WO2023051199A1 - 带宽部分的切换方法和切换装置 - Google Patents

带宽部分的切换方法和切换装置 Download PDF

Info

Publication number
WO2023051199A1
WO2023051199A1 PCT/CN2022/117437 CN2022117437W WO2023051199A1 WO 2023051199 A1 WO2023051199 A1 WO 2023051199A1 CN 2022117437 W CN2022117437 W CN 2022117437W WO 2023051199 A1 WO2023051199 A1 WO 2023051199A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
information
semi
persistent
terminal device
Prior art date
Application number
PCT/CN2022/117437
Other languages
English (en)
French (fr)
Inventor
张战战
铁晓磊
周涵
黄雯雯
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023051199A1 publication Critical patent/WO2023051199A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the communication field, and more specifically, to a bandwidth part (BWP) switching method and switching device.
  • BWP bandwidth part
  • SP-activity can also be called semi-persistent behavior (semi-persistent behavior), and more broadly, it can also be called semi-persistent configuration (semi-persistent configuration).
  • the semi-persistent activity requires signaling to activate (activate) or deactivate (deactivate).
  • the signaling for activating/deactivating the semi-persistent activity may be downlink control information (downlink control information, DCI) or medium access control control element (medium access control control element, MAC CE).
  • Semi-persistent activities include semi-persistent resources and semi-persistent states. After semi-persistent resources are activated, semi-persistent resources appear periodically.
  • semi-persistent states are always in effect.
  • the effective scope of the semi-persistent activity is within a BWP.
  • the MAC CE when the MAC CE activates the semi-persistent resource, the MAC CE can indicate the identity of the BWP where the semi-persistent resource is located.
  • the BWP corresponding to the identity of the BWP is the BWP applicable to the MAC CE. It is the BWP where MAC CE takes effect.
  • BWP is a subset bandwidth of the total bandwidth of the cell.
  • a terminal device can be configured with multiple BWPs in a cell, for example, 4 or 5 downlink BWPs, and 4 or 5 uplink BWPs. At the same time, generally only one downlink BWP and uplink BWP are active in the same cell, which is called active BWP (active BWP).
  • active BWP active BWP
  • the terminal device sends and receives data on the active BWP, and the terminal device can switch from one BWP to another BWP through BWP switching (BWP switch).
  • the semi-persistent activity in the first BWP is deactivated or cleared (cleared).
  • the first BWP Semi-persistent activities within a BWP are generally suspended. If the terminal device wants to continue to transmit the semi-persistent activity after switching to the second BWP, or wants the semi-persistent activity to be active, then a new activation signaling is required in the second BWP to activate the semi-persistent activity, which will increase the signal Reduce overhead and reduce resource utilization.
  • Embodiments of the present application provide a BWP switching method and switching device, which are beneficial to reducing signaling overhead and improving resource utilization.
  • a BWP switching method is provided, which is applied to a terminal device configured with a first BWP and a second BWP.
  • the configurations of the first BWP and the second BWP are the same, and the center frequencies of the first BWP and the second BWP are different.
  • the method includes: a terminal device receives first information from a network device on a first BWP, where the first information is used to activate or deactivate a target semi-persistent activity in the first BWP, and the first BWP is an activation BWP.
  • the terminal device switches from the first BWP to the second BWP, and the second BWP is the active BWP after switching.
  • the terminal device determines the state of the target semi-persistent activity in the second BWP after the BWP switching according to the first information, and the state includes an activated state and a deactivated state.
  • the first information can be used to activate or deactivate the target semi-persistent activity in the first BWP.
  • the first information can also be used in the second BWP.
  • Activate or deactivate the target semi-persistent activity in the BWP that is, the first information is still valid in the second BWP, so that the state of the target semi-persistent activity in the first BWP can be continued to the second BWP after BWP switching, no network equipment is required
  • Resending an activation/deactivation signaling to indicate the state of the target semi-persistent activity in the second BWP is beneficial to reduce signaling overhead and improve resource utilization.
  • the identifiers of the first BWP and the second BWP are different, and the same configuration is radio resource control (radio resource control, RRC) except for the central frequency and identifier of the BWP
  • RRC radio resource control
  • the identification of the BWP is different to distinguish different BWPs.
  • the center frequency of the BWP can be determined by the initial frequency and bandwidth of the BWP configured by the network device.
  • the initial frequency of the different BWPs The starting frequency is different, so the center frequency of BWP is also different.
  • Other RRC configurations are the same, which is beneficial to reduce the BWP handover delay and improve the data transmission rate of the terminal equipment.
  • the first BWP and the second BWP belong to the same BWP group, or the first BWP and the second BWP share the same common configuration parameters.
  • the terminal device receives configuration information from the network device, and the configuration information is used to configure the first BWP and the second BWP to belong to the same BWP group, or configure the first BWP and Public parameters of the second BWP.
  • the terminal device determines the state of the target semi-persistent activity in the second BWP after BWP switching according to the first information, including: the terminal device determines the state of the target semi-persistent activity in the second BWP after BWP switching according to the first information and configuration information .
  • the configuration information is used to configure the first BWP and the second BWP to belong to the same BWP group, where the parameters of the BWPs in the same BWP group can be configured separately, but the parameters configured separately exclude the parameters of the BWP
  • the other RRC configurations may be the same except for the identity and the center frequency.
  • the terminal device can also receive public configuration parameters sent by the network device.
  • the first BWP and the second BWP share the common configuration parameters, and only a small number of parameters are configured separately, such as the BWP identifier and the BWP center frequency. In this manner, the network device only needs to send public configuration information once, and only needs to configure a small number of parameters for the first BWP and the second BWP, which is beneficial to save signaling overhead.
  • the first information is used to activate the target semi-persistent activity in the first BWP
  • the terminal device determines the target semi-persistent activity after BWP switching according to the first information and configuration information
  • the state in the first BWP includes: the terminal device determines, according to the first information and configuration information, that the state of the target semi-persistent activity in the second BWP after BWP switching is an active state.
  • the terminal device does not need new signaling to activate the target semi-persistent activity in the second BWP after BWP switching.
  • the target semi-persistent activity continues to maintain the activation state of the target semi-persistent activity in the first BWP, which is beneficial to save signaling overhead.
  • the first information is used to deactivate the target semi-persistent activity in the first BWP
  • the terminal device determines the target semi-persistent activity after BWP switching according to the first information and configuration information.
  • the state of the activity in the first BWP includes: the terminal device determines, according to the first information and configuration information, that the state of the target semi-persistent activity in the second BWP is a deactivated state after BWP switching.
  • the terminal device does not need new signaling to deactivate the second BWP after BWP switching
  • the target semi-persistent activity in the BWP continues to maintain the deactivated state of the target semi-persistent activity in the first BWP, which is beneficial to save signaling overhead.
  • the terminal device receives second information from the network device, where the second information is used to indicate that after the terminal device switches from the first BWP to the second BWP, the first BWP Whether the information takes effect on the second BWP.
  • the terminal device determines the state of the target semi-persistent activity in the second BWP after the BWP switching according to the first information, including: the terminal device determines that the target semi-persistent activity is in the second BWP after the BWP switching according to the first information and the second information. Status in the second BWP.
  • the terminal device can use the second information to determine whether the first information is valid for the second BWP after switching from the first BWP to the second BWP, that is, to determine whether the state of the target semi-persistent activity in the first BWP continues into the second BWP.
  • the activation state of the semi-persistent activity continues into the second BWP, it may conflict with other resources in the second BWP.
  • the information does not take effect for the second BWP, which helps to avoid the problem that the semi-persistent resource may conflict with the resource in the second BWP after the BWP is switched.
  • the second information is carried by RRC signaling or downlink control information DCI.
  • the first information is used to activate the target semi-persistent activity in the first BWP
  • the second information indicates that when the terminal device switches from the first BWP to the second BWP, the second A message is valid for the second BWP.
  • the terminal device determines the state of the target semi-persistent activity in the second BWP after the BWP switching according to the first information and the second information, including: the terminal device determines the target semi-persistent activity after the BWP switching according to the first information and the second information
  • the state in the second BWP is the active state.
  • the activation state of the target semi-persistent activity in the first BWP continues to the second BWP, that is, in the second BWP Target semi-persistent activity is also active in BWP.
  • the first information is used to deactivate the target semi-persistent activity in the first BWP
  • the second information indicates that when the terminal device switches from the first BWP to the second BWP The first information is valid for the second BWP.
  • the terminal device determines the state of the target semi-persistent activity in the second BWP after the BWP switching according to the first information and the second information, including: the terminal device determines the target semi-persistent activity after the BWP switching according to the first information and the second information
  • the state in the second BWP is the deactivated state.
  • the deactivation state of the target semi-persistent activity in the first BWP continues to the second BWP, that is, in The target semi-persistent activity is also deactivated in the second BWP.
  • the second information is carried by RRC signaling, and the second information is used to indicate that when the terminal device switches from the first BWP to the second BWP, the first information will be used by the second BWP. BWP takes effect.
  • the terminal device receives the second information from the network device
  • the terminal device receives the third information from the network device, and the third information is used to indicate that the first information will affect the second BWP after the terminal device switches from the first BWP to the second BWP. If it does not take effect, the third information is carried by the DCI.
  • the configuration period of RRC signaling is relatively long, for example, once every hour . Because when the activation state of the semi-persistent activity continues into the second BWP, it may conflict with other resources in the second BWP.
  • the terminal device can also use the third information, the first The third information is carried by the DCI.
  • the DCI is a real-time dynamic instruction that can flexibly cancel the second information, that is, instructs the first information not to take effect on the second BWP after BWP switching, which is beneficial to avoid resource conflicts.
  • the first information is carried by DCI.
  • the target semi-persistent activity includes semi-persistent resources
  • the semi-persistent resources include at least one of the following: downlink semi-persistent scheduling (DL SPS) Physical downlink shared channel (physical downlink shared channel, PDSCH) resource, uplink configured grant type 2 physical uplink shared channel (uplink configured grant type2 physical uplink shared channel) resource, PUSCH (SP CSI reporting on PUSCH) resources.
  • DL SPS downlink semi-persistent scheduling
  • Physical downlink shared channel physical downlink shared channel, PDSCH
  • uplink configured grant type 2 physical uplink shared channel uplink configured grant type2 physical uplink shared channel
  • PUSCH SP CSI reporting on PUSCH
  • the first information is carried by the MAC CE.
  • the target semi-persistent activity includes semi-persistent resources and/or semi-persistent states
  • the semi-persistent states include physical uplink control channel (physical uplink control channel, PUCCH) spatial relationship and /or the transmission configuration indication (transmission configuration indication, TCI) state of the PDSCH dedicated to the terminal device
  • the semi-persistent resources include at least one of the following: semi-persistent channel state information reference signal (channel state information reference signal, CSI-RS) resources, semi-persistent Channel state information interference measurement (channel state information interference measurement, CSI-IM) resource, semi-persistent zero-power CSI-RS resource set (SP ZP CSI-RS resource set), semi-persistent sounding reference signal (SP sounding reference signal, SP SRS ) resources or PUCCH resources for semi-persistent CSI reporting (SP CSI reporting on PUCCH).
  • CSI-RS channel state information reference signal
  • CSI-IM semi-persistent Channel state information interference measurement
  • SP ZP CSI-RS resource set
  • the MAC CE includes an identifier of the first BWP and an identifier of the second BWP.
  • the format of the MAC CE can be extended so that the MAC CE carries multiple BWP identities, so that when activating/deactivating the semi-persistent activity through the MAC CE, the terminal device can pass the multiple BWP identities carried by the MAC CE Switching from the first BWP to the second BWP, and the MAC CE can indicate that the first information is still applicable to the switched second BWP after the BWP is switched, which is also beneficial to reduce signaling overhead.
  • the first information is used to activate the target semi-persistent activity in the first BWP, and after the terminal device switches from the first BWP to the second BWP, the terminal device Temporarily suspend target semi-persistent activity in the first BWP.
  • the target semi-persistent activity activated in the first BWP is temporarily suspended, so that the After the second BWP is switched to the first BWP, the target semi-persistent activity in the first BWP can be quickly restored to the active state, and no new activation signaling is required to reactivate, which is beneficial to reduce signaling overhead and data on the BWP transmission delay.
  • the terminal device before the terminal device switches from the first BWP to the second BWP, the terminal device receives fourth information from the network device, and the fourth information is used to instruct the terminal device to switch from the first BWP to the second BWP.
  • the first BWP switches to the second BWP.
  • Switching the terminal device from the first BWP to the second BWP includes: switching the terminal device from the first BWP to the second BWP according to fourth information.
  • the terminal device may perform BWP switching according to the fourth information.
  • the fourth information may be carried by DCI.
  • a BWP switching method including: the network device sends configuration information to the terminal device, and the configuration information is used to configure the first BWP and the second BWP to belong to the same BWP group, or to configure the first BWP and the second BWP public parameters.
  • the network device sends second information to the terminal device, where the second information is used to indicate that the first information after the terminal device switches from the first BWP to the second BWP Whether to take effect on the second BWP.
  • the network device sends third information to the terminal device, and the third information is used to indicate that when the terminal device switches from the first BWP to the second BWP, Second, the BWP does not take effect, and the third information is carried by the DCI.
  • a BWP switching device including: for performing the method in any possible implementation manner of the first aspect above.
  • the apparatus includes a module configured to execute the method in any possible implementation manner of the foregoing first aspect.
  • another BWP switching device including a processor, the processor is coupled to a memory, and can be used to execute instructions in the memory, so as to implement the method in any possible implementation manner of any of the above aspects.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the BWP switching device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device for switching the BWP is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any possible implementation manner of the first aspect above.
  • the above-mentioned processor can be a chip
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and may receive signals through the receiver and transmit signals through the transmitter, so as to execute the method in any possible implementation manner of the first aspect above.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be separated from the processor.
  • the memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged in different On the chip, the embodiment of the present application does not limit the type of the memory and the configuration of the memory and the processor.
  • a non-transitory memory such as a read-only memory (read only memory, ROM)
  • ROM read only memory
  • a related data interaction process such as sending indication information may be a process of outputting indication information from a processor
  • receiving capability information may be a process of receiving input capability information from a processor.
  • processed output data may be output to the transmitter, and input data received by the processor may be from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the sixth aspect above can be a chip, and the processor can be implemented by hardware or by software.
  • the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, which is realized by reading the software code stored in the memory, and the memory may be integrated in the processor, or it may be located outside the processor and exist independently.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), which, when the computer program is run, causes the computer to execute any one of the possible implementations in the first aspect above. methods in methods.
  • a computer-readable storage medium stores a computer program (also referred to as code, or instruction) which, when run on a computer, causes the computer to execute the above-mentioned first aspect.
  • a computer program also referred to as code, or instruction
  • Fig. 1 is a schematic diagram of a communication system
  • Figure 2 is a schematic diagram of a DCI scheduling PDSCH that activates DL SPS
  • Figure 3 is a schematic diagram of the format of a MAC CE for activating/deactivating a semi-persistent CSI-RS/CSI-IM resource set;
  • Fig. 4 is a schematic diagram of a MAC CE activating semi-persistent resources
  • FIG. 5 is a schematic diagram of a semi-persistent resource after BWP switching
  • FIG. 6 is a schematic flowchart of a BWP switching method provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a semi-persistent resource provided by an embodiment of the present application after BWP switching;
  • FIG. 8 is a schematic flowchart of another BWP switching method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another BWP switching method provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another BWP switching method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a DCI-activated DL SPS provided in an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a BWP switching device provided by an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of another BWP switching device provided by an embodiment of the present application.
  • At least one means one or more, and “multiple” means two or more.
  • And/or describes the association relationship of associated objects, and means that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one (one) of a, b and c may represent: a, or b, or c, or a and b, or a and c, or b and c, or a, b and c, wherein a, b, c can be single or multiple.
  • FIG. 1 is a schematic diagram of a communication system 100 .
  • the communication system 100 may include a network device 110 and at least one terminal device 120 .
  • Fig. 1 exemplarily shows a scenario of two terminal devices.
  • the communication system further includes a core network device 130 .
  • the terminal device 120 is connected to the network device 110 in a wireless manner, and the network device 110 is connected to the core network device 130 in a wireless or wired manner.
  • the terminal device may be fixed or mobile.
  • the embodiment of the present application does not limit the number of network devices and terminal devices included in the communication system.
  • Core network equipment and network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the network equipment can be integrated on the same physical equipment, or a physical equipment can integrate part of the core network equipment. device functions and functions of some network devices.
  • the terminal equipment in the embodiment of the present application may refer to user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device .
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, Mixed reality (mixed reality, MR) terminal, extended reality (extended reality, XR) terminal, holographic display terminal, wireless terminal in industrial control (industrial control), wireless terminal in self driving (self driving), or connected to Other processing devices of wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc., for example, reduced capability (reduced capability, RedCap) in new radio (new radio, NR) system ) terminal equipment.
  • the terminal device may also be a terminal device in an Internet of Things (internet of things, IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection.
  • the present application does not limit the specific form of the terminal device.
  • the terminal device may be a device for realizing the function of the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the network device in this embodiment of the present application may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (node base, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home node B, HNB), base band unit (base band unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as, A gNB in an NR system, or a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in a 5
  • the network device may be a device for realizing the function of the network device, or may be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the network devices and terminal devices in the embodiments of the present application can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; or deployed on water; or deployed on airplanes, balloons and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • the communication systems applicable to the embodiments of the present application include but are not limited to: 5th generation (5th generation, 5G) systems or future evolution communication systems, such as NR communication systems, vehicle-to-other equipment (vehicle-to-X V2X), where V2X can include vehicle to Internet (vehicle to network, V2N), vehicle to vehicle (vehicle to vehicle, V2V), vehicle to infrastructure (vehicle to infrastructure, V2I), vehicle to pedestrian (vehicle to pedestrian, V2P ), etc., long term evolution-vehicle (LTE-V), Internet of Vehicles, machine type communication (MTC), Internet of things (Internet of things, IoT), long-term evolution technology of machine-to-machine communication (long term evolution-machine, LTE-M), machine to machine (machine to machine, M2M), device to device (device to device, D2D), wireless local area network (wireless local access network, WLAN) system, long term evolution (long term evolution, LTE) system
  • V2X
  • BWP is a subset of the total bandwidth of the cell.
  • BWP is divided into uplink BWP and downlink BWP.
  • Terminal equipment can be configured with multiple BWPs in a cell, such as 4 or 5 downlink BWPs, 4 or 5 uplink BWPs, and At one moment, generally only one downlink BWP and one uplink BWP are active in the same cell, which is called active BWP (active BWP).
  • active BWP active BWP
  • terminal equipment can only send and receive data on the activated BWP.
  • the parameters of different BWPs are independent of each other, and the parameters of different BWPs can be configured to be the same or different. Taking the three parameters of center frequency, bandwidth size, and subcarrier spacing (SCS) as an example, these three parameters will affect the radio frequency (radio frequency, RF) parameters of the terminal device, that is, if these three parameters are different , the terminal device may need to adjust the radio frequency link, causing the terminal device to be interrupted, and the terminal device cannot send and receive data during the interruption.
  • the RRC parameters between different BWPs are also configured independently of each other.
  • the terminal device can switch from one BWP to another BWP through BWP switching (BWP switch). For example, switching from a BWP with a smaller bandwidth to a BWP with a larger bandwidth helps to increase the data rate of the terminal device and reduce delay; switching from a BWP with a larger bandwidth to a BWP with a smaller bandwidth helps save the power of the terminal device consumption.
  • BWP switch BWP switching
  • BWP switching can be triggered in the following three ways:
  • DCI triggering includes a BWP indicator (indicator) information field, which is used to indicate the identity (identity, ID) of the target BWP. If the indicated target BWP ID and the terminal device are currently located (or currently activated If the BWP ID is different, it means that the DCI triggers the terminal device to switch the BWP to the BWP corresponding to the BWP ID indicated by the BWP indication information field.
  • BWP indicator indicator
  • Timer trigger If the deactivation timer (BWP-inactivity timer) of the BWP where the terminal device is currently located expires, the terminal device will be triggered to switch the BWP to the default BWP (default BWP).
  • the default BWP can be the initial state of the terminal device. The initial BWP for access.
  • RRC signaling trigger If the terminal device receives RRC reconfiguration (RRC reconfiguration) signaling, including signaling instructing the terminal device to perform BWP switching, or the parameters of the currently activated BWP have changed, it means that the RRC The reconfiguration signaling triggers the terminal device to perform BWP handover.
  • RRC reconfiguration RRC reconfiguration
  • the NR communication system supports two types of BWP switch delays (BWP switch delay), and which type the terminal device adopts can be determined according to the capability reported by the terminal device. For example, if the terminal device reports capability support type 1 (type 1), then the terminal device supports BWP switching delay of type 1; if the terminal device reports capability support type 2 (type 2), then the terminal device supports BWP switching delay of type 2 delay.
  • BWP switch delay is related to the subcarrier spacing, as shown in Table 1 for details.
  • the BWP switching delay is equal to the BWP switching delay corresponding to the smaller SCS before and after the BWP switching.
  • represents a digital basic configuration (numerology), and different ⁇ correspond to different subcarrier spacings. It can be seen from Table 1 that when ⁇ is 0, 1, 2, and 3, the BWP switching delays of type 1 are 1 slot, 2 slot, 3 slot, and 6 slot respectively, and the corresponding absolute times are 1 ms, 1 ms, 0.75 ms, and 0.75 ms, respectively. .
  • the BWP switching delays of type 2 are 3slot, 5slot, 9slot, and 18slot respectively, and the corresponding absolute times are 3ms, 2.5ms, 2.25ms, and 2.25ms, respectively.
  • BWP switching delay can be composed of multiple parts.
  • BWP switching delay mainly includes DCI resolution time, RF and baseband (baseband) parameter calculation and loading time, and RF switching/tuning (RF retuning) time.
  • the BWP handover delay also includes certain redundancy, which is used to ensure that the end time of the BWP handover delay is aligned with the time slot boundary.
  • SP Semi-persistent
  • Semi-persistent activity can also be called semi-persistent behavior. More broadly, semi-persistent activities can also be called semi-persistent configurations.
  • the semi-persistent activity requires signaling to activate (activate) or deactivate (deactivate).
  • the semi-persistent activity can be divided into two categories: 1) the activation/deactivation signaling is DCI; 2) the activation/deactivation signaling is MAC CE.
  • Semi-continuous activities are relative to periodic (periodic) activities and non-periodic (aperiodic) activities. Periodic activities do not require signaling activation after RRC configuration. When a BWP is an active BWP, the periodic activities in the BWP are active. If the network device releases periodic activities through RRC configuration, the corresponding period Sexual activity ceases. Aperiodic activities generally need to be triggered by DCI, and are one-time activities. After the aperiodic activities triggered by DCI end, new DCIs are required to trigger new aperiodic activities.
  • DCI when DCI triggers aperiodic reference signal (reference signal, RS) resource, DCI activates only one reference signal resource; when DCI triggers aperiodic channel state information reporting (channel state information reporting, CSI reporting), DCI activates only one Report physical uplink shared channel (physical uplink shared channel, PUSCH) resources.
  • RS reference signal
  • DCI when DCI triggers aperiodic channel state information reporting (channel state information reporting, CSI reporting), DCI activates only one Report physical uplink shared channel (physical uplink shared channel, PUSCH) resources.
  • the semi-persistent activity occurs periodically or takes effect all the time after the activation signaling is activated, and the semi-persistent activity stops after the deactivation signaling is deactivated.
  • Semi-persistent activities include semi-persistent resources and semi-persistent states.
  • the semi-persistent resource after the activation signaling is activated, the semi-persistent resource appears periodically.
  • the semi-persistent state after the activation signaling is activated, the semi-persistent state takes effect all the time.
  • the activation/deactivation of the physical downlink control channel (physical downlink control channel, PDCCH) of the downlink semi-persistent scheduling (downlink semi-persistent scheduling, DL SPS) satisfies: the cyclic redundancy check (cyclic redundancy check) of the DCI carried by the PDCCH check, CRC) is scrambled by the configured scheduling radio network temporary identifier (CS-RNTI), enabling the new data indicator field corresponding to the enabled transport block (enabled TB), NDI field) is set to "0".
  • PDCCH physical downlink control channel
  • DL SPS downlink semi-persistent scheduling
  • the DCI is a DCI for activating DL SPS. If the conditions in Table 3 below are met, it can be judged that the DCI is a DCI for deactivating DL SPS.
  • DCI DCI format 1_0 DCI format 1_1 HARQ process number Set to all 0 Set to all 0 redundant version set to "00" For enable transfer block, set to "00"
  • the DCI carried by the PDCCH can be composed of multiple information fields, such as the hybrid automatic repeat request process number (HARQ process number) information field and the redundancy version (redundancy version) information field in Table 2. Different The information fields may consist of the same number or different numbers of bits.
  • HARQ process number hybrid automatic repeat request process number
  • redundancy version redundancy version
  • the HARQ process number information field consists of 4 bits.
  • the terminal device parses the DCI to determine the DCI format, and determines that the DCI is DCI format 1_1, the terminal device further judges whether the 4 bits in the HARQ process number information field are all is 0, judge whether the 2 bits in the redundancy version information field are all 0, in the case that the 4 bits in the HARQ process number information field are all 0 and the 2 bits in the redundancy version information field are all 0 , the terminal device determines that the DCI is the DCI for activating DL SPS.
  • the redundancy version information field consists of 2 bits.
  • the number of bits in the HARQ process number information field is described as an example, and may also be 5 bits, 6 bits or other numbers of bits, which is not limited in this embodiment of the present application.
  • the HARQ process number information field consists of 4 bits
  • the modulation and coding scheme information field consists of 5 bits
  • the frequency domain resource allocation information field consists of 10 bits.
  • the terminal device analyzes the DCI to determine the DCI format, and determines that the DCI is DCI format 1_0, the terminal device further determines whether the 4 bits in the HARQ process number information field are all 0, and whether the 2 bits in the redundancy version information field are all 0. All 0s, whether all 5 bits in the modulation and coding scheme information field are 1s, and whether all 10 bits in the frequency domain resource allocation information field are 1s.
  • the 4 bits in the HARQ process number information field are all 0, the 2 bits in the redundancy version information field are all 0, the 5 bits in the modulation and coding scheme information field are all 1, and the frequency domain resource allocation information field In the case where all 10 bits in the DCI are 1, the terminal device judges that the DCI is the DCI for deactivating DL SPS.
  • Fig. 2 is a schematic diagram of a physical downlink shared channel (physical downlink shared channel, PDSCH) scheduled by DCI with DL SPS activated.
  • Figure 2 includes a BWP, legend 1 represents the DCI of activating/deactivating DL SPS, and legend 2 represents the PDSCH scheduled by the DCI of activating DL SPS or the activated PDSCH.
  • activating DCI of DL SPS will trigger semi-persistent PDSCH resources. It can be seen from Figure 2 that the DCI that activates DL SPS will schedule a PDSCH, which is the first PDSCH of the semi-persistent PDSCH.
  • the semi-persistent PDSCH Resources appear periodically. Except for the first PDSCH of the semi-persistent PDSCH, other PDSCHs have no corresponding PDCCH.
  • the DCI of deactivating DL SPS does not schedule data, that is, does not schedule PDSCH, and the DCI of deactivating DL SPS can be called non-scheduling DCI.
  • the activation/deactivation principle is similar to that of DL SPS.
  • the CRC of the DCI of the Type 2 PUSCH for activating/deactivating the uplink configuration grant can be scrambled by CS-RNTI.
  • Activation/deactivation of the CRC of the DCI reported by the semi-persistent CSI on the PUSCH may be scrambled through a semi-persistent channel state information radio network temporary identifier (SP-CSI-RNTI).
  • SP-CSI-RNTI semi-persistent channel state information radio network temporary identifier
  • the semi-persistent resource triggered by the MAC CE may include a semi-persistent channel state information reference signal (channel state information reference signal, CSI-RS)/semi-persistent channel state information interference measurement (channel state information interference measurement, CSI-IM) Resource set (SP CSI-RS/CSI-IM resource set), semi-persistent zero-power CSI-RS resource set (SP ZP CSI-RS resource set), semi-persistent sounding reference signal (SP sounding reference signal, SP SRS) resource or CSI reporting (SP CSI reporting on PUCCH) resources on a semi-persistent physical uplink control channel (physical uplink control channel, PUCCH).
  • CSI-RS channel state information reference signal
  • CSI-IM channel state information interference measurement
  • SP ZP CSI-RS resource set semi-persistent zero-power CSI-RS resource set
  • SP sounding reference signal, SP SRS semi-persistent sounding reference signal
  • SP SRS semi-persistent sounding reference signal
  • PUCCH physical up
  • Fig. 3 is a schematic diagram of the format of a MAC CE for activating/deactivating a semi-persistent CSI-RS/CSI-IM resource set.
  • Each row in FIG. 3 represents 8 bits (octet, Oct).
  • the "A/D” field is set to 1 for activation and 0 for deactivation.
  • the "serving cell ID” field indicates the ID of the serving cell to which the MAC CE applies.
  • the "BWP ID" (BWP ID) field indicates the ID of the BWP to which the MAC CE applies.
  • the "semi-persistent channel state information reference signal resource set identification" (SP CSI-RS resource set ID) field indicates the index of the semi-persistent CSI-RS resource set to be activated/deactivated.
  • SP CSI-RS resource set ID indicates the index of the semi-persistent CSI-RS resource set to be activated/deactivated.
  • the "IM” field indicates whether the 8-bit field including the "identification of the semi-persistent CSI-IM resource set” field exists. If the "IM” field is set to 1, it indicates that the 8-bit field including the "identification of the semi-persistent CSI-IM resource set” field exists. If the bit field exists, if the "IM” field is set to 0, it means that the 8-bit field including the "identification of the semi-persistent CSI-IM resource set” field does not exist.
  • the "identification of semi-persistent CSI-IM resource set” field indicates the index of the semi-persistent CSI-IM resource set to be activated/deactivated.
  • the "ID of TCI state (IDi)” field corresponds to the i+1th resource in the SP CSI-RS resource set to be activated, and is used to indicate the TCI state of the i+1th resource, "ID of TCI state (IDi)"
  • TCI state ID TCI state ID
  • the reference signal (resource) associated with the TCI state is used as the corresponding i+1th SP CSI- Quasi co-location (quasi co-location, QCL) source reference signal (resource) of RS resources.
  • R indicates that it is a reserved bit, which can be set to 0.
  • the MAC CE is carried by the PDSCH, and the information included in the MAC CE generally takes effect 3ms after the HARQ acknowledgment (HARQ-ACK) feedback is sent for the PDSCH of the MAC CE.
  • the terminal device sends a PUCCH in time slot n, and the PUCCH carries HARQ-ACK information, and the HARQ-ACK information is the HARQ feedback corresponding to the PDSCH carrying the MAC CE, then the MAC CE in the time slot
  • the first time slot after that takes effect that is, when the MAC CE is in the time slot and subsequent time slots.
  • represents the subcarrier spacing configuration corresponding to the PUCCH carrying HARQ-ACK, Indicates the number of time slots included in a subframe corresponding to the subcarrier spacing ⁇ .
  • Table 4 shows the correspondence between the subcarrier spacing and the number of time slots included in the subframe.
  • the network device can pre-configure the period and period offset of the semi-persistent resource through high-level signaling, and the candidate time domain position of the semi-persistent resource can be calculated through the period and period offset.
  • FIG. 4 is a schematic diagram of a MAC CE activating semi-persistent resources.
  • Figure 4 includes a BWP.
  • legend 1 represents the MAC CE that activates/deactivates the semi-persistent resource
  • legend 2 represents the semi-persistent resource activated by the MAC CE
  • legend 3 represents the candidate semi-persistent resource
  • the network device sends data at the candidate time domain position of the semi-persistent resource, or the terminal device sends data at the candidate time domain position of the semi-persistent resource. If the MAC CE is used to deactivate the semi-persistent resource, then after the deactivated MAC CE takes effect, the sending or receiving of the semi-persistent resource stops.
  • the semi-persistent activity is for a single BWP (per BWP), that is, the effective scope of the semi-persistent activity is one BWP.
  • the DCI when used to activate/deactivate the PDSCH/PUSCH, the DCI will indicate the identity of the BWP where the PDSCH/PUSCH is located.
  • MAC CE When MAC CE is used to activate/deactivate semi-persistent resources, MAC CE will also indicate a BWP identifier, and the BWP corresponding to the BWP identifier is the BWP applicable to MAC CE, that is, the BWP for which MAC CE information takes effect.
  • the BWP When the BWP is activated, if there is an active semi-persistent activity in the BWP, and if the BWP is switched, for example, the original BWP is the first BWP and is switched to the second BWP, then for the semi-persistent activity activated by DCI, the activity in the first BWP Semi-persistent activity is deactivated, or called cleared. For the semi-persistent activity activated by MAC CE, the semi-persistent activity in the first BWP is generally temporarily suspended (suspended). If the first BWP becomes the active BWP again, for example, switching back to the first BWP from the second BWP, the second A semi-persistent activity that was temporarily suspended before the BWP continues, that is, the activation state is restored.
  • Fig. 5 is a schematic diagram of a semi-persistent resource after BWP switching.
  • the first BWP and the second BWP are included in Fig. 5
  • legend 1 represents the activation signaling (DCI or MAC CE)
  • legend 2 represents the semi-persistent resource activated/scheduled by the activation signaling.
  • the activated semi-persistent PDSCH resources in the first BWP are deactivated.
  • the PUSCH (SP CSI reporting on PUSCH) activated by DCI for semi-persistent CSI reporting
  • the first BWP is the uplink BWP
  • the uplink BWP or the downlink BWP is switched, then the activated in the first uplink BWP Semi-persistent PUSCH resources are deactivated.
  • DCI-activated PUSCH (SP CSI reporting on PUSCH) for semi-persistent CSI reporting, if the first BWP is an uplink BWP, then the semi-persistent PUSCH resource activated in the first uplink BWP is deactivated.
  • MAC CE For semi-persistent resources activated by MAC CE, such as SP CSI-RS/CSI-RS resource set, SP ZP CSI-RS resource set, SP SRS or semi-persistent CSI reporting on PUCCH, if MAC CE is applicable
  • the BWP is not an activated BWP and does not receive the deactivation MAC CE, then the semi-persistent resource activated by the MAC CE is in a temporarily suspended (suspended) state.
  • the reference signal (demodulation reference signal, DMRS) port has a QCL relationship with the synchronization signal physical broadcast channel block (SS/PBCH block, SSB) determined in the initial access procedure (initial access procedure).
  • the QCL relationship is "QCL-typeA" or "QCL-typeD”.
  • the terminal device if the BWP is switched, in the new BWP, if the terminal device has not received the MAC CE signaling for activating the TCI state of the terminal device-specific PDSCH, or the activation MAC CE signaling has not yet taken effect, then the terminal device It is assumed that the DMRS port of the PDSCH has a QCL relationship with the SSB used in the initial access process.
  • the terminal device can determine parameters such as delay spread, Doppler frequency shift, and Doppler spread that the PDSCH can refer to.
  • the terminal device can determine the beam direction that the PDSCH can refer to, including parameters such as antenna direction and precoding matrix.
  • RedCap terminal equipment which includes three major application scenarios: wearables, industrial wireless sensors and video surveillance ( vdeo surveillance) equipment.
  • RedCap's terminal equipment supports a maximum bandwidth of 20MHz in FR1 and a maximum bandwidth of 100MHz in FR2.
  • the general NR enhanced mobile broadband (eMBB) terminal equipment supports a bandwidth of 100MHz in FR1, a bandwidth of 200MHz in FR2, and optionally, a bandwidth of 400MHz in FR2. From the above description, it can be seen that the bandwidth capability supported by NR RedCap terminal equipment is smaller than that of existing NR eMBB terminal equipment. This is because the smaller bandwidth capability can reduce the implementation complexity of terminal equipment and save the power consumption of terminal equipment, which is beneficial to Reduce the cost of terminal equipment.
  • the RedCap terminal equipment Since the RedCap terminal equipment supports a relatively small bandwidth, the frequency diversity gain obtained within the relatively small bandwidth is relatively small. In addition, working in a small bandwidth for a long time may cause the terminal equipment to be affected by large interference for a long time. Therefore, in order to improve the frequency diversity gain of the RedCap terminal equipment and improve the resource utilization efficiency of the network equipment, the RedCap terminal equipment may frequently switch the center frequency, that is, perform BWP switching.
  • the semi-persistent activity activated in the first BWP will be deactivated. is activated or cleared, so if the second BWP needs to continue to activate the semi-persistent activity, a new DCI activation signaling is required.
  • the semi-persistent activity triggered by MAC CE after the first BWP is switched to the second BWP, if the semi-persistent activity activated in the first BWP wants to remain active in the second BWP, a new MAC CE activation signaling is also required. activation.
  • the embodiment of the present application provides a BWP switching method and switching device.
  • the terminal device switches from the first BWP to the second BWP, it activates in the first BWP
  • the semi-persistent activity in the second BWP continues to be active or resumes the active state, and the semi-persistent activity that was originally active in the first BWP after the switch is temporarily suspended (suspended), that is, it is used to activate/deactivate the first BWP
  • the signaling of the semi-persistent activity is still applicable to the second BWP, so that after the terminal device switches to the second BWP, there is no need to send a new activation/deactivation instruction, which is beneficial to reduce the overhead of activation/deactivation signaling , Improve resource utilization.
  • the first BWP is the BWP before the handover
  • the second BWP is the BWP after the handover as an example for description.
  • the activation/deactivation signaling may take effect in both the first BWP and the second BWP when the configurations are the same. For example, if the DCI signaling indicates that the semi-persistent PDSCH resource is activated in the first BWP, but the semi-persistent PDSCH resource is not configured in the second BWP, then the DCI cannot activate the semi-persistent PDSCH resource in the second BWP, that is, it cannot take effect.
  • the large BWP switching delay may cause the interruption of data transmission and reception by the terminal device, which will reduce the data transmission rate.
  • Performing BWP switching due to the aforementioned BWP switching delay is not conducive to performing frequent switching by the terminal device.
  • the center frequency of BWP is different before and after radio frequency switching, but the parameters such as RRC configuration are all the same or partially different.
  • the first BWP and the second BWP share a set of RRC configuration parameters, and only the center frequency is different. In this way, after the terminal device switches to the second BWP, if the BWP switch is pre-configured and no signaling is required to trigger the switch (for example, timer triggering), the time for the terminal device to analyze the signaling, radio frequency and baseband can be saved.
  • (baseband) parameter calculation calculates and reapplies the time of RRC configuration parameters, and can prevent the terminal device from re-executing automatic gain control (automatic gain control, AGC)/automatic frequency control (automatic frequency control, AFC) adjustment, so that when the BWP is switched
  • AGC automatic gain control
  • AFC automatic frequency control
  • the delay can only include the RF switching/tuning (RF retuning) time, reducing the BWP switching delay.
  • the RedCap terminal device under research is expected to reduce the BWP switching delay to 50-200 microseconds ( ⁇ s), for example, 140 ⁇ s through fast BWP switching.
  • the BWP switching method in the embodiment of the present application can reduce signaling overhead and improve resource utilization when fast BWP switching is performed between two BWPs with the same configuration.
  • FIG. 6 is a schematic flowchart of a BWP switching method 600 provided by an embodiment of the present application.
  • the terminal device in method 600 is configured with a first BWP and a second BWP, the configurations of the first BWP and the second BWP are the same, and the center frequencies of the first BWP and the second BWP are different.
  • Method 600 includes the steps of:
  • the network device sends first information to the terminal device on the first BWP, where the first information is used to activate or deactivate a target semi-persistent activity in the first BWP, where the first BWP is an activation BWP.
  • the terminal device receives the first information on the first BWP.
  • the terminal device switches from the first BWP to the second BWP, and the second BWP is the active BWP after the switching.
  • the terminal device determines, according to the first information, the state of the target semi-persistent activity in the second BWP after the BWP is switched, and the state includes an activated state and a deactivated state.
  • the terminal device may determine the state of the target semi-persistent activity in the second BWP according to the first information before the BWP switch, or determine the state of the target semi-persistent activity in the second BWP after the BWP switch.
  • the first information determines the state of the target semi-persistent activity in the second BWP.
  • the terminal device can activate or deactivate the target semi-persistent activity in the first BWP through the first information sent by the network device, and after the terminal device switches from the first BWP to the second BWP, the terminal The device can also use the first information to determine whether the target semi-persistent activity in the second BWP is activated or deactivated, so that after the BWP is switched, the network device does not need to send a new activation/deactivation instruction to the terminal device.
  • the activation or deactivation signaling of the semi-persistent activity in a BWP is also applicable to the second BWP, that is, the first information is also applicable to the second BWP, or the first information can also take effect in the second BWP, the first The semi-persistent active state in the BWP can be maintained in the second BWP, which is beneficial to save signaling overhead.
  • the effective time of MAC CE signaling is 3 ms, it will cause data transmission delay, the BWP switching method provided by the embodiment of the present application saves signaling overhead, and because no new MAC CE activation/deactivation half is required. Continuous activity, so that the delay caused by the effective time of MAC CE signaling can be avoided, and it is also beneficial to reduce the data transmission delay.
  • configurations of the first BWP and the second BWP are the same, including that the first BWP and the second BWP share the same configuration.
  • the frequency domain position of the target semi-persistent activity moves from the first BWP to the second BWP, but the relative position of the target semi-persistent activity in the second BWP is the same as that of the previous target
  • the relative position of the semi-persistent activity in the first BWP is the same.
  • the semi-persistent activity can be understood as a semi-persistent resource, not a semi-persistent state.
  • the identifiers of the first BWP and the second BWP are different, and the configurations of the first BWP and the second BWP are the same.
  • the RRC configuration is the same.
  • each BWP can have its own identification (BWP ID), so the identifications of the first BWP and the second BWP can also be different.
  • the RRC configuration may include: BWP bandwidth, subcarrier spacing, control resource set (control resource set, CORESET), search space set (search space set, SS set), quasi-co-location (QCL) relationship, reference signal resources, physical Uplink control channel (PUCCH), rate matching (rate matching), multiple-in multiple-out (multiple-in multiple-out, MIMO) layer number, physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) configuration parameters, etc.
  • the first BWP and the second BWP may also have different resource or configuration numbers, for example, the number of the control resource set and/or the number of the search space set, and other RRC configurations are the same. It should be understood that the first BWP and the second BWP have the same bandwidth except for the center frequency of the BWP, which also means that the first BWP and the second BWP have different start frequencies.
  • FIG. 7 is a schematic diagram of a semi-persistent resource after BWP switching provided by an embodiment of the present application. Including the first BWP and the second BWP in Fig. 7, legend 1 represents the activation signaling (DCI/MAC CE), and legend 2 represents the semi-persistent resource activated by the activation signaling.
  • DCI/MAC CE activation signaling
  • legend 2 represents the semi-persistent resource activated by the activation signaling.
  • the first information is carried by DCI.
  • the target semi-persistent activity includes semi-persistent resources, and the semi-persistent resources include at least one of the following: PDSCH resources of downlink semi-persistent scheduling (DL semi-persistent scheduling, DL SPS), uplink configuration grants Type 2 PUSCH (UL configured grant type 2 PUSCH) resources, PUSCH resources used for semi-persistent CSI reporting.
  • scrambling the RNTI of the DCI carrying the first information includes: CS-RNTI and SP-CSI-RNTI.
  • DL SPS downlink semi-persistent scheduling
  • network devices can configure downlink semi-persistent transmission through high-layer signaling.
  • the high-level configuration includes DL SPS period, hybrid HARQ process number, PDSCH for DL SPS, PUCCH resource for HARQ feedback of PDSCH, modulation and coding scheme (modulation and coding scheme, MCS) table for DL SPS and other parameters.
  • MCS modulation and coding scheme
  • the first information is carried by the MAC CE.
  • the target semi-persistent activity includes semi-persistent resources and/or semi-persistent state
  • the semi-persistent state includes PUCCH spatial relationship and/or terminal equipment dedicated PDSCH transmission configuration indication TCI state
  • the semi-persistent state includes PUCCH spatial relationship and/or terminal equipment dedicated PDSCH transmission configuration indication TCI state
  • the semi-persistent state includes PUCCH spatial relationship and/or terminal equipment dedicated PDSCH transmission configuration indication TCI state
  • the persistent resources include at least one of the following: semi-persistent CSI-RS resources, semi-persistent CSI-IM resources, semi-persistent ZP CSI-RS resources, semi-persistent SRS resources, or PUCCH resources for semi-persistent CSI reporting.
  • the network device can pre-configure multiple TCI status, for example, configure up to 128 TCI status, MAC CE is used to indicate which of the pre-configured TCI status of the network device is activated and which is deactivated activation.
  • the MAC CE is used to activate/deactivate the spatial relationship of the PUCCH resource.
  • only one PUCCH spatial relationship is activated for a PUCCH resource.
  • the network device will pre-configure up to 8 pieces of PUCCH space relationship information, and the MAC CE is used to indicate a PUCCH resource and a PUCCH space relationship information indicating that the PUCCH resource is activated.
  • the MAC CE is used to indicate other PUCCH space Relationship information is deactivated.
  • the PUCCH spatial relationship information includes parameters such as spatial setting and PUCCH power control to be used when the terminal device transmits the PUCCH.
  • the PUCCH spatial relationship information is used to indicate the reference signal resource, and the spatial configuration when sending the PUCCH may be the same as the spatial configuration when sending or receiving the reference signal resource.
  • the following introduces four implementation methods that do not need to resend the activation/deactivation signaling after the BWP switching.
  • Implementation 1 When the first information is carried by the MAC CE, the MAC CE includes the identifier of the first BWP and the identifier of the second BWP.
  • the network device and the terminal device can stipulate in the protocol to extend the format of the MAC CE, so that the MAC CE can include multiple BWP identifiers at the same time, so that if a MAC CE for activating/deactivating the semi-persistent activity Including the identifiers of the first BWP and the second BWP, then the MAC CE is applicable to the BWP corresponding to the identifiers of the two BWPs.
  • Changing the format of MAC CE in this way can also save the overhead of resending activation/deactivation signaling after BWP switching, making the indication more flexible.
  • the format of MAC CE can refer to Fig. 3, can know by Fig. 3, the mark of a BWP is included in the format of current MAC CE, the mark of a plurality of BWPs that the embodiment of the present application expands can be positioned at the reserved bit position, also can be positioned at The additional bit fields, specifically the positions of the identifiers of multiple BWPs, are not limited in this embodiment of the present application.
  • Implementation 2 In the embodiment of this application, it can be stipulated in the agreement that if the configurations of the first BWP and the second BWP are the same, then the activation/deactivation signaling of the semi-persistent activity in the first BWP is applicable to the second BWP.
  • BWP BWP.
  • terminal devices and network devices conforming to 3GPP Release 17 (R17) and later protocols can be executed according to the BWP switching method provided in the embodiment of the present application.
  • the activation signaling of the semi-persistent activity in the first BWP is not applicable to the second BWP.
  • the configurations of the first BWP and the second BWP are the same, as described above, and will not be repeated here.
  • Implementation mode 3 The terminal device determines the state of the target semi-persistent activity in the second BWP after the BWP switching according to the first information and configuration information. For specific implementation, refer to the following description.
  • FIG. 8 is a schematic flowchart of another BWP switching method 800 provided by an embodiment of the present application.
  • Method 800 includes the steps of:
  • the network device sends configuration information to the terminal device, where the configuration information is used to configure that the first BWP and the second BWP belong to the same BWP group, or configure common parameters of the first BWP and the second BWP.
  • the terminal device receives the configuration information.
  • the network device sends first information to the terminal device, where the first information is used to activate or deactivate the target semi-persistent activity in the first BWP, where the first BWP is an activation BWP.
  • the terminal device receives the first information on the first BWP.
  • the terminal device switches from the first BWP to the second BWP, and the second BWP is the active BWP after the switching.
  • the terminal device determines the state of the target semi-persistent activity in the second BWP after the BWP switching according to the first information and the configuration information.
  • the configuration information is sent by the network device to the terminal device through high-layer signaling.
  • the signaling overhead of sending the configuration information is less than the overhead of resending the activation/deactivation signaling in the second BWP. It should be understood that if the configuration information is only used to configure the BWP parameters of the first BWP and the second BWP, then no additional configuration signaling overhead is added.
  • the configuration information is used to configure that the first BWP and the second BWP belong to the same BWP group.
  • the configuration parameters of the first BWP and the second BWP can be configured by the network device for the first BWP and the second BWP respectively, that is, the parameters of the first BWP and the second BWP are configured separately , but most of the parameters configured separately are the same.
  • the central frequency (or starting frequency) of the separately configured BWP is different, but the other RRC configurations of the separately configured are the same, so the network device can configure the first BWP and the second BWP to belong to the same BWP group (BWP group) .
  • the terminal device has four BWPs, and these four BWPs can be recorded as BWP 1, BWP 2, BWP 3, and BWP 4, and 1, 2, 3, and 4 represent the identifiers of these four BWPs respectively.
  • the parameters configured separately for BWP 1 and BWP 3 are the same except for the center frequency.
  • the network device can configure a group ID 1 for BWP 1 through this configuration information, and configure a group ID 1 for BWP 3 through this configuration information.
  • the terminal device can determine that BWP 1 and BWP 3 belong to the same BWP group, so that after the terminal device switches from BWP 1 to BWP 3, it was originally used to activate/deactivate the semi-persistent
  • the active signaling (first information) is still applicable to BWP 3, that is, the corresponding semi-persistent activity in BWP 3 determined according to the first information continues to maintain the original activation state or deactivation state in BWP 1.
  • the signaling originally used to activate/deactivate the semi-persistent activity in BWP 3 is still applicable to BWP 1.
  • the terminal device can determine through the configuration information that the first BWP and the second BWP belong to the same BWP group. In this way, the terminal device can quickly determine whether the Whether the signaling for activating/deactivating the semi-persistent activity in the first BWP applies to the second BWP.
  • BWP 2 has the same configuration as BWP 1 and BWP 3, but the network device is not configured, BWP 2 belongs to the same BWP group as BWP 1 and BWP 3. In this case, if the terminal device switches from BWP 1 to BWP 2 , the signaling (first message) originally used to activate/deactivate the semi-persistent activity in BWP 1 is not applicable to BWP 2.
  • the configuration information is used to configure the common parameters of the first BWP and the second BWP.
  • the public parameter is a parameter configured by the network device for the first BWP and the second BWP.
  • the network device only needs to configure the public parameter once, and the first BWP and the second BWP can share the public parameter.
  • the first BWP Only a small amount of configuration information is configured separately from the second BWP, such as the center frequency (or starting frequency) and the identifier of the BWP.
  • the number of the control resource set and/or the number of the search space set may also be configured separately.
  • the activation/deactivation signaling of the semi-persistent activity in the first BWP is applicable to the second BWP without requiring the network device to be in the second BWP Then resend the signaling for activating/deactivating the semi-persistent activity.
  • the public parameters include at least one of the following: PDCCH configuration (pdcch-configuration), PDSCH configuration (pdsch-configuration), semi-persistent scheduling configuration (sps-configuration), radio link monitoring configuration (radio link monitoring configuration).
  • the public parameters include at least one of the following: PUCCH configuration (pucch-configuration), PUSCH configuration (pusch-configuration), configured grant configuration (configured grant configuration), SRS configuration (srs-configuration), beam failure recovery configuration (beam failure recovery configuration).
  • the first BWP and the second BWP do not share any configuration information, but the configurations of the two BWPs are the same, then half of the first BWP Activation/deactivation signaling of persistent activity is not applicable to the second BWP.
  • the activated or temporarily suspended semi-persistent resource/semi-persistent state in the first BWP or the second BWP is temporarily suspended or continues to be temporarily suspended.
  • the state of the target semi-persistent activity in the second BWP is the active state. If the first information is used to deactivate the target semi-persistent activity in the first BWP, then the state of the target semi-persistent activity in the second BWP is a deactivated state after BWP switching.
  • Implementation manner 4 The terminal device determines the state of the target semi-persistent activity in the second BWP after the BWP switching according to the first information and the second information. For specific implementation, refer to the following description.
  • FIG. 9 is a schematic flowchart of another BWP switching method 900 provided by an embodiment of the present application.
  • Method 900 includes the steps of:
  • the network device sends first information to the terminal device, where the first information is used to activate or deactivate the target semi-persistent activity in the first BWP, where the first BWP is an activation BWP.
  • the terminal device receives the first information on the first BWP.
  • the network device sends second information to the terminal device, where the second information is used to indicate whether the first information takes effect on the second BWP after the terminal device switches from the first BWP to the second BWP.
  • the terminal device receives the second information.
  • the second information is carried by RRC signaling or DCI.
  • the terminal device switches from the first BWP to the second BWP, and the second BWP is the active BWP after the switching.
  • the terminal device determines the state of the target semi-persistent activity in the second BWP after the BWP switching according to the first information and the second information.
  • the terminal device can determine whether the first information is valid for the second BWP after the terminal device switches from the first BWP to the second BWP according to the second information, that is, to determine whether the semi-persistent activity in the first BWP Whether the activation/deactivation signaling is applicable to the second BWP.
  • the network device may carry 1-bit second information through RRC signaling.
  • the 1-bit second information is "0" it indicates that the terminal device switches from the first BWP to the second BWP.
  • the second BWP does not take effect, that is, the activation/deactivation signaling of the semi-persistent activity in the first BWP is not applicable to the second BWP.
  • the 1-bit second information is "1" it indicates that the first information takes effect on the second BWP after the terminal device is switched from the first BWP to the second BWP, that is, the activation/deactivation of the semi-persistent activity in the first BWP Activation signaling applies to the second BWP.
  • the network device only needs to send RRC signaling once, and carry 1-bit second information in the RRC signaling to indicate the state of the semi-persistent activity in the second BWP, and there is no need to The signaling for activating/deactivating the semi-persistent activity is sent again in the second BWP, which is beneficial to save signaling overhead.
  • the DCI used to carry the second information may be the DCI used to trigger BWP switching, that is, when the network device sends the DCI indicating BWP switching to the terminal device in the first BWP , the DCI may also carry the second information for indicating whether the first information is valid for the second BWP after the terminal device switches from the first BWP to the second BWP, so that the network device only needs to send the DCI indicating BWP switching once , which is beneficial to reduce signaling overhead.
  • the DCI format carrying the second information may also include DCI format 2_0, DCI format 1_0 or DCI format 1_1 or DCI format 0_0 or DCI format 0_1.
  • the first information may be specified or configured whether the first information takes effect on the second BWP when the terminal device does not receive the second information. For example, if the terminal device does not receive the second information, it means that after the terminal device switches from the first BWP to the second BWP, the first information does not take effect for the second BWP, that is, the first information does not apply to the second BWP .
  • the state of the target semi-persistent activity in the second BWP is the active state. If the first information is used to deactivate the target semi-persistent activity in the first BWP, then the state of the target semi-persistent activity in the second BWP is a deactivated state after BWP switching.
  • FIG. 10 is a schematic flowchart of another BWP switching method 10 provided by an embodiment of the present application.
  • Method 10 includes the following steps:
  • the network device sends first information to the terminal device, where the first information is used to activate or deactivate a target semi-persistent activity in the first BWP, where the first BWP is an activation BWP.
  • the terminal device receives the first information on the first BWP.
  • the network device sends second information to the terminal device, where the second information is used to indicate whether the first information takes effect on the second BWP after the terminal device switches from the first BWP to the second BWP.
  • the terminal device receives the second information.
  • the network device sends third information to the terminal device, where the third information is used to indicate that the first information is not valid for the second BWP after the terminal device switches from the first BWP to the second BWP.
  • the terminal device receives the third information.
  • the terminal device switches from the first BWP to the second BWP, and the second BWP is the active BWP after switching.
  • the terminal device determines the state of the target semi-persistent activity in the second BWP after the BWP switching according to the first information, the second information and the third information.
  • the terminal device may also receive third information from the network device, and the third information may be carried by DCI, for example, It may be indicated by DCI format 2_0, DCI format 1_0, or DCI format 1_1, or DCI format 0_0, or DCI format 0_1.
  • the terminal device After receiving the third information, the terminal device determines that the state of the target semi-persistent activity in the second BWP is deactivated or temporarily suspended after BWP switching, and requires a new activation signaling to activate or restore the target semi-persistent activity to the active state .
  • the configuration cycle of the RRC signaling since the configuration cycle of the RRC signaling is relatively long, for example, it is configured once every half hour or every hour, and the DCI carrying the third information can be sent dynamically in real time, so the implementation is more flexible.
  • the state of the semi-persistent resource in the first BWP is maintained to the second BWP, it may conflict with the resource in the second BWP.
  • terminal device 1 may be sending data in the second BWP, such as sending PUSCH/PUCCH/SRS, etc., if terminal device 2 switches from the first BWP to the second BWP at this time, and the original PUSCH/PUCCH activated in the first BWP The activation state of /SRS and so on is maintained until the second BWP, which may cause a resource conflict after the terminal device 2 switches from the first BWP to the second BWP, affecting the data transmission of the terminal device.
  • the second BWP such as sending PUSCH/PUCCH/SRS, etc.
  • the network device may use the third information to dynamically indicate After the BWP is switched to the second BWP, the first information is not valid for the second BWP, that is, the second information previously indicated to be valid is canceled.
  • the network device may directly indicate through the second information that the first information does not take effect for the second BWP after the terminal device switches from the first BWP to the second BWP, so that the problem of semi-persistent resource conflict after BWP switching can be effectively avoided.
  • the second information is used to indicate that the first information takes effect on the second BWP after the terminal device switches from the first BWP to the second BWP, and the terminal device does not receive the first BWP Three information, then after the terminal device switches from the first BWP to the second BWP, the first information is still applicable to the second BWP, and the activation/deactivation state of the semi-persistent activity in the first BWP is still maintained to the second BWP.
  • the DCI used to carry the third information may also be the DCI used to trigger BWP switching, that is, when the network device sends the DCI indicating BWP switching to the terminal device in the first BWP, it may also be included in the DCI Carrying the third information for indicating that the first information does not take effect for the second BWP after the terminal device switches from the first BWP to the second BWP is also beneficial to reduce signaling overhead and avoid resource conflicts.
  • the second information may also be carried by the MAC CE. The second information carried by the MAC CE can also dynamically indicate whether the first information takes effect on the second BWP after the terminal device switches from the first BWP to the second BWP.
  • the network device may not send the third information, and the terminal device does not receive the third information.
  • the third information has a certain validity period.
  • the third information takes effect only for the next BWP switchover.
  • the second information is used to indicate that the first information takes effect on the second BWP after the terminal device switches from the first BWP to the second BWP, and the terminal device switches from the first BWP to the second BWP.
  • the third information is received before the second BWP. The third information indicates that the first information will not take effect for the second BWP after the terminal device switches from the first BWP to the second BWP.
  • the second BWP After switching to the second BWP, if the terminal device The second BWP receives the fourth information, for example, the fourth information is similar to the first information, and is used to activate or deactivate the target semi-persistent activity in the second BWP, then, if the terminal device switches from the second BWP to the For the first BWP, the fourth information is still applicable to the first BWP. If the network device wants the fourth information not applicable to the first BWP, the network device needs to resend the third information, for example, instructing to switch from the second BWP to the first BWP One bit of the DCI is set to 0, indicating that the fourth information is not valid for the first BWP after the terminal device switches from the second BWP to the first BWP.
  • the first BWP and the second BWP may also be configured to belong to the same BWP group, or the first BWP and the second BWP are configured by sharing common parameters.
  • the method in this embodiment is not used, that is, the current There are methods in the protocol.
  • the first information may further include: the terminal device Temporarily suspend target semi-persistent activity in the first BWP.
  • the target semi-persistent activity in the first BWP is temporarily suspended.
  • the temporarily suspended target semi-persistent activity in the first BWP can be restored to the active state, so compared to the way in which the target semi-persistent activity in the first BWP is deactivated or cleared after the BWP switch, the same
  • the signaling overhead of resending the activation signaling to activate the target semi-persistent activity in the first BWP can be reduced.
  • FIG. 11 is a schematic diagram of a DCI-activated DL SPS provided in an embodiment of the present application.
  • Figure 11 includes the first BWP and the second BWP.
  • Legend 1 shows the DCI for activating/deactivating DL SPS (referred to as the first DCI)
  • Legend 2 shows the DCI scheduling/activating PDSCH for activating DL SPS.
  • the time domain resources of the first PDSCH triggered by the first DCI are determined by the resources scheduled by the first DCI, after which time domain resources appear repeatedly according to a period (T). If the terminal device switches from the first BWP to the second BWP, the time domain resource of the PDSCH in the second BWP is determined according to the period and the resource of the PDSCH in the first BWP.
  • the first BWP is deactivated (for example, the terminal device switches from the first BWP to the second BWP), and no DCI to deactivate the semi-persistent PDSCH is received in the first BWP, then the semi-persistent PDSCH in the first BWP was temporarily suspended. Thereafter, if the first BWP is reactivated (for example, the terminal device is handed over from the second BWP to the first BWP), if no DCI is received in the second BWP to deactivate the semi-persistent PDSCH, then the half-persistent PDSCH in the first BWP The persistent PDSCH resumes the active state.
  • the following takes the status change of the semi-persistent activity triggered by the MAC CE as an example to illustrate.
  • the terminal device receives the first MAC CE, and the first MAC CE is used to determine a resource set (for example, semi-persistent CSI-RS/CSI-IM/ZP CSI-RS/ SRS resource set), specifically, the first MAC CE includes a resource set identifier, and the first MAC CE is used to determine and activate a resource set corresponding to the resource set identifier.
  • the resource set determined by the first MAC CE is in an active state.
  • the second BWP is the activation BWP, and the first BWP is deactivated.
  • the resource set determined by the first MAC CE in the first BWP becomes a temporary suspension state
  • the resource set determined by the first MAC CE becomes active in the second BWP.
  • the second MAC CE is received in the second BWP, the second MAC CE includes a resource set identifier, the second MAC CE is used to determine and deactivate the resource set corresponding to the identifier of the resource set, the first MAC CE and The identifiers of the resource sets determined by the second MAC CE are the same.
  • the resource set determined by the first MAC CE is deactivated.
  • the second MAC CE is also applicable to the first BWP.
  • the resource set determined by the first MAC CE is determined by The suspended state becomes the deactivated state.
  • the first MAC CE and the second MAC CE are used to determine the semi-persistent CSI reporting configuration, the identity of the semi-persistent CSI reporting configuration determined by the first MAC CE and the second MAC CE is the same, and the semi-persistent CSI reporting configuration includes semi-persistent Configuration of PUCCH resources.
  • the first MAC CE is used to activate the semi-persistent CSI reporting configuration
  • the second MAC CE is used to deactivate the semi-persistent CSI reporting configuration.
  • the semi-persistent PUCCH resource configured in the semi-persistent CSI reporting configuration may also be referred to as the semi-persistent PUCCH resource determined by the first MAC CE or the second MAC CE.
  • the terminal device receives the first MAC CE on the first BWP, the semi-persistent CSI reporting configuration determined by the MAC CE In the active state, that is, the semi-persistent PUCCH resource determined by the first MAC CE is in the active state.
  • the terminal device does not receive the second MAC CE, and the terminal device switches from the first BWP to the second BWP, the semi-persistent CSI reporting configuration determined by the first MAC CE in the first BWP becomes temporarily suspended, and the second BWP The semi-persistent CSI reporting configuration determined by the first MAC CE becomes active.
  • the terminal device receives the second MAC CE in the first BWP or the second BWP, for example, receives the second MAC CE in the second BWP
  • the semi-persistent CSI reporting configuration determined by the second MAC CE in the second BWP is deactivated.
  • the semi-persistent CSI reporting configuration identical to the semi-persistent CSI reporting configuration determined by the second MAC CE exists in the first BWP and is in a temporarily suspended state
  • the temporarily suspended semi-persistent CSI reporting configuration also becomes deactivated , that is, the second MAC CE is also applicable to the first BWP.
  • the first MAC CE is used to determine the activated TCI state in the first BWP and the second BWP.
  • the terminal device receives the The first MAC CE, the terminal device can determine the TCI state activated in the first BWP according to the first MAC CE.
  • the first MAC CE is also applicable to the second BWP, and the terminal device can determine the TCI state activated in the second BWP according to the first MAC CE, the first BWP and the second BWP
  • the identifiers of the TCI states activated according to the first MAC CE in the BWP are the same.
  • the first MAC CE is used to activate the PUCCH spatial relationship information of the PUCCH resources in the first BWP and the second BWP, the identifier of the PUCCH resource and the identifier of the activated PUCCH spatial relationship information are indicated by the first MAC CE, when When the first BWP or the second BWP is the activated BWP, for example, the first BWP is the activated BWP, the terminal device receives the first MAC CE on the first BWP, and the PUCCH spatial relationship determined by the first MAC CE in the first BWP The information is activated. When the terminal device is switched from the first BWP to the second BWP, the first MAC CE is also applicable to the second BWP, and the PUCCH spatial relationship information determined by the first MAC CE in the second BWP is activated.
  • a MAC CE is used to determine a configuration identifier, and if this MAC CE is applicable to both the first BWP and the second BWP, then when the first BWP is an activated BWP, the configuration identifier determined by the MAC CE corresponds to The configuration identifier in the first BWP, when the second BWP is an active BWP, the configuration identifier determined by the MAC CE corresponds to the configuration identifier in the second BWP.
  • the method 600 further includes: the terminal device receives fourth information from the network device, where the fourth information is used to instruct the terminal device to switch from the first BWP to the second BWP.
  • S602 includes: the terminal device switches from the first BWP to the second BWP according to the fourth information.
  • the terminal device performs BWP switching by receiving fourth information for instructing the terminal device to perform BWP switching.
  • the fourth information is carried by DCI or RRC signaling.
  • S602 includes: the terminal device performs BWP switching according to the BWP switching time (or BWP switching timing) semi-statically configured by the network device, for example, performing BWP switching when the deactivation timer expires, the The deactivation timer is configured semi-statically by the network device. Or the terminal device performs BWP switching by default during certain data transmission according to the agreement. For example, when the terminal device performs PUCCH/PUSCH frequency hopping transmission, the first hop is transmitted on the first BWP, and the second hop is transmitted on the second BWP. Transmission, based on this, the terminal device can switch between BWPs to realize PUCCH/PUSCH frequency hopping transmission on different BWPs.
  • the terminal device can switch between BWPs to realize PUCCH/PUSCH frequency hopping transmission on different BWPs.
  • the first information is applicable to the second BWP, the first information is also used to determine a semi-persistent activity in the second BWP, and the semi-persistent activity determined in the second BWP and the first information are in The configuration of the semi-persistent activity determined in the first BWP is the same, so it can be considered that the semi-persistent activity determined in the second BWP and the semi-persistent activity determined in the first BWP by the first information are the same semi-persistent activity, or The target semi-persistent activity determined by the first information in the first BWP continues to be maintained in the second BWP, and the state of the target semi-persistent activity in the second BWP is determined according to the first information.
  • the terminal device receives the first information in the first BWP, and the first information is used to activate in the first BWP Or deactivate the target semi-persistent activity, if the terminal device first switches from the first BWP to the third BWP, and then switches from the third BWP to the second BWP, then the first information does not apply to the second BWP, that is, at this time, this Application examples do not apply.
  • the information element information element, IE
  • CSI-ResourceConfig CSI resource configuration
  • the same CSI resource configuration IE can include multiple BWP IDs.
  • one CSI resource configuration IE can be used to associate the first BWP and the second BWP at the same time, and there is no need to configure two information for the first BWP and the second BWP. This saves configuration signaling overhead.
  • the semi-persistent activity includes a semi-persistent state
  • the MAC CE for activating the semi-persistent state also includes at least one of the following: MAC CE (Aperiodic CSI Trigger State) for selecting a subset of the aperiodic CSI trigger state Subselection MAC CE), MAC CE (TCI State Indication for UE-specific PDCCH MAC CE) for TCI status indication of terminal equipment-specific PDCCH (for example, when the first BWP and the second BWP have the same configured control resource set In the case of the same numbering, the MAC CE (that is, the first information) used for the TCI status indication of the terminal equipment-specific PDCCH can also be applied to the second BWP).
  • MAC CE Aperiodic CSI Trigger State
  • sequence numbers of the above processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • the BWP switching method according to the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 11 , and the BWP switching device according to the embodiment of the present application will be described in detail below in conjunction with FIG. 12 and FIG. 13 .
  • FIG. 12 shows a schematic block diagram of a BWP switching device 1200 provided by an embodiment of the present application.
  • the device 1200 includes a receiving module 1210 and a processing module 1220 .
  • the receiving module 1210 is configured to: receive first information from the network device on the first BWP, the first information is used to activate or deactivate the target semi-persistent activity in the first BWP, and the first BWP is an activation BWP.
  • the processing module 1220 is used to: switch from the first BWP to the second BWP, the second BWP is the active BWP after the switch; and, according to the first information, determine the state of the target semi-persistent activity in the second BWP after the BWP switch, the state Including active state and deactivated state.
  • the identifiers of the first BWP and the second BWP are different, and the same configuration means that the RRC configurations except the center frequency and the identifier of the BWP are the same.
  • the first BWP and the second BWP belong to the same BWP group, or, the first BWP and the second BWP share the same common configuration parameters.
  • the receiving module 1210 is configured to: receive second information from the network device, where the second information is used to indicate whether the first information takes effect on the second BWP after switching from the first BWP to the second BWP.
  • the processing module 1220 is configured to: according to the first information and the second information, determine the status of the target semi-persistent activity in the second BWP after BWP switching.
  • the second information is carried by RRC signaling or downlink control information DCI.
  • the first information is used to activate the target semi-persistent activity in the first BWP
  • the second information indicates that the first information takes effect on the second BWP after the terminal device switches from the first BWP to the second BWP.
  • the processing module 1220 is configured to: according to the first information and the second information, determine that the state of the target semi-persistent activity in the second BWP after the BWP switching is an active state.
  • the first information is used to deactivate the target semi-persistent activity in the first BWP
  • the second information indicates that the first information takes effect on the second BWP after the terminal device switches from the first BWP to the second BWP.
  • the processing module 1220 is configured to: according to the first information and the second information, determine that the state of the target semi-persistent activity in the second BWP after the BWP switching is a deactivated state.
  • the second information is carried by RRC signaling, and the second information is used to indicate that the first information takes effect on the second BWP after the terminal device switches from the first BWP to the second BWP.
  • the receiving module 1210 is configured to: receive third information from the network device, the third information is used to indicate that the first information is not valid for the second BWP after switching from the first BWP to the second BWP, and the third information is carried by the DCI.
  • the first information is carried by DCI.
  • the target semi-persistent activity includes semi-persistent resources
  • the semi-persistent resources include at least one of the following: downlink semi-persistent scheduling PDSCH resources, type 2 PUSCH resources for uplink configuration grants, and PUSCH resources for semi-persistent CSI reporting.
  • the first information is carried by MAC CE.
  • the target semi-persistent activity includes semi-persistent resources and/or a semi-persistent state
  • the semi-persistent state includes PUCCH spatial relationships and/or the transmission TCI status of the terminal device-specific PDSCH
  • the semi-persistent resources include at least one of the following: semi-persistent CSI -RS resource, semi-persistent CSI-IM resource, semi-persistent ZP CSI-RS resource set, semi-persistent SRS resource or PUCCH resource for semi-persistent CSI reporting (SP CSI reporting on PUCCH).
  • the MAC CE includes the identifier of the first BWP and the identifier of the second BWP.
  • the first information is used to activate the target semi-persistent activity in the first BWP.
  • the processing module 1220 is configured to: temporarily suspend the target semi-persistent activity in the first BWP.
  • the apparatus 1200 may specifically be the terminal device in the foregoing embodiment, or the functions of the terminal device in the foregoing embodiment may be integrated in the apparatus 1200 .
  • the above functions can be implemented by hardware, or can be implemented by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • Apparatus 1200 may be configured to execute various processes and/or steps corresponding to the terminal device in the foregoing method embodiments.
  • the device 1200 here is embodied in the form of functional modules.
  • the term "module” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the device 1200 in FIG. 12 may also be a chip or a chip system, for example: a system on chip (system on chip, SoC).
  • FIG. 13 shows a schematic block diagram of another BWP switching device 1300 provided by an embodiment of the present application.
  • the apparatus 1300 includes a processor 1310 , a transceiver 1320 and a memory 1330 .
  • the processor 1310, the transceiver 1320 and the memory 1330 communicate with each other through an internal connection path, the memory 1330 is used to store instructions, and the processor 1310 is used to execute the instructions stored in the memory 1330 to control the transceiver 1320 to send signals and /or to receive a signal.
  • the apparatus 1300 may specifically be the electronic device in the above embodiment, or the functions of the electronic device in the above embodiment may be integrated in the apparatus 1300, and the apparatus 1300 may be used to execute each of the above method embodiments corresponding to the electronic device. steps and/or processes.
  • the memory 1330 may include read-only memory and random-access memory, and provides instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the processor 1310 may be configured to execute instructions stored in the memory, and when the processor executes the instructions, the processor may execute various steps and/or processes corresponding to the electronic device in the foregoing method embodiments.
  • the processor 1310 may be a central processing unit (central processing unit, CPU), and the processor may also be other general processors, digital signal processors (DSPs), application specific integrated circuits ( ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSPs digital signal processors
  • ASIC application specific integrated circuits
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor executes the instructions in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • modules and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical, mechanical or other forms.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种BWP的切换方法和切换装置,该方法应用于配置有第一BWP和第二BWP的终端设备,第一BWP和第二BWP的配置相同,第一BWP和第二BWP的中心频率不同,该方法包括:终端设备在第一BWP上接收来自网络设备的第一信息,该第一信息用于在第一BWP中激活或去激活目标半持续活动,第一BWP为激活BWP。终端设备从第一BWP切换到第二BWP,切换后第二BWP为激活BWP。终端设备根据第一信息,确定BWP切换后目标半持续活动在第二BWP中的状态,该状态包括激活状态和去激活状态。

Description

带宽部分的切换方法和切换装置
本申请要求于2021年9月29日提交中国专利局、申请号为202111156077.4、申请名称为“带宽部分的切换方法和切换装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种带宽部分(bandwidth part,BWP)的切换方法和切换装置。
背景技术
半持续活动(semi-persistent activity,SP-activity)也可以称为半持续行为(semi-persistent behaviour),更广义的,也可以称为半持续配置(semi-persistent configuration)。半持续活动需要信令进行激活(activate)或者去激活(deactivate)。激活/去激活半持续活动的信令可以为下行控制信息(downlink control information,DCI)或者介质访问控制控制元素(medium access control control element,MAC CE)。半持续活动包括半持续资源和半持续状态,在激活半持续资源之后,半持续资源周期性出现,在激活半持续状态之后,半持续状态一直生效。半持续活动的生效范围是在一个BWP内,例如,MAC CE激活半持续资源时,MAC CE可以指示半持续资源所在的BWP的标识,该BWP的标识对应的BWP就是MAC CE适用的BWP,也就是MAC CE生效的BWP。
BWP是小区总带宽的一个子集带宽,终端设备在一个小区可以被配置多个BWP,例如4个或5个下行BWP、4个或5个上行BWP。同一时刻,在同一个小区一般只有一个下行BWP和上行BWP是处于激活状态的,称为激活BWP(active BWP)。通常,终端设备在激活BWP上收发数据,并且终端设备可以通过BWP切换(BWP switch)从一个BWP切换至另一个BWP。
对于DCI激活的半持续活动,终端设备在由第一BWP切换至第二BWP之后,第一BWP内的半持续活动被去激活或者被清除(cleared),对于MAC CE激活的半持续活动,第一BWP内的半持续活动一般被暂时中止(suspended)。如果终端设备在切换至第二BWP之后想要继续传输半持续活动,或者说想要半持续活动处于激活状态,那么在第二BWP中需要新的激活信令激活半持续活动,这样会增加信令开销,降低资源利用率。
发明内容
本申请实施例提供一种BWP的切换方法和切换装置,有利于减少信令开销,提高资源利用率。
第一方面,提供了一种BWP的切换方法,应用于配置有第一BWP和第二BWP的终端设备,第一BWP和第二BWP的配置相同,第一BWP和第二BWP的中心频率不同,该方法包括:终端设备在第一BWP上接收来自网络设备的第一信息,该第一信息用于在第一BWP中激活或去激活目标半持续活动,第一BWP为激活BWP。终端设备从第一BWP 切换到第二BWP,切换后第二BWP为激活BWP。终端设备根据第一信息,确定BWP切换后目标半持续活动在第二BWP中的状态,该状态包括激活状态和去激活状态。
在本申请中,第一信息可以用于在第一BWP中激活或去激活目标半持续活动,当终端设备从第一BWP切换到第二BWP之后,该第一信息还可以用于在第二BWP中激活或去激活目标半持续活动,也就是第一信息在第二BWP中仍然生效,这样BWP切换后第一BWP中目标半持续活动的状态可以延续到第二BWP中,不需要网络设备再重新发送一个激活/无激活信令来指示第二BWP中的目标半持续活动的状态,有利于减少信令开销,提高资源利用率。
结合第一方面,在第一方面的某些实现方式中,第一BWP和第二BWP的标识不同,配置相同为除BWP的中心频率和标识之外的无线资源控制(radio resource control,RRC)配置相同。
在本申请中,由于终端设备可能配置多个BWP,因此BWP的标识不同以区分不同的BWP,BWP的中心频率可以通过网络设备配置的BWP的起始频率和带宽来确定,不同的BWP的起始频率不同,因此BWP的中心频率也不同。其他的RRC配置相同有利于减少BWP的切换时延,提高终端设备的数据传输速率。
结合第一方面,在第一方面的某些实现方式中,第一BWP和第二BWP属于同一个BWP组,或者,第一BWP和第二BWP共享相同的公共配置参数。
结合第一方面,在第一方面的某些实现方式中,终端设备接收来自网络设备的配置信息,配置信息用于配置第一BWP和第二BWP属于同一个BWP组,或者配置第一BWP和第二BWP的公共参数。终端设备根据第一信息,确定BWP切换后目标半持续活动在第二BWP中的状态,包括:终端设备根据第一信息和配置信息,确定BWP切换后目标半持续活动在第二BWP中的状态。
在本申请中,该配置信息用于将第一BWP和第二BWP配置成属于同一个BWP组,其中同一个BWP组中的BWP的参数可以是单独配置的,但是单独配置的参数除去BWP的标识和中心频率不同之外其他的RRC配置可以相同。这样的方式可以省去终端设备对第一BWP和第二BWP的参数进行比对的过程,节省终端设备的计算量。终端设备还可以接收网络设备发送的公共配置参数,第一BWP和第二BWP共享该公共配置参数,只有少量的参数是单独配置的,例如BWP的标识、BWP的中心频率。这样的方式网络设备只需要发送一次公共配置信息,只需要单独为第一BWP和第二BWP配置少量的参数,有利于节省信令开销。
结合第一方面,在第一方面的某些实现方式中,第一信息用于在第一BWP中激活目标半持续活动,终端设备根据第一信息和配置信息,确定BWP切换后目标半持续活动在第一BWP中的状态,包括:终端设备根据第一信息和配置信息,确定BWP切换后目标半持续活动在第二BWP中的状态为激活状态。
在本申请中,如果第一信息用于在第一BWP中激活目标半持续活动,并且终端设备接收到该配置信息,那么终端设备在BWP切换后不需要新的信令激活第二BWP中的目标半持续活动,继续维持目标半持续活动在第一BWP中的激活状态,有利于节省信令开销。
结合第一方面,在第一方面的某些实现方式中,第一信息用于在第一BWP中去激活目标半持续活动,终端设备根据第一信息和配置信息,确定BWP切换后目标半持续活动 在第一BWP中的状态,包括:终端设备根据第一信息和配置信息,确定BWP切换后目标半持续活动在第二BWP中的状态为去激活状态。
在本申请中,如果第一信息用于在第一BWP中去激活目标半持续活动,并且终端设备接收到该配置信息,那么终端设备在BWP切换后不需要新的信令去激活第二BWP中的目标半持续活动,继续维持目标半持续活动在第一BWP中的去激活状态,有利于节省信令开销。
结合第一方面,在第一方面的某些实现方式中,终端设备接收来自网络设备的第二信息,该第二信息用于指示当终端设备从第一BWP切换到第二BWP后该第一信息是否对第二BWP生效。终端设备根据该第一信息,确定BWP切换后该目标半持续活动在第二BWP中的状态,包括:终端设备根据该第一信息和该第二信息,确定BWP切换后该目标半持续活动在第二BWP中的状态。
在本申请中,终端设备可以通过第二信息确定从第一BWP切换到第二BWP后该第一信息是否对第二BWP生效,也就是确定在第一BWP中目标半持续活动的状态是否延续到第二BWP中。当半持续活动的激活状态延续到第二BWP内时,可能和第二BWP内的其他资源冲突,例如,第二BWP内可能存在其他终端设备正在发送数据,比如发送PUSCH/PUCCH/SRS,也可能存在网络设备正在发送数据,比如发送PDSCH/PDCCH/CSI-RS/TRS,因此当第二BWP内可能存在其他终端设备正在使用半持续资源发送数据时,本申请可以通过第二信息指示第一信息对第二BWP不生效,这样有利于避免BWP切换后半持续资源可能和第二BWP中资源冲突的问题。
结合第一方面,在第一方面的某些实现方式中,第二信息由RRC信令或下行控制信息DCI承载。
结合第一方面,在第一方面的某些实现方式中,第一信息用于在第一BWP中激活目标半持续活动,第二信息指示当终端设备从第一BWP切换到第二BWP后第一信息对第二BWP生效。终端设备根据第一信息和第二信息,确定BWP切换后目标半持续活动在所述第二BWP中的状态,包括:终端设备根据第一信息和第二信息,确定BWP切换后目标半持续活动在第二BWP中的状态为激活状态。
在本申请中,如果第一信息是激活信令,第二信息指示第一信息对第二BWP生效,那么第一BWP中目标半持续活动的激活状态延续到第二BWP中,即在第二BWP中目标半持续活动也处于激活状态。
结合第一方面,在第一方面的某些实现方式中,第一信息用于在第一BWP中去激活目标半持续活动,第二信息指示当终端设备从第一BWP切换到第二BWP后第一信息对第二BWP生效。终端设备根据第一信息和第二信息,确定BWP切换后目标半持续活动在所述第二BWP中的状态,包括:终端设备根据第一信息和第二信息,确定BWP切换后目标半持续活动在第二BWP中的状态为去激活状态。
在本申请中,如果第一信息是去激活信令,第二信息指示第一信息对第二BWP生效,那么第一BWP中目标半持续活动的去激活状态延续到第二BWP中,即在第二BWP中目标半持续活动也处于去激活状态。
结合第一方面,在第一方面的某些实现方式中,第二信息由RRC信令承载,第二信息用于指示当终端设备从第一BWP切换到第二BWP后第一信息对第二BWP生效。在终端设备接收来自网络设备的第二信息之后,终端设备接收来自网络设备的第三信息,第三 信息用于指示当终端设备从第一BWP切换到第二BWP后第一信息对第二BWP不生效,第三信息由DCI承载。
在本申请中,如果第二信息是由RRC信令承载的,并且第二信息指示BWP切换后第一信息对第二BWP生效,由于RRC信令的配置周期比较长,例如每一小时配置一次。因为半持续活动的激活状态延续到第二BWP内时,可能和第二BWP内的其他资源冲突,为了避免资源冲突,在终端设备接收第二信息之后,终端设备还可以第三信息,该第三信息由DCI承载,DCI是一个实时动态指令,可以灵活取消第二信息,也就是指示BWP切换后第一信息对第二BWP不生效,有利于避免资源冲突的问题。
结合第一方面,在第一方面的某些实现方式中,第一信息由DCI承载。
结合第一方面,在第一方面的某些实现方式中,目标半持续活动包括半持续资源,该半持续资源包括以下至少一种:下行半持续调度(downlink semi-persistent scheduling,DL SPS)的物理下行共享信道(physical downlink shared channel,PDSCH)资源、上行配置授权的类型2物理上行共享信道(uplink configured grant type2 physical uplink shared channel)资源、用于半持续信道状态信息上报的PUSCH(SP CSI reporting on PUSCH)资源。
结合第一方面,在第一方面的某些实现方式中,第一信息由MAC CE承载。
结合第一方面,在第一方面的某些实现方式中,目标半持续活动包括半持续资源和/或半持续状态,半持续状态包括物理上行控制信道(physical uplink control channel,PUCCH)空间关系和/或终端设备专用PDSCH的发送配置指示(transmission configuration indication,TCI)状态,半持续资源包括以下至少一种:半持续信道状态信息参考信号(channel state information reference signal,CSI-RS)资源、半持续信道状态信息干扰测量(channel state information interference measurement,CSI-IM)资源、半持续零功率CSI-RS资源集(SP ZP CSI-RS resource set)、半持续探测参考信息(SP sounding reference signal,SP SRS)资源或者用于半持续CSI上报的PUCCH资源(SP CSI reporting on PUCCH)。
结合第一方面,在第一方面的某些实现方式中,MAC CE包括第一BWP的标识和第二BWP的标识。
在本申请中,可以扩展MAC CE的格式,使MAC CE携带多个BWP的标识,这样在通过MAC CE激活/去激活半持续活动时,终端设备可以通过该MAC CE携带的多个BWP的标识从第一BWP切换到第二BWP,并且该MAC CE可以指示BWP切换后第一信息仍然适用于切换后的第二BWP,这样同样有利于减少信令开销。
结合第一方面,在第一方面的某些实现方式中,第一信息用于在述第一BWP中激活目标半持续活动,在终端设备从第一BWP切换到第二BWP之后,终端设备在第一BWP内暂时中止目标半持续活动。
在本申请中,不论第一BWP中的目标半持续活动是通过DCI激活的还是通过MAC CE激活的,在进行BWP切换后,第一BWP中激活的目标半持续活动被暂时中止,这样在从第二BWP又切换到第一BWP之后,可以快速恢复第一BWP中的目标半持续活动为激活状态,也不需要新的激活信令去重新激活,有利于减少信令开销和BWP上的数据传输时延。
结合第一方面,在第一方面的某些实现方式中,在终端设备从第一BWP切换到第二BWP之前,终端设备接收来自网络设备的第四信息,第四信息用于指示终端设备从第一 BWP切换到第二BWP。终端设备从第一BWP切换到第二BWP,包括:终端设备根据第四信息,从第一BWP切换到第二BWP。
在本申请中,终端设备可以根据第四信息进行BWP切换,示例性地,第四信息可以由DCI承载。
第二方面,提供一种BWP的切换方法,包括:网络设备向终端设备发送配置信息,配置信息用于配置第一BWP和第二BWP属于同一个BWP组,或者配置第一BWP和第二BWP的公共参数。
结合第二方面,在第一方面的某些实现方式中,网络设备向终端设备发送第二信息,该第二信息用于指示当终端设备从第一BWP切换到第二BWP后该第一信息是否对第二BWP生效。
结合第二方面,在第一方面的某些实现方式中,网络设备向终端设备发送第三信息,第三信息用于指示当终端设备从第一BWP切换到第二BWP后第一信息对第二BWP不生效,第三信息由DCI承载。
第三方面,提供了一种BWP的切换装置,包括:用于执行上述第一方面中任一种可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面中任一种可能的实现方式中的方法的模块。
第四方面,提供了另一种BWP的切换装置,包括处理器,该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述任一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该一种BWP的切换装置为终端设备。当该BWP的切换装置为终端设备时,通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该BWP的切换装置为配置于终端设备中的芯片。当该BWP的切换装置为配置于终端设备中的芯片时,通信接口可以是输入/输出接口。
第五方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。处理电路用于通过输入电路接收信号,并通过输出电路发射信号,使得处理器执行上述第一方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第六方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行上述第一方面中任一种可能实现方式中的方法。
可选地,处理器为一个或多个,存储器为一个或多个。
可选地,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第六方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第七方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法。
附图说明
图1是一种通信系统的示意图;
图2是一种激活DL SPS的DCI调度PDSCH的示意图;
图3是一种激活/去激活半持续CSI-RS/CSI-IM资源集的MAC CE的格式示意图;
图4是一种MAC CE激活半持续资源的示意图;
图5是一种半持续资源在BWP切换后的示意图;
图6是本申请实施例提供的一种BWP的切换方法的流程示意图;
图7是本申请实施例提供的一种半持续资源在BWP切换后的示意图;
图8是本申请实施例提供的另一种BWP的切换方法的流程示意图;
图9是本申请实施例提供的再一种BWP的切换方法的流程示意图;
图10是本申请实施例提供的又一种BWP的切换方法的流程示意图;
图11是本申请实施例提供的一种DCI激活DL SPS的示意图;
图12是本申请实施例提供的一种BWP的切换装置的示意性框图;
图13是本申请实施例提供的另一种BWP的切换装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在介绍本申请实施例提供的BWP的切换方法和切换装置之前,先做出以下几点说明。
第一,在下文示出的实施例中,各术语及英文缩略语,如BWP切换、激活信令、去激活信令、RRC信令等,均为方便描述而给出的示例性举例,不应对本申请构成任何限定。本申请并不排除在已有或未来的协议中定义其它能够实现相同或相似功能的术语的可能。
第二,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的BWP、区分不同的信息等。
第三,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”, 描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或b,或c,或a和b,或a和c,或b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
图1是一种通信系统100的示意图。如图1所示,该通信系统100可以包括网络设备110和至少一个终端设备120。图1示例性地示出了2个终端设备的场景。可选地,通信系统还包括核心网设备130。终端设备120通过无线的方式与网络设备110相连,网络设备110通过无线或有线方式与核心网设备130连接。
在本申请实施例中,终端设备可以是固定位置的,也可以是可移动的。本申请实施例对该通信系统中包括的网络设备和终端设备的数量不做限定。核心网设备与网络设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备的功能。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、混合现实(mixed reality,MR)终端、扩展现实(extended reality,XR)终端、全息显示终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进网络中的终端设备等,例如,新无线(new radio,NR)系统中的降低能力(reduced capability,RedCap)的终端设备。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请对于终端设备的具体形式不作限定。
应理解,本申请实施例中,终端设备可以是用于实现终端设备功能的装置,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node base,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
应理解,本申请实施例中,网络设备可以是用于实现网络设备功能的装置,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
还应理解,本申请实施例中的网络设备和终端设备可以部署在陆地上,包括室内或室外,手持或车载;或者部署在水面上;或者部署在空中的飞机、气球和卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
需要说明的是,本申请实施例适用的通信系统包括但不限于:第五代(5th generation,5G)系统或未来演进的通信系统,如NR通信系统,车到其它设备(vehicle-to-X V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(Internet of things,IoT)、机器间通信长期演进技术(long term evolution-machine,LTE-M),机器到机器(machine to machine,M2M),设备到设备(device to device,D2D)、无线局域网(wireless local access network,WLAN)系统、长期演进(long term evolution,LTE)系统等。
为便于理解,下面对本申请实施例所涉及的术语进行简单介绍。
1、BWP
BWP是小区总带宽的一个子集带宽,BWP分为上行BWP和下行BWP,终端设备在一个小区可以被配置多个BWP,例如4个或5个下行BWP,4个或5个上行BWP,同一个时刻,在同一个小区一般只有1个下行BWP和上行BWP是激活状态的,称为激活BWP(active BWP)。一般情况下,终端设备只能在激活的BWP上收发数据。
不同BWP的参数是相互独立的,不同BWP的参数可以配置成相同或不同。以中心频率、带宽大小、子载波间隔(subcarrier spacing,SCS)这三个参数为例,这三个参数会影响终端设备的射频(radio frequency,RF)参数,也就是如果这三个参数有不同,则终端设备可能需要调整射频链路,从而引起终端设备中断,终端设备在中断期间无法收发数据。此外,不同BWP之间的RRC参数也是相互独立配置的。
在终端设备配置有多个BWP的情况下,终端设备可以通过BWP切换(BWP switch)从一个BWP切换到另一个BWP。例如,从带宽较小的BWP切换到带宽较大的BWP,有利于提高终端设备的数据速率,降低时延;从带宽较大的BWP切换到带宽较小的BWP,有利于节省终端设备的功耗。
2、BWP切换的触发方式
BWP切换可以有如下3种触发方式:
(1)DCI触发:DCI中包括BWP指示(indicator)信息域,这个信息域用于指示目标BWP的标识(identity,ID),如果指示的目标BWP ID和终端设备当前所在的(或称当前激活的)BWP ID不同,则表示该DCI触发终端设备将BWP切换到BWP指示信息域指示的BWP ID对应的BWP。
(2)定时器触发:如果终端设备当前所在的BWP的去激活定时器(BWP-inactivity timer)超时,则触发终端设备将BWP切换到默认BWP(default BWP),该默认BWP可以是终端设备初始接入的初始BWP。
(3)RRC信令触发:如果终端设备收到RRC重配置(RRC reconfiguration)信令,其中包括指示终端设备执行BWP切换的信令,或者当前激活的BWP的参数发生了变化,则表示该RRC重配置信令触发终端设备执行BWP切换。
3、BWP切换时延
NR通信系统支持两种类型的BWP切换时延(BWP switch delay),终端设备具体采用哪种类型可以根据终端设备上报的能力确定。例如,如果终端设备上报能力支持类型1(type 1),则终端设备支持类型1的BWP切换时延,如果终端设备上报能力支持类型2(type 2),则终端设备支持类型2的BWP切换时延。BWP切换时延和子载波间隔有关,具体如表一所示。
表一
Figure PCTCN2022117437-appb-000001
其中,如果BWP切换涉及到SCS的改变,则BWP切换时延等于BWP切换前后较小的SCS对应的BWP切换时延。μ表示数字基本配置(numerology),不同的μ分别对应不同的子载波间隔。由表一可知,在μ分别为0、1、2、3时,类型1的BWP切换时延分别为1slot、2slot、3slot、6slot,对应的绝对时间分别为1ms、1ms、0.75ms、0.75ms。在μ分别为0、1、2、3时,类型2的BWP切换时延分别为3slot、5slot、9slot、18slot,对应的绝对时间分别为3ms、2.5ms、2.25ms、2.25ms。
BWP切换时延可以由多个部分组成,例如,对于DCI触发的BWP切换,BWP切换时延主要包括DCI解析时间、射频和基带(baseband)参数计算和加载时间以及射频切换/调谐(RF retuning)时间。此外,BWP切换时延还包括一定的冗余,用于保证BWP切换时延结束时刻和时隙边界对齐。
4、半持续活动
半持续(semi-persistent,SP)又称半永久。半持续活动也可以称为半持续行为(semi-persistent behaviour)。更广义的,半持续活动也可以称为半持续配置(semi-persistent configuration)。
半持续活动需要信令进行激活(activate)或者去激活(deactivate)。按照激活/去激活信令的不同,半持续活动可以分成两类:1)激活/去激活信令为DCI;2)激活/去激活信令为MAC CE。
半持续活动是相对周期性(periodic)活动和非周期性(aperiodic)活动而言的。周期性活动在RRC配置之后不需要信令激活,当一个BWP是激活的BWP时,该BWP内的周期性活动就处于激活状态,如果网络设备通过RRC配置释放了周期性活动,则对应的周期性活动停止。非周期性活动一般需要DCI触发,而且是一次性活动,在DCI触发的非周期性活动结束之后,还需要新的DCI触发新的非周期性活动。例如,DCI触发非周期性参考信号(reference signal,RS)资源时,DCI只激活一个参考信号资源;DCI触发非周期性信道 状态信息上报(channel state information reporting,CSI reporting)时,DCI只激活一个上报物理上行共享信道(physical uplink shared channel,PUSCH)资源。而半持续活动在激活信令激活之后就是周期性出现的或一直生效,在去激活信令去激活之后,半持续活动停止。
半持续活动包括半持续资源和半持续状态。对于半持续资源,激活信令激活之后,半持续资源周期性出现。对于半持续状态,激活信令激活之后,半持续状态一直生效。
示例性地,激活/去激活下行半持续调度(downlink semi-persistent scheduling,DL SPS)的物理下行控制信道(physical downlink control channel,PDCCH)满足:PDCCH承载的DCI的循环冗余校验(cyclic redundancy check,CRC)由配置调度无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)加扰,使能传输块(enabled transport block,enabled TB)对应的新数据指示域(new data indicator field,NDI field)设置为“0”。
示例性地,由CS-RNTI加扰的DCI中的信息域如果满足如下表二的条件,则可以判断该DCI为激活DL SPS的DCI。如果满足如下表三的条件,则可以判断该DCI为去激活DL SPS的DCI。
表二
DCI中的信息域 DCI格式1_0 DCI格式1_1
HARQ进程号 设置成全0 设置成全0
冗余版本 设置成“00” 对于使能传输块,设置成“00”
表三
Figure PCTCN2022117437-appb-000002
PDCCH承载的DCI可以由多个信息域组成,例如表二中的混合自动重传进程号(hybrid automatic repeat request process number,HARQ process number)信息域和冗余版本(redundancy version)信息域,不同的信息域可以由相同数量或不同数量的比特(bit)组成。
示例性地,HARQ进程号信息域由4比特组成,当终端设备对DCI进行解析判断DCI格式,确定该DCI为DCI格式1_1后,终端设备进一步判断HARQ进程号信息域中的4位比特是否全为0,判断冗余版本信息域中的2位比特是否全为0,在HARQ进程号信息域中的4位比特全为0并且冗余版本信息域中的2位比特全为0的情况下,终端设备判断该DCI为激活DL SPS的DCI。其中,冗余版本信息域由2比特组成。HARQ进程号信息域的比特数为示例描述,还可以是5比特、6比特或其他比特数,本申请实施例对此不作限定。
示例性地,HARQ进程号信息域由4比特组成,调制编码方案信息域由5比特组成,频域资源分配信息域由10比特组成。当终端设备对DCI进行解析判断DCI格式,确定该DCI为DCI格式1_0后,终端设备进一步判断HARQ进程号信息域中的4位比特是否全为0、冗余版本信息域中的2位比特是否全为0、调制编码方案信息域中的5位比特是否全为1以及频域资源分配信息域中的10位比特是否全为1。在在HARQ进程号信息域中的4位比特全为0、冗余版本信息域中的2位比特全为0、调制编码方案信息域中的5位比特全为1以及频域资源分配信息域中的10位比特全为1的情况下,终端设备判断该DCI为去激活DL SPS的DCI。
图2是一种激活DL SPS的DCI调度物理下行共享信道(physical downlink shared channel,PDSCH)的示意图。图2中包括一个BWP,图例1表示激活/去激活DL SPS的DCI,图例2表示激活DL SPS的DCI调度的PDSCH或激活的PDSCH。在该BWP中,激活DL SPS的DCI会触发半持续的PDSCH资源。由图2可知,激活DL SPS的DCI会调度一个PDSCH,该PDSCH是半持续PDSCH的第一个PDSCH,根据高层(higher layer)配置的周期以及第一个PDSCH的时域位置,半持续的PDSCH资源周期性出现。除了半持续PDSCH的第一个PDSCH,其他PDSCH没有对应的PDCCH。去激活DL SPS的DCI不调度数据,即不调度PDSCH,可以将去激活DL SPS的DCI称为非调度DCI。
对于上行配置授权的类型2 PUSCH和在PUSCH上的半持续CSI上报,其激活/去激活原理与DL SPS类似。激活/去激活上行配置授权的类型2 PUSCH的DCI的CRC可以通过CS-RNTI加扰。激活/去激活在PUSCH上的半持续CSI上报的DCI的CRC可以通过半持续信道状态信息无线网络临时标识(semi-persistent channel state information radio network temporary identifier,SP-CSI-RNTI)加扰。
示例性地,MAC CE触发的半持续资源可以包括半持续信道状态信息参考信号(channel state information reference signal,CSI-RS)/半持续信道状态信息干扰测量(channel state information interference measurement,CSI-IM)资源集(SP CSI-RS/CSI-IM resource set)、半持续零功率CSI-RS资源集(SP ZP CSI-RS resource set)、半持续探测参考信号(SP sounding reference signal,SP SRS)资源或者半持续物理上行控制信道(physical uplink control channel,PUCCH)上的CSI上报(SP CSI reporting on PUCCH)资源。
图3是一种激活/去激活半持续CSI-RS/CSI-IM资源集的MAC CE的格式示意图。图3中的每一行表示8位比特(octet,Oct)。“A/D”域设置为1表示激活,设置为0表示去激活。“服务小区标识”(serving cell ID)域表示MAC CE适用(apply)的服务小区标识。“BWP的标识”(BWP ID)域表示MAC CE适用(apply)的BWP的标识。“半持续信道状态信息参考信号资源集标识”(SP CSI-RS resource set ID)域表示要激活/去激活的半持续CSI-RS资源集的索引。“IM”域表示包括“半持续CSI-IM资源集的标识”域的8比特域是否存在,如果“IM”域设置为1,表示包括“半持续CSI-IM资源集的标识”域的8比特域存在,如果“IM”域置0,表示包括“半持续CSI-IM资源集的标识”域的8比特域不存在。“半持续CSI-IM资源集的标识”域表示要激活/去激活的半持续CSI-IM资源集的索引。“TCI状态的标识(IDi)”域对应要激活的SP CSI-RS资源集中的第i+1个资源,用于指示第i+1个资源的TCI状态,“TCI状态的标识(IDi)”域用于指示一个TCI状态的标识(TCI state ID),其中i=0,1,2……N,该TCI状态关联的参考 信号(资源)作为所述对应的第i+1个SP CSI-RS资源的准共址(quasi co location,QCL)源参考信号(资源)。其中的“R”表示是预留比特位,可以设置为0。
MAC CE由PDSCH承载,MAC CE包括的信息一般在针对MAC CE的PDSCH发送HARQ确认(HARQ-ACK)反馈之后3ms生效。示例性地,终端设备在时隙n发送PUCCH,PUCCH承载HARQ-ACK信息,HARQ-ACK信息是对应承载MAC CE的PDSCH的HARQ反馈,那么MAC CE在时隙
Figure PCTCN2022117437-appb-000003
之后的第一个时隙开始生效,也就是时候,MAC CE在时隙
Figure PCTCN2022117437-appb-000004
以及之后的时隙生效。其中,μ表示承载HARQ-ACK的PUCCH对应的子载波间隔配置,
Figure PCTCN2022117437-appb-000005
表示子载波间隔为μ对应的一个子帧包括的时隙个数。
表四示出了子载波间隔与子帧中包括的时隙个数的对应关系。
表四
Figure PCTCN2022117437-appb-000006
对于MAC CE激活的半持续资源,网络设备可以通过高层信令预先配置半持续资源的周期和周期偏移,通过周期和周期偏移可以计算出半持续资源的候选时域位置。
图4是一种MAC CE激活半持续资源的示意图。图4中包括一个BWP,在该BWP中,图例1表示激活/去激活半持续资源的MAC CE,图例2表示MAC CE激活的半持续资源,图例3表示候选半持续资源,在MAC CE生效后,BWP中的半持续资源被激活,网络设备在半持续资源的候选时域位置发送数据,或者终端设备在半持续资源的候选时域位置发送数据。如果MAC CE用于去激活半持续资源,那么在去激活的MAC CE生效之后,半持续资源的发送或接收停止。
5、半持续活动在BWP切换后的操作
半持续活动是针对单个BWP(per BWP)而言的,即,半持续活动的生效范围是一个BWP。例如,DCI用于激活/去激活PDSCH/PUSCH时,DCI中会指示PDSCH/PUSCH所在的BWP的标识。MAC CE用于激活/去激活半持续资源时,MAC CE也会指示一个BWP的标识,该BWP的标识对应的BWP就是MAC CE适用的BWP,即,MAC CE信息生效的BWP。
BWP激活时,如果BWP内有处于激活状态的半持续活动,如果BWP发生了切换,例如原BWP是第一BWP,切换到了第二BWP,则对于DCI激活的半持续活动,第一BWP内的半持续活动被去激活,或者称为被清除(cleared)。对于MAC CE激活的半持续活动,第一BWP内的半持续活动一般被暂时中止(suspended),如果第一BWP又成为了激活BWP,例如从第二BWP又切换回到第一BWP,则第一BWP之前被暂时中止的半持续活动继续进行,即恢复激活状态。
图5是一种半持续资源在BWP切换后的示意图。图5中包括第一BWP和第二BWP,图例1表示激活信令(DCI或MAC CE),图例2表示激活信令激活/调度的半持续资源。下面结合图5,分别示例性介绍DCI触发和MAC CE触发的半持续资源在终端设备从第一BWP切换到第二BWP之后的操作。
示例性地,对于DCI激活的下行半持续调度的PDSCH,如果第一BWP为下行BWP并且在BWP切换后被去激活,那么第一BWP中激活的半持续PDSCH资源被去激活。
示例性地,对于DCI激活的用于半持续CSI上报的PUSCH(SP CSI reporting on PUSCH),如果第一BWP为上行BWP,并且上行BWP或下行BWP发生了切换,那么上行第一BWP中激活的半持续PUSCH资源被去激活。
示例性地,对于DCI激活的用于半持续CSI上报的PUSCH(SP CSI reporting on PUSCH),如果第一BWP为上行BWP,那么上行第一BWP中激活的半持续PUSCH资源被去激活。
示例性地,对于MAC CE激活的半持续资源,例如SP CSI-RS/CSI-RS资源集、SP ZP CSI-RS资源集、SP SRS或者在PUCCH上的半持续CSI上报,如果MAC CE适用的BWP不是激活的BWP,并且没有收到去激活MAC CE,那么被该MAC CE激活的半持续资源处于暂时中止(suspended)状态。
而对于MAC CE激活/去激活的终端设备专用PDSCH的发送配置指示TCI状态,如果终端设备尚未接收到用于激活终端设备专用PDSCH的TCI状态的MAC CE信令,则终端设备假设PDSCH的解调参考信号(demodulation reference signal,DMRS)端口和在初始接入过程(initial access procedure)中确定的同步信号物理广播信道块(SS/PBCH block,SSB)具有QCL关系。示例性地,QCL关系为“QCL-typeA”或者“QCL-typeD”。
也就是说,如果BWP发生了切换,在新的BWP中,如果终端设备还未收到激活终端设备专用PDSCH的TCI状态的MAC CE信令,或者激活MAC CE信令还未生效,那么终端设备假设PDSCH的DMRS端口和初始接入过程中使用的SSB具有QCL关系。
示例性地,根据“QCL-typeA”,终端设备可以确定PDSCH可以参考的时延扩展、多普勒频移、多普勒扩展等参数。
示例性地,根据“QCL-typeD”,终端设备可以确定PDSCH可以参考的波束方向,包括天线方向和预编码矩阵等参数。
目前,NR正在讨论一种新的终端设备的类型,称为降低能力(RedCap)的终端设备,包括三大应用场景:可穿戴设备(wearables)、工业无线传感器(industrial wireless sensors)和视频监控(vdeo surveillance)设备。
RedCap的终端设备在FR1最大支持20MHz带宽,在FR2最大支持100MHz带宽。而一般NR增强移动宽带(enhanced mobile broadband,eMBB)的终端设备的能力在FR1支持100MHz的带宽,在FR2支持200MHz的带宽,可选地,在FR2支持400MHz的带宽。由以上描述可知,NR RedCap的终端设备支持的带宽能力小于现有的NR eMBB的终端设备,这是因为较小的带宽能力可以降低终端设备的实现复杂度,并节省终端设备功耗,有利于降低终端设备的成本。
由于RedCap的终端设备支持带宽较小,在较小的带宽内获得的频率分集增益较小。另外,长时间工作在一个较小的带宽内可能会导致终端设备长时间内受到较大干扰的影响。所以,为了改善RedCap的终端设备的频率分集增益,以及改善网络设备的资源利用效率,RedCap的终端设备可能要频繁的切换中心频率,也就是进行BWP切换。
然而,由上文中对半持续活动在BWP切换后的操作的描述可知,对于DCI触发的半持续活动,在第一BWP切换到第二BWP之后,第一BWP中激活的半持续活动会被去激活或者被清除,因此第二BWP如果需要继续使半持续活动处于激活状态,则需要新的DCI 激活信令。对于MAC CE触发的半持续活动,在第一BWP切换到第二BWP之后,如果第一BWP中激活的半持续活动想要在第二BWP中保持激活,同样需要新的MAC CE激活信令进行激活。
因此,在频繁的BWP切换过程中,网络设备需要针对半持续活动发送较多的激活/去激活信令,这样会造成资源的开销增加的问题,减少资源开销、提高资源利用效率成为一个亟待解决的问题。
有鉴于此,本申请实施例提供一种BWP的切换方法和切换装置,对于配置相同的第一BWP和第二BWP,终端设备从第一BWP切换到第二BWP之后,在第一BWP中激活的半持续活动在第二BWP中继续保持激活状态或者恢复激活状态,而切换后第一BWP中原来处于激活状态的半持续活动暂时中止(suspended),也就是用于激活/去激活第一BWP中的半持续活动的信令仍然适用于第二BWP,这样在终端设备切换到第二BWP之后,不需要再发送新的激活/去激活指令,这样有利于减少激活/去激活信令的开销、提高资源利用率。
本申请中以第一BWP为切换前的BWP,第二BWP为切换后的BWP为例进行描述。
应理解,本申请实施例中的第一BWP和第二BWP的配置相同,主要考虑以下两方面的问题:
第一方面,在配置相同的情况下,激活/去激活信令才可能在第一BWP和第二BWP中都生效。例如,DCI信令指示在第一BWP中激活半持续PDSCH资源,而第二BWP中未配置半持续PDSCH资源,那么该DCI在第二BWP中无法激活半持续PDSCH资源,也就是无法生效。
第二方面,由于表一所示的BWP切换的切换时延较大,较大的BWP切换时延有可能造成终端设备收发数据的中断,这样会降低数据传输速率,因此如果仍然按照表一所述的BWP切换时延进行BWP切换不利于终端设备执行频繁的切换。
要实现切换时延更短的快速BWP切换(fast BWP switch),需要满足射频切换前后BWP的中心频率不同,但是RRC配置等参数全部相同或者部分不同。例如,第一BWP和第二BWP共享一套RRC配置参数,只有中心频率不同。这样,在终端设备切换到第二BWP之后,如果BWP切换是预先配置好、无需信令去触发切换的情况(例如,定时器触发),可以节省终端设备对信令的解析时间、射频和基带(baseband)参数计算计算和重新应用RRC配置参数的时间,并且可以避免终端设备重新执行自动增益控制(automatic gain control,AGC)/自动频率控制(automatic frequency control,AFC)调整,这样BWP的切换时延就可以只包括射频切换/调谐(RF retuning)时间,减少了BWP切换时延。
示例性地,正在研究的RedCap的终端设备通过快速BWP切换有望将BWP切换时延降低到50-200微秒(μs)之间,例如为140微秒。
因此,本申请实施例的BWP的切换方法可以在配置相同的两个BWP之间进行快速BWP切换时减少信令开销,提高资源的利用率。
图6是本申请实施例提供的一种BWP的切换方法600的流程示意图。方法600中的终端设备配置有第一BWP和第二BWP,该第一BWP和第二BWP的配置相同,该第一BWP和该第二BWP的中心频率不同。方法600包括如下步骤:
S601,网络设备在第一BWP上向终端设备发送第一信息,该第一信息用于在所述第一BWP中激活或去激活目标半持续活动,其中,第一BWP为激活BWP。相应地,终端 设备在第一BWP上接收该第一信息。
S602,终端设备从第一BWP切换到第二BWP,切换后该第二BWP为激活BWP。
S603,终端设备根据该第一信息,确定BWP切换后该目标半持续活动在该第二BWP中的状态,该状态包括激活状态和去激活状态。
应理解,本申请实施例对S602和S603的执行顺序不作限定,终端设备可以在BWP切换之前根据第一信息确定目标半持续活动在该第二BWP中的状态,也可以在BWP切换之后再根据第一信息确定目标半持续活动在该第二BWP中的状态。
在本申请实施例中,终端设备可以通过网络设备发送的第一信息来激活或者去激活第一BWP中的目标半持续活动,并且,在终端设备从第一BWP切换到第二BWP之后,终端设备还可以通过该第一信息来确定第二BWP中该目标半持续活动处于激活状态还是去激活状态,这样在BWP切换之后,网络设备无需再向终端设备发送新的激活/去激活指令,第一BWP中的半持续活动的激活或者去激活信令也适用于第二BWP,也就是第一信息也适用于第二BWP,或称为第一信息也可以在第二BWP中生效,第一BWP中半持续活动的状态可以维持到第二BWP中,这样有利于节省信令开销。
此外,由于MAC CE信令生效时间是3ms,会造成数据传输时延,本申请实施例提供的BWP的切换方法在节省信令开销的同时,由于不再需要新的MAC CE激活/去激活半持续活动,从而可以避免MAC CE信令生效时间造成的时延,还有利于降低数据传输时延。
应理解,本申请实施例中第一BWP和第二BWP的配置相同,包括第一BWP和第二BWP共享相同的配置。
因为第一BWP和第二BWP的中心频率不同,可以理解为目标半持续活动的频域位置从第一BWP搬移到第二BWP,但是目标半持续活动在第二BWP中的相对位置与之前目标半持续活动在第一BWP中的相对位置相同。应理解,此时,半持续活动可以理解为半持续资源,而不是半持续状态。
作为一个可选的实施例,第一BWP和第二BWP的标识不同,第一BWP和第二BWP的配置相同可以理解为,第一BWP和第二BWP除BWP的中心频率和标识之外的RRC配置相同。
为了区别不同的BWP,每个BWP可以有自己的标识(BWP ID),因此第一BWP和第二BWP的标识也可以不同。
其中,RRC配置可以包括:BWP带宽、子载波间隔、控制资源集合(control resource set,CORESET)、搜索空间集合(search space set,SS set)、准共址(QCL)关系、参考信号资源、物理上行控制信道(PUCCH)、速率匹配(rate matcing)、多进多出(multiple-in multiple-out,MIMO)层数、物理下行共享信道(PDSCH)、物理上行共享信道(PUSCH)配置参数等。
可选地,第一BWP和第二BWP还可以有一些资源或者配置的编号不同,例如,控制资源集合的编号和/或搜索空间集合的编号,其他的RRC配置相同。应理解,第一BWP和第二BWP除BWP的中心频率不同,带宽大小相同,也表示第一BWP和第二BWP的起始频率不同。
如下关于两个BWP配置相同的理解可参照此处,不再赘述。
图7是本申请实施例提供的一种半持续资源在BWP切换后的示意图。图7中包括第 一BWP和第二BWP,图例1表示激活信令(DCI/MAC CE),图例2表示激活信令激活的半持续资源。由图5和图7对比可知,图7中在终端设备从第一BWP切换到第二BWP后,第二BWP中不需要新的激活信令,终端设备可以按照第一BWP中的激活信令指示的第一个调度的半持续资源的时域位置、半持续资源的周期等参数,激活或者恢复第二BWP中相应的半持续资源。
作为一个可选的实施例,该第一信息由DCI承载。在第一信息由DCI承载时,该目标半持续活动包括半持续资源,该半持续资源包括以下至少一种:下行半持续调度(DL semi-persistent scheduling,DL SPS)的PDSCH资源、上行配置授权的类型2 PUSCH(UL configured grant type 2 PUSCH)资源、用于半持续CSI上报的PUSCH资源。
当第一信息由DCI承载时,加扰承载第一信息的DCI的RNTI包括:CS-RNTI、SP-CSI-RNTI。
以上述下行半持续调度(DL SPS)为例,网络设备可以通过高层信令配置下行半持续传输。高层配置包括DL SPS的周期、混合HARQ进程号、用于DL SPS的PDSCH、用于PDSCH的HARQ反馈的PUCCH资源、用于DL SPS的调制编码方案(modulation and coding scheme,MCS)表格等参数。
作为一个可选的实施例,该第一信息由MAC CE承载。在第一信息由MAC CE承载时,该目标半持续活动包括半持续资源和/或半持续状态,该半持续状态包括PUCCH空间关系和/或终端设备专用PDSCH的发送配置指示TCI状态,该半持续资源包括以下至少一种:半持续CSI-RS资源、半持续CSI-IM资源、半持续ZP CSI-RS资源、半持续SRS资源、或用于半持续CSI上报的PUCCH资源。
对于终端设备专用PDSCH的发送配置指示TCI状态,网络设备可以预先配置多个TCI状态,例如最多配置128个TCI状态,MAC CE用于指示网络设备预配置的TCI状态中哪些被激活,哪些被去激活。
对于PUCCH空间关系,MAC CE用于激活/去激活PUCCH资源的空间关系,同一个时刻,一个PUCCH资源只有一个PUCCH空间关系被激活。具体地,网络设备会预配置至多8个PUCCH空间关系信息,MAC CE用于指示一个PUCCH资源,并用于指示该PUCCH资源被激活的一个PUCCH空间关系信息,同时,MAC CE用于指示其他PUCCH空间关系信息被去激活。PUCCH空间关系信息包括终端设备发送PUCCH时要使用的空间设置(spatial setting)以及PUCCH功率控制等参数。其中,PUCCH空间关系信息用于指示参考信号资源,发送PUCCH时的空间设置可以和参考信号资源发送或接收时的空间设置相同。
下面介绍四种在BWP切换后无需重新发送激活/去激活信令的实现方式。
实现方式1:在第一信息由MAC CE承载时,MAC CE包括该第一BWP的标识和该第二BWP的标识。
在本申请实施例中,网络设备和终端设备可以协议规定,扩展MAC CE的格式,使MAC CE可以同时包括多个BWP的标识,这样,如果一个用于激活/去激活半持续活动的MAC CE包括第一BWP和第二BWP的标识,那么该MAC CE适用于这两个BWP的标识对应的BWP。这样更改MAC CE的格式方式同样可以节省在BWP切换后重新发送激活/去激活信令的开销,使指示更加的灵活。
其中,MAC CE的格式可参照图3,由图3可知,当前MAC CE的格式中包括一个 BWP的标识,本申请实施例扩展的多个BWP的标识可以位于预留的比特位,也可以位于额外增加的比特域,具体多个BWP的标识的位置本申请实施例对此不作限定。
实现方式2:在本申请实施例中,可以通过协议规定,在第一BWP和第二BWP的配置相同的情况下,那么第一BWP中半持续活动的激活/去激活信令适用于第二BWP。例如,符合3GPP Release 17(R17)及以后的协议的终端设备和网络设备可以按照本申请实施例提供的BWP的切换方法执行。符合3GPP R15/16的协议的终端设备和网络设备,即使第一BWP和第二BWP具有相同的配置,第一BWP中的半持续活动的激活信令也不适用于第二BWP。
其中,第一BWP和第二BWP的配置相同,如上所述,不再赘述。
实现方式3:终端设备根据第一信息和配置信息,确定BWP切换后该目标半持续活动在第二BWP中的状态。具体实现参照如下描述。
图8是本申请实施例提供的另一种BWP的切换方法800的流程示意图。方法800包括如下步骤:
S810,网络设备向终端设备发送配置信息,该配置信息用于配置该第一BWP和该第二BWP属于同一个BWP组,或者配置该第一BWP和该第二BWP的公共参数。相应地,终端设备接收该配置信息。
S820,网络设备向终端设备发送第一信息,该第一信息用于在所述第一BWP中激活或去激活目标半持续活动,其中,第一BWP为激活BWP。相应地,终端设备在第一BWP上接收该第一信息。
S830,终端设备从第一BWP切换到第二BWP,切换后该第二BWP为激活BWP。
S840,终端设备根据第一信息和配置信息,确定BWP切换后该目标半持续活动在第二BWP中的状态。
应理解,该配置信息是网络设备通过高层信令发送给终端设备的。发送该配置信息的信令开销小于在第二BWP中重新发送激活/去激活信令的开销。应理解,若该配置信息只是用于配置第一BWP和第二BWP的BWP参数的,那么并没有额外新增配置信令开销。
(1)配置信息用于配置该第一BWP和该第二BWP属于同一个BWP组。在这种情况下,第一BWP和第二BWP的配置参数可以是网络设备分别为第一BWP和第二BWP配置的,也就是第一BWP和第二BWP的各项参数都是单独配置的,但是单独配置的参数中有大部分参数是相同的。例如,单独配置的BWP的中心频率(或称起始频率)不同,但是单独配置的其他RRC配置相同,因此网络设备可以将第一BWP和第二BWP配置成属于同一个BWP组(BWP group)。
示例性地,终端设备有4个BWP,可以将这四个BWP记为BWP 1、BWP 2、BWP 3、BWP 4,1、2、3、4分别表示这四个BWP的标识。其中,BWP 1和BWP 3单独配置的参数除中心频率外其他的参数都相同,网络设备可以通过该配置信息为BWP 1配置一个组标识1,通过该配置信息为BWP 3也配置一个组标识1,终端设备在接收到该配置信息后,可以确定BWP 1和BWP 3属于同一个BWP组,这样终端设备在从BWP 1切换到BWP 3之后,原先用于激活/去激活BWP 1中的半持续活动的信令(第一信息)仍然适用于BWP 3,也就是根据第一信息确定的BWP 3中相应的半持续活动继续维持原先在BWP 1中的激活状态或者去激活状态。同样地,终端设备在从标识为3的BWP切换到标识为1的BWP之后,原先用于激活/去激活BWP 3中的半持续活动的信令仍然适用于BWP 1。
在本申请实施例中,终端设备可以通过配置信息确定第一BWP和第二BWP属于同一个BWP组,这样的方式可以使得终端设备只需判断组标识是否相同便可以快速判断BWP切换后用于激活/去激活第一BWP中的半持续活动的信令是否适用于第二BWP。
此外,若BWP 2也与BWP 1和BWP 3的配置相同,但是网络设备未配置BWP 2与BWP 1和BWP 3属于同一个BWP组,这种情况下,若终端设备从BWP 1切换至BWP 2,原先用于激活/去激活BWP 1中的半持续活动的信令(第一信息)不适用于BWP 2。
(2)配置信息用于配置该第一BWP和该第二BWP的公共参数。在这种情况下,公共参数是网络设备为第一BWP和第二BWP共同配置的参数,网络设备只需要配置一次公共参数,第一BWP和第二BWP可以共享该公共参数,这样第一BWP和第二BWP只有少量的配置信息是单独配置的,例如中心频率(或起始频率)、BWP的标识。可选地,控制资源集合的编号和/或搜索空间集合的编号也可以单独配置。如果第一BWP和第二BWP的参数是通过共享公共参数的方式配置的,那么第一BWP中的半持续活动的激活/去激活信令适用于第二BWP,无需网络设备在第二BWP中再重新发送用于激活/去激活半持续活动的信令。
对于下行BWP,公共参数包括以下至少一种:PDCCH配置(pdcch-configuration)、PDSCH配置(pdsch-configuration)、半持续调度配置(sps-configuration)、无线链路监听配置(radio link monitoring configuration)。
对于上行BWP,公共参数包括以下至少一种:PUCCH配置(pucch-configuration)、PUSCH配置(pusch-configuration)、配置的授权配置(configured grant configuration)、SRS配置(srs-configuration)、波束失败恢复配置(beam failure recovery configuration)。
可选地,如果第一BWP和第二BWP的各项参数都是单独配置的,第一BWP和第二BWP没有共享任何配置信息,只是两个BWP的配置相同,则第一BWP内的半持续活动的激活/去激活信令不适用于第二BWP。
应理解,针对MAC CE激活的半持续资源/半持续状态,如果从第一BWP或者第二BWP切换到第三BWP,第三BWP和第一BWP/第二BWP不共享相同的配置,或者不属于同一个BWP组,则第一BWP或者第二BWP中激活的或被暂时中止的半持续资源/半持续状态被暂时中止或继续保持暂时中止状态。
应理解,针对DCI激活的半持续资源,如果从第一BWP或者第二BWP切换到第三BWP,第三BWP和第一BWP/第二BWP不共享相同的配置,或者不属于同一个BWP组,则第一BWP或者第二BWP内激活的或被暂时中止的半持续资源被去激活。
在根据上述的配置信息确定第一BWP中的半持续活动的激活/去激活信令适用于第二BWP的情况下,若第一信息用于在第一BWP中激活目标半持续活动,那么在BWP切换后目标半持续活动在第二BWP中的状态为激活状态。若第一信息用于在第一BWP中去激活目标半持续活动,那么在BWP切换后目标半持续活动在第二BWP中的状态为去激活状态。
实现方式4:终端设备根据第一信息和第二信息,确定BWP切换后该目标半持续活动在第二BWP中的状态。具体实现参照如下描述。
图9是本申请实施例提供的再一种BWP的切换方法900的流程示意图。方法900包括如下步骤:
S910,网络设备向终端设备发送第一信息,该第一信息用于在所述第一BWP中激活 或去激活目标半持续活动,其中,第一BWP为激活BWP。相应地,终端设备在第一BWP上接收该第一信息。
S920,网络设备向终端设备发送第二信息,该第二信息用于指示当终端设备从第一BWP切换到第二BWP后第一信息是否对第二BWP生效。相应地,终端设备接收该第二信息。
可选地,该第二信息由RRC信令或DCI承载。
S930,终端设备从第一BWP切换到第二BWP,切换后该第二BWP为激活BWP。
S940,终端设备根据第一信息和第二信息,确定BWP切换后该目标半持续活动在第二BWP中的状态。
在本申请实施例中,终端设备可以根据第二信息确定当终端设备从第一BWP切换到第二BWP后第一信息是否对第二BWP生效,也就是确定第一BWP中的半持续活动的激活/去激活信令是否适用于第二BWP。
示例性地,网络设备可以通过RRC信令携带1比特的第二信息,当该1比特的第二信息为“0”时,指示终端设备从第一BWP切换到第二BWP后第一信息对第二BWP不生效,也就是第一BWP中的半持续活动的激活/去激活信令不适用于第二BWP。当该1比特的第二信息为“1”时,指示终端设备从第一BWP切换到第二BWP后第一信息对第二BWP生效,也就是第一BWP中的半持续活动的激活/去激活信令适用于第二BWP。这样通过RRC信令指示的方式,网络设备只需要发送一次RRC信令,并在该RRC信令中携带1比特的第二信息,便可以指示第二BWP中的半持续活动的状态,也无需再重新在第二BWP中发送一次用于激活/去激活半持续活动的信令,有利于节省信令开销。
示例性地,第二信息由DCI承载时,用于承载第二信息的DCI可以是用于触发BWP切换的DCI,也就是网络设备在第一BWP中向终端设备发送指示进行BWP切换的DCI时,还可以在该DCI中携带用于指示终端设备从第一BWP切换到第二BWP后第一信息是否对第二BWP生效的第二信息,这样同样网络设备只需要发送一次指示BWP切换的DCI,有利于减少信令开销。
可选地,第二信息由DCI承载时,承载第二信息的DCI格式还可以包括DCI格式2_0、DCI格式1_0或者DCI格式1_1或者DCI格式0_0或者DCI格式0_1。
此外,可规定或配置终端设备未收到第二信息时第一信息是否对第二BWP生效。示例性地,若终端设备未收到该第二信息,则表示终端设备从第一BWP切换到第二BWP后第一信息对第二BWP不生效,也就是第一信息不适用于第二BWP。
在根据上述第二信息确定第一BWP中的半持续活动的激活/去激活信令适用于第二BWP的情况下,若第一信息用于在第一BWP中激活目标半持续活动,那么在BWP切换后目标半持续活动在第二BWP中的状态为激活状态。若第一信息用于在第一BWP中去激活目标半持续活动,那么在BWP切换后目标半持续活动在第二BWP中的状态为去激活状态。
图10是本申请实施例提供的又一种BWP的切换方法10的流程示意图。方法10包括如下步骤:
S1010,网络设备向终端设备发送第一信息,该第一信息用于在所述第一BWP中激活或去激活目标半持续活动,其中,第一BWP为激活BWP。相应地,终端设备在第一BWP上接收该第一信息。
S1020,网络设备向终端设备发送第二信息,该第二信息用于指示当终端设备从第一BWP切换到第二BWP后第一信息是否对第二BWP生效。相应地,终端设备接收该第二信息。
S1030,网络设备向终端设备发送第三信息,该第三信息用于指示当终端设备从第一BWP切换到第二BWP后该第一信息对第二BWP不生效。相应地,终端设备接收该第三信息。
S1040,终端设备从第一BWP切换到第二BWP,切换后该第二BWP为激活BWP。
S1050,终端设备根据第一信息、第二信息和第三信息,确定BWP切换后该目标半持续活动在第二BWP中的状态。
在本申请实施例中,在该第二信息由RRC信令承载的情况下,若所述第二信息用于指示当所述终端设备从所述第一BWP切换到所述第二BWP后所述第一信息对所述第二BWP生效,那么在终端设备接收来自网络设备的第二信息之后,终端设备还可以接收来自网络设备的第三信息,该第三信息可以由DCI承载,例如,可以通过DCI格式2_0、DCI格式1_0或者DCI格式1_1或者DCI格式0_0或者DCI格式0_1进行指示。在接收到第三信息之后,终端设备确定BWP切换后目标半持续活动在第二BWP中的状态为去激活状态或者暂时中止状态,需要新的激活信令激活或者恢复目标半持续活动为激活状态。
在本申请实施例中,由于RRC信令的配置周期较长,例如半小时或者一小时配置一次,而承载第三信息的DCI可以动态实时发送,因此实现比较灵活。当第一BWP中的半持续资源的状态维持到第二BWP时,有可能与第二BWP中的资源发生冲突。例如,终端设备1可能正在第二BWP内发送数据,例如发送PUSCH/PUCCH/SRS等,如果终端设备2此时从第一BWP切换到第二BWP,并且原来第一BWP中激活的PUSCH/PUCCH/SRS等的激活状态维持到了第二BWP,这样可能在终端设备2从第一BWP切换到第二BWP后可能产生资源冲突,影响终端设备的数据传输。
因此,网络设备可以在第二信息指示当终端设备从第一BWP切换到第二BWP后该第一信息对第二BWP生效的情况下,通过第三信息来动态地指示当终端设备从第一BWP切换到第二BWP后该第一信息对第二BWP不生效,也就是取消之前指示生效的第二信息。或者,网络设备可以通过第二信息直接指示当终端设备从第一BWP切换到第二BWP后该第一信息对第二BWP不生效,这样都可以有效避免BWP切换后半持续资源的冲突问题。
应理解,如果第二信息用于指示当所述终端设备从所述第一BWP切换到所述第二BWP后所述第一信息对所述第二BWP生效,并且终端设备没有收到该第三信息,那么终端设备从第一BWP切换到第二BWP之后,第一信息仍然适用于第二BWP,第一BWP中半持续活动的激活/去激活状态仍然维持到第二BWP。
示例性地,用于承载第三信息的DCI也可以是用于触发BWP切换的DCI,也就是网络设备在第一BWP中向终端设备发送指示进行BWP切换的DCI时,还可以在该DCI中携带用于指示当终端设备从第一BWP切换到第二BWP后该第一信息对第二BWP不生效的第三信息,这样同样有利于减少信令开销,避免资源冲突。可选地,该第二信息还可以由MAC CE承载。由MAC CE承载的第二信息同样可以动态地指示当终端设备从第一BWP切换到第二BWP后该第一信息是否对第二BWP生效。
可选地,若第二信息用于指示当所述终端设备从所述第一BWP切换到所述第二BWP 后所述第一信息对所述第二BWP不生效,网络设备可不发送第三信息,终端设备也不接收第三信息。
可选地,第三信息具有一定的生效时长。示例性的,第三信息只对下一次BWP切换生效。例如,第二信息用于指示当所述终端设备从所述第一BWP切换到所述第二BWP后所述第一信息对所述第二BWP生效,终端设备在从第一BWP切换到第二BWP之前,收到第三信息,第三信息指示当终端设备从第一BWP切换到第二BWP后该第一信息对第二BWP不生效,则在切换到第二BWP之后,如果终端设备在第二BWP又收到了第四信息,例如,第四信息和第一信息类似,用于在第二BWP中激活或去激活目标半持续活动,那么,如果终端设备从第二BWP又切换到了第一BWP,第四信息仍然适用于第一BWP,如果网络设备要第四信息不适用于第一BWP,则网络设备要重新发送第三信息,例如在指示从第二BWP切换到第一BWP的DCI中的1个比特置成0,表示当终端设备从第二BWP切换到第一BWP后该第四信息对第一BWP不生效。
如上S910和S1010的实施例中,第一BWP和第二BWP也可以被配置属于同一个BWP组,或者,第一BWP和第二BWP是通过共享公共参数的方式配置的。
可选地,若第一BWP和第二BWP不属于同一个BWP组,或者,第一BWP和第二BWP不是通过共享公共参数的方式配置的,则不采用本实施例的方法,即采用现有协议中的方法。
作为一个可选的实施例,若第一信息用于在第一BWP中激活目标半持续活动,在S602之后,在方法600、方法800、方法900、方法10之后,还可以包括:终端设备在第一BWP内暂时中止目标半持续活动。
在本申请实施例中,无论激活信令为DCI还是MAC CE,在终端设备从第一BWP切换到第二BWP之后,第一BWP中的目标半持续活动暂时中止,这样如果再从第二BWP切换回第一BWP之后,第一BWP中暂时中止的目标半持续活动可以恢复激活状态,这样相较于BWP切换后第一BWP中的目标半持续活动被去激活或者清除的方式而言,同样可以减少再重新发送激活信令来激活第一BWP中的目标半持续活动的信令开销。
下面结合图11以DCI触发的半持续资源的状态变化为例进行详细描述。图11是本申请实施例提供的一种DCI激活DL SPS的示意图。图11中包括第一BWP和第二BWP,图例1表示激活/去激活DL SPS的DCI(称为第一DCI),图例2表示激活DL SPS的DCI调度/激活的PDSCH。如图11所示,第一DCI触发的第一个PDSCH的时域资源由第一DCI调度的资源确定,在这之后,时域资源按照周期(T)重复出现。如果终端设备从第一BWP切换到第二BWP,则第二BWP中的PDSCH的时域资源按照周期以及第一BWP中的PDSCH的资源确定。
如果第一BWP被去激活(例如,终端设备从第一BWP切换到第二BWP),并且在第一BWP中未收到去激活半持续PDSCH的DCI,那么在第一BWP中的半持续PDSCH被暂时中止。此后,如果第一BWP被重新激活(例如,终端设备从第二BWP切换到第一BWP),如果在第二BWP中未收到去激活半持续PDSCH的DCI,那么在第一BWP中的半持续PDSCH恢复激活状态。
下面以MAC CE触发的半持续活动的状态变化为例进行说明。
(1)半持续CSI-RS/CSI-IM/ZP CSI-RS/SRS资源集的激活和去激活
示例性地,当第一BWP为激活BWP时,终端设备接收第一MAC CE,该第一MAC  CE用于确定一个资源集(例如,半持续CSI-RS/CSI-IM/ZP CSI-RS/SRS资源集),具体地,该第一MAC CE包括一个资源集的标识,该第一MAC CE用于确定并激活该资源集的标识对应的资源集。在第一BWP中,第一MAC CE确定的资源集为激活状态。
当终端设备从第一BWP切换到第二BWP之后,第二BWP为激活BWP,第一BWP被去激活,这时在第一BWP中由第一MAC CE确定的资源集变为暂时中止状态,在第二BWP中由第一MAC CE确定的资源集变为激活状态。如果在第二BWP中收到第二MAC CE,该第二MAC CE包括一个资源集标识,该第二MAC CE用于确定并且去激活该资源集的标识对应的资源集,第一MAC CE和第二MAC CE确定的资源集的标识相同。则在第二BWP中,由第一MAC CE确定的资源集被去激活,同样的,第二MAC CE也适用于第一BWP,在第一BWP中,由第一MAC CE确定的资源集由暂时中止状态变为去激活状态。
(2)用于半持续CSI上报的PUCCH资源的激活和去激活
示例性地,第一MAC CE和第二MAC CE用于确定半持续CSI上报配置,第一MAC CE和第二MAC CE确定的半持续CSI上报配置的标识相同,半持续CSI上报配置包括半持续PUCCH资源的配置。第一MAC CE用于激活半持续CSI上报配置,第二MAC CE用于去激活半持续CSI上报配置。半持续CSI上报配置中配置的半持续PUCCH资源也可以称为是第一MAC CE或者第二MAC CE确定的半持续PUCCH资源。
当第一BWP和第二BWP中的其中一个BWP为激活BWP时,例如第一BWP为激活BWP,终端设备在第一BWP上收到第一MAC CE,该MAC CE确定的半持续CSI上报配置处于激活状态,即第一MAC CE确定的半持续PUCCH资源处于激活状态。
如果终端设备没有收到第二MAC CE,并且终端设备从第一BWP切换到了第二BWP,则第一BWP中由第一MAC CE确定的半持续CSI上报配置变为暂时中止状态,第二BWP中由第一MAC CE确定的半持续CSI上报配置变为激活状态。
如果终端设备在第一BWP或者第二BWP中接收到第二MAC CE,例如,在第二BWP中接收到第二MAC CE,则第二BWP中由第二MAC CE确定的半持续CSI上报配置被去激活。此外,如果第一BWP中存在和第二MAC CE确定的半持续CSI上报配置相同的半持续CSI上报配置处于暂时中止状态,则该处于暂时中止状态的半持续CSI上报配置也变为去激活状态,也就是说,第二MAC CE也适用于第一BWP。
(3)终端设备专用PDSCH的TCI状态的激活和去激活
示例性地,第一MAC CE用于在第一BWP和第二BWP中确定激活的TCI状态,当其中一个BWP被激活时,例如第一BWP为激活BWP,终端设备在第一BWP上收到第一MAC CE,终端设备可以根据第一MAC CE确定在第一BWP中激活的TCI状态。当终端设备从第一BWP切换到了第二BWP后,第一MAC CE同样适用于第二BWP,终端设备可以根据第一MAC CE确定在第二BWP中激活的TCI状态,第一BWP和第二BWP中根据第一MAC CE激活的TCI状态的标识相同。
(4)PUCCH空间关系的激活和去激活
示例性地,第一MAC CE用于激活第一BWP和第二BWP中的PUCCH资源的PUCCH空间关系信息,PUCCH资源的标识以及被激活的PUCCH空间关系信息的标识由第一MAC CE指示,当第一BWP或者第二BWP为激活BWP时,例如第一BWP为激活BWP,终端设备在第一BWP上收到第一MAC CE,在第一BWP中的由第一MAC CE确定的 PUCCH空间关系信息被激活,当终端设备从第一BWP切换到了第二BWP后,第一MAC CE同样适用于第二BWP,在第二BWP中的由第一MAC CE确定的PUCCH空间关系信息被激活。
应理解,一个MAC CE用于确定一个配置的标识,如果这个MAC CE同时适用于第一BWP和第二BWP,则在第一BWP为激活BWP时,该MAC CE确定的配置的标识对应的是第一BWP中的配置的标识,在第二BWP为激活BWP时,该MAC CE确定的配置的标识对应的是第二BWP中的配置的标识。
作为一个可选的实施例,在S602之前,方法600还包括:终端设备接收来自网络设备的第四信息,该第四信息用于指示终端设备从第一BWP切换到第二BWP。S602包括:终端设备根据该第四信息,从第一BWP切换到第二BWP。
在本申请实施例中,终端设备是通过接收用于指示终端设备进行BWP切换的第四信息进行BWP切换的。
可选地,第四信息由DCI或RRC信令承载。
作为一个可选的实施例,S602包括:终端设备根据网络设备半静态配置好的BWP切换时间(或称BWP切换时机)进行BWP切换,例如,在去激活定时器超时的时刻进行BWP切换,该去激活定时器由网络设备半静态配置。或者终端设备根据协议规定好的在某些数据传输时默认进行BWP切换,例如当终端设备进行PUCCH/PUSCH跳频传输时,第一跳在第一BWP上传输,第二跳在第二BWP上传输,基于此,终端设备可以通过BWP切换以实现在不同BWP上的PUCCH/PUSCH跳频传输。
应理解,本申请中,若第一信息适用于第二BWP,则第一信息也用于在第二BWP内确定一个半持续活动,在第二BWP内确定的半持续活动和第一信息在第一BWP内确定的半持续活动的配置相同,所以可以认为,在第二BWP内确定的半持续活动和第一信息在第一BWP内确定的半持续活动是同一个半持续活动,或者说,第一信息在第一BWP内确定的目标半持续活动到第二BWP继续维持,且目标半持续活动在第二BWP内的状态根据第一信息确定。
可选地,考虑如下情况,第一BWP和第二BWP配置相同,第一BWP和第三BWP配置不同,终端设备在第一BWP接收第一信息,第一信息用于在第一BWP中激活或去激活目标半持续活动,若终端设备先从第一BWP切换到了第三BWP,然后从第三BWP切换到了第二BWP,则第一信息不适用于第二BWP,即,此时,本申请的实施例不适用。
作为一种实现方式,针对如下至少一种:MAC CE触发的半持续CSI-RS资源集、半持续CSI-IM资源集等,可以修改信元(information element,IE)CSI资源配置(CSI-ResourceConfig)的格式,使同一个CSI资源配置IE可以包括多个BWP ID。这样,在对具有相同配置的第一BWP和第二BWP进行配置时,可以通过一个CSI资源配置IE同时关联第一BWP和第二BWP,不需要针对第一BWP和第二BWP配置2个信元,这样可以节省配置信令开销。
可选地,本申请中,半持续活动包括半持续状态,用于激活半持续状态的MAC CE还包括以下至少一种:用于非周期CSI触发状态子集选择的MAC CE(Aperiodic CSI Trigger State Subselection MAC CE)、用于终端设备专用PDCCH的TCI状态指示的MAC CE(TCI State Indication for UE-specific PDCCH MAC CE)(例如,当第一BWP和第二BWP的具有相同配置的控制资源集的编号也相同的情况下,用于终端设备专用PDCCH 的TCI状态指示的MAC CE(即第一信息)也可适用于第二BWP)。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图11,详细描述了根据本申请实施例的BWP的切换方法,下面将结合图12和图13详细描述根据本申请实施例的BWP的切换装置。
图12示出了本申请实施例提供的一种BWP的切换装置1200的示意性框图,该装置1200包括接收模块1210和处理模块1220。
其中,接收模块1210用于:在第一BWP上接收来自网络设备的第一信息,该第一信息用于在第一BWP中激活或去激活目标半持续活动,第一BWP为激活BWP。处理模块1220用于:从第一BWP切换到第二BWP,切换后第二BWP为激活BWP;以及,根据第一信息,确定BWP切换后目标半持续活动在第二BWP中的状态,该状态包括激活状态和去激活状态。
可选地,第一BWP和第二BWP的标识不同,配置相同为除BWP的中心频率和标识之外的RRC配置相同。
可选地,第一BWP和第二BWP属于同一个BWP组,或者,第一BWP和第二BWP共享相同的公共配置参数。
可选地,接收模块1210用于:接收来自网络设备的第二信息,该第二信息用于指示从第一BWP切换到第二BWP后该第一信息是否对第二BWP生效。处理模块1220用于:根据该第一信息和该第二信息,确定BWP切换后该目标半持续活动在第二BWP中的状态。
可选地,第二信息由RRC信令或下行控制信息DCI承载。
可选地,第一信息用于在第一BWP中激活目标半持续活动,第二信息指示当终端设备从第一BWP切换到第二BWP后第一信息对第二BWP生效。处理模块1220用于:根据第一信息和第二信息,确定BWP切换后目标半持续活动在第二BWP中的状态为激活状态。
可选地,第一信息用于在第一BWP中去激活目标半持续活动,第二信息指示当终端设备从第一BWP切换到第二BWP后第一信息对第二BWP生效。处理模块1220用于:根据第一信息和第二信息,确定BWP切换后目标半持续活动在第二BWP中的状态为去激活状态。
可选地,第二信息由RRC信令承载,第二信息用于指示当终端设备从第一BWP切换到第二BWP后第一信息对第二BWP生效。接收模块1210用于:接收来自网络设备的第三信息,第三信息用于指示从第一BWP切换到第二BWP后第一信息对第二BWP不生效,第三信息由DCI承载。
可选地,第一信息由DCI承载。
可选地,目标半持续活动包括半持续资源,该半持续资源包括以下至少一种:下行半持续调度PDSCH资源、上行配置授权的类型2 PUSCH资源、用于半持续CSI上报的PUSCH资源。
可选地,第一信息由MAC CE承载。
可选地,目标半持续活动包括半持续资源和/或半持续状态,半持续状态包括PUCCH空间关系和/或终端设备专用PDSCH的发送TCI状态,半持续资源包括以下至少一种:半 持续CSI-RS资源、半持续CSI-IM资源、半持续ZP CSI-RS资源集、半持续SRS资源或者用于半持续CSI上报的PUCCH资源(SP CSI reporting on PUCCH)。
可选地,MAC CE包括第一BWP的标识和第二BWP的标识。
可选地,第一信息用于在述第一BWP中激活目标半持续活动。处理模块1220用于:在第一BWP内暂时中止目标半持续活动。
在一个可选的例子中,本领域技术人员可以理解,装置1200可以具体为上述实施例中的终端设备,或者,上述实施例中终端设备的功能可以集成在装置1200中。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。装置1200可以用于执行上述方法实施例中与终端设备对应的各个流程和/或步骤。
应理解,这里的装置1200以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在本申请的实施例,图12中的装置1200也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。
图13示出了本申请实施例提供的另一种BWP的切换装置1300的示意性框图。该装置1300包括处理器1310、收发器1320和存储器1330。其中,处理器1310、收发器1320和存储器1330通过内部连接通路互相通信,该存储器1330用于存储指令,该处理器1310用于执行该存储器1330存储的指令,以控制该收发器1320发送信号和/或接收信号。
应理解,装置1300可以具体为上述实施例中的电子设备,或者,上述实施例中电子设备的功能可以集成在装置1300中,装置1300可以用于执行上述方法实施例中与电子设备对应的各个步骤和/或流程。可选地,该存储器1330可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器1310可以用于执行存储器中存储的指令,并且该处理器执行该指令时,该处理器可以执行上述方法实施例中与电子设备对应的各个步骤和/或流程。
应理解,在本申请实施例中,该处理器1310可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (18)

  1. 一种带宽部分BWP的切换方法,其特征在于,应用于配置有第一BWP和第二BWP的终端设备,所述第一BWP和所述第二BWP的配置相同,所述第一BWP和所述第二BWP的中心频率不同,所述方法包括:
    所述终端设备在所述第一BWP上接收来自网络设备的第一信息,所述第一信息用于在所述第一BWP中激活或去激活目标半持续活动,所述第一BWP为激活BWP;
    所述终端设备从所述第一BWP切换到所述第二BWP,切换后所述第二BWP为激活BWP;
    所述终端设备根据所述第一信息,确定BWP切换后所述目标半持续活动在所述第二BWP中的状态,所述状态包括激活状态和去激活状态。
  2. 根据权利要求1所述的方法,其特征在于,所述第一BWP和所述第二BWP的标识不同,所述配置相同为除BWP的中心频率和标识之外的无线资源控制RRC配置相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一BWP和所述第二BWP属于同一个BWP组,或者,所述第一BWP和所述第二BWP共享相同的公共配置参数。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二信息,所述第二信息用于指示当所述终端设备从所述第一BWP切换到所述第二BWP后所述第一信息是否对所述第二BWP生效;
    所述终端设备根据所述第一信息,确定BWP切换后所述目标半持续活动在所述第二BWP中的状态,包括:
    所述终端设备根据所述第一信息和所述第二信息,确定BWP切换后所述目标半持续活动在所述第二BWP中的状态。
  5. 根据权利要求4所述的方法,其特征在于,所述第二信息由RRC信令或下行控制信息DCI承载。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一信息用于在所述第一BWP中激活所述目标半持续活动,所述第二信息指示当所述终端设备从所述第一BWP切换到所述第二BWP后所述第一信息对所述第二BWP生效;
    所述终端设备根据所述第一信息和所述第二信息,确定BWP切换后所述目标半持续活动在所述第二BWP中的状态,包括:
    所述终端设备根据所述第一信息和所述第二信息,确定BWP切换后所述目标半持续活动在所述第二BWP中的状态为激活状态。
  7. 根据权利要求4或5所述的方法,其特征在于,所述第一信息用于在所述第一BWP中去激活所述目标半持续活动,所述第二信息指示当所述终端设备从所述第一BWP切换到所述第二BWP后所述第一信息对所述第二BWP生效;
    所述终端设备根据所述第一信息和所述第二信息,确定BWP切换后所述目标半持续活动在所述第二BWP中的状态,包括:
    所述终端设备根据所述第一信息和所述第二信息,确定BWP切换后所述目标半持续活动在所述第二BWP中的状态为去激活状态。
  8. 根据权利要求4-7中任一项所述的方法,其特征在于,所述第二信息由RRC信令承载,所述第二信息用于指示当所述终端设备从所述第一BWP切换到所述第二BWP后 所述第一信息对所述第二BWP生效;
    在所述终端设备接收来自所述网络设备的第二信息之后,所述方法还包括:
    所述终端设备接收来自所述网络设备的第三信息,所述第三信息用于指示当所述终端设备从所述第一BWP切换到所述第二BWP后所述第一信息对所述第二BWP不生效,所述第三信息由DCI承载。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一信息由DCI承载。
  10. 根据权利要求9所述的方法,其特征在于,所述目标半持续活动包括半持续资源,所述半持续资源包括以下至少一种:
    下行半持续调度的物理下行共享信道PDSCH资源、上行配置授权的类型2物理上行共享信道PUSCH资源、用于半持续信道状态信息CSI上报的PUSCH资源。
  11. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一信息由介质访问控制控制元素MAC CE承载。
  12. 根据权利要求11所述的方法,其特征在于,所述目标半持续活动包括半持续资源和/或半持续状态,所述半持续状态包括物理上行控制信道PUCCH空间关系和/或终端设备专用PDSCH的发送配置指示TCI状态,所述半持续资源包括以下至少一种:
    半持续信道状态信息参考信号CSI-RS资源、半持续信道状态信息干扰测量CSI-IM资源、半持续零功率ZP CSI-RS资源、半持续探测参考信号SRS资源、或用于半持续CSI上报的物理上行控制信道PUCCH资源。
  13. 根据权利要求11或12所述的方法,其特征在于,所述MAC CE包括所述第一BWP的标识和所述第二BWP的标识。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,若所述第一信息用于在所述第一BWP中激活所述目标半持续活动,在所述终端设备从所述第一BWP切换到所述第二BWP之后,所述方法还包括:
    所述终端设备在所述第一BWP内暂时中止所述目标半持续活动。
  15. 一种BWP的切换装置,其特征在于,包括用于执行如权利要求1-14中任一项所述方法的模块。
  16. 一种BWP的切换装置,其特征在于,包括处理器和存储器;所述存储器用于存储一个或多个计算机程序,当所述一个或多个计算机程序被运行时,使得如权利要求1-14中任一项所述的方法被执行。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-14中任一项所述的方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1-14中任一项所述的方法。
PCT/CN2022/117437 2021-09-29 2022-09-07 带宽部分的切换方法和切换装置 WO2023051199A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111156077.4A CN115915303A (zh) 2021-09-29 2021-09-29 带宽部分的切换方法和切换装置
CN202111156077.4 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023051199A1 true WO2023051199A1 (zh) 2023-04-06

Family

ID=85733869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117437 WO2023051199A1 (zh) 2021-09-29 2022-09-07 带宽部分的切换方法和切换装置

Country Status (2)

Country Link
CN (1) CN115915303A (zh)
WO (1) WO2023051199A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190357215A1 (en) * 2018-05-15 2019-11-21 Comcast Cable Communications, Llc Multiple Active Bandwidth Parts
CN111163523A (zh) * 2017-09-15 2020-05-15 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
US20210212066A1 (en) * 2018-09-27 2021-07-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for resource indication and terminal device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163523A (zh) * 2017-09-15 2020-05-15 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
US20190357215A1 (en) * 2018-05-15 2019-11-21 Comcast Cable Communications, Llc Multiple Active Bandwidth Parts
US20210212066A1 (en) * 2018-09-27 2021-07-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for resource indication and terminal device
CN113114446A (zh) * 2018-09-27 2021-07-13 Oppo广东移动通信有限公司 一种资源指示方法、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Impact of BWP switch on SPS and configured grants", 3GPP TSG-RAN WG2 #101BIS, R2-1805099, 14 April 2018 (2018-04-14), XP051428778 *

Also Published As

Publication number Publication date
CN115915303A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN109588064B (zh) 用于无线通信网络的网络架构、方法和设备
US20210044956A1 (en) Method of connection control for direct communication between terminals, and apparatus therefor
CN114846846A (zh) 用于以l1/l2为中心的小区间移动性的多个候选小区的信令
CN111586858B (zh) 信号传输方法和通信装置
WO2020232566A1 (zh) Bwp切换方法、装置及存储介质
US11553430B2 (en) System and method for control channel reception in power save mode
EP3987679A1 (en) Millimeter wave relay link discovery
US11387875B2 (en) Beam selection for enhanced page performance
US20230145663A1 (en) System and Method for Control Channel Reception in Power Save Mode
WO2023051188A1 (zh) 分组管理方法和通信装置
WO2021210264A1 (ja) 移動局、基地局、受信方法及び送信方法
KR20200088721A (ko) Dual Connectivity 지원 망에서 RRC_IDLE 상태 단말을 위한 SN(Secondary Node)에서의 V2X 자원 할당 방법 및 장치
CN116830658A (zh) 用于分布式无线通信系统中的移动性的小区测量和报告
US20220167339A1 (en) Beam failure recovery method and apparatus
JP2022543258A (ja) ユーザ装置及びスケジューリングノード
JP2024513058A (ja) 無線ネットワークにおけるセル間マルチtrp操作
CN115152157A (zh) 在无线通信系统中执行波束故障恢复过程的方法及其设备
WO2021215098A1 (ja) 端末及び通信方法
TW202127950A (zh) 整合存取和回載網路隨機存取參數最佳化
US20230116653A1 (en) Available slot determination for aperiodic srs triggering based on an unconfigured dci code point
WO2022188638A1 (zh) 一种数据传输方法及装置
WO2023051199A1 (zh) 带宽部分的切换方法和切换装置
CN117480834A (zh) 通信方法及终端
CN117501803A (zh) 用户设备、调度节点、用户设备的方法和调度节点的方法
WO2024032208A1 (zh) 一种通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE