recesses being punched out of the sheet metal parts.
  • the individual sheet metal parts can be held together by punching.
  • the recesses are injected with plastic.
  • DE 10 2016 24 249 A1 describes a method for producing a rotor for a synchronous reluctance machine, which comprises the method steps of stacking a rotor stack and spraying flux barriers within the rotor stack with a plastic material containing magnetic particles. The magnetic particles are also aligned by applying an external magnetic field.
  • DE 25 36 390 B1 discloses a squirrel-cage rotor for an electrical machine with a squirrel cage injected into the laminated rotor core.
  • the squirrel-cage cage keeps the laminated rotor core pressed together and comprises short-circuit rings on the face side, with at least one of the short-circuit rings being toothed with a rotor hub or rotor shaft in a way that prevents it from twisting and shifting.
  • the invention is based on the object of further developing components of electrical machines, ie electric motors, generators or transformers, in the manufacture of which transfer molding is used, compared to the prior art mentioned, in particular with regard to manufacturing aspects.
  • This object is achieved according to the invention by an electrical laminated core having the features of claim 1 .
  • the object is also achieved by a method for producing a stack of electrical laminations suitable for use in an electrical machine according to claim 9.
  • the configurations and advantages of the invention also apply analogously to the device, i.e. for use in an electrical machine provided lamination stack, and vice versa.
  • the stack of electrical laminations comprises a number of individual laminations which are stacked in an electrically isolated manner from one another and have openings which are aligned with one another. Furthermore, a duroplastic casting element produced by injection molding is provided, which penetrates the entirety of the openings and thereby engages behind the individual sheets in a form-fitting manner.
  • the duroplastic material which is processed by transfer molding, has electrically insulating properties. In this way, in particular, electrical flashovers between electrical lines and laminations of the electrical laminated core are ruled out.
  • the material composition can be selected in such a way that there is sufficiently high thermal conductivity for the application.
  • epoxy resin can be used as the duroplastic material, which is available on the market, for example, under the name EPOXIDUR® EP 3161 E.
  • the casting element In order to produce the required form fit with the metallic components of the laminated core, the casting element, which is elongated overall, has a non-uniform width over its length.
  • the casting element has a maximum width between two individual sheets, which is at least 1.5 times the minimum width of the casting element to be measured in the openings. In this case, the maximum width is in particular no more than three times the minimum width of the casting element.
  • the individual sheets are stacked one on top of the other without any positive locking formed directly between these individual sheets. This has the advantage that any process steps in which the individual sheets are formed, such as by clinching, can be omitted. Steps such as laser welding can also be omitted.
  • the at least one casting element, which is produced by transfer molding, can represent the only means for holding the entire laminated core together.
  • the openings in the sheet metal stack can in particular be circular, oval or polygonal holes.
  • the openings can have, for example, a cloverleaf, grandfather clock or dovetail shape.
  • tension can be generated within the laminated core stack of electrical conductors, with the casting element being particularly suitable for transmitting tensile forces and thus being able to represent a tie rod.
  • the often given positive connection between the casting element and the individual laminations of the electrical laminated core can ensure that forces are not to be transmitted over the entire length of the casting element, but only over a fraction of its length. Overall, in relation to the dimensions of the casting element, high forces can therefore be transmitted within the laminated core stack.
  • these form in particular a groove, for example a U-shaped groove of a stator.
  • Electrical conductors can be inserted into the stator slot. It is also possible to encapsulate conductors directly within the stator slot with duroplastic material. If copper windings are inserted using the hairpin method, a slot can be closed directly by transfer molding, so that there is no need to insert a sealing wedge.
  • the stack of electrical laminations can be produced by using a stack of individual laminations that are electrically insulated from one another and have apertures that are aligned with one another.
  • duroplastic material is introduced between the individual sheets in particular in such a way that a form fit is created between each of the individual sheets and the casting element.
  • the laminated core is part of an electric motor rotor to be fitted with permanent magnets
  • the individual magnets can be fixed in a single operation together with the production of the connection between the individual laminations by transfer molding.
  • Epoxy resin is particularly suitable as the material for this. Compared to conventional manufacturing methods, the number of work steps and the tuning effort are reduced, while at the same time a high geometric precision of the end product, ie the laminated core including the permanent magnets, can be achieved.
  • the process of transfer molding can be combined with a magnetic fixation of the laminated core. This applies in particular to process variants in which a stator slot is insulated by transfer molding.
  • the individual sheets can be centered using a mandrel, which also ensures the required squareness within the assembly to be assembled.
  • the laminated core can be adjusted in terms of its dimensions in the axial direction, ie the direction normal to the planes in which the individual sheets are arranged, by pressing together a tool provided for the transfer molding.
  • the particular advantage of the invention is that in the production of stators or rotors of electric motors or generators, complex production steps such as gluing or forming are completely eliminated or can at least be made much simpler compared to conventional solutions.
  • Functional limitations of the manufactured component, i.e. stator or rotor are not to be accepted here. Rather, the manufacturing process is characterized by an applicability for a large number of different electrotechnical products whose components are loaded by operational forces.
  • a non-destructive dismantling of the laminated core stack, which is held together by the duroplastic casting element or a plurality of such casting elements, is generally not provided.
  • the electrical sheet stack can be produced using standardized electrical sheets without a coating.
  • FIG. 3 shows an arrangement for connecting the individual laminations of the electrical laminated core according to FIG. 2 by means of transfer molding
  • FIG. 4 shows the arrangement according to FIG. 3 without the laminated core
  • FIG. 6 shows the cross section of a casting element of the arrangement according to FIG. 1,
  • FIG. 7 shows a further casting element for an electrical laminated core in a view analogous to FIG. 6, 8 a detail of a rotor of an electric motor comprising an electrical laminated core in a plan view,
  • FIG. 9 shows the arrangement according to FIG. 8 in a perspective view.
  • a functional part of an electric motor identified overall by the reference number 1 , that is to say a stator or a rotor, comprises an electrical laminated core 2 which is made up of a large number of individual laminations 3 . Electrically insulating layers are located between the individual sheets 3 and can be provided either by separate components or by coatings of the individual sheets 3 . It is also possible to produce the electrical insulation within the electrical laminated core 2 exclusively by the transfer molding method, which will be discussed in detail below.
  • the stacked individual laminations 3, ie the individual electrical laminations, have a plurality of openings 4 with a closed border, in particular circular holes, and/or grooves 8, which are generally referred to as openings without a closed border.
  • the openings 4, 8 can be produced, for example, by punching.
  • At least individual openings 4, 8 are completely or partially filled with a casting element 5 made of duroplastic material.
  • the casting elements 5 are electrically insulating and produce positive-locking, mechanically resilient connections between the individual sheets 3 .
  • Each casting element 5 extends parallel to the central axis of the functional part 1 and comprises so-called constricted sections 6 and form-fitting terminations 7 arranged alternately.
  • the width of the constricted sections 6 is indicated by Bmin, the width of the form-fitting sections 7 by Bmax.
  • Bmin the width of the form-fitting sections 7
  • Bmax the width of the form-fitting sections 7
  • D The given between the individual sheets 3 thickness of the form-fitting section 7 is D? specified.
  • the casting element 5 is in the form of a bolt, the constricted sections 6 of which are designed as annular circumferential grooves.
  • the diameter of a cylinder circumscribing the bolt has a diameter which corresponds to the maximum width Bmax.
  • the form-fitting sections 7 and the constricted sections 6 arranged between them have the shape of circular discs or bar sections. Forces acting on the individual sheets 3 , including axial forces, in relation to the central axis of the functional part 1 , are absorbed by the casting elements 5 with the aid of the form-fitting sections 7 . This also applies in cases in which - in contrast to what is shown in Fig. 1 - the form-fitting sections 7 are significantly less extended in the axial direction than the constricted sections 6.
  • a tool designated 11 which includes a sprue plate 12, a ventilation plate 13 and a support plate 14 and is designed as a transfer molding tool, ie a tool for injection molding.
  • a transfer molding tool ie a tool for injection molding.
  • duroplastic, preheated material is pressed from the sprue plate 12 through the openings 4 , the openings 4 being present in the present case in the form of nine through-holes distributed uniformly around the circumference of the stator 1 .
  • the form-fitting sections 7 of the casting element 6 are also automatically produced, it being possible for the actual shape of the form-fitting elements 7 to deviate from the idealized shape illustrated in FIGS.
  • the functional part 1 can be removed from the tool 11 .
  • the tool 11 has in its middle section, the height of which corresponds to the axial extension of the stator 1, several, in the present case three, strip-shaped centering swords 15, with which the correct positioning of the laminated core 2 relative to the tool 11 is ensured during transfer molding.
  • FIG. 5 shows a detail of a rotor 1 as a functional part of an electric motor, namely an internal rotor.
  • the rotor 1 can also be produced with the aid of a tool 11, the basic structure of which corresponds to the design according to FIGS.
  • the opening 8 is in the form of a groove, the flanks of which are denoted by 9 and the base of which is denoted by 10.
  • the casting element 5 also has a U-shaped cross section.
  • the open area of the slot 8 can be filled with windings or magnets.
  • the windings or magnets can be embedded directly in the casting element 5 in a manner that is not shown.
  • the form-fitting sections 7 of the U-shaped casting element 5 according to FIG. 5 protrude beyond the groove flanks 9 and the groove base 10 into the areas between the individual sheets 3, so that in this case, as well as in the exemplary embodiment according to FIGS. 1 and 6, the desired form fit between the individual sheets 3 is given.
  • the casting element 5 shows a dovetail-shaped cross-sectional design of the duroplastic casting element 5, which can be considered for both stators and rotors as functional parts 1 of electric motors or generators.
  • the casting element 5 could also have a cross section in the manner of an hourglass or a cloverleaf.
  • the form-fitting sections 7 protrude beyond the constricted sections 6 in the transverse direction of the casting element 5, which is elongated overall, so that the desired form-fitting function is provided. Connections between the individual sheets 3 that go beyond this, for example by means of stamped stacking, gluing or welding, are not required to produce the required mechanical stability of the functional part 1 .
  • FIGS. 8 and 9 A rotor 1 of an electric motor is shown in detail in FIGS. 8 and 9, magnets 17, namely permanent magnets, being located in numerous recesses 16 provided by the laminated core 2 of the rotor 1. Furthermore, an opening 4 with a closed border can be seen in FIGS. 8 and 9, which is provided for receiving a casting element 5 (not shown in this case) made of a duroplastic material, namely epoxy resin.
  • the opening 4 is designed in the manner of a four-leaf clover and is therefore particularly suitable for absorbing forces in a wide variety of directions.
  • the material from which the casting element 5 is formed hardens, mechanical stresses arise which hold the laminated core together particularly effectively.
  • Several cloverleaf-shaped openings 4 of the type shown are distributed over the cross section of the electrical laminated core 2 and in particular replace separate metallic connecting elements and connections of conventional electric motors formed by deformation of the individual laminations 3 .
  • stator 1 functional part, stator, rotor

Abstract

The invention relates to a laminated electrical steel core (2) for an electric machine, comprising a number of individual sheets (3), which are stacked so as to be electrically insulated from one another and have through-holes (4, 8) that are aligned with one another, and a duroplastic potting element (5) which penetrates the through-holes (4, 8) and thus engages behind the individual sheets (3) with a form-fit.

Description

Elektroblechpaket für eine elektrische Maschine und Verfahren zur Herstellung eines Elektroblechpakets Electrical laminated core for an electrical machine and method for producing an electrical laminated core
Die Erfindung betrifft ein Elektroblechpaket für einen Stator oder Rotor einer elektrischen Maschine. Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines Elektroblechpaketes, welches zur Verwendung in einer elektrischen Maschine geeignet ist. The invention relates to an electrical laminated core for a stator or rotor of an electrical machine. Furthermore, the invention relates to a method for producing an electrical laminated core which is suitable for use in an electrical machine.
Die EP 0 729 665 B1 offenbart ein Verfahren zum Herstellen eines Ankers für einen Elektromotor. Dieses Verfahren kann das Erzeugen einer Kunststoff-Füllung durch Spritzgießen, Spritzpressen oder Kompressionspressen umfassen. Die Kunststoff- Füllung ist im Fall der EP 0 729 665 B1 einem Kommutator zuzurechnen, welcher ebenso wie ein Blechpaket auf einer Welle angeordnet ist. EP 0 729 665 B1 discloses a method for producing an armature for an electric motor. This method may include creating a plastic fill by injection molding, transfer molding, or compression molding. In the case of EP 0 729 665 B1, the plastic filling is attributable to a commutator which, like a laminated core, is arranged on a shaft.
Im Unterschied zum Spritzgießen, bei welchem thermoplastisches Material verarbeitet wird, wird beim Spritzpressen duroplastisches Material verarbeitet. Dies kann geschehen, indem mit Hilfe eines Kolbens Formmasse von einer beheizten Vorkammer aus in einen Hohlraum eingebracht wird und dort aushärtet. Grundsätzlich bekannt ist auch die Herstellung faserverstärkter Werkstücke durch Spritzpressen. In contrast to injection molding, in which thermoplastic material is processed, duroplastic material is processed in transfer molding. This can be done by using a piston to introduce molding compound from a heated antechamber into a cavity and hardens there. Also known in principle is the production of fiber-reinforced workpieces by transfer molding.
Die Umspritzung eines Stators einer elektrischen Maschine mit einer duroplastischen Masse ist beispielsweise in der DE 10 2013 227 054 A1 beschrieben. In die Umspritzung ist in diesem Fall ein Loslager eingeformt. Statt eines Duroplasts soll auch ein Faser-Matrix-Halbzeug mit duroplastischer Matrix verwendbar sein. Der Stator kann insbesondere als segmentierter Stator ausgebildet sein. The encapsulation of a stator of an electrical machine with a duroplastic compound is described, for example, in DE 10 2013 227 054 A1. In this case, a floating bearing is molded into the overmolding. Instead of a duroplastic, a fiber matrix semi-finished product with a duroplastic matrix should also be usable. The stator can in particular be designed as a segmented stator.
Die DE 10 2015 212 007 A1 offenbart eine Vorrichtung zur Ausbildung einer zumindest abschnittsweisen Umspritzung. In diesem Fall wird eine Rotorwelle mit einem duroplastischen oder thermoplastischen Material umspritzt. Die Vorrichtung nach der DE 10 2015 212 007 A1 discloses a device for forming an overmolding at least in sections. In this case, a rotor shaft is overmoulded with a duroplastic or thermoplastic material. The device after
ERSATZBLATT (REGEL 26) DE 10 2015 212 007 A1 umfasst ein Spannelement, welches zum Fixieren eines Einlegeteils in einer Einlegeausnehmung ausgebildet ist. SUBSTITUTE SHEET (RULE 26) DE 10 2015 212 007 A1 includes a clamping element which is designed to fix an insert in an insertion recess.
Aus der DE 10 2017 220 123 A1 ist eine Nutwandisolation für einen Stator eines Elektromotors bekannt. Die Nutwandisolation soll direkt auf einer Fläche eines Statorblechs in einem Spritzgussprozess ausbildbar sein. Damit ist die Nutwandisolation zahnförmig ausgebildet. Durch die zahnförmige Gestaltung ist eine Aussparung ausgebildet, welche zur Aufnahme eines elektrischen Leiters geeignet ist. DE 10 2017 220 123 A1 discloses slot wall insulation for a stator of an electric motor. The slot wall insulation should be able to be formed directly on a surface of a stator lamination in an injection molding process. Thus, the slot wall insulation is tooth-shaped. Due to the tooth-shaped design, a recess is formed which is suitable for receiving an electrical conductor.
Die DE 10 2008 032 214 B4 offenbart einen Reluktanzmotor, dessen Rotor in Umfangsrichtung regelmäßig angeordnete Aussparbereiche aufweist. Der Rotor ist als Blechpaket ausgeführt, wobei aus den Blechteilen die Aussparungen ausgestanzt sind. Die einzelnen Blechteile können durch Stanzpaketierung zusammengehalten werden. Optional sind die Aussparungen mit Kunststoff ausgespritzt. DE 10 2008 032 214 B4 discloses a reluctance motor, the rotor of which has recess areas arranged regularly in the circumferential direction. The rotor is designed as a laminated core, with the recesses being punched out of the sheet metal parts. The individual sheet metal parts can be held together by punching. Optionally, the recesses are injected with plastic.
Die DE 10 2016 24 249 A1 beschreibt ein Verfahren zur Herstellung eines Rotors für eine Synchronreluktanzmaschine, das die Verfahrensschritte Stapeln eines Rotorpaketes und Ausspritzen von Flusssperren innerhalb des Rotorpaketes mit einem Magnetpartikel enthaltenden Kunststoffmaterial umfasst. Weiter ist das Ausrichten der Magnetpartikel durch Anlegen eines äußeren Magnetfeldes vorgesehen. DE 10 2016 24 249 A1 describes a method for producing a rotor for a synchronous reluctance machine, which comprises the method steps of stacking a rotor stack and spraying flux barriers within the rotor stack with a plastic material containing magnetic particles. The magnetic particles are also aligned by applying an external magnetic field.
Aus der DE 25 36 390 B1 ist ein Kurzschlussläufer für eine elektrische Maschine mit in das Läuferblechpaket eingespritztem Kurzschlusskäfig bekannt. Der Kurzschlusskäfig hält das Läuferblechpaket zusammengepresst und umfasst stirnseitige Kurzschlussringe, wobei mindestens einer der Kurzschlussringe mit einer Läufernabe oder Läuferwelle verdrehungs- und verschiebungssicher verzahnt ist. DE 25 36 390 B1 discloses a squirrel-cage rotor for an electrical machine with a squirrel cage injected into the laminated rotor core. The squirrel-cage cage keeps the laminated rotor core pressed together and comprises short-circuit rings on the face side, with at least one of the short-circuit rings being toothed with a rotor hub or rotor shaft in a way that prevents it from twisting and shifting.
Der Erfindung liegt die Aufgabe zugrunde, Komponenten elektrischer Maschinen, das heißt Elektromotoren, Generatoren oder Transformatoren, bei deren Herstellung Spritzpressen zum Einsatz kommt, gegenüber dem genannten Stand der Technik insbesondere unter fertigungstechnischen Aspekten weiterzuentwickeln. Diese Aufgabe wird erfindungsgemäß gelöst durch ein Elektroblechpaket mit den Merkmalen des Anspruchs 1 . Ebenso wird die Aufgabe gelöst durch ein Verfahren zur Herstellung eines für die Verwendung in einer elektrischen Maschine geeigneten Elektroblechpakets gemäß Anspruch 9. Im Folgenden im Zusammenhang mit dem Herstellungsverfahren erläuterte Ausgestaltungen und Vorteile der Erfindung gelten sinngemäß auch für die Vorrichtung, das heißt das für Verwendung in einer elektrischen Maschine vorgesehene Elektroblechpaket, und umgekehrt. The invention is based on the object of further developing components of electrical machines, ie electric motors, generators or transformers, in the manufacture of which transfer molding is used, compared to the prior art mentioned, in particular with regard to manufacturing aspects. This object is achieved according to the invention by an electrical laminated core having the features of claim 1 . The object is also achieved by a method for producing a stack of electrical laminations suitable for use in an electrical machine according to claim 9. In the following in connection with the production method, the configurations and advantages of the invention also apply analogously to the device, i.e. for use in an electrical machine provided lamination stack, and vice versa.
Das Elektroblechpaket umfasst eine Anzahl an Einzelblechen, welche elektrisch voneinander isoliert gestapelt sind und miteinander fluchtende Durchbrüche aufweisen. Ferner ist ein duroplastisches, durch Spritzpressen erzeugtes Vergusselement vorgesehen, welches die Gesamtheit der Durchbrüche durchdringt und hierbei die Einzelbleche formschlüssig hintergreift. The stack of electrical laminations comprises a number of individual laminations which are stacked in an electrically isolated manner from one another and have openings which are aligned with one another. Furthermore, a duroplastic casting element produced by injection molding is provided, which penetrates the entirety of the openings and thereby engages behind the individual sheets in a form-fitting manner.
Das duroplastische Material, welches durch Transfer Moulding verarbeitet wird, weist elektrisch isolierende Eigenschaften auf. Damit sind insbesondere elektrische Überschläge zwischen elektrischen Leitungen und Blechen des Elektroblechpakets ausgeschlossen. Zugleich kann die Matenalzusammensetzung derart gewählt werden, dass eine für den Anwendungsfall ausreichend hohe thermische Leitfähigkeit gegeben ist. Insbesondere ist als duroplastisches Material Epoxidharz verwendbar, welches zum Beispiel unter der Bezeichnung EPOXIDUR® EP 3161 E am Markt erhältlich ist. The duroplastic material, which is processed by transfer molding, has electrically insulating properties. In this way, in particular, electrical flashovers between electrical lines and laminations of the electrical laminated core are ruled out. At the same time, the material composition can be selected in such a way that there is sufficiently high thermal conductivity for the application. In particular, epoxy resin can be used as the duroplastic material, which is available on the market, for example, under the name EPOXIDUR® EP 3161 E.
Um den erforderlichen Formschluss zu den metallischen Komponenten des Blechpakets herzustellen, weist das insgesamt längliche Vergusselement eine über seine Länge uneinheitliche Breite auf. Beispielsweise weist das Vergusselement eine jeweils zwischen zwei Einzelblechen gegebene Maximalbreite auf, die mindestens das 1 ,5- fache der in den Durchbrüchen zu messenden Minimalbreite des Vergusselementes beträgt. Die Maximalbreite beträgt hierbei insbesondere nicht mehr als das Dreifache der Minimalbreite des Vergusselementes. Gemäß verschiedener möglicher Ausführungsformen sind die Einzelbleche frei von direkt zwischen diesen Einzelblechen gebildetem Formschluss aufeinandergestapelt. Dies hat den Vorteil, dass jegliche Verfahrensschritte, in denen die Einzelbleche umgeformt werden, etwa durch Clinchen, entfallen können. Ebenso können Schritte wie Laserschweißen entfallen. Das mindestens eine Vergusselement, welche durch Transfer Moulding erzeugt wird, kann das einzige Mittel zum Zusammenhalten des gesamten Elektroblechpakets darstellen. In order to produce the required form fit with the metallic components of the laminated core, the casting element, which is elongated overall, has a non-uniform width over its length. For example, the casting element has a maximum width between two individual sheets, which is at least 1.5 times the minimum width of the casting element to be measured in the openings. In this case, the maximum width is in particular no more than three times the minimum width of the casting element. According to various possible embodiments, the individual sheets are stacked one on top of the other without any positive locking formed directly between these individual sheets. This has the advantage that any process steps in which the individual sheets are formed, such as by clinching, can be omitted. Steps such as laser welding can also be omitted. The at least one casting element, which is produced by transfer molding, can represent the only means for holding the entire laminated core together.
Was die Form der Durchbrüche des Blechstapels betrifft, sind verschiedenste Varianten möglich. Weisen die Durchbrüche eine geschlossene Umrandung auf, kann es sich insbesondere um kreisrunde, ovale oder polygonförmige Löcher handeln. Ebenso können die Durchbrüche beispielsweise eine Kleeblatt-, Standuhr- oder Schwalbenschwanzform haben. In allen Fällen sind durch das Aushärten des duroplastischen Materials Verspannungen innerhalb des Elektroblechpakets erzeugbar, wobei das Vergusselement insbesondere zur Übertragung von Zugkräften geeignet ist und damit einen Zuganker darstellen kann. Der vielfach gegebene Formschluss zwischen dem Vergusselement und den einzelnen Blechen des Elektroblechpaketes kann hierbei dafür sorgen, dass Kräfte nicht über die gesamte Länge des Vergusselementes, sondern nur über einen Bruchteil seiner Länge zu übertragen sind. Insgesamt sind somit in Relation zu den Abmessungen des Vergusselementes hohe Kräfte innerhalb des Elektroblechpaketes übertragbar. As far as the shape of the openings in the sheet metal stack is concerned, a wide variety of variants are possible. If the openings have a closed border, they can in particular be circular, oval or polygonal holes. Likewise, the openings can have, for example, a cloverleaf, grandfather clock or dovetail shape. In all cases, as a result of the curing of the duroplastic material, tension can be generated within the laminated core stack of electrical conductors, with the casting element being particularly suitable for transmitting tensile forces and thus being able to represent a tie rod. The often given positive connection between the casting element and the individual laminations of the electrical laminated core can ensure that forces are not to be transmitted over the entire length of the casting element, but only over a fraction of its length. Overall, in relation to the dimensions of the casting element, high forces can therefore be transmitted within the laminated core stack.
Im Fall von Durchbrüchen ohne geschlossene Umrandung bilden diese insbesondere eine Nut, beispielsweise eine U-förmige Nut eines Stators. In die Statornut können elektrische Leiter eingebracht werden. Auch ist es möglich, Leiter innerhalb der Statornut unmittelbar durch duroplastisches Material zu umspritzen. Im Fall des Einbringens von Kupferwicklungen im Hairpin-Verfahren ist ein direkter Verschluss einer Nut durch das Transfer Moulding möglich, so dass das Einbringen eines Verschlusskeils entfallen kann. In the case of openings without a closed border, these form in particular a groove, for example a U-shaped groove of a stator. Electrical conductors can be inserted into the stator slot. It is also possible to encapsulate conductors directly within the stator slot with duroplastic material. If copper windings are inserted using the hairpin method, a slot can be closed directly by transfer molding, so that there is no need to insert a sealing wedge.
Allgemein ist das Elektroblechpaket herstellbar, indem ein Stapel elektrisch gegeneinander isolierter Einzelbleche, welche miteinander fluchtende Durchbrüche aufweisen, durch Transfer Moulding mit einem insgesamt bolzenförmigen duroplastischen, in die Durchbrüche eingebrachten Vergusselement, welches zur Aufnahme von Zugkräften zwischen beliebigen der Einzelbleche ausgebildet ist, versehen wird. Beim Transfer Moulding, das heißt Spritzgießen, wird duroplastisches Material insbesondere derart zwischen die Einzelbleiche eingebracht, dass ein Formschluss zwischen jedem der Einzelbleche und dem Vergusselement entsteht. In general, the stack of electrical laminations can be produced by using a stack of individual laminations that are electrically insulated from one another and have apertures that are aligned with one another. is provided by transfer molding with an overall bolt-shaped duroplastic casting element introduced into the openings, which is designed to absorb tensile forces between any of the individual sheets. In the case of transfer molding, that is to say injection molding, duroplastic material is introduced between the individual sheets in particular in such a way that a form fit is created between each of the individual sheets and the casting element.
Handelt es sich bei dem Elektroblechpaket um ein Teil eines mit Permanentmagneten zu bestückenden Rotors eines Elektromotors, so kann die Fixierung der einzelnen Magnete in einem einzigen Arbeitsgang zusammen mit der Herstellung der Verbindung zwischen den Einzelblechen durch Transfer Moulding erfolgen. Als Werkstoff hierfür ist insbesondere Epoxidharz geeignet. Im Vergleich zu herkömmlichen Herstellungsverfahren ist damit die Anzahl der Arbeitsschritte und der Abstimmaufwand reduziert, wobei zugleich eine hohe geometrische Präzision des Endproduktes, das heißt Elektroblechpaketes einschließlich der Permanentmagnete, erzielbar ist. If the laminated core is part of an electric motor rotor to be fitted with permanent magnets, the individual magnets can be fixed in a single operation together with the production of the connection between the individual laminations by transfer molding. Epoxy resin is particularly suitable as the material for this. Compared to conventional manufacturing methods, the number of work steps and the tuning effort are reduced, while at the same time a high geometric precision of the end product, ie the laminated core including the permanent magnets, can be achieved.
Der Vorgang des Transfer Mouldings ist mit einer magnetischen Fixierung des Blechpakets kombinierbar. Dies gilt insbesondere für Verfahrensvananten, in denen durch Transfer Moulding eine Statornut isoliert wird. Unabhängig von der Art des Blechpaketes können die Einzelbleche mit Hilfe eines Spanndorns zentriert werden, welcher auch für die geforderte Rechtwinkligkeit innerhalb der zu montierenden Anordnung sorgt. Gleichzeitig kann das Blechpaket durch Zusammenpressen eines für das Transfer Moulding vorgesehenen Werkzeugs hinsichtlich seiner Abmessung in axialer Richtung, das heißt der Richtung normal zu den Ebenen, in welchen die Einzelbleche angeordnet sind, justiert werden. The process of transfer molding can be combined with a magnetic fixation of the laminated core. This applies in particular to process variants in which a stator slot is insulated by transfer molding. Regardless of the type of laminated core, the individual sheets can be centered using a mandrel, which also ensures the required squareness within the assembly to be assembled. At the same time, the laminated core can be adjusted in terms of its dimensions in the axial direction, ie the direction normal to the planes in which the individual sheets are arranged, by pressing together a tool provided for the transfer molding.
Der Vorteil der Erfindung liegt insbesondere darin, dass bei der Herstellung von Statoren oder Rotoren von Elektromotoren oder Generatoren aufwendige Herstellungsschritte wie Kleben oder Umformen komplett entfallen oder im Vergleich zu herkömmlichen Lösungen zumindest deutlich einfacher gestaltet werden können. Funktionale Einschränkungen des hergestellten Bauteils, das heißt Stators oder Rotors, sind hierbei nicht in Kauf zu nehmen. Vielmehr zeichnet sich das Herstellungsverfahren durch eine Anwendbarkeit bei einer Vielzahl unterschiedlichster elektrotechnischer Produkte, deren Komponenten durch betriebsbedingte Kräfte belastet sind, aus. Eine zerstörungsfreie Demontage des Elektroblechpakets, welches durch das duroplastische Vergusselement oder eine Mehrzahl solcher Vergusselemente zusammengehalten wird, ist in der Regel nicht vorgesehen. Das Elektroblechpaket ist unter Verwendung standardisierter Elektrobleche ohne Beschichtung herstellbar. The particular advantage of the invention is that in the production of stators or rotors of electric motors or generators, complex production steps such as gluing or forming are completely eliminated or can at least be made much simpler compared to conventional solutions. Functional limitations of the manufactured component, i.e. stator or rotor, are not to be accepted here. Rather, the manufacturing process is characterized by an applicability for a large number of different electrotechnical products whose components are loaded by operational forces. A non-destructive dismantling of the laminated core stack, which is held together by the duroplastic casting element or a plurality of such casting elements, is generally not provided. The electrical sheet stack can be produced using standardized electrical sheets without a coating.
Nachfolgend werden mehrere Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Hierin zeigen: Several exemplary embodiments of the invention are explained in more detail below with reference to a drawing. Show in it:
Fig. 1 den Aufbau eines Elektroblechpakets für eine elektrische Maschine in einer schematischen Schnittdarstellung, 1 shows the structure of an electrical laminated core for an electrical machine in a schematic sectional view,
Fig. 2 ein Elektroblechpaket eines Stators eines Elektromotors in perspektivischer Ansicht, 2 shows an electrical laminated core of a stator of an electric motor in a perspective view,
Fig. 3 eine Anordnung zum Verbinden der Einzelbleche des Elektroblechpakets nach Fig. 2 mittels Transfer Moulding, 3 shows an arrangement for connecting the individual laminations of the electrical laminated core according to FIG. 2 by means of transfer molding,
Fig. 4 die Anordnung nach Fig. 3 ohne Elektroblechpaket, 4 shows the arrangement according to FIG. 3 without the laminated core,
Fig. 5 ein Detail eines Elektroblechpakets eines Rotors eines Elektromotors, 5 shows a detail of an electrical laminated core of a rotor of an electric motor,
Fig. 6 den Querschnitt eines Vergusselementes der Anordnung nach Fig. 1 , 6 shows the cross section of a casting element of the arrangement according to FIG. 1,
Fig. 7 ein weiteres Vergusselement für ein Elektroblechpaket in Ansicht analog Fig. 6, Fig. 8 ausschnittsweise einen ein Elektroblechpaket umfassenden Rotor eines Elektromotors in Draufsicht, 7 shows a further casting element for an electrical laminated core in a view analogous to FIG. 6, 8 a detail of a rotor of an electric motor comprising an electrical laminated core in a plan view,
Fig. 9 die Anordnung nach Fig. 8 in perspektivischer Ansicht. FIG. 9 shows the arrangement according to FIG. 8 in a perspective view.
Die folgenden Erläuterungen beziehen sich, soweit nicht anders angegeben, auf sämtliche Ausführungsbeispiele. Einander entsprechende oder prinzipiell gleichwirkende Teile sind in allen Figuren mit den gleichen Bezugszeichen gekennzeichnet. Unless otherwise stated, the following explanations relate to all exemplary embodiments. Parts that correspond to one another or have the same effect in principle are identified by the same reference symbols in all figures.
Ein insgesamt mit dem Bezugszeichen 1 gekennzeichnetes Funktionsteil eines Elektromotors, das heißt ein Stator oder ein Rotor, umfasst ein Elektroblechpaket 2, welches aus einer Vielzahl an Einzelblechen 3 aufgebaut ist. Zwischen den Einzelblechen 3 befinden sich elektrisch isolierende Lagen, die entweder durch gesonderte Komponenten oder durch Beschichtungen der Einzelbleche 3 bereitgestellt werden können. Ebenso ist es möglich, die elektrische Isolation innerhalb des Elektroblechpakets 2 ausschließlich durch das Verfahren des Transfer Mouldings, auf welches noch im Detail eingegangen werden wird, herzustellen. A functional part of an electric motor, identified overall by the reference number 1 , that is to say a stator or a rotor, comprises an electrical laminated core 2 which is made up of a large number of individual laminations 3 . Electrically insulating layers are located between the individual sheets 3 and can be provided either by separate components or by coatings of the individual sheets 3 . It is also possible to produce the electrical insulation within the electrical laminated core 2 exclusively by the transfer molding method, which will be discussed in detail below.
In allen Fällen weisen die aufeinander gestapelten Einzelbleche 3, das heißt die einzelnen Elektrobleche, mehrere Durchbrüche 4 mit geschlossener Umrandung, insbesondere kreisrunde Löcher, und/oder Nuten 8, welche allgemein als Durchbrüche ohne geschlossene Umrandung bezeichnet werden, auf. Die Durchbrüche 4, 8 sind beispielsweise durch Stanzen herstellbar. Zumindest einzelne Durchbrüche 4, 8 sind vollständig oder teilweise durch ein Vergusselement 5 aus duroplastischem Material ausgefüllt. Die Vergusselemente 5 sind elektrisch isolierend und stellen formschlüssige, mechanisch belastbare Verbindungen zwischen den Einzelblechen 3 her. In all cases, the stacked individual laminations 3, ie the individual electrical laminations, have a plurality of openings 4 with a closed border, in particular circular holes, and/or grooves 8, which are generally referred to as openings without a closed border. The openings 4, 8 can be produced, for example, by punching. At least individual openings 4, 8 are completely or partially filled with a casting element 5 made of duroplastic material. The casting elements 5 are electrically insulating and produce positive-locking, mechanically resilient connections between the individual sheets 3 .
Jedes Vergusselement 5 erstreckt sich parallel zur Mittelachse des Funktionsteils 1 und umfasst alternierend angeordnete sogenannte eingeschnürte Abschnitte 6 und Formschlussabschlüsse 7. Die Breite der eingeschnürten Abschnitte 6 ist mit Bmin, die Breite der Formschlussabschnitte 7 mit Bmax angegeben. In axialer Richtung des Funktionsteils 1 und damit auch des Vergusselementes 5 weist jeder eingeschnürte Abschnitt 6 eine Dicke DE auf, welche der Dicke eines Einzelblechs 3 entspricht. Die zwischen den Einzelblechen 3 gegebene Dicke des Formschlussabschnitts 7 ist mit D? angegeben. Each casting element 5 extends parallel to the central axis of the functional part 1 and comprises so-called constricted sections 6 and form-fitting terminations 7 arranged alternately. The width of the constricted sections 6 is indicated by Bmin, the width of the form-fitting sections 7 by Bmax. In the axial direction of Each constricted section 6 of the functional part 1 and thus also of the casting element 5 has a thickness DE which corresponds to the thickness of an individual sheet 3 . The given between the individual sheets 3 thickness of the form-fitting section 7 is D? specified.
Im Ausführungsbeispiel nach Fig. 1 hat das Vergusselement 5 die Form eines Bolzens, dessen eingeschnürte Abschnitte 6 als ringförmig umlaufende Nuten ausgebildet sind. Der Durchmesser eines den Bolzen umschreibenden Zylinders hat einen Durchmesser, welcher der maximalen Breite Bmax entspricht. Die Formschlussabschnitte 7 sowie die zwischen diesen angeordneten eingeschnürten Abschnitte 6 haben die Form von kreisrunden Scheiben oder Stababschnitten. Auf die Einzelbleche 3 einwirkende Kräfte, auch Axialkräfte, bezogen auf die Mittelachse des Funktionsteils 1 , werden mit Hilfe der Formschlussabschnitte 7 durch die Vergusselemente 5 aufgenommen. Dies gilt auch in Fällen, in denen - anders als in Fig. 1 dargestellt - die Formschlussabschnitte 7 in Axialrichtung wesentlich weniger ausgedehnt sind als die eingeschnürten Abschnitte 6. In the exemplary embodiment according to FIG. 1, the casting element 5 is in the form of a bolt, the constricted sections 6 of which are designed as annular circumferential grooves. The diameter of a cylinder circumscribing the bolt has a diameter which corresponds to the maximum width Bmax. The form-fitting sections 7 and the constricted sections 6 arranged between them have the shape of circular discs or bar sections. Forces acting on the individual sheets 3 , including axial forces, in relation to the central axis of the functional part 1 , are absorbed by the casting elements 5 with the aid of the form-fitting sections 7 . This also applies in cases in which - in contrast to what is shown in Fig. 1 - the form-fitting sections 7 are significantly less extended in the axial direction than the constricted sections 6.
Schritte der Herstellung des Elektroblechpakets 2 nach Fig. 2 werden im Folgenden anhand der Fig. 3 und 4 näher erläutert. Zum Einbringen der mechanisch belastbaren Vergusselemente 5 wird ein insgesamt mit 11 bezeichnetes Werkzeug verwendet, welches eine Angussplatte 12, eine Entlüftungsplatte 13, sowie eine Trägerplatte 14 umfasst und als Transfer Moulding Werkzeug, das heißt Werkzeug zum Spritzpressen, ausgebildet ist. In dem in Fig. 3 sichtbaren Zustand wird duroplastisches, vorgewärmtes Material von der Angussplatte 12 aus durch die Durchbrüche 4 gepresst, wobei die Durchbrüche 4 im vorliegenden Fall in Form von neun gleichförmig am Umfang des Stators 1 verteilten Durchgangsbohrungen vorliegen. Steps in the production of the electrical laminated core 2 according to FIG. 2 are explained in more detail below with reference to FIGS. 3 and 4. To introduce the mechanically resilient casting elements 5, a tool designated 11 overall is used, which includes a sprue plate 12, a ventilation plate 13 and a support plate 14 and is designed as a transfer molding tool, ie a tool for injection molding. In the state visible in FIG. 3 , duroplastic, preheated material is pressed from the sprue plate 12 through the openings 4 , the openings 4 being present in the present case in the form of nine through-holes distributed uniformly around the circumference of the stator 1 .
Während des Spritzpressens, das heißt Transfer Mouldings, werden automatisch auch die Formschlussabschnitte 7 der Vergusselement 6 erzeugt, wobei die tatsächliche Form der Formschlusselemente 7 von der in den Fig. 1 und 6 dargestellten idealisierten Form abweichen kann. Nach dem Aushärten der Vergusselemente 5 kann das Funktionsteil 1 vom Werkzeug 11 abgenommen werden. Wie aus Fig. 4 hervorgeht, weist das Werkzeug 11 in seinem mittleren Abschnitt, dessen Höhe der axialen Ausdehnung des Stators 1 entspricht, mehrere, im vorliegenden Fall drei, leistenförmige Zentrierschwerter 15 auf, mit denen die korrekte Positionierung des Elektroblechpakets 2 gegenüber dem Werkzeug 11 beim Spritzpressen sichergestellt ist. During the injection molding, that is to say transfer molding, the form-fitting sections 7 of the casting element 6 are also automatically produced, it being possible for the actual shape of the form-fitting elements 7 to deviate from the idealized shape illustrated in FIGS. After the casting elements 5 have hardened, the functional part 1 can be removed from the tool 11 . As can be seen from Fig. 4, the tool 11 has in its middle section, the height of which corresponds to the axial extension of the stator 1, several, in the present case three, strip-shaped centering swords 15, with which the correct positioning of the laminated core 2 relative to the tool 11 is ensured during transfer molding.
Die Fig. 5 zeigt ausschnittsweise einen Rotor 1 als Funktionsteil eines Elektromotors, nämlich Innenläufers. Auch der Rotor 1 ist mit Hilfe eines Werkzeugs 11 herstellbar, dessen grundsätzlicher Aufbau der Bauform nach den Fig. 3 und 4 entspricht. Im Fall von Fig. 5 liegt der Durchbruch 8 in Form einer Nut vor, deren Nutflanken mit 9 und deren Nutgrund mit 10 bezeichnet ist. In Anpassung an die Form der Nut 8 hat auch das Vergusselement 5 einen U-förmigen Querschnitt. Der offene Bereich der Nut 8 ist mit Wicklungen oder Magneten ausfüllbar. In nicht dargestellter Weise können die Wicklungen oder Magneten direkt in das Vergusselement 5 eingebettet sein. 5 shows a detail of a rotor 1 as a functional part of an electric motor, namely an internal rotor. The rotor 1 can also be produced with the aid of a tool 11, the basic structure of which corresponds to the design according to FIGS. In the case of FIG. 5, the opening 8 is in the form of a groove, the flanks of which are denoted by 9 and the base of which is denoted by 10. In adaptation to the shape of the groove 8, the casting element 5 also has a U-shaped cross section. The open area of the slot 8 can be filled with windings or magnets. The windings or magnets can be embedded directly in the casting element 5 in a manner that is not shown.
Die Formschlussabschnitte 7 des U-förmigen Vergusselementes 5 nach Fig. 5 ragen über die Nutflanken 9 und den Nutgrund 10 hinaus in die Bereiche zwischen die Einzelbleche 3, so dass auch in diesem Fall, ebenso wie im Ausführungsbeispiel nach den Fig. 1 und 6, der gewünschte Formschluss zwischen den Einzelblechen 3 gegeben ist. The form-fitting sections 7 of the U-shaped casting element 5 according to FIG. 5 protrude beyond the groove flanks 9 and the groove base 10 into the areas between the individual sheets 3, so that in this case, as well as in the exemplary embodiment according to FIGS. 1 and 6, the desired form fit between the individual sheets 3 is given.
Die Fig. 7 zeigt eine schwalbenschwanzförmige Querschnittsgestaltung des duroplastischen Vergusselementes 5, welche sowohl für Statoren als auch Rotoren als Funktionsteile 1 von Elektromotoren oder Generatoren in Betracht kommen. In nicht dargestellter Weise könnte das Vergusselement 5 auch einen Querschnitt in der Art einer Sanduhr oder eines Kleeblatts aufweisen. In allen Fällen ragen die Formschlussabschnitte 7 in Querrichtung des insgesamt langgestreckten Vergusselementes 5 über die eingeschnürten Abschnitte 6 hinaus, so dass die gewünschte Formschlussfunktion gegeben ist. Darüber hinaus gehende Verbindungen zwischen den Einzelblechen 3, etwa durch Stanzpaketieren, Kleben oder Schweißen, sind zur Herstellung der erforderlichen mechanischen Stabilität des Funktionsteils 1 nicht erforderlich. In den Figuren 8 und 9 ist ausschnittweise ein Rotor 1 eines Elektromotors dargestellt, wobei sich in zahleichen Ausnehmungen 16, die durch das Elektroblechpaket 2 des Rotors 1 bereitgestellt sind, Magneten 17, nämlich Permanentmagneten, befinden. Ferner ist in den Figuren 8 und 9 ein Durchbruch 4 mit geschlossener Umrandung er- kennbar, welcher für die Aufnahme eines in diesem Fall nicht dargestellten Verguss- elementes 5 aus einem duroplastischen Material, nämlich Epoxidharz, vorgesehen ist. 7 shows a dovetail-shaped cross-sectional design of the duroplastic casting element 5, which can be considered for both stators and rotors as functional parts 1 of electric motors or generators. In a way that is not shown, the casting element 5 could also have a cross section in the manner of an hourglass or a cloverleaf. In all cases, the form-fitting sections 7 protrude beyond the constricted sections 6 in the transverse direction of the casting element 5, which is elongated overall, so that the desired form-fitting function is provided. Connections between the individual sheets 3 that go beyond this, for example by means of stamped stacking, gluing or welding, are not required to produce the required mechanical stability of the functional part 1 . A rotor 1 of an electric motor is shown in detail in FIGS. 8 and 9, magnets 17, namely permanent magnets, being located in numerous recesses 16 provided by the laminated core 2 of the rotor 1. Furthermore, an opening 4 with a closed border can be seen in FIGS. 8 and 9, which is provided for receiving a casting element 5 (not shown in this case) made of a duroplastic material, namely epoxy resin.
Der Durchbruch 4 ist im vorliegenden Fall in der Art eines vierblättrigen Kleeblatts gestaltet und damit in besonderem Maße zur Aufnahme von Kräften in verschiedensten Richtungen geeignet. Beim Aushärten des Materials, aus welchem das Vergussele- ment 5 gebildet wird, entstehen mechanische Spannungen, die das Elektroblechpaket besonders wirksam Zusammenhalten. Mehrere kleeblattförmige Durchbrüche 4 der dargestellten Art sind über den Querschnitt des Elektroblechpakets 2 verteilt und ersetzen insbesondere gesonderte, metallische Verbindungselemente sowie durch Ver- formung der Einzelbleche 3 gebildete Verbindungen herkömmlicher Elektromotoren. In the present case, the opening 4 is designed in the manner of a four-leaf clover and is therefore particularly suitable for absorbing forces in a wide variety of directions. When the material from which the casting element 5 is formed hardens, mechanical stresses arise which hold the laminated core together particularly effectively. Several cloverleaf-shaped openings 4 of the type shown are distributed over the cross section of the electrical laminated core 2 and in particular replace separate metallic connecting elements and connections of conventional electric motors formed by deformation of the individual laminations 3 .
Bezuqszeichenliste Reference character list
1 Funktionsteil, Stator, Rotor 1 functional part, stator, rotor
2 Elektroblechpaket 2 sheet metal package
3 Einzelblech 3 single sheet
4 Durchbruch mit geschlossener Umrandung4 breakthrough with closed border
5 Vergusselement 5 potting element
6 eingeschnürter Abschnitt des Vergusselement6 constricted section of the casting element
7 Formschlussabschnitt des Vergusselements7 form-fitting section of the casting element
8 Nut 8 slots
9 Nutflanke 9 groove side
10 Nutgrund 10 groove bottom
11 Werkzeug 11 tool
12 Angussplatte 12 sprue plate
13 Entlüftungsplatte 13 vent panel
14 Trägerplatte 14 carrier plate
15 Zentnerschwert 15 hundredweight sword
16 Ausnehmung 16 recess
17 Magnet 17 magnets
Bmax maximale Breite Bmax maximum width
Bmin minimale Breite Bmin minimum width
D7 Dicke des Formschlussabschnitts D 7 Thickness of the interlocking section
DE Dicke des Einzelblechs EN Thickness of the single sheet

Claims

Patentansprüche patent claims
1 . Elektroblechpaket (2) für eine elektrische Maschine, mit einer Anzahl Einzelbleche (3), welche elektrisch voneinander isoliert gestapelt sind und miteinander fluchtende Durchbrüche (4, 8) aufweisen, sowie mit einem die Durchbrüche1 . Electrical laminated core (2) for an electrical machine, with a number of individual laminations (3) which are stacked and electrically insulated from one another and have apertures (4, 8) aligned with one another, and with one of the apertures
(4, 8) durchdringenden und hierbei die Einzelbleche (3) formschlüssig hintergreifenden duroplastischen Vergusselement (5). (4, 8) penetrating duroplastic casting element (5) which engages behind the individual sheets (3) in a form-fitting manner.
2. Elektroblechpaket (2) nach Anspruch 1 , dadurch gekennzeichnet, dass das Vergusselement (5) eine Maximalbreite (Bmax) aufweist, welche jeweils zwischen zwei Einzelblechen (3) gegeben ist und mindestens das 1 ,5-fache der in den Durchbrüchen gegebenen Minimalbreite (Bmin) des Vergusselementes (5) beträgt. 2. Electrical laminated core (2) according to claim 1, characterized in that the casting element (5) has a maximum width (Bmax), which is given between two individual sheets (3) and is at least 1.5 times the minimum width given in the openings (Bmin) of the casting element (5).
3. Elektroblechpaket (2) nach Anspruch 2, dadurch gekennzeichnet, dass die Maximalbreite (Bmax) nicht mehr als das Dreifache der Minimalbreite (Bmin) des Vergusselementes (5) beträgt. 3. Electrical laminated core (2) according to claim 2, characterized in that the maximum width (Bmax) is no more than three times the minimum width (Bmin) of the casting element (5).
4. Elektroblechpaket (2) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Einzelbleche (3) frei von zwischen diesen Einzelblechen (3) gebildetem Formschluss aufeinandergestapelt sind. 4. Electrical laminated core (2) according to any one of claims 1 to 3, characterized in that the individual sheets (3) are stacked on top of one another without any positive locking formed between these individual sheets (3).
5. Elektroblechpaket (2) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Durchbrüche (4) jeweils eine geschlossene Umrandung aufweisen. 5. Electrical laminated core (2) according to any one of claims 1 to 4, characterized in that the openings (4) each have a closed border.
6. Elektroblechpaket (2) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Durchbrüche (8) als Nut, insbesondere Statornut, ausgebildet sind. 6. Electrical laminated core (2) according to any one of claims 1 to 4, characterized in that the openings (8) are designed as a groove, in particular a stator groove.
7. Elektroblechpaket (2) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass dieses einem Rotor einer elektrischen Maschine zuzurechnen ist. 7. Electrical laminated core (2) according to any one of claims 1 to 6, characterized in that this is attributable to a rotor of an electrical machine.
8. Elektroblechpaket (2) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass dieses einem Stator einer elektrischen Maschine zuzurechnen ist. Verfahren zur Herstellung eines Elektroblechpaketes (2), wobei ein Stapel elektrisch gegeneinander isolierter Einzelbleche (3), welche miteinander fluchtende Durchbrüche (4, 8) aufweisen, durch Transfer Moulding mit mindestens einem insgesamt bolzenförmigen duroplastischen, in die Durchbrüche (4, 8) eingebrachten Vergusselement (5), welches zur Aufnahme von Zugkräften zwischen beliebigen der Einzelbleche (3) ausgebildet ist, versehen wird. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass beim Transfer Moulding derart duroplastisches Material zwischen die Einzelbleiche (3) eingebracht wird, dass ein Formschluss zwischen jedem der Einzelbleche (3) und dem Vergusselement (5) entsteht. 8. Electrical laminated core (2) according to any one of claims 1 to 6, characterized in that this is attributable to a stator of an electrical machine. Method for producing an electrical laminated core (2), wherein a stack of individual sheets (3) electrically insulated from one another and having openings (4, 8) aligned with one another, by transfer molding with at least one generally bolt-shaped duroplastic material introduced into the openings (4, 8). Casting element (5), which is designed to absorb tensile forces between any of the individual sheets (3), is provided. Method according to Claim 9, characterized in that duroplastic material is introduced between the individual sheets (3) during transfer molding in such a way that a form fit is produced between each of the individual sheets (3) and the casting element (5).
PCT/DE2022/100635 2021-09-29 2022-08-24 Laminated electrical steel core for an electric machine and method for producing a laminated electrical steel core WO2023051861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021125212.1 2021-09-29
DE102021125212.1A DE102021125212B4 (en) 2021-09-29 2021-09-29 Electrical sheet metal package for an electrical machine and method for producing an electrical sheet metal package

Publications (1)

Publication Number Publication Date
WO2023051861A1 true WO2023051861A1 (en) 2023-04-06

Family

ID=83192046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2022/100635 WO2023051861A1 (en) 2021-09-29 2022-08-24 Laminated electrical steel core for an electric machine and method for producing a laminated electrical steel core

Country Status (2)

Country Link
DE (1) DE102021125212B4 (en)
WO (1) WO2023051861A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2536390B1 (en) 1975-08-14 1976-11-11 Siemens Ag Electric motor squirrel cage rotor - has squirrel cage injection moulded into rotor laminations which acts as binder holding laminations together
EP0729665B1 (en) 1993-11-15 1998-05-27 Vacontec Process for manufacturing an armature for an electric motor
JP2015033167A (en) * 2013-07-31 2015-02-16 日産自動車株式会社 Rotor for rotary electric machine and manufacturing method for the same
DE102013227054A1 (en) 2013-12-23 2015-06-25 Robert Bosch Gmbh Stator with an encapsulation and electric machine with the stator
EP2961039A1 (en) * 2014-06-23 2015-12-30 Siemens Aktiengesellschaft Mechanically stabilised rotor for a reluctance motor
DE102015212007A1 (en) 2015-06-29 2016-12-29 Robert Bosch Gmbh Device for forming an at least partially encapsulation
JP2017099266A (en) * 2015-11-12 2017-06-01 ダイキン工業株式会社 Motor core and motor using the same, and compressor
DE102017220123A1 (en) 2017-11-13 2019-05-16 Audi Ag Groove wall insulation for a stator of an electric motor
EP3582375A1 (en) * 2017-02-13 2019-12-18 Mitsui High-Tec, Inc. Stator laminated iron core manufacturing method and stator laminated iron core
DE102008032214B4 (en) 2007-08-21 2020-10-29 Sew-Eurodrive Gmbh & Co Kg Reluctance motor
CN113452164A (en) * 2020-03-27 2021-09-28 日本电产株式会社 Laminated plate body, laminated iron core and motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806169A (en) 1995-04-03 1998-09-15 Trago; Bradley A. Method of fabricating an injected molded motor assembly
DE102015207865A1 (en) 2015-04-29 2016-11-03 Continental Automotive Gmbh Housingless electric machine
JP6279685B2 (en) 2015-10-26 2018-02-14 株式会社三井ハイテック Manufacturing method of laminated iron core
DE102016224249A1 (en) 2016-12-06 2018-06-07 KSB SE & Co. KGaA A method of manufacturing a rotor for a synchronous reluctance machine and rotor for a synchronous reluctance machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2536390B1 (en) 1975-08-14 1976-11-11 Siemens Ag Electric motor squirrel cage rotor - has squirrel cage injection moulded into rotor laminations which acts as binder holding laminations together
EP0729665B1 (en) 1993-11-15 1998-05-27 Vacontec Process for manufacturing an armature for an electric motor
DE102008032214B4 (en) 2007-08-21 2020-10-29 Sew-Eurodrive Gmbh & Co Kg Reluctance motor
JP2015033167A (en) * 2013-07-31 2015-02-16 日産自動車株式会社 Rotor for rotary electric machine and manufacturing method for the same
DE102013227054A1 (en) 2013-12-23 2015-06-25 Robert Bosch Gmbh Stator with an encapsulation and electric machine with the stator
EP2961039A1 (en) * 2014-06-23 2015-12-30 Siemens Aktiengesellschaft Mechanically stabilised rotor for a reluctance motor
DE102015212007A1 (en) 2015-06-29 2016-12-29 Robert Bosch Gmbh Device for forming an at least partially encapsulation
JP2017099266A (en) * 2015-11-12 2017-06-01 ダイキン工業株式会社 Motor core and motor using the same, and compressor
EP3582375A1 (en) * 2017-02-13 2019-12-18 Mitsui High-Tec, Inc. Stator laminated iron core manufacturing method and stator laminated iron core
DE102017220123A1 (en) 2017-11-13 2019-05-16 Audi Ag Groove wall insulation for a stator of an electric motor
CN113452164A (en) * 2020-03-27 2021-09-28 日本电产株式会社 Laminated plate body, laminated iron core and motor

Also Published As

Publication number Publication date
DE102021125212A1 (en) 2023-03-30
DE102021125212B4 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
EP2807726B1 (en) Rotor for a rotating electrical machine and electric motor
EP1114500B1 (en) Electric motor
DE102006054579A1 (en) Partial stator for an electric motor
DE102010004887A1 (en) Spool for mounting on a magnetic core, magnetic core for reluctance resolver and method of manufacture
EP2071707A1 (en) Dynamo-electric machine with tooth-wound coils
DE102008018724A1 (en) Secondary part i.e. rotor, for e.g. two-pole synchronous motor, has positioning elements e.g. steel tape, for positioning permanent magnets in magnet bags, and magnet bags with recesses for accommodation of positioning elements
DE102004054277A1 (en) Rotor assembly for an electric machine and method of manufacturing a rotor assembly
EP3462582A1 (en) Permanent magnet rotor, method for its production and magnetizing apparatus
WO2008034760A1 (en) Pole tooth with permanent magnet
DE112004001898T5 (en) Short circuit part, commutator and method for producing a short-circuit part
AT504016A1 (en) transverse flux
WO2011131582A2 (en) Stator arrangement for a permanent magnet excited electric motor
DE202017100616U1 (en) Stator for an electric motor
EP1041697B1 (en) Reluctance machine with at least two salient poles each having an exciter coil and method for manufacturing the stator of such a machine
DE112020001924T5 (en) Rotating electrical machine and method of manufacturing a core
DE2056640A1 (en) Method and device for manufacturing a stator for electric motors or other electric machines
DE102021125212B4 (en) Electrical sheet metal package for an electrical machine and method for producing an electrical sheet metal package
DE69832163T2 (en) PROCESS FOR PREPARING AND INTRODUCING WINDINGS FOR ELECTRIC MOTORS
DE2848618A1 (en) Closing winding slots in electrical armature - is by cold deformation of core tooth tips to make required shape
DE102019134792A1 (en) Isolation device, stator device, electrical machine and method for manufacturing a stator device
DE102011107140A1 (en) Stator segment and stator and method for producing a stator segment
DE102009000028A1 (en) DC motor
DE102017102255A1 (en) Stator for an electric motor
DE102008043386A1 (en) Method for manufacturing stator of permanent magnet-excited synchronous machine, involves bringing stator into housing, and filling sealing compound in housing, where machining treatment is implemented after hardening compound
DE102021213813A1 (en) Electrical machine, rotor and method of manufacturing a rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22764645

Country of ref document: EP

Kind code of ref document: A1