WO2023051422A1 - 通信方法及相关设备 - Google Patents

通信方法及相关设备 Download PDF

Info

Publication number
WO2023051422A1
WO2023051422A1 PCT/CN2022/121141 CN2022121141W WO2023051422A1 WO 2023051422 A1 WO2023051422 A1 WO 2023051422A1 CN 2022121141 W CN2022121141 W CN 2022121141W WO 2023051422 A1 WO2023051422 A1 WO 2023051422A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
node
functional entity
communication system
link
Prior art date
Application number
PCT/CN2022/121141
Other languages
English (en)
French (fr)
Inventor
何青春
于游洋
程型清
李明超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22874808.3A priority Critical patent/EP4391629A1/en
Publication of WO2023051422A1 publication Critical patent/WO2023051422A1/zh
Priority to US18/620,675 priority patent/US20240244465A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/328Reference signal received power [RSRP]; Reference signal received quality [RSRQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/66Policy and charging system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the communication field, in particular to a communication method and related equipment.
  • the management node can be called a G node
  • the terminal node can be called a T node.
  • G nodes and T nodes that communicate with each other can form a short-distance communication domain.
  • the G node is a node that sends data scheduling information to the access layer of the short-distance wireless communication system, and provides access layer services such as connection management, resource allocation, and information security for the T node in the communication domain.
  • the power consumption and cost between nodes in the short-distance communication domain are low, but the communication distance is relatively limited. Bluetooth, WiFi, etc. can all be called short-range wireless communication technologies.
  • long-distance communication systems such as 5G cellular networks
  • 5G cellular networks can provide macro coverage and provide services for user terminals under macro coverage.
  • the short-range communication domain and the cellular network communication system can be integrated (the fusion of the short-distance communication domain and the cellular network communication system is referred to as the integrated communication system, and the integrated communication system will be used in the future), it is hopeful that the low-cost long-distance data transmission of the terminal can be realized.
  • it is difficult to manage the nodes in the short-distance communication domain in the current converged communication system which makes it difficult to integrate the short-distance communication domain and the cellular network communication system.
  • the present application provides a communication method and related equipment, which can realize the information reporting of the first node in the first communication system, meet the management requirements for the first node, and improve the fusion effect of the first communication system and the second communication system.
  • a communication method including the following steps: acquiring first information of a first node in a first communication system, where the first information includes status information of the first node and/or status information of a first link, The first node is one end of the first link; and sends the first information to the first functional entity in the second communication system through the first manner.
  • the foregoing method may be applied to the first node.
  • the functional entity in the second communication system can obtain information about the nodes in the first communication system, so that the second communication system can perceive and manage the nodes in the first communication system.
  • the information of the first node may include the state information of the first node, or the state information of the first link, etc.
  • the functional entity in the second communication system may detect the state of the node or the state of the communication link, etc. Therefore, it can meet the needs of the second communication system for node management in the first communication system, improve the fusion effect of the first communication system and the second communication system, and meet the needs of users for the integration of different communication systems.
  • the first communication system may be a short-distance wireless communication system
  • the second communication system may be a 5G core network.
  • the 5G core network can perceive the nodes in the short-distance wireless communication system, and can further manage them, so that the nodes in the short-distance communication system can realize low-cost, long-distance data transmission, and improve short-distance wireless communication.
  • the integration effect and service quality of the wireless communication system and the 5G core network bring users a better communication experience.
  • the state information of the first node refers to information related to the first node.
  • the state information of the first node includes one or more of the following: hardware version information, Software version information, or node power information.
  • the status information of the first link refers to information related to the link status of the first link, for example, the status information of the first link includes the first status measurement quantity and/or the second state measurement quantity, the first state measurement quantity is the link state measurement quantity between the first node and the management node of the first node, and the second state measurement quantity is the link state measurement quantity between the first node and the second communication system Link state measurements between.
  • the link state measurement quantity between the first node and the second communication system may be the link state measurement quantity between the first node and the first functional entity and/or the link state measurement quantity between the first node and the third functional entity Link state measurements.
  • the above-mentioned first state measurement quantity includes one or more of the following: Reference Signal Received Power RSRP, Reference Signal Received Quality RSRQ, Signal-to-Interference-plus-Noise Ratio SINR, Channel Quality Indication A CQI value, a precoding matrix indication PMI value, or a rank indication RI value.
  • the above-mentioned second state measurement quantity includes one or more of the following: end-to-end round trip delay RTT, packet loss rate, or jitter.
  • the communication method further includes: receiving control strategy information from the first functional entity, where the control strategy information is used to configure the first node.
  • the first functional entity can perform information configuration on the first node by delivering control policy information.
  • the control strategy information includes at least one of the following: node status update information, quality of service (QoS) policy configuration information, node status reporting policy, or link status detection policy.
  • the node status update information is related update information corresponding to the status information of the first node;
  • the node status reporting strategy is a reporting strategy corresponding to the status information of the first node, optionally, the node status reporting strategy includes one or more of the following : Reporting object, reporting period, or event parameter.
  • the link state detection strategy is a detection strategy corresponding to the state information of the first link.
  • the link state detection strategy includes one or more of the following: measurement object, reporting object, reporting threshold, reporting period, or event parameter .
  • the QoS policy configuration information is used to configure the QoS policy of the first node.
  • the communication method in the embodiment of the present application further includes: receiving transmission mode indication information, where the transmission mode indication information is used to indicate the first mode.
  • the sending method indication information is used to determine the first method to send the first information to the first functional entity.
  • the first method is a control plane sending method; then using the first method, sending the first information to the first functional entity in the second communication system includes: sending the first information to the second The second functional entity in the communication system sends a non-access stratum NAS message, where the NAS message includes the first information.
  • the first method is the control plane sending method
  • the NAS message contains the first information
  • the second functional entity can realize sending the first information to the The first functional entity.
  • the first method is a user plane transmission method based on the first functional entity; then, through the first method, the first information is sent to the first functional entity in the second communication system
  • the method includes: establishing an Internet Protocol IP connection with the first functional entity in the second communication system according to the network identification information of the first functional entity; and sending the first information to the first functional entity through the IP connection.
  • the first mode is the user plane transmission mode
  • an IP connection is first established with the first functional entity according to the network identification information of the first functional entity, and then based on the IP connection, the first functional entity can be sent to the first functional entity. a message.
  • the communication method in the embodiment of the present application further includes: sending a first request to the second functional entity in the second communication system, where the first request is used to request the first function Network identification information of the entity; receiving network identification information of the first functional entity from the second functional entity.
  • the first request may be sent to the second functional entity to request to obtain the network identification information of the first functional entity.
  • sending the first information to the first functional entity through the IP connection includes: sending the first information to the first functional entity through the IP connection based on a user plane data transmission protocol.
  • the first information when the first information is sent to the first functional entity through the established IP connection, the first information may be encapsulated by using a user plane data transmission protocol, so that the first information can be smoothly transmitted through the user plane.
  • the first method is a performance measurement function PMF user plane transmission method; then in the first method, the first information is sent to the first functional entity in the second communication system, including : Sending the first information to the PMF unit based on the network identification information of the PMF unit of the third functional entity in the second communication system.
  • the first information is sent to the PMF unit according to the network identification information of the PMF unit in the third functional entity, so that the PMF unit can implement the first The information is sent to the first functional entity.
  • the communication method in the embodiment of the present application further includes: sending a second request to the second functional entity in the second communication system, and the second request is used to request the PMF unit Network identification information: receiving network identification information from the PMF unit of the second functional entity.
  • a second request may be sent to the second functional entity to request to obtain the network identification information of the PMF unit.
  • sending the first information to the PMF unit includes: sending an end-to-end round-trip delay RTT detection request message and/or a packet loss rate detection request message to the PMF unit, and the end-to-end The terminal round-trip time delay RTT detection request message or the packet loss rate detection request message includes the first information.
  • the first information when sending the first information to the PMF unit, the first information may be carried in the RTT detection request message or the packet loss rate detection request message, so as to realize sending the first information to the PMF unit.
  • a communication method including the following steps: receiving first information of the first node in the first communication system, the first information includes status information of the first node and/or status of the first link Information, the first node is one end of the first link; sending the first information to the first functional entity in the second communication system.
  • the foregoing method may be applied to the second functional entity in the second communication system.
  • the functional entity in the second communication system can obtain information about the nodes in the first communication system, so that the second communication system can perceive and manage the nodes in the first communication system.
  • the information of the first node may include the state information of the first node, or the state information of the first link, etc.
  • the functional entity in the second communication system may detect the state of the node or the state of the communication link, etc. Therefore, it can meet the needs of the second communication system for node management in the first communication system, improve the fusion effect of the first communication system and the second communication system, and meet the needs of users for the integration of different communication systems.
  • the communication method in the embodiment of the present application further includes: receiving control policy information from the first functional entity, where the control policy information is used to configure the first node; sending to the first node Control policy information.
  • the information configuration of the first node can also be performed by delivering the control strategy information to the first node.
  • receiving the first information of the first node in the first communication system includes: receiving a NAS message from the first node, where the NAS message includes the first information.
  • the communication method in the embodiment of the present application further includes: receiving a first request from the first node, where the first request is used to request network identification information of the first functional entity; sending the first request Network identification information of a functional entity.
  • the communication method in the embodiment of the present application further includes: receiving a second request from the first node, where the second request is used to request the third functional entity in the second communication system Network identification information of the PMF unit; sending the network identification information of the PMF unit.
  • a communication method including the following steps: receiving first information from the first node, the first information includes status information of the first node and/or status information of the first link, and the first node is one end of the first link; determine control policy information of the first node based on the first information, and the control policy information is used to configure the first node; and send the control policy information.
  • the foregoing method may be applied to the first functional entity in the second communication system.
  • the functional entity in the second communication system can acquire information about the first node in the first communication system, so that the second communication system can perceive and manage the nodes in the first communication system.
  • the information of the first node may include the state information of the first node, or the state information of the first link, etc.
  • the functional entity in the second communication system may detect the state of the node or the state of the communication link, etc. Therefore, it can meet the needs of the second communication system for node management in the first communication system, improve the fusion effect of the first communication system and the second communication system, and meet the needs of users for the integration of different communication systems.
  • the state information of the first node includes one or more of the following: hardware version information, software version information, or node power information.
  • control policy information includes one or more of the following: node status update information, quality of service (QoS) policy configuration information, node status reporting policy, or link state detection policy.
  • QoS quality of service
  • the node status reporting strategy includes one or more of the following: reporting object, reporting period, or event parameter.
  • the link state detection strategy includes one or more of the following: a measurement object, a reporting object, a reporting threshold, a reporting period, or an event parameter.
  • the communication method in the embodiment of the present application further includes: sending transmission mode indication information, where the transmission mode indication information is used to indicate the first mode, and the first mode is the first information sending method.
  • a first node including: an acquisition module, configured to acquire first information of the first node in the first communication system, where the first information includes status information of the first node and/or first For link status information, the first node is one end of the first link; the sending module is configured to send the first information to the first functional entity in the second communication system in a first manner.
  • the status information of the first node includes one or more of the following: hardware version information, software version information, or node power information.
  • the state information of the first link includes a first state measurement and/or a second state measurement
  • the first state measurement is the first node and the first node's management
  • the link state measurement quantity between nodes, the second state measurement quantity is the link state measurement quantity between the first node and the second communication system.
  • the first state measurement quantity includes one or more of the following: reference signal received power RSRP, reference signal received quality RSRQ, signal-to-interference-plus-noise ratio SINR, channel quality indicator CQI value, precoding matrix indication PMI value, or rank indication RI value.
  • the second state measurement quantity includes one or more of the following: end-to-end round trip time delay RTT, packet loss rate, or jitter.
  • the first node in the embodiment of the present application further includes: a receiving module, configured to receive control strategy information from the first functional entity, and the control strategy information is used to configure the first node.
  • control policy information includes one or more of the following: node status update information, quality of service (QoS) policy configuration information, node status reporting policy, or link status detection policy.
  • QoS quality of service
  • the node status reporting strategy includes one or more of the following: reporting object, reporting period, or event parameter.
  • the link state detection strategy includes one or more of the following: a measurement object, a reporting object, a reporting threshold, a reporting period, or an event parameter.
  • the receiving module is further configured to receive transmission mode indication information, where the transmission mode indication information is used to indicate the first mode.
  • the first method is a control plane sending method; in terms of sending the first information to the first functional entity in the second communication system through the first method, the sending module specifically uses For: sending a non-access stratum NAS message to the second functional entity in the second communication system, where the NAS message includes the first information.
  • the first method is a user plane sending method based on the first functional entity; the sending module sends the first function entity in the second communication system to the first functional entity in the first method.
  • the sending module sends the first function entity in the second communication system to the first functional entity in the first method.
  • it is specifically used to: establish an Internet Protocol IP connection with the first functional entity in the second communication system according to the network identification information of the first functional entity; send the first information to the first functional entity through the IP connection .
  • the sending module is further configured to send a first request to a second functional entity in the second communication system, where the first request is used to request network identification information of the first functional entity ;
  • the receiving module is further configured to receive the network identification information of the first functional entity from the second functional entity.
  • the sending module in terms of sending the first information to the first functional entity through the IP connection, is specifically configured to: send the first information to the first functional entity through the IP connection based on the user plane data transmission protocol An entity sends first information.
  • the first method is a performance measurement function PMF user plane sending method; the sending module sends the first information to the first functional entity in the second communication system through the first method In an aspect, it is specifically used to: send the first information to the PMF unit based on the network identification information of the PMF unit of the third functional entity in the second communication system.
  • the sending module is further configured to send a second request to a second functional entity in the second communication system, where the second request is used to request network identification information of the PMF unit; receiving The module is further configured to receive network identification information from the PMF unit of the second functional entity.
  • the sending module is specifically configured to: send an end-to-end round-trip delay RTT detection request message and/or packet loss rate to the PMF unit in terms of sending the first information to the PMF unit
  • the detection request message, the end-to-end round trip delay RTT detection request message or the packet loss rate detection request message includes the first information.
  • the information reporting of the first node can be realized, so as to implement refined management on the first node and improve resource utilization.
  • a first functional entity including: a receiving module, configured to receive first information from the first node, where the first information includes status information of the first node and/or status of the first link information, the first node is one end of the first link; a determining module, configured to determine control strategy information of the first node based on the first information, and the control strategy information is used to configure the first node; a sending module, configured to send the control strategy information .
  • the state information of the first node includes one or more of the following: hardware version information, software version information, or node power information.
  • control policy information includes one or more of the following: node status update information, quality of service (QoS) policy configuration information, node status reporting policy, or link state detection policy.
  • QoS quality of service
  • the node status reporting strategy includes one or more of the following: reporting object, reporting period, or event parameter.
  • the link state detection strategy includes one or more of the following: a measurement object, a reporting object, a reporting threshold, a reporting period, or an event parameter.
  • the sending module is further configured to send sending mode indication information, where the sending mode indication information is used to indicate a first mode, and the first mode is a sending mode of the first information.
  • information reporting to the first node can be realized, so as to realize refined management of the first node and improve resource utilization.
  • a second functional entity including: a receiving module, configured to receive first information of a first node in a first communication system, where the first information includes status information of the first node and/or a second The state information of a link, the first node is one end of the first link; the sending module is used to send the first information to the first functional entity in the second communication system.
  • the receiving module is further configured to receive control strategy information from the first functional entity, and the control strategy information is used to configure the first node; the sending module is further configured to send the first node Send control policy information.
  • the receiving module in terms of receiving the first information of the first node in the first communication system, is specifically configured to: receive a NAS message from the first node, the NAS message includes the first information.
  • the receiving module is further configured to receive a first request from the first node, where the first request is used to request network identification information of the first functional entity; Network identification information.
  • the receiving module is further configured to receive a second request from the first node, and the second request is used to request the network of the PMF unit of the third functional entity in the second communication system Identification information; send the network identification information of the PMF unit.
  • information reporting to the first node can be realized, so as to realize refined management of the first node and improve resource utilization.
  • a communication device including at least one processor and a communication interface, wherein the communication interface provides information input or information output for the at least one processor, and the at least one processor is used to execute a program Or an instruction to enable the communication device to implement the communication method described in any one of the first aspect, the second aspect, and the third aspect.
  • a terminal is further provided, and the terminal includes the communication device described in the seventh aspect.
  • Examples of some terminals include but are not limited to: smart home devices (such as TVs, sweeping robots, smart desk lamps, audio systems, smart lighting systems, electrical control systems, home background music, home theater systems, intercom systems, video surveillance, etc.), Intelligent transportation equipment (such as automobiles, ships, drones, trains, trucks, trucks, etc.), intelligent manufacturing equipment (such as robots, industrial equipment, intelligent logistics, intelligent factories, etc.), intelligent terminals (mobile phones, computers, tablets, handheld Computers, desktops, headsets, audio, wearable devices, vehicle-mounted devices, virtual reality devices, augmented reality devices, etc.), battery management systems, batteries.
  • smart home devices such as TVs, sweeping robots, smart desk lamps, audio systems, smart lighting systems, electrical control systems, home background music, home theater systems, intercom systems, video surveillance, etc.
  • Intelligent transportation equipment such as automobiles, ships, drones, trains, trucks, trucks, etc.
  • intelligent manufacturing equipment such as robots, industrial equipment, intelligent logistics, intelligent factories, etc.
  • intelligent terminals mobile phones, computers,
  • a computer-readable storage medium stores a computer program, and the computer program is executed by a processor to implement the communication method described in the first aspect, or to implement the communication method as described in The communication method described in the second aspect, or implement the communication method described in the third aspect.
  • a computer program product containing instructions.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the communication method described in the first aspect, or to execute the communication method described in the second aspect. method, or execute the communication method described in the third aspect.
  • the beneficial effects of some implementations may refer to the beneficial effects of the technical solutions in the first aspect, which will not be repeated here.
  • Fig. 1a and Fig. 1b are structural schematic diagrams of a first communication system and a second communication system provided by the embodiment of the present application;
  • FIG. 2 is an interactive flow chart of a communication method provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a transmission protocol stack of a control plane transmission mode provided by an embodiment of the present application
  • FIG. 4 is a specific interaction flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a transmission protocol stack of a user plane transmission mode provided by an embodiment of the present application.
  • FIG. 6 is a specific interaction flowchart of another communication method provided by the embodiment of the present application.
  • Fig. 7 is a flow chart of PDU session establishment in the prior art
  • FIG. 8 is a schematic diagram of a transmission protocol stack of a PMF user plane transmission mode provided by an embodiment of the present application.
  • FIG. 9 is a specific interaction flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another first communication system and a second communication system provided by an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a first node provided by an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a first functional entity provided by an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of a second functional entity provided by an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication system in this application includes: global system of mobile communication (GSM) system, code division multiple access (code division multiple access, CDMA) system, wideband code division multiple access (wideband code division multiple access, WCDMA) system, general packet radio service (GPRS), long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) ), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) Communication System, Fifth Generation (5th generation, 5G) Cellular Communication System or New Radio , NR) and other millimeter wave communication systems, the sixth generation (6th generation, 6G) system, various existing short-distance communication systems (such as Bluetooth, WiFi, vehicle-mounted general short-distance wireless communication systems, star flash short-distance communication systems, etc. ), future evolved short-range communication systems, or general-purpose short-range communication systems, etc.
  • GSM global system of mobile communication
  • the node in this application is an electronic device with communication capability, also called a communication node.
  • a node may include a hand-held terminal, a vehicle, a vehicle-mounted device, or a network-side device, a user device, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a wireless communication device, a user agent, or
  • An independent device such as a user device may also be a component (such as a chip or an integrated circuit) contained in an independent device.
  • Nodes can be any possible smart terminal devices (such as mobile phones), smart transportation devices (such as vehicles, drones, etc.), smart manufacturing devices, smart home devices (such as large screens, speakers, etc.), etc.
  • the nodes in the vehicle, the nodes can also be the batteries in the battery management system and the battery pack.
  • the node when it is a vehicle-mounted device, it may be a car cockpit domain device, or a module in a car cockpit device, for example: a cockpit domain controller (cockpit domain controller, CDC), a camera, a screen, a microphone, One or more of the modules such as audio, electronic key, keyless entry or start system controller.
  • a cockpit domain controller cockpit domain controller
  • CDC cockpit domain controller
  • a camera camera
  • screen screen
  • microphone a microphone
  • One or more of the modules such as audio, electronic key, keyless entry or start system controller.
  • the nodes in this application can be applied to the communication system mentioned above.
  • the nodes in the embodiments of the present application can be applied to various application scenarios, such as the following application scenarios: mobile internet (mobile internet, MI), industrial control (industrial control), unmanned driving (self driving), transportation safety (transportation safety) ), Internet of things (IoT), smart city, smart home, or smart manufacturing, etc.
  • nodes In some application scenarios or certain network types, the names of devices with similar communication capabilities may not be called nodes, but for the convenience of description, electronic devices with communication capabilities are collectively referred to as nodes in this embodiment of the application.
  • the short-distance communication system includes terminal nodes, management nodes and gateway nodes.
  • the management node can manage the terminal nodes, has the function of allocating resources, and is responsible for allocating resources for the terminal nodes; the terminal nodes follow the instructions of the management node Scheduling, using resources allocated by the management node to communicate with the management node and/or with other nodes.
  • the gateway node can be connected with the management node and used as a communication bridge between this communication system and other communication systems.
  • a management node may also be called a G node, a master node, or a control node, and a terminal node may also be called a T node or a slave node.
  • the communication link from the G node to the T node may be called a C link or downlink, and the communication link from the T node to the G node may be called a T link or an uplink.
  • the 5G core network needs to obtain the relevant information reported by the terminal nodes, so as to monitor the terminal nodes. Management, meeting typical applications such as intelligent manufacturing industry, industrial field network, and robotic arm motion control.
  • the present application provides a communication method, which can realize the information reporting of the first node, so as to meet the requirement of node management.
  • the communication method in the embodiment of the present application is applied to the first communication system and the second communication system, and the first communication system and the second communication system may be any one of the above-mentioned communication systems.
  • the first communication system may be any short-distance communication system
  • the second communication system may be another communication system with a longer communication distance than the first communication system.
  • Figure 1a and Figure 1b are schematic structural diagrams of a first communication system and a second communication system provided by the embodiments of the present application.
  • the general short-distance communication system is taken as an example, and the second communication system uses the 5G cellular communication system 101 as an example to describe the above communication method in detail. It should be noted that the communication method in the embodiment of the present application is not limited to be applied in a short-distance communication system and a 5G cellular communication system.
  • the short-distance communication system 102 in Figure 1a includes a T node, a G node, and a gateway node TNGF, wherein the T node and the G node communicate through the L2 interface of the SparkLink short-distance communication system, and the T node also uses the NWt interface It communicates with the gateway node TNGF, and communicates between the G node and the gateway node TNGF through the Ta interface.
  • the T node is a terminal node in a short-distance communication system, and its basic service layer has a 5G fusion function unit and the 5G fusion function unit supports non-access-stratum (NAS) functions.
  • the T-node is responsible for the following functions:
  • the status of the short-distance communication system is measured and reported.
  • the status includes the status of the T node and the link status of the link where the T node is located.
  • the link where the T node is located includes the link between the T node and the G node. , or the link between the T node and the 5G core network;
  • QoS Quality of Service
  • the G node in Figure 1a refers to the G node after the 5G core network authentication, that is, the management node of the short-distance communication system deployed by the operator, which is the node that sends data scheduling information at the access layer of the short-distance communication system.
  • Provide access layer services such as connection management, resource allocation, and information security for the T nodes under its coverage, and provide short-distance access services for terminal nodes under its coverage according to the instructions of the 5G core network. It can communicate with the 5G core network through TNGF Establish a trusted connection.
  • the basic service layer of the G node has 5G fusion functional units. G nodes are responsible for the following functions:
  • Air interface data transmission service for T nodes used for interaction between T nodes and TNGF, T nodes and 5G core network control plane and user plane;
  • T node During long-distance transmission, provide T node with QoS policy configuration information for short-distance communication system data transmission;
  • the 5G core network determines the QoS policy configuration information of the T node, forward the QoS policy configuration information issued by the 5G core network to the T node.
  • gateway node TNGF in Figure 1a is responsible for the following functions:
  • AAA is the abbreviation of Authentication, Authorization, and Accounting. It is a security management mechanism for access control in network security and provides three security services: authentication, authorization, and accounting.
  • the 5G cellular communication system 101 includes the network slice selection function (The Network Slice Selection Function, NSSF) network element (network element is also a functional entity), the network exposure function (Network Exposure Function, NEF) network element, and the network storage function (Network Repository Function, NRF) network element, policy control function (Policy Control function, PCF) network element, unified data management function (The Unified Data Management, UDM) network element, application layer function (Application Function, AF) network element, Network Slice-specific and SNPN Authentication and Authorization Function (NSSAAF) network elements, Authentication Server Function (AUSF) network elements, user mobile function (Access Mobile Function, AMF) network elements , session management function (Session Management Function, SMF) network element, service communication proxy (Service Communication Proxy, SCP) network element, network slice admission control function (Network Slice Admission Control Function, NSACF) network element, user plane function (User One or more of Plane Function (UPF) network elements, xNF network elements,
  • the NSSF network element determines the network slice instance that the UE is allowed to access according to the user equipment (User Equipment, UE) slice selection auxiliary information, subscription information, and the like.
  • User Equipment User Equipment
  • the NEF network element is used to open the capability of each network function (NetworkFunction, NF) and convert internal and external information. For edge computing scenarios.
  • NetworkFunction NetworkFunction, NF
  • NRF network elements provide registration and discovery functions, which enable network functions to discover each other and communicate through application programming interfaces (Application Programming Interface, API).
  • API Application Programming Interface
  • PCF network elements are used to provide policy rules for control plane functions.
  • the UDM network element is responsible for AKA (Authentication and Key Agreement) protocol authentication, user identification, access authorization, registration, mobile, subscription, SMS management, etc.
  • AKA Authentication and Key Agreement
  • AF refers to various services at the application layer, which can be an internal application of an operator or a third-party AF (such as a video server, a game server).
  • a third-party AF such as a video server, a game server.
  • NSSAAF network elements are used to authenticate and authorize users accessing 5G network slices.
  • the AUSF network element is used to implement 3GPP and non-3GPP access authentication.
  • AMF network elements are used to perform registration, connection, reachability, and mobility management.
  • Provide session management message transmission channels for UE and SMF network elements provide authentication and authentication functions for user access, terminals and wireless core network control plane access points.
  • the SMF network element is responsible for tunnel maintenance, Internet Protocol (IP) address allocation and management, user name function selection, policy implementation and QoS control, billing data collection, roaming, etc.
  • IP Internet Protocol
  • the SCP network element only supports flexible routing and indirect communication functions.
  • the NSACF network element is used to perform admission control according to the number of users in the radio resource control (Radio Resource Control, RRC) connection state of the network slice supported by the user and the network slice group.
  • RRC Radio Resource Control
  • the UPF network element is responsible for packet routing and forwarding, policy implementation, traffic reporting, and QoS processing.
  • the UPF network element includes a PMF unit,
  • the xNF network element is a newly added functional entity in the 5G cellular communication system.
  • the xNF network element is the first functional entity, which can only support the node status information of the T node of the short-distance communication system.
  • Processing and adjustment of node adjustment parameters referring to adjustment parameters related to nodes, such as node status update information, quality of service QoS policy configuration information, or node status reporting strategy, etc.
  • link status information processing and link Detection strategy configuration of course, it can also support the processing of node status information and link status information of T nodes at the same time, as well as the adjustment of node adjustment parameters and link detection strategies (node adjustment parameters and link detection strategies, that is, control strategy information).
  • the xNF network element provides services to other network elements through the service interface Nxnf.
  • the xNF network element includes user plane functions and control plane functions, and the first information of the T node (including node state information and/or link state information) can be transmitted through the user plane or the control plane, and the user plane transmission requires Compared with the control plane, there is additional signaling overhead when the T node establishes an IP connection with the xNF network element. Therefore, the first information of the T node is preferably based on the control plane function interaction.
  • the first information can be transmitted through the control plane in the form of a container, or can be configured for user plane transmission based on the TR-069 transmission protocol or based on the PMF user plane transmission, wherein the TR-069 transmission protocol provides support for the following A general framework, message specification, management method and data model for management and configuration of home network devices in a first-generation network.
  • the first information is sent to the PMF unit of the UPF network element, and then can reach the xNF network element after forwarding.
  • the PMF network element supports end-to-end link detection between the terminal and the 5G core network.
  • the PMF function is extended.
  • at least short-distance measurement is supported, and the state of the terminal node and the end-to-end link state are optionally supported (that is, the link where the terminal node is located, including the terminal node and The link between the management nodes, or the link between the terminal node and the 5G core network) detection.
  • the specific PMF protocol reference may be made to the definition in the prior art, and there is no special limitation here.
  • the T node reports the first information to the xNF network element, and the specific process of the T node receiving the control strategy information issued by the xNF network element refers to the relevant information in the following records describe.
  • FIG. 2, FIG. 4, FIG. 6, and FIG. 9 are schematic flowcharts of the communication method according to the embodiment of the present application, showing detailed communication steps or operations of the method, but these steps or operations are only examples.
  • the embodiment of the present application may also perform other operations or variations of various operations in FIG. 2 , FIG. 4 , FIG. 6 , and FIG. 9 .
  • each step in FIG. 2, FIG. 4, FIG. 6, and FIG. 9 may be executed in a different order from that shown in FIG. 2, FIG. 4, FIG. 6, and FIG. All operations in Figure 4, Figure 6, and Figure 9.
  • FIG. 2 is an interactive flowchart of a communication method provided in an embodiment of the present application.
  • the communication method includes at least the following steps:
  • Step S201 the first node acquires first information of the first node in the first communication system.
  • the first information includes one or more items of state information of the first node, state information of the first link, and the like.
  • the status information of the first node refers to information related to the first node (the relevant content of the status information of the first node will be described in detail below).
  • the first link is a link through which the first node communicates, for example, the first node is one end of the first link.
  • the state information of the first link refers to information related to the link state of the first link (the relevant content of the state information of the first link will be described in detail below).
  • the manner for the first node to obtain the first information may have various designs.
  • the first information may be obtained through detection by the first node.
  • the first node may detect channel quality when communicating based on the first link, so as to obtain detection result information related to channel quality, and the first information may include the detection result information related to channel quality.
  • the state information of the first link may be obtained by the first node from other nodes.
  • the first node may receive the channel quality indication information sent by the opposite end, so as to obtain the quality indication information, and the first information may include the quality indication information.
  • Step S202 the first node sends the first information to the first functional entity in the second communication system in a first manner.
  • the first functional entity receives first information from the first node in the first communication system.
  • the first manner is a manner of sending the first information. It should be noted that during the process of sending the first information from the first node to the first functional entity in the second communication system, it may be forwarded by other nodes, and this application does not limit the number of nodes through which intermediate forwarding is performed.
  • the first node may directly send the first information to the first functional entity in the second communication system (that is, after 0 times of forwarding), or may indirectly send the first information to the first functional entity in the second communication system ( The first node forwards the first information to the first functional entity through other devices, that is, undergoes one or more forwardings).
  • the functional entity in the second communication system can acquire the information of the nodes in the first communication system, so that the second communication system can perceive and manage the nodes in the first communication system, That is, the information reporting of the first node is realized to meet the management requirements of the first node, which is conducive to improving the fusion effect of the first communication system and the second communication system.
  • the first node sends the first information to the second functional entity in the second communication system, so that the second functional entity forwards the first information to the first functional entity.
  • the second functional entity receives the first information of the first node, and sends the first information to the first functional entity.
  • the second functional entity is a functional entity that performs information forwarding in the second communication system.
  • the status information of the first node includes one or more of the following: hardware version information, software version information, or node power information.
  • the hardware version information refers to the version information of the hardware in the first node, and the hardware version can be divided into major versions (such as V1.0 and V2.0) and minor versions (V1.1, V1.2, V2.1, V2.2);
  • the software version information refers to the version information of the software in the first node, and the software version information can be divided into a large data volume version (ie a full version) and a small data volume version (such as a patch).
  • the status information of the first node includes but not limited to the information listed above.
  • the first communication system further includes a management node of the first node, the management node is a trusted management node, and the trusted management node means that the management node has completed registration and authentication in the second communication system, It is used to manage the first node.
  • the first communication system may include more than one management node, and each management node corresponds to managing more than one first node under it.
  • the second communication system further includes a third functional entity, which is a functional entity having a PMF unit, specifically configured to analyze the received PMF information (ie, the first information encapsulated with the PMF protocol) from the first node.
  • the state information of the first link includes the first state measurement quantity and/or the second state measurement quantity, the first state measurement quantity is the link state measurement quantity between the first node and the management node corresponding to the first node, and the second The state measurement is a link state measurement between the first node and the second communication system.
  • the link state measurement quantity between the first node and the second communication system may be the link state measurement quantity between the first node and the first functional entity and/or the link state measurement quantity between the first node and the third functional entity Road status measurements, etc.
  • the status information of the first link includes but not limited to the information listed above.
  • the above-mentioned first state measurement quantity includes at least one of the following: Reference Signal Received Power (Reference Signal Received Power, RSRP), Reference Signal Received Quality (Reference Signal Receiving Quality, RSRQ), signal and interference plus Signal to Interference plus Noise Ratio (SINR), Channel Quality Indication (CQI) value, Precoding Matrix Indication (Precoding Matrix Indication, PMI) value, or Rank Indication (Rank Indication, RI) value.
  • the first state measurement quantity includes but not limited to the information listed above.
  • the time stamp when the data of the first state measurement quantity is measured may also be sent to the first functional entity.
  • the CQI is used to reflect the channel quality of the Physical Downlink Shared Channel (PDSCH: Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the PMI is used to indicate the index of the codebook set.
  • the second state measurement quantity includes one or more of the following: end-to-end round-trip delay (Round-Trip Time, RTT), packet loss rate, or jitter.
  • RTT end-to-end round-trip delay
  • the second state measurement quantity includes but not limited to the information listed above.
  • the time stamp when the data of the second state measurement quantity is measured may also be sent to the first functional entity.
  • the information unit setting of the first information refers to the following table 1:
  • the first information of the first node can be set according to the order of the information elements in Table 1, and the message identifier of the first information is used to identify that the subsequent sent data belongs to the first information, that is, to identify the data type.
  • the "length” in the table refers to the data length of the information unit. Taking the state information of the first node as an example, it refers to the data length of the state information of the first node at this time, and "type” refers to the data of the information unit type, and "value” refers to the specific value corresponding to the information unit.
  • the status information of the first node refers to the data type of the status information of the first node and the specific node status detection value, for example is the node power value.
  • “adjustable” in Table 1 means that the data length of the corresponding information unit can be set and adjusted according to the actual situation.
  • the above-mentioned first information may be sent in the form of small data-associated packets. It is easy to understand that the sending form of the first information is not limited to the small data packet associated with the road, and the sending form is not particularly limited.
  • the communication method further includes:
  • Step S203 the first node receives control strategy information from the first functional entity, and the control strategy information is used to configure the first node.
  • the first functional entity sends control policy information to the first node.
  • the first functional entity may determine the control strategy information of the first node based on the first information of the first node, or determine the control strategy information through other determination methods.
  • the control policy information is not particularly limited here. It should be noted that during the process of the first functional entity sending the control policy information to the first node, it may be forwarded through other nodes, and this application does not limit the number of nodes through which intermediate forwarding is performed.
  • the second functional entity receives the control policy information from the first functional entity, and the second functional entity forwards the control policy information to the first node.
  • the first functional entity configures the information of the first node by issuing control policy information, and the first functional entity can manage the state of the first node or the state detection strategy of the communication link, etc., so it can Realize the management of the terminal nodes, so as to improve the utilization rate of resources, and improve the integration effect of the first communication system and the second communication system.
  • the control policy information includes one or more of the following: node state update information, QoS policy configuration information, node state reporting policy, or link state detection policy.
  • the control strategy information includes but not limited to the information listed above.
  • the node state update information includes one or more items of node configuration parameter information, update information on the state information of the first node, update information on the state information of the first node such as node hardware version update information, node software version Update information, etc.
  • node configuration parameter information refers to the relevant configuration information for the first node, such as one or more items in the power-on/off management information or dormant state management information, etc.
  • the power-on/off management information refers to the on-off machine control information
  • the sleep state management information is sleep state control information for the first node.
  • the QoS policy configuration information is used to configure the QoS policy of the first node.
  • the node status reporting strategy is a reporting strategy corresponding to the status information of the first node.
  • the node status reporting strategy includes one or more of the following: reporting object, reporting period, or event parameters.
  • the link state detection strategy is a detection strategy corresponding to the state information of the first link.
  • the link state detection strategy includes at least one of the following: measurement object, reporting object, reporting threshold, reporting period, or event parameter .
  • the information unit setting of the control policy information refers to the following table 2:
  • Control Policy Information Message Identifier message type required value 1 Node status update information Node status update optional length, type and value adjustable QoS policy configuration information QoS policy configuration information optional length, type and value adjustable Node status reporting strategy Node status reporting strategy optional length, type and value adjustable Link State Detection Policy Link State Detection Policy optional length, type and value adjustable
  • control strategy information can be set according to the order of the information units in Table 2, and the control strategy information message identifier is used to identify that the data sent subsequently belongs to the control strategy information, that is, to identify the data type.
  • the "length” in the table refers to the data length of the information unit. Taking node status update information as an example, it refers to the data length of the node status update information at this time, while “type” refers to the data type of the information unit, and "value "Refers to the specific value of the information unit. Similarly, taking the node status update information as an example, it refers to the data type of the node status update information and the specific node status update value, such as the update value of the node hardware version. Finally, “adjustable” in Table 2 means that the data length of the corresponding information unit can be set and adjusted according to the actual situation.
  • the communication method in this embodiment of the present application may further include:
  • the first node receives transmission mode indication information, where the transmission mode indication information is used to indicate the first mode.
  • the first functional entity sends the above sending mode indication information to the first node.
  • the sending mode indication information is used to enable the first node to determine, according to the sending mode indication information, which first mode is used to send the first information to the first functional entity.
  • the first method includes three methods: the control plane transmission method, the user plane transmission method based on the first functional entity, or the PMF (Performance Measurement Function, performance measurement function) user plane transmission method.
  • the control plane transmission mode is a control plane transmission mode based on NAS transmission
  • the PMF user plane transmission mode is a user plane transmission mode based on a PMF protocol.
  • the transmission mode indication information may indicate the three modes respectively, for example, the transmission mode indication information F1 corresponds to the control plane transmission mode, and the transmission mode indication information F2 corresponds to the transmission mode based on the first functional entity
  • the transmission mode of the user plane, and the transmission mode indication information F3 corresponds to the transmission mode of the PMF user plane.
  • the transmission mode indication information KZ corresponds to the control plane transmission mode
  • the transmission mode indication information YH corresponds to the user plane transmission mode based on the first functional entity
  • the transmission mode indication information PMF corresponds to the PMF user plane transmission mode.
  • the specific form of the sending mode indication information includes but is not limited to the above examples, and is not particularly limited thereto.
  • the first communication system may further include a gateway node, which may be connected to the management node and used as a communication bridge between the first communication system and other communication systems.
  • a gateway node which may be connected to the management node and used as a communication bridge between the first communication system and other communication systems.
  • sending mode indication information may also be sent by the management node or gateway node in the first communication system to the first node, wherein the management node or The gateway node may send the preconfigured sending mode indication information to the first node, so as to instruct the first node to send the first information in the first mode corresponding to the sending mode indication information.
  • step S202 may specifically include:
  • the first node sends a NAS message to a second functional entity in the second communication system, where the NAS message includes first information.
  • the second functional entity receives the NAS message sent by the first node, and then the second functional entity sends the first information to the first functional entity.
  • the first node when the first method is the control plane transmission method, the first node sends a NAS message to the second functional entity, and the NAS message contains the first information, and then the second functional entity can transmit the first information sent to the first functional entity.
  • the first information may be encapsulated in a NAS message in the form of a message container for transmission.
  • the first functional entity may forward the control policy information through the second functional entity, and the above control policy information is encapsulated in a NAS message.
  • the second functional entity sends the NAS message to the first node, so that the first node receives the control policy information.
  • the following takes the short-distance communication system as an example of the first communication system, and the 5G cellular communication system as an example of the second communication system for specific description:
  • FIG. 3 is a schematic diagram of a transmission protocol stack of a control plane transmission mode provided by an embodiment of the present application; T nodes, G nodes, gateway nodes TNGF and AMF network elements perform data according to the protocol stack shown in FIG. 3 transmission.
  • the first information of the T node includes the node state information of the T node (that is, the state information of the first node) and/or the link state information (that is, the state information of the first link, in this embodiment, the first link
  • the state information of the T node is the link state between the T node and the G node, and/or the link state between the T node and the xNF network element), and the first information of the T node is encapsulated in the form of a message container and transmitted in a NAS message .
  • Fig. 4 is a specific interaction flowchart of a communication method provided by the embodiment of the present application; taking the simultaneous sending of node state information and link state information of the T node as an example, the communication between the T node and the xNF network element
  • the details of the interaction process are as follows:
  • Step 1 The T node uses the transmission protocol stack in Figure 3 to encapsulate the node state information and link state information in the form of a message container in a NAS message and send it to the AMF network element, and then the AMF network element forwards it to the SMF network element.
  • Step 2 The SMF network element sends a request message to the xNF network element, and the request message includes node state information and link state information of the T node.
  • Step 3 Based on the state information in step 2, the xNF network element makes configuration and management decisions to determine the first control strategy information of the T node.
  • the xNF network element generates the first control policy information according to the node state information and link state information of the T node.
  • the first control policy information includes one or more of the following: node state update information (such as: node hardware version update information, node Software version update information, etc.), QoS adjustment request, node status reporting strategy, and link status detection strategy.
  • the xNF network element sends the first control strategy information to the SMF network element in the form of a response message.
  • Step 4 When the first control policy information includes a QoS adjustment request, the SMF network element responds to the QoS adjustment request of the xNF network element to adjust the QoS policy, so as to generate the QoS policy of the T node (that is, the QoS policy configuration information).
  • the SMF network element then sends the node state update information, the QoS policy of the T node, the node state reporting policy, and the link state detection policy to the AMF network element in the form of a response message (specifically in the form of a message container), and the AMF network element then sends
  • the NAS response message (that is, the second control strategy information, including one or more of the following: node status update information, QoS policy configuration information, node status reporting strategy, link status detection strategy) is sent to the T node, so that the T node receives
  • the received NAS response message is used to maintain and report node status information, and detect and report link status.
  • the SMF network element when the first control strategy information does not include a QoS adjustment request, after the SMF network element receives the first control strategy information, it sends the first control strategy information to the T node through the AMF network element, so that the T node
  • the received first control policy information is used to maintain and report node state information, detect and report link state.
  • the 5G core network can manage the terminal nodes of the short-distance communication system, which can effectively improve resource utilization and improve 5G Convergence effect of cellular communication network and short-range communication system.
  • step S202 specifically includes:
  • the first node establishes an IP connection with the first functional entity according to the network identification information of the first functional entity;
  • the first node establishes an IP connection with the first functional entity according to the network identification information of the first functional entity, where the network identification information of the first functional entity may be the IP address and port number of the first functional entity.
  • the first node sends the first information to the first functional entity through the IP connection.
  • the first functional entity receives the first information of the first node based on the foregoing IP connection.
  • the first node sends the first information to the first functional entity through the IP connection based on the user plane data transmission protocol.
  • the first information may be encapsulated by using the user plane data transmission protocol, so that the first information is transmitted through the user plane.
  • the user plane data transmission protocol includes but not limited to TR-069 transmission protocol.
  • the first functional entity may issue control policy information based on the user plane data transmission protocol, that is, the first The functional entity sends the control strategy information to the first node based on the IP connection, so that the first node receives the control strategy information.
  • the first functional entity may also forward the control policy through the second functional entity in the second communication system information, so that the first node receives the control policy information.
  • the communication method in the embodiment of the present application further includes:
  • the first node sends a first request to a second functional entity in the second communication system, where the first request is used to request network identification information of the first functional entity;
  • the second functional entity receives the first request from the first node.
  • the first node receives network identification information of the first functional entity from the second functional entity.
  • the second functional entity sends the network identification information of the first functional entity to the first node in response to the first request.
  • the second functional entity may obtain the network identification information of the first functional entity in advance, or obtain the network identification information of the first functional entity when receiving the first request, and obtain the network identification information of the first functional entity for the second functional entity.
  • a method for identifying information is not particularly limited.
  • the first request may be sent to the second functional entity to request to obtain the network identification information of the first functional entity.
  • the first request may be a request such as a protocol data unit (Protocol Data Unit, PDU) session request, and is not particularly limited.
  • PDU Protocol Data Unit
  • the following takes the short-distance communication system as an example of the first communication system, and the 5G cellular communication system as an example of the second communication system for specific description:
  • the first node at this time is a T node
  • the first functional entity is an xNF network element
  • the second functional entity is an AMF network element
  • the first way is through the xNF network element User plane transmission mode.
  • the first information of the T node includes the node state information of the T node (that is, the state information of the first node) and/or the link state information (that is, the state information of the first link, in this embodiment, the state of the first link
  • the information is the link state between the T node and the G node, and/or the link state between the T node and the xNF network element). Referring to FIG. 5, FIG. 5, FIG.
  • FIG. 5 is a schematic diagram of a transmission protocol stack of a user plane transmission mode provided by an embodiment of the present application; T nodes, G nodes, gateway nodes TNGF, UPF network elements, and xNF network elements are connected according to the protocol shown in FIG. 5
  • the protocol stack performs data transmission, wherein, in this embodiment, node state information and/or link state information and the like are configured for user plane transmission based on the TR-069 transmission protocol.
  • Fig. 6 is a specific interaction flowchart of another communication method provided by the embodiment of the present application; taking the simultaneous sending of node state information and link state information of T nodes as an example, T nodes and xNF network elements The interaction process between them is as follows:
  • Step 1 In the process of establishing a PDU session with the core network, the T node obtains the network identification information of the xNF network element.
  • the flow chart 4.12.5-1 in the chapter 4.12.5 of the existing 3GPP 23.502 17th version for the establishment process of the PDU session can be referred to (as shown in FIG. 7 , and FIG. 7 is a PDU session establishment in the prior art Flowchart), the difference is that xNF information is added in the N2PDU session request and PDU session establishment acceptance message in FIG.
  • the T node performs NAS signaling transmission with the gateway node TNGF based on the GTP-U protocol.
  • the T node sends a PDU session establishment request to the AMF network element, wherein the PDU session establishment request includes the PDU session identifier, SSC mode, session type, and the like.
  • the AMF network element obtains the network identification information of the xNF network element according to the PDU session request.
  • the AMF network element sends an N2PDU session request to TNGF in response to the PDU session establishment request.
  • the N2PDU session request includes the QoS policy and the associated QFI, that is, the QoS flow ID, the PDU session identifier, the PDU session establishment acceptance message, xNF information, and the xNF information is The network identification information of the xNF network element, that is, the IP address and port number.
  • TNGF then sends a request message to the T node, which includes the PDU session establishment acceptance message (IP address, SSC mode, authorized QoS policy, xNF information,...), PDU session identifier, TNGF tunnel: F-TEID, Differentiated Services Code Point (DSCP), QoS information.
  • the T node then sends a response message to the TNGF, and the response message includes the T node tunnel: F-TEID information.
  • the TNGF then sends an N2PDU session response message to the AMF network element.
  • Step 2 Based on the IP address and port of the xNF network element obtained during the PDU session, establish an IP connection between the T node and the xNF network element through the IP address and port of the xNF network element.
  • Step 3 Based on the IP connection established between the T node and the xNF network element, user plane information exchange can be performed.
  • the T node sends node state information and/or link state information to the xNF network element based on the IP connection, wherein, referring to FIG. 5, the message forwarding process includes:
  • the T node Based on the NWt interface, the T node encapsulates the state information (ie node state information and/or link state information) with the TR-069 transport protocol and sends it to the TNGF.
  • state information ie node state information and/or link state information
  • the TNGF forwards the information to the UPF network element, and the UPF network element forwards the relevant status information to the SMF network element after parsing the information.
  • the SMF network element Based on the Nxnf service interface, the SMF network element sends the relevant state information to the xNF network element. Specifically, the SMF network element can send the state information to the xNF network element in the form of a request message or a report message. Correspondingly, the xNF network element will have The configuration or response message is returned to the SMF network element.
  • Step 4 Based on the state information, the xNF network element generates control strategy information, and sends it to the T node through the relevant functional modules, that is, the state information response in Figure 6.
  • the specific message delivery process includes:
  • the xNF network element Based on the status information in step 3, the xNF network element makes configuration and management decisions.
  • the xNF network element generates control policy information according to the node state information and link state information of the T node.
  • the above control policy information includes one or more of the following: node state update information (such as: node hardware version update information, node software version update information, etc.), QoS policy configuration information, node status reporting policy, and link status detection policy.
  • the xNF network element sends a QoS adjustment request to the SMF network element to request the SMF network element to perform QoS adjustment to obtain the QoS policy configuration information of the T node, and the xNF network element then sends the control policy information: node status update information, QoS policy configuration information
  • the link state detection strategy and the node status reporting strategy are sent to the T node through the user plane data transmission protocol of the xNF network element, so that the T node maintains the node status information according to the received control strategy information and reporting, link status detection and reporting.
  • the 5G core network can effectively manage the T node of the short-distance communication system, and effectively improve resource utilization.
  • the utilization rate improves the integration effect of 5G cellular communication network and short-distance communication system.
  • the xNF network element forwards the control strategy information through the AMF network element, referring to Figure 1a, the xNF network element sends the control strategy information to the AMF network element, so that the AMF network element passes the N1 interface or the N2 interface Send the control strategy information to the T node, where the AMF network element sends the control strategy information to the T node through the N1 interface, and the AMF network element can also send the control strategy information to the gateway node TNGF through the N2 interface, and then forwarded by the gateway node TNGF to the T node.
  • the gateway node TNGF may also forward to the G node, and then the G node forwards to the T node.
  • step S202 specifically includes:
  • the first node sends the first information to the PMF unit based on the network identification information of the PMF unit of the third functional entity in the second communication system.
  • the PMF unit of the third functional entity receives the first information of the first node.
  • the first information is sent to the PMF unit according to the network identification information of the PMF unit in the third functional entity, so that the PMF unit can implement the first The information is sent to the first functional entity.
  • the network identification information of the PMF unit may be the IP address and port number of the PMF unit.
  • the first functional entity may send the control strategy information to the first node through the PMF unit, so that the first node receives The control policy information.
  • the first functional entity may also forward the control policy information through the second functional entity in the second communication system, so that the first A node receives the control policy information.
  • the above-mentioned first node sends the first information to the PMF unit, including:
  • the first node sends one or more detection request information such as an end-to-end round-trip delay RTT detection request message or a packet loss rate detection request message to the PMF unit, wherein the end-to-end round-trip delay RTT detection request message or the packet loss rate detection request message or The packet rate detection request message includes first information.
  • detection request information such as an end-to-end round-trip delay RTT detection request message or a packet loss rate detection request message to the PMF unit, wherein the end-to-end round-trip delay RTT detection request message or the packet loss rate detection request message or The packet rate detection request message includes first information.
  • the PMF unit receives one or more pieces of detection request information such as an end-to-end round-trip delay RTT detection request message or a packet loss rate detection request message.
  • the first information when sending the first information to the PMF unit, the first information may be carried in the RTT detection request message or the packet loss rate detection request message, and the first information may be sent to the PMF unit.
  • the reporting of the first information can be completed based on the RTT and packet loss rate detection interaction process and message structure.
  • the communication method in the embodiment of the present application further includes:
  • the first node sends a second request to a second functional entity in the second communication system, and the second request is used to request network identification information of the PMF unit;
  • the second functional entity receives the second request from the first node.
  • the second functional entity sends the network identification information of the PMF unit to the first node.
  • the second functional entity may obtain the network identification information of the PMF unit in advance, or obtain the network identification information of the PMF unit when receiving the second request, wherein the method for obtaining the network identification information of the PMF unit for the second functional entity Not specifically limited.
  • a second request may be sent to the second functional entity to request to obtain the network identification information of the PMF unit.
  • the second request may be a request such as a PDU session request, which is not particularly limited.
  • the following takes the short-distance communication system as an example of the first communication system, and the 5G cellular communication system as an example of the second communication system for specific description:
  • the first node at this time is a T node
  • the first functional entity is an xNF network element
  • the second functional entity is an AMF network element
  • the third functional entity is a UPF network element
  • the first manner is a user plane transmission manner based on a PMF unit.
  • the first information of the T node includes the node state information of the T node (i.e. the state information of the first node) or the link state information (i.e. the state information of the first link, in this embodiment, the state information of the first link is One or more of the link state between the T node and the G node, and/or the link state between the T node and the UPF network element).
  • FIG. 8 is a schematic diagram of a transmission protocol stack of a PMF user plane transmission mode provided in an embodiment of the present application; T nodes, G nodes, gateway nodes TNGF and UPF network elements are performed according to the protocol stack shown in FIG. 8 Data transmission, wherein, in this embodiment, the PMF unit encapsulates the node state information and/or link state information, etc. into data packets, and submits them to the PDU Layer module for transmission.
  • Fig. 9 is a specific interaction flowchart of another communication method provided by the embodiment of the present application; taking the simultaneous transmission of node state information and link state information of T nodes as an example, T nodes and xNF network elements The interaction process between them is as follows:
  • Step 1 The T node obtains the network identification information of the PMF unit during the process of establishing a PDU session with the core network.
  • the establishment process of the PDU session can refer to the flow chart 4.12.5-1 (refer to Figure 7) in the 4.12.5 chapter of the existing 3GPP 23.502 version 17, the difference is the N2PDU session request in Figure 9 and PMF information is added to the PDU session establishment acceptance message, and the PMF information is the network identification information of the PMF unit (including the IP address and port number of the PMF unit).
  • the T node performs NAS signaling transmission with the gateway node TNGF based on the GTP-U protocol.
  • the T node sends a PDU session establishment request to the AMF network element, wherein the PDU session establishment request includes the PDU session identifier, SSC mode, session type, and the like.
  • the AMF network element forwards the PDU session request to the SMF network element, and the SMF network element obtains the network identification information of the PMF unit in the UPF network element according to the PDU session request.
  • the AMF network element sends an N2PDU session request to TNGF in response to the PDU session establishment request.
  • the N2PDU session request includes the QoS policy and the associated QFI, that is, the QoS flow ID, the PDU session identifier, the PDU session establishment acceptance message, and the PMF information.
  • TNGF sends a request message to the T node again, and the request message includes PDU session establishment acceptance message (IP address, SSC mode, authorized QoS policy, PMF information,...), PDU session identifier, TNGF tunnel: F-TEID, Differentiated Services Code Point (DSCP), QoS information.
  • the T node then sends a response message to the TNGF, and the response message includes the T node tunnel: F-TEID information.
  • the TNGF then sends an N2PDU session response message to the AMF network element.
  • Step 2 Based on the IP address and port of the PMF unit acquired during the PDU session, the T node sends the first information of the T node to the PMF unit. It can be based on the RTT and packet loss rate detection interaction process, or send the first information of the T node to the PMF unit through a new message sending process, and the PMF unit forwards the first information of the T node to the xNF network element.
  • the RTT-related message carries the first information of the T node (that is, node state and/or link state information) and control policy information. That is, the first information of the T node and the control policy information are carried in the RTT message interacted according to the PMF protocol flow; specifically, the first information of the T node is carried in the RTT detection request message, and in the RTT response message of the core network Carries control policy information.
  • the packet loss rate detection-related message carries the first information of the T node (that is, node state and/or link state information) and control policy information. That is, the first information and control strategy information of the T node are carried in the packet loss rate interaction message interacted according to the PMF protocol flow; specifically, the packet loss rate counting request message or the PMF packet loss rate report request message is carried.
  • the control policy information is carried in the packet loss rate reporting response message of the core network.
  • the T node may directly send the first information of the T node (that is, node state and/or link state information, such as the state information transmission in FIG. 9 ) to the PMF unit.
  • the T node based on the NWt interface, the T node sends the first information to the TNGF; based on the N3 interface, the TNGF forwards the first information to the PMF unit of the UPF network element.
  • the PMF unit receives the first information of the T node, based on the N4 interface, the UPF network element sends the first information to the SMF network element; based on the Nxnf service interface, the SMF network element sends the first information to the xNF network element, by The xNF network element makes a decision according to the first information.
  • the xNF network element Based on the first information, the xNF network element generates control strategy information, and sends it to the T node through related functional modules, that is, the state information response in FIG. 9 .
  • the specific message delivery process includes
  • the xNF network element sends a QoS adjustment request to the SMF network element to request the SMF network element to perform QoS adjustment to obtain the QoS policy configuration information of the T node, and the xNF network element then sends the control policy information: node status update information, QoS policy configuration information, link One or more of the status detection strategy and node status reporting strategy are forwarded to the PMF unit, and the PMF unit sends it to the T node, so that the T node can maintain and report the node status information according to the received control strategy information, link Status detection and reporting.
  • the 5G core network can manage the T nodes of the short-distance communication system, improve the effective use of resources, and improve the efficiency of 5G cellular networks. Convergence effect of communication network and short-distance communication system.
  • the xNF network element forwards the control strategy information through the AMF network element, referring to Figure 1a, the xNF network element sends the control strategy information to the AMF network element, so that the AMF network element passes the N1 interface or the N2 interface Send the control strategy information to the T node, where the AMF network element sends the control strategy information to the T node through the N1 interface, and the AMF network element can also send the control strategy information to the gateway node TNGF through the N2 interface, and then forwarded by the gateway node TNGF to the T node.
  • the gateway node TNGF may also forward to the G node, and then the G node forwards to the T node.
  • the first functional entity when no new xNF network element is added in the 5G cellular communication system, the first functional entity may be an SMF network element.
  • the SMF network element may After obtaining the first information of the T node, the SMF network element can generate QoS policy configuration information based on the first information, and then the UPF network element encapsulates the QoS policy configuration information, and then the UPF network element forwards the encapsulated QoS policy configuration information to T-node.
  • the SMF network element may also not generate the QoS policy configuration information based on the first information, but generate the QoS policy configuration information according to other generation methods, which is not specifically limited here.
  • the first node may also be other nodes in the short-distance communication system, such as the G node, and the process of the G node reporting its own first information is the same as The reporting process of the T node is the same, and will not be repeated here.
  • the link state information of the G node is the link state between the G node and the 5G core network
  • the link between the G node and the 5G core network can be the link between the G node and the xNF network element.
  • the link between the G node and the UPF network element is the link state information of the G node.
  • FIG. 10 is a schematic structural diagram of another first communication system and a second communication system provided by an embodiment of the present application;
  • the second communication system is a cellular communication system, which includes a base station 1002 and a user plane UPF1005 , core network UPF1001 and SMF1006;
  • the first communication system can be passive RFID communication system (comprising passive RFID node 1003), short distance communication system (comprising short distance T node 1008, short distance G node 1004, short distance gateway node 1009), high-precision positioning communication system (including high-precision positioning node 1010 and positioning small station 1011), etc., among which, passive RFID communication system, short-distance communication system, high-precision positioning communication system, etc.
  • the short-distance G-node 1004 sharing a short-distance communication system serves as an edge gateway of the communication system.
  • the short-distance T node 1008 uses the above-mentioned communication method to report its own first information to the newly added xNF network element (not shown in FIG. 10 ) in the cellular communication system.
  • the passive RFID node 1003 and the high-precision positioning The node 1010 may use a communication method similar to that of the short-distance T-node 1008 to report information.
  • the edge computing platform 1007, the field network digital twin platform 1012 and the user plane UPF 1005 can be connected to The office terminal 1013 enables the edge computing platform 1007, the field network digital twin platform 1012 and the office terminal 1013 to process the reported information and display the processing results.
  • the edge computing platform 1007 is an open platform that integrates network, computing, storage, and application core capabilities on the side close to the source of objects or data, so as to provide the nearest end services.
  • the field network digital twin platform 1012 is a simulation processing platform that integrates multi-disciplines, multi-physical quantities, multi-scales, and multi-probabilities by using data such as physical models, sensor updates, and operation history. It completes the mapping in the virtual space to reflect the corresponding The whole life cycle process of physical equipment.
  • Fig. 11 is a schematic structural diagram of a first node provided by the embodiment of the present application; the first node includes an acquisition module 1101, a sending module 1102 and a receiving module 1103, and the first node shown in Fig. 11 is used to implement The aforementioned communication method on the side of the first node.
  • the obtaining module 1101 is configured to obtain first information of the first node in the first communication system, where the first information includes state information of the first node and/or state information of the first link, the first node is one end of the first link;
  • the sending module 1102 is configured to send the first information to the first functional entity in the second communication system in a first manner.
  • the state information of the first node includes one or more of the following: hardware version information, software version information, or node power information.
  • the state information of the first link includes one or more of the first state measurement quantity or the second state measurement quantity, and the first state measurement quantity is the first node and the first node
  • the link state measurement quantity between the management nodes of the management node, and the second state measurement quantity is the link state measurement quantity between the first node and the second communication system.
  • the first state measurement quantity includes one or more of the following: reference signal received power RSRP, reference signal received quality RSRQ, signal-to-interference-plus-noise ratio SINR, channel quality indicator CQI value, precoding matrix Indicates the PMI value, or rank indication RI value.
  • the second state measurement quantity includes one or more of the following: end-to-end round trip time delay RTT, packet loss rate, or jitter.
  • the receiving module 1103 is configured to receive control strategy information from the first functional entity, where the control strategy information is used to configure the first node.
  • control policy information includes one or more of the following: node status update information, quality of service (QoS) policy configuration information, node status reporting policy, or link state detection policy.
  • QoS quality of service
  • the node status reporting strategy includes one or more of the following: reporting object, reporting period, or event parameters.
  • the link state detection strategy includes one or more of the following: measurement objects, reporting objects, reporting thresholds, reporting periods, or event parameters.
  • the receiving module 1103 is further configured to receive transmission mode indication information, where the transmission mode indication information is used to indicate the first mode.
  • the first method is a control plane sending method; the sending module 1102 is specifically configured to: send the first information to the first functional entity in the second communication system through the first method:
  • the first method is a user plane sending method based on the first functional entity; in terms of sending the first information to the first functional entity in the second communication system through the first method, the sending module 1102 specifically Used for:
  • the sending module 1102 is further configured to send a first request to a second functional entity in the second communication system, where the first request is used to request network identification information of the first functional entity;
  • the receiving module 1103 is further configured to receive the network identification information of the first functional entity from the second functional entity.
  • the sending module 1102 is specifically configured to: send the first information to the first functional entity through the IP connection:
  • the first information is sent to the first functional entity through the IP connection.
  • the first method is a performance measurement function PMF user plane sending method; the sending module 1102 is specifically used to send the first information to the first functional entity in the second communication system through the first method. :
  • the first information is sent to the PMF unit based on the network identification information of the PMF unit of the third functional entity in the second communication system.
  • the sending module 1102 is further configured to send a second request to a second functional entity in the second communication system, where the second request is used to request network identification information of the PMF unit;
  • the receiving module 1103 is further configured to receive the network identification information of the PMF unit from the second functional entity.
  • the sending module 1102 is specifically configured to:
  • the first node in the embodiment of the present application, information reporting of the first node can be realized, so as to implement refined management on the first node and improve resource utilization.
  • the embodiment of the first node corresponds to the foregoing method embodiment, and the specific description and beneficial effect description may refer to the method embodiment, and details are not repeated here. It should be noted that the device embodiment can be used in conjunction with the above method, or can be used alone.
  • FIG. 12 is a schematic structural diagram of a first functional entity provided by an embodiment of the present application; the first functional entity includes a receiving module 1201, a determination module 1202, and a sending module 1203.
  • the first functional entity shown in FIG. 12 It is used to realize the communication method on the side of the aforementioned first functional entity.
  • the receiving module 1201 is configured to receive first information from the first node, the first information includes status information of the first node and/or status information of the first link, and the first node is one end of a link;
  • a determining module 1202 configured to determine control strategy information of the first node based on the first information, where the control strategy information is used to configure the first node;
  • a sending module 1203, configured to send control policy information.
  • the state information of the first node includes one or more of the following: hardware version information, software version information, or node power information.
  • control policy information includes one or more of the following: node status update information, quality of service (QoS) policy configuration information, node status reporting policy, or link state detection policy.
  • QoS quality of service
  • the node status reporting strategy includes one or more of the following: reporting object, reporting period, or event parameters.
  • the link state detection strategy includes one or more of the following: measurement objects, reporting objects, reporting thresholds, reporting periods, or event parameters.
  • the sending module 1203 is further configured to send sending manner indication information, where the sending manner indication information is used to indicate a first manner, and the first manner is a sending manner of the first information.
  • information reporting to the first node can be implemented, so as to realize refined management of the first node and improve resource utilization.
  • the embodiment of the first functional entity corresponds to the foregoing method embodiment, and the specific description and beneficial effect description may refer to the method embodiment, and details are not repeated here. It should be noted that the device embodiment can be used in conjunction with the above method, or can be used alone.
  • FIG. 13 is a schematic structural diagram of a second functional entity provided by an embodiment of the present application; the second functional entity includes a receiving module 1301 and a sending module 1302 .
  • the second functional entity shown in FIG. 13 is used to implement the aforementioned communication method on the side of the second functional entity.
  • the receiving module 1301 is configured to receive first information of the first node in the first communication system, where the first information includes status information of the first node and/or status information of the first link, the first node is one end of the first link;
  • the sending module 1302 is configured to send the first information to the first functional entity in the second communication system.
  • the receiving module 1301 is further configured to receive control strategy information from the first functional entity, the control strategy information is used to configure the first node; the sending module is also configured to send the control strategy information to the first node .
  • the receiving module 1301 is specifically configured to:
  • a NAS message from the first node is received, where the NAS message includes first information.
  • the receiving module 1301 is further configured to receive a first request from the first node, where the first request is used to request network identification information of the first functional entity;
  • the sending module 1302 is further configured to send the network identification information of the first functional entity.
  • the receiving module 1301 is further configured to receive a second request from the first node, where the second request is used to request the network identification information of the PMF unit of the third functional entity in the second communication system;
  • the sending module 1302 is also configured to send the network identification information of the PMF unit.
  • the state information of the first node includes one or more of the following: hardware version information, software version information, or node power information.
  • the state information of the first link includes one or more of the first state measurement or the second state measurement
  • the first state measurement is the first node and the first communication
  • the link state measurement quantity between the management nodes in the system, the second state measurement quantity is the link state measurement quantity between the first node and the second communication system.
  • the first state measurement quantity includes one or more of the following: reference signal received power RSRP, reference signal received quality RSRQ, signal-to-interference-plus-noise ratio SINR, channel quality indicator CQI value, precoding matrix Indicates the PMI value, or rank indication RI value.
  • the second state measurement quantity includes one or more of the following: end-to-end round trip time delay RTT, packet loss rate, or jitter.
  • control policy information includes one or more of the following: node status update information, quality of service (QoS) policy configuration information, node status reporting policy, or link state detection policy.
  • QoS quality of service
  • the node status reporting strategy includes one or more of the following: reporting object, reporting period, or event parameters.
  • the link state detection strategy includes one or more of the following: measurement objects, reporting objects, reporting thresholds, reporting periods, or event parameters.
  • information reporting to the first node can be realized, so as to realize refined management of the first node and improve resource utilization.
  • the embodiment of the second functional entity corresponds to the foregoing method embodiment, and the specific description and beneficial effect description may refer to the method embodiment, and details are not repeated here. It should be noted that the device embodiment can be used in conjunction with the above method, or can be used alone.
  • FIG. 14 is a schematic structural diagram of a communication device 140 provided by an embodiment of the present application.
  • the communication device 140 may be a complete machine (such as a first node, a first functional entity, or a second functional entity), or It is a component in the whole machine (such as a chip, a software module or a hardware module, etc.).
  • the communication device 140 may include at least one processor 1401 .
  • a communication interface 1402 may also be included.
  • the communication device 140 may further include at least one memory 1403 .
  • a bus 1404 may also be included, wherein the processor 1401 , the communication interface 1402 and the memory 1403 are connected through the bus 1404 .
  • the processor 1401 is a module for performing arithmetic operations and/or logic operations, specifically, a central processing unit (central processing unit, CPU), a picture processing unit (graphics processing unit, GPU), a microprocessor (microprocessor unit, MPU) ), Application Specific Integrated Circuit (ASIC), Field Programmable Logic Gate Array (Field Programmable Gate Array, FPGA), Complex Programmable Logic Device (Complex programmable logic device, CPLD), coprocessor (assisting central processing One or more combinations of processing modules such as processors to complete corresponding processing and applications), Microcontroller Unit (MCU) and other processing modules.
  • a central processing unit central processing unit, CPU
  • a picture processing unit graphics processing unit, GPU
  • microprocessor microprocessor unit, MPU
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • FPGA Field Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • coprocessor assisting central processing
  • MCU Microcontroller Unit
  • Communication interface 1402 may be used to provide information input or output to the at least one processor. And/or, the communication interface 1402 can be used to receive data sent from the outside and/or send data to the outside, and can be a wired link interface such as an Ethernet cable, or a wireless link (Wi-Fi, Bluetooth, general wireless transmission, vehicle short-range communication technology and other short-range wireless communication technologies, etc.) interface. Optionally, the communication interface 1402 may further include a transmitter (such as a radio frequency transmitter, an antenna, etc.) or a receiver coupled with the interface.
  • a transmitter such as a radio frequency transmitter, an antenna, etc.
  • the memory 1403 is used to provide a storage space, in which data such as operating systems and computer programs can be stored.
  • Memory 1403 can be random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read only memory, EPROM), or portable read-only memory One or more combinations of memory (compact disc read-only memory, CD-ROM), etc.
  • At least one processor 1401 in the communication device 140 is configured to execute all or part of the steps of the aforementioned communication method, such as the method steps on the first node side, the method steps on the first functional entity side, or the method steps on the second functional entity side .
  • the steps of the aforementioned communication method such as the method steps on the first node side, the method steps on the first functional entity side, or the method steps on the second functional entity side .
  • the processor 1401 may be a processor dedicated to executing these methods (referred to as a dedicated processor for convenience), or a processor that executes these methods by invoking computer programs, such as a general-purpose processor.
  • at least one processor may also include both a special-purpose processor and a general-purpose processor.
  • the above computer program may be stored in the memory 1403 .
  • the communication device 140 shown in FIG. 14 only shows a memory, a processor, and a communication interface, in the specific implementation process, those skilled in the art should understand that the communication device 140 also includes necessary other devices. Meanwhile, according to specific needs, those skilled in the art should understand that the communication device 140 may also include hardware devices for implementing other additional functions. In addition, those skilled in the art should understand that the communication device 140 may only include components necessary to implement the embodiment of the present application, and does not necessarily include all the components shown in FIG. 14 .
  • the present application provides a chip, which may include a processor and an interface, and the processor is used to read instructions through the interface to perform all or part of the steps of the communication method described in the above method embodiments, such as the method on the first node side Steps, method steps on the side of the first functional entity or method steps on the side of the second functional entity.
  • the method on the first node side, the method on the first functional entity side or the method on the second functional entity side can be implemented in whole or in part through software, hardware, firmware or any combination thereof to fulfill.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)).
  • a magnetic medium such as a floppy disk, a hard disk, or a magnetic tape
  • an optical medium such as a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)
  • the present application also provides a terminal, where the terminal includes the communication device described in the above device embodiment.
  • Examples of some terminals include but are not limited to: smart home devices (such as TVs, sweeping robots, smart desk lamps, audio systems, smart lighting systems, electrical control systems, home background music, home theater systems, intercom systems, video surveillance, etc.), Intelligent transportation equipment (such as automobiles, ships, drones, trains, trucks, trucks, etc.), intelligent manufacturing equipment (such as robots, industrial equipment, intelligent logistics, intelligent factories, etc.), intelligent terminals (mobile phones, computers, tablets, handheld Computers, desktops, headsets, audio, wearable devices, automotive devices, virtual reality devices, augmented reality devices, etc.), battery management systems, batteries.
  • smart home devices such as TVs, sweeping robots, smart desk lamps, audio systems, smart lighting systems, electrical control systems, home background music, home theater systems, intercom systems, video surveillance, etc.
  • Intelligent transportation equipment such as automobiles, ships, drones, trains, trucks, trucks, etc.
  • intelligent manufacturing equipment such as robots, industrial equipment, intelligent logistics, intelligent factories, etc.
  • intelligent terminals mobile phones, computers, tablets,
  • wearable devices can also be referred to as wearable smart devices, which is a general term for intelligently designing daily wear and developing wearable devices by applying wearable technology, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • words such as “exemplary” or “for example” are used as examples, illustrations or descriptions. Any embodiment or design described herein as “exemplary” or “for example” is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • At least one refers to one or more, and the “multiple” refers to two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c may represent: a, b, c, (a and b), (a and c), (b and c), or (a and b and c), where a, b, c can be single or multiple.
  • first and second use ordinal numerals such as "first" and “second” to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects degree.
  • first device and the second device are only for the convenience of description, and do not represent the differences in the structure and importance of the first device and the second device.
  • the first device and the second device It can also be the same device.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present patent application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及相关设备,涉及通信领域。该通信方法包括:获取第一通信系统中的第一节点的第一信息,第一信息包括第一节点的状态信息和/或第一链路的状态信息,第一节点为第一链路的一端;通过第一方式,向第二通信系统中的第一功能实体发送第一信息。利用该通信方法,第二通信系统中的功能实体可以获取第一通信系统中的节点的信息,从而可以实现第二通信系统对第一通信系统的节点的感知和管理,提升第一通信系统和第二通信系统的融合效果。

Description

通信方法及相关设备
本申请要求于2021年09月30日提交中国专利局、申请号为202111166903.3、申请名称为“通信方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法及相关设备。
背景技术
现有的短距无线通信中一般存在管理节点和终端节点,管理节点可以称为G节点,终端节点可以称为T节点,互相通信的G节点和T节点可以组成短距通信域。其中,G节点为短距无线通信系统的接入层发送数据调度信息的节点,为所在通信域内的T节点提供连接管理、资源分配、信息安全等接入层服务。短距通信域的节点之间内的功耗低、成本低,但是其通信的距离相对有限。蓝牙、WiFi等都可以称为短距无线通信技术。
相对短距无线通信而言,长距离通信系统,例如5G蜂窝网络,可以提供宏覆盖,为宏覆盖下的用户终端提供服务。若可以融合短距通信域与蜂窝网络通信系统(融合短距通信域与蜂窝网络通信系统简称融合通信系统,后续用融合通信系统),可以有希望实现终端低成本远距离的数据传输。但是,目前的融合通信系统,难以对短距通信域中的节点进行管理,导致短距通信域与蜂窝网络通信系统融合困难。
如何解决上述问题,是本领域技术人员正在研究的热点。
发明内容
本申请提供一种通信方法及相关设备,可以实现第一通信系统中第一节点的信息上报,以满足对第一节点的管理需求,提升第一通信系统和第二通信系统的融合效果。
第一方面,提供一种通信方法,包括以下步骤:获取第一通信系统中的第一节点的第一信息,第一信息包括第一节点的状态信息和/或第一链路的状态信息,第一节点为第一链路的一端;通过第一方式,向第二通信系统中的第一功能实体发送第一信息。
可选的,上述方法可以应用于第一节点。
本申请实施例中,第二通信系统中的功能实体可以获取第一通信系统中的节点的信息,从而可以实现第二通信系统对第一通信系统的节点的感知和管理。
第一节点的信息可以包含第一节点的状态信息、或第一链路的状态信息等,相应的,第二通信系统中的功能实体可以对节点的状态、或通信链路的状态检测策略等进行管理,因此可以满足第二通信系统对第一通信系统中的节点管理需求,提升第一通信系统和第二通信系统的融合效果,满足用户对于融合不同通信系统的需求。
例如,第一通信系统可以是短距无线通信系统,第二通信系统可以是5G核心网。而通过本申请实施例,5G核心网可以感知短距无线通信系统中的节点,进一步可以对其进行管理,使得短距通信系统中的节点能够实现低成本、远距离的数据传输,提升短距无线通信系统、5G核心网的融合效果和服务质量,给用户带来更好的通信使用体验。
在第一方面的一种可能的实施方式中,上述第一节点的状态信息是指与第一节点相关的信息,例如,第一节点的状态信息包括以下一项或多项:硬件版本信息、软件版本信息、或者节点电量信息。
在第一方面的一种可能的实施方式中,上述第一链路的状态信息是指与第一链路的链路 状态相关的信息,例如,第一链路的状态信息包括第一状态测量量和/或第二状态测量量,第一状态测量量为第一节点和第一节点的管理节点之间的链路状态测量量,第二状态测量量为第一节点和第二通信系统之间的链路状态测量量。其中,第一节点和第二通信系统之间的链路状态测量量可以为第一节点和第一功能实体之间的链路状态测量量和/或第一节点和第三功能实体之间的链路状态测量量。
在第一方面的一种可能的实施方式中,上述第一状态测量量包括以下一项或多项:参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、信道质量指示CQI值、预编码矩阵指示PMI值、或者秩指示RI值。
在第一方面的一种可能的实施方式中,上述第二状态测量量包括以下一项或多项:端到端往返时延RTT、丢包率、或者抖动量。
在第一方面的又一种可能的实施方式中,通信方法还包括:接收来自第一功能实体的控制策略信息,控制策略信息用于配置第一节点。
本申请实施例中,第一功能实体通过下发控制策略信息能够对第一节点进行信息配置。进一步地,该控制策略信息包括以下至少一项:节点状态更新信息、服务质量QoS策略配置信息、节点状态上报策略、或者链路状态检测策略。其中,节点状态更新信息是对应第一节点的状态信息的相关更新信息;节点状态上报策略是对应第一节点的状态信息的上报策略,可选地,节点状态上报策略包括以下一项或多项:上报对象、上报周期,或者事件参数。链路状态检测策略是对应第一链路的状态信息的检测策略,可选地,链路状态检测策略包括以下一项或多项:测量对象、上报对象、上报阈值、上报周期、或者事件参数。而QoS策略配置信息用于配置第一节点的QoS策略。
在第一方面的又一种可能的实施方式中,本申请实施例中的通信方法还包括:接收发送方式指示信息,发送方式指示信息用于指示第一方式。本申请实施例中,通过发送方式指示信息以确定通过何种第一方式向第一功能实体发送第一信息。
在第一方面的又一种可能的实施方式中,第一方式为控制面发送方式;则通过第一方式,向第二通信系统中的第一功能实体发送第一信息,包括:向第二通信系统中的第二功能实体发送非接入层NAS消息,NAS消息包含第一信息。
本申请实施例中,当第一方式为控制面发送方式时,通过向第二功能实体发送NAS消息,该NAS消息中包含第一信息,进而通过第二功能实体可以实现将第一信息发送给第一功能实体。
在第一方面的又一种可能的实施方式中,第一方式为基于第一功能实体的用户面发送方式;则通过第一方式,向第二通信系统中的第一功能实体发送第一信息,包括:根据第一功能实体的网络标识信息,与第二通信系统中的第一功能实体建立网际互连协议IP连接;通过IP连接,向第一功能实体发送第一信息。
本申请实施例中,当第一方式为用户面发送方式时,先根据第一功能实体的网络标识信息与第一功能实体建立IP连接,进而基于该IP连接,可以向第一功能实体发送第一信息。
在第一方面的又一种可能的实施方式中,本申请实施例中的通信方法还包括:向第二通信系统中的第二功能实体发送第一请求,第一请求用于请求第一功能实体的网络标识信息;从第二功能实体接收第一功能实体的网络标识信息。
本申请实施例中,可以通过向第二功能实体发送第一请求,以请求得到第一功能实体的网络标识信息。
在第一方面的又一种可能的实施方式中,通过IP连接,向第一功能实体发送第一信息, 包括:基于用户面数据传输协议,通过IP连接向第一功能实体发送第一信息。
本申请实施例中,通过建立的IP连接向第一功能实体发送第一信息时,可以利用用户面数据传输协议对第一信息进行封装,以使第一信息顺利通过用户面进行传输。
在第一方面的又一种可能的实施方式中,第一方式为性能测量功能PMF用户面发送方式;则通过第一方式,向第二通信系统中的第一功能实体发送第一信息,包括:基于第二通信系统中的第三功能实体的PMF单元的网络标识信息,向PMF单元发送第一信息。
本申请实施例中,当第一方式为PMF用户面发送方式时,根据第三功能实体中的PMF单元的网络标识信息向该PMF单元发送第一信息,以通过该PMF单元可以实现将第一信息发送给第一功能实体。
在第一方面的又一种可能的实施方式中,本申请实施例中的通信方法还包括:向第二通信系统中的第二功能实体发送第二请求,第二请求用于请求PMF单元的网络标识信息;接收来自于第二功能实体的PMF单元的网络标识信息。
本申请实施例中,可以通过向第二功能实体发送第二请求,以请求得到PMF单元的网络标识信息。
在第一方面的又一种可能的实施方式中,向PMF单元发送第一信息,包括:向PMF单元发送端到端往返时延RTT检测请求消息和/或丢包率检测请求消息,端到端往返时延RTT检测请求消息或丢包率检测请求消息包括第一信息。
本申请实施例中,在向PMF单元发送第一信息时,可以在RTT检测请求消息或丢包率检测请求消息中携带该第一信息,以实现将第一信息发送给PMF单元。
第二方面,还提供了一种通信方法,包括以下步骤:接收第一通信系统中的第一节点的第一信息,第一信息包括第一节点的状态信息和/或第一链路的状态信息,第一节点为第一链路的一端;向第二通信系统中的第一功能实体发送第一信息。
可选地,上述方法可以应用于第二通信系统中的第二功能实体。
本申请实施例中,第二通信系统中的功能实体可以获取第一通信系统中的节点的信息,从而可以实现第二通信系统对第一通信系统的节点的感知和管理。
第一节点的信息可以包含第一节点的状态信息、或第一链路的状态信息等,相应的,第二通信系统中的功能实体可以对节点的状态、或通信链路的状态检测策略等进行管理,因此可以满足第二通信系统对第一通信系统中的节点管理需求,提升第一通信系统和第二通信系统的融合效果,满足用户对于融合不同通信系统的需求。
在第二方面的一种可能的实施方式中,本申请实施例中的通信方法还包括:接收来自第一功能实体的控制策略信息,控制策略信息用于配置第一节点;向第一节点发送控制策略信息。
本申请实施例中,还能通过向第一节点下发控制策略信息,以对第一节点进行信息配置。
在第二方面的一种可能的实施方式中,接收第一通信系统中的第一节点的第一信息,包括:接收来自第一节点的NAS消息,NAS消息包含第一信息。
在第二方面的一种可能的实施方式中,本申请实施例的通信方法还包括;接收来自第一节点的第一请求,第一请求用于请求第一功能实体的网络标识信息;发送第一功能实体的网络标识信息。
在第二方面的一种可能的实施方式中,本申请实施例的通信方法还包括;接收来自第一节点的第二请求,第二请求用于请求第二通信系统中的第三功能实体的PMF单元的网络标识信息;发送PMF单元的网络标识信息。
第三方面,还提供了一种通信方法,包括以下步骤:接收来自第一节点的第一信息,第一信息包括第一节点的状态信息和/或第一链路的状态信息,第一节点为第一链路的一端;基于第一信息确定第一节点的控制策略信息,控制策略信息用于配置第一节点;发送控制策略信息。
可选的,上述方法可以应用于第二通信系统中的第一功能实体。
本申请实施例中,第二通信系统中的功能实体可以获取第一通信系统中的第一节点的信息,从而可以实现第二通信系统对第一通信系统的节点的感知和管理。
第一节点的信息可以包含第一节点的状态信息、或第一链路的状态信息等,相应的,第二通信系统中的功能实体可以对节点的状态、或通信链路的状态检测策略等进行管理,因此可以满足第二通信系统对第一通信系统中的节点管理需求,提升第一通信系统和第二通信系统的融合效果,满足用户对于融合不同通信系统的需求。
在第三方面的一种可能的实施方式中,第一节点的状态信息包括以下一项或多项:硬件版本信息、软件版本信息、或者节点电量信息。
在第三方面的一种可能的实施方式中,控制策略信息包括以下一项或多项:节点状态更新信息、服务质量QoS策略配置信息、节点状态上报策略、或者链路状态检测策略。
在第三方面的一种可能的实施方式中,节点状态上报策略包括以下一项或多项:上报对象、上报周期,或者事件参数。
在第三方面的一种可能的实施方式中,链路状态检测策略包括以下一项或多项:测量对象、上报对象、上报阈值、上报周期、或者事件参数。
在第三方面的又一种可能的实施方式中,本申请实施例中的通信方法还包括:发送发送方式指示信息,发送方式指示信息用于指示第一方式,第一方式为第一信息的发送方式。
第四方面,还提供了一种第一节点,包括:获取模块,用于获取第一通信系统中的第一节点的第一信息,第一信息包括第一节点的状态信息和/或第一链路的状态信息,第一节点为第一链路的一端;发送模块,用于通过第一方式,向第二通信系统中的第一功能实体发送第一信息。
在第四方面的一种可能的实施方式中,第一节点的状态信息包括以下一项或多项:硬件版本信息、软件版本信息、或者节点电量信息。
在第四方面的一种可能的实施方式中,第一链路的状态信息包括第一状态测量量和/或第二状态测量量,第一状态测量量为第一节点和第一节点的管理节点之间的链路状态测量量,第二状态测量量为第一节点和第二通信系统之间的链路状态测量量。
在第四方面的一种可能的实施方式中,第一状态测量量包括以下一项或多项:参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、信道质量指示CQI值、预编码矩阵指示PMI值、或者秩指示RI值。
在第四方面的一种可能的实施方式中,第二状态测量量包括以下一项或多项:端到端往返时延RTT、丢包率、或者抖动量。
在第四方面的又一种可能的实施方式中,本申请实施例中的第一节点还包括:接收模块,用于接收来自第一功能实体的控制策略信息,控制策略信息用于配置第一节点。
在第四方面的又一种可能的实施方式中,控制策略信息包括以下一项或多项:节点状态更新信息、服务质量QoS策略配置信息、节点状态上报策略、或者链路状态检测策略。
在第四方面的一种可能的实施方式中,节点状态上报策略包括以下一项或多项:上报对象、上报周期,或者事件参数。
在第四方面的又一种可能的实施方式中,链路状态检测策略包括以下一项或多项:测量对象、上报对象、上报阈值、上报周期、或者事件参数。
在第四方面的又一种可能的实施方式中,接收模块,还用于接收发送方式指示信息,发送方式指示信息用于指示第一方式。
在第四方面的又一种可能的实施方式中,第一方式为控制面发送方式;发送模块在通过第一方式,向第二通信系统中的第一功能实体发送第一信息方面,具体用于:向第二通信系统中的第二功能实体发送非接入层NAS消息,NAS消息包含第一信息。
在第四方面的又一种可能的实施方式中,第一方式为基于第一功能实体的用户面发送方式;发送模块在通过第一方式,向第二通信系统中的第一功能实体发送第一信息方面,具体用于:根据第一功能实体的网络标识信息,与第二通信系统中的第一功能实体建立网际互连协议IP连接;通过IP连接,向第一功能实体发送第一信息。
在第四方面的又一种可能的实施方式中,发送模块,还用于向第二通信系统中的第二功能实体发送第一请求,第一请求用于请求第一功能实体的网络标识信息;接收模块,还用于从第二功能实体接收第一功能实体的网络标识信息。
在第四方面的又一种可能的实施方式中,发送模块在通过IP连接,向第一功能实体发送第一信息方面,具体用于:基于用户面数据传输协议,通过IP连接向第一功能实体发送第一信息。
在第四方面的又一种可能的实施方式中,第一方式为性能测量功能PMF用户面发送方式;发送模块在通过第一方式,向第二通信系统中的第一功能实体发送第一信息方面,具体用于:基于第二通信系统中的第三功能实体的PMF单元的网络标识信息,向PMF单元发送第一信息。
在第四方面的又一种可能的实施方式中,发送模块,还用于向第二通信系统中的第二功能实体发送第二请求,第二请求用于请求PMF单元的网络标识信息;接收模块,还用于接收来自于第二功能实体的PMF单元的网络标识信息。
在第四方面的又一种可能的实施方式中,发送模块在向PMF单元发送第一信息方面,具体用于:向PMF单元发送端到端往返时延RTT检测请求消息和/或丢包率检测请求消息,端到端往返时延RTT检测请求消息或丢包率检测请求消息包括第一信息。
利用第四方面的第一节点,可以实现第一节点的信息上报,以实现对第一节点进行精细化管理,提升资源的利用率。
第五方面,还提供了一种第一功能实体,包括:接收模块,用于接收来自第一节点的第一信息,第一信息包括第一节点的状态信息和/或第一链路的状态信息,第一节点为第一链路的一端;确定模块,用于基于第一信息确定第一节点的控制策略信息,控制策略信息用于配置第一节点;发送模块,用于发送控制策略信息。
在第五方面的一种可能的实施方式中,第一节点的状态信息包括以下一项或多项:硬件版本信息、软件版本信息、或者节点电量信息。
在第五方面的一种可能的实施方式中,控制策略信息包括以下一项或多项:节点状态更新信息、服务质量QoS策略配置信息、节点状态上报策略、或者链路状态检测策略。
在第五方面的一种可能的实施方式中,节点状态上报策略包括以下一项或多项:上报对象、上报周期,或者事件参数。
在第五方面的一种可能的实施方式中,链路状态检测策略包括以下一项或多项:测量对象、上报对象、上报阈值、上报周期、或者事件参数。
在第五方面的又一种可能的实施方式中,发送模块,还用于发送发送方式指示信息,发送方式指示信息用于指示第一方式,第一方式为第一信息的发送方式。
利用第五方面提供的第一功能实体,可以实现对第一节点的信息上报,以实现对第一节点的精细化管理,提升资源的利用率。
第六方面,还提供了一种第二功能实体,包括:接收模块,用于接收第一通信系统中的第一节点的第一信息,第一信息包括第一节点的状态信息和/或第一链路的状态信息,第一节点为第一链路的一端;发送模块,用于向第二通信系统中的第一功能实体发送第一信息。
在第六方面的一种可能的实施方式中,接收模块,还用于接收来自第一功能实体的控制策略信息,控制策略信息用于配置第一节点;发送模块,还用于向第一节点发送控制策略信息。
在第六方面的一种可能的实施方式中,接收模块在接收第一通信系统中的第一节点的第一信息方面,具体用于:接收来自第一节点的NAS消息,NAS消息包含第一信息。
在第六方面的一种可能的实施方式中,接收模块,还用于接收来自第一节点的第一请求,第一请求用于请求第一功能实体的网络标识信息;发送第一功能实体的网络标识信息。
在第六方面的一种可能的实施方式中,接收模块,还用于接收来自第一节点的第二请求,第二请求用于请求第二通信系统中的第三功能实体的PMF单元的网络标识信息;发送PMF单元的网络标识信息。
利用第六方面提供的第二功能实体,可以实现对第一节点的信息上报,以实现对第一节点的精细化管理,提升资源的利用率。
第七方面,还提供了一种通信装置,包括至少一个处理器和通信接口,其中,所述通信接口为所述至少一个处理器提供信息输入或者信息输出,所述至少一个处理器用于执行程序或指令以使得所述通信装置实现第一方面、第二方面、第三方面中任一项所述的通信方法。
第八方面,还提供一种终端,上述终端包含第七方面所述的通信装置。
一些终端的举例包括但不限于:智能家居设备(诸如电视、扫地机器人、智能台灯、音响系统、智能照明系统、电器控制系统、家庭背景音乐、家庭影院系统、对讲系统、视频监控等)、智能运输设备(诸如汽车、轮船、无人机、火车、货车、卡车等)、智能制造设备(诸如机器人、工业设备、智能物流、智能工厂等)、智能终端(手机、计算机、平板电脑、掌上电脑、台式机、耳机、音响、穿戴设备、车载设备、虚拟现实设备、增强现实设备等)、电池管理系统、电池。
第九方面,还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现第一方面所述的通信方法,或者,实现如第二方面所述的通信方法,或者,实现如第三方面所述的通信方法。
第十方面,还提供了一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得计算机执行第一方面所述的通信方法,或者,执行第二方面所述的通信方法,或者,执行第三方面所述的通信方法。
本申请第二至第十方面所提供的技术方案,部分实施方式的有益效果可以参考第一方面的技术方案的有益效果,此处不再赘述。
附图说明
下面对本申请实施例用到的附图进行介绍。
图1a、图1b是本申请实施例提供的一种第一通信系统和第二通信系统的结构示意图;
图2是本申请实施例提供的一种通信方法的交互流程图;
图3是本申请实施例提供的一种控制面发送方式的传输协议栈示意图;
图4是本申请实施例提供的一种通信方法的具体交互流程图;
图5是本申请实施例提供的一种用户面发送方式的传输协议栈示意图;
图6是本申请实施例提供的另一种通信方法的具体交互流程图;
图7是现有技术中的PDU会话建立流程图;
图8是本申请实施例提供的一种PMF用户面发送方式的传输协议栈示意图;
图9是本申请实施例提供的又一种通信方法的具体交互流程图;
图10是本申请实施例提供的另一种第一通信系统和第二通信系统的结构示意图;
图11是本申请实施例提供的一种第一节点的结构示意图;
图12是本申请实施例提供的一种第一功能实体的结构示意图;
图13是本申请实施例提供的一种第二功能实体的结构示意图;
图14是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。如有不一致,以本说明书中所说明的含义或者根据本说明书中记载的内容得出的含义为准。另外,本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
为了便于理解,以下示例地给出了部分与本申请实施例相关概念的说明以供参考。如下所述:
本申请中的通信系统包括:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for Microwave Access,WiMAX)通信系统、第五代(5th generation,5G)蜂窝通信系统或新无线(New Radio,NR)等毫米波通信系统、第六代(6th generation,6G)系统、现有的各种短距离通信系统(例如蓝牙、WiFi、车载通用短距无线通信系统、星闪短距通信系统等)、未来演进的短距离通信系统、或通用短距通信系统等。
而本申请中的节点,是具有通信能力的电子设备,也称为通信节点。例如,节点可以包括手持终端、车辆、车载设备、或网络侧设备、用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、无线通信设备、用户代理或用户装置等独立设备,也可以是包含在独立设备中的部件(例如芯片或集成电路)。节点可以为任一可能的智能终端设备(如手机)、智能运输设备(如车辆、无人机等)、智能制造设备、智能家居设备(例如大屏、音箱等)等。一种可能的场景中,在车辆内,节点还可以为电池管理系统和电池包中的电池。
示例性地,当节点为车载设备时,可以是汽车座舱(cockpit domain)设备,或者汽车座舱设备中的一个模块,例如:座舱域控制器(cockpit domain controller,CDC)、摄像头、屏幕、麦克风、音响、电子钥匙、无钥匙进入或启动系统控制器等模块中的一个或者多个。
本申请中的节点可以应用于上述通信系统中。本申请实施例中的节点可以应用于多种应用场景中,例如以下应用场景:移动互联网(mobile internet,MI)、工业控制(industrial control)、无人驾驶(self driving)、运输安全(transportation safety)、物联网(internet of things,IoT)、智慧城市(smart city)、智慧家庭(smart home)、或智能制造等。
在某些应用场景、或某些网络类型中,具备相类似通信能力的设备的名称也可能不称为节点,但是为了方便描述,本申请实施例中将具有通信能力的电子设备统称为节点。
以短距通信系统为例,短距通信系统包括终端节点、管理节点和网关节点,其中,管理节点可以管理终端节点,具有分配资源的功能,负责为终端节点分配资源;终端节点听从管理节点的调度,使用管理节点分配的资源与管理节点、和/或与其他节点进行通信。而网关节点可以与管理节点连接,并用作该通信系统与其他通信系统之间的通信桥梁。
在一些具体的实施场景中,管理节点也可以称为G节点、主节点或者控制节点,终端节点也可以称为T节点或者从节点。G节点向T节点的通信链路可以称为C链路或者下行链路,T节点向G节点的通信链路可以称为T链路或者上行链路。
上述对概念的示例性说明可以应用在下文的实施例中。
在短距无线通信系统与5G蜂窝网络融合系统中,为了能更好的感知和管理短距无线通信系统中的终端节点,5G核心网需要获取该终端节点上报的相关信息,以便对终端节点进行管理,满足智能制造产业、工业现场网、机械臂运动控制等典型应用。
针对上述技术问题,本申请提供一种通信方法,可以实现第一节点的信息上报,以满足节点管理的需求。本申请实施例中的通信方法应用于第一通信系统和第二通信系统之中,第一通信系统和第二通信系统可以为上述通信系统中的任意一个。具体的,所述第一通信系统可以为任意短距通信系统,第二通信系统可以为通信距离长于所述第一通信系统的其它通信系统。图1a、图1b是本申请实施例提供的一种第一通信系统和第二通信系统的结构示意图,参考图1a,本申请的各个实施例中,第一通信系统以短距通信系统102(如通用短距通信系统)为例,而第二通信系统以5G蜂窝通信系统101为例对上述通信方法进行具体说明。值得注意的是,本申请实施例的通信方法不限于应用在短距通信系统和5G蜂窝通信系统中。
具体地,图1a中短距通信系统102包括T节点、G节点和网关节点TNGF,其中,T节点和G节点之间通过星闪SparkLink短距通信系统L2接口进行通信,T节点还通过NWt接口与网关节点TNGF进行通信,G节点和网关节点TNGF之间通过Ta接口进行通信。
更具体地,图1a中,T节点为短距通信系统中的终端节点,其基础服务层具备5G融合功能单元且5G融合功能单元支持非接入层(non-access-stratum,NAS)功能。T节点负责以下功能:
通过可信短距接入网接入5G核心网;
根据5G核心网的配置对短距通信系统进行状态测量并上报,状态包括T节点的状态以及T节点所在链路的链路状态,T节点所在链路包括T节点和G节点之间的链路,或者T节点和5G核心网之间的链路;
根据5G核心网的服务质量(Quality of Service,QoS)策略配置进行业务交互。
应理解,以上是对所示的T节点的功能仅为方便理解而提供示例性描述,并不作为对T节点的限定,具体实施过程中,T节点所负责的功能可根据实际情况进行减少或增加。
而图1a中的G节点是指5G核心网鉴权后的G节点,也即由运营商部署的短距通信系统的管理节点,其为短距通信系统接入层发送数据调度信息的节点,为其覆盖下的T节点提供 连接管理、资源分配、信息安全等接入层服务,可根据5G核心网指示为其覆盖下的终端节点提供短距离接入服务,其可通过TNGF与5G核心网建立可信连接。G节点的基础服务层具备5G融合功能单元。G节点负责以下功能:
提供5G融合服务,可使T节点进行服务发现并访问;
对支持5G融合功能的T节点进行身份鉴权;
根据5G核心网的配置对短距通信系统进行状态测量并上报;
根据5G核心网的QoS策略配置对其覆盖下的T节点进行资源分配和调度;
为T节点进行空口数据传输服务,用于T节点与TNGF、T节点与5G核心网的控制面及用户面交互;
为T节点分配IP地址,用于短距通信系统控制面和用户面传输和寻址;
远程传输时,为T节点提供短距通信系统数据传输的QoS策略配置信息;
当由5G核心网确定T节点的QoS策略配置信息时,向T节点转发5G核心网下发的QoS策略配置信息。
应理解,以上是对所示的G节点的功能仅为方便理解而提供示例性描述,并不作为对T节点的限定,具体实施过程中,G节点所负责的功能可根据实际情况进行减少或增加。
另外,图1a中的网关节点TNGF负责以下功能:
中转T节点与5G核心网之间的NAS消息;
与T节点交互控制面和用户面传输的GTP-U隧道信息;
向T节点转发5G核心网的QoS策略配置信息,并提供QoS信息更新;
向G节点提供短距通信的QoS策略配置;
支持AAA,AAA是认证(Authentication)、授权(Authorization)和计费(Accounting)的简称,是网络安全中进行访问控制的一种安全管理机制,提供认证、授权和计费三种安全服务。
应理解,以上是对所示的网关节点TNGF的功能仅为方便理解而提供示例性描述,并不作为对T节点的限定,具体实施过程中,网关节点TNGF所负责的功能可根据实际情况进行减少或增加。
图1a中,5G蜂窝通信系统101包括网络切片选择功能(The Network Slice Selection Function,NSSF)网元(网元也即功能实体)、网络开放功能(Network Exposure Function,NEF)网元、网络仓储功能(Network Repository Function,NRF)网元、策略控制功能(Policy Control function,PCF)网元、统一数据管理功能(The Unified Data Management,UDM)网元、应用层功能(Application Function,AF)网元、网络切片特定身份验证和授权功能(Network Slice-specific and SNPN Authentication and Authorization Function,NSSAAF)网元、认证服务器功能(Authentication Server Function,AUSF)网元、用户移动功能(Access Mobile Function,AMF)网元、会话管理功能(Session Management Function,SMF)网元、服务通信代理(Service Communication Proxy,SCP)网元、网络切片准入控制功能(Network Slice Admission Control Function,NSACF)网元、用户面功能(User Plane Function,UPF)网元、xNF网元、或者数据网络(Data Network,DN)中的一个或多个。DN比如运营商业务,互联网接入或者第三方业务等。
其中,NSSF网元根据用户设备(User Equipment,UE)的切片选择辅助信息、签约信息等确定UE允许接入的网络切片实例。
NEF网元用于开放各网络功能(NetworkFunction,NF)的能力,转换内外部信息。用于 边缘计算场景。
NRF网元提供注册和发现功能,可以使网络功能相互发现并通过应用程序接口(Application Programming Interface,API)进行通信。
PCF网元用于提供控制平面功能的策略规则。负责策略控制的5G核心网控制面功能,简单的讲,其主要管理5G核心网中的各个业务数据流的QoS。
UDM网元负责AKA(Authentication and Key Agreement)协议认证、用户识别、访问授权、注册、移动、订阅、短信管理等。
AF指应用层的各种服务,可以是运营商内部的应用、也可以是第三方的AF(如视频服务器、游戏服务器)。
NSSAAF网元用于对访问5G网络切片的用户进行身份验证和访问授权。
AUSF网元用于实现3GPP和非3GPP的接入认证。
AMF网元用于执行注册、连接、可达性、移动性管理。为UE和SMF网元提供会话管理消息传输通道,为用户接入时提供认证、鉴权功能,终端和无线的核心网控制面接入点。
SMF网元负责隧道维护、网际互连协议(Internet Protocol,IP)地址分配和管理、用户名功能选择、策略实施和QoS中的控制、计费数据采集、漫游等。
SCP网元作为5G核心网中超文本传输协议(Hyper Text Transfer Protocol,HTTP)消息转发相关的重要网元,只支持灵活路由及间接通信功能。
NSACF网元用于根据用户支持的网络切片和网络切片组的无线资源控制(Radio Resource Control,RRC)连接态用户数进行准入控制。
UPF网元负责分组路由转发,策略实施,流量报告,QoS处理。其中,UPF网元包括PMF单元,
本申请实施例中,xNF网元是5G蜂窝通信系统中新增的功能实体,此时,xNF网元即为第一功能实体,其可以只支持短距通信系统的T节点的节点状态信息的处理和节点调整参数(指与节点相关的调整参数,例如节点状态更新信息、服务质量QoS策略配置信息、或节点状态上报策略等)的调整,也可以只支持链路状态信息的处理和链路检测策略配置;当然,也可以同时支持T节点的节点状态信息和链路状态信息的处理,以及节点调整参数和链路检测策略(节点调整参数和链路检测策略即控制策略信息)的调整。xNF网元通过服务化接口Nxnf向其他网元提供服务。其中,参考图1b,xNF网元包括用户面功能和控制面功能,T节点的第一信息(包括节点状态信息和/或链路状态信息)可通过用户面或控制面传输,用户面传输需要T节点与xNF网元建立IP连接,相比控制面存在额外的信令开销,因此,T节点的第一信息优选基于控制面功能交互。更具体地,第一信息可以以容器(container)的方式通过控制面传输,也可以基于TR-069传输协议配置用户面传输或基于PMF用户面传输,其中,TR-069传输协议提供了对下一代网络中家庭网络设备进行管理配置的通用框架、消息规范、管理方法和数据模型。基于PMF用户面传输是将第一信息发送至UPF网元的PMF单元中,再经过转发可以到达xNF网元中。
PMF网元支持终端与5G核心网之间端到端的链路检测,具体参见现有技术中的定义,这里不再赘述。本实施例中,对PMF功能进行扩展,在原有功能基础上,至少支持短距测量,可选支持终端节点的状态和端到端链路状态(即终端节点所在的链路,包括终端节点和管理节点之间的链路,或者,终端节点和5G核心网之间的链路)的检测。具体PMF协议可参考现有技术中的定义,这里不做特别限定。
容易理解的是,图1a中的短距通信系统和5G蜂窝通信系统的组成部分可以更少或更多, 不做特别赘述。
值得说明的是,短距通信系统102和5G蜂窝通信系统101中,T节点上报第一信息至xNF网元、T节点接收xNF网元下发的控制策略信息的具体过程参考以下记载中的相关描述。
以下,结合图2、图4、图6、图9,详细描述本申请的方法实施例。下面以具体的实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。应理解,图2、图4、图6、图9是本申请实施例的通信方法的示意性流程图,示出了该方法的详细的通信步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者图2、图4、图6、图9中的各种操作的变形。此外,图2、图4、图6、图9中的各个步骤可以分别按照与图2、图4、图6、图9所呈现的不同的顺序来执行,并且有可能并非要执行图2、图4、图6、图9中的全部操作。
本申请提供一种通信方法,参考图2,图2是本申请实施例提供的一种通信方法的交互流程图,通信方法至少包括以下步骤:
步骤S201、第一节点获取第一通信系统中的第一节点的第一信息。
具体地,第一信息包括第一节点的状态信息、或第一链路的状态信息等中的一项或多项。其中,第一节点的状态信息是指与第一节点相关的信息(第一节点的状态信息的相关内容在下文中进行详细描述)。
第一链路是第一节点进行通信的链路,例如,第一节点是第一链路的一端。而第一链路的状态信息是指与第一链路的链路状态相关的信息(第一链路的状态信息的相关内容在下文中进行详细描述)。
可选的,第一节点获取第一信息的方式可以有多种设计。例如,第一信息可以是第一节点检测得到的。例如,第一节点可以检测基于第一链路进行通信时的信道质量,从而得到与信道质量相关的检测结果信息,第一信息中可以包含该与信道质量相关的检测结果信息。再如,第一链路的状态信息可以是第一节点从其他节点中接收得到的。例如,第一节点可以接收对端发送的信道质量指示信息,从而获取质量指示信息,第一信息中可以包含该质量指示信息。
步骤S202、第一节点通过第一方式,向第二通信系统中的第一功能实体发送第一信息。
相应地,第一功能实体接收来自第一通信系统中第一节点的第一信息。
其中,第一方式是发送第一信息的方式。需要说明的是,第一节点向第二通信系统中的第一功能实体发送第一信息的过程中,可能会经过其他节点转发,本申请对于中间转发所经历的节点数量不做限制。例如,第一节点可以直接向第二通信系统中的第一功能实体发送第一信息(即:经历0次转发),或者可以间接向第二通信系统中的第一功能实体发送第一信息(第一节点通过其他设备将第一信息转发给第一功能实体,即:经历一次或者多次转发)。
因此,利用本申请实施例的通信方法,第二通信系统中的功能实体可以获取第一通信系统中的节点的信息,从而可以实现第二通信系统对第一通信系统的节点的感知和管理,即实现第一节点的信息上报,以满足对第一节点的管理需求,有利于提升第一通信系统和第二通信系统的融合效果。
可选地,第一节点将第一信息发送给第二通信系统中的第二功能实体,以使第二功能实体再将第一信息转发给第一功能实体。
相应地,第二功能实体接收第一节点的第一信息,并向第一功能实体发送第一信息。其中,第二功能实体为第二通信系统中进行信息转发的功能实体。
在一些可能的实施方式中,第一节点的状态信息包括以下的一项或者多项:硬件版本信息、软件版本信息、或者节点电量信息。其中,硬件版本信息是指第一节点中的硬件的版本信息,硬件版本可以分为大版本(如V1.0和V2.0)和小版本(V1.1、V1.2、V2.1,V2.2);而软件版本信息是指第一节点中软件的版本信息,软件版本信息可以分为大数据量版本(即全版本)和小数据量版本(如补丁)。当然,第一节点的状态信息包括但不限于上述列举的信息。
在一些可能的实施方式中,第一通信系统还包括第一节点的管理节点,管理节点为可信管理节点,可信管理节点是指该管理节点已经在第二通信系统中完成注册鉴权,其用于管理第一节点。第一通信系统中可以包括一个以上的管理节点,每个管理节点对应管理其下属的一个以上的第一节点。而第二通信系统还包括第三功能实体,其为具有PMF单元的功能实体,具体用于对接收到的来自第一节点的PMF信息(即用PMF协议封装的第一信息)进行解析。第一链路的状态信息包括第一状态测量量和/或第二状态测量量,第一状态测量量为第一节点和第一节点对应的管理节点之间的链路状态测量量,第二状态测量量为第一节点和第二通信系统之间的链路状态测量量。其中第一节点和第二通信系统之间的链路状态测量量可以为第一节点和第一功能实体之间的链路状态测量量和/或第一节点和第三功能实体之间的链路状态测量量等。当然,第一链路的状态信息包括但不限于上述列举的信息。
在一些可能的实施方式中,上述第一状态测量量包括以下至少一项:参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)、信道质量指示(Channel Quality Indication,CQI)值、预编码矩阵指示(Precoding Matrix Indication,PMI)值、或者秩指示(Rank Indication,RI)值。当然,第一状态测量量包括但不限于上述列举的信息。实际上,在发送第一状态测量量时,还可以将该第一状态测量量测得数据时的时间戳一并发送给第一功能实体。
其中,CQI用来反映物理下行共享信道(PDSCH:Physical Downlink Shared Channel)的信道质量。用0~15来表示PDSCH的信道质量。0表示信道质量最差,15表示信道质量最好。
RI值是指在(开环、闭环)空间复用这2种发射模式下,关于信道冲激响应(H)的秩(Rank)。即,RI=Rank(H)。是数据传输容量的一个参考,表征信道条件好坏或终端能力。
而PMI用来指示码本集合的索引。
在一些可能的实施方式中,上述第二状态测量量包括以下的一项或多项:端到端往返时延(Round-Trip Time,RTT)、丢包率、或者抖动量。当然,第二状态测量量包括但不限于上述列举的信息。同理,实际上,在发送第二状态测量量时,还可以将该第二状态测量量测得数据时的时间戳一并发送给第一功能实体。
示例性地,第一信息的信息单元设置参考下表1:
表1第一信息的信息单元
信息单元 类型 出现状态 格式 长度(字节)
第一信息消息标识 消息类型 必选 1
第一节点的状态信息 节点状态信息 可选 长度、类型和值 可调整
第一链路的状态信息 链路状态检测信息 可选 长度、类型和值 可调整
其中,第一节点的第一信息可以按照表1的信息单元的顺序进行数据设置,第一信息的消息标识用于标识后续所发送数据属于第一信息,即标识数据类型。而表中的“长度”是指信 息单元的数据长度,以第一节点的状态信息为例,此时指的是第一节点的状态信息的数据长度,而“类型”是指信息单元的数据类型,“值”是指信息单元对应的具体值,同理,以第一节点的状态信息为例,此时指的是第一节点的状态信息的数据类型和具体的节点状态检测值,例如为节点电量值。最后,表1中的“可调整”是指对应的信息单元的数据长度可以根据实际情况进行设置和调整。
可选地,上述第一信息可以以随路小数据包的形式进行发送。容易理解地,第一信息的发送形式不限于随路小数据包,对其发送形式不做特别限定。
在一些可能的实施方式中,参考图2,通信方法还包括:
步骤S203、第一节点接收来自第一功能实体的控制策略信息,控制策略信息用于配置第一节点。
相应的,第一功能实体向第一节点发送控制策略信息。具体的设计中,第一功能实体在确定发送给第一节点的控制策略信息时,可以基于第一节点的第一信息确定第一节点的控制策略信息,也可以是通过其他确定方式来确定该控制策略信息,在此不做特别限定。需要说明的是,第一功能实体向第一节点发送控制策略信息的过程中,可能会经过其他节点转发,本申请对于中间转发所经历的节点数量不做限制。一种可选的设计中,第二功能实体接收来自第一功能实体的控制策略信息,第二功能实体再将控制策略信息转发给第一节点。
本申请实施例中,第一功能实体通过下发控制策略信息对第一节点进行信息配置,第一功能实体可以对第一节点的状态、或通信链路的状态检测策略等进行管理,因此可以实现对终端节点的管理,以提升资源的利用率,提升第一通信系统和第二通信系统的融合效果。进一步地,该控制策略信息包括以下的一项或多项:节点状态更新信息、QoS策略配置信息、节点状态上报策略、或者链路状态检测策略。当然,控制策略信息包括但不限于上述列举的信息。
其中,节点状态更新信息包括节点配置参数信息、对第一节点的状态信息的更新信息中的一项或多项,对第一节点的状态信息的更新信息例如节点硬件版本更新信息、节点软件版本更新信息等,而节点配置参数信息是指对第一节点的相关配置信息,如开关机管理信息或休眠状态管理信息等中的一项或多项,开关机管理信息是对第一节点的开关机控制信息,而休眠状态管理信息是对第一节点的休眠状态控制信息。而QoS策略配置信息用于配置第一节点的QoS策略。节点状态上报策略是对应第一节点的状态信息的上报策略,可选地,节点状态上报策略包括以下一项或多项:上报对象、上报周期,或者事件参数。最后,链路状态检测策略是对应第一链路的状态信息的检测策略,可选地,链路状态检测策略包括以下至少一项:测量对象、上报对象、上报阈值、上报周期、或者事件参数。
示例性地,控制策略信息的信息单元设置参考下表2:
表2控制策略信息的信息单元
信息单元 类型 出现状态 格式 长度(字节)
控制策略信息消息标识 消息类型 必选 1
节点状态更新信息 节点状态更新 可选 长度、类型和值 可调整
QoS策略配置信息 QoS策略配置信息 可选 长度、类型和值 可调整
节点状态上报策略 节点状态上报策略 可选 长度、类型和值 可调整
链路状态检测策略 链路状态检测策略 可选 长度、类型和值 可调整
其中,控制策略信息可以按照表2的信息单元的顺序进行数据设置,控制策略信息消息标识用于标识后续所发送数据属于控制策略信息,即标识数据类型。而表中的“长度”是指信息单元的数据长度,以节点状态更新信息为例,此时指的是节点状态更新信息的数据长度,而“类型”是指信息单元的数据类型,“值”是指信息单元的具体值,同理,以节点状态更新信息为例,此时指的是节点状态更新信息的数据类型和具体的节点状态更新值,例如为节点硬件版本更新值。最后,表2中的“可调整”是指对应的信息单元的数据长度可以根据实际情况进行设置和调整。
在一些可能的实施方式中,在第一节点向第一功能实体发送第一信息之前,本申请实施例中的通信方法还可以包括:
第一节点接收发送方式指示信息,发送方式指示信息用于指示第一方式。
相应地,第一功能实体向第一节点发送上述发送方式指示信息。
本申请实施例中,通过发送方式指示信息以使第一节点根据该发送方式指示信息确定通过何种第一方式向第一功能实体发送第一信息。具体地,第一方式包括控制面发送方式、基于第一功能实体的用户面发送方式、或者PMF(Performance Measurement Function,性能测量功能)用户面发送方式三种,当然,第一方式包括但不限于上述列举的方式。其中,控制面发送方式为基于NAS传输的控制面发送方式,而PMF用户面发送方式为基于PMF协议的用户面发送方式。
对应的,当第一方式包括上述三种方式时,发送方式指示信息可以分别指示该三种方式,例如,发送方式指示信息F1对应控制面发送方式,发送方式指示信息F2对应基于第一功能实体的用户面发送方式,而发送方式指示信息F3对应PMF用户面发送方式。又或者,发送方式指示信息KZ对应控制面发送方式,发送方式指示信息YH对应基于第一功能实体的用户面发送方式,而发送方式指示信息PMF对应PMF用户面发送方式。发送方式指示信息的具体形式包括但不限于上述举例的情况,对此不作特别限定。
需要说明的是,第一通信系统中还可以包括网关节点,网关节点可以与管理节点连接,并用作第一通信系统与其他通信系统之间的通信桥梁。上述发送方式指示信息除了可以是第一功能实体根据实际情况向第一节点发送的之外,也可以是第一通信系统中的管理节点或网关节点向第一节点发送的,其中,管理节点或网关节点可以将预先配置好的发送方式指示信息发送给第一节点,以指示第一节点以发送方式指示信息对应的第一方式发送第一信息。
关于第一方式可以有如下几种可能的实施方式:
实施方式1,第一方式为控制面发送方式;则步骤S202具体可以包括:
第一节点向第二通信系统中的第二功能实体发送NAS消息,NAS消息包含第一信息。
相应地,第二功能实体接收第一节点发送的NAS消息,第二功能实体再将第一信息发送至第一功能实体。
本申请实施例中,当第一方式为控制面发送方式时,第一节点通过向第二功能实体发送NAS消息,该NAS消息中包含第一信息,进而通过第二功能实体可以将第一信息发送给第一功能实体。示例性地,第一信息可以消息容器的形式封装在NAS消息中进行传输。
可选地,当第一节点通过控制面发送方式向第一功能实体发送第一信息时,第一功能实体可以通过第二功能实体转发控制策略信息,上述控制策略信息封装在NAS消息里,第二功能实体将该NAS消息发送给第一节点,以使第一节点接收到该控制策略信息。
下面以第一通信系统以短距通信系统为例,而第二通信系统以5G蜂窝通信系统为例进行具体说明:
参考图1a和图1b,本实施例中,此时的第一节点是T节点,第一功能实体为xNF网元,第二功能实体为AMF网元,而第一方式为通过xNF网元的控制面传输的方式。参考图3,图3是本申请实施例提供的一种控制面发送方式的传输协议栈示意图;T节点、G节点、网关节点TNGF和AMF网元之间按照图3所示的协议栈进行数据传输。其中,T节点的第一信息包括T节点的节点状态信息(即第一节点的状态信息)和/或链路状态信息(即第一链路的状态信息,本实施例中,第一链路的状态信息为T节点和G节点之间的链路状态,和/或T节点和xNF网元之间的链路状态),T节点的第一信息以消息容器的形式封装在NAS消息里传输。
参考图1a、图4,图4是本申请实施例提供的一种通信方法的具体交互流程图;以同时发送T节点的节点状态信息和链路状态信息为例,T节点与xNF网元之间的交互过程具体如下:
步骤1:T节点利用图3的传输协议栈将节点状态信息、链路状态信息以消息容器的形式封装在NAS消息发送给AMF网元,再由AMF网元转发给SMF网元。
步骤2:SMF网元向xNF网元发送请求消息,该请求消息中包含T节点的节点状态信息和链路状态信息。
步骤3:基于步骤2中的状态信息,xNF网元进行配置和管理决策以确定T节点的第一控制策略信息。xNF网元根据T节点的节点状态信息和链路状态信息生成第一控制策略信息,上述第一控制策略信息包括以下一项或多项:节点状态更新信息(如:节点硬件版本更新信息、节点软件版本更新信息等)、QoS调整请求、节点状态上报策略、链路状态检测策略。xNF网元将上述第一控制策略信息以响应消息的形式下发给SMF网元。
步骤4:第一控制策略信息包括QoS调整请求时,SMF网元响应xNF网元的QoS调整请求进行QoS策略调整,以生成T节点的QoS策略(即QoS策略配置信息)。SMF网元再将节点状态更新信息、T节点的QoS策略、节点状态上报策略、链路状态检测策略以响应消息的形式(具体以消息容器的形式)发送给AMF网元,AMF网元再发送NAS响应消息(即第二控制策略信息,包括以下一项或多项:节点状态更新信息、QoS策略配置信息、节点状态上报策略、链路状态检测策略)给T节点,以使T节点根据接收到的NAS响应消息进行节点状态信息的维护与上报、链路状态的检测与上报。需要说明的是,第一控制策略信息不包括QoS调整请求时,SMF网元接收到第一控制策略信息之后,通过AMF网元将第一控制策略信息发送给T节点,以使T节点根据接收到的第一控制策略信息进行节点状态信息的维护与上报、链路状态的检测与上报。
利用图4的交互流程,基于节点状态信息、链路状态信息以及xNF网元的控制面功能,实现5G核心网对短距通信系统的终端节点的管理,可以有效提升资源的利用率,提升5G蜂窝通信网络和短距通信系统的融合效果。
实施方式2,第一方式为基于第一功能实体的用户面发送方式;则步骤S202具体包括:
S2021、第一节点根据第一功能实体的网络标识信息,与第一功能实体建立IP连接;
具体地,第一节点依据第一功能实体的网络标识信息与第一功能实体建立IP连接,其中,第一功能实体的网络标识信息可以为第一功能实体的IP地址和端口号。
S2022、第一节点通过IP连接,向第一功能实体发送第一信息。
相应地,第一功能实体基于上述IP连接,接收到第一节点的第一信息。
具体地,第一节点基于用户面数据传输协议,通过IP连接向第一功能实体发送第一信息。本申请实施例中,第一节点通过建立的IP连接向第一功能实体发送第一信息时,可以利用用 户面数据传输协议对第一信息进行封装,以使第一信息通过用户面进行传输。其中,用户面数据传输协议包括但不限于TR-069传输协议。
可选地,当第一节点通过基于第一功能实体的用户面发送方式向第一功能实体发送第一信息时,第一功能实体可以基于用户面数据传输协议下发控制策略信息,即第一功能实体基于上述IP连接将控制策略信息发送至第一节点,以使第一节点接收到该控制策略信息。
可选地,当第一节点通过基于第一功能实体的用户面发送方式向第一功能实体发送第一信息时,第一功能实体还可以通过第二通信系统中的第二功能实体转发控制策略信息,以使第一节点接收到该控制策略信息。
在一些可能的实施方式中,本申请实施例中的通信方法还包括:
第一节点向第二通信系统中的第二功能实体发送第一请求,第一请求用于请求第一功能实体的网络标识信息;
相应地,第二功能实体接收到来自第一节点的第一请求。
第一节点从第二功能实体接收第一功能实体的网络标识信息。
相应地,第二功能实体响应第一请求向第一节点发送第一功能实体的网络标识信息。其中,第二功能实体可以预先获得第一功能实体的网络标识信息,或者在收到第一请求时再去获取第一功能实体的网络标识信息,对第二功能实体获取第一功能实体的网络标识信息的方法不做特别限定。
本申请实施例中,可以通过向第二功能实体发送第一请求,以请求得到第一功能实体的网络标识信息。其中,第一请求可以为协议数据单元(Protocol Data Unit,PDU)会话请求等请求,不做特别限定。
下面以第一通信系统以短距通信系统为例,而第二通信系统以5G蜂窝通信系统为例进行具体说明:
参考图1a和图1b,本实施例中,此时的第一节点是T节点,第一功能实体为xNF网元,第二功能实体为AMF网元,而第一方式为通过xNF网元的用户面传输的方式。T节点的第一信息包括T节点的节点状态信息(即第一节点的状态信息)和/或链路状态信息(即第一链路的状态信息,本实施例中,第一链路的状态信息为T节点和G节点之间的链路状态,和/或T节点和xNF网元之间的链路状态)。参考图5,图5是本申请实施例提供的一种用户面发送方式的传输协议栈示意图;T节点、G节点、网关节点TNGF、UPF网元、xNF网元之间按照图5所示的协议栈进行数据传输,其中,本实施例中,节点状态信息和/或链路状态信息等基于TR-069传输协议配置用户面传输。
参考图1a、图6,图6是本申请实施例提供的另一种通信方法的具体交互流程图;以同时发送T节点的节点状态信息和链路状态信息为例,T节点与xNF网元之间的交互过程具体如下:
步骤1:T节点在与核心网建立PDU会话的过程中,获得xNF网元的网络标识信息。其中,PDU会话的建立流程可参考现有的3GPP 23.502第17版本的第4.12.5章节中的流程图4.12.5-1(如图7所示,图7是现有技术中的PDU会话建立流程图),不同点为在图6中的N2PDU会话请求和PDU会话建立接受消息中增加了xNF信息,该xNF信息即xNF网元的网络标识信息(包括xNF的IP地址和端口号)。
具体地,T节点基于GTP-U协议与网关节点TNGF进行NAS信令传输。接着,T节点向AMF网元发送PDU会话建立请求,其中,该PDU会话建立请求包括PDU会话标识、SSC模式、会话类型等。AMF网元根据该PDU会话请求获取xNF网元的网络标识信息。
接着,AMF网元响应PDU会话建立请求向TNGF发送N2PDU会话请求,该N2PDU会话请求包括QoS策略和关联的QFI,即QoS流ID,PDU会话标识,PDU会话建立接受消息,xNF信息,xNF信息即xNF网元的网络标识信息,即IP地址和端口号。TNGF再向T节点发送一个请求消息,该请求消息包括PDU会话建立接受消息(IP地址,SSC模式,授权的QoS策略,xNF信息,...),PDU会话标识,TNGF隧道:F-TEID,差分服务代码点(Differentiated Services Code Point,DSCP),QoS信息。T节点再向TNGF发送一个响应消息,该响应消息包括T节点隧道:F-TEID信息。TNGF再向AMF网元发送一个N2PDU会话响应消息。
步骤2:基于PDU会话过程中获取的xNF网元的IP地址和端口,通过xNF网元的IP地址和端口建立T节点与xNF网元之间的IP连接。
步骤3:基于T节点与xNF网元建立的IP连接,可以进行用户面信息交互。T节点基于该IP连接将节点状态信息和/或链路状态信息发送给xNF网元,其中,参考图5,消息转发过程包括:
基于NWt接口,T节点将状态信息(即节点状态信息和/或链路状态信息)以TR-069传输协议进行封装后发送给TNGF。
TNGF将信息转发给UPF网元,UPF网元解析信息后将相关状态信息转发给SMF网元。
基于Nxnf服务化接口,SMF网元将相关状态信息发送给xNF网元,具体地,SMF网元可以以请求消息或上报消息的形式将状态信息发送给xNF网元,相应地xNF网元会有配置或响应消息回复给SMF网元。
步骤4:基于状态信息,xNF网元生成控制策略信息,通过相关功能模块发送给T节点,即图6中的状态信息响应。其具体的下发消息流程包括:
基于步骤3中的状态信息,xNF网元进行配置和管理决策。xNF网元根据T节点的节点状态信息和链路状态信息生成控制策略信息,上述控制策略信息包括以下的一项或多项:节点状态更新信息(如:节点硬件版本更新信息、节点软件版本更新信息等)、QoS策略配置信息、节点状态上报策略、链路状态检测策略。具体地,xNF网元向SMF网元发送QoS调整请求以请求SMF网元进行QoS调整以得到T节点的QoS策略配置信息,xNF网元再将控制策略信息:节点状态更新信息、QoS策略配置信息、链路状态检测策略、节点状态上报策略中的一项或多项通过xNF网元的用户面数据传输协议发送给T节点,以使T节点根据接收到的控制策略信息进行节点状态信息的维护与上报、链路状态的检测与上报。
利用图6所示的交互流程,基于T节点的节点状态信息、链路状态信息以及xNF网元的用户面功能,实现5G核心网对短距通信系统的T节点的有效管理,有效提升资源的利用率,提升5G蜂窝通信网络和短距通信系统的融合效果。
需要说明的是,可选地,xNF网元通过AMF网元转发控制策略信息时,参考图1a,xNF网元将控制策略信息发送给AMF网元,以使AMF网元通过N1接口或N2接口将控制策略信息发送给T节点,其中,AMF网元通过N1接口将控制策略信息发送给T节点,AMF网元也可以通过N2接口将控制策略信息发送给网关节点TNGF,再由网关节点TNGF转发给T节点。当然,也可以由网关节点TNGF转发给G节点,再由G节点转发给T节点。
实施方式3,第一方式为PMF用户面发送方式时;则步骤S202具体包括:
第一节点基于第二通信系统中的第三功能实体的PMF单元的网络标识信息,向PMF单元发送第一信息。
相应地,第三功能实体的PMF单元接收到第一节点的第一信息。
本申请实施例中,当第一方式为PMF用户面发送方式时,根据第三功能实体中的PMF单元的网络标识信息向该PMF单元发送第一信息,以通过该PMF单元可以实现将第一信息发送给第一功能实体。其中,PMF单元的网络标识信息可以为PMF单元的IP地址和端口号。
可选地,当第一节点通过PMF用户面发送方式向第一功能实体发送第一信息时,第一功能实体可以通过PMF单元下发控制策略信息至第一节点,以使第一节点接收到该控制策略信息。
可选地,当第一节点通过PMF用户面发送方式向第一功能实体发送第一信息时,第一功能实体还可以通过第二通信系统中的第二功能实体转发控制策略信息,以使第一节点接收到该控制策略信息。
可选地,上述第一节点向PMF单元发送第一信息,包括:
第一节点向PMF单元发送端到端往返时延RTT检测请求消息、或丢包率检测请求消息等的一项或多项检测请求信息,其中,端到端往返时延RTT检测请求消息或丢包率检测请求消息包括第一信息。
相应地,PMF单元接收到端到端往返时延RTT检测请求消息、或丢包率检测请求消息等的一线或多项检测请求信息。
本申请实施例中,在向PMF单元发送第一信息时,可以在RTT检测请求消息或丢包率检测请求消息中携带该第一信息,可以将第一信息发送给PMF单元。简单地说,基于RTT和丢包率的检测交互流程和消息结构,可以完成第一信息的上报。
在一些可能的实施方式中,本申请实施例中的通信方法还包括:
第一节点向第二通信系统中的第二功能实体发送第二请求,第二请求用于请求PMF单元的网络标识信息;
相应地,第二功能实体接收来自第一节点的第二请求。
接收来自于第二功能实体的PMF单元的网络标识信息。
相应地,第二功能实体向第一节点发送PMF单元的网络标识信息。其中,第二功能实体可以预先获得PMF单元的网络标识信息,或者在收到第二请求时再去获取PMF单元的网络标识信息,其中,对第二功能实体获取PMF单元的网络标识信息的方法不做特别限定。
本申请实施例中,可以通过向第二功能实体发送第二请求,以请求得到PMF单元的网络标识信息。其中,第二请求可以为PDU会话请求等请求,不做特别限定。
下面以第一通信系统以短距通信系统为例,而第二通信系统以5G蜂窝通信系统为例进行具体说明:
参考图1a和图1b,本实施例中,此时的第一节点是T节点,第一功能实体为xNF网元,第二功能实体为AMF网元,第三功能实体为UPF网元,而第一方式为基于PMF单元的用户面传输方式。T节点的第一信息包括T节点的节点状态信息(即第一节点的状态信息)或链路状态信息(即第一链路的状态信息,本实施例中,第一链路的状态信息为T节点和G节点之间的链路状态,和/或T节点和UPF网元之间的链路状态)中的一项或多项。参考图8,图8是本申请实施例提供的一种PMF用户面发送方式的传输协议栈示意图;T节点、G节点、网关节点TNGF和UPF网元之间按照图8所示的协议栈进行数据传输,其中,本实施例中,PMF单元对节点状态信息和/或链路状态信息等进行数据包的封装,并递交给PDU Layer模块进行传输。
参考图1a、图9,图9是本申请实施例提供的又一种通信方法的具体交互流程图;以同时发送T节点的节点状态信息和链路状态信息为例,T节点与xNF网元之间的交互过程具体 如下:
步骤1:T节点在与核心网建立PDU会话的过程中,获得PMF单元的网络标识信息。其中,PDU会话的建立流程可参考现有的3GPP 23.502第17版本的第4.12.5章节中的流程图4.12.5-1(参考图7),不同点为在图9中的N2PDU会话请求和PDU会话建立接受消息中增加了PMF信息,PMF信息即PMF单元的网络标识信息(包括PMF单元的IP地址和端口号)。
具体地,T节点基于GTP-U协议与网关节点TNGF进行NAS信令传输。接着,T节点向AMF网元发送PDU会话建立请求,其中,该PDU会话建立请求包括PDU会话标识、SSC模式、会话类型等。AMF网元转发该PDU会话请求给SMF网元,SMF网元再根据该PDU会话请求获取UPF网元中的PMF单元的网络标识信息。接着,AMF网元响应PDU会话建立请求向TNGF发送N2PDU会话请求,该N2PDU会话请求包括QoS策略和关联的QFI,即QoS流ID,PDU会话标识,PDU会话建立接受消息,PMF信息。TNGF再向T节点发送一个请求消息,该请求消息包括PDU会话建立接受消息(IP地址,SSC模式,授权的QoS策略,PMF信息,...),PDU会话标识,TNGF隧道:F-TEID,差分服务代码点(Differentiated Services Code Point,DSCP),QoS信息。T节点再向TNGF发送一个响应消息,该响应消息包括T节点隧道:F-TEID信息。TNGF再向AMF网元发送一个N2PDU会话响应消息。
步骤2:基于PDU会话过程中获取的PMF单元的IP地址和端口,T节点向PMF单元发送T节点的第一信息。可以是基于RTT和丢包率检测交互流程,或者是通过新的消息发送流程向PMF单元发送T节点的第一信息,PMF单元再将T节点的第一信息转发给xNF网元。
可选地,在RTT相关消息中携带T节点的第一信息(即节点状态和/或链路状态信息)以及控制策略信息。即在按照PMF协议流程交互的RTT消息中携带T节点的第一信息,以及控制策略信息;具体地,在RTT检测请求消息中携带T节点的第一信息,而在核心网的RTT响应消息中携带控制策略信息。
可选地,在丢包率检测相关消息中携带T节点的第一信息(即节点状态和/或链路状态信息)以及控制策略信息。即在按照PMF协议流程交互的丢包率交互消息中携带T节点的第一信息以及控制策略信息;具体地,在丢包率计数请求消息或PMF丢包率上报请求消息中携带T节点的第一信息,在核心网的丢包率上报响应消息中携带控制策略信息。
可选地,T节点可以直接将T节点的第一信息(即节点状态和/或链路状态信息,如图9中的状态信息传输)发送给PMF单元。具体地,基于NWt接口,T节点将第一信息发送给TNGF;基于N3接口,TNGF将第一信息转发给UPF网元的PMF单元。在PMF单元接收到T节点的第一信息之后,基于N4接口,UPF网元将第一信息发送给SMF网元;基于Nxnf服务化接口,SMF网元将第一信息发送给xNF网元,由xNF网元根据第一信息进行决策。基于第一信息,xNF网元生成控制策略信息,并通过相关功能模块发送给T节点,即图9中的状态信息响应。其具体的下发消息流程包括:
xNF网元向SMF网元发送QoS调整请求以请求SMF网元进行QoS调整以得到T节点的QoS策略配置信息,xNF网元再将控制策略信息:节点状态更新信息、QoS策略配置信息、链路状态检测策略、节点状态上报策略中的一项或多项转发给PMF单元,由PMF单元发送给T节点,以使T节点根据接收到的控制策略信息进行节点状态信息的维护与上报、链路状态的检测与上报。
利用图9所示的交互流程,基于T节点的节点状态信息、链路状态信息以及PMF扩展功能,实现5G核心网对短距通信系统的T节点的管理,提升资源的有效利用,提升5G蜂窝通信网络和短距通信系统的融合效果。
需要说明的是,可选地,xNF网元通过AMF网元转发控制策略信息时,参考图1a,xNF网元将控制策略信息发送给AMF网元,以使AMF网元通过N1接口或N2接口将控制策略信息发送给T节点,其中,AMF网元通过N1接口将控制策略信息发送给T节点,AMF网元也可以通过N2接口将控制策略信息发送给网关节点TNGF,再由网关节点TNGF转发给T节点。当然,也可以由网关节点TNGF转发给G节点,再由G节点转发给T节点。
本实施方式中,当在5G蜂窝通信系统中不新增xNF网元时,第一功能实体可以是SMF网元,一个可选的设计中,利用图9所示的交互流程,SMF网元可以获得T节点的第一信息,SMF网元可以基于该第一信息生成QoS策略配置信息,再由UPF网元封装该QoS策略配置信息,接着UPF网元再将封装后的QoS策略配置信息转发至T节点。SMF网元也可以不基于该第一信息生成QoS策略配置信息,而是根据其他生成方法成该生成QoS策略配置信息,在此不做特别限定。
需要说明的是,图4、图6、图9所示的交互流程中,第一节点也可以为短距通信系统中的其他节点,如G节点,G节点上报自身的第一信息的流程与T节点的上报过程相同,在此不做赘述。不同的是,G节点的链路状态信息为G节点和5G核心网之间的链路状态,G节点和5G核心网之间的链路可以为G节点和xNF网元之间的链路,或者,G节点和UPF网元之间的链路。
参考图10,图10是本申请实施例提供的另一种第一通信系统和第二通信系统的结构示意图;图10中,第二通信系统为蜂窝通信系统,其包括基站1002、用户面UPF1005、核心网UPF1001和SMF1006;而第一通信系统可以为无源RFID通信系统(包括无源RFID节点1003)、短距通信系统(包括短距T节点1008、短距G节点1004、短距网关节点1009)、高精定位通信系统(包括高精定位节点1010和定位小站1011)等中的一个或两个以上,其中,无源RFID通信系统、短距通信系统、高精定位通信系统等可以共用一个短距通信系统的短距G节点1004作为通信系统的边缘网关。其中,短距T节点1008利用上述的通信方法上报自身的第一信息至蜂窝通信系统中新增的xNF网元(图10中未示出),同样地,无源RFID节点1003和高精定位节点1010可以采用与短距T节点1008相似的通信方法进行信息上报。
可选地,为了对节点上报的信息进行处理,由于信息上报到xNF网元过程中会经过用户面UPF 1005,可以在用户面UPF 1005中接入边缘计算平台1007、现场网数字孪生平台1012和办公终端1013,以使边缘计算平台1007、现场网数字孪生平台1012和办公终端1013对上报的信息进行处理、显示处理结果等。其中,边缘计算平台1007是在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,以就近提供最近端服务。而现场网数字孪生平台1012是利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真处理平台,其在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。
上述详细阐述了本申请实施例的方法,下面提供本申请实施例的装置。
参考图11,图11是本申请实施例提供的一种第一节点的结构示意图;第一节点包括获取模块1101、发送模块1102和接收模块1103,如图11所示的第一节点用于实现前述第一节点侧的通信方法。
在一些可能的实施方式中,获取模块1101,用于获取第一通信系统中的第一节点的第一信息,第一信息包括第一节点的状态信息和/或第一链路的状态信息,第一节点为第一链路的 一端;
发送模块1102,用于通过第一方式,向第二通信系统中的第一功能实体发送第一信息。
在一些可能的实施方式中,第一节点的状态信息包括以下一项或多项:硬件版本信息、软件版本信息、或者节点电量信息。
在一些可能的实施方式中,第一链路的状态信息包括第一状态测量量、或第二状态测量量等中的一项或多项,第一状态测量量为第一节点和第一节点的管理节点之间的链路状态测量量,第二状态测量量为第一节点和第二通信系统之间的链路状态测量量。
在一些可能的实施方式中,第一状态测量量包括以下一项或多项:参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、信道质量指示CQI值、预编码矩阵指示PMI值、或者秩指示RI值。
在一些可能的实施方式中,第二状态测量量包括以下一项或多项:端到端往返时延RTT、丢包率、或者抖动量。
在一些可能的实施方式中,接收模块1103,用于接收来自第一功能实体的控制策略信息,控制策略信息用于配置第一节点。
在一些可能的实施方式中,控制策略信息包括以下一项或多项:节点状态更新信息、服务质量QoS策略配置信息、节点状态上报策略、或者链路状态检测策略。
在一些可能的实施方式中,节点状态上报策略包括以下一项或多项:上报对象、上报周期,或者事件参数。
在一些可能的实施方式中,链路状态检测策略包括以下一项或多项:测量对象、上报对象、上报阈值、上报周期、或者事件参数。
在一些可能的实施方式中,接收模块1103,还用于接收发送方式指示信息,发送方式指示信息用于指示第一方式。
在一些可能的实施方式中,第一方式为控制面发送方式;发送模块1102在通过第一方式,向第二通信系统中的第一功能实体发送第一信息方面,具体用于:
向第二通信系统中的第二功能实体发送非接入层NAS消息,NAS消息包含第一信息。
在一些可能的实施方式中,第一方式为基于第一功能实体的用户面发送方式;发送模块1102在通过第一方式,向第二通信系统中的第一功能实体发送第一信息方面,具体用于:
根据第一功能实体的网络标识信息,与第二通信系统中的第一功能实体建立网际互连协议IP连接;通过IP连接,向第一功能实体发送第一信息。
在一些可能的实施方式中,发送模块1102,还用于向第二通信系统中的第二功能实体发送第一请求,第一请求用于请求第一功能实体的网络标识信息;
接收模块1103,还用于从第二功能实体接收第一功能实体的网络标识信息。
在一些可能的实施方式中,发送模块1102在通过IP连接,向第一功能实体发送第一信息方面,具体用于:
基于用户面数据传输协议,通过IP连接向第一功能实体发送第一信息。
在一些可能的实施方式中,第一方式为性能测量功能PMF用户面发送方式;发送模块1102在通过第一方式,向第二通信系统中的第一功能实体发送第一信息方面,具体用于:
基于第二通信系统中的第三功能实体的PMF单元的网络标识信息,向PMF单元发送第一信息。
在一些可能的实施方式中,发送模块1102,还用于向第二通信系统中的第二功能实体发送第二请求,第二请求用于请求PMF单元的网络标识信息;
接收模块1103,还用于接收来自于第二功能实体的PMF单元的网络标识信息。
在一些可能的实施方式中,发送模块1102在向PMF单元发送第一信息方面,具体用于:
向PMF单元发送端到端往返时延RTT检测请求消息和/或丢包率检测请求消息,端到端往返时延RTT检测请求消息或丢包率检测请求消息包括第一信息。
利用本申请实施例的第一节点,可以实现第一节点的信息上报,以实现对第一节点进行精细化管理,提升资源的利用率。
需要说明的是,第一节点的实施例与前述方法实施例相互对应,具体的描述及有益效果描述可以参照方法实施例,不再赘述。值得注意的是,装置实施例可以与上述方法配合使用,也可以单独使用。
参考图12,图12是本申请实施例提供的一种第一功能实体的结构示意图;第一功能实体包括接收模块1201、确定模块1202和发送模块1203,如图12所示的第一功能实体用于实现前述第一功能实体侧的通信方法。
在一些可能的实施方式中,接收模块1201,用于接收来自第一节点的第一信息,第一信息包括第一节点的状态信息和/或第一链路的状态信息,第一节点为第一链路的一端;
确定模块1202,用于基于第一信息确定第一节点的控制策略信息,控制策略信息用于配置第一节点;
发送模块1203,用于发送控制策略信息。
在一些可能的实施方式中,第一节点的状态信息包括以下一项或多项:硬件版本信息、软件版本信息、或者节点电量信息。
在一些可能的实施方式中,控制策略信息包括以下一项或多项:节点状态更新信息、服务质量QoS策略配置信息、节点状态上报策略、或者链路状态检测策略。
在一些可能的实施方式中,节点状态上报策略包括以下一项或多项:上报对象、上报周期,或者事件参数。
在一些可能的实施方式中,链路状态检测策略包括以下一项或多项:测量对象、上报对象、上报阈值、上报周期、或者事件参数。
在一些可能的实施方式中,发送模块1203,还用于发送发送方式指示信息,发送方式指示信息用于指示第一方式,第一方式为第一信息的发送方式。
利用本申请实施例的第一功能实体,可以实现对第一节点的信息上报,以实现对第一节点的精细化管理,提升资源的利用率。
需要说明的是,第一功能实体的实施例与前述方法实施例相互对应,具体的描述及有益效果描述可以参照方法实施例,不再赘述。值得注意的是,装置实施例可以与上述方法配合使用,也可以单独使用。
参考图13,图13是本申请实施例提供的一种第二功能实体的结构示意图;第二功能实体包括接收模块1301和发送模块1302。如图13所示的第二功能实体用于实现前述第二功能实体侧的通信方法。
在一些可能的实施方式中,接收模块1301,用于接收第一通信系统中的第一节点的第一信息,第一信息包括第一节点的状态信息和/或第一链路的状态信息,第一节点为第一链路的一端;
发送模块1302,用于向第二通信系统中的第一功能实体发送第一信息。
在一些可能的实施方式中,接收模块1301,还用于接收来自第一功能实体的控制策略信息,控制策略信息用于配置第一节点;发送模块,还用于向第一节点发送控制策略信息。
在一些可能的实施方式中,接收模块1301在接收第一通信系统中的第一节点的第一信息方面,具体用于:
接收来自第一节点的NAS消息,NAS消息包含第一信息。
在一些可能的实施方式中,接收模块1301还用于接收来自第一节点的第一请求,第一请求用于请求第一功能实体的网络标识信息;
发送模块1302,还用于发送第一功能实体的网络标识信息。
在一些可能的实施方式中,接收模块1301还用于接收来自第一节点的第二请求,第二请求用于请求第二通信系统中的第三功能实体的PMF单元的网络标识信息;
发送模块1302,还用于发送PMF单元的网络标识信息。
在一些可能的实施方式中,第一节点的状态信息包括以下一项或多项:硬件版本信息、软件版本信息、或者节点电量信息。
在一些可能的实施方式中,第一链路的状态信息包括第一状态测量量、或第二状态测量量等中的一项或多项,第一状态测量量为第一节点和第一通信系统中的管理节点之间的链路状态测量量,第二状态测量量为第一节点和第二通信系统之间的链路状态测量量。
在一些可能的实施方式中,第一状态测量量包括以下一项或多项:参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、信道质量指示CQI值、预编码矩阵指示PMI值、或者秩指示RI值。
在一些可能的实施方式中,第二状态测量量包括以下一项或多项:端到端往返时延RTT、丢包率、或者抖动量。
在一些可能的实施方式中,控制策略信息包括以下一项或多项:节点状态更新信息、服务质量QoS策略配置信息、节点状态上报策略、或者链路状态检测策略。
在一些可能的实施方式中,节点状态上报策略包括以下一项或多项:上报对象、上报周期,或者事件参数。
在一些可能的实施方式中,链路状态检测策略包括以下一项或多项:测量对象、上报对象、上报阈值、上报周期、或者事件参数。
利用本申请实施例的第二功能实体,可以实现对第一节点的信息上报,以实现对第一节点的精细化管理,提升资源的利用率。
需要说明的是,第二功能实体的实施例与前述方法实施例相互对应,具体的描述及有益效果描述可以参照方法实施例,不再赘述。值得注意的是,装置实施例可以与上述方法配合使用,也可以单独使用。
请参见图14,图14是本申请实施例提供的一种通信装置140的结构示意图,该通信装置140可以为整机(例如第一节点、第一功能实体或第二功能实体),也可以为整机内的部件(例如芯片、软件模块或者硬件模块等)。该通信装置140可以包括至少一个处理器1401。可选的还可以包括通信接口1402。进一步可选的,通信装置140还可以包括至少一个存储器1403。更进一步可选的,还可以包含总线1404,其中,处理器1401、通信接口1402和存储器1403通过总线1404相连。
其中,处理器1401是进行算术运算和/或逻辑运算的模块,具体可以是中央处理器(central processing unit,CPU)、图片处理器(graphics processing unit,GPU)、微处理器(microprocessor unit,MPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程 逻辑门阵列(Field Programmable Gate Array,FPGA)、复杂可编程逻辑器件(Complex programmable logic device,CPLD)、协处理器(协助中央处理器完成相应处理和应用)、微控制单元(Microcontroller Unit,MCU)等处理模块中的一种或者多种的组合。
通信接口1402可以用于为所述至少一个处理器提供信息输入或者输出。和/或,所述通信接口1402可以用于接收外部发送的数据和/或向外部发送数据,可以为包括诸如以太网电缆等的有线链路接口,也可以是无线链路(Wi-Fi、蓝牙、通用无线传输、车载短距通信技术以及其他短距无线通信技术等)接口。可选的,通信接口1402还可以包括与接口耦合的发射器(如射频发射器、天线等),或者接收器等。
存储器1403用于提供存储空间,存储空间中可以存储操作系统和计算机程序等数据。存储器1403可以是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)等等中的一种或者多种的组合。
该通信装置140中的至少一个处理器1401用于执行前述的通信方法全部或部分的步骤,如第一节点侧的方法步骤、第一功能实体侧的方法步骤或第二功能实体侧的方法步骤。相关内容可以参照前述,此处不在赘述。
可选的,处理器1401,可以是专门用于执行这些方法的处理器(便于区别称为专用处理器),也可以是通过调用计算机程序来执行这些方法的处理器,例如通用处理器。可选的,至少一个处理器还可以既包括专用处理器也包括通用处理器。可选的,在通信装置140包括至少一个处理器1401的情况下,上述计算机程序可以存在存储器1403中。
应注意,尽管图14所示的通信装置140仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,通信装置140还包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,通信装置140还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,通信装置140也可仅仅包括实现本申请实施例所必须的器件,而不必包括图14中所示的全部器件。
本申请提供一种芯片,该芯片可以包括处理器和接口,处理器用于通过接口读取指令,以执行如上述方法实施例所述的通信方法全部或部分的步骤,如第一节点侧的方法步骤、第一功能实体侧的方法步骤或第二功能实体侧的方法步骤。
在上述方法实施例中的通信方法中,例如第一节点侧的方法、第一功能实体侧的方法或第二功能实体侧的方法,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实 现不应认为超出本专利申请的范围。
本申请还提供了提供一种终端,上述终端包含上述装置实施例所述的通信装置。
一些终端的举例包括但不限于:智能家居设备(诸如电视、扫地机器人、智能台灯、音响系统、智能照明系统、电器控制系统、家庭背景音乐、家庭影院系统、对讲系统、视频监控等)、智能运输设备(诸如汽车、轮船、无人机、火车、货车、卡车等)、智能制造设备(诸如机器人、工业设备、智能物流、智能工厂等)、智能终端(手机、计算机、平板电脑、掌上电脑、台式机、耳机、音响、可穿戴设备、车载设备、虚拟现实设备、增强现实设备等)、电池管理系统、电池。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中实施例提到的“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b、或c中的至少一项(个),可以表示:a、b、c、(a和b)、(a和c)、(b和c)、或(a和b和c),其中a、b、c可以是单个,也可以是多个。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B这三种情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
以及,除非有相反的说明,本申请实施例使用“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一设备和第二设备,只是为了便于描述,而并不是表示这第一设备和第二设备的结构、重要程度等的不同,在某些实施例中,第一设备和第二设备还可以是同样的设备。
上述实施例中所用,根据上下文,术语“当……时”可以被解释为意思是“如果……”或“在……后”或“响应于确定……”或“响应于检测到……”。以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一 种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本专利申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种通信方法,其特征在于,所述方法包括:
    获取第一通信系统中的第一节点的第一信息,所述第一信息包括所述第一节点的状态信息和/或第一链路的状态信息,所述第一节点为所述第一链路的一端;
    通过第一方式,向第二通信系统中的第一功能实体发送所述第一信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一功能实体的控制策略信息,所述控制策略信息用于配置所述第一节点。
  3. 根据权利要求2所述的方法,其特征在于,所述控制策略信息包括以下一项或多项:节点状态更新信息、服务质量QoS策略配置信息、节点状态上报策略、或者链路状态检测策略。
  4. 根据权利要求3所述的方法,其特征在于,所述节点状态上报策略包括以下一项或多项:上报对象、上报周期、或者事件参数。
  5. 根据权利要求3所述的方法,其特征在于,所述链路状态检测策略包括以下一项或多项:测量对象、上报对象、上报阈值、上报周期、或者事件参数。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    接收发送方式指示信息,所述发送方式指示信息用于指示所述第一方式。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一方式为控制面发送方式;
    所述通过第一方式,向第二通信系统中的第一功能实体发送所述第一信息,包括:
    向所述第二通信系统中的第二功能实体发送非接入层NAS消息,所述NAS消息包含所述第一信息。
  8. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一方式为基于所述第一功能实体的用户面发送方式;
    所述通过第一方式,向第二通信系统中的第一功能实体发送所述第一信息,包括:
    根据所述第一功能实体的网络标识信息,与所述第二通信系统中的第一功能实体建立网际互连协议IP连接;
    通过所述IP连接,向所述第一功能实体发送所述第一信息。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    向所述第二通信系统中的第二功能实体发送第一请求,所述第一请求用于请求所述第一功能实体的网络标识信息;
    从所述第二功能实体接收所述第一功能实体的网络标识信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述通过所述IP连接,向所述第一功 能实体发送所述第一信息,包括:
    基于用户面数据传输协议,通过所述IP连接向所述第一功能实体发送所述第一信息。
  11. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一方式为性能测量功能PMF用户面发送方式;
    所述通过第一方式,向第二通信系统中的第一功能实体发送所述第一信息,包括:
    基于所述第二通信系统中的第三功能实体的PMF单元的网络标识信息,向所述PMF单元发送所述第一信息。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    向所述第二通信系统中的第二功能实体发送第二请求,所述第二请求用于请求所述PMF单元的网络标识信息;
    接收来自于所述第二功能实体的所述PMF单元的网络标识信息。
  13. 根据权利要求11所述的方法,其特征在于,所述向所述PMF单元发送所述第一信息,包括:
    向所述PMF单元发送端到端往返时延RTT检测请求消息和/或丢包率检测请求消息,所述端到端往返时延RTT检测请求消息或所述丢包率检测请求消息包括所述第一信息。
  14. 根据权利要求1至13任一项所述的方法,其特征在于,所述第一节点的状态信息包括以下一项或多项:硬件版本信息、软件版本信息、或者节点电量信息。
  15. 根据权利要求1至14任一项所述的方法,其特征在于,所述第一链路的状态信息包括第一状态测量量和/或第二状态测量量,所述第一状态测量量为所述第一节点和所述第一节点的管理节点之间的链路状态测量量,所述第二状态测量量为所述第一节点和所述第二通信系统之间的链路状态测量量。
  16. 根据权利要求15所述的方法,其特征在于,所述第一状态测量量包括以下一项或多项:参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、信道质量指示CQI值、预编码矩阵指示PMI值、或者秩指示RI值。
  17. 根据权利要求15所述的方法,其特征在于,所述第二状态测量量包括以下一项或多项:端到端往返时延RTT、丢包率、或者抖动量。
  18. 一种通信方法,其特征在于,所述方法包括:
    接收第一通信系统中的第一节点的第一信息,所述第一信息包括所述第一节点的状态信息和/或第一链路的状态信息,所述第一节点为所述第一链路的一端;
    向第二通信系统中的第一功能实体发送所述第一信息。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一功能实体的控制策略信息,所述控制策略信息用于配置所述第一节点;
    向所述第一节点发送所述控制策略信息。
  20. 根据权利要求18或19所述的方法,其特征在于,所述接收第一通信系统中的第一节点的第一信息,包括:
    接收来自所述第一节点的NAS消息,所述NAS消息包含所述第一信息。
  21. 根据权利要求18至20任一项所述的方法,其特征在于,所述方法还包括;
    接收来自所述第一节点的第一请求,所述第一请求用于请求所述第一功能实体的网络标识信息;
    发送所述第一功能实体的网络标识信息。
  22. 根据权利要求18至21任一项所述的方法,其特征在于,所述方法还包括;
    接收来自所述第一节点的第二请求,所述第二请求用于请求所述第二通信系统中的第三功能实体的PMF单元的网络标识信息;
    发送所述PMF单元的网络标识信息。
  23. 一种通信方法,其特征在于,所述方法包括:
    接收来自第一节点的第一信息,所述第一信息包括所述第一节点的状态信息和/或第一链路的状态信息,所述第一节点为所述第一链路的一端;
    基于所述第一信息确定所述第一节点的控制策略信息,所述控制策略信息用于配置所述第一节点;
    发送所述控制策略信息。
  24. 根据权利要求23所述的方法,其特征在于,所述控制策略信息包括以下一项或多项:节点状态更新信息、服务质量QoS策略配置信息、节点状态上报策略、或者链路状态检测策略。
  25. 根据权利要求24所述的方法,其特征在于,所述节点状态上报策略包括以下一项或多项:上报对象、上报周期、或者事件参数。
  26. 根据权利要求24所述的方法,其特征在于,所述链路状态检测策略包括以下一项或多项:测量对象、上报对象、上报阈值、上报周期、或者事件参数。
  27. 根据权利要求23至26任一项所述的方法,其特征在于,所述方法还包括:
    发送发送方式指示信息,所述发送方式指示信息用于指示第一方式,所述第一方式为所述第一信息的发送方式。
  28. 根据权利要求23至27任一项所述的方法,其特征在于,所述第一节点的状态信息包括以下一项或多项:硬件版本信息、软件版本信息、或者节点电量信息。
  29. 一种通信装置,其特征在于,包括至少一个处理器和通信接口,其中,所述通信接口 为所述至少一个处理器提供信息输入或者信息输出,所述至少一个处理器用于执行程序或指令以使得所述通信装置实现权利要求1至17任一项所述的通信方法、权利要求18至22任一项所述的通信方法或者权利要求23至28任一项所述的通信方法。
  30. 一种终端,其特征在于,所述终端包含权利要求29所述的通信装置。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现权利要求1至17任一项所述的通信方法、权利要求18至22任一项所述的通信方法或者权利要求23至28任一项所述的通信方法。
  32. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行以实现权利要求1至17任一项所述的通信方法、权利要求18至22任一项所述的通信方法或者权利要求23至28任一项所述的通信方法。
PCT/CN2022/121141 2021-09-30 2022-09-24 通信方法及相关设备 WO2023051422A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22874808.3A EP4391629A1 (en) 2021-09-30 2022-09-24 Communication method and related device
US18/620,675 US20240244465A1 (en) 2021-09-30 2024-03-28 Communication method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111166903.3A CN115915200A (zh) 2021-09-30 2021-09-30 通信方法及相关设备
CN202111166903.3 2021-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/620,675 Continuation US20240244465A1 (en) 2021-09-30 2024-03-28 Communication method and related device

Publications (1)

Publication Number Publication Date
WO2023051422A1 true WO2023051422A1 (zh) 2023-04-06

Family

ID=85750414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121141 WO2023051422A1 (zh) 2021-09-30 2022-09-24 通信方法及相关设备

Country Status (4)

Country Link
US (1) US20240244465A1 (zh)
EP (1) EP4391629A1 (zh)
CN (1) CN115915200A (zh)
WO (1) WO2023051422A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005602A1 (en) * 2013-07-10 2015-01-15 Lg Electronics Inc. Method and apparatus for controlling transmission power in wireless communication system
CN107005908A (zh) * 2015-09-25 2017-08-01 华为技术有限公司 一种通信方法及设备
US20190306907A1 (en) * 2018-03-28 2019-10-03 Cable Television Laboratories, Inc. Converged core communication networks and associated methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005602A1 (en) * 2013-07-10 2015-01-15 Lg Electronics Inc. Method and apparatus for controlling transmission power in wireless communication system
CN107005908A (zh) * 2015-09-25 2017-08-01 华为技术有限公司 一种通信方法及设备
US20190306907A1 (en) * 2018-03-28 2019-10-03 Cable Television Laboratories, Inc. Converged core communication networks and associated methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SA2: "Rely LS to Liaison Statement on 5G & Wi-Fi RAN Convergence", 3GPP SA WG2 MEETING #146E, S2-2106533, 23 August 2021 (2021-08-23), XP052059544 *
WBA 5G WORK GROUP: "5G and Wi-Fi RAN Convergence", WIRELESS BROADBAND ALLIANCE, 31 August 2021 (2021-08-31) *

Also Published As

Publication number Publication date
US20240244465A1 (en) 2024-07-18
CN115915200A (zh) 2023-04-04
EP4391629A1 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
US20210084443A1 (en) Methods of joint registration and de-registration for proximity services and internet of things services
WO2020199868A1 (zh) 一种网络接入方法和装置
JP7389243B2 (ja) QoSマッピング
KR20240060722A (ko) 논리적 tsn 브리지를 위한 방법 및 장치
US12040979B2 (en) Communications method, apparatus, and system
US20240073848A1 (en) Network Slice in a Wireless Network
CN111512685A (zh) 信道状态信息测量方法、装置及计算机存储介质
WO2021000688A1 (zh) 一种发送、接收能力信息的方法及设备
CN114007204A (zh) 基于中继通信与直连通信的通信选择方法和设备
WO2021134701A1 (zh) D2d通信方法、装置及系统
EP4401384A1 (en) Data transmission method and communication apparatus
WO2023051422A1 (zh) 通信方法及相关设备
US20160029424A1 (en) Direct device-to-device communications radio technology selection
WO2022198497A1 (zh) 一种定位方法、装置和系统
CN114503625B (zh) 一种通信方法、装置以及系统
CN115734173A (zh) 用于设备间通信的方法和装置
WO2023066168A1 (zh) 一种通信方法、装置及系统
WO2023078183A1 (zh) 一种数据收集方法及通信装置
US12101838B2 (en) Communications method, apparatus, and system
WO2023061207A1 (zh) 一种通信方法、通信装置及通信系统
WO2023236774A1 (zh) 意图管理的方法与装置
WO2023272670A1 (zh) 一种网络连接的方法、装置及系统
CN114731544B (zh) 一种基于网络切片的数据传输方法、装置和系统
US20240276197A1 (en) Communication method and communication apparatus
WO2023179231A1 (zh) 小区信息的配置方法、装置、可读存储介质及芯片系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022874808

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022874808

Country of ref document: EP

Effective date: 20240322

NENP Non-entry into the national phase

Ref country code: DE