WO2023051360A1 - 信息指示、信息接收方法、电子设备和存储介质 - Google Patents

信息指示、信息接收方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2023051360A1
WO2023051360A1 PCT/CN2022/120317 CN2022120317W WO2023051360A1 WO 2023051360 A1 WO2023051360 A1 WO 2023051360A1 CN 2022120317 W CN2022120317 W CN 2022120317W WO 2023051360 A1 WO2023051360 A1 WO 2023051360A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
control information
frequency
information
Prior art date
Application number
PCT/CN2022/120317
Other languages
English (en)
French (fr)
Inventor
贺海港
卢有雄
陈杰
娄俊鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023051360A1 publication Critical patent/WO2023051360A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to an information indication, an information receiving method, an electronic device and a storage medium.
  • Side link In the side link (Sidelink) communication system, when there is business to be transmitted between user equipment (User Equipment, UE), the business between UEs does not pass through the network side, that is, it does not pass through the cellular link between the UE and the base station Instead, the data source UE directly transmits the data to the target UE through Sidelink.
  • This transmission mode is obviously different from the communication mode of the cellular system in the related art.
  • Side link communication has been widely used, typical applications include device-to-device (Device-to-Device, D2D) communication and vehicle networking (Vehicle to Everything, V2X) communication, etc.
  • Sidelink communication not only saves wireless spectrum resources, but also reduces the transmission pressure of the core network, reduces system resource occupation, increases the spectrum efficiency of the cellular communication system, and reduces communication time. Delay and network operating costs.
  • the sending device performs resource selection for signaling or data transmission.
  • One resource selection method is through the scheduling of a central node (such as a base station), and the central node determines the resources used by the device to send signaling and/or data. , and notify the terminal through signaling.
  • Another resource selection method is a resource selection method based on competition.
  • the sending device monitors the usage of resources within the resource pool, and independently selects the resources for sending signaling or data in the resource pool based on the monitoring results.
  • the terminal will perform two processes of perception Sensing and resource selection.
  • the terminal obtains the reserved resource information of other terminals through receiving Sidelink Control Information (SCI) , and the reference signal received power (Reference Signal Received Power, RSRP) information for the terminal to obtain related resources.
  • SCI Sidelink Control Information
  • RSRP Reference Signal Received Power
  • the terminal excludes some high-interference resources based on the sensing result of the Sensing process. For example, resources occupied by other terminals and whose RSRP is higher than a threshold are excluded within the scope of the resource selection window.
  • the terminal may further select resources from remaining resources for sending data and signaling.
  • the demodulation reference signal (Demodulation Reference Signals, DMRS) sent by other terminals earlier obtained by measurement.
  • DMRS Demodulation Reference Signals
  • the design of Sidelink communication is mainly aimed at low frequencies.
  • RSRP measurement in related technologies does not consider the influence of beams.
  • Sidelink communications at higher frequencies need to consider beam characteristics.
  • the beams sent on the two resources before and after another terminal may not be the same. It may not be appropriate to use the RSRP measurement result on the previous time-frequency resource of another terminal as the RSRP measurement result on the time-frequency resource at a later time.
  • the two beams before and after another terminal are different, and it is impossible to directly deduce the interference situation of the terminal at the next time-frequency resource from the RSRP measurement result of the other terminal on the previous time-frequency resource.
  • the main purpose of the embodiments of the present application is to provide an information indication, an information receiving method, an electronic device, and a storage medium.
  • An embodiment of the present application provides an information indication method, which includes the following steps: sending first control information and second control information;
  • the positions of multiple time-frequency resources are indicated by the first control information, wherein the multiple time-frequency resources are different, and the earliest time-frequency resource among the multiple time-frequency resources is recorded as the first time-frequency resource ;
  • the embodiment of the present application also provides an information receiving method, which includes the following steps: receiving first control information and second control information;
  • the embodiment of the present application also provides an information indication method, which includes the following steps: sending first control information through a first time-frequency resource;
  • At least one second time-frequency resource is indicated by the first control information, and quasi-co-location between the second time-frequency resource and the first time-frequency resource is restricted.
  • the embodiment of the present application also provides an information receiving method, which includes the following steps: receiving first control information on a first time-frequency resource;
  • the embodiment of the present application also provides an electronic device, and the electronic device includes: one or more processors;
  • memory for storing one or more programs
  • the one or more processors are made to implement any method described in the embodiments of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium, where one or more programs are stored in the computer-readable storage medium, and the one or more programs can be executed by one or more processors to implement the following: Any one of the methods described in the embodiments of the present application.
  • FIG. 1 is a flowchart of an information indication method provided by an embodiment of the present application
  • Fig. 2 is a flow chart of another information indication method provided by the embodiment of the present application.
  • Fig. 3 is a flow chart of another information indication method provided by the embodiment of the present application.
  • Fig. 4 is a flow chart of another information indication method provided by the embodiment of the present application.
  • Fig. 5 is a flow chart of another information indication method provided by the embodiment of the present application.
  • FIG. 6 is a flow chart of an information receiving method provided by an embodiment of the present application.
  • FIG. 7 is a flow chart of an information indication method provided by an embodiment of the present application.
  • Fig. 8 is a flow chart of another information indication method provided by the embodiment of the present application.
  • FIG. 9 is a flow chart of an information receiving method provided by an embodiment of the present application.
  • FIG. 10 is an example diagram of an information indication method provided by an embodiment of the present application.
  • FIG. 11 is an example diagram of a resource selection provided by an embodiment of the present application.
  • Fig. 12 is an example diagram of an information indication method provided by an embodiment of the present application.
  • Fig. 13 is an example diagram of an information indication method provided by an embodiment of the present application.
  • Fig. 14 is an example diagram of an information indication method provided by an embodiment of the present application.
  • Fig. 15 is an example diagram of an information indication method provided by an embodiment of the present application.
  • Fig. 16 is an example diagram of an information indication method provided by an embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of an information indication device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of an information receiving device provided by an embodiment of the present application.
  • Fig. 19 is a schematic structural diagram of an information indication device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of an information receiving device provided by an embodiment of the present application.
  • Fig. 21 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 1 is a flow chart of an information indication method provided by the embodiment of the present application.
  • the embodiment of the present application is applicable to the situation of beam indication in side link communication.
  • the method can be executed by the terminal equipment, and the device can be implemented by software and /or hardware method implementation, referring to Figure 1, the method provided by the embodiment of the present application specifically includes the following steps:
  • Step 110 Send the first control information and the second control information.
  • first control information and the second control information may be information indicating time-frequency resources, and the first control information and the second control information may occupy different time-frequency resources,
  • the terminal device may send the first control information and the second control information to other terminals, so as to realize the transmission of the control information.
  • Step 120 Indicate the positions of multiple time-frequency resources through the first control information, wherein each time-frequency resource is different, and record the earliest time-frequency resource among the time-frequency resources as the first time-frequency resource.
  • the first control information may indicate the positions of multiple time-frequency resources, where multiple may refer to at least two, and the number of time-frequency resources indicated by the first control information is two or more. Different time-frequency resources may occupy different bandwidths and have different positions in the frequency domain. It is understandable that there may be multiple time-frequency resources in the time domain, and the first time-frequency resource indicated in the first control information may be recorded as the first time-frequency resource. A time-frequency resource.
  • Step 130 Indicate beam configuration information of multiple non-first time-frequency resources through the first control information or the second control information.
  • the beam configuration information may be information about configuring resource beams, and may be beam-related information or quasi-co-location related information.
  • the first control information or the second control information may be used to indicate the beam configuration information of the time-frequency resources other than the first time-domain resource.
  • the first control information indicates the positions of multiple time-frequency resources and marks the earliest time-frequency resource as the first time-frequency resource, and uses the first time-frequency resource.
  • the one control information or the second control information indicates the beam configuration information of multiple non-first time-frequency resources, so that the beam configuration of the time-frequency resources is realized, and the accuracy of reference signal received power measurement can be improved.
  • the beam configuration information includes beam-related information or quasi-co-location related information.
  • the beam configuration information may include beam-related information or quasi-co-location related information, where the quasi-co-location may include:
  • Whether the non-first time-frequency resource is quasi-co-located with the first time-frequency resource refers to whether the non-first time-frequency resource includes at least one channel and quasi-co-locates with the at least one channel included in the first time-frequency resource.
  • the non-first time-frequency resources include Physical Sidelink Control Channel (PSCCH) and Physical Sidelink Shared Channel (PSSCH), and the first time-frequency resources include PSCCH channel and PSSCH channel . Meeting any of the following conditions means that the non-first time-frequency resource is quasi-co-located with the first time-frequency resource:
  • the non-first time-frequency resource includes a PSCCH channel, which is quasi-co-located with the PSCCH channel included in the first time-frequency resource;
  • the non-first time-frequency resource includes a PSSCH channel, which is quasi-co-located with the PSSCH channel included in the first time-frequency resource;
  • the PSCCH channel and PSSCH channel not included in the first time-frequency resource are quasi-co-located, the PSCCH channel and PSSCH channel included in the first time-frequency resource are quasi-co-located, and the PSCCH/PSSCH channel not included in the first time-frequency resource is co-located with the first time-frequency resource Included PSCCH/PSSCH quasi-co-location.
  • whether the non-first time-frequency resource is quasi-co-located with the first time-frequency resource means that the non-first time-frequency resource contains at least one type of DMRS, and whether the non-first time-frequency resource contains at least one type of DMRS Quasi-co-location.
  • the non-first time-frequency resources include PSCCH DMRS and PSSCH DMRS
  • the first time-frequency resources include PSCCH DMRS and PSSCH DMRS.
  • Meeting any of the following conditions means that the non-first time-frequency resource is quasi-co-located with the first time-frequency resource:
  • the PSCCH DMRS included in the non-first time-frequency resource is quasi-co-located with the PSCCH DMRS included in the first time-frequency resource;
  • the PSSCH DMRS included in the non-first time-frequency resource is quasi-co-located with the PSSCH DMRS included in the first time-frequency resource;
  • the PSCCH DMRS and PSSCH DMRS included in the non-first time-frequency resource are quasi-co-located, the PSCCH DMRS and PSSCH DMRS included in the first time-frequency resource are quasi-co-located, and the PSCCH DMRS/PSSCH DMRS included in the non-first time-frequency resource are co-located with the first time-frequency resource.
  • the beam-related information may include information for judging whether the beam changes, wherein whether the beam changes includes:
  • the beam of the non-first time-frequency resource changes relative to the first time-frequency resource means that the non-first time-frequency resource contains at least one channel, and at least one channel contained in the first time-frequency resource, and the distance between the two Whether the beam changes.
  • the non-first time-frequency resources include PSCCH channels and PSSCH channels
  • the first time-frequency resources include PSCCH channels and PSSCH channels. Satisfying any of the following conditions means that the beam of the non-first time-frequency resource changes relative to the first time-frequency resource:
  • the PSCCH channel not included in the first time-frequency resource changes relative to the beam of the PSCCH channel included in the first time-frequency resource
  • the PSSCH channel not included in the first time-frequency resource changes relative to the beam of the PSSCH channel included in the first time-frequency resource
  • the beams of the PSCCH channel and the PSSCH channel included in the non-first time-frequency resource are the same, the beams of the PSCCH channel included in the first time-frequency resource and the PSSCH channel are the same, and the PSCCH/PSSCH included in the non-first time-frequency resource is relative to the first time-frequency resource.
  • the beam of the included PSCCH/PSSCH changes.
  • whether the beam of the non-first time-frequency resource changes relative to the first time-frequency resource means that the non-first time-frequency resource contains at least one type of DMRS, and the at least one type of DMRS contained in the first time-frequency resource , whether the beam changes between the two.
  • the non-first time-frequency resources include PSCCH DMRS and PSSCH DMRS
  • the first time-frequency resources include PSCCH DMRS and PSSCH DMRS. Satisfying any of the following conditions means that the beam of the non-first time-frequency resource changes relative to the first time-frequency resource:
  • the PSCCH DMRS included in the non-first time-frequency resource changes relative to the beam of the PSCCH DMRS included in the first time-frequency resource;
  • the PSSCH DMRS included in the non-first time-frequency resource changes relative to the beam of the PSSCH DMRS included in the first time-frequency resource;
  • the beams of the PSCCH DMRS and PSSCH DMRS included in the non-first time-frequency resources are the same, the beams of the PSCCH DMRS and PSSCH DMRS included in the first time-frequency resources are the same, and the PSCCH DMRS/PSSCH DMRS included in the non-first time-frequency resources are relatively
  • the beam of the PSCCH DMRS/PSSCH DMRS included in the frequency resource changes.
  • the non-first time-frequency resources include: the second time-frequency resources among the time-frequency resources, where the second time-frequency resource is the second time-frequency resource among the time-frequency resources.
  • the earliest time-frequency resources include: the second time-frequency resources among the time-frequency resources, where the second time-frequency resource is the second time-frequency resource among the time-frequency resources.
  • the non-first time-frequency resource may include the second-earliest time-frequency resource among the time-frequency resources.
  • the non-first time-frequency resources include: all time-frequency resources except the first time-frequency resource among the time-frequency resources.
  • the non-first time-frequency resources may include all other time-frequency resources except the earliest time-frequency resource in time.
  • Figure 2 is a flow chart of another information indication method provided by the embodiment of the present application.
  • the embodiment of the present application is based on the embodiment of the above application.
  • the method provided by the embodiment of the present application specifically includes the following steps :
  • Step 210 Send the first control information and the second control information.
  • Step 220 Indicate the positions of multiple time-frequency resources through the first control information, wherein each time-frequency resource is different, and record the earliest time-frequency resource among the time-frequency resources as the first time-frequency resource.
  • Step 230 Indicate whether the non-first time-frequency resource has a beam change through the first control information or the second control information.
  • the first control information or the second control information may be used to indicate whether a beam change occurs on non-first time-frequency resources in each time-frequency resource, wherein the beam change may include:
  • the beam of the non-first time-frequency resource changes relative to the first time-frequency resource means that the non-first time-frequency resource contains at least one channel, and at least one channel contained in the first time-frequency resource, and the distance between the two Whether the beam changes.
  • the non-first time-frequency resources include PSCCH channels and PSSCH channels
  • the first time-frequency resources include PSCCH channels and PSSCH channels. Satisfying any of the following conditions means that the beam of the non-first time-frequency resource changes relative to the first time-frequency resource:
  • the PSCCH channel not included in the first time-frequency resource changes relative to the beam of the PSCCH channel included in the first time-frequency resource
  • the PSSCH channel not included in the first time-frequency resource changes relative to the beam of the PSSCH channel included in the first time-frequency resource
  • the beams of the PSCCH channel and the PSSCH channel included in the non-first time-frequency resource are the same, the beams of the PSCCH channel included in the first time-frequency resource and the PSSCH channel are the same, and the PSCCH/PSSCH included in the non-first time-frequency resource is relative to the first time-frequency resource.
  • the beam of the included PSCCH/PSSCH changes.
  • whether the beam of the non-first time-frequency resource changes relative to the first time-frequency resource means that the non-first time-frequency resource contains at least one type of DMRS, and the at least one type of DMRS contained in the first time-frequency resource , whether the beam changes between the two.
  • the non-first time-frequency resources include PSCCH DMRS and PSSCH DMRS
  • the first time-frequency resources include PSCCH DMRS and PSSCH DMRS. Satisfying any of the following conditions means that the beam of the non-first time-frequency resource changes relative to the first time-frequency resource:
  • the PSCCH DMRS included in the non-first time-frequency resource changes relative to the beam of the PSCCH DMRS included in the first time-frequency resource;
  • the PSSCH DMRS included in the non-first time-frequency resource changes relative to the beam of the PSSCH DMRS included in the first time-frequency resource;
  • the beams of the PSCCH DMRS and PSSCH DMRS included in the non-first time-frequency resources are the same, the beams of the PSCCH DMRS and PSSCH DMRS included in the first time-frequency resources are the same, and the PSCCH DMRS/PSSCH DMRS included in the non-first time-frequency resources are relatively
  • the beam of the PSCCH DMRS/PSSCH DMRS included in the frequency resource changes.
  • the beam change is whether the beam of the non-first time-frequency resource changes relative to the first time-frequency resource.
  • the beam change may include that a beam of a non-first time-frequency resource among the multiple time-frequency resources is different from a beam of the first time-frequency resource.
  • Fig. 3 is a flow chart of another information indication method provided by the embodiment of the present application.
  • the embodiment of the present application is based on the embodiment of the above application. Referring to Fig. 3, the method provided by the embodiment of the present application specifically includes the following steps :
  • Step 310 Send the first control information and the second control information.
  • Step 320 Indicate the positions of multiple time-frequency resources through the first control information, wherein each time-frequency resource is different, and record the earliest time-frequency resource among the time-frequency resources as the first time-frequency resource.
  • Step 330 Indicate whether the non-first time-frequency resource is quasi-co-located with the first time-frequency resource through the first control information or the second control information.
  • whether the non-first time-frequency resource among the multiple time-frequency resources is quasi-co-located with the first time-frequency resource may be indicated according to the first control information or the second control information, wherein the quasi-co-location may include:
  • Whether the non-first time-frequency resource is quasi-co-located with the first time-frequency resource refers to whether the non-first time-frequency resource includes at least one channel and quasi-co-locates with the at least one channel included in the first time-frequency resource.
  • the non-first time-frequency resources include Physical Sidelink Control Channel (PSCCH) and Physical Sidelink Shared Channel (PSSCH), and the first time-frequency resources include PSCCH channel and PSSCH channel . Meeting any of the following conditions means that the non-first time-frequency resource is quasi-co-located with the first time-frequency resource:
  • the PSCCH channel not included in the first time-frequency resource is quasi-co-located with the PSCCH channel included in the first time-frequency resource;
  • the PSSCH channel not included in the first time-frequency resource is quasi-co-located with the PSSCH channel included in the first time-frequency resource;
  • the PSCCH channel and PSSCH channel not included in the first time-frequency resource are quasi-co-located, the PSCCH channel and PSSCH channel included in the first time-frequency resource are quasi-co-located, and the PSCCH/PSSCH channel not included in the first time-frequency resource is co-located with the first time-frequency resource Included PSCCH/PSSCH quasi-co-location.
  • whether the non-first time-frequency resource is quasi-co-located with the first time-frequency resource means that the non-first time-frequency resource contains at least one type of DMRS, and whether the non-first time-frequency resource contains at least one type of DMRS Quasi-co-location.
  • the non-first time-frequency resources include PSCCH DMRS and PSSCH DMRS
  • the first time-frequency resources include PSCCH DMRS and PSSCH DMRS.
  • Meeting any of the following conditions means that the non-first time-frequency resource is quasi-co-located with the first time-frequency resource:
  • the PSCCH DMRS included in the non-first time-frequency resource is quasi-co-located with the PSCCH DMRS included in the first time-frequency resource;
  • the PSSCH DMRS included in the non-first time-frequency resource is quasi-co-located with the PSSCH DMRS included in the first time-frequency resource;
  • the PSCCH DMRS and PSSCH DMRS included in the non-first time-frequency resource are quasi-co-located, the PSCCH DMRS and PSSCH DMRS included in the first time-frequency resource are quasi-co-located, and the PSCCH DMRS/PSSCH DMRS included in the non-first time-frequency resource are co-located with the first time-frequency resource.
  • Fig. 4 is a flowchart of another information indication method provided by the embodiment of the present application.
  • the embodiment of the present application is based on the embodiment of the above application. Referring to Fig. 4, the method provided by the embodiment of the present application specifically includes the following steps :
  • Step 410 Send the first control information and the second control information.
  • Step 420 Indicate the positions of multiple time-frequency resources through the first control information, wherein each time-frequency resource is different, and record the earliest time-frequency resource among the time-frequency resources as the first time-frequency resource.
  • Step 430 Indicate the beam number of the non-first time-frequency resource through the first control information or the second control information.
  • the first control information or the second control information may be used to indicate beam numbers of beams not used by the first time-frequency resource, where the beam numbers may identify different beams, and different beams may have different directions.
  • Fig. 5 is a flowchart of another information indication method provided by the embodiment of the present application.
  • the embodiment of the present application is based on the embodiment of the above application.
  • the method provided by the embodiment of the present application specifically includes the following steps :
  • Step 510 Send the first control information and the second control information.
  • Step 520 Indicate the positions of multiple time-frequency resources through the first control information, wherein each time-frequency resource is different, and record the earliest time-frequency resource among the time-frequency resources as the first time-frequency resource.
  • Step 530 Indicate the first channel index number through the first control information or the second control information, and the quasi-co-location of the first channel corresponding to the first channel index number and the non-first time-frequency resource.
  • the terminal may indicate the first channel index number to other terminals through the first control information or the second control information, so that the non-first time-frequency resources are quasi-co-located with the first channel corresponding to the first channel index number. address, where the first channel may be a channel located before the first control information and the second control information.
  • the first channel index number is indicated by the first control information or the second control information
  • the non-first time-frequency resource is quasi-shared with the first channel corresponding to the first channel index number.
  • the S-SSB index number of the side link synchronization signal block is indicated by the first control information or the second control information, and the S-SSB channel corresponding to the non-first time-frequency resource is quasi-co-located with the S-SSB index number.
  • the first channel index number is indicated by the first control information or the second control information
  • the non-first time-frequency resource corresponds to the first channel index number
  • the first channel quasi-co-location including:
  • the index number of the side link channel state information reference signal SL-CSI-RS is indicated by the first control information or the second control information, and the non-first time-frequency resource is quasi-coordinated site.
  • the first channel index number is indicated by the first control information or the second control information
  • the non-first time-frequency resource corresponds to the first channel index number
  • the first channel quasi-co-location including:
  • the PSCCH/PSSCH index number is indicated by the first control information or the second control information, and the non-first time-frequency resource is quasi-co-located with the PSCCH/PSSCH index number corresponding to the PSCCH/PSSCH index number.
  • the PSCCH index number or the PSSCH index number may be indicated by the first control information or the second control information, so that the non-first time-frequency resources among the multiple time-frequency resources are respectively associated with the PSCCH index number or the PSSCH index number The corresponding PSCCH/PSSCH quasi-co-location.
  • Fig. 6 is a flow chart of an information receiving method provided by the embodiment of the present application.
  • the embodiment of the present application is applicable to the situation of beam indication in the side link communication.
  • the method can be executed by the terminal equipment, and the device can be implemented by software and /or hardware method implementation, referring to FIG. 6, the method provided by the embodiment of the present application specifically includes the following steps:
  • Step 610 Receive first control information and second control information.
  • the terminal receives the first control information and the second control information sent by other terminals.
  • Step 620 Determine the positions of the indicated multiple time-frequency resources according to the first control information, wherein each time-frequency resource is different, and record the earliest time-frequency resource among the time-frequency resources as the first time-frequency resource.
  • the indicated multiple time-frequency resources are determined according to the first control information, and the earliest time-frequency resource in time is recorded as the first time-frequency resource.
  • Step 630 Determine beam configuration information of the indicated multiple non-first time-frequency resources according to the first control information or the second control information.
  • the terminal may determine the beam configuration information of multiple non-time-frequency resources indicated by the above control information.
  • the beam configuration information may include beam related information or accurate Co-location related information.
  • the beam configuration information of multiple non-first time-frequency resources determined by the first control information or the second control information realizes the beam configuration of the time-frequency resources and can improve the accuracy of reference signal received power measurement.
  • the beam configuration information includes beam-related information or quasi-co-location related information.
  • the non-first time-frequency resources include: the second time-frequency resources among the time-frequency resources, where the second time-frequency resource is the second time-frequency resource among the time-frequency resources.
  • the earliest time-frequency resources include: the second time-frequency resources among the time-frequency resources, where the second time-frequency resource is the second time-frequency resource among the time-frequency resources.
  • the non-first time-frequency resources include: all time-frequency resources except the first time-frequency resource among the time-frequency resources.
  • candidate time-frequency resources are excluded according to beam configuration information.
  • candidate time-frequency resources may be excluded according to the indicated beam configuration information, so as to reduce time-frequency resources affecting RSRP measurement, so as to improve communication quality.
  • the candidate time-frequency resources may be one or more time-frequency resources within the resource selection window of the terminal.
  • the conditions for excluding candidate time-frequency resources include at least: a measured value of reference signal received power RSRP is higher than a threshold value.
  • candidate time-frequency resources whose measured values of Reference Signal Received Power (RSRP) are higher than a threshold value may be excluded.
  • the RSRP measurement value is obtained at least by measuring the demodulation reference signal DMRS of the target channel, wherein the index number of the target channel is the same as the index number indicated by the first control information.
  • the RSRP measurement value may be obtained by performing RSRP measurement on a channel corresponding to the index number indicated by the first control information.
  • the RSRP measurement value is obtained at least by measuring the demodulation reference signal DMRS of the target channel, where the beam number of the target channel is the same as the beam number indicated by the first control information.
  • the RSRP measurement value may be determined by measuring the DMRS corresponding to the beam number indicated by the first control information.
  • the target channel is the S-SSB channel
  • the index number is the S-SSB index number
  • the DMRS of the target channel includes the physical side link broadcast channel PSBCH DMRS.
  • the RSRP measurement value may be determined by measuring the PSBCH DMRS indicated by the first control information.
  • the conditions for excluding time-frequency candidate resources include at least one of the following:
  • the sum of the RSRP measurement value and the RSRP compensation value is higher than the threshold value
  • the difference between the measured RSRP value and the compensated RSRP value is higher than the threshold.
  • the candidate time-frequency resource whose sum of the RSRP measurement value and the RSRP compensation value is higher than the threshold value may be excluded, or the candidate time-frequency resource whose difference between the RSRP measurement value and the RSRP compensation value is higher than the threshold value may be excluded.
  • the RSRP compensation value is pre-configured or configured through radio resource control RRC information.
  • the RSRP compensation value may be pre-configured or configured through radio resource control (Radio Resource Control, RRC) information.
  • RRC Radio Resource Control
  • the RSRP compensation value is the difference between the first measured RSRP and the second measured RSRP;
  • the demodulation reference signal DMRS used to measure the first measurement RSRP is the demodulation reference signal DMRS included in the first time-frequency resource;
  • the demodulation reference signal DMRS used for measuring the second measurement RSRP is quasi-co-located with the non-first time-frequency resource.
  • the conditions for excluding time-frequency candidate resources include at least: RSRP is higher than a threshold value, wherein, if the first condition is met, the RSRP is the RSRP measurement value and RSRP compensation The sum of values, if the first condition is not satisfied, the RSRP is the RSRP measurement value.
  • the time-frequency resources whose RSRP is higher than the threshold value may be excluded, wherein the RSRP is the sum of the RSRP measurement value and the RSRP compensation value under the first condition, otherwise it is the RSRP measurement value.
  • the RSRP compensation value is non-zero, and if the first condition is not met, the RSRP compensation value is 0.
  • the first condition includes: the received first control information or second control information indicates that a beam change occurs on a non-first time-frequency resource.
  • the first condition includes: the received first control information or second control information indicates that the non-first time-frequency resource has no quasi-co-location relationship with the first time-frequency resource.
  • Fig. 7 is a flow chart of an information indication method provided by the embodiment of the present application.
  • the embodiment of the present application is applicable to the situation of beam indication in side link communication.
  • the method can be executed by the terminal equipment, and the device can be implemented through software and /or hardware method implementation, referring to FIG. 7, the method provided by the embodiment of the present application specifically includes the following steps:
  • Step 710 Send the first control information through the first time-frequency resource.
  • the first time-frequency resource may be a time-frequency resource used for transmitting the first control information
  • the first time-frequency resource may be an inserted time-frequency resource
  • the first time-frequency resource may only be used for transmitting the first control information
  • the first control information may be transmitted on the first time-frequency resource.
  • Step 720 Indicate at least one second time-frequency resource through the first control information, and restrict quasi-co-location between the second time-frequency resource and the first time-frequency resource.
  • At least one second time-frequency resource is indicated through the first control information, so that one or more second time-frequency resources are quasi-co-located with the first time-frequency resource.
  • the first control information is transmitted through the first time-frequency resource, and at least one second time-frequency resource is indicated according to the first control information, so that each second time-frequency resource is quasi-co-located with the first time-frequency resource, and reference Improvement of signal received power accuracy.
  • the first control information is sent through a physical side link control channel PSCCH, where the PSCCH occupies a fixed number of frequency domain resources.
  • the first control information is sent by the PSCCH, and the PSCCH is composed of a fixed number of frequency domain resources.
  • the time interval between the first time-frequency resource occupied by the PSCCH for sending the first control information and the first second time-frequency resource among the second time-frequency resources is greater than or equal to the time gate limit.
  • the time interval between the first time-frequency resource and the second time-frequency resource is greater than or equal to a time threshold.
  • Fig. 8 is a flow chart of another information indication method provided by the embodiment of the present application.
  • the embodiment of the present application is based on the embodiment of the above application. See Fig. 8.
  • the method provided by the embodiment of the present application specifically includes the following steps :
  • Step 810 Send the first control information through the first part of time-frequency resources in the first time-frequency resources.
  • the first part of time-frequency resources in the first time-frequency resource sends the first control information to other terminals.
  • Step 820 Send the second control information through the second part of the time-frequency resources in the first time-frequency resource, wherein the first control information is sent through the PSCCH, and the second control information is sent through the physical side link shared channel PSSCH, and the PSCCH and PSSCH The number of occupied frequency domain resources is fixed.
  • the second control information is sent on the PSSCH, and the PSCCH for sending the first control information and the PSSCH for sending the second control information occupy a fixed number of frequency domain resources.
  • Step 830 Indicate at least one second time-frequency resource through the first control information, and restrict quasi-co-location between the second time-frequency resource and the first time-frequency resource.
  • the time interval between the first time-frequency resource occupied by the PSCCH and the PSSCH and the first second time-frequency resource is greater than or equal to a time threshold.
  • the first time-frequency resource occupied by the PSCCH for transmitting the first control information and the PSSCH for transmitting the second control information and the earliest second time-frequency resource among the above-mentioned at least one second time-frequency resource The time interval between is greater than or equal to the time threshold.
  • Fig. 9 is a flow chart of an information receiving method provided by the embodiment of the present application.
  • the embodiment of the present application is applicable to the situation of beam indication in the side link communication.
  • the method can be executed by the terminal equipment, and the device can be implemented by software and /or hardware method implementation, referring to FIG. 9, the method provided by the embodiment of the present application specifically includes the following steps:
  • Step 910 Receive first control information on the first time-frequency resource.
  • the terminal may receive first control information sent by other terminals through the first time-frequency resource.
  • Step 920 Determine at least one second time-frequency resource indicated by the first control information, wherein each second time-frequency resource is quasi-co-located with the first time-frequency resource.
  • the acquired first control information indicates at least one second time-frequency resource, and makes the one or more second time-frequency resources quasi-co-located with the first time-frequency resource.
  • each second time-frequency resource is quasi-coextensive with the first time-frequency resource. address, improving the accuracy of time-frequency resource beam determination can improve the accuracy of reference signal received power.
  • the first control information is sent through a physical side link control channel PSCCH, where the PSCCH occupies a fixed number of frequency domain resources.
  • the time interval between the first time-frequency resource occupied by the PSCCH for sending the first control information and the first second time-frequency resource among the second time-frequency resources is greater than or equal to the time gate limit.
  • it also includes: receiving second control information, wherein the first control information is sent through the PSCCH, the second control information is sent through the physical side link shared channel PSSCH, and the PSCCH and PSSCH occupy The number of frequency domain resources is fixed.
  • the second control information is received on the PSSCH, and the PSCCH for sending the first control information and the PSSCH for sending the second control information occupy a fixed number of frequency domain resources.
  • the time interval between the first time-frequency resource occupied by PSCCH and PSSCH and the first second time-frequency resource in each of the second time-frequency resources is greater than or equal to the time threshold value .
  • FIG. 10 is an example diagram of an information indication method provided in an embodiment of the present application.
  • control information The X bit fields in the first control information indicate positions of multiple time-frequency resources, and any two time-frequency resources in the multiple time-frequency resources have different time-frequency positions.
  • time-frequency resource 1 includes a Physical Sidelink Control Channel (PSCCH) and a Physical Sidelink Shared Channel (PSSCH).
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the PSCCH channel is used to carry the first control information
  • the PSSCH channel is used to carry the second control information and data information.
  • the multiple time-frequency resources indicated by the first control information within the range of time-frequency resource 1 are time-frequency resource 1 , time-frequency resource 2 and time-frequency resource 3 .
  • the earliest time-frequency resource in the time domain is called a first time-frequency resource, and other time-frequency resources are called non-first time-frequency resources.
  • the time-frequency resource 1 corresponds to the PSCCH and PSSCH channels, and the corresponding transmit beam is beam 3 .
  • the corresponding transmit beam is beam 2 .
  • the first terminal indicates whether beams other than the first time-frequency resource change through the second control information in time-frequency resource 1 .
  • the second control information includes a plurality of bits, one of which is used to indicate whether the beam of the non-first time-frequency resource has changed, bit 0 indicates that the beam of the non-first time-frequency resource has not changed, and bit 1 indicates that the beam of the non-first time-frequency resource has not changed.
  • a beam of a time-frequency resource changes.
  • the change of the beam means that the transmit beam of the non-first time-frequency resource and the transmit beam of the first time-frequency resource are different transmit beams. If the beam does not change, it means that the transmit beam of the non-first time-frequency resource is the same transmit beam as the transmit beam of the first time-frequency resource.
  • the second terminal is UE3.
  • resource selection is triggered at time slot n, and resources are selected within the resource selection window [n+T 1 , n+T 2 ] for PSCCH and PSSCH send.
  • the resource selection process is as follows:
  • Step 1 Include a plurality of candidate resources in the resource selection window [n+T 1 , n+T 2 ], and exclude resources whose time-frequency resources indicated by the first control information of other UEs overlap and whose RSRP is greater than the RSRP threshold.
  • Step 2 After the resources in step 1 are excluded, the second terminal randomly selects one or more resources from the remaining candidate resources for sending the PSCCH and PSSCH of the second terminal.
  • the RSRP in the above step1 is the sum of the measured RSRP and the RSRP compensation value
  • the RSRP in the above step1 is the measurement RSRP
  • the first condition means that: the second control information received by the second terminal indicates that a beam other than the first resource changes.
  • Whether the beam of the non-first time-frequency resource changes relative to the first time-frequency resource refers to whether the non-first time-frequency resource contains multiple channels and the multiple channels contained in the first time-frequency resource, and whether the beam between the two Change.
  • the non-first time-frequency resources include PSCCH channels and PSSCH channels
  • the first time-frequency resources include PSCCH channels and PSSCH channels. Satisfying any of the following conditions means that the beam of the non-first time-frequency resource changes relative to the first time-frequency resource:
  • the PSCCH channel not included in the first time-frequency resource changes relative to the beam of the PSCCH channel included in the first time-frequency resource
  • the PSSCH channel not included in the first time-frequency resource changes relative to the beam of the PSSCH channel included in the first time-frequency resource
  • the beams of the PSCCH channel and the PSSCH channel included in the non-first time-frequency resource are the same, the beams of the PSCCH channel included in the first time-frequency resource and the PSSCH channel are the same, and the PSCCH/PSSCH included in the non-first time-frequency resource is relative to the first time-frequency resource.
  • the beam of the included PSCCH/PSSCH changes.
  • whether the beam of the non-first time-frequency resource changes relative to the first time-frequency resource means that the non-first time-frequency resource contains multiple types of DMRS, and the multiple types of DMRS contained in the first time-frequency resource , whether the beam changes between the two.
  • the non-first time-frequency resources include PSCCH DMRS and PSSCH DMRS
  • the first time-frequency resources include PSCCH DMRS and PSSCH DMRS. Satisfying any of the following conditions means that the beam of the non-first time-frequency resource changes relative to the first time-frequency resource:
  • the PSCCH DMRS included in the non-first time-frequency resource changes relative to the beam of the PSCCH DMRS included in the first time-frequency resource;
  • the PSSCH DMRS included in the non-first time-frequency resource changes relative to the beam of the PSSCH DMRS included in the first time-frequency resource;
  • the beams of the PSCCH DMRS and PSSCH DMRS included in the non-first time-frequency resources are the same, the beams of the PSCCH DMRS and PSSCH DMRS included in the first time-frequency resources are the same, and the PSCCH DMRS/PSSCH DMRS included in the non-first time-frequency resources are relatively
  • the beam of the PSCCH DMRS/PSSCH DMRS included in the frequency resource changes.
  • time-frequency resource 3 is one candidate resource in time slot [n+T 1 , n+T 2 ].
  • the beam information on the time-frequency resource 3 obtains the measured RSRP of the time-frequency resource 3 .
  • the measured RSRP of the time-frequency resource 3 is obtained by measuring the PSCCH DMRS or PSSCH DMRS in the time-frequency resource 1 and combining the indicated beam information on the time-frequency resource 3 .
  • the RSRP compensation value is determined to be y, and then the measured RSRP of time-frequency resource 3 is the measured RSRP of time-frequency resource 1 plus y.
  • FIG. 12 is an example diagram of an information indication method provided by an embodiment of the present application.
  • the first terminal sends first control information and second control information.
  • the X bit fields in the first control information indicate positions of multiple time-frequency resources, and any two time-frequency resources among the multiple time-frequency resources have different time domain positions.
  • time-frequency resource 1 includes PSCCH channel and PSSCH channel.
  • the PSCCH channel is used to carry the first control information
  • the PSSCH channel is used to carry the second control information and data information.
  • the multiple time-frequency resources indicated by the first control information within the range of time-frequency resource 1 are time-frequency resource 1 , time-frequency resource 2 , and time-frequency resource 3 .
  • the earliest time-frequency resource in the time domain is called a first time-frequency resource, and other time-frequency resources are called non-first time-frequency resources.
  • the time-frequency resource 1 corresponds to the PSCCH and PSSCH channels, and the corresponding transmit beam is beam 3 .
  • the corresponding transmit beam is beam 2 .
  • the first terminal indicates whether the non-first time-frequency resource and the first time-frequency resource are quasi-co-located through the second control information in the time-frequency resource 1 .
  • the second control information includes multiple bits, one of which is used to indicate whether the non-first time-frequency resource is quasi-co-located with the first time-frequency resource, and bit 0 indicates that the non-first time-frequency resource and the first time-frequency resource There is no quasi-co-location relationship between them, and bit 1 indicates quasi-co-location between the non-first time-frequency resource and the first time-frequency resource.
  • the non-first time-frequency resource and the first time-frequency resource use the same transmit beam.
  • the non-first time-frequency resource and the first time-frequency resource use different transmit beams.
  • the second control information in the area of time-frequency resource 1 indicates that there is no quasi-co-location relationship between the non-first time-frequency resource and the first time-frequency resource.
  • the second terminal is UE3.
  • resource selection is triggered at time slot n, and resources are selected within the resource selection window [n+T 1 , n+T 2 ] for sending PSCCH and PSSCH.
  • the resource selection process is as follows:
  • Step 1 Include a plurality of candidate resources in the resource selection window [n+T 1 , n+T 2 ], and exclude resources whose time-frequency resources indicated by the first control information of other UEs overlap and whose RSRP is greater than the RSRP threshold.
  • Step 2 After the resources in step 1 are excluded, the second terminal randomly selects one or more resources from the remaining candidate resources for sending the PSCCH and PSSCH of the second terminal.
  • the RSRP in the above step1 is the sum of the measured RSRP and the RSRP compensation value
  • the RSRP in the above step1 is the measurement RSRP
  • the first condition means: the second control information received by the second terminal indicates that there is no quasi-co-location relationship between the non-first time-frequency resource and the first time-frequency resource;
  • the manner of obtaining the above RSRP measurement will be described with an example next.
  • the time-frequency resource 3 is a candidate resource in the time slot [n+T 1 , n+T 2 ]
  • the candidate resource passes the measurement of the PSCCH DMRS or PSSCH DMRS in the time-frequency resource 2
  • the measured RSRP of the time-frequency resource 3 is obtained.
  • the measured RSRP of the time-frequency resource 3 is obtained by measuring the PSCCH DMRS or PSSCH DMRS in the time-frequency resource 1 .
  • FIG. 13 is an example diagram of an information indication method provided by an embodiment of the present application.
  • the first terminal transmits at a fixed time-frequency resource position N times of S-SSB, and it is stipulated that the beam numbers of the N times of SSB are 1-N respectively.
  • time-frequency resource 1 includes PSCCH channel and PSSCH channel.
  • the PSCCH channel is used to carry the first control information
  • the PSSCH channel is used to carry the second control information and data information.
  • the multiple time-frequency resources indicated by the first control information within the range of time-frequency resource 1 are time-frequency resource 1 , time-frequency resource 2 , and time-frequency resource 3 .
  • the earliest time-frequency resource in the time domain is called the first time-frequency resource
  • other time-frequency resources are called non-first time-frequency resources.
  • the time-frequency resource 1 corresponds to the PSCCH and PSSCH channels, and the corresponding transmit beam is beam 3 .
  • the corresponding transmit beam is beam 2 .
  • the first terminal indicates the beam number of the non-first time-frequency resource through the second control information in the time-frequency resource 1.
  • the second control information in the area of time-frequency resource 1 indicates that the beam number of the non-first time-frequency resource is 2.
  • the second terminal is UE3.
  • resource selection is triggered at time slot n, and resources are selected within the resource selection window [n+T 1 , n+T 2 ] for sending PSCCH and PSSCH.
  • the resource selection process is as follows:
  • Step 1 Include multiple candidate resources in the resource selection window [n+T 1 , n+T 2 ], excluding resources whose time-frequency resources indicated by the first control information of other UEs overlap and whose measured RSRP is greater than the RSRP threshold .
  • Step 2 After the resources in step 1 are excluded, the second terminal randomly selects one or more resources from the remaining candidate resources for sending the PSCCH and PSSCH of the second terminal.
  • RSRP For the measurement RSRP in the above Step 1, it is obtained through the measurement of the DMRS (PSBCH DMRS) of the target channel S-SSB, or the measurement of RSRP through SL-CSI-RS, or PSCCH/PSSCH.
  • Channels such as S-SSB, PSCCH, and PSSCH in FIG. 13 are sent by the first terminal.
  • time-frequency resource 2 in FIG. 13 is one of the candidate resources in the resource selection window of the second terminal.
  • the process for the second terminal to obtain the measured RSRP of the candidate resource is as follows:
  • the second terminal By receiving the first control information and the second control information sent by the first terminal, the second terminal finds that time-frequency resource 2 is indicated as being occupied by the first terminal, and the second control information of the first terminal indicates time-frequency resource 2 and time-frequency resource 2.
  • the beam number of resource 3 is 2.
  • the second terminal measures the PSBCH DMRS corresponding to the S-SSB with the beam number 2 sent by the first terminal, and obtains the measurement RSRP through the measurement, and the measurement RSRP is used as the RSRP of the time-frequency resource 2.
  • FIG. 14 is an example diagram of an information indication method provided by an embodiment of the present application.
  • the first terminal sends N times at a fixed time-frequency resource position
  • the S-SSB notifies the S-SSB indexes corresponding to each S-SSB through the S-SSB, or specifies that the S-SSB indexes of the N times of S-SSBs are 1-N respectively.
  • time-frequency resource 1 includes PSCCH channel and PSSCH channel.
  • the PSCCH channel is used to carry the first control information
  • the PSSCH channel is used to carry the second control information and data information.
  • the multiple time-frequency resources indicated by the first control information within the range of time-frequency resource 1 are time-frequency resource 1 , time-frequency resource 2 , and time-frequency resource 3 .
  • the earliest time-frequency resource in the time domain is called the first time-frequency resource
  • other time-frequency resources are called non-first time-frequency resources.
  • the PSCCH and PSSCH channels corresponding to time-frequency resource 1 correspond to beam 3 .
  • the corresponding transmit beam is beam 2 .
  • the first terminal indicates the S-SSB index not corresponding to the first time-frequency resource through the second control information in the time-frequency resource 1 .
  • the second control information in the region of time-frequency resource 1 indicates that the S-SSB index corresponding to the non-first time-frequency resource is 2.
  • the second terminal is UE3.
  • resource selection is triggered at time slot n, and resources are selected within the resource selection window [n+T 1 , n+T 2 ] for PSCCH and PSSCH send.
  • the resource selection process is as follows:
  • Step 1 Include multiple candidate resources in the resource selection window [n+T 1 , n+T 2 ], excluding resources whose time-frequency resources indicated by the first control information of other UEs overlap and whose measured RSRP is greater than the RSRP threshold .
  • Step 2 After the resources in step 1 are excluded, the second terminal randomly selects one or more resources from the remaining candidate resources for sending the PSCCH and PSSCH of the second terminal.
  • the measured RSRP in the above Step 1 it is obtained by measuring the DMRS (PSBCH DMRS) of the target channel S-SSB.
  • Channels such as S-SSB, PSCCH, and PSSCH in FIG. 14 are sent by the first terminal.
  • time-frequency resource 2 in FIG. 14 is one of the candidate resources in the resource selection window of the second terminal.
  • the process for the second terminal to obtain the measured RSRP of the candidate resource is as follows:
  • the second terminal By receiving the first control information and the second control information sent by the first terminal, the second terminal finds that time-frequency resource 2 is indicated as being occupied by the first terminal, and the second control information of the first terminal indicates time-frequency resource 2 and time-frequency resource 2.
  • Resource 3 has a QCL relationship with S-SSB with index 2.
  • the second terminal uses the DMRS measurement result (PSBCH DMRS measurement) of the S-SSB that has a quasi-co-location relationship with the time-frequency resource 2 as the measured RSRP of the time-frequency resource 2.
  • the S-SSB with index 2 sent by the first terminal has a quasi-co-location relationship with time-frequency resource 2, so the measurement result of the DMRS of S-SSB with index 2 by the second terminal is regarded as time-frequency resource 2 The measured RSRP.
  • FIG. 15 is an example diagram of an information indication method provided by an embodiment of the present application.
  • the first terminal sends control information and data information on time-frequency resource 1 to time-frequency resource 3 .
  • the transmit beams used by the first terminal are beam 3, beam 2, and beam 2 respectively. In this case, it can be considered that there is no quasi-co-location relationship between the time-frequency resource 2 and the time-frequency resource 1 .
  • the second terminal When the second terminal measures the RSRP of the time-frequency resource 2, it obtains the measured RSRP of the time-frequency resource 2 by measuring the PSCCH DMRS or PSSCH DMRS on the time-frequency resource 1. Since the transmit beams of the time-frequency resource 1 and the time-frequency resource 2 are different, the actual RSRPs on the time-frequency resource 1 and the time-frequency resource 2 are actually different. Therefore, the RSRP of the time-frequency resource 2 deduced through the RSRP measurement of the time-frequency resource 1 is not accurate. In the case of inaccurate measurement, the second terminal cannot accurately judge the real interference situation on the time-frequency resource 2, and based on the inaccurate interference situation, decide whether to use the time-frequency resource 2 for the data and control of the second terminal The sending of information makes the communication unreliable.
  • Figure 16 is an example diagram of an information indication method provided by the embodiment of the present application; for the improved method in Figure 15, see Figure 16, when a target time-frequency resource for data and signaling transmission of the first terminal cannot be guaranteed When the same transmission beam or quasi-co-location is used between the previous time-frequency resource for sending data and control information, a new channel is inserted in front of the target time-frequency resource, and the new channel and the target time-frequency resource ( Or the PSCCH and PSSCH contained in the target time-frequency resource) are quasi-co-located.
  • the second terminal can obtain the measured RSRP of the target time-frequency resource by measuring the DMRS of the new channel region. Since the above new information and the target time-frequency resource are quasi-co-located, it can be ensured that the measured RSRP of the target time-frequency resource is accurate.
  • the new channel includes PSCCH and PSSCH, and the number of frequency domain resources corresponding to PSCCH and PSSCH is fixed, for example, one subchannel is fixed.
  • Fig. 17 is a schematic structural diagram of an information indication device provided by an embodiment of the present application, which can execute the method provided by any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the apparatus may be implemented by software and/or hardware, and specifically includes: an information sending module 1001 , an information indicating module 1002 and a beam indicating module 1003 .
  • An information sending module 1001 configured to send first control information and second control information.
  • the information indication module 1002 is configured to indicate the positions of multiple time-frequency resources through the first control information, wherein each of the time-frequency resources is different, and the earliest time-frequency resource among the time-frequency resources is recorded as The first time-frequency resource.
  • the beam indication module 1003 is configured to indicate beam configuration information of multiple non-first time-frequency resources through the first control information or the second control information.
  • the first control information and the second control information are sent by the information sending module, and the information indication module indicates the positions of multiple time-frequency resources through the first control information and marks the earliest time-frequency resource as the first Time-frequency resources, the beam indication module uses the first control information or the second control information to indicate the beam configuration information of multiple non-first time-frequency resources, which realizes the beam configuration of time-frequency resources and can improve the accuracy of reference signal received power measurement .
  • the beam configuration information in the device includes beam-related information or quasi-co-location related information.
  • the non-first time-frequency resources include: second time-frequency resources in each of the time-frequency resources, wherein the second time-frequency resources are the time-frequency resources of each of the time-frequency resources The second oldest time-frequency resource in time.
  • the non-first time-frequency resources include: all time-frequency resources except the first time-frequency resource among the time-frequency resources.
  • the beam indication module 1003 includes:
  • a beam change indicating unit configured to indicate whether a beam change occurs to the non-first time-frequency resource through the first control information or the second control information.
  • the beam indication module 1003 includes:
  • a quasi-co-location indicating unit configured to indicate whether the non-first time-frequency resource is quasi-co-located with the first time-frequency resource through the first control information or the second control information.
  • the beam indication module 1003 includes:
  • a beam number indicating unit configured to indicate the beam number of the non-first time-frequency resource by using the first control information or the second control information.
  • the beam change is whether the beam of the non-first time-frequency resource changes relative to the first time-frequency resource.
  • the beam indication module 1003 includes:
  • An index quasi-co-location indication unit configured to indicate a first channel index number through the first control information or the second control information, and the first time-frequency resource corresponding to the first channel index number of the non-first time-frequency resource Channel quasi-co-located.
  • the index quasi-co-location indication unit is specifically configured to: indicate the S-SSB index number of the side link synchronization signal block through the first control information or the second control information, so The non-first time-frequency resource is quasi-co-located with the S-SSB channel corresponding to the S-SSB index number.
  • the index quasi-co-location indication unit is specifically configured to: indicate the side link channel state information reference signal SL-CSI-RS through the first control information or the second control information index number, the non-first time-frequency resource is quasi-co-located with the SL-CSI-RS corresponding to the SL-CSI-RS index number.
  • the index quasi-co-location indication unit is specifically configured to: indicate the physical side link control channel PSCCH/physical side link sharing through the first control information or the second control information Channel PSSCH index number, the PSCCH/PSSCH quasi-co-location corresponding to the non-first time-frequency resource and the PSCCH/PSSCH index number.
  • Fig. 18 is a schematic structural diagram of an information receiving device provided by an embodiment of the present application, which can execute the method provided by any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the apparatus may be implemented by software and/or hardware, and specifically includes: an information receiving module 1101 , a position determining module 1102 and a beam configuration determining 1103 .
  • An information receiving module 1101, configured to receive first control information and second control information.
  • a location determining module 1102 configured to determine the locations of the indicated multiple time-frequency resources according to the first control information, wherein each of the time-frequency resources is different, and record the earliest time-frequency resource among the time-frequency resources
  • the resource is a first time-frequency resource.
  • Beam configuration determination 1103, configured to determine beam configuration information of the indicated multiple non-first time-frequency resources according to the first control information or the second control information.
  • the beam configuration information includes beam-related information or quasi-co-location related information.
  • the non-first time-frequency resources include: second time-frequency resources in each of the time-frequency resources, wherein the second time-frequency resources are the time-frequency resources of each of the time-frequency resources The second oldest time-frequency resource in time.
  • the non-first time-frequency resources include: all time-frequency resources except the first time-frequency resource among the time-frequency resources.
  • the device further includes: a resource exclusion module, configured to exclude candidate time-frequency resources according to the beam configuration information.
  • the condition for excluding candidate time-frequency resources of the resource excluding module at least includes: the measured value of the reference signal received power RSRP is higher than a threshold value.
  • the RSRP measurement value of the resource exclusion module is obtained at least through the measurement of the demodulation reference signal DMRS of the target channel, wherein the index number of the target channel and the first control information indicate have the same index number.
  • the RSRP measurement value of the resource exclusion module is obtained at least through the measurement of the demodulation reference signal DMRS of the target channel, wherein the beam number of the target channel and the first control information indicate The beam numbers are the same.
  • the target channel of the resource exclusion module is an S-SSB channel
  • the index number is an S-SSB index number
  • the DMRS of the target channel includes a physical side link broadcast channel PSBCH DMRS .
  • the conditions for excluding time-frequency candidate resources of the resource exclusion module include at least one of the following:
  • the sum of the RSRP measurement value and the RSRP compensation value is higher than the threshold value
  • the difference between the measured RSRP value and the compensated RSRP value is higher than the threshold.
  • the RSRP compensation value is pre-configured or configured through radio resource control RRC information.
  • the RSRP compensation value is the difference between the first measured RSRP and the second measured RSRP;
  • the demodulation reference signal DMRS used to measure the first measurement RSRP is the demodulation reference signal DMRS included in the first time-frequency resource;
  • the demodulation reference signal DMRS used for measuring the second measurement RSRP is quasi-co-located with the non-first time-frequency resource.
  • the conditions for excluding time-frequency candidate resources of the resource exclusion module at least include: RSRP is higher than a threshold value, wherein, if the first condition is met, the RSRP is an RSRP measurement value and the RSRP compensation value, and if the first condition is not satisfied, the RSRP is the RSRP measurement value.
  • the RSRP compensation value is non-zero, and if the first condition is not met, the RSRP compensation value is 0.
  • the first condition includes:
  • the received first control information or the second control information indicates that a beam change occurs for the non-first time-frequency resource.
  • the first condition includes:
  • the received first control information or the second control information indicates that there is no quasi-co-location relationship between the non-first time-frequency resource and the first time-frequency resource.
  • Fig. 19 is a schematic structural diagram of an information indication device provided by an embodiment of the present application, which can execute the method provided by any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the device may be implemented by software and/or hardware, and specifically includes: an information sending module 1201 and a resource indicating module 1202 .
  • An information sending module 1201 configured to send first control information through a first time-frequency resource.
  • the resource indication module 1202 is configured to indicate at least one second time-frequency resource through the first control information, and restrict quasi-co-location between the second time-frequency resource and the first time-frequency resource.
  • the first control information is sent through a physical side link control channel PSCCH, where the PSCCH occupies a fixed number of frequency domain resources.
  • the time interval between the first time-frequency resource occupied by the PSCCH for sending the first control information and the first second time-frequency resource in each of the second time-frequency resources is greater than or equal to the time threshold.
  • the device further includes: a second information sending module, configured to send second control information, wherein the first control information is sent through the PSCCH, and the second control information is sent through the physical
  • the side link shared channel PSSCH is sent, and the number of frequency domain resources occupied by the PSCCH and the PSSCH is fixed.
  • the time interval between the first time-frequency resource occupied by the PSCCH and the PSSCH and the first second time-frequency resource in each of the second time-frequency resources is greater than or equal to the time gate limit.
  • Fig. 20 is a schematic structural diagram of an information receiving device provided in an embodiment of the present application, which can execute the method provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the apparatus may be implemented by software and/or hardware, and specifically includes: a first information receiving module 1301 and an information indicating module 1302 .
  • the first information receiving module 1301 is configured to receive first control information on a first time-frequency resource.
  • the information indication module 1302 is configured to determine at least one second time-frequency resource indicated by the first control information, wherein each of the second time-frequency resources is quasi-co-located with the first time-frequency resource.
  • the first control information is sent through a physical side link control channel PSCCH, where the PSCCH occupies a fixed number of frequency domain resources.
  • the time interval between the first time-frequency resource occupied by the PSCCH for sending the first control information and the first second time-frequency resource in each of the second time-frequency resources is greater than or equal to the time threshold.
  • the device further includes: a second information receiving module, configured to receive second control information, wherein the first control information is sent through the PSCCH, and the second control information is sent through the physical
  • the side link shared channel PSSCH is sent, and the number of frequency domain resources occupied by the PSCCH and the PSSCH is fixed.
  • the time interval between the first time-frequency resource occupied by the PSCCH and the PSSCH and the first second time-frequency resource in each of the second time-frequency resources is greater than or equal to the time gate limit.
  • Figure 21 is a schematic structural diagram of an electronic device provided by an embodiment of the present application, the electronic device includes a processor 10, a memory 11, an input device 12 and an output device 13; the number of processors 10 in the electronic device can be one or more
  • a processor 10 is taken as an example; the processor 10, memory 11, input device 12, and output device 13 in the electronic device can be connected through a bus or in other ways.
  • the connection through a bus is taken as an example.
  • the memory 11 can be used to store software programs, computer-executable programs and modules, such as the modules corresponding to the device in the embodiment of the present application (the information sending module 1001, the information indicating module 1002 and the beam indicating module 1003 , or, the information receiving module 1101, the position determining module 1102, and the beam configuration determining 1103, or, the information sending module 1201 and the resource indicating module 1202, or, the first information receiving module 1301 and the information indicating module 1302).
  • the processor 10 executes various functional applications and data processing of the electronic device by running software programs, instructions and modules stored in the memory 11 , that is, implements the above-mentioned method.
  • the memory 11 can mainly include a program storage area and a data storage area, wherein the program storage area can store an operating system and at least one application required by a function; the data storage area can store data created according to the use of the electronic device, etc.
  • the memory 11 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 11 may further include a memory that is remotely located relative to the processor 10, and these remote memories may be connected to the electronic device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 12 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the electronic device.
  • the output device 13 may include a display device such as a display screen.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions, the computer-executable instructions are used to execute an information indication method when executed by a computer processor, the method includes:
  • the computer-executable instructions are used to perform an information receiving method when executed by a computer processor, the method comprising:
  • the computer-executable instructions are used to perform an information indication method when executed by a computer processor, the method comprising:
  • At least one second time-frequency resource is indicated by the first control information, and quasi-co-location between the second time-frequency resource and the first time-frequency resource is restricted.
  • the computer-executable instructions are used to perform an information receiving method when executed by a computer processor, the method comprising:
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components. Components cooperate to execute.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit .
  • a processor such as a central processing unit, digital signal processor, or microprocessor
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Abstract

本申请实施例提供了一种信息指示、信息接收方法、电子设备和存储介质,其中,该方法包括:发送第一控制信息和第二控制信息;通过所述第一控制信息指示多个时频资源的位置,其中,所述多个时频资源不同,记所述多个时频资源中在时间上最早的时频资源为第一时频资源;通过所述第一控制信息或所述第二控制信息指示多个非第一时频资源的波束配置信息。本申请实施例,通过实现了时频资源波束的准确配置,可提高参考信号接收功率测量的准确性。

Description

信息指示、信息接收方法、电子设备和存储介质 技术领域
本申请涉及无线通信技术领域,尤其涉及一种信息指示、信息接收方法、电子设备和存储介质。
背景技术
在边链路(Sidelink)通信系统中,用户设备(User Equipment,UE)之间有业务需要传输时,UE之间的业务不经过网络侧,也即不经过UE与基站之间的蜂窝链路转发,而是直接由数据源UE通过Sidelink传输给目标UE,这种传输方式与相关技术中的蜂窝系统通信模式存在明显区别。边链路通信得到了广泛应用,典型应用包括设备到设备(Device-to-Device,D2D)通信和车联网(Vehicle to Everything,V2X)通信等。对于能够应用Sidelink通信的近距离通信用户来说,Sidelink通信不但节省了无线频谱资源,而且可以降低核心网的传输压力,减少了系统资源占用,增加了蜂窝通信系统的频谱效率,可降低通信时延和网络运营成本。
在Sidelink通信中,发送设备进行信令或数据发送的资源选择,一种资源选择的方式是通过中心节点(如基站)的调度,由中心节点决定设备用于发送信令和/或数据的资源,并通过信令通知给终端。另一种资源选择的方式是基于竞争的资源选择方法,发送设备通过监听资源池范围内资源的使用情况,通过监听结果,在资源池内自主的选择发送信令或数据的资源。
在基于竞争的资源选择方法中,终端会执行感知Sensing和资源选择两个过程,在Sensing过程中,终端通过边链路控制信息(Sidelink Control Information,SCI)的接收获得其他终端的预留资源信息,以及终端获取相关资源的参考信号接收功率(Reference Signal Received Power,RSRP)信息。在资源选择过程中,终端会基于Sensing过程的sensing结果排除一些高干扰的资源。例如,在资源选择窗范围内排除其他终端占用且RSRP高于门限值的资源。在进行资源选择后,终端可以进一步在剩余资源中选择资源,用于数据和信令的发送。
终端在排除其他终端占用且RSRP高于门限值的资源时,对于被其他终端指示为占用资源的RSRP,是通过其他终端更早时间的发送的解调参考信号(Demodulation Reference Signals,DMRS)的测量获得的。目前,Sidelink通信的设计主要针对低频,相关技术中的RSRP测量未考虑波束的影响,在更高频率的Sidelink通信是需要考虑波束特性,一个其他终端前后两个资源上发送的波束未必相同,通过对一个其他终端的前一个时频资源上的RSRP测量结果作为后面时刻的时频资源上的RSRP测量结果未必合适。在一个其他终端前后两个波束不同,无法通过一个其他终端在前一个时频资源上的RSRP测量结果直接推断出该终端在后一个时刻资源的干扰情况。
发明内容
本申请实施例的主要目的在于提出一种信息指示、信息接收方法、电子设备和存储介质。
本申请实施例提供了一种信息指示方法,该方法包括以下步骤:发送第一控制信息和第二控制信息;
通过所述第一控制信息指示多个时频资源的位置,其中,所述多个时频资源不同,记所述多个时频资源中在时间上最早的时频资源为第一时频资源;
通过所述第一控制信息或所述第二控制信息指示多个非第一时频资源的波束配置信息。
本申请实施例还提供了一种信息接收方法,该方法包括以下步骤:接收第一控制信息和第二控制信息;
根据所述第一控制信息确定指示的多个时频资源的位置,其中,所述多个时频资源不同,记所述多个时频资源中在时间上最早的时频资源为第一时频资源;
根据所述第一控制信息或所述第二控制信息确定指示的多个非第一时频资源的波束配置信息。
本申请实施例还提供了一种信息指示方法,该方法包括以下步骤:通过第一时频资源发送第一控制信息;
通过所述第一控制信息指示至少一个第二时频资源,以及限制第二时频资源与第一时频资源之间准共址。
本申请实施例还提供了一种信息接收方法,该方法包括以下步骤:第一时频资源上接收第一控制信息;
确定所述第一控制信息指示的至少一个第二时频资源,其中,所述至少一个第二时频资源与第一时频资源之间准共址。
本申请实施例还提供了一种电子设备,该电子设备包括:一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中任一所述方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或多个程序,所述一个或多个程序可被一个或多个处理器执行,以实现如本申请实施例中任一所述方法。
附图说明
图1是本申请实施例提供的一种信息指示方法的流程图;
图2是本申请实施例提供的另一种信息指示方法的流程图;
图3是本申请实施例提供的另一种信息指示方法的流程图;
图4是本申请实施例提供的另一种信息指示方法的流程图;
图5是本申请实施例提供的另一种信息指示方法的流程图;
图6是本申请实施例提供的一种信息接收方法的流程图;
图7是本申请实施例提供的一种信息指示方法的流程图;
图8是本申请实施例提供的另一种信息指示方法的流程图;
图9是本申请实施例提供的一种信息接收方法的流程图;
图10是本申请实施例提供的一种信息指示方法的示例图;
图11是本申请实施例提供的一种资源选择的示例图;
图12是本申请实施例提供的一种信息指示方法的示例图;
图13是本申请实施例提供的一种信息指示方法的示例图;
图14是本申请实施例提供的一种信息指示方法的示例图;
图15是本申请实施例提供的一种信息指示方法的示例图;
图16是本申请实施例提供的一种信息指示方法的示例图;
图17是本申请实施例提供的一种信息指示装置的结构示意图;
图18是本申请实施例提供的一种信息接收装置的结构示意图;
图19是本申请实施例提供的一种信息指示装置的结构示意图;
图20是本申请实施例提供的一种信息接收装置的结构示意图;
图21是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
图1是本申请实施例提供的一种信息指示方法的流程图,本申请实施例可适用于边链路通信中波束指示的情况,该方法可以由终端设备来执行,该装置可以通过软件和/或硬件的方法实现,参见图1,本申请实施例提供的方法具体包括如下步骤:
步骤110、发送第一控制信息和第二控制信息。
其中,第一控制信息和第二控制信息可以是指示时频资源的信息,第一控制信息和第二控制信息可以占据不同的时频资源,
具体的,终端设备可以发送第一控制信息和第二控制信息到其他终端,实现控制信息的传输。
步骤120、通过第一控制信息指示多个时频资源的位置,其中,各时频资源不同,记各时频资源中在时间上最早的时频资源为第一时频资源。
在本申请实施例中,第一控制信息可以指示多个时频资源的位置,其中,多个可以指至少两个,第一控制信息指示的时频资源的数量为两个及两个以上。不同的时频资源可以占据带宽不同以及频域位置不同,可以理解的是,时频资源在时域上可以存在多个,可以将第一控制信息中指示的第一个时频资源记为第一时频资源。
步骤130、通过第一控制信息或第二控制信息指示多个非第一时频资源的波束配置信息。
其中,波束配置信息可以是配置资源波束的信息,可以是波束相关信息或者准共址相关信息。
具体的,可以使用第一控制信息或者第二控制信息指示上述的时频资源中的非第一时域资源的波束配置信息。
本申请实施例,通过发送第一控制信息和第二控制信息,通过第一控制信息指示多个时频资源的位置并将在时间上最早的时频资源记为第一时频资源,使用第一控制信息或第二控制信息指示多个非第一时频资源的波束配置信息,实现了时频资源的波束配置,可提高参考信号接收功率测量的准确性。
进一步的,在上述申请实施例的基础上,波束配置信息包括波束相关信息或准共址相关信息。
在本申请实施例中,波束配置信息可以包括波束相关信息或者准共址相关信息,其中,准共址可以包括:
非第一时频资源是否与所述第一时频资源准共址,是指非第一时频资源包含至少一个信道,是否与第一时频资源包含的至少一个信道之间准共址。例如,非第一时频资源包含物理边链路控制信道(Physical Sidelink Control Channel,PSCCH)和物理边链路共享信道(Physical Sidelink Shared Channel,PSSCH),第一时频资源包含PSCCH信道和PSSCH信道。满足以下任一条件,则称为非第一时频资源与所述第一时频资源准共址:
非第一时频资源包含PSCCH信道,与第一时频资源包含的PSCCH信道准共址;
非第一时频资源包含PSSCH信道,与第一时频资源包含的PSSCH信道准共址;
非第一时频资源包含的PSCCH信道和PSSCH信道准共址,第一时频资源包含的PSCCH信道和PSSCH信道准共址,非第一时频资源包含的PSCCH/PSSCH与第一时频资源包含的PSCCH/PSSCH准共址。
或者,非第一时频资源是否与所述第一时频资源准共址,是指非第一时频资源包含至少一个类型的DMRS,是否与第一时频资源包含的至少一个类型的DMRS准共址。例如,非第一时频资源包含PSCCH DMRS和PSSCH DMRS,第一时频资源包含PSCCH DMRS和PSSCH DMRS。满足以下任一条件,则称为非第一时频资源与所述第一时频资源准共址:
非第一时频资源包含的PSCCH DMRS,与第一时频资源包含的PSCCH DMRS准共址;
非第一时频资源包含的PSSCH DMRS,与第一时频资源包含的PSSCH DMRS准共址;
非第一时频资源包含的PSCCH DMRS和PSSCH DMRS准共址,第一时频资源包含的PSCCH DMRS和PSSCH DMRS准共址,非第一时频资源包含的PSCCH DMRS/PSSCH DMRS与第一时频资源包含的PSCCH DMRS/PSSCH DMRS准共址。
其中,波束相关信息可以包括判断波束是否发生变化的信息,其中,波束是否变化包括:
非第一时频资源相对于所述第一时频资源波束是否发生变化,是指非第一时频资源包含至少一个信道,与第一时频资源包含的至少一个信道,两者之间的波束是否改变。例如,非第一时频资源包含PSCCH信道和PSSCH信道,第一时频资源包含PSCCH信道和PSSCH信道。满足以下任一条件,则称为非第一时频资源相对于所述第一时频资源波束发生变化:
非第一时频资源包含的PSCCH信道,相对第一时频资源包含的PSCCH信道的波束发生变化;
非第一时频资源包含的PSSCH信道,相对第一时频资源包含的PSSCH信道的波束发生变化;
非第一时频资源包含的PSCCH信道和PSSCH信道的波束相同,第一时频资源包含的PSCCH信道和PSSCH信道的波束相同,非第一时频资源包含的PSCCH/PSSCH相对第一时频资源包含的PSCCH/PSSCH的波束发生变化。
或者,非第一时频资源相对于所述第一时频资源波束是否发生变化,是指非第一时频资源包含至少一个类型的DMRS,与第一时频资源包含的至少一个类型的DMRS,两者之间的波束是否改变。例如,非第一时频资源包含PSCCH DMRS和PSSCH DMRS,第一时频资源包含PSCCH DMRS和PSSCH DMRS。满足以下任一条件,则称为非第一时频资源相对于所述第一时频资源波束发生变化:
非第一时频资源包含的PSCCH DMRS,相对第一时频资源包含的PSCCH DMRS的波束发生变化;
非第一时频资源包含的PSSCH DMRS,相对第一时频资源包含的PSSCH DMRS的波束发生变化;
非第一时频资源包含的PSCCH DMRS和PSSCH DMRS的波束相同,第一时频资源包含的PSCCH DMRS和PSSCH DMRS的波束相同,非第一时频资源包含的PSCCH DMRS/PSSCH DMRS相对第一时频资源包含的PSCCH DMRS/PSSCH DMRS的波束发生变化。
进一步的,在上述申请实施例的基础上,非第一时频资源包括:各时频资源中的第二时频资源,其中,第二时频资源为各时频资源中在时间上第二最早的时频资源。
在本申请实施例中,非第一时频资源可以包括各时频资源中在时间上第二早的时频资源。
进一步的,在上述申请实施例的基础上,非第一时频资源包括:各时频资源中除第一时频资源外的所有时频资源。
在本申请实施例中,非第一时频资源可以包括各时频资源中除了时间上最早的时频资源外的其他所有的时频资源。
图2是本申请实施例提供的另一种信息指示方法的流程图,本申请实施例是在上述申请实施例基础上的具体化,参见图2,本申请实施例提供的方法具体包括如下步骤:
步骤210、发送第一控制信息和第二控制信息。
步骤220、通过第一控制信息指示多个时频资源的位置,其中,各时频资源不同,记各时频资源中在时间上最早的时频资源为第一时频资源。
步骤230、通过第一控制信息或第二控制信息指示非第一时频资源是否发生波束变化。
在本申请实施例中,可以通过第一控制信息或者第二控制信息指示各时频资源中非第一时频资源是否发生波束变化,其中,波束变化可以包括:
非第一时频资源相对于所述第一时频资源波束是否发生变化,是指非第一时频资源包含至少一个信道,与第一时频资源包含的至少一个信道,两者之间的波束是否改变。例如,非第一时频资源包含PSCCH信道和PSSCH信道,第一时频资源包含PSCCH信道和PSSCH信道。满足以下任一条件,则称为非第一时频资源相对于所述第一时频资源波束发生变化:
非第一时频资源包含的PSCCH信道,相对第一时频资源包含的PSCCH信道的波束发生变化;
非第一时频资源包含的PSSCH信道,相对第一时频资源包含的PSSCH信道的波束发生变化;
非第一时频资源包含的PSCCH信道和PSSCH信道的波束相同,第一时频资源包含的PSCCH信道和PSSCH信道的波束相同,非第一时频资源包含的PSCCH/PSSCH相对第一时频资源包含的PSCCH/PSSCH的波束发生变化。
或者,非第一时频资源相对于所述第一时频资源波束是否发生变化,是指非第一时频资源包含至少一个类型的DMRS,与第一时频资源包含的至少一个类型的DMRS,两者之间的波束是否改变。例如,非第一时频资源包含PSCCH DMRS和PSSCH DMRS,第一时频资源包含PSCCH DMRS和PSSCH DMRS。满足以下任一条件,则称为非第一时频资源相对于所述第一时频资源波束发生变化:
非第一时频资源包含的PSCCH DMRS,相对第一时频资源包含的PSCCH DMRS的波束发生变化;
非第一时频资源包含的PSSCH DMRS,相对第一时频资源包含的PSSCH DMRS的波束发生变化;
非第一时频资源包含的PSCCH DMRS和PSSCH DMRS的波束相同,第一时频资源包含的PSCCH DMRS和PSSCH DMRS的波束相同,非第一时频资源包含的PSCCH DMRS/PSSCH DMRS相对第一时频资源包含的PSCCH DMRS/PSSCH DMRS的波束发生变化。
进一步的,在上述申请实施例的基础上,波束变化为非第一时频资源相对于第一时频资源波束是否发生变化。
具体的,波束变化可以包括多个时频资源中非第一时频资源的波束与第一时频资源波束相异。
图3是本申请实施例提供的另一种信息指示方法的流程图,本申请实施例是在上述申请实施例基础上的具体化,参见图3,本申请实施例提供的方法具体包括如下步骤:
步骤310、发送第一控制信息和第二控制信息。
步骤320、通过第一控制信息指示多个时频资源的位置,其中,各时频资源不同,记各时频资源中在时间上最早的时频资源为第一时频资源。
步骤330、通过第一控制信息或第二控制信息指示非第一时频资源是否与第一时频资源准共址。
具体的,可以依据第一控制信息或第二控制信息指示多个时频资源中非第一时频资源是否与第一时频资源准共址,其中,准共址可以包括:
非第一时频资源是否与所述第一时频资源准共址,是指非第一时频资源包含至少一个信道,是否与第一时频资源包含的至少一个信道之间准共址。例如,非第一时频资源包含物理边链路控制信道(Physical Sidelink Control Channel,PSCCH)和物理边链路共享信道(Physical Sidelink Shared Channel,PSSCH),第一时频资源包含PSCCH信道和PSSCH信道。满足以下任一条件,则称为非第一时频资源与所述第一时频资源准共址:
非第一时频资源包含的PSCCH信道,与第一时频资源包含的PSCCH信道准共址;
非第一时频资源包含的PSSCH信道,与第一时频资源包含的PSSCH信道准共址;
非第一时频资源包含的PSCCH信道和PSSCH信道准共址,第一时频资源包含的PSCCH信道和PSSCH信道准共址,非第一时频资源包含的PSCCH/PSSCH与第一时频资源包含的PSCCH/PSSCH准共址。
或者,非第一时频资源是否与所述第一时频资源准共址,是指非第一时频资源包含至少一个类型的DMRS,是否与第 一时频资源包含的至少一个类型的DMRS准共址。例如,非第一时频资源包含PSCCH DMRS和PSSCH DMRS,第一时频资源包含PSCCH DMRS和PSSCH DMRS。满足以下任一条件,则称为非第一时频资源与所述第一时频资源准共址:
非第一时频资源包含的PSCCH DMRS,与第一时频资源包含的PSCCH DMRS准共址;
非第一时频资源包含的PSSCH DMRS,与第一时频资源包含的PSSCH DMRS准共址;
非第一时频资源包含的PSCCH DMRS和PSSCH DMRS准共址,第一时频资源包含的PSCCH DMRS和PSSCH DMRS准共址,非第一时频资源包含的PSCCH DMRS/PSSCH DMRS与第一时频资源包含的PSCCH DMRS/PSSCH DMRS准共址。
图4是本申请实施例提供的另一种信息指示方法的流程图,本申请实施例是在上述申请实施例基础上的具体化,参见图4,本申请实施例提供的方法具体包括如下步骤:
步骤410、发送第一控制信息和第二控制信息。
步骤420、通过第一控制信息指示多个时频资源的位置,其中,各时频资源不同,记各时频资源中在时间上最早的时频资源为第一时频资源。
步骤430、通过第一控制信息或第二控制信息指示非第一时频资源的波束编号。
具体的,可以使用第一控制信息或者第二控制信息指示非第一时频资源使用的波束的波束编号,其中,波束编号可以标识不同波束,不同的波束可以具有不同的方向。
图5是本申请实施例提供的另一种信息指示方法的流程图,本申请实施例是在上述申请实施例基础上的具体化,参见图45,本申请实施例提供的方法具体包括如下步骤:
步骤510、发送第一控制信息和第二控制信息。
步骤520、通过第一控制信息指示多个时频资源的位置,其中,各时频资源不同,记各时频资源中在时间上最早的时频资源为第一时频资源。
步骤530、通过第一控制信息或第二控制信息指示第一信道索引号,非第一时频资源与第一信道索引号对应的第一信道准共址。
在本申请实施例中,终端可以通过第一控制信息或第二控制信息向其他终端指示第一信道索引号,使得非第一时频资源与该第一信道索引号对应的第一信道准共址,其中,第一信道可以是位于第一控制信息以及第二控制信息之前的信道。
进一步的,在上述申请实施例的基础上,通过第一控制信息或所述第二控制信息指示第一信道索引号,非第一时频资源与第一信道索引号对应的第一信道准共址,包括:
通过第一控制信息或第二控制信息指示边链路同步信号块S-SSB索引号,非第一时频资源与S-SSB索引号对应的S-SSB信道准共址。
进一步的,在上述申请实施例的基础上,通过所述第一控制信息或所述第二控制信息指示第一信道索引号,所述非第一时频资源与所述第一信道索引号对应的第一信道准共址,包括:
通过第一控制信息或第二控制信息指示边链路信道状态信息参考信号SL-CSI-RS索引号,非第一时频资源与SL-CSI-RS索引号对应的SL-CSI-RS准共址。
进一步的,在上述申请实施例的基础上,通过所述第一控制信息或所述第二控制信息指示第一信道索引号,所述非第一时频资源与所述第一信道索引号对应的第一信道准共址,包括:
通过第一控制信息或第二控制信息指示PSCCH/PSSCH索引号,非第一时频资源与PSCCH/PSSCH索引号对应的PSCCH/PSSCH准共址。
在本申请实施例中,可以通过第一控制信息或者第二控制信息指示PSCCH索引号或者PSSCH索引号,使得多个时频资源中的非第一时频资源与PSCCH索引号或者PSSCH索引号各自对应的PSCCH/PSSCH准共址。
图6是本申请实施例提供的一种信息接收方法的流程图,本申请实施例可适用于边链路通信中波束指示的情况,该方法可以由终端设备来执行,该装置可以通过软件和/或硬件的方法实现,参见图6,本申请实施例提供的方法具体包括如下步骤:
步骤610、接收第一控制信息和第二控制信息。
具体的,终端接收其他终端发送的第一控制信息和第二控制信息。
步骤620、根据第一控制信息确定指示的多个时频资源的位置,其中,各时频资源不同,记各时频资源中在时间上最早的时频资源为第一时频资源。
在本申请实施例中,按照第一控制信息确定出指示的多个时频资源,并将时间上最早的时频资源记为第一时频资源。
步骤630、根据第一控制信息或第二控制信息确定指示的多个非第一时频资源的波束配置信息。
在本申请实施例中,终端接收到第一控制信息或者第二控制信息后,可以确定上述控制信息指示的多个非时频资源的波束配置信息,该波束配置信息可以包括波束相关信息或准共址相关信息。
本申请实施例,通过接收第一控制信息和第二控制信息,获取第一控制信息指示位置的多个时频资源,并记其中时间上最早的时频资源为第一时频资源,根据第一控制信息或者第二控制信息确定指示的多个非第一时频资源的波束配置信息,实现了时频资源的波束配置,可提高参考信号接收功率测量的准确性。
进一步的,在上述申请实施例的基础上,波束配置信息包括波束相关信息或准共址相关信息。
进一步的,在上述申请实施例的基础上,非第一时频资源包括:各时频资源中的第二时频资源,其中,第二时频资源为各时频资源中在时间上第二最早的时频资源。
进一步的,在上述申请实施例的基础上,非第一时频资源包括:各时频资源中除第一时频资源外的所有时频资源。
进一步的,在上述申请实施例的基础上,根据波束配置信息排除候选时频资源。
在本申请实施例中,可以根据指示的波束配置信息对候选时频资源进行排除,减少影响RSRP测量的时频资源,以提高通信质量。其中,候选时频资源可以是处于终端的资源选择窗内的一个或多个时频资源。
进一步的,在上述申请实施例的基础上,排除候选时频资源的条件至少包括:参考信号接收功率RSRP的测量值高于门限值。
具体的,可以将参考信号接收功率(Reference Signal Received Power,RSRP)的测量值高于门限值的候选时频资源排除。
进一步的,在上述申请实施例的基础上,RSRP测量值至少通过目标信道的解调参考信号DMRS的测量获得,其中,目标信道的索引号与第一控制信息指示的索引号相同。
具体的,RSRP测量值可以是按照第一控制信息指示的索引号对应的信道进行RSRP测量获得。
进一步的,在上述申请实施例的基础上,RSRP测量值至少通过目标信道的解调参考信号DMRS的测量获得,其中,目标信道的波束编号与第一控制信息指示的波束编号相同。
在本申请实施例中,RSRP测量值可以通过测量第一控制信息指示的波束编号对应的DMRS确定。
进一步的,在上述申请实施例的基础上,目标信道为S-SSB信道,索引号为S-SSB索引号,目标信道的DMRS包括物理边链路广播信道PSBCH DMRS。
具体的,RSRP测量值可以通过测量第一控制信息指示的PSBCH DMRS确定。
进一步的,在上述申请实施例的基础上,排除时频候选资源的条件至少包括以下之一:
RSRP测量值和RSRP补偿值之和高于门限值;
RSRP测量值和RSRP补偿值之差高于门限值。
具体的,可以将RSRP测量值和RSRP补偿值之和高于门限值的候选时频资源排除,或者,将RSRP测量值和RSRP补偿值之差高于门限值的候选时频资源排除。
进一步的,在上述申请实施例的基础上,RSRP补偿值预配置或者通过无线资源控制RRC信息配置。
在本申请实施例中,RSRP补偿值可以预先配置或者通过无线资源控制(Radio Resource Control,RRC)信息配置。
进一步的,在上述申请实施例的基础上,RSRP补偿值为第一测量RSRP和第二测量RSRP之差;
用于测量第一测量RSRP的解调参考信号DMRS,为第一时频资源包含的解调参考信号DMRS;
用于测量第二测量RSRP的解调参考信号DMRS,与所述非第一时频资源准共址。
进一步的,在上述申请实施例的基础上,排除时频候选资源的条件至少包括:RSRP高于门限值,其中,在满足第一条件的情况下,所述RSRP为RSRP测量值和RSRP补偿值之和,在不满足所述第一条件的情况下,所述RSRP为RSRP测量值。
具体的,可以将候选时频资源中RSRP高于门限值的时频资源排除,其中RSRP在第一条件下为RSRP测量值和RSRP补偿值之和,否则为RSRP测量值。
进一步的,在上述申请实施例的基础上,在满足第一条件的情况下,所述RSRP补偿值为非0值,在不满足第一条件的情况下,所述RSRP补偿值为0。
进一步的,在上述申请实施例的基础上,第一条件包括:接收的第一控制信息或第二控制信息指示为非第一时频资源发生波束变化。
进一步的,在上述申请实施例的基础上,第一条件包括:接收的第一控制信息或第二控制信息指示为非第一时频资源与第一时频资源无准共址关系。
图7是本申请实施例提供的一种信息指示方法的流程图,本申请实施例可适用于边链路通信中波束指示的情况,该方法可以由终端设备来执行,该装置可以通过软件和/或硬件的方法实现,参见图7,本申请实施例提供的方法具体包括如下步骤:
步骤710、通过第一时频资源发送第一控制信息。
其中,第一时频资源可以是用于发射第一控制信息的时频资源,第一时频资源可以是插入的时频资源,第一时频资源可以仅用于传输第一控制信息。
具体的,可以在第一时频资源上发射第一控制信息。
步骤720、通过第一控制信息指示至少一个第二时频资源,以及限制第二时频资源与第一时频资源之间准共址。
在本申请实施例中,通过第一控制信息指示至少一个第二时频资源,使得一个或多个第二时频资源与第一时频资源准共址。
本申请实施例,通过第一时频资源传输第一控制信息,根据第一控制信息指示至少一个第二时频资源,使得各第二时频资源与第一时频资源准共址,实现参考信号接收功率准确性的提高。
进一步的,在上述申请实施例的基础上,第一控制信息通过物理边链路控制信道PSCCH发送,其中,PSCCH占用固定数目的频域资源。
在本申请实施例中,第一控制信息由PSCCH发送,PSCCH由固定数目的频域资源组成。
进一步的,在上述申请实施例的基础上,发送第一控制信息的PSCCH占用的第一时频资源与各第二时频资源中第一个第二时频资源的时间间隔大于或等于时间门限值。
具体的,第一时频资源与第二时频资源之间的时间间隔大于或等于时间门限。
图8是本申请实施例提供的另一种信息指示方法的流程图,本申请实施例是在上述申请实施例基础上的具体化,参见图8,本申请实施例提供的方法具体包括如下步骤:
步骤810、通过第一时频资源内的第一部分时频资源发送第一控制信息。
具体的,在第一时频资源内的第一部分时频资源向其他终端发送第一控制信息。
步骤820、通过第一时频资源内的第二部分时频资源发送第二控制信息,其中,第一控制信息通过PSCCH发送,第二控制信息通过物理边链路共享信道PSSCH发送,PSCCH和PSSCH占用的频域资源数目固定。
具体的,在PSSCH上发送第二控制信息,发送第一控制信息的PSCCH与发送第二控制信息的PSSCH占用固定数目 的频域资源。
步骤830、通过第一控制信息指示至少一个第二时频资源,以及限制第二时频资源与第一时频资源之间准共址。
进一步的,在上述申请实施例的基础上,PSCCH和PSSCH占用的第一时频资源与第一个第二时频资源的时间间隔大于或等于时间门限值。
在本申请实施例中,发送第一控制信息的PSCCH与发送第二控制信息的PSSCH占用的第一时频资源与上述的至少一个第二时频资源中在时间上最早的第二时频资源之间的时间间隔大于或等于时间门限。
图9是本申请实施例提供的一种信息接收方法的流程图,本申请实施例可适用于边链路通信中波束指示的情况,该方法可以由终端设备来执行,该装置可以通过软件和/或硬件的方法实现,参见图9,本申请实施例提供的方法具体包括如下步骤:
步骤910、第一时频资源上接收第一控制信息。
具体的,终端可以接收其他终端通过第一时频资源发送的第一控制信息。
步骤920、确定第一控制信息指示的至少一个第二时频资源,其中,各第二时频资源与第一时频资源之间准共址。
在本申请实施例中,获取第一控制信息指示至少一个第二时频资源,并使得一个或多个第二时频资源与第一时频资源准共址。
本申请实施例,通过接收第一时频资源上的第一控制信息,并确定第一控制信息对应的至少一个第二时频资源,使得各第二时频资源与第一时频资源准共址,提高时频资源波束确定准确性,可以提高参考信号接收功率的准确性。
进一步的,在上述申请实施例的基础上,第一控制信息通过物理边链路控制信道PSCCH发送,其中,PSCCH占用固定数目的频域资源。
进一步的,在上述申请实施例的基础上,发送第一控制信息的PSCCH占用的第一时频资源与各第二时频资源中第一个第二时频资源的时间间隔大于或等于时间门限值。
进一步的,在上述申请实施例的基础上,还包括:接收第二控制信息,其中,第一控制信息通过PSCCH发送,第二控制信息通过物理边链路共享信道PSSCH发送,PSCCH和PSSCH占用的频域资源数目固定。
具体的,在PSSCH上接收第二控制信息,发送第一控制信息的PSCCH与发送第二控制信息的PSSCH占用固定数目的频域资源。
进一步的,在上述申请实施例的基础上,PSCCH和PSSCH占用的第一时频资源与各所述第二时频资源中第一个第二时频资源的时间间隔大于或等于时间门限值。
在一个示例性的实施方式中,以指示波束是否发生变化的信息指示为例,图10是本申请实施例提供的一种信息指示方法的示例图,第一终端发送第一控制信息和第二控制信息。第一控制信息中X个比特域,指示多个时频资源的位置,多个时频资源中的任意两个时频资源,时频位置不同。图10中,时频资源1包含物理边链路控制信道(Physical Sidelink Control Channel,PSCCH)和物理边链路共享信道(Physical Sidelink Shared Channel,PSSCH)。PSCCH信道用于承载第一控制信息,PSSCH信道用于承载第二控制信息和数据信息。图10中,时频资源1范围内的第一控制信息所指示的多个时频资源为时频资源1、时频资源2、时频资源3。第一控制信息所指示的多个时频资源中,时域最早的时频资源称为第一时频资源,其它时频资源称为非第一时频资源。
图10中,时频资源1对应的PSCCH和PSSCH信道,对应的发射波束为波束3。时频资源2和时频资源3对应的PSCCH和PSSCH信道,对应的发射波束为波束2。
图10中,第一终端通过时频资源1中的第二控制信息,指示非第一时频资源的波束是否发生改变。例如,第二控制信息包含多个比特,其中的一个比特用于指示非第一时频资源的波束是否发生改变,比特0表示非第一时频资源的波束未发生改变,比特1表示非第一时频资源的波束发生改变。这里的波束发生改变,是指非第一时频资源的发射波束与第一时频资源的发射波束为不同的发射波束。如果波束未发生改变,则意味着非第一时频资源的发射波束与第一时频资源的发射波束为相同的发射波束。
如图11所示,第二终端为UE3,对于第二终端,在时隙n触发资源选择,在资源选择窗[n+T 1,n+T 2]内选择资源,用于PSCCH和PSSCH的发送。其中,资源选择过程如下:
Step 1:在资源选择窗为[n+T 1,n+T 2]包含多个候选资源,排除被其他UE的第一控制信息指示的时频资源存在重叠,且RSRP大于RSRP门限的资源。
Step 2:通过step1中的资源排除后,第二终端在剩余候选资源中,随机选择一个或多个资源,用于发送第二终端的PSCCH和PSSCH。
本实施例中,
如果满足第一条件,则上述step1中的RSRP为测量RSRP和RSRP补偿值之和;
如果不满足第一条件,则上述step1中的RSRP为测量RSRP;
其中,第一条件是指:第二终端接收的第二控制信息指示非第一资源的波束发生改变。
非第一时频资源相对于第一时频资源波束是否发生变化,是指非第一时频资源包含多个信道,与第一时频资源包含的多个信道,两者之间的波束是否改变。例如,非第一时频资源包含PSCCH信道和PSSCH信道,第一时频资源包含PSCCH信道和PSSCH信道。满足以下任一条件,则称为非第一时频资源相对于所述第一时频资源波束发生变化:
非第一时频资源包含的PSCCH信道,相对第一时频资源包含的PSCCH信道的波束发生变化;
非第一时频资源包含的PSSCH信道,相对第一时频资源包含的PSSCH信道的波束发生变化;
非第一时频资源包含的PSCCH信道和PSSCH信道的波束相同,第一时频资源包含的PSCCH信道和PSSCH信道的波束相同,非第一时频资源包含的PSCCH/PSSCH相对第一时频资源包含的PSCCH/PSSCH的波束发生变化。
或者,非第一时频资源相对于所述第一时频资源波束是否发生变化,是指非第一时频资源包含多个类型的DMRS,与第一时频资源包含的多个类型的DMRS,两者之间的波束是否改变。例如,非第一时频资源包含PSCCH DMRS和PSSCH  DMRS,第一时频资源包含PSCCH DMRS和PSSCH DMRS。满足以下任一条件,则称为非第一时频资源相对于所述第一时频资源波束发生变化:
非第一时频资源包含的PSCCH DMRS,相对第一时频资源包含的PSCCH DMRS的波束发生变化;
非第一时频资源包含的PSSCH DMRS,相对第一时频资源包含的PSSCH DMRS的波束发生变化;
非第一时频资源包含的PSCCH DMRS和PSSCH DMRS的波束相同,第一时频资源包含的PSCCH DMRS和PSSCH DMRS的波束相同,非第一时频资源包含的PSCCH DMRS/PSSCH DMRS相对第一时频资源包含的PSCCH DMRS/PSSCH DMRS的波束发生变化。
另外,对于上述测量RSRP的获得方式,接下来进行举例说明。在图11中,如果时频资源3为时隙[n+T 1,n+T 2]中的1个候选资源,通过时频资源2中的PSCCH DMRS或PSSCH DMRS的测量,并且结合指示的在时频资源3上的波束信息获得时频资源3的测量RSRP。或者,通过时频资源1中的PSCCH DMRS或PSSCH DMRS的测量,并且结合指示的在时频资源3上的波束信息获得时频资源3的测量RSRP。例如,指示的在时频资源3上的波束信息与时频资源1上的波束不同,则确定RSRP补偿值为y,进而得到时频资源3的测量RSRP为时频资源1的测量RSRP加上y。
在一个示例性的实施方式中,以指示第一资源和非第一资源之间是否准共地址的信息指示为例,图12是本申请实施例提供的一种信息指示方法的示例图,参见图12,第一终端发送第一控制信息和第二控制信息。第一控制信息中X个比特域,指示多个时频资源的位置,多个时频资源中的任意两个时频资源,时域位置不同。图12中,时频资源1包含PSCCH信道和PSSCH信道。PSCCH信道用于承载第一控制信息,PSSCH信道用于承载第二控制信息和数据信息。图12中,时频资源1范围内的第一控制信息所指示的多个时频资源为时频资源1、时频资源2、时频资源3。第一控制信息所指示的多个时频资源中,时域最早的时频资源称为第一时频资源,其它时频资源称为非第一时频资源。
图12中,时频资源1对应的PSCCH和PSSCH信道,对应的发射波束为波束3。时频资源2和时频资源3对应的PSCCH和PSSCH信道,对应的发射波束为波束2。
图12中,第一终端通过时频资源1中的第二控制信息,指示非第一时频资源和第一时频资源是否准共址。例如,第二控制信息包含多个比特,其中的一个比特用于指示非第一时频资源是否与第一时频资源准共址,比特0表示非第一时频资源和第一时频资源之间不具有准共址关系,比特1表示非第一时频资源和第一时频资源之间准共址。当指示非第一时频资源和第一时频资源之间准共址,则非第一时频资源和第一时频资源使用相同的发射波束。当指示非第一时频资源和第一时频资源之间不具有准共址关系,则非第一时频资源和第一时频资源使用不同的发射波束。
图12中,时频资源1区域内的第二控制信息,指示非第一时频资源和第一时频资源之间不具有准共址关系。
参见图11,第二终端为UE3,对于第二终端,在时隙n触发资源选择,在资源选择窗[n+T 1,n+T 2]内选择资源,用于PSCCH和PSSCH的发送。其中,资源选择过程如下:
Step 1:在资源选择窗为[n+T 1,n+T 2]包含多个候选资源,排除被其他UE的第一控制信息指示的时频资源存在重叠,且RSRP大于RSRP门限的资源。
Step 2:通过step1中的资源排除后,第二终端在剩余候选资源中,随机选择一个或多个资源,用于发送第二终端的PSCCH和PSSCH。
本实施例中,
如果满足第一条件,则上述step1中的RSRP为测量RSRP和RSRP补偿值之和;
如果不满足第一条件,则上述step1中的RSRP为测量RSRP;
其中,第一条件是指:第二终端接收的第二控制信息指示非第一时频资源与第一时频资源之间无准共址关系;
另外,对于上述测量RSRP的获得方式,接下来进行举例说明。在图11中,如果时频资源3为时隙[n+T 1,n+T 2]中的1个候选资源,则该候选资源通过时频资源2中的PSCCH DMRS或PSSCH DMRS的测量,获得时频资源3的测量RSRP。或者,通过时频资源1中的PSCCH DMRS或PSSCH DMRS的测量,获得时频资源3的测量RSRP。
在一个示例性的实施方式中,以信息指示波束编号为例,图13是本申请实施例提供的一种信息指示方法的示例图,参见图13,第一终端在固定的时频资源位置发送N次S-SSB,且规定这N次SSB的波束编号分别为1~N。
如图13所示,第一终端发送第一控制信息和第二控制信息。第一控制信息中X个比特域,指示多个时频资源的位置,多个时频资源中的任意两个时频资源,时域位置不同。图13中,时频资源1包含PSCCH信道和PSSCH信道。PSCCH信道用于承载第一控制信息,PSSCH信道用于承载第二控制信息和数据信息。图13中,时频资源1范围内的第一控制信息所指示的多个时频资源为时频资源1、时频资源2、时频资源3。第一控制信息所指示的多个时频资源中,时域最早的时频资源称为第一时频资源,其它时频资源称为非第一时频资源。
图13中,时频资源1对应的PSCCH和PSSCH信道,对应的发射波束为波束3。时频资源2和时频资源3对应的PSCCH和PSSCH信道,对应的发射波束为波束2。
图13中,第一终端通过时频资源1中的第二控制信息,指示非第一时频资源的波束编号。例如,第二控制信息包含多个比特,其中的X=2个比特用于指示非第一时频资源的波束编号。
图13中,时频资源1区域内的第二控制信息,指示非第一时频资源的波束编号为2。
参见图11,第二终端为UE3,对于第二终端,在时隙n触发资源选择,在资源选择窗[n+T 1,n+T 2]内选择资源,用于PSCCH和PSSCH的发送。其中,资源选择过程如下:
Step 1:在资源选择窗为[n+T 1,n+T 2]包含多个候选资源,排除被其他UE的第一控制信息指示的时频资源存在重叠,且测量RSRP大于RSRP门限的资源。
Step 2:通过step1中的资源排除后,第二终端在剩余候选资源中,随机选择一个或多个资源,用于发送第二终端的PSCCH和PSSCH。
对于上述Step 1中的测量RSRP,是通过目标信道S-SSB的DMRS(PSBCH DMRS)的测量获得的,也可以是通过SL-CSI-RS,或PSCCH/PSSCH进行RSRP的测量。在图13中的S-SSB,PSCCH,PSSCH等信道为第一终端发送的。假设 图13中的时频资源2为第二终端的资源选择窗中的候选资源之一。
对于时频资源2这一候选资源,第二终端获得该候选资源的测量RSRP的过程如下:
第二终端通过接收第一终端发送的第一控制信息和第二控制信息,发现时频资源2被第一终端指示为占用,且第一终端的第二控制信息指示时频资源2和时频资源3的波束编号为2。第二终端测量第一终端发送的波束编号为2的S-SSB对应的PSBCH DMRS,通过该测量获得测量RSRP,该测量RSRP作为时频资源2的RSRP。
在一个示例性的实施方式中,以信息指示S-SSB索引为例,图14是本申请实施例提供的一种信息指示方法的示例图,第一终端在固定的时频资源位置发送N次S-SSB,通过S-SSB通知各个S-SSB对应的S-SSB索引,或者规定这N次S-SSB的S-SSB索引分别为1~N。
如图14所示,第一终端发送第一控制信息和第二控制信息。第一控制信息中X个比特域,指示多个时频资源的位置,多个时频资源中的任意两个时频资源,时域位置不同。图14中,时频资源1包含PSCCH信道和PSSCH信道。PSCCH信道用于承载第一控制信息,PSSCH信道用于承载第二控制信息和数据信息。图14中,时频资源1范围内的第一控制信息所指示的多个时频资源为时频资源1、时频资源2、时频资源3。第一控制信息所指示的多个时频资源中,时域最早的时频资源称为第一时频资源,其它时频资源称为非第一时频资源。
图14中,时频资源1对应的PSCCH和PSSCH信道,对应的发射波束为波束3。时频资源2和时频资源3对应的PSCCH和PSSCH信道,对应的发射波束为波束2。
图14中,第一终端通过时频资源1中的第二控制信息,指示非第一时频资源对应的S-SSB索引。例如,第二控制信息包含多个比特,其中的X=2个比特用于指示非第一时频资源的S-SSB索引。
图14中,时频资源1区域内的第二控制信息,指示非第一时频资源对应的S-SSB索引为2。
如图11所示,第二终端为UE3,对于第二终端,在时隙n触发资源选择,在资源选择窗[n+T 1,n+T 2]内选择资源,用于PSCCH和PSSCH的发送。其中,资源选择过程如下:
Step 1:在资源选择窗为[n+T 1,n+T 2]包含多个候选资源,排除被其他UE的第一控制信息指示的时频资源存在重叠,且测量RSRP大于RSRP门限的资源。
Step 2:通过step1中的资源排除后,第二终端在剩余候选资源中,随机选择一个或多个资源,用于发送第二终端的PSCCH和PSSCH。
对于上述Step 1中的测量RSRP,是通过目标信道S-SSB的DMRS(PSBCH DMRS)的测量获得的。在图14中的S-SSB,PSCCH,PSSCH等信道为第一终端发送的。假设图14中的时频资源2为第二终端的资源选择窗中的候选资源之一。
对于时频资源2这一候选资源,第二终端获得该候选资源的测量RSRP的过程如下:
第二终端通过接收第一终端发送的第一控制信息和第二控制信息,发现时频资源2被第一终端指示为占用,且第一终端的第二控制信息指示时频资源2和时频资源3与索引为2的S-SSB有QCL关系。第二终端通过与时频资源2有准共址关系的S-SSB的DMRS的测量(PSBCH DMRS测量)结果,作为时频资源2的测量RSRP。图14中,第一终端发送的索引为2的S-SSB与时频资源2有准共址关系,因此第二终端对索引为2的S-SSB的DMRS的测量结果,作为时频资源2的测量RSRP。
在一个示例性的实施方式中,以插入独立边链路控制信息进行指示为例,图15是本申请实施例提供的一种信息指示方法的示例图,优化前的方案参见图15,从图中可以看出,第一终端在时频资源1~时频资源3上进行控制信息和数据信息的发送。以及,时频资源1~时频资源3上,第一终端使用的发射波束分别为波束3,波束2,波束2。这种情况下,可以认为时频资源2和时频资源1之间无准共址关系。
对于第二终端测量时频资源2的RSRP的时候,是通过时频资源1上的PSCCH DMRS或PSSCH DMRS的测量,获得时频资源2的测量RSRP。由于时频资源1和时频资源2的发射波束不同,因此实际上时频资源1和时频资源2上的实际RSRP不同。从而,通过时频资源1的RSRP测量,推断出的时频资源2的RSRP并不准确。在这种测量不准确的情况下,第二终端无法准确的判断时频资源2上的真实干扰情况,基于不准确的干扰情况,决定是否使用时频资源2用于第二终端的数据和控制信息的发送,使得通信变得不可靠。
图16是本申请实施例提供的一种信息指示方法的示例图;针对图15的改进方法,参见图16,当第一终端的一个用于数据和信令发送的目标时频资源,无法保证与前一个用于发送数据和控制信息的时频资源之间相同发射波束或准共址时,则在该目标时频资源前面插入新的信道,且限制该新的信道和目标时频资源(或目标时频资源内包含的PSCCH和PSSCH)之间是准共址的。
从而,第二终端可以通过测量该新的信道区域的DMRS,获得目标时频资源的测量RSRP。由于上述新的信息和目标时频资源是准共址的,所以可以保证目标时频资源的测量RSRP是准确的。如图16所示,新的信道包括PSCCH和PSSCH,PSCCH和PSSCH对应的频域资源的数目是固定的,例如固定为1个子信道。
图17是本申请实施例提供的一种信息指示装置的结构示意图,可执行本申请任意实施例所提供的方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,具体包括:信息发送模块1001、信息指示模块1002和波束指示模块1003。
信息发送模块1001,用于发送第一控制信息和第二控制信息。
信息指示模块1002,用于通过所述第一控制信息指示多个时频资源的位置,其中,各所述时频资源不同,记各所述时频资源中在时间上最早的时频资源为第一时频资源。
波束指示模块1003,用于通过所述第一控制信息或所述第二控制信息指示多个非第一时频资源的波束配置信息。
本申请实施例,通过信息发送模块发送第一控制信息和第二控制信息,信息指示模块通过第一控制信息指示多个时频资源的位置并将在时间上最早的时频资源记为第一时频资源,波束指示模块使用第一控制信息或第二控制信息指示多个非第一时频资源的波束配置信息,实现了时频资源的波束配置,可提高参考信号接收功率测量的准确性。
进一步的,在上述申请实施例的基础上,所述装置中波束配置信息包括波束相关信息或准共址相关信息。
进一步的,在上述申请实施例的基础上,非第一时频资源包括:各所述时频资源中的第二时频资源,其中,所述第二时频资源为各所述时频资源中在时间上第二最早的时频资源。
进一步的,在上述申请实施例的基础上,非第一时频资源包括:各所述时频资源中除所述第一时频资源外的所有时频资源。
进一步的,在上述申请实施例的基础上,波束指示模块1003包括:
波束变化指示单元,用于通过所述第一控制信息或所述第二控制信息指示所述非第一时频资源是否发生波束变化。
进一步的,在上述申请实施例的基础上,波束指示模块1003包括:
准共址指示单元,用于通过所述第一控制信息或所述第二控制信息指示所述非第一时频资源是否与所述第一时频资源准共址。
进一步的,在上述申请实施例的基础上,波束指示模块1003包括:
波束编号指示单元,用于通过所述第一控制信息或所述第二控制信息指示所述非第一时频资源的波束编号。
进一步的,在上述申请实施例的基础上,波束变化为所述非第一时频资源相对于所述第一时频资源波束是否发生变化。
进一步的,在上述申请实施例的基础上,波束指示模块1003包括:
索引准共址指示单元,用于通过所述第一控制信息或所述第二控制信息指示第一信道索引号,所述非第一时频资源与所述第一信道索引号对应的第一信道准共址。
进一步的,在上述申请实施例的基础上,索引准共址指示单元具体用于:通过所述第一控制信息或所述第二控制信息指示边链路同步信号块S-SSB索引号,所述非第一时频资源与所述S-SSB索引号对应的S-SSB信道准共址。
进一步的,在上述申请实施例的基础上,索引准共址指示单元具体用于:通过所述第一控制信息或所述第二控制信息指示边链路信道状态信息参考信号SL-CSI-RS索引号,所述非第一时频资源与所述SL-CSI-RS索引号对应的SL-CSI-RS准共址。
进一步的,在上述申请实施例的基础上,索引准共址指示单元具体用于:通过所述第一控制信息或所述第二控制信息指示物理边链路控制信道PSCCH/物理边链路共享信道PSSCH索引号,所述非第一时频资源与所述PSCCH/PSSCH索引号对应的PSCCH/PSSCH准共址。
图18是本申请实施例提供的一种信息接收装置的结构示意图,可执行本申请任意实施例所提供的方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,具体包括:信息接收模块1101、位置确定模块1102和波束配置确定1103。
信息接收模块1101,用于接收第一控制信息和第二控制信息。
位置确定模块1102,用于根据所述第一控制信息确定指示的多个时频资源的位置,其中,各所述时频资源不同,记各所述时频资源中在时间上最早的时频资源为第一时频资源。
波束配置确定1103,用于根据所述第一控制信息或所述第二控制信息确定指示的多个非第一时频资源的波束配置信息。
进一步的,在上述申请实施例的基础上,波束配置信息包括波束相关信息或准共址相关信息。
进一步的,在上述申请实施例的基础上,非第一时频资源包括:各所述时频资源中的第二时频资源,其中,所述第二时频资源为各所述时频资源中在时间上第二最早的时频资源。
进一步的,在上述申请实施例的基础上,非第一时频资源包括:各所述时频资源中除所述第一时频资源外的所有时频资源。
进一步的,在上述申请实施例的基础上,装置还包括:资源排除模块,用于根据所述波束配置信息排除候选时频资源。
进一步的,在上述申请实施例的基础上,资源排除模块的排除候选时频资源的条件至少包括:参考信号接收功率RSRP的测量值高于门限值。
进一步的,在上述申请实施例的基础上,资源排除模块的RSRP测量值至少通过目标信道的解调参考信号DMRS的测量获得,其中,所述目标信道的索引号与所述第一控制信息指示的索引号相同。
进一步的,在上述申请实施例的基础上,资源排除模块的RSRP测量值至少通过目标信道的解调参考信号DMRS的测量获得,其中,所述目标信道的波束编号与所述第一控制信息指示的波束编号相同。
进一步的,在上述申请实施例的基础上,资源排除模块的目标信道为S-SSB信道,所述索引号为S-SSB索引号,所述目标信道的DMRS包括物理边链路广播信道PSBCH DMRS。
进一步的,在上述申请实施例的基础上,资源排除模块的排除时频候选资源的条件至少包括以下之一:
RSRP测量值和RSRP补偿值之和高于门限值;
RSRP测量值和RSRP补偿值之差高于门限值。
进一步的,在上述申请实施例的基础上,RSRP补偿值预配置或者通过无线资源控制RRC信息配置。
进一步的,在上述申请实施例的基础上,RSRP补偿值为第一测量RSRP和第二测量RSRP之差;
用于测量第一测量RSRP的解调参考信号DMRS,为第一时频资源包含的解调参考信号DMRS;
用于测量第二测量RSRP的解调参考信号DMRS,与所述非第一时频资源准共址。
进一步的,在上述申请实施例的基础上,资源排除模块的排除时频候选资源的条件至少包括:RSRP高于门限值,其中,在满足第一条件的情况下,所述RSRP为RSRP测量值和RSRP补偿值之和,在不满足所述第一条件的情况下,所述RSRP为RSRP测量值。
进一步的,在上述申请实施例的基础上,在满足第一条件的情况下,所述RSRP补偿值为非0值,在不满足第一条件的情况下,所述RSRP补偿值为0。
进一步的,在上述申请实施例的基础上,第一条件包括:
接收的所述第一控制信息或所述第二控制信息指示为所述非第一时频资源发生波束变化。
进一步的,在上述申请实施例的基础上,第一条件包括:
接收的所述第一控制信息或所述第二控制信息指示为所述非第一时频资源与所述第一时频资源无准共址关系。
图19是本申请实施例提供的一种信息指示装置的结构示意图,可执行本申请任意实施例所提供的方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,具体包括:信息发送模块1201和资源指示模块1202。
信息发送模块1201,用于通过第一时频资源发送第一控制信息。
资源指示模块1202,用于通过所述第一控制信息指示至少一个第二时频资源,以及限制第二时频资源与第一时频资源之间准共址。
进一步的,在上述申请实施例的基础上,第一控制信息通过物理边链路控制信道PSCCH发送,其中,所述PSCCH占用固定数目的频域资源。
进一步的,在上述申请实施例的基础上,发送所述第一控制信息的PSCCH占用的第一时频资源与各所述第二时频资源中第一个第二时频资源的时间间隔大于或等于时间门限值。
进一步的,在上述申请实施例的基础上,装置还包括:第二信息发送模块,用于发送第二控制信息,其中,所述第一控制信息通过PSCCH发送,所述第二控制信息通过物理边链路共享信道PSSCH发送,所述PSCCH和所述PSSCH占用的频域资源数目固定。
进一步的,在上述申请实施例的基础上,PSCCH和所述PSSCH占用的第一时频资源与各所述第二时频资源中第一个第二时频资源的时间间隔大于或等于时间门限值。
图20是本申请实施例提供的一种信息接收装置的结构示意图,可执行本申请任意实施例所提供的方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,具体包括:第一信息接收模块1301和信息指示模块1302。
第一信息接收模块1301,用于第一时频资源上接收第一控制信息。
信息指示模块1302,用于确定所述第一控制信息指示的至少一个第二时频资源,其中,各所述第二时频资源与第一时频资源之间准共址。
进一步的,在上述申请实施例的基础上,第一控制信息通过物理边链路控制信道PSCCH发送,其中,所述PSCCH占用固定数目的频域资源。
进一步的,在上述申请实施例的基础上,发送所述第一控制信息的PSCCH占用的第一时频资源与各所述第二时频资源中第一个第二时频资源的时间间隔大于或等于时间门限值。
进一步的,在上述申请实施例的基础上,装置还包括:第二信息接收模块,用于接收第二控制信息,其中,所述第一控制信息通过PSCCH发送,所述第二控制信息通过物理边链路共享信道PSSCH发送,所述PSCCH和所述PSSCH占用的频域资源数目固定。
进一步的,在上述申请实施例的基础上,PSCCH和所述PSSCH占用的第一时频资源与各所述第二时频资源中第一个第二时频资源的时间间隔大于或等于时间门限值。
图21是本申请实施例提供的一种电子设备的结构示意图,该电子设备包括处理器10、存储器11、输入装置12和输出装置13;电子设备中处理器10的数量可以是一个或多个,图21中以一个处理器10为例;电子设备中处理器10、存储器11、输入装置12和输出装置13可以通过总线或其他方式连接,图21中以通过总线连接为例。
存储器11作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的装置对应的模块(信息发送模块1001、信息指示模块1002和波束指示模块1003,或者,信息接收模块1101、位置确定模块1102和波束配置确定1103,又或者,信息发送模块1201和资源指示模块1202,又或者,第一信息接收模块1301和信息指示模块1302)。处理器10通过运行存储在存储器11中的软件程序、指令以及模块,从而执行电子设备的各种功能应用以及数据处理,即实现上述的方法。
存储器11可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器11可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器11可进一步包括相对于处理器10远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置12可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。输出装置13可包括显示屏等显示设备。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种信息指示方法,该方法包括:
发送第一控制信息和第二控制信息;
通过所述第一控制信息指示多个时频资源的位置,其中,各所述时频资源不同,记各所述时频资源中在时间上最早的时频资源为第一时频资源;
通过所述第一控制信息或所述第二控制信息指示多个非第一时频资源的波束配置信息。
或者,所述计算机可执行指令在由计算机处理器执行时用于执行一种信息接收方法,该方法包括:
接收第一控制信息和第二控制信息;
根据所述第一控制信息确定指示的多个时频资源的位置,其中,各所述时频资源不同,记各所述时频资源中在时间上最早的时频资源为第一时频资源;
根据所述第一控制信息或所述第二控制信息确定指示的多个非第一时频资源的波束配置信息。
又或者,所述计算机可执行指令在由计算机处理器执行时用于执行一种信息指示方法,该方法包括:
通过第一时频资源发送第一控制信息;
通过所述第一控制信息指示至少一个第二时频资源,以及限制第二时频资源与第一时频资源之间准共址。
或者,所述计算机可执行指令在由计算机处理器执行时用于执行一种信息接收方法,该方法包括:
第一时频资源上接收第一控制信息;
确定所述第一控制信息指示的至少一个第二时频资源,其中,各所述第二时频资源与第一时频资源之间准共址。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
值得注意的是,上述装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上参照附图说明了本申请的优选实施例,并非因此局限本申请的权利范围。本领域技术人员不脱离本申请的范围和实质内所作的任何修改、等同替换和改进,均应在本申请的权利范围之内。

Claims (40)

  1. 一种信息指示方法,应用于第一终端,所述方法包括:
    发送第一控制信息和第二控制信息;
    通过所述第一控制信息指示多个时频资源的位置,其中,所述多个时频资源不同,记所述多个时频资源中在时间上最早的时频资源为第一时频资源;
    通过所述第一控制信息或所述第二控制信息指示多个非第一时频资源的波束配置信息。
  2. 根据权利要求1所述的方法,其中,所述波束配置信息包括波束相关信息或准共址相关信息。
  3. 根据权利要求1所述方法,其中,所述非第一时频资源包括:
    所述多个时频资源中的第二时频资源,其中,所述第二时频资源为所述多个时频资源中在时间上第二最早的时频资源。
  4. 根据权利要求1所述方法,其中,所述非第一时频资源包括:
    所述多个时频资源中除所述第一时频资源外的所有时频资源。
  5. 根据权利要求2所述方法,其中,所述波束配置信息包括波束相关信息,所述通过所述第一控制信息或所述第二控制信息指示多个非第一时频资源的波束配置信息,包括:
    通过所述第一控制信息或所述第二控制信息指示所述非第一时频资源是否发生波束变化。
  6. 根据权利要求2所述方法,其中,所述波束配置信息包括准共址相关信息,所述通过所述第一控制信息或所述第二控制信息指示多个非第一时频资源的波束配置信息,包括:
    通过所述第一控制信息或所述第二控制信息指示所述非第一时频资源是否与所述第一时频资源准共址。
  7. 根据权利要求2所述方法,其中,所述波束配置信息包括波束相关信息,所述通过所述第一控制信息或所述第二控制信息指示多个非第一时频资源的波束配置信息,包括:
    通过所述第一控制信息或所述第二控制信息指示所述非第一时频资源的波束编号。
  8. 根据权利要求5所述方法,其中,所述波束变化为所述非第一时频资源相对于所述第一时频资源波束是否发生变化。
  9. 根据权利要求2所述方法,其中,所述波束配置信息包括准共址相关信息,所述通过所述第一控制信息或所述第二控制信息指示多个非第一时频资源的波束配置信息,包括:
    通过所述第一控制信息或所述第二控制信息指示第一信道索引号,所述非第一时频资源与所述第一信道索引号对应的第一信道准共址。
  10. 根据权利要求9所述方法,其中,所述通过所述第一控制信息或所述第二控制信息指示第一信道索引号,所述非第一时频资源与所述第一信道索引号对应的第一信道准共址,包括:
    通过所述第一控制信息或所述第二控制信息指示边链路同步信号块S-SSB索引号,所述非第一时频资源与所述S-SSB索引号对应的S-SSB信道准共址。
  11. 根据权利要求9所述方法,其中,所述通过所述第一控制信息或所述第二控制信息指示第一信道索引号,所述非第一时频资源与所述第一信道索引号对应的第一信道准共址,包括:
    通过所述第一控制信息或所述第二控制信息指示边链路信道状态信息参考信号SL-CSI-RS索引号,所述非第一时频资源与所述SL-CSI-RS索引号对应的SL-CSI-RS准共址。
  12. 根据权利要求9所述方法,其中,所述通过所述第一控制信息或所述第二控制信息指示第一信道索引号,所述非第一时频资源与所述第一信道索引号对应的第一信道准共址,包括:
    通过所述第一控制信息或所述第二控制信息指示物理边链路控制信道PSCCH/物理边链路共享信道PSSCH索引号,所述非第一时频资源与所述PSCCH/PSSCH索引号对应的PSCCH/PSSCH准共址。
  13. 一种信息接收方法,应用于第二终端,所述方法包括:
    接收第一控制信息和第二控制信息;
    根据所述第一控制信息确定指示的多个时频资源的位置,其中,所述多个时频资源不同,记所述多个时频资源中在时间上最早的时频资源为第一时频资源;
    根据所述第一控制信息或所述第二控制信息确定指示的多个非第一时频资源的波束配置信息。
  14. 根据权利要求13所述方法,其中,所述波束配置信息包括波束相关信息或准共址相关信息。
  15. 根据权利要求13所述方法,其中,所述非第一时频资源包括:
    所述多个时频资源中的第二时频资源,其中,所述第二时频资源为所述多个时频资源中在时间上第二最早的时频资源。
  16. 根据权利要求13所述方法,其中,所述非第一时频资源包括:
    所述多个时频资源中除所述第一时频资源外的所有时频资源。
  17. 根据权利要求13所述方法,还包括:
    根据所述波束配置信息排除候选时频资源。
  18. 根据权利要求17所述方法,其中,所述排除候选时频资源的条件至少包括:参考信号接收功率RSRP的测量值高于第一门限值。
  19. 根据权利要求18所述方法,其中,所述RSRP测量值至少通过目标信道的解调参考信号DMRS的测量获得,其中,所述目标信道的索引号与所述第一控制信息指示的索引号相同。
  20. 根据权利要求18所述方法,其中,所述RSRP测量值至少通过目标信道的解调参考信号DMRS的测量获得,其中,所述目标信道的波束编号与所述第一控制信息指示的波束编号相同。
  21. 根据权利要求19或20所述方法,其中,所述目标信道为S-SSB信道,所述索引号为S-SSB索引号,所述目标信道的DMRS包括物理边链路广播信道PSBCH DMRS。
  22. 根据权利要求17所述方法,其中,所述排除时频候选资源的条件至少包括以下之一:
    RSRP测量值和RSRP补偿值之和高于第二门限值;
    RSRP测量值和RSRP补偿值之差高于第三门限值。
  23. 根据权利要求22所述方法,其中,所述RSRP补偿值预配置或者通过无线资源控制RRC信息配置。
  24. 根据权利要求22所述方法,其中,所述RSRP补偿值为第一测量RSRP和第二测量RSRP之差;
    用于测量第一测量RSRP的解调参考信号DMRS为所述第一时频资源包含的解调参考信号DMRS;
    用于测量第二测量RSRP的解调参考信号DMRS与所述非第一时频资源准共址。
  25. 根据权利要求17所述方法,其中,所述排除时频候选资源的条件至少包括:RSRP高于第四门限值,其中,在满足第一条件的情况下,所述RSRP为RSRP测量值和RSRP补偿值之和;在不满足所述第一条件的情况下,所述RSRP为RSRP测量值。
  26. 根据权利要求22所述方法,其中,在满足第一条件的情况下,所述RSRP补偿值为非0值,在不满足第一条件的情况下,所述RSRP补偿值为0。
  27. 根据权利要求22或23所述方法,其中,所述第一条件包括:
    接收的所述第一控制信息或所述第二控制信息指示为所述非第一时频资源发生波束变化。
  28. 根据权利要求22或23所述方法,其中,所述第一条件包括:
    接收的所述第一控制信息或所述第二控制信息指示为所述非第一时频资源与所述第一时频资源无准共址关系。
  29. 一种信息指示方法,应用于第一终端,所述方法包括:
    通过第一时频资源发送第一控制信息;
    通过所述第一控制信息指示至少一个第二时频资源,以及限制第二时频资源与第一时频资源之间准共址。
  30. 根据权利要求29所述方法,其中,所述第一控制信息通过物理边链路控制信道PSCCH发送,其中,所述PSCCH占用固定数目的频域资源。
  31. 根据权利要求29或30所述方法,其中,发送所述第一控制信息的PSCCH占用的所述第一时频资源与所述至少一个第二时频资源中第一个第二时频资源的时间间隔大于或等于第一时间门限值。
  32. 根据权利要求29所述方法,还包括:
    发送第二控制信息,其中,所述第一控制信息通过PSCCH发送,所述第二控制信息通过物理边链路共享信道PSSCH发送,所述PSCCH和所述PSSCH占用的频域资源数目固定。
  33. 根据权利要求32所述方法,其中,所述PSCCH和所述PSSCH占用的所述第一时频资源与所述至少一个第二时频资源中第一个第二时频资源的时间间隔大于或等于第一时间门限值。
  34. 一种信息接收方法,应用于第二终端,所述方法包括:
    第一时频资源上接收第一控制信息;
    确定所述第一控制信息指示的至少一个第二时频资源,其中,所述至少一个第二时频资源与第一时频资源之间准共址。
  35. 根据权利要求34所述方法,其中,所述第一控制信息通过物理边链路控制信道PSCCH发送,其中,所述PSCCH占用固定数目的频域资源。
  36. 根据权利要求34或35所述方法,其中,发送所述第一控制信息的PSCCH占用的所述第一时频资源与所述至少一个第二时频资源中第一个第二时频资源的时间间隔大于或等于第二时间门限值。
  37. 根据权利要求34所述方法,还包括:
    接收第二控制信息,其中,所述第一控制信息通过PSCCH发送,所述第二控制信息通过物理边链路共享信道PSSCH发送,所述PSCCH和所述PSSCH占用的频域资源数目固定。
  38. 根据权利要求37所述方法,其中,所述PSCCH和所述PSSCH占用的所述第一时频资源与所述至少一个第二时频资源中第一个第二时频资源的时间间隔大于或等于第二时间门限值。
  39. 一种电子设备,包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-38中任一所述方法。
  40. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或多个程序,所述一个或多个程序可被一个或多个处理器执行,以实现如权利要求1-38任一所述方法。
PCT/CN2022/120317 2021-09-30 2022-09-21 信息指示、信息接收方法、电子设备和存储介质 WO2023051360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111165551.XA CN115942492A (zh) 2021-09-30 2021-09-30 信息指示、信息接收方法、电子设备和存储介质
CN202111165551.X 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023051360A1 true WO2023051360A1 (zh) 2023-04-06

Family

ID=85781295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120317 WO2023051360A1 (zh) 2021-09-30 2022-09-21 信息指示、信息接收方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN115942492A (zh)
WO (1) WO2023051360A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392120A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 信息指示方法及相关设备
CN111034067A (zh) * 2017-08-10 2020-04-17 株式会社Ntt都科摩 一种用于波束管理的参考信号发送与接收方法及装置
CN111294773A (zh) * 2018-12-10 2020-06-16 华为技术有限公司 一种参考信号的测量方法和终端设备
WO2021034050A1 (ko) * 2019-08-16 2021-02-25 엘지전자 주식회사 위치 참조 신호를 수신하는 방법 및 이를 위한 장치
WO2021101196A1 (ko) * 2019-11-22 2021-05-27 삼성전자 주식회사 무선 통신 시스템에서 사이드링크의 빔 운용을 위한 장치 및 방법
US20210227517A1 (en) * 2019-12-27 2021-07-22 Yunjung Yi Sidelink Downlink Control Information Configuration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392120A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 信息指示方法及相关设备
CN111034067A (zh) * 2017-08-10 2020-04-17 株式会社Ntt都科摩 一种用于波束管理的参考信号发送与接收方法及装置
CN111294773A (zh) * 2018-12-10 2020-06-16 华为技术有限公司 一种参考信号的测量方法和终端设备
WO2021034050A1 (ko) * 2019-08-16 2021-02-25 엘지전자 주식회사 위치 참조 신호를 수신하는 방법 및 이를 위한 장치
WO2021101196A1 (ko) * 2019-11-22 2021-05-27 삼성전자 주식회사 무선 통신 시스템에서 사이드링크의 빔 운용을 위한 장치 및 방법
US20210227517A1 (en) * 2019-12-27 2021-07-22 Yunjung Yi Sidelink Downlink Control Information Configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on RAN2 led objectives for NR positioning", 3GPP TSG-RAN WG1 MEETING #106-E, R1-2107664, 7 August 2021 (2021-08-07), XP052038551 *

Also Published As

Publication number Publication date
CN115942492A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
US10686574B2 (en) Methods and apparatus for indicating a radio resource to a receiver in a wireless communication system
US11751206B2 (en) Method and apparatus for sending and receiving downlink control information
US20200221467A1 (en) Method and apparatus for carrier aggregation in sidelink communication
EP3491875B1 (en) Data transmitting and receiving methods and apparatuses
WO2017075795A1 (zh) 无线资源管理测量的方法和装置
CN110139306B (zh) 发送测量报告的方法、通信装置和系统
US20150038135A1 (en) Methods and devices of interference channel measurement in radio network
WO2018137198A1 (zh) 通信方法、网络侧设备和终端设备
US20170150475A1 (en) Positioning method and apparatus and communication system
US20210112537A1 (en) Method for transmitting data in internet of vehicles, and terminal device
WO2020164151A1 (zh) 无线通信方法、终端设备和网络设备
US20160198355A1 (en) Signal Measurement Method, User Equipment and Base Station
US20200389910A1 (en) Scheduling-free transmission method and apparatus
JP2017516430A (ja) 基地局、ユーザ機器、リソース取得方法、及びシステム
WO2019029586A1 (zh) 通信方法和通信设备
CN113615279A (zh) 无线链路管理方法及相关设备
CN113170455A (zh) 下行信号传输的方法和设备
KR20230008018A (ko) 사운드 참조 신호 시간 번들링의 방법
JP7342970B2 (ja) Ssbに基づく測定方法及び装置
CN110351869B (zh) 用于测量信道状态信息的方法及装置
CN108809577B (zh) 发送信息的方法、接收信息的方法、网络设备和终端设备
CN103178937B (zh) 一种物理信道资源管理方法及基站
WO2023051360A1 (zh) 信息指示、信息接收方法、电子设备和存储介质
US10728803B2 (en) Adaptive and proactive feedback for power and performance optimization
WO2021056242A1 (en) Optimization for early data transmission (edt)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874747

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022874747

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022874747

Country of ref document: EP

Effective date: 20240328