WO2023051287A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023051287A1
WO2023051287A1 PCT/CN2022/119433 CN2022119433W WO2023051287A1 WO 2023051287 A1 WO2023051287 A1 WO 2023051287A1 CN 2022119433 W CN2022119433 W CN 2022119433W WO 2023051287 A1 WO2023051287 A1 WO 2023051287A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
user plane
functional network
plane functional
message
Prior art date
Application number
PCT/CN2022/119433
Other languages
English (en)
French (fr)
Inventor
庞学敏
夏渊
陈曦
贾丽欣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023051287A1 publication Critical patent/WO2023051287A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • the session management function network element needs to select the anchor user plane function network element according to the relevant information of the terminal device (such as the service identifier corresponding to the application program), and configure
  • the distribution rule for forwarding uplink packets to the anchor user plane functional network element has the session management function network element perception service, which makes the configuration complex, and the terminal device returns to the locality to access the DN, and there is a problem of traffic bypass.
  • Embodiments of the present application provide a communication method and device, which can simplify the process of accessing a DN by an application program of a terminal device, reduce traffic bypass, and improve user experience.
  • an embodiment of the present application provides a communication method, the method includes: a first user plane functional network element receives a service request message from a terminal device, where the service request message includes a second application domain name; A user plane functional network element sends the service request message to a second user plane functional network element, where the second user plane functional network element is an anchor user plane function of the second application server corresponding to the second application domain name A network element; the first user plane functional network element receives a service response message from the second user plane functional network element, and the service response message includes a second tunnel endpoint of the second user plane functional network element ID; the first user plane functional network element establishes an uplink tunnel from the first user plane functional network element to the second user plane functional network element according to the second tunnel endpoint identifier; the first user plane function
  • the network element generates a distribution rule, where the distribution rule includes that the packets whose destination Internet Protocol IP address is the second IP address corresponding to the second application domain name are transmitted through the uplink tunnel.
  • the user plane functional network element (the first user plane functional network element) of the access point of the terminal device constructs the anchor user plane functional network element (the second user plane functional network element) associated with the service identifier of the terminal device
  • the tunnel can host the application program near the access point of the terminal device, which can reduce traffic bypass and delay, and the terminal device can be regarded as a dynamic branch office.
  • the location movement of the terminal device will trigger the access point user Switching of surface function network elements triggers the update or re-establishment of tunnels, provides dynamic tunnel construction capabilities, and enables applications to access data networks nearby, making access to data networks more flexible and convenient.
  • the first user plane functional network element before sending the service request packet to the second user plane functional network element, it further includes: the first user plane functional network element adding the A first tunnel endpoint identifier of the first user plane functional network element.
  • the first tunnel endpoint identifier of the first user plane functional network element is added to the service request message, which is conducive to the rapid establishment of the downlink tunnel from the second user plane functional network element to the first user plane functional network element.
  • the method further includes: the first user plane functional network element receiving a first message from the session management functional network element, the first message including the second service identifier of the terminal device.
  • the first user plane functional network element acquires the information of the second user plane functional network element associated with the second service identifier and the second application domain name from the network warehouse functional network element.
  • the service identifier and application domain name associated with the user plane functional network element are stored in the network warehouse functional network element, so that the access plane functional network element of the terminal device can obtain the anchor user plane function associated with the service identifier of the terminal device
  • Network element information, fast tunnel establishment, and dynamic tunnel construction capabilities are provided, which can make application programs access data networks more flexible and convenient.
  • the method further includes: the first user plane functional network element sending a second message to the network warehouse functional network element, the second message including the first user plane functional network element association The first service identifier and the first application domain name of .
  • an embodiment of the present application provides a communication method, the method includes: the second user plane functional network element receives a service request message from the first user plane functional network element, wherein the service request message includes the first Two application domain names; the second user plane functional network element sends a service response message to the first user plane functional network element, and the service response message includes a second tunnel endpoint of the second user plane functional network element logo.
  • the service request message further includes a first tunnel endpoint identifier of the first user plane functional network element
  • the method further includes: the second user plane functional network element according to the The first tunnel endpoint identifier establishes a downlink tunnel from the second user plane functional network element to the first user plane functional network element.
  • the method further includes: the second user plane functional network element sending a third message to the network warehouse functional network element, where the third message includes the information associated with the second user plane functional network element.
  • the second service identifier and the second application domain name are included in the third message.
  • the method further includes: when the second service identifier and/or the second application domain name associated with the second user plane functional network element changes, the second user plane functional network element Sending a fourth message to the network warehouse function network element, where the fourth message includes the changed second service identifier and/or the second application domain name associated with the second user plane function network element.
  • an embodiment of the present application provides a communication method, the method includes: a first user plane functional network element receives a first message from a session management functional network element, and the first message includes a second service identifier of a terminal device
  • the first user plane functional network element acquires the second application domain name associated with the second service identifier and the second tunnel endpoint identifier of the second user plane functional network element from the network warehouse functional network element;
  • the first user plane The functional network element establishes an uplink tunnel from the first user plane functional network element to the second user plane functional network element according to the second tunnel endpoint identifier;
  • the first user plane functional network element generates an offload rule, and the The distribution rule includes that the packets whose destination Internet Protocol IP address is the second IP address corresponding to the second application domain name are transmitted through the uplink tunnel.
  • the user plane functional network element (the first user plane functional network element) of the access point of the terminal device constructs the anchor user plane functional network element (the second user plane functional network element) associated with the service identifier of the terminal device
  • the tunnel can host the application program near the access point of the terminal device, which can reduce traffic bypass and delay, and the terminal device can be regarded as a dynamic branch office.
  • the location movement of the terminal device will trigger the access point user Switching of surface function network elements triggers the update or re-establishment of tunnels, provides dynamic tunnel construction capabilities, and enables applications to access data networks nearby, making access to data networks more flexible and convenient.
  • the method further includes: the first user plane functional network element sending a second message to the network warehouse functional network element, the second message including the first user plane functional network element association The first service identifier, the first application domain name, and the first tunnel endpoint identifier of the first user plane functional network element.
  • the service identifier, application domain name, and tunnel endpoint identifier associated with the user plane functional network element are stored in the network warehouse functional network element, so that the access plane functional network element of the terminal device can obtain the anchor associated with the service identifier of the terminal device.
  • Point to the tunnel endpoint identifier of the user plane function network element quickly establish the tunnel, provide the dynamic tunnel construction capability, and make the application program access to the data network more flexible and convenient.
  • the method further includes: the first user plane functional network element receiving a service request message from the terminal device, where the service request message includes a second application domain name; the first A user plane functional network element adds the first tunnel endpoint identifier of the first user plane functional network element to the service request message; the first user plane functional network element sends the The above service request message.
  • the first tunnel endpoint identifier of the first user plane functional network element is added to the service request message, which is conducive to the rapid establishment of the downlink tunnel from the second user plane functional network element to the first user plane functional network element.
  • the embodiment of the present application provides a communication method, the method includes: the second user plane functional network element determines the associated second service identifier and the second application domain name; the second user plane functional network element sends a network warehouse The functional network element sends a third message, where the third message includes the second service identifier, the second application domain name, and the second tunnel endpoint identifier of the second user plane functional network element.
  • the method further includes: the second user plane functional network element receiving a service request packet from the first user plane functional network element, the service request packet including the first user The first tunnel endpoint identifier of the functional network element of the user plane; the second user plane functional network element establishes the downlink from the second user plane functional network element to the first user plane functional network element according to the first tunnel endpoint identifier tunnel.
  • the method further includes: when the second service identifier and/or the second application domain name associated with the second user plane functional network element changes, the second user plane functional network element Sending a fourth message to the network warehouse function network element, where the fourth message includes the changed second service identifier and/or the second application domain name associated with the second user plane function network element.
  • the embodiment of the present application provides a communication device, which has a method to realize the above-mentioned first aspect or any one of the possible design methods of the first aspect, or realize the above-mentioned third aspect or any one of the third aspect
  • the functions of the method in the possible designs may be realized by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules (or units) corresponding to the above functions, such as an interface unit and a processing unit.
  • the device may be a chip or an integrated circuit.
  • the device includes a memory and a processor, and the memory is used to store a program executed by the processor.
  • the program is executed by the processor, the device can perform any of the above-mentioned first aspect or the first aspect.
  • the device may be a first user plane functional network element.
  • the embodiment of the present application provides a communication device, which has a method in design to realize the above-mentioned second aspect or any possible design of the second aspect, or realize the above-mentioned fourth aspect or any of the fourth aspects
  • the functions of the method in the possible designs may be realized by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules (or units) corresponding to the above functions, such as an interface unit and a processing unit.
  • the device may be a chip or an integrated circuit.
  • the device includes a memory and a processor, and the memory is used to store a program executed by the processor.
  • the program is executed by the processor, the device can perform any of the above-mentioned second aspect or the second aspect.
  • the device may be a second user plane functional network element.
  • the embodiment of the present application provides a communication system, the communication system includes a first user plane functional network element and a second user plane functional network element, and the first user plane functional network element can implement the above first aspect Or the method in any possible design of the first aspect, the second user plane functional network element may execute the method in the above second aspect or any possible design of the second aspect; or the first The user plane functional network element may implement the third aspect or the method in any possible design of the third aspect, and the second user plane functional network element may implement the fourth aspect or any possible design of the fourth aspect method in the design.
  • the embodiments of the present application provide a computer-readable storage medium, in which computer programs or instructions are stored, and when the computer programs or instructions are executed, the above-mentioned first aspect or the first aspect can be realized
  • the method described in any possible design of the above-mentioned second aspect or the method described in any possible design of the second aspect, or realize any of the above-mentioned third aspect or the third aspect The method described in the possible designs, or the method described in the possible designs for realizing the fourth aspect or any of the fourth aspects.
  • the embodiment of the present application also provides a computer program product, including computer programs or instructions, when the computer programs or instructions are executed, it can realize the above-mentioned first aspect or any possible design of the first aspect.
  • the embodiment of the present application also provides a chip, the chip is coupled with the memory, and is used to read and execute the program or instruction stored in the memory to realize the above first aspect or any possibility of the first aspect
  • the method described in the design, or the method described in the second aspect or any possible design of the second aspect, or the third aspect or any possible design of the third aspect The method described above, or the method described in implementing the fourth aspect or any possible design of the fourth aspect.
  • FIG. 1 is a schematic diagram of a non-roaming scenario architecture in a 5G system provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a local offload roaming scenario architecture in a 5G system provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a home routing roaming scenario architecture in a 5G system provided by an embodiment of the present application
  • FIG. 4 is one of the schematic diagrams of the communication method provided by the embodiment of the present application.
  • FIG. 5 is one of the schematic diagrams of station deployment in the communication system provided by the embodiment of the present application.
  • FIG. 6 is the second schematic diagram of station deployment in the communication system provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of an interface between an NRF network element and a UPF network element provided by an embodiment of the present application.
  • FIG. 8 is the second schematic diagram of the communication method provided by the embodiment of the present application.
  • FIG. 9 is the third schematic diagram of site deployment in the communication system provided by the embodiment of the present application.
  • FIG. 10 is the fourth schematic diagram of station deployment in the communication system provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of a terminal device accessing an application server provided by an embodiment of the present application.
  • FIG. 12 is one of the schematic diagrams of the communication device provided by the embodiment of the present application.
  • FIG. 13 is the second schematic diagram of the communication device provided by the embodiment of the present application.
  • the technical solutions provided by the embodiments of the present application can be generally applied to 5G and other systems, and can include roaming scenarios and non-roaming scenarios. These scenarios are introduced respectively below.
  • the terminal device is taken as user equipment (user equipment, UE) as an example.
  • Figure 1 is a schematic diagram of a non-roaming scenario architecture in a 5G system.
  • the UE can communicate with the access and mobility management function (AMF) network element through the (R)AN, where the (R)AN communicates with the AMF network element through the N2 interface.
  • the UE can also directly communicate with the AMF network element through the N1 interface.
  • (R)AN can also communicate with user plane function (UPF) network elements through the N3 interface, UPF network elements can communicate with other UPF network elements through the N9 interface, and UPF network elements can also communicate with the DN through the N6 interface , and communicate with a session management function (session management function, SMF) network element through an N4 interface.
  • AMF access and mobility management function
  • SMF session management function
  • the AMF network element can also communicate with the SMF network element through the N11 interface, communicate with the authentication server function (authentication server function, AUSF) network element through the N12 interface, and communicate with the user data management (UDM) network element through the N8 interface , communicate with policy control function (PCF) network elements through N15 interface, communicate with network slice selection function (network slice selection function, NSSF) network elements through N22 interface, and communicate with network slice authentication and authorization functions (network slice selection function) through N58 interface slice-specific authentication and authorization function, NSSAAF) network element communication, and network slice admission control function (network slice admission control function, NSACF) network element communication through the N60 interface, SMF network elements can communicate with UDM network elements through the N10 interface , and communicate with PCF network elements through N7 interface, PCF network elements can communicate with application function (application function, AF) network elements through N5 interface, UDM network elements can communicate with AUSF network elements through N13 interface, and NSACF network elements through N59 interface meta communication.
  • PCF
  • FIG. 2 is a schematic diagram of a local breakout (LBO) roaming scenario architecture in a 5G system, that is, application messages only need to be transmitted when visiting a public land mobile network (visit public land mobile network, VPLMN) Schematic diagram of the scene architecture.
  • VPLMN represents the network where the UE is roaming
  • HPLMN home public land mobile network
  • the NSSF network element in VPLMN communicates with the AMF network element through the N22 interface
  • the AMF network element communicates with the UE through the N1 interface
  • the interface communicates with the vPCF network element, communicates with the AUSF network element in the HPLMN through the N12 interface, communicates with the NSSAAF network element in the HPLMN through the N58 interface, and communicates with the UDM network element in the HPLMN through the N8 interface, and the SMF network element through the N4 interface Communicate with UPF network elements, communicate with vPCF network elements through N7 interface, and communicate with UDM network elements in HPLMN through N10 interface, vPCF network elements communicate with AF network elements through N5 interface, and communicate with hPCF network elements in HPLMN through N24 interface
  • UE can communicate with (R)AN, (R)AN communicates with UPF network element through N3 interface, UPF network element communicates with DN through N6 interface, and communicates with other UPF network elements through N9 interface.
  • FIG. 3 is a schematic diagram of a home routed (HR) roaming scenario architecture in a 5G system, that is, a scenario where application messages need to be sent back to the HPLMN.
  • VPLMN represents the network where the UE is after roaming
  • HPLMN represents the network where the UE is before roaming.
  • the V-NSSF network element in the VPLMN communicates with the AMF network element through the N22 interface, and communicates with the H-NSSF network element in the HPLMN through the N31 interface.
  • the AMF network element communicates with the UE through the N1 interface, and communicates with the UE through the N2 interface.
  • R AN communication, communication with AUSF network element in PLMN through N12 interface, communication with V-PCF network element through N15 interface, communication with V-SMF network element through N11 interface, communication with NSSAAF network element in HPLMN through N58 interface Communication, and communicate with UDM network elements in HPLMN through N8 interface, V-SMF network elements communicate with UPF network elements in VPLMN through N4 interface, communicate with H-SMF network elements in HPLMN through N16 interface, H-SMF network The element communicates with the UPF network element in the HPLMN through the N4 interface, communicates with the H-PCF network element through the N7 interface, and communicates with the UDM network element through the N10 interface.
  • the UDM network element communicates with the AUSF network element through the N13 interface.
  • the H-PCF network element Through the N24 interface to communicate with the V-PCF network element, and through the N5 interface to communicate with the AF network element, the UE can communicate with the (R)AN, and the (R)AN communicates with the UPF network element in the VPLMN through the N3 interface, and the UPF in the VPLMN
  • the network element communicates with the UPF network element in the HPLMN through the N9 interface.
  • the UPF network element in the VPLMN can also communicate with other UPF network elements in the VPLMN through the N9 interface.
  • the UPF network element in the HPLMN also communicates with the data network (data network) through the N6 interface. network, DN) and communicate with other UPF network elements in the HPLMN through the N9 interface.
  • adding "V” or “v” before a certain network element has the same meaning, and both indicate that the network element belongs to the VPLMN.
  • a V-PCF network element or a vPCF network element indicates a PCF network element in the VPLMN.
  • adding "H” or “h” before a certain network element has the same meaning, indicating that the network element belongs to HPLMN, such as H-PCF network element or hPCF network element, it means PCF network element in HPLMN , that is to say, "V” or "H” is only a description of the network or location, and does not represent a limitation on functions.
  • the functions of the V-PCF network element and the H-PCF network element may be the same or different.
  • any one of the scenarios shown in FIG. 1 to the scenario shown in FIG. 3 may be used as the application scenario of the embodiment of the present application.
  • the above scenarios are just examples, and the embodiments of the present application are not limited to the above application scenarios.
  • Terminal equipment is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, etc.) and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control ), wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in a smart city (smart city), wireless terminals in a smart home (smart home), user equipment (user equipment, UE), etc.
  • a virtual reality virtual reality
  • AR augmented reality
  • industrial control industrial control
  • the above-mentioned terminal device can establish a connection with the operator network through an interface provided by the operator network (such as N1, etc.), and use services such as data and/or voice provided by the operator network.
  • the terminal device can also access the DN through the operator's network, and use the operator's service deployed on the DN, and/or the service provided by a third party.
  • the above-mentioned third party may be a service party other than the operator's network and the terminal device, and may provide other services such as data and/or voice for the terminal device.
  • the specific form of expression of the above-mentioned third party can be determined according to the actual application scenario, and is not limited here.
  • (R)AN refers to the access network (access network, AN) or wireless access network (radio access network, RAN), (R)AN is a subnetwork of the operator network, and is the link between service nodes and terminal equipment in the operator network. implementation system.
  • the terminal device To access the operator's network, the terminal device first passes through the (R)AN, and then can be connected to the service node of the operator's network through the (R)AN.
  • the (R)AN device is a device that provides a wireless communication function for the terminal device, and the (R)AN device is also called an access network device.
  • RAN equipment includes but not limited to: next-generation base station (g nodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B ( node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit , BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • next-generation base station g nodeB, gNB
  • evolved node B evolved node B
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • baseband unit baseB
  • the main functions of the UPF network element include: packet routing and transmission, packet detection, service usage reporting, quality of service (QoS) processing, legal interception, uplink packet detection, downlink packet storage, etc. Function.
  • QoS quality of service
  • AMF network element the main functions include: connection management, mobility management, registration management, access authentication and authorization, reachability management, security context management and other access and mobility related functions.
  • the main functions include: session management (such as session establishment, modification and release, including tunnel maintenance between UPF network element and AN), selection and control of UPF network element, service and session continuity (service and session continuity) , SSC) mode selection, roaming and other session-related functions.
  • session management such as session establishment, modification and release, including tunnel maintenance between UPF network element and AN
  • selection and control of UPF network element selection and control of UPF network element
  • service and session continuity service and session continuity
  • SSC mode selection
  • roaming other session-related functions.
  • PCF network elements include: unified policy formulation, provision of policy control, and policy-related functions such as obtaining contract information related to policy decisions from unified data repository (UDR) network elements.
  • UDR unified data repository
  • the main functions of the NSSF network element include: selecting a group of network slice instances for the terminal device, determining the allowed NSSAI, and determining the AMF network element set that can serve the terminal device, etc.
  • the main functions of the UDM network element include: supporting authentication credential processing in the 3GPP authentication and key agreement mechanism, user identity processing, access authorization, registration and mobility management, subscription management, short message management, etc.
  • the main functions of AUSF network elements include: interact with UDM network elements to obtain user information, and perform authentication-related functions, such as generating intermediate keys.
  • DN is a network outside the operator's network.
  • the operator's network can access multiple DNs, and various services can be deployed on the DN, which can provide data and/or voice services for terminal equipment.
  • DN is a private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices.
  • the control server of the sensor is deployed in the DN, and the control server can provide services for the sensor.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • DN is a company's internal office network, and the mobile phone or computer of the company's employees can be a terminal device, and the employee's mobile phone or computer can access information and data resources on the company's internal office network.
  • the above-mentioned network element or function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • a platform for example, a cloud platform.
  • the foregoing network element or function may be implemented by one device, or jointly implemented by multiple devices, or may be a functional module in one device, which is not specifically limited in this embodiment of the present application.
  • Application program also called (application, app) refers to a computer program for completing one or more specific tasks, such as video application program, drawing application program, WeChat, etc.
  • An application server refers to a server that provides services for an application. For example, when the application is WeChat, the application server corresponding to the application is a WeChat server for providing services for WeChat.
  • each UPF network element that can communicate with the DN through the N6 interface can be called an anchor UPF network element, and the anchor UPF network element of the application server can communicate with the DN through the N6 interface The UPF network element that communicates with the application server.
  • the tunnel endpoint identifier of the UPF network element can refer to the tunnel endpoint IP address of the UPF network element, and the UPF network element can be configured with multiple logical port Internet protocol (internet protocol, IP) addresses, and some of the IP addresses can be used as The IP address of the tunnel endpoint of the UPF network element.
  • IP Internet protocol
  • the site can refer to the area where the UPF network element can access the application program.
  • different areas such as different cities and different areas of the city, can include the application server of the application program in the site, and the corresponding multi-connection Incoming edge computing (multi-access edge computing, MEC) service gateway (MEC service gateway function, MSGW), UPF network elements connected to application servers, etc., can also include domain name system (domain name system, DNS) servers, etc., where the DNS server It is also possible to embed or integrate functions into UPF network elements.
  • the SMF network element needs to identify the service identifier corresponding to the application program, and determine the application
  • the anchor UPF network element of the application server corresponding to the program adds a distribution rule in the uplink classification (uplink classification, ULCL) to forward the uplink message to the anchor UPF network element.
  • uplink classification uplink classification, ULCL
  • the process is cumbersome, high complexity, and not flexible enough.
  • the packets sent by the terminal device need to be sent back from the visited place to the home place, which causes traffic detour and high delay.
  • edge computing is proposed and application servers are deployed in a decentralized manner
  • the terminal device when an application program of a terminal device is started and the terminal device is triggered to request to establish a protocol data unit (PDU) session, the terminal device sends a message to the SMF network element.
  • PDU session request message (such as PDU session establishment/modification request message)
  • the SMF network element will select an edge application service discovery function (edge application server discovery function, EASDF) network element after receiving the PDU session request message.
  • EASDF edge application server discovery function
  • the incoming UPF network element sends the DNS request message from the terminal device to the selected EASDF network element, and the EASDF network element will process the DNS request message, determine the edge application service (edge application server, EAS) information, and report to the SMF network element Send the determined edge EAS information, where the EAS information includes the IP address of the application server and other information, the SMF network element determines the anchor point UPF network element of the applied server according to the EAS information, adds the uplink message to the ULCL and forwards it to the above-mentioned anchor point UPF Traffic distribution rules for NEs.
  • this method also requires the SMF network element to perceive the service identifier corresponding to the application, select the anchor UPF network element, and configure the distribution rules.
  • the process of accessing the DN by the application program of the terminal device is still cumbersome, high complexity, and not flexible enough.
  • the user plane function network element in the embodiment of the present application can be the above-mentioned UPF network element, or a network element with the above-mentioned UPF network element function in a future communication system such as a 6G system
  • the session management function network element can be It is the above-mentioned SMF network element, or it can be a network element with the above-mentioned SMF network element function in a future communication system such as a 6G system.
  • the network warehouse function network element can be the above-mentioned NRF network element, or it can be a future communication system such as a 6G system with the above-mentioned
  • the network element with the NRF network element function, the similar policy control network element can be the above-mentioned PCF network element, etc., or it can be the network element with the above-mentioned PCF network element function in the future communication system such as the 6G system.
  • the user plane functional network element is a UPF network element
  • the session management functional network element is an SMF network element
  • the network warehouse functional network element is an NRF network element as examples.
  • words such as “first” and “second” may be used to distinguish technical features with the same or similar functions.
  • the words “first” and “second” do not limit the number and execution order, and the words “first” and “second” do not necessarily mean that they must be different.
  • Fig. 4 is a schematic diagram of a communication method provided by an embodiment of the present application, the method includes:
  • the first UPF network element receives a service request message from the terminal device, where the service request message includes the second application domain name.
  • the first UPF network element sends the service request message to the second UPF network element, and the second UPF network element receives the service request message.
  • the second UPF network element is an anchor UPF network element of the second application server corresponding to the second application domain name.
  • the first UPF network element receives a service response message from the second UPF network element, where the service response message includes a second tunnel endpoint identifier of the second UPF network element.
  • the service request message may be a domain name system (domain name system, DNS) message, and the service request message includes the application domain name of the application server corresponding to the application that triggers the service request message.
  • DNS domain name system
  • the terminal device triggers a service request message through the application program "short video”
  • the service request message includes the application domain name (that is, the URL) of the application server corresponding to the "short video”.
  • the UPF network element in the site can report the service identifier (such as the data network access identifier (DN) associated with the UPF network element to the NRF network element in the communication system. Access Identifier, DNAI)), application domain name and other information.
  • service identifier such as the data network access identifier (DN) associated with the UPF network element to the NRF network element in the communication system.
  • DN data network access identifier
  • DNAI Access Identifier
  • site 1 and site 2 are deployed in the communication system, and site 1 includes the first UPF network element, the first application server of the first application program, and the first MSGW, including the second UPF network element, the second application server of the second application program and the second MSGW in site 2, the first UPF network element of site 1 can access the first application server of the first application program, and the first application server of the site 2
  • the second UPF network element can access the second application server of the second application program.
  • the first UPF network element may send a second message to the NRF network element, where the second message includes the first service identifier and the first application program associated with site 1 where the first UPF network element is located.
  • An application domain name is an application domain name.
  • the second UPF network element may send a third message to the NRF network element, where the third message includes the second service identifier and the first application program associated with the site 2 where the second UPF network element is located.
  • the third message includes the second service identifier and the first application program associated with the site 2 where the second UPF network element is located.
  • the NRF network element After the NRF network element receives the second message from the first UPF network element and/or the third message from the second UPF network element, it can establish the association relationship between the information of the UPF network element and the corresponding service identifier and application domain name, for example, establish the first The association relationship between the information of a UPF network element (such as IP address and identification, etc.) and the first service identifier and the first application domain name, the association relationship between the information of the second UPF network element and the second service identifier and the second application domain name, etc.
  • a UPF network element such as IP address and identification, etc.
  • the second application program of the terminal device When the second application program of the terminal device is started, it will trigger the terminal device to request to establish a PDU session, and can send a PDU session request message to the SMF network element.
  • the SMF network element After the SMF network element receives the PDU session request message, it can obtain it through the PCF network element All service identifiers signed by the terminal equipment, such as the first service identifier of the first application program, the second service identifier of the second application program, etc., and an access point UPF network element can be assigned to the terminal equipment according to the location of the terminal equipment and other information , in the embodiment of this application, the access point UPF network element is taken as the first UPF network element as an example, and all service identifiers signed by the terminal device can be sent to the terminal device through the first message (such as N4 session establishment message, etc.) Assigned access point UPF network element.
  • the information of the access point UPF network element assigned to the terminal device, and the SMF network element may also be sent to
  • the first UPF network element can obtain the UPF information and application domain name associated with each service identifier from the NRF network element according to the service identifier subscribed by the terminal device, for example, it can obtain the information and the second UPF network element associated with the second service identifier. App domain name.
  • the terminal device After the terminal device knows that the UPF network element of the access point is the first UPF network element, it can send a service request message to the first UPF network element, and the service request message includes the second App domain name.
  • the first UPF network element After the first UPF network element receives the service request message, it can according to the second application domain name included in the service request message, and the information of the second UPF network element associated with the second service identifier obtained from the NRF network element (such as the second UPF network element) (2) the IP address of the UPF network element, the identification, etc.) and the information of the second application domain name, determine that the UPF network element associated with the second application domain name is the second UPF network element, that is, determine the second application server corresponding to the second application domain name
  • the anchor UPF network element is the second UPF network element.
  • the first UPF network element sends the service request packet to the second UPF network element.
  • the first UPF network element in order to facilitate the second UPF network element to establish a downlink tunnel from the second UPF network element to the first UPF network element, can also add the first UPF network element to the above service request message.
  • the element's first tunnel endpoint identifier As an example, after the second UPF network element receives the first tunnel endpoint identifier (such as the first tunnel endpoint IP address) of the first UPF network element, it can generate the second tunnel endpoint identifier according to the first UPF network element.
  • the route from the UPF network element to the first UPF network element is also the downlink tunnel from the second UPF network element to the first UPF network element, and the key value of the downlink tunnel can use the identification of the second UPF network element to the first UPF network
  • the identity of the element and the interface type of the tunnel are indicated.
  • the second UPF network element can search information such as the IP address of the second server corresponding to the second application domain name through the DNS server embedded in the second UPF network element, and generate information including the IP address of the second server, the second A service response message containing information such as the second tunnel endpoint identifier of the second UPF network element is sent to the first UPF network element.
  • the service response message may be a DNS response message.
  • the first UPF network element establishes an uplink tunnel from the first UPF network element to the second UPF network element according to the second tunnel endpoint identifier.
  • the first UPF network element generates a distribution rule, and the distribution rule includes that the packet whose destination IP address is the second IP address corresponding to the second application domain name is transmitted through the uplink tunnel.
  • the first UPF network element After the first UPF network element receives the service response message, it can generate a route from the first UPF network element to the second UPF network element according to the second tunnel endpoint identifier of the second UPF network element, and also generate a route from the first UPF network element to the second UPF network element.
  • the uplink tunnel of the UPF network element, and the key value of the uplink tunnel can be represented by the identifier of the first UPF network element to the identifier of the second UPF network element and the interface type of the tunnel.
  • the first UPF network element can also generate a distribution rule that includes the packet whose destination IP address is the second IP address corresponding to the second application domain name (that is, the second IP address of the second application server) through the above-mentioned uplink tunnel.
  • the offloading rules generated by the first UPF network element are not limited to including packets whose destination IP address is the second IP address corresponding to the second application domain name through the uplink tunnel, and may also include packets whose source IP address is the terminal device.
  • the IP address and the message whose destination IP address is the second IP address corresponding to the second application domain name are transmitted through the uplink tunnel, etc., as long as the destination IP address from the terminal device is the second IP address corresponding to the second application domain name through the second IP address. Uplink tunnel transmission from one UPF network element to the second UPF network element is sufficient.
  • the first UPF network element receives a message (such as a data message) from the terminal device, and after the destination IP address of the message matches the second IP address in the distribution rule, the first UPF network element sends the message from the terminal device Encapsulated in the application layer message and sent by the first UPF network element to the second UPF network element, wherein the encapsulated application layer message (such as general packet radio service (general packet radio service, GPRS) tunneling protocol user plane (GRPS) tunneling protocol user plane (GTP-U) message) may include the key value or identification information of the uplink tunnel.
  • GPRS general packet radio service
  • GRPS tunneling protocol user plane
  • GTP-U tunneling protocol user plane
  • the second UPF network element After receiving the application layer message from the first UPF network element, the second UPF network element decapsulates the application layer message to obtain the original message, and sends the original message to the second application server for processing. At the same time, for the message sent from the second application server to the terminal device, the second UPF network element can determine the corresponding downlink tunnel according to the uplink tunnel that receives the application layer message, encapsulate the message into an application layer message, and pass the downlink The tunnel is sent to the first UPF network element, and after the first UPF packet is decapsulated, the packet is sent to the terminal device.
  • the UPF network element in the site can report the service identification information and application domain name of the application program associated with the UPF network element to the NRF network element in the communication system.
  • site 3 includes a third UPF network element and a third application
  • the server and the third MSGW the third UPF network element of site 3 can access the third application server of the third application program.
  • the third UPF network element may send a fifth message to the NRF network element, where the fifth message includes the third service identifier and the third application program associated with the site 3 where the third UPF network element is located.
  • Three application domain names The NRF network element may also establish an association relationship between the information of the third UPF network element and the third service identifier and the third application domain name.
  • the NRF network element can also notify the first UPF after establishing the association relationship between the information of the third UPF network element, the third service identifier and the third application domain name Information about the third UPF and the third application domain name associated with the third service identifier of the network element.
  • FIG. 7 is a schematic diagram of an interface between an NRF network element and a UPF network element provided by an embodiment of the present application.
  • the UPF network element can be registered through management message (such as Nnrf_NFManagement_NFRegister message), send the service identifier and application domain name of its associated application to the NRF network element, and after the service identifier and/or application domain name of its associated application change, it can also pass the management update message (such as the Nnrf_NFManagement_NFUpdate message) sends the updated service identifier and/or application domain name to the NRF network element.
  • management message such as Nnrf_NFManagement_NFRegister message
  • the above-mentioned first UPF network element may send a second message (that is, a management registration message) to the NRF network element to associate the first service identifier of the first application program with the first application program associated with the site 1 where the first UPF network element is located.
  • the domain name is sent to the NRF network element
  • the second UPF network element can also send a third message (that is, a management registration message, which is different from the management registration message corresponding to the second message) to the NRF network element, and the site 2 where the second UPF network element is located
  • the associated second service identifier and second application domain name of the second application are sent to the NRF network element.
  • the second UPF network element may also pass a fourth message (that is, a management update message) Send the updated second service identifier and/or the second application domain name to the NRF network element.
  • a fourth message that is, a management update message
  • the UPF network element can also subscribe to the NRF network element for the information under the service identifier signed by the terminal device through the management status subscription message (such as the Nnrf_NFManagement_NFStatusSubscribe message). After the information changes, it can also be sent to the UPF network element through a status notification message (such as a Nnrf_NFManagement_NFStatusNotify message).
  • the management status subscription message such as the Nnrf_NFManagement_NFStatusSubscribe message.
  • a status notification message such as a Nnrf_NFManagement_NFStatusNotify message.
  • the above description is based on the DNS server embedded in the second UPF network element as an example.
  • the DNS server and the second UPF network element can also be deployed separately.
  • the site The UPF network element in the communication system can also report the IP address of the DNS server associated with the UPF network element to the NRF network element in the communication system.
  • the second UPF network element in site 2 can report the second IP address to the NRF network element in the communication system.
  • the IP address of the second DNS server associated with the UPF network element, the first UPF1 can also obtain the IP address of the second DNS server associated with the second UPF network element, and add the second DNS server IP address to the service message sent to the second UPF network element Second, the IP address of the DNS server, so that the second UPF network element sends the service request message to the corresponding DNS server for processing.
  • the above is mainly from the perspective of establishing a downlink tunnel between the first UPF network element and the second UPF through the service request message and the service response message to simplify the process of the application program accessing the DN.
  • the downlink tunnel between the first UPF network element and the second UPF can also be established independently of the service request message and the service response message, thereby further simplifying the process of the application program accessing the DN.
  • Fig. 8 is a schematic diagram of another communication method provided by the embodiment of the present application, the method includes:
  • the first UPF network element receives a first message from the SMF network element, where the first message includes the second service identifier of the terminal device.
  • the first UPF acquires the second application domain name associated with the second service identifier and the second tunnel endpoint identifier of the second UPF network element from the NRF network element.
  • the UPF network element in the site can report the service identification information (such as DNAI), application domain name, and tunnel associated with the UPF network element to the NRF network element in the communication system. Endpoint ID and other information.
  • site 1, site 2, and site 3 are deployed in the communication system, and site 1 includes the first UPF network element and the first application server of the first application program And the first MSGW, including the second UPF network element, the second application server of the second application program, and the second MSGW in site 2, including the third UPF network element in site 3, the first UPF network element of site 1 can After accessing the first application server of the first application program, the second UPF network element at site 2 can access the second application server of the second application program.
  • the first UPF network element may send a second message to the NRF network element, and the second message includes the first service identifier of the first application program associated with site 1 where the first UPF network element is located, the first An application domain name and a first tunnel endpoint identifier of the first UPF network element.
  • the second UPF network element may send a third message to the NRF network element, where the third message includes the second service identifier of the second application program associated with site 2 where the second UPF network element is located, the second The second application domain name and the second tunnel endpoint identifier of the second UPF network element.
  • the third UPF network element may send a fifth message to the NRF network element, where the fifth message includes the third tunnel endpoint identifier of the third UPF network element.
  • the NRF network element can establish the association relationship between the information of the UPF network element (such as IP address, identifier, etc.) and the corresponding tunnel endpoint identifier, as well as the service identifier and the application domain name.
  • the second application program of the terminal device When the second application program of the terminal device is started, it will trigger the terminal device to request to establish a PDU session, and can send a PDU session request message to the SMF network element.
  • the SMF network element After the SMF network element receives the PDU session request message, it can obtain it through the PCF network element All service identifiers signed by the terminal device, such as the first service identifier of the first application program, the second service identifier of the second application program, the third service identifier of the third application program, etc., can be The terminal device allocates an access point UPF network element.
  • the access point UPF network element is used as the first UPF network element as an example, and the terminal device can be assigned to the terminal device through the first message (such as N4 session establishment message, etc.).
  • All subscribed service identifiers are sent to the access point UPF network element allocated for the terminal equipment.
  • the information of the access point UPF network element assigned to the terminal device, and the SMF network element may also be sent to the terminal device through a PDU session response message or the like.
  • the first UPF network element can obtain from the NRF network element the tunnel endpoint identifier and application domain name information of the UPF network element associated with each service identifier except the first service identifier associated with the first UPF according to the service identifier subscribed by the terminal device. For example, the second tunnel endpoint identifier and the second application domain name of the second UPF network element associated with the second service identifier may be acquired.
  • the first UPF network element establishes an uplink tunnel from the first UPF network element to the second UPF network element according to the second tunnel endpoint identifier.
  • the first user plane functional network element generates a distribution rule, where the distribution rule includes that the packet whose destination IP address is the second IP address corresponding to the second application domain name is transmitted through the uplink tunnel.
  • the first UPF network element After the first UPF network element obtains the tunnel endpoint identifier and application domain name of the UPF network element associated with each service identifier except the first service identifier associated with the first UPF network element according to the service identifier signed by the terminal device, the first UPF can use the The acquired tunnel endpoint identifier of the UPF network element associated with each service identifier, and an uplink tunnel is established between the UPF network elements associated with each acquired service identifier.
  • a distribution rule to each established uplink tunnel can also be generated.
  • the first UPF network element can generate a route from the first UPF network element to the second UPF network element according to the second tunnel endpoint identifier of the second UPF network element, and also establish a route from the first UPF network element to the second UPF network element.
  • the uplink tunnel of the element, and the key value of the uplink tunnel can be represented by the identifier of the first UPF network element to the identifier of the second UPF network element and the interface type of the tunnel.
  • the first UPF network element can also generate a distribution rule that includes the packet whose destination IP address is the second IP address corresponding to the second application domain name (that is, the second IP address of the second application server) through the above-mentioned uplink tunnel.
  • the offloading rules generated by the first UPF network element are not limited to including packets whose destination IP address is the second IP address corresponding to the second application domain name through the uplink tunnel, and may also include packets whose source IP address is the terminal device.
  • the IP address and the message whose destination IP address is the second IP address corresponding to the second application domain name are transmitted through the uplink tunnel, etc., as long as the destination IP address from the terminal device is the second IP address corresponding to the second application domain name through the second IP address. Uplink tunnel transmission from one UPF network element to the second UPF network element is sufficient.
  • the downlink tunnel between the first UPF network element and each UPF network element that establishes an uplink tunnel can be carried through the first tunnel of the first UPF network element in the service request message (such as the first service request message). Endpoint ID to build.
  • the first UPF network element receives the service request message triggered by the second application program of the terminal device, and may add the first tunnel endpoint identifier of the first UPF network element to the service request message, and then send it to the first UPF network element.
  • Two UPF network elements Two UPF network elements.
  • the second UPF network element After the second UPF network element obtains the first tunnel endpoint identifier (such as the IP address of the first tunnel endpoint) of the first UPF network element from the service request message, it can The endpoint identifier generates the route from the second UPF network element to the first UPF network element, and also establishes the downlink tunnel from the second UPF network element to the first UPF network element, and can use the key value of the second UPF network element for the key value of the downlink tunnel.
  • the identifier of the first UPF network element and the interface type of the tunnel are indicated.
  • the first UPF network element receives a message (such as a data message) from the terminal device, and after the destination IP address of the message matches the second IP address in the distribution rule, the first UPF network element sends the message from the terminal device Encapsulated in the application layer message and sent by the first UPF network element to the second UPF network element, wherein the encapsulated application layer message may include the key value or identification information of the uplink tunnel.
  • a message such as a data message
  • the second UPF network element After receiving the application layer message from the first UPF network element, the second UPF network element decapsulates the application layer message to obtain the original message, and sends the original message to the second application server for processing. At the same time, for the message sent from the second application server to the terminal device, the second UPF network element can determine the corresponding downlink tunnel according to the uplink tunnel that receives the application layer message, encapsulate the message into an application layer message, and pass the downlink The tunnel is sent to the first UPF network element, and after the first UPF packet is decapsulated, the packet is sent to the terminal device.
  • the first UPF network element can also obtain the third tunnel endpoint identifier of the third UPF network element from the NRF network element, and establish an uplink to the third UPF network element Tunnel, on the basis of the above-mentioned Figure 9, the site deployment schematic diagram shown in Figure 10, when the third UPF network element goes online or deploys a new third application program, the third UPF network element can send the sixth The sixth message includes the third service identifier and the third application domain name of the third application associated with the site 3 where the third UPF network element is located.
  • the NRF network element may also update the association relationship between the third UPF network element and the third tunnel endpoint identifier to the association relationship between the third UPF network element and the third tunnel endpoint identifier, and the third service identifier and the third application domain name.
  • the NRF network element may also update the association relationship between the third UPF network element and the third tunnel endpoint identifier to the association relationship between the third UPF network element and the third tunnel endpoint identifier, and the third service identifier and the third application domain name.
  • the first UPF network element may also generate a message including a third IP address corresponding to a third application domain name whose destination IP address is transmitted through an uplink tunnel from the first UPF network element to the third UPF network element Triage rules.
  • the above-mentioned first UPF network element may send a second message (that is, a management registration message) to the NRF network element to associate the first service identifier and The first application domain name and the first tunnel endpoint identifier of the first UPF network element are sent to the NRF network element, and the second UPF network element may also send a third message (that is, a management registration message, corresponding to the second message) to the NRF network element.
  • the management registration message is different) and send the second service identifier and the second application domain name of the second application program associated with the site 2 where the second UPF network element is located and the second tunnel endpoint identifier of the first UPF network element to the NRF network element.
  • the third UPF network element can send the fifth message (that is, a management registration message corresponding to the second message and a management registration message corresponding to the third message) to the NRF network element to transfer the third message of the third UPF network element to the NRF network element.
  • the tunnel endpoint identifier is sent to the NRF network element.
  • the second UPF network element may also pass a fourth message (that is, a management update message) Send the updated second service identifier and/or the second application domain name to the NRF network element.
  • a fourth message that is, a management update message
  • the third UPF network element can send a sixth message (that is, a management update message, which is different from the management update message corresponding to the fourth message) to the NRF network element. ), sending the third service identifier and the third application domain name of the third application associated with the site 3 where the third UPF network element is located to the NRF network element.
  • a management update message that is, a management update message, which is different from the management update message corresponding to the fourth message
  • the UPF network element can also subscribe to the NRF network element for the information under the service ID signed by the terminal device through the management status subscription message. Send it to the UPF network element.
  • the NRF network element can also update the association relationship between the third UPF network element and the third tunnel endpoint identifier to the association relationship between the third UPF network element and the third tunnel endpoint identifier and the third service identifier and the third application domain name Afterwards, send the third service identifier associated with the third tunnel endpoint identifier and the third application domain name to the UPF network element through a status notification message.
  • the terminal device can be regarded as a dynamic branch office, and the position movement of the terminal device will trigger the UPF network element of the access point. Handover triggers the update or re-establishment of the tunnel, provides dynamic tunnel construction capabilities, and can access the application server nearby. Compared with the method of returning to the local access application server, it can make the application program access to the data network more flexible and convenient.
  • the first user plane functional network element (first UPF network element) and the second user plane functional network element (second UPF network element) include hardware corresponding to each function structure and/or software modules.
  • first UPF network element first UPF network element
  • second UPF network element second UPF network element
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • the communication device may be a first user plane functional network element, or a second user plane functional network element, or a Yuan chips, etc.
  • FIG. 12 and FIG. 13 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication devices may be used to implement the functions of the first user plane functional network element or the second user plane functional network element in the foregoing method embodiments, and thus also realize the beneficial effects of the foregoing method embodiments.
  • the communication device 1200 includes a processing unit 1210 and an interface unit 1220 .
  • the communication device 1200 is configured to implement the functions of the first user plane functional network element or the second user plane functional network element in the method embodiment shown in FIG. 4 or FIG. 8 .
  • the interface unit 1220 is configured to receive a service request message from a terminal device, where the service request message includes a second application domain name; and send the service request message to a second user plane functional network element, where the second The user plane functional network element is an anchor user plane functional network element of the second application server corresponding to the second application domain name; and receiving a service response message from the second user plane functional network element, the service response message
  • the text includes a second tunnel endpoint identifier of the second user plane functional network element; the processing unit 1210 is configured to establish a connection between the communication device and the second user plane functional network element according to the second tunnel endpoint identifier an uplink tunnel; and generating a distribution rule, where the distribution rule includes that a packet whose destination IP address is the second IP address corresponding to the second application domain name is transmitted through the uplink tunnel.
  • the processing unit 1210 is further configured to add the service request message to the service request message before the interface unit 1220 sends the service request message to the second user plane functional network element.
  • the first tunnel endpoint identifier of the communication device is further configured to add the service request message to the service request message before the interface unit 1220 sends the service request message to the second user plane functional network element.
  • the interface unit 1220 is further configured to receive a first message from a session management function network element, where the first message includes the second service identifier of the terminal device; The element obtains the information of the second user plane functional network element associated with the second service identifier and the second application domain name.
  • the interface unit 1220 is further configured to send a second message to the network warehouse function network element, where the second message includes the first service identifier and the first application domain name associated with the communication device.
  • the interface unit 1220 is configured to receive a service request message from a first user plane functional network element, wherein the service request message includes a second application domain name; the processing unit 1210 is configured to determine a service response message The service response message includes the second tunnel endpoint identifier of the communication device; the interface unit 1220 is further configured to send the service response message to the first user plane functional network element.
  • the service request message further includes a first tunnel endpoint identifier of the first user plane functional network element
  • the processing unit 1210 is further configured to Establishing a downlink tunnel from the communication device to the first user plane functional network element.
  • the interface unit 1220 is further configured to send a third message to the network warehouse function network element, where the third message includes the second service identifier and the second application domain name associated with the communication device.
  • the interface unit 1220 is further configured to, when the second service identifier and/or the second application domain name associated with the communication device change, the communication device sends The unit sends a fourth message, where the fourth message includes the changed second service identifier and/or the second application domain name associated with the communication device.
  • the interface unit 1220 is configured to receive a first message from a session management function network element, where the first message includes a second service identifier of the terminal device; and acquire information associated with the second service identifier from a network warehouse function network element The second application domain name and the second tunnel endpoint identifier of the second user plane functional network element; the processing unit 1210 is configured to establish the communication device to the second user plane functional network element according to the second tunnel endpoint identifier an uplink tunnel; and generate a distribution rule, where the distribution rule includes that a packet whose destination Internet Protocol IP address is the second IP address corresponding to the second application domain name is transmitted through the uplink tunnel.
  • the interface unit 1220 is further configured to send a second message to the network warehouse function network element, where the second message includes the first service identifier associated with the communication device, the first application domain name and The identifier of the first tunnel endpoint of the communication device.
  • the interface unit 1220 is further configured to receive a service request packet from the terminal device, where the service request packet includes the second application domain name; the processing unit 1210 is also configured to Add the first tunnel endpoint identifier of the communication device to the service request message; the interface unit 1220 is further configured to send the service request message to the second user plane function.
  • the processing unit 1210 is configured to determine the second service identifier and the second application domain name associated with the communication device; the interface unit 1220 is configured to send a third message to the network warehouse function network element, and the third message includes The second service identifier, the second application domain name, and the second tunnel endpoint identifier of the communication device.
  • the interface unit 1220 is configured to receive a service request packet from the first user plane functional network element, where the service request packet includes the first Tunnel endpoint identifier: the processing unit 1210 is configured to establish a downlink tunnel from the communication device to the first user plane functional network element according to the first tunnel endpoint identifier.
  • the interface unit 1220 is further configured to send a fourth message to the network warehouse function network element when the second service identifier and/or the second application domain name associated with the communication device changes,
  • the fourth message includes the changed second service identifier and/or the second application domain name associated with the communication device.
  • a communication device 1300 includes a processor 1310 and an interface circuit 1320 .
  • the processor 1310 and the interface circuit 1320 are coupled to each other.
  • the interface circuit 1320 may be a transceiver or an input/output interface.
  • the communication device 1300 may further include a memory 1330 for storing instructions executed by the processor 1310 or storing input data required by the processor 1310 to execute the instructions or storing data generated by the processor 1310 after executing the instructions.
  • the processor 1310 is used to implement the functions of the above processing unit 1210
  • the interface circuit 1320 is used to implement the functions of the above interface unit 1220 .
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Certainly, the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; and it may also be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • information, signal (signal), message (message), and channel (channel) can sometimes be used interchangeably.
  • signal signal
  • message messages
  • channel channel
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a “division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法及装置,能够简化终端设备的应用程序访问DN的过程,减少流量绕行,提升用户体验。该方法包括:第一用户面功能网元接收来自终端设备的业务请求报文,业务请求报文包括第二应用域名;第一用户面功能网元向第二用户面功能网元发送业务请求报文,第二用户面功能网元为第二应用域名对应的第二应用服务器的锚点用户面功能网元;第一用户面功能网元接收来自第二用户面功能网元的业务响应报文,业务响应报文包括第二用户面功能网元的第二隧道端点标识;第一用户面功能网元根据第二隧道端点标识建立第一用户面功能网元到第二用户面功能网元的上行隧道,并生成通过上行隧道传输报文的分流规则。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年09月28日提交中国专利局、申请号为202111142996.6、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前,在终端设备的应用程序需要访问数据网络(data network,DN)时,会话管理功能网元需要根据终端设备相关信息(如应用程序对应的业务标识)选择锚点用户面功能网元,配置上行报文转发到锚点用户面功能网元的分流规则,存在会话管理功能网元感知业务,配置复杂度高,以及终端设备从访问地回归属地去访问DN,存在流量绕行的问题。
发明内容
本申请实施例提供一种通信方法及装置,能够简化终端设备的应用程序访问DN的过程,减少流量绕行,提升用户体验。
第一方面,本申请实施例提供一种通信方法,该方法包括:第一用户面功能网元接收来自终端设备的业务请求报文,所述业务请求报文包括第二应用域名;所述第一用户面功能网元向第二用户面功能网元发送所述业务请求报文,所述第二用户面功能网元为所述第二应用域名对应的第二应用服务器的锚点用户面功能网元;所述第一用户面功能网元接收来自所述第二用户面功能网元的业务响应报文,所述业务响应报文包括所述第二用户面功能网元的第二隧道端点标识;所述第一用户面功能网元根据所述第二隧道端点标识建立所述第一用户面功能网元到所述第二用户面功能网元的上行隧道;所述第一用户面功能网元生成分流规则,所述分流规则包括目的网际互连协议IP地址为所述第二应用域名对应的第二IP地址的报文通过所述上行隧道传输。
采用上述方法,终端设备的接入点用户面功能网元(第一用户面功能网元)通过构建到终端设备业务标识相关联的锚点用户面功能网元(第二用户面功能网元)的隧道,可以将应用程序托管在终端设备的接入点附近,能够减少流量绕行,降低时延,并且终端设备可以看成一个动态的分支机构,终端设备的位置移动会触发接入点用户面功能网元的切换,进而触发隧道的更新或重新建立,提供了动态隧道构建能力,可以使得应用程序就近访问数据网络,使得访问数据网络更加灵活和便捷。
在一种可能的设计中,所述向第二用户面功能网元发送所述业务请求报文之前,还包括:所述第一用户面功能网元在所述业务请求报文中添加所述第一用户面功能网元的第一隧道端点标识。
上述设计中,在业务请求报文中添加第一用户面功能网元的第一隧道端点标识,有利于第二用户面功能网元到第一用户面功能网元的下行隧道的快速建立。
在一种可能的设计中,所述方法还包括:所述第一用户面功能网元接收来自会话管理功能网元的第一消息,所述第一消息包括所述终端设备的第二业务标识;所述第一用户面功能网元从网络仓库功能网元获取所述第二业务标识关联的所述第二用户面功能网元的信息和所述第二应用域名。
上述设计中,将用户面功能网元关联的业务标识和应用域名存储在网络仓库功能网元,便于终端设备的接入面功能网元能够获取终端设备的业务标识相关联的锚点用户面功能网元的信息,快速进行隧道建立,提供了动态隧道构建能力,可以使得应用程序访问数据网络更加灵活和便捷。
在一种可能的设计中,所述方法还包括:所述第一用户面功能网元向网络仓库功能网元发送第二消息,所述第二消息包括所述第一用户面功能网元关联的第一业务标识和第一应用域名。
第二方面,本申请实施例提供一种通信方法,该方法包括:第二用户面功能网元接收来自第一用户面功能网元的业务请求报文,其中,所述业务请求报文包括第二应用域名;所述第二用户面功能网元向所述第一用户面功能网元发送业务响应报文,所述业务响应报文包括所述第二用户面功能网元的第二隧道端点标识。
在一种可能的设计中,所述业务请求报文中还包括所述第一用户面功能网元的第一隧道端点标识,所述方法还包括:所述第二用户面功能网元根据所述第一隧道端点标识建立所述第二用户面功能网元到所述第一用户面功能网元的下行隧道。
在一种可能的设计中,所述方法还包括:所述第二用户面功能网元向网络仓库功能网元发送第三消息,所述第三消息包括所述第二用户面功能网元关联的第二业务标识和第二应用域名。
在一种可能的设计中,所述方法还包括:当所述第二用户面功能网元关联的第二业务标识和/或第二应用域名发生变化时,所述第二用户面功能网元向所述网络仓库功能网元发送第四消息,所述第四消息包括所述第二用户面功能网元关联的变化后的第二业务标识和/或第二应用域名。
上述第二方面中任一方面中的任一可能设计所能达到的技术效果请参照上述第一方面中相应设计所能达到的技术效果,这里不再重复赘述。
第三方面,本申请实施例提供一种通信方法,该方法包括:第一用户面功能网元接收来自会话管理功能网元的第一消息,所述第一消息包括终端设备的第二业务标识;所述第一用户面功能网元从网络仓库功能网元获取所述第二业务标识关联的第二应用域名和第二户面功能网元的第二隧道端点标识;所述第一用户面功能网元根据所述第二隧道端点标识建立所述第一用户面功能网元到所述第二用户面功能网元的上行隧道;所述第一用户面功能网元生成分流规则,所述分流规则包括目的网际互连协议IP地址为所述第二应用域名对应的第二IP地址的报文通过所述上行隧道传输。
采用上述方法,终端设备的接入点用户面功能网元(第一用户面功能网元)通过构建到终端设备业务标识相关联的锚点用户面功能网元(第二用户面功能网元)的隧道,可以将应用程序托管在终端设备的接入点附近,能够减少流量绕行,降低时延,并且终端设备可以看成一个动态的分支机构,终端设备的位置移动会触发接入点用户面功能网元的切换,进而触发隧道的更新或重新建立,提供了动态隧道构建能力,可以使得应用程序就近访问数据网络,使得访问数据网络更加灵活和便捷。
在一种可能的设计中,所述方法还包括:所述第一用户面功能网元向网络仓库功能网元发送第二消息,所述第二消息包括所述第一用户面功能网元关联的第一业务标识、第一应用域名和所述第一用户面功能网元的第一隧道端点标识。
上述设计中,将用户面功能网元关联的业务标识和应用域名和隧道端点标识存储在网络仓库功能网元,便于终端设备的接入面功能网元能够获取终端设备的业务标识相关联的锚点用户面功能网元的隧道端点标识,快速进行隧道建立,提供了动态隧道构建能力,可以使得应用程序访问数据网络更加灵活和便捷。
在一种可能的设计中,所述方法还包括:所述第一用户面功能网元接收来自所述终端设备的业务请求报文,所述业务请求报文包括第二应用域名;所述第一用户面功能网元在所述业务请求报文中添加所述第一用户面功能网元的第一隧道端点标识;所述第一用户面功能网元向所述第二用户面功能发送所述业务请求报文。
上述设计中,在业务请求报文中添加第一用户面功能网元的第一隧道端点标识,有利于第二用户面功能网元到第一用户面功能网元的下行隧道的快速建立。
第四方面,本申请实施例提供一种通信方法,该方法包括:第二用户面功能网元确定关联的第二业务标识和第二应用域名;所述第二用户面功能网元向网络仓库功能网元发送第三消息,所述第三消息包括所述第二业务标识、所述第二应用域名和所述第二用户面功能网元的第二隧道端点标识。
在一种可能的设计中,所述方法还包括:所述第二用户面功能网元接收来自第一用户面功能网元的业务请求报文,所述业务请求报文包括所述第一用户面功能网元的第一隧道端点标识;所述第二用户面功能网元根据所述第一隧道端点标识建立所述第二用户面功能网元到所述第一用户面功能网元的下行隧道。
在一种可能的设计中,所述方法还包括:当所述第二用户面功能网元关联的第二业务标识和/或第二应用域名发生变化时,所述第二用户面功能网元向网络仓库功能网元发送第四消息,所述第四消息包括所述第二用户面功能网元关联的变化后的第二业务标识和/或第二应用域名。
上述第四方面中任一方面中的任一可能设计所能达到的技术效果请参照上述第三方面中相应设计所能达到的技术效果,这里不再重复赘述。
第五方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面或者第一方面的任一种可能的设计中方法,或实现上述第三方面或者第三方面的任一种可能的设计中方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块(或单元),比如包括接口单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序,当程序被处理器执行时,所述装置可以执行上述第一方面或者第一方面的任一种可能的设计中的方法,或执行上述第三方面或者第三方面的任一种可能的设计中的方法。
在一个可能的设计中,该装置可以为第一用户面功能网元。
第六方面,本申请实施例提供一种通信装置,该装置具有实现上述第二方面或者第二方面的任一种可能的设计中方法,或实现上述第四方面或者第四方面的任一种可能的设计中方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述 硬件或软件包括一个或多个与上述功能相对应的模块(或单元),比如包括接口单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序,当程序被处理器执行时,所述装置可以执行上述第二方面或者第二方面的任一种可能的设计中的方法,或执行上述第四方面或者第四方面的任一种可能的设计中的方法。
在一个可能的设计中,该装置可以为第二用户面功能网元。
第七方面,本申请实施例提供一种通信系统,所述通信系统包括第一用户面功能网元和第二用户面功能网元,所述第一用户面功能网元可以执行上述第一方面或者第一方面的任一种可能的设计中的方法,所述第二用户面功能网元可以执行上述第二方面或者第二方面的任一种可能的设计中的方法;或所述第一用户面功能网元可以执行上述第三方面或者第三方面的任一种可能的设计中的方法,所述第二用户面功能网元可以执行上述第四面或者第四方面的任一种可能的设计中的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中所述的方法,或实现上述第二方面或者第二方面的任一种可能的设计中所述的方法,或实现上述第三方面或者第三方面的任一种可能的设计中所述的方法,或实现上述第四方面或者第四方面的任一种可能的设计中所述的方法。
第九方面,本申请实施例还提供一种计算机程序产品,包括计算机程序或指令,当计算机程序或指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中所述的方法,或实现上述第二方面或者第二方面的任一种可能的设计中所述的方法,或实现上述第三方面或者第三方面的任一种可能的设计中所述的方法,或实现上述第四方面或者第四方面的任一种可能的设计中所述的方法。
第十方面,本申请实施例还提供一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序或指令实现上述第一方面或者第一方面的任一种可能的设计中所述的方法,或实现上述第二方面或者第二方面的任一种可能的设计中所述的方法,或实现上述第三方面或者第三方面的任一种可能的设计中所述的方法,或实现上述第四方面或者第四方面的任一种可能的设计中所述的方法。
附图说明
图1为本申请实施例提供的5G系统中非漫游场景架构示意图;
图2为本申请实施例提供的5G系统中本地分流漫游场景架构示意图;
图3为本申请实施例提供的5G系统中归属路由漫游场景架构示意图;
图4为本申请实施例提供的通信方法示意图之一;
图5为本申请实施例提供的通信系统中站点部署示意图之一;
图6为本申请实施例提供的通信系统中站点部署示意图之二;
图7为本申请实施例提供的NRF网元和UPF网元间接口示意图;
图8为本申请实施例提供的通信方法示意图之二;
图9为本申请实施例提供的通信系统中站点部署示意图之三;
图10为本申请实施例提供的通信系统中站点部署示意图之四;
图11为本申请实施例提供的终端设备访问应用服务器示意图;
图12为本申请实施例提供的通信装置示意图之一;
图13为本申请实施例提供的通信装置示意图之二。
具体实施方式
本申请实施例提供的技术方案可以普遍适用于5G等系统,可以包含漫游场景和非漫游场景。下面分别介绍这几种场景,在下面的场景介绍中,以终端设备为用户设备(user equipment,UE)为例。
请参考图1,为5G系统中一种非漫游场景架构示意图。图1中,UE可通过(R)AN与接入和移动性管理功能(access and mobility management function,AMF)网元通信,其中(R)AN通过N2接口与AMF网元通信。另外UE也可通过N1接口直接与AMF网元通信。另外(R)AN还可通过N3接口与用户面功能(user plane function,UPF)网元通信,UPF网元可通过N9接口与其他的UPF网元通信,UPF网元还通过N6接口与DN通信,以及通过N4接口与会话管理功能(session management function,SMF)网元通信。AMF网元还可通过N11接口与SMF网元通信、通过N12接口与鉴权服务功能(authentication server function,AUSF)网元通信、通过N8接口与用户数据管理(user data management,UDM)网元通信、通过N15接口与策略控制功能(policy control function,PCF)网元通信、通过N22接口与网络切片选择功能(network slice selection function,NSSF)网元通信、通过N58接口与网络切片认证授权功能(network slice-specific authentication and authorization function,NSSAAF)网元通信、以及通过N60接口与网络切片准入控制功能(network slice admission control function,NSACF)网元通信,SMF网元可通过N10接口与UDM网元通信,以及通过N7接口与PCF网元通信,PCF网元可通过N5接口与应用功能(application function,AF)网元通信,UDM网元可通过N13接口与AUSF网元通信、通过N59接口与NSACF网元通信。
请参考图2,为5G系统中一种本地分流(local breakout,LBO)漫游场景架构示意图,即应用程序的报文只需要在访问公共陆地移动网络(visit public land mobile network,VPLMN)进行传输的场景架构示意图。图2中,VPLMN表示UE漫游之后所在的网络,归属公共陆地移动网络(home public land mobile network,HPLMN)表示UE漫游之前所在的网络。图2中,VPLMN中的NSSF网元通过N22接口与AMF网元通信,AMF网元通过N1接口与UE通信、通过N2接口与(R)AN通信、通过N11接口与SMF网元通信、通过N15接口与vPCF网元通信、通过N12接口与HPLMN中的AUSF网元通信、通过N58接口与HPLMN中的NSSAAF网元通信、以及通过N8接口与HPLMN中的UDM网元通信,SMF网元通过N4接口与UPF网元通信、通过N7接口与vPCF网元通信、以及通过N10接口与HPLMN中的UDM网元通信,vPCF网元通过N5接口与AF网元通信以及通过N24接口与HPLMN中的hPCF网元通信,UE能够与(R)AN通信,(R)AN通过N3接口与UPF网元通信,UPF网元通过N6接口与DN通信,通过N9接口与其他的UPF网元通信。
请参考图3,为5G系统中一种归属路由(home routed,HR)漫游场景架构示意图,即应用程序的报文需要传回HPLMN的场景。图3中,VPLMN表示UE漫游之后所在的网络,HPLMN表示UE漫游之前所在的网络。图3中,VPLMN中的V-NSSF网元通过 N22接口与AMF网元通信,以及通过N31接口与HPLMN中的H-NSSF网元通信,AMF网元通过N1接口与UE通信、通过N2接口与(R)AN通信、通过N12接口与PLMN中的AUSF网元通信、通过N15接口与V-PCF网元通信、通过N11接口与V-SMF网元通信、通过N58接口与HPLMN中的NSSAAF网元通信、以及通过N8接口与HPLMN中的UDM网元通信,V-SMF网元通过N4接口与VPLMN中的UPF网元通信、通过N16接口与HPLMN中的H-SMF网元通信,H-SMF网元通过N4接口与HPLMN中的UPF网元通信、通过N7接口与H-PCF网元通信以及通过N10接口与UDM网元通信,UDM网元通过N13接口与AUSF网元通信,H-PCF网元通过N24接口与V-PCF网元通信,以及通过N5接口与AF网元通信,UE能够与(R)AN通信,(R)AN通过N3接口与VPLMN中的UPF网元通信,VPLMN中的UPF网元通过N9接口与HPLMN中的UPF网元通信,VPLMN中的UPF网元还可通过N9接口与VPLMN中的其他UPF网元通信,HPLMN中的UPF网元还通过N6接口与数据网络(data network,DN)通信以及通过N9接口与HPLMN中的其他UPF网元通信。
其中,在某种网元之前加“V”或“v”,意义相同,都表明该网元是属于VPLMN中的,例如V-PCF网元或vPCF网元,就表示VPLMN中的PCF网元,而在某种网元之前加“H”或“h”,意义也相同,表明该网元是属于HPLMN中的,例如H-PCF网元或hPCF网元,就表示HPLMN中的PCF网元,也就是说,“V”或“H”仅是对所处的网络或所处的位置的说明,不代表对功能的限制。例如,V-PCF网元和H-PCF网元,功能可能是相同的,也可能不同。
如上的图1所示的场景-图3所示的场景中的任意一种场景,均可作为本申请实施例的应用场景。当然以上几种场景只是示例,本申请实施例不限于应用在以上应用场景。下面对其中的部分网元或设备的功能进行简单介绍说明。
终端设备,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、用户设备(user equipment,UE)等。
上述终端设备可通过运营商网络提供的接口(例如N1等)与运营商网络建立连接,使用运营商网络提供的数据和/或语音等服务。终端设备还可通过运营商网络访问DN,使用DN上部署的运营商业务,和/或第三方提供的业务。其中,上述第三方可为运营商网络和终端设备之外的服务方,可为终端设备提供他数据和/或语音等服务。其中,上述第三方的具体表现形式,具体可根据实际应用场景确定,在此不做限制。
(R)AN指接入网(access network,AN)或无线接入网(radio access network,RAN),(R)AN是运营商网络的子网络,是运营商网络中业务节点与终端设备之间的实施系统。终端设备要接入运营商网络,首先是经过(R)AN,进而可通过(R)AN与运营商网络的业务节点连接。(R)AN设备,是一种为终端设备提供无线通信功能的设备,(R)AN设备也称为接入网设备。(R)AN设备包括但不限于:5G中的下一代基站(g nodeB,gNB)、 演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
UPF网元,主要功能包含:报文路由和传输、报文检测、业务用量上报、服务质量(quality of service,QoS)处理、合法监听、上行报文检测、下行报文存储等用户面相关的功能。
AMF网元,主要功能包含:连接管理、移动性管理、注册管理、接入认证和授权、可达性管理、安全上下文管理等接入和移动性相关的功能。
SMF网元,主要功能包含:会话管理(如会话建立、修改和释放,包含UPF网元和AN之间的隧道维护)、UPF网元的选择和控制、业务和会话连续性(service and session continuity,SSC)模式选择、漫游等会话相关的功能。
PCF网元,主要功能包含:统一策略制定、策略控制的提供和从统一数据库(unified data repository,UDR)网元中获取策略决策相关的签约信息等策略相关的功能。
NSSF网元,主要功能包含:为终端设备选择一组网络切片实例、确定允许的NSSAI和确定可以服务终端设备的AMF网元集等。
UDM网元,主要功能包括:支持3GPP认证和密钥协商机制中的认证信任状处理,用户身份处理,接入授权,注册和移动性管理,签约管理,短消息管理等。
AUSF网元,主要功能包括:与UDM网元交互获取用户信息,并执行认证相关的功能,如生成中间密钥等。
DN,是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN上可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
另外,为了便于本领域技术人员理解,下面对本申请中的部分用语进行解释说明。
应用程序,也可以称为(application,app),是指为完成某项或多项特定工作的计算机程序,如视频应用程序、绘图应用程序、微信等。应用服务器,是指为应用程序提供服务的服务器,例如应用程序为微信时,该应用程序对应的应用服务器为用于为微信提供服务的微信服务器。
锚点UPF网元,在本申请实施例中,每个可通过N6接口与DN通信的UPF网元可以称为锚点UPF网元,应用服务器的锚点UPF网元为可通过N6接口与该应用服务器通信的UPF网元。
UPF网元的隧道端点标识,可以是指UPF网元的隧道端点IP地址,UPF网元可以配 置多个逻辑口网际互连协议(internet protocol,IP)地址,其中的一些IP地址可以用来作为该UPF网元的隧道端点IP地址。
站点,可以是指UPF网元所能访问应用程序的区域,直观理解就是不同区域,比如不同的城市、城市的不同区域等,在站点中可以包括应用程序的应用服务器,应用服务器对应的多接入边缘计算(multi-access edge computing,MEC)服务网关(MEC service gateway function,MSGW)、应用服务器连接的UPF网元等,还可以包括域名系统(domain name system,DNS)服务器等,其中DNS服务器也可以嵌入或将功能集成到UPF网元中。
在图1所示的场景-图3所示的场景中,终端设备的应用程序需要访问数据网络(如应用程序的应用服务器)时,均需要SMF网元识别应用程序对应的业务标识,确定应用程序对应的应用服务器的锚点UPF网元,在上行分类(uplink classification,ULCL)中添加上行报文转发到上述锚点UPF网元的分流规则,过程繁琐,复杂度高,不够灵活。并且在归属路由漫游场景下,终端设备发出的报文需要从访问地传回归属地,存在流量绕行,时延高。
目前,虽然提出了边缘计算,分散部署应用服务器,在终端设备的某一个应用程序被启动,触发终端设备请求建立一个协议数据单元(protocol data unit,PDU)会话时,终端设备向SMF网元发送PDU会话请求消息(如PDU会话建立/修改请求消息),SMF网元接收到PDU会话请求消息后会选中一个边缘应用服务发现功能(edge application server discovery function,EASDF)网元,当终端设备通过接入的UPF网元发送来自终端设备的DNS请求报文到选中的EASDF网元,EASDF网元会处理该DNS请求报文,确定边缘应用服务(edge application server,EAS)信息,并向SMF网元发送确定的边缘EAS信息,其中EAS信息中包括应用服务器的IP地址等信息,SMF网元根据EAS信息确定所应用服务器的锚点UPF网元,在ULCL中添加上行报文转发到上述锚点UPF网元的分流规则。然而该方式也需要SMF网元感知应用程序对应的业务标识,选择锚点UPF网元,配置分流规则,终端设备的应用程序访问DN的过程依旧繁琐,复杂度高,不够灵活。
本申请旨在提供一种通信方案,能够简化应用程序访问DN的过程。作为一种实现方法,本申请实施例中的用户面功能网元可以是上述UPF网元,也可以是未来通信系统如6G系统中具有上述UPF网元功能的网元,会话管理功能网元可以是上述SMF网元,也可以是未来通信系统如6G系统中具有上述SMF网元功能的网元,网络仓库功能网元可以是上述NRF网元,也可以是未来通信系统如6G系统中具有上述NRF网元功能的网元,类似的策略控制网元可以是上述PCF网元等,也可以是未来通信系统如6G系统中具有上述PCF网元的功能的网元等。为了便于说明,本申请实施例中,以用户面功能网元为UPF网元、会话管理功能网元为SMF网元、网络仓库功能网元为NRF网元为例进行说明。
另外,需要理解,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
图4为本申请实施例提供的一种通信方法示意图,该方法包括:
S410:第一UPF网元接收来自终端设备的业务请求报文,业务请求报文包括第二应用域名。
S402:第一UPF网元向第二UPF网元发送业务请求报文,第二UPF网元接收业务请求报文。
其中,第二UPF网元为第二应用域名对应的第二应用服务器的锚点UPF网元。
S403:第一UPF网元接收来自第二UPF网元的业务响应报文,业务响应报文包括第二UPF网元的第二隧道端点标识。
在本申请实施例中,业务请求报文可以为域名系统(domain name system,DNS)报文,在业务请求报文中包括触发业务请求报文的应用程序对应的应用服务器的应用域名。作为一种示例,终端设备通过应用程序“短视频”触发业务请求报文,在业务请求报文中包括“短视频”对应的应用服务器的应用域名(也即网址)。
具体的,在一些实施中,在通信系统的站点部署后,站点中的UPF网元可以向通信系统中的NRF网元上报该UPF网元关联的业务标识(如数据网络接入标识符(DN Access Identifier,DNAI))、应用域名等信息。
作为一种示例,如图5所示的站点部署示意图,在通信系统中部署有站点1、站点2,在站点1中包括第一UPF网元、第一应用程序的第一应用服务器以及第一MSGW,在站点2中包括第二UPF网元、第二应用程序的第二应用服务器以及第二MSGW,站点1的第一UPF网元能访问第一应用程序的第一应用服务器,站点2的第二UPF网元能访问第二应用程序的第二应用服务器。在站点1部署完成后,第一UPF网元可以向NRF网元发送第二消息,在第二消息中包括第一UPF网元所处站点1关联的第一应用程序的第一业务标识和第一应用域名。在站点2部署完成后,第二UPF网元可以向NRF网元发送第三消息,在第三消息中包括第二UPF网元所处站点2关联的第一应用程序的第二业务标识和第二应用域名。
NRF网元接收到来自第一UPF网元的第二消息和/或第二UPF网元的第三消息后,可以建立UPF网元的信息与相应业务标识和应用域名的关联关系,例如建立第一UPF网元的信息(如IP地址、标识等)与第一业务标识和第一应用域名的关联关系,第二UPF网元的信息与第二业务标识和第二应用域名的关联关系等。
在终端设备的第二应用程序被启动时,会触发终端设备请求建立一个PDU会话,可以向SMF网元发送PDU会话请求消息,SMF网元接收到PDU会话请求消息后,可以通过PCF网元获取终端设备签约的所有业务标识,例如第一应用程序的第一业务标识、第二应用程序的第二业务标识等,并可以根据终端设备的位置等信息为终端设备分配一个接入点UPF网元,在本申请实施例中以接入点UPF网元为第一UPF网元为例,并可以通过第一消息(如N4会话建立消息等)将终端设备签约的所有业务标识发送给为终端设备分配的接入点UPF网元。其中为终端设备分配的接入点UPF网元的信息,SMF网元也可以通过PDU会话响应消息等发送给终端设备。
第一UPF网元根据终端设备签约的业务标识可以从NRF网元获取每个业务标识关联的UPF的信息和应用域名,例如可以获取第二业务标识关联的第二UPF网元的信息和第二应用域名。
终端设备获知接入点UPF网元为第一UPF网元后,可以向第一UPF网元发送业务请求报文,在业务请求报文中包括第二应用程序对应的第二应用服务器的第二应用域名。第一UPF网元接收到业务请求报文后,可以根据业务请求报文包括的第二应用域名,以及从NRF网元中获取的第二业务标识关联的第二UPF网元的信息(如第二UPF网元的IP地址、标识等)和第二应用域名的信息,确定第二应用域名关联的UPF网元为第二UPF网元,也即确定第二应用域名对应的第二应用服务器的锚点UPF网元为第二UPF网元。第一UPF 网元将业务请求报文发送给第二UPF网元。
在一些可能实施中,为了便于第二UPF网元对第二UPF网元到第一UPF网元的下行隧道的建立,第一UPF网元还可以在上述业务请求报文中添加第一UPF网元的第一隧道端点标识。作为一种示例,第二UPF网元接收到第一UPF网元的第一隧道端点标识(如第一隧道端点IP地址)后,可以根据第一UPF网元的第一隧道端点标识生成第二UPF网元到第一UPF网元的路由,也第二UPF网元到第一UPF网元的下行隧道,并可以对于下行隧道的键值可以采用第二UPF网元的标识到第一UPF网元的标识以及隧道的接口类型等表示。
对于业务请求报文,第二UPF网元可以通过第二UPF网元中嵌入的DNS服务器查找第二应用域名对应的第二服务器的IP地址等信息,并生成包括第二服务器的IP地址、第二UPF网元的第二隧道端点标识等信息的业务响应报文,并发送给第一UPF网元。作为一种示例,如果上述业务请求报文为DNS请求报文,业务响应报文可以为DNS响应报文。
S404:第一UPF网元根据第二隧道端点标识建立第一UPF网元到第二UPF网元的上行隧道。
S405:第一UPF网元生成分流规则,分流规则包括目的IP地址为第二应用域名对应的第二IP地址的报文通过上行隧道传输。
第一UPF网元接收到业务响应报文后,可以根据第二UPF网元的第二隧道端点标识生成第一UPF网元到第二UPF网元的路由,也第一UPF网元到第二UPF网元的上行隧道,并对于上行隧道的键值可以采用第一UPF网元的标识到第二UPF网元的标识以及隧道的接口类型等表示。
同时第一UPF网元还可以生成包括目的IP地址为第二应用域名对应的第二IP地址(也即第二应用服务器的第二IP地址)的报文通过上述上行隧道传输的分流规则。
需要理解的是第一UPF网元生成的分流规则,不局限于包括目的IP地址为第二应用域名对应的第二IP地址的报文通过上行隧道传输,还可以是源IP地址为终端设备的IP地址、目的IP地址为第二应用域名对应的第二IP地址的报文通过上行隧道传输等,只要能实现将来自终端设备的目的IP地址为第二应用域名对应的第二IP地址通过第一UPF网元到第二UPF网元的上行隧道传输即可。
后续第一UPF网元接收到来自终端设备的报文(如数据报文),报文的目的IP地址命中分流规则中的第二IP地址后,第一UPF网元将来自终端设备的报文封装在应用层报文中由第一UPF网元发送给第二UPF网元,其中在封装后的应用层报文(如通用分组无线服务(general packet radio service,GPRS)隧道协议用户面(GRPS tunnelling protocol user plane,GTP-U)报文)中可以包括上行隧道的键值或标识信息等。
第二UPF网元接收到来自第一UPF网元的应用层报文后,解封应用层报文得到原始报文,将原始报文发送给第二应用服务器处理。同时对于来自第二应用服务器发送给终端设备的报文,第二UPF网元可以根据接收应用层报文的上行隧道,确定相应的下行隧道,将报文封装为应用层报文后,通过下行隧道发送给第一UPF网元,由第一UPF报文解封装后,将报文发送给终端设备。
在一些实施中,当通信系统中心上线了其它站点后,该站点中的UPF网元可以向通信系统中的NRF网元上报该UPF网元关联的应用程序的业务标识信息、应用域名等信息。
作为一种示例,在图5所示的通信系统中,如果新增站点3,如图6所示的站点部署 示意图,在站点3中包括第三UPF网元、第三应用程序的第三应用服务器以及第三MSGW,站点3的第三UPF网元能访问第三应用程序的第三应用服务器。在站点3部署完成后,第三UPF网元可以向NRF网元发送第五消息,在第五消息中包括第三UPF网元所处站点3关联的第三应用程序的第三业务标识和第三应用域名。NRF网元还可以建立第三UPF网元的信息与第三业务标识和第三应用域名的关联关系。
在一些实施中,如果第一UPF网元在根据终端设备签约的业务标识从NRF网元获取每个签约的业务标识关联的UPF的信息和应用域名时,订阅了终端设备签约的业务标识下的信息,如果第三业务标识包含在终端设备签约的业务标识中,NRF网元还可以在建立第三UPF网元的信息与第三业务标识和第三应用域名的关联关系后,通知第一UPF网元第三业务标识关联的第三UPF的信息和第三应用域名。
图7为本申请实施例提供的一种NRF网元和UPF网元间接口示意图,如图7所示,在一个站点中的UPF网元被部署和配置后,该UPF网元可以通过管理注册消息(如Nnrf_NFManagement_NFRegister消息),将其关联的应用程序的业务标识和应用域名发送给NRF网元,并且在其关联的应用程序的业务标识和/或应用域名发生变化后还能通过管理更新消息(如Nnrf_NFManagement_NFUpdate消息)将更新后的业务标识和/或应用域名发送给NRF网元。
也即上述第一UPF网元可以向NRF网元发送一个第二消息(即一个管理注册消息)将第一UPF网元所处站点1关联的第一应用程序的第一业务标识和第一应用域名发送给NRF网元,第二UPF网元也可以向NRF网元发送第三消息(即一个管理注册消息,与第二消息对应的管理注册消息不同)将第二UPF网元所处站点2关联的第二应用程序的第二业务标识和第二应用域名发送给NRF网元。
如果第二UPF网元所处站点2关联的第二应用程序的第二业务标识和/或第二应用域名发生变化,第二UPF网元也可以通过一个第四消息(即一个管理更新消息)将更新后的第二业务标识和/或第二应用域名发送给NRF网元。
重新回到图7,UPF网元还可以通过管理状态订阅消息(如Nnrf_NFManagement_NFStatusSubscribe消息),向NRF网元订阅终端设备签约的业务标识下的信息,当NRF网元发现终端设备签约的业务标识下的信息发生变化后,还可以通过状态通知消息(如Nnrf_NFManagement_NFStatusNotify消息)发送给UPF网元。
需要理解的是上述是以第二UPF网元中嵌入有DNS服务器为例进行说明的,在一些实施中,DNS服务器和第二UPF网元也可以分开部署,在通信系统的站点部署后,站点中的UPF网元还可以向通信系统中的NRF网元上报该UPF网元关联的DNS服务器的IP地址,例如站点2中的第二UPF网元可以向通信系统中的NRF网元上报第二UPF网元关联的第二DNS服务器的IP地址,第一UPF1还可以获取第二UPF网元关联的第二DNS服务器的IP地址,并在向第二UPF网元发送的业务报文中添加第二DNS服务器的IP地址,以便第二UPF网元将业务请求报文发送给相应的DNS服务器进行处理。
上述主要是从通过业务请求报文和业务响应报文来建立第一UPF网元和第二UPF间的下行隧道的角度,来简化应用程序访问DN的过程,在另一种可能的实施中,第一UPF网元和第二UPF间的下行隧道也可以不依赖业务请求报文和业务响应报文来建立,从而进一步简化应用程序访问DN的过程。
图8为本申请实施例提供的另一种通信方法示意图,该方法包括:
S801:第一UPF网元接收来自SMF网元的第一消息,第一消息包括终端设备的第二业务标识。
S802:第一UPF从NRF网元获取第二业务标识关联的第二应用域名和第二UPF网元的第二隧道端点标识。
具体的,在一些实施中,在通信系统的站点部署后,站点中的UPF网元可以向通信系统中的NRF网元上报该UPF网元关联的业务标识信息(如DNAI)、应用域名、隧道端点标识等信息。
作为一种示例,如图9所示的站点部署示意图,在通信系统中部署有站点1、站点2和站点3,在站点1中包括第一UPF网元、第一应用程序的第一应用服务器以及第一MSGW,在站点2中包括第二UPF网元、第二应用程序的第二应用服务器以及第二MSGW,在站点3中包括第三UPF网元,站点1的第一UPF网元能访问第一应用程序的第一应用服务器,站点2的第二UPF网元能访问第二应用程序的第二应用服务器。在站点1部署完成后,第一UPF网元可以向NRF网元发送第二消息,在第二消息中包括第一UPF网元所处站点1关联的第一应用程序的第一业务标识、第一应用域名和第一UPF网元的第一隧道端点标识。在站点2部署完成后,第二UPF网元可以向NRF网元发送第三消息,在第三消息中包括第二UPF网元所处站点2关联的第二应用程序的第二业务标识、第二应用域名和第二UPF网元的第二隧道端点标识。在站点3部署完成后,第三UPF网元可以向NRF网元发送第五消息,在第五消息包括第三UPF网元的第三隧道端点标识。NRF网元可以建立UPF网元的信息(如IP地址、标识等)与相应隧道端点标识,以及业务标识和应用域名的关联关系。例如建立第一UPF网元的信息与第一隧道端点标识、第一业务标识和第一应用域名的关联关系,第二UPF网元的信息与第二隧道端点标识、第二业务标识和第二应用域名的关联关系,第三UPF网元与第三隧道端点标识的关联关系等。
在终端设备的第二应用程序被启动时,会触发终端设备请求建立一个PDU会话,可以向SMF网元发送PDU会话请求消息,SMF网元接收到PDU会话请求消息后,可以通过PCF网元获取终端设备签约的所有业务标识,例如第一应用程序的第一业务标识、第二应用程序的第二业务标识、第三应用程序的第三业务标识等,并可以根据终端设备的位置等信息为终端设备分配一个接入点UPF网元,在本申请实施例中以接入点UPF网元为第一UPF网元为例,并可以通过第一消息(如N4会话建立消息等)将终端设备签约的所有业务标识发送给为终端设备分配的接入点UPF网元。其中为终端设备分配的接入点UPF网元的信息,SMF网元也可以通过PDU会话响应消息等发送给终端设备。
第一UPF网元根据终端设备签约的业务标识可以从NRF网元获取除第一UPF关联的第一业务标识外每个业务标识关联的UPF网元的隧道端点标识和应用域名信息。例如可以获取第二业务标识关联的第二UPF网元的第二隧道端点标识和第二应用域名。
S803:第一UPF网元根据第二隧道端点标识建立第一UPF网元到第二UPF网元的上行隧道。
S804:第一用户面功能网元生成分流规则,分流规则包括目的IP地址为第二应用域名对应的第二IP地址的报文通过上行隧道传输。
第一UPF网元根据终端设备签约的业务标识,获取除第一UPF网元关联的第一业务标识外每个业务标识关联的UPF网元的隧道端点标识和应用域名后,第一UPF可以根据 获取的每个业务标识关联的UPF网元的隧道端点标识,与获取的每个业务标识关联的UPF网元间建立上行隧道。同时,还可以根据获取的每个业务标识关联的应用域名,生成到建立的每个上行隧道的分流规则。
作为一种示例,第一UPF网元可以根据第二UPF网元的第二隧道端点标识生成第一UPF网元到第二UPF网元的路由,也建立第一UPF网元到第二UPF网元的上行隧道,并对于上行隧道的键值可以采用第一UPF网元的标识到第二UPF网元的标识以及隧道的接口类型等表示。同时第一UPF网元还可以生成包括目的IP地址为第二应用域名对应的第二IP地址(也即第二应用服务器的第二IP地址)的报文通过上述上行隧道传输的分流规则。
需要理解的是第一UPF网元生成的分流规则,不局限于包括目的IP地址为第二应用域名对应的第二IP地址的报文通过上行隧道传输,还可以是源IP地址为终端设备的IP地址、目的IP地址为第二应用域名对应的第二IP地址的报文通过上行隧道传输等,只要能实现将来自终端设备的目的IP地址为第二应用域名对应的第二IP地址通过第一UPF网元到第二UPF网元的上行隧道传输即可。
另外,对于第一UPF网元与建立上行隧道的每个UPF网元间的下行隧道可以通过在业务请求报文(如第一个业务请求报文)中携带第一UPF网元的第一隧道端点标识来建立。
作为一种示例,第一UPF网元接收到终端设备的第二应用程序触发的业务请求报文,可以在业务请求报文中添加第一UPF网元的第一隧道端点标识后,发送给第二UPF网元,第二UPF网元从业务请求报文获取到第一UPF网元的第一隧道端点标识(如第一隧道端点IP地址)后,可以根据第一UPF网元的第一隧道端点标识生成第二UPF网元到第一UPF网元的路由,也建立第二UPF网元到第一UPF网元的下行隧道,并可以对于下行隧道的键值可以采用第二UPF网元的标识到第一UPF网元的标识以及隧道的接口类型等表示。
后续第一UPF网元接收到来自终端设备的报文(如数据报文),报文的目的IP地址命中分流规则中的第二IP地址后,第一UPF网元将来自终端设备的报文封装在应用层报文中由第一UPF网元发送给第二UPF网元,其中在封装后的应用层报文中可以包括上行隧道的键值或标识信息等。
第二UPF网元接收到来自第一UPF网元的应用层报文后,解封应用层报文得到原始报文,将原始报文发送给第二应用服务器处理。同时对于来自第二应用服务器发送给终端设备的报文,第二UPF网元可以根据接收应用层报文的上行隧道,确定相应的下行隧道,将报文封装为应用层报文后,通过下行隧道发送给第一UPF网元,由第一UPF报文解封装后,将报文发送给终端设备。
另外,对于未上线或部署应用程序的第三UPF网元,第一UPF网元也可以从NRF网元获取第三UPF网元的第三隧道端点标识,并建立到第三UPF网元的上行隧道,在上述图9的基础上,如图10所示的站点部署示意图,当第三UPF网元上线或部署新应用第三应用程序后,第三UPF网元可以向NRF网元发送第六消息,在第六消息中包括第三UPF网元所处站点3关联的第三应用程序的第三业务标识和第三应用域名。NRF网元还可以将第三UPF网元和第三隧道端点标识的关联关系,更新为第三UPF网元和第三隧道端点标识以及第三业务标识和第三应用域名的关联关系。
在一些实施中,如果第一UPF网元在根据终端设备签约的业务标识从NRF网元获取 每个签约的业务标识关联的UPF的信息和应用域名时,订阅了终端设备签约的业务标识下的信息,NRF网元还可以将第三UPF网元和第三隧道端点标识的关联关系,更新为第三UPF网元和第三隧道端点标识以及第三业务标识和第三应用域名的关联关系发送给第一UPF网元,第一UPF网元还可以生成包括目的IP地址为第三应用域名对应的第三IP地址的报文通过第一UPF网元到第三UPF网元的上行隧道传输的分流规则。
需要理解的是图7提供的NRF网元和UPF网元间接口示意图,也可以应用在图8所示的通信方法中。
作为一种示例,上述第一UPF网元可以向NRF网元发送一个第二消息(即一个管理注册消息)将第一UPF网元所处站点1关联的第一应用程序的第一业务标识和第一应用域名以及第一UPF网元的第一隧道端点标识发送给NRF网元,第二UPF网元也可以向NRF网元发送第三消息(即一个管理注册消息,与第二消息对应的管理注册消息不同)将第二UPF网元所处站点2关联的第二应用程序的第二业务标识和第二应用域名以及第一UPF网元的第二隧道端点标识发送给NRF网元。第三UPF网元可以向NRF网元发送第五消息(即一个与第二消息对应的管理注册消息、第三消息对应的管理注册消息不同的管理注册消息)将第三UPF网元的第三隧道端点标识发送给NRF网元。
如果第二UPF网元所处站点2关联的第二应用程序的第二业务标识和/或第二应用域名发生变化,第二UPF网元也可以通过一个第四消息(即一个管理更新消息)将更新后的第二业务标识和/或第二应用域名发送给NRF网元。
另外,如果第三UPF网元上线或部署新应用第三应用程序后,第三UPF网元可以向NRF网元发送第六消息(即一个管理更新消息,与第四消息对应的管理更新消息不同),将第三UPF网元所处站点3关联的第三应用程序的第三业务标识和第三应用域名发送给NRF网元。
UPF网元还可以通过管理状态订阅消息,向NRF网元订阅终端设备签约的业务标识下的信息,当NRF网元发现终端设备签约的业务标识下的信息发生变化后,还可以通过状态通知消息发送给UPF网元。例如:NRF网元还可以在将第三UPF网元和第三隧道端点标识的关联关系,更新为第三UPF网元和第三隧道端点标识以及第三业务标识和第三应用域名的关联关系后,通过状态通知消息将第三业务标识关联第三隧道端点标识和第三应用域名发送给UPF网元。
参照图11所示的终端设备访问应用服务器示意图可知,对于上述图4和图8的通信方法,终端设备可以看成一个动态的分支机构,终端设备的位置移动会触发接入点UPF网元的切换,进而触发隧道的更新或重新建立,提供了动态隧道构建能力,可以就近访问应用服务器,相对于回归属地访问应用服务器的方式,可以使得应用程序访问数据网络更加灵活和便捷。
可以理解的是,为了实现上述实施例中功能,第一用户面功能网元(第一UPF网元)和第二用户面功能网元(第二UPF网元)包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。在本申请实施例中,该通信装置可以是第一用户面功能网元,也可以是第二 用户面功能网元,还可以是应用于第一用户面功能网元或第二用户面功能网元的芯片等。
图12和图13为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中第一用户面功能网元或第二用户面功能网元的功能,因此也能实现上述方法实施例所具备的有益效果。
如图12所示,通信装置1200包括处理单元1210和接口单元1220。通信装置1200用于实现上述图4或图8中所示的方法实施例中第一用户面功能网元或第二用户面功能网元的功能。
当通信装置1200用于实现图4所示的方法实施例中第一用户面功能网元的功能时:
所述接口单元1220,用于接收来自终端设备的业务请求报文,所述业务请求报文包括第二应用域名;向第二用户面功能网元发送所述业务请求报文,所述第二用户面功能网元为所述第二应用域名对应的第二应用服务器的锚点用户面功能网元;以及接收来自所述第二用户面功能网元的业务响应报文,所述业务响应报文包括所述第二用户面功能网元的第二隧道端点标识;所述处理单元1210,用于根据所述第二隧道端点标识建立所述通信装置到所述第二用户面功能网元的上行隧道;以及生成分流规则,所述分流规则包括目的网际互连协议IP地址为所述第二应用域名对应的第二IP地址的报文通过所述上行隧道传输。
在一种可能的设计中,所述处理单元1210,还用于在所述接口单元1220向第二用户面功能网元发送所述业务请求报文之前,在所述业务请求报文中添加所述通信装置的第一隧道端点标识。
在一种可能的设计中,所述接口单元1220,还用于接收来自会话管理功能网元的第一消息,所述第一消息包括所述终端设备的第二业务标识;从网络仓库功能网元获取所述第二业务标识关联的所述第二用户面功能网元的信息和所述第二应用域名。
在一种可能的设计中,所述接口单元1220,还用于向网络仓库功能网元发送第二消息,所述第二消息包括所述通信装置关联的第一业务标识和第一应用域名。
当通信装置1200用于实现图4所示的方法实施例中第二用户面功能网元的功能时:
所述接口单元1220,用于接收来自第一用户面功能网元的业务请求报文,其中,所述业务请求报文包括第二应用域名;所述处理单元1210,用于确定业务响应报文,所述业务响应报文包括所述通信装置的第二隧道端点标识;所述接口单元1220,还用于向所述第一用户面功能网元发送所述业务响应报文。
在一种可能的设计中,所述业务请求报文中还包括所述第一用户面功能网元的第一隧道端点标识,所述处理单元1210,还用于根据所述第一隧道端点标识建立所述通信装置到所述第一用户面功能网元的下行隧道。
在一种可能的设计中,所述接口单元1220,还用于向网络仓库功能网元发送第三消息,所述第三消息包括所述通信装置关联的第二业务标识和第二应用域名。
在一种可能的设计中,所述接口单元1220,还用于当所述通信装置关联的第二业务标识和/或第二应用域名发生变化时,所述通信装置向所述网络仓库功能网元发送第四消息,所述第四消息包括所述通信装置关联的变化后的第二业务标识和/或第二应用域名。
当通信装置1200用于实现图8所示的方法实施例中第一用户面功能网元的功能时:
所述接口单元1220,用于接收来自会话管理功能网元的第一消息,所述第一消息包括终端设备的第二业务标识;以及从网络仓库功能网元获取所述第二业务标识关联的第二应用域名和第二户面功能网元的第二隧道端点标识;所述处理单元1210,用于根据所述第二 隧道端点标识建立所述通信装置到所述第二用户面功能网元的上行隧道;以及生成分流规则,所述分流规则包括目的网际互连协议IP地址为所述第二应用域名对应的第二IP地址的报文通过所述上行隧道传输。
在一种可能的设计中,所述接口单元1220,还用于向网络仓库功能网元发送第二消息,所述第二消息包括所述通信装置关联的第一业务标识、第一应用域名和所述通信装置的第一隧道端点标识。
在一种可能的设计中,所述接口单元1220,还用于接收来自所述终端设备的业务请求报文,所述业务请求报文包括第二应用域名;所述处理单元1210,还用于在所述业务请求报文中添加所述通信装置的第一隧道端点标识;所述接口单元1220,还用于向所述第二用户面功能发送所述业务请求报文。
当通信装置1200用于实现图8所示的方法实施例中第二用户面功能网元的功能时:
所述处理单元1210,用于确定所述通信装置关联的第二业务标识和第二应用域名;所述接口单元1220,用于向网络仓库功能网元发送第三消息,所述第三消息包括所述第二业务标识、所述第二应用域名和所述通信装置的第二隧道端点标识。
在一种可能的设计中,所述接口单元1220,用于接收来自第一用户面功能网元的业务请求报文,所述业务请求报文包括所述第一用户面功能网元的第一隧道端点标识;所述处理单元1210,用于根据所述第一隧道端点标识建立所述通信装置到所述第一用户面功能网元的下行隧道。
在一种可能的设计中,所述接口单元1220,还用于当所述通信装置关联的第二业务标识和/或第二应用域名发生变化时,向网络仓库功能网元发送第四消息,所述第四消息包括所述通信装置关联的变化后的第二业务标识和/或第二应用域名。
如图13所示,通信装置1300包括处理器1310和接口电路1320。处理器1310和接口电路1320之间相互耦合。可以理解的是,接口电路1320可以为收发器或输入输出接口。可选的,通信装置1300还可以包括存储器1330,用于存储处理器1310执行的指令或存储处理器1310运行指令所需要的输入数据或存储处理器1310运行指令后产生的数据。
当通信装置1300用于实现图4或图8所示的方法时,处理器1310用于实现上述处理单元1210的功能,接口电路1320用于实现上述接口单元1220的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
另外,需要理解,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
此外,本申请实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (42)

  1. 一种通信方法,其特征在于,包括:
    第一用户面功能网元接收来自终端设备的业务请求报文,所述业务请求报文包括第二应用域名;
    所述第一用户面功能网元向第二用户面功能网元发送所述业务请求报文,所述第二用户面功能网元为所述第二应用域名对应的第二应用服务器的锚点用户面功能网元;
    所述第一用户面功能网元接收来自所述第二用户面功能网元的业务响应报文,所述业务响应报文包括所述第二用户面功能网元的第二隧道端点标识;
    所述第一用户面功能网元根据所述第二隧道端点标识建立所述第一用户面功能网元到所述第二用户面功能网元的上行隧道;
    所述第一用户面功能网元生成分流规则,所述分流规则包括目的网际互连协议IP地址为所述第二应用域名对应的第二IP地址的报文通过所述上行隧道传输。
  2. 如权利要求1所述的方法,其特征在于,所述向第二用户面功能网元发送所述业务请求报文之前,还包括:
    所述第一用户面功能网元在所述业务请求报文中添加所述第一用户面功能网元的第一隧道端点标识。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一用户面功能网元接收来自会话管理功能网元的第一消息,所述第一消息包括所述终端设备的第二业务标识;
    所述第一用户面功能网元从网络仓库功能网元获取所述第二业务标识关联的所述第二用户面功能网元的信息和所述第二应用域名。
  4. 如权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一用户面功能网元向网络仓库功能网元发送第二消息,所述第二消息包括所述第一用户面功能网元关联的第一业务标识和第一应用域名。
  5. 一种通信方法,其特征在于,包括:
    第二用户面功能网元接收来自第一用户面功能网元的业务请求报文,其中,所述业务请求报文包括第二应用域名;
    所述第二用户面功能网元向所述第一用户面功能网元发送业务响应报文,所述业务响应报文包括所述第二用户面功能网元的第二隧道端点标识。
  6. 如权利要求5所述的方法,其特征在于,所述业务请求报文中还包括所述第一用户面功能网元的第一隧道端点标识,所述方法还包括:
    所述第二用户面功能网元根据所述第一隧道端点标识建立所述第二用户面功能网元到所述第一用户面功能网元的下行隧道。
  7. 如权利要求5或6所述的方法,其特征在于,所述方法还包括:
    所述第二用户面功能网元向网络仓库功能网元发送第三消息,所述第三消息包括所述第二用户面功能网元关联的第二业务标识和第二应用域名。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    当所述第二用户面功能网元关联的第二业务标识和/或第二应用域名发生变化时,所述第二用户面功能网元向所述网络仓库功能网元发送第四消息,所述第四消息包括所述第二 用户面功能网元关联的变化后的第二业务标识和/或第二应用域名。
  9. 一种通信方法,其特征在于,包括:
    第一用户面功能网元接收来自会话管理功能网元的第一消息,所述第一消息包括终端设备的第二业务标识;
    所述第一用户面功能网元从网络仓库功能网元获取所述第二业务标识关联的第二应用域名和第二户面功能网元的第二隧道端点标识;
    所述第一用户面功能网元根据所述第二隧道端点标识建立所述第一用户面功能网元到所述第二用户面功能网元的上行隧道;
    所述第一用户面功能网元生成分流规则,所述分流规则包括目的网际互连协议IP地址为所述第二应用域名对应的第二IP地址的报文通过所述上行隧道传输。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一用户面功能网元向网络仓库功能网元发送第二消息,所述第二消息包括所述第一用户面功能网元关联的第一业务标识、第一应用域名和所述第一用户面功能网元的第一隧道端点标识。
  11. 如权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述第一用户面功能网元接收来自所述终端设备的业务请求报文,所述业务请求报文包括第二应用域名;
    所述第一用户面功能网元在所述业务请求报文中添加所述第一用户面功能网元的第一隧道端点标识;
    所述第一用户面功能网元向所述第二用户面功能发送所述业务请求报文。
  12. 一种通信方法,其特征在于,包括:
    第二用户面功能网元确定关联的第二业务标识和第二应用域名;
    所述第二用户面功能网元向网络仓库功能网元发送第三消息,所述第三消息包括所述第二业务标识、所述第二应用域名和所述第二用户面功能网元的第二隧道端点标识。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第二用户面功能网元接收来自第一用户面功能网元的业务请求报文,所述业务请求报文包括所述第一用户面功能网元的第一隧道端点标识;
    所述第二用户面功能网元根据所述第一隧道端点标识建立所述第二用户面功能网元到所述第一用户面功能网元的下行隧道。
  14. 如权利要求12或13所述的方法,其特征在于,所述方法还包括:
    当所述第二用户面功能网元关联的第二业务标识和/或第二应用域名发生变化时,所述第二用户面功能网元向网络仓库功能网元发送第四消息,所述第四消息包括所述第二用户面功能网元关联的变化后的第二业务标识和/或第二应用域名。
  15. 一种通信方法,其特征在于,包括:
    第一用户面功能网元接收来自终端设备的业务请求报文,所述业务请求报文包括第二应用域名;
    所述第一用户面功能网元向第二用户面功能网元发送所述业务请求报文,所述第二用户面功能网元接收所述业务报文,所述第二用户面功能网元为所述第二应用域名对应的第二应用服务器的锚点用户面功能网元;
    所述第二用户面功能网元向所述第一用户面功能网元发送业务响应报文,所述第一用 户面功能网元接收所述业务响应报文,所述业务响应报文包括所述第二用户面功能网元的第二隧道端点标识;
    所述第一用户面功能网元根据所述第二隧道端点标识建立所述第一用户面功能网元到所述第二用户面功能网元的上行隧道;
    所述第一用户面功能网元生成分流规则,所述分流规则包括目的网际互连协议IP地址为所述第二应用域名对应的第二IP地址的报文通过所述上行隧道传输。
  16. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    所述第一用户面功能网元向所述第二用户面功能网元发送所述业务请求报文之前,在所述业务请求报文中添加所述第一用户面功能网元的第一隧道端点标识;
    所述第二用户面功能网元根据所述第一隧道端点标识建立所述第二用户面功能网元到所述第一用户面功能网元的下行隧道。
  17. 如权利要求15或16所述的方法,其特征在于,所述方法还包括:
    所述第二用户面功能网元向网络仓库功能网元发送第三消息,所述第三消息包括所述第二用户面功能网元关联的第二业务标识和第二应用域名;
    所述第一用户面功能网元接收来自会话管理功能网元的第一消息,所述第一消息包括所述终端设备的所述第二业务标识;
    所述第一用户面功能网元从网络仓库功能网元获取所述第二业务标识关联的所述第二用户面功能网元的信息和所述第二应用域名。
  18. 如权利要求17所述的方法,其特征在于,所述方法还包括:
    当所述第二用户面功能网元关联的第二业务标识和/或第二应用域名发生变化时,所述第二用户面功能网元向所述网络仓库功能网元发送第四消息,所述第四消息包括所述第二用户面功能网元关联的变化后的第二业务标识和/或第二应用域名。
  19. 如权利要求15-18中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一用户面功能网元向网络仓库功能网元发送第二消息,所述第二消息包括所述第一用户面功能网元关联的第一业务标识和第一应用域名。
  20. 一种通信方法,其特征在于,包括:
    第一用户面功能网元接收来自会话管理功能网元的第一消息,所述第一消息包括终端设备的第二业务标识;
    所述第一用户面功能网元从网络仓库功能网元获取所述第二业务标识关联的第二应用域名和第二户面功能网元的第二隧道端点标识;
    所述第一用户面功能网元根据所述第二隧道端点标识建立所述第一用户面功能网元到所述第二用户面功能网元的上行隧道;
    所述第一用户面功能网元生成分流规则,所述分流规则包括目的网际互连协议IP地址为所述第二应用域名对应的第二IP地址的报文通过所述上行隧道传输。
  21. 如权利要求20所述的方法,其特征在于,所述方法还包括:
    所述第二用户面功能网元确定关联的第二业务标识和第二应用域名;
    所述第二用户面功能网元向网络仓库功能网元发送第三消息,所述第三消息包括所述第二业务标识、所述第二应用域名和所述第二用户面功能网元的所述第二隧道端点标识。
  22. 如权利要求20或21所述的方法,其特征在于,所述方法还包括:
    所述第一用户面功能网元向网络仓库功能网元发送第二消息,所述第二消息包括所述 第一用户面功能网元关联的第一业务标识、第一应用域名和所述第一用户面功能网元的第一隧道端点标识。
  23. 如权利要求20-22中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一用户面功能网元接收来自所述终端设备的业务请求报文,所述业务请求报文包括所述第二应用域名;
    所述第一用户面功能网元在所述业务请求报文中添加所述第一用户面功能网元的第一隧道端点标识;
    所述第一用户面功能网元向所述第二用户面功能发送所述业务请求报文,所述第二用户面功能网元接收所述业务请求报文;
    所述第二用户面功能网元根据所述第一隧道端点标识建立所述第二用户面功能网元到所述第一用户面功能网元的下行隧道。
  24. 如权利要求21-23中任一项所述的方法,其特征在于,所述方法还包括:
    当所述第二用户面功能网元关联的第二业务标识和/或第二应用域名发生变化时,所述第二用户面功能网元向网络仓库功能网元发送第四消息,所述第四消息包括所述第二用户面功能网元关联的变化后的第二业务标识和/或第二应用域名。
  25. 一种通信装置,其特征在于,包括接口单元和处理单元;
    所述接口单元,用于接收来自终端设备的业务请求报文,所述业务请求报文包括第二应用域名;向第二用户面功能网元发送所述业务请求报文,所述第二用户面功能网元为所述第二应用域名对应的第二应用服务器的锚点用户面功能网元;以及接收来自所述第二用户面功能网元的业务响应报文,所述业务响应报文包括所述第二用户面功能网元的第二隧道端点标识;
    所述处理单元,用于根据所述第二隧道端点标识建立所述通信装置到所述第二用户面功能网元的上行隧道;以及生成分流规则,所述分流规则包括目的网际互连协议IP地址为所述第二应用域名对应的第二IP地址的报文通过所述上行隧道传输。
  26. 如权利要求25所述的装置,其特征在于,所述处理单元,还用于在所述接口单元向第二用户面功能网元发送所述业务请求报文之前,在所述业务请求报文中添加所述通信装置的第一隧道端点标识。
  27. 如权利要求25或26所述的装置,其特征在于,所述接口单元,还用于接收来自会话管理功能网元的第一消息,所述第一消息包括所述终端设备的第二业务标识;从网络仓库功能网元获取所述第二业务标识关联的所述第二用户面功能网元的信息和所述第二应用域名。
  28. 如权利要求25-27中任一项所述的装置,其特征在于,所述接口单元,还用于向网络仓库功能网元发送第二消息,所述第二消息包括所述通信装置关联的第一业务标识和第一应用域名。
  29. 一种通信装置,其特征在于,包括接口单元和处理单元;
    所述接口单元,用于接收来自第一用户面功能网元的业务请求报文,其中,所述业务请求报文包括第二应用域名;
    所述处理单元,用于确定业务响应报文,所述业务响应报文包括所述通信装置的第二隧道端点标识;
    所述接口单元,还用于向所述第一用户面功能网元发送所述业务响应报文。
  30. 如权利要求29所述的装置,其特征在于,所述业务请求报文中还包括所述第一用户面功能网元的第一隧道端点标识,所述处理单元,还用于根据所述第一隧道端点标识建立所述通信装置到所述第一用户面功能网元的下行隧道。
  31. 如权利要求29或30所述的装置,其特征在于,所述接口单元,还用于向网络仓库功能网元发送第三消息,所述第三消息包括所述通信装置关联的第二业务标识和第二应用域名。
  32. 如权利要求31所述的装置,其特征在于,所述接口单元,还用于当所述通信装置关联的第二业务标识和/或第二应用域名发生变化时,所述通信装置向所述网络仓库功能网元发送第四消息,所述第四消息包括所述通信装置关联的变化后的第二业务标识和/或第二应用域名。
  33. 一种通信装置,其特征在于,包括接口单元和处理单元;
    所述接口单元,用于接收来自会话管理功能网元的第一消息,所述第一消息包括终端设备的第二业务标识;以及从网络仓库功能网元获取所述第二业务标识关联的第二应用域名和第二户面功能网元的第二隧道端点标识;
    所述处理单元,用于根据所述第二隧道端点标识建立所述通信装置到所述第二用户面功能网元的上行隧道;以及生成分流规则,所述分流规则包括目的网际互连协议IP地址为所述第二应用域名对应的第二IP地址的报文通过所述上行隧道传输。
  34. 如权利要求33所述的装置,其特征在于,所述接口单元,还用于向网络仓库功能网元发送第二消息,所述第二消息包括所述通信装置关联的第一业务标识、第一应用域名和所述通信装置的第一隧道端点标识。
  35. 如权利要求33或34所述的装置,其特征在于,所述接口单元,还用于接收来自所述终端设备的业务请求报文,所述业务请求报文包括第二应用域名;
    所述处理单元,还用于在所述业务请求报文中添加所述通信装置的第一隧道端点标识;
    所述接口单元,还用于向所述第二用户面功能发送所述业务请求报文。
  36. 一种通信装置,其特征在于,包括接口单元和处理单元;
    所述处理单元,用于确定所述通信装置关联的第二业务标识和第二应用域名;
    所述接口单元,用于向网络仓库功能网元发送第三消息,所述第三消息包括所述第二业务标识、所述第二应用域名和所述通信装置的第二隧道端点标识。
  37. 如权利要求36所述的装置,其特征在于,所述接口单元,用于接收来自第一用户面功能网元的业务请求报文,所述业务请求报文包括所述第一用户面功能网元的第一隧道端点标识;
    所述处理单元,用于根据所述第一隧道端点标识建立所述通信装置到所述第一用户面功能网元的下行隧道。
  38. 如权利要求36或37所述的装置,其特征在于,所述接口单元,还用于当所述通信装置关联的第二业务标识和/或第二应用域名发生变化时,向网络仓库功能网元发送第四消息,所述第四消息包括所述通信装置关联的变化后的第二业务标识和/或第二应用域名。
  39. 一种通信系统,其特征在于,包括如权利要求25-28中任一项所述的通信装置,以及包括如权利要求29-32中任一项所述的通信装置。
  40. 一种通信系统,其特征在于,包括如权利要求33-35中任一项所述的通信装置,以及包括如权利要求36-38中任一项所述的通信装置。
  41. 一种计算机程序产品,其特征在于,包括程序代码,当所述程序代码被执行,使得如权利要求1-14中任一项所述的方法被实现。
  42. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求1-14中任一项所述的方法被实现。
PCT/CN2022/119433 2021-09-28 2022-09-16 一种通信方法及装置 WO2023051287A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111142996.6A CN114040450A (zh) 2021-09-28 2021-09-28 一种通信方法及装置
CN202111142996.6 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023051287A1 true WO2023051287A1 (zh) 2023-04-06

Family

ID=80140366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119433 WO2023051287A1 (zh) 2021-09-28 2022-09-16 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN114040450A (zh)
WO (1) WO2023051287A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040450A (zh) * 2021-09-28 2022-02-11 华为技术有限公司 一种通信方法及装置
CN116669227A (zh) * 2022-02-21 2023-08-29 大唐移动通信设备有限公司 隧道建立方法、设备、装置及存储介质
WO2024078696A1 (en) * 2022-10-11 2024-04-18 Huawei Technologies Co., Ltd. User plane entity enhancement for supporting in-network computing in a mobile network
CN118678489A (zh) * 2023-03-17 2024-09-20 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612742A (zh) * 2017-05-08 2019-12-24 三星电子株式会社 用于支持5g蜂窝网络的会话连续性的方法和装置
CN110831094A (zh) * 2018-08-14 2020-02-21 华为技术有限公司 一种数据传输通道的处理方法及装置
CN112584327A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种更新用户面路径的方法、装置及系统
US20210274323A1 (en) * 2018-11-19 2021-09-02 Huawei Technologies Co., Ltd. Group communications method and system, and device
CN114040450A (zh) * 2021-09-28 2022-02-11 华为技术有限公司 一种通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612742A (zh) * 2017-05-08 2019-12-24 三星电子株式会社 用于支持5g蜂窝网络的会话连续性的方法和装置
CN110831094A (zh) * 2018-08-14 2020-02-21 华为技术有限公司 一种数据传输通道的处理方法及装置
US20210274323A1 (en) * 2018-11-19 2021-09-02 Huawei Technologies Co., Ltd. Group communications method and system, and device
CN112584327A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种更新用户面路径的方法、装置及系统
CN114040450A (zh) * 2021-09-28 2022-02-11 华为技术有限公司 一种通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Alignment and correction of terminologies for PDU Session Establishment/Release and User Plane Activation/Deactivation", 3GPP, S2-175453, 21 August 2017 (2017-08-21), XP051325307 *

Also Published As

Publication number Publication date
CN114040450A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
EP3790305B1 (en) Session management for always-on sessions
EP3895385B1 (en) Methods and apparatuses for supporting a local area network (lan)
WO2023051287A1 (zh) 一种通信方法及装置
EP3764696B1 (en) Method and apparatus for transmitting data
WO2018232570A1 (zh) 一种注册及会话建立的方法、终端和amf实体
CN114651477A (zh) 用于用户面处理的系统和方法
KR20210024160A (ko) 통신 방법 및 장치
WO2021051420A1 (zh) 一种dns缓存记录的确定方法及装置
WO2018129807A1 (zh) 通信方法、网络开放功能网元和控制面网元
US20240349150A1 (en) Switching method, communication apparatus, and communication system
US20240155418A1 (en) Method and apparatus for connecting qos flow based terminal in wireless communication system
CN115915196A (zh) 一种链路状态检测方法、通信装置及通信系统
WO2022067736A1 (zh) 一种通信方法及装置
CN116806436A (zh) 移动边缘计算应用的移动网络运营商之间的协作
WO2024199202A1 (zh) 通信方法和通信装置
WO2024012230A1 (zh) 通信方法及装置
WO2024032364A1 (zh) Eas查找方法、装置、相关功能及存储介质
WO2023179397A1 (zh) 一种授权方法及装置
WO2023197737A1 (zh) 报文发送方法、pin管理方法、通信装置及通信系统
WO2023143212A1 (zh) 一种通信方法及装置
WO2023207637A1 (zh) 通信方法及装置
CN114079870B (zh) 通信方法及装置
WO2023104123A1 (zh) 一种通信方法、装置及设备
WO2023185441A1 (zh) 一种通信方法及装置
WO2024012376A1 (zh) 一种通信方法、通信装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22874674

Country of ref document: EP

Kind code of ref document: A1