WO2023050952A1 - 控制装置以及控制方法 - Google Patents

控制装置以及控制方法 Download PDF

Info

Publication number
WO2023050952A1
WO2023050952A1 PCT/CN2022/103157 CN2022103157W WO2023050952A1 WO 2023050952 A1 WO2023050952 A1 WO 2023050952A1 CN 2022103157 W CN2022103157 W CN 2022103157W WO 2023050952 A1 WO2023050952 A1 WO 2023050952A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
control
air
communication unit
processor
Prior art date
Application number
PCT/CN2022/103157
Other languages
English (en)
French (fr)
Inventor
沈润渊
刘云龙
蒋伟
刘思波
陈浩
张林娜
王啸
王海涛
宗志祥
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122403833.0U external-priority patent/CN215682490U/zh
Priority claimed from CN202111161802.7A external-priority patent/CN115914703A/zh
Priority claimed from CN202111159133.XA external-priority patent/CN115914702A/zh
Priority claimed from CN202111162296.3A external-priority patent/CN115914727A/zh
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Publication of WO2023050952A1 publication Critical patent/WO2023050952A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/422Input-only peripherals, i.e. input devices connected to specially adapted client devices, e.g. global positioning system [GPS]

Definitions

  • the present application relates to the field of electronic technology, and in particular to a control device and a control method for electronic equipment.
  • each TV has a separate remote controller
  • an air conditioner has a separate remote controller
  • an air purifier has a separate remote controller.
  • the number of remote controllers that need to be operated is relatively large. Taking a remote control of a display device such as a TV as an example, the remote control can only be used to control the TV, so that the function of the remote control is relatively single, thereby affecting the user experience of the electronic device.
  • An embodiment of the present application provides a control device, including: a communication unit, a posture detection unit, and a processor; the posture detection unit is configured to determine the orientation and/or posture of the control device; the processor is configured for:
  • the control device further includes: at least one air detection unit configured to obtain air parameters of the environment where the control device is located to send the air parameters to the processor, wherein the communication unit configured to determine that the control device is heading towards a target controlled device in a plurality of controlled devices; and communicate with any controlled device in the plurality of controlled devices, wherein the processor is further configured to When it is determined by the first communication unit that the control device is heading towards the target controlled device, sending the air parameter and/or the control command to the target controlled device by the second communication unit.
  • An embodiment of the present application provides a control method for electronic equipment, which is applied to a control device to control multiple controlled devices.
  • the method includes: determining the orientation of the control device among the multiple controlled devices the target controlled device; determine the configuration file corresponding to the target controlled device; wherein, the configuration file includes a plurality of control commands of the target controlled device, and a data format corresponding to each of the control commands;
  • the configuration file includes a plurality of control commands of the target controlled device, and a data format corresponding to each of the control commands;
  • determine a data format corresponding to the control command from the configuration file When receiving an instruction to send a control command, determine a data format corresponding to the control command from the configuration file; and send the control command to the target controlled device according to the data format.
  • the method further includes: acquiring power information of the power supply unit included in the control device, the power information includes the The remaining power of the power supply unit and/or the power consumption rate of the power supply unit; according to the power information, determine the working parameters of the plurality of air detection units, the working parameters include at least one of the plurality of air detection units The identification information of a target air detection unit, the detection order of the at least one target air detection unit, and the interval time for the target air detection unit to periodically acquire air parameters; and according to the operating parameters, through the at least one target air detection unit The detection unit acquires air parameters.
  • FIG. 1 is a schematic diagram of an operation scene between a display device and a control device according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a hardware structure of a hardware system in a display device according to an exemplary embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a control system provided according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a control system according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram showing air parameters displayed by a display device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a control system of a display device according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a control device according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a circuit structure of a control device according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for controlling a controlled device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a control device according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a processor determining a target controlled device according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a display device displaying a UWB tag according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a control sequence of a control device according to an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a control method for an electronic device according to an embodiment of the present application.
  • FIG. 15 is a schematic flowchart of a control method for an electronic device according to another embodiment of the present application.
  • FIG. 16 is a schematic flowchart of a control method for an electronic device according to another embodiment of the present application.
  • FIG. 17 is a schematic flowchart of a control method of a control device according to another embodiment of the present application.
  • FIG. 18 is a schematic diagram of a display device displaying a power prompt according to an embodiment of the present application.
  • Fig. 19 is a schematic flowchart of a control method of a control device according to another embodiment of the present application.
  • remote controller used in various embodiments of this application refers to a component of an electronic device (for example, an electronic device is used as a display device in this application), which can usually control electronic devices wirelessly within a short distance. equipment.
  • the component can generally use infrared and/or radio frequency (RF) signals and/or Bluetooth and/or UWB to connect with electronic devices, and can also include functional modules such as WiFi, wireless USB, Bluetooth, motion sensors, and UWB.
  • RF radio frequency
  • FIG. 1 is a schematic diagram of an operation scene between a display device and a control device according to an embodiment of the present application.
  • the user can operate the display device 200 through the control device 100 .
  • the control device 100 can specifically be a remote controller, which can communicate with the display device 200 through infrared protocol communication, Bluetooth protocol communication, ZigBee protocol communication, UWB or other short-distance communication methods, and is used to communicate with the display device 200 through wireless
  • the display device 200 is controlled by means of communication.
  • the user can control the display device 200 by inputting user instructions through buttons on the remote control 100 , voice input, control panel input, and the like.
  • the display device 200 can also perform data communication with the server 300 through various communication methods.
  • the display device 200 may be allowed to perform a wired communication connection or a wireless communication connection with the server 300 through a local area network, a wireless local area network or other networks.
  • the server 300 may provide various contents and interactions to the display device 200 .
  • the display device 200 may be a liquid crystal display, an OLED (Organic Light Emitting Diode) display, or a projection display device; in some embodiments, the display device may be a display system composed of a television or a display and a set-top box. In addition to the function of broadcasting and receiving video, the display device 200 can also provide an Internet TV function that supports computer functions.
  • FIG. 2 is a schematic diagram of a hardware structure of a hardware system in a display device 200 according to an embodiment of the present application.
  • the display device in the display device 200 includes: a panel 1 , a backlight assembly 2 , a main board 3 , a power board 4 , a rear case 5 and a base 6 .
  • the panel 1 is used to present images to the user;
  • the backlight assembly 2 is located under the panel 1, and is usually some optical components, which are used to supply sufficient brightness and evenly distributed light sources so that the panel 1 can display images normally.
  • FIG. 2 further includes a keypad, and the keypad may be disposed on the back panel of the display device, which is not limited in the present application.
  • control device 100 The specific implementation of the control device 100 provided by this application will be described in detail below with specific examples.
  • the control device 100 provided by this application can be used to control multiple electronic devices, and the electronic devices that can be controlled by the control device 100 are recorded as controlled equipment.
  • the following specific embodiments may be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments.
  • control device 100 provided in this application may specifically be a remote controller corresponding to a display device 200 such as a TV, or the control device 100 may also be a remote controller corresponding to electronic equipment such as an air conditioner or an air purifier.
  • the control device 100 is a remote controller corresponding to a television, but not limited thereto.
  • the remote controller can be considered as having a corresponding relationship with one of the controlled devices.
  • the control device 100 of the display device 200 can not only control the display device 200, but also control the Multiple controlled devices other than
  • Fig. 3 is a schematic structural diagram of a control system according to an embodiment of the present application.
  • the control system provided by this embodiment includes multiple controlled devices and a control device 100 .
  • the control device provided in this embodiment includes: a processor 101, and a communication unit (for example, may include a first communication unit 103 and a second communication unit 104).
  • the first communication unit 103 and the second communication unit 104 are respectively connected to the processor 101 .
  • Fig. 4 is a schematic structural diagram of a control system according to another embodiment of the present application.
  • the control device 100 shown in FIG. 4 further includes at least one air detection unit 102 on the basis shown in FIG. 3 , and the at least one air detection unit 102 is respectively connected to the processor 101 .
  • the control device 100 shown in FIG. 4 has an air detection function. Taking the scene shown in FIG. 1 as an example, the user can use the control device 100 to control the display device 200, and the control device 100 can also use at least one air detection unit provided inside it. 102 Obtain air parameters of the environment where the control device 100 is located. In Fig.
  • the air detection unit may include a fine particulate matter (Fine particulate matter, PM for short) sensor, a total volatile organic compound (TVOC for short) sensor, a temperature and humidity sensor, and the like.
  • PM fine particulate matter
  • TVOC total volatile organic compound
  • an opening is provided on the casing of the control device 100, so that the air detection unit 102 inside the control device 100 can collect the external air parameters of the control device 100 through the opening, and then realize the user who uses the control device 100 The environment of the environment is tested.
  • the control device 100 provided the first communication unit 103 is configured to determine that the current signal transmission direction of the control device is towards the target controlled device among the multiple controlled devices,
  • the second communication unit 104 is configured to be able to communicate with any controlled device in the plurality of controlled devices.
  • the first communication unit may specifically perform communication based on Ultra Wide Band (Ultra Wide Band, UWB for short) or Bluetooth protocol.
  • the second communication unit can communicate according to protocols such as infrared, bluetooth, and WIFI.
  • the environment where the control device 100 is located includes multiple controlled devices, which are recorded as controlled device A, controlled device B ...
  • the control The apparatus 100 can control any one of multiple controlled devices in the environment. Therefore, on the basis of using the second communication unit 104 to communicate with any controlled device, the control device 100 provided in the embodiment of the present application is also configured to determine whether the control device 100 is specifically directed towards the target controlled device among the multiple controlled devices.
  • the first communication unit 103 of the device enables the control device 100 to simultaneously control multiple controlled devices in the environment. Therefore, on the basis of using the second communication unit 104 to communicate with the controlled device, the control device 100 provided in the embodiment of the present application is also configured to determine that the control device 100 is specifically connected to the target controlled device among the multiple controlled devices.
  • the first communication unit 103 enables the control device 100 to separately control multiple controlled devices in the environment.
  • the processor 101 in the control apparatus 100 may be configured to control different controlled devices.
  • control device 100 may include a communication unit, an attitude detection unit, and a processor
  • the attitude detection unit may be configured to determine the orientation of the control device
  • the processor may be configured to: determine the orientation of the plurality of controlled devices based on the orientation The target controlled device directed by the control device; and sending a control instruction to the target controlled device through the communication unit.
  • the processor 101 determines through the first communication unit 104 that the control device 100 is heading towards a target controlled device among the plurality of controlled devices, after the processor 101 obtains the air parameters through at least one air detection unit 102, The air parameters are then sent to the target controlled device through the first communication unit 103 .
  • the processor 101 of the control device 100 determines through the first communication unit that the control device 100 is heading towards the target controlled device among the multiple controlled devices, it sends a message to the target controlled device through the second communication unit 104 control commands.
  • control command may be the control command corresponding to the target controlled device among the control command sets of multiple controlled devices determined by the processor 101 according to the air parameters; or, the control command may be the The target controlled device is determined; or, the control command may be determined by the processor according to the received instruction to send the control command from the user of the control device 100 .
  • control device 100 may send a control command to the target controlled device 200 when determining that it is heading towards the target controlled device 200;
  • the control parameter can be sent to the target controlled device through the second communication unit.
  • the control device controls other controlled devices that have no corresponding relationship, it still needs to first determine the direction to the controlled device, and then send air parameters and/or control commands to the controlled device.
  • control device 100 corresponds to the display device 200
  • the processor 101 in the control device 100 receives the air parameters, it directly sends the air parameters to the display device 200 through the second communication unit, and the second communication unit can transmit the air parameters according to Bluetooth, WIFI and other protocols for communication.
  • the target controlled device may be a display device, and after the control device 100 sends the collected air parameters to the display device 200, the display device may display the air parameters on its display screen.
  • FIG. 5 is a schematic diagram of a display device displaying air parameters according to an embodiment of the present application.
  • scenario A after receiving the air parameter sent by the control device, the display device 200 can display the air parameter at any position on its display screen 201 .
  • scene B when the display device 200 has multiple display screens, when the main display screen 201 displays the content that the user is watching, the time, date, and air time can be displayed on the secondary display screen 202. parameters, etc.
  • the display device 200 may directly display the received air parameter, or may also display the evaluation of the air parameter after judging the correspondence between the interval corresponding to the received air parameter and the evaluation result.
  • Results air quality is good, medium, poor, etc.
  • action recommendations for example, it is recommended to turn on the air purifier
  • the processor 101 can store information such as control commands and data formats corresponding to different controlled devices.
  • the processor 101 of the control device 100 determines to face the TV through the first communication unit 103, for example, when receiving the user's click operation on the button "up” on the control device 100, the processor 101 determines from the storage unit that the button "up” ” corresponds to the information of the control command of the TV, and according to the information of the control command, the second communication unit 104 sends to the TV a control command of increasing the volume corresponding to the TV.
  • the processor 101 of the control device 100 determines to face the air conditioner through the first communication unit 103, if the user clicks on the button "up” on the control device 100, the processor 101 determines the button "up” from the storage unit.
  • the processor 101 determines the button "up” from the storage unit.
  • the second communication unit 104 is an infrared transceiver, different infrared data formats corresponding to different control commands may be stored in the storage unit.
  • the processor 101 may also determine control commands corresponding to multiple controlled devices according to the received air parameters, and send corresponding control commands to the multiple controlled devices; or, the processor 101 After the control command is determined according to the air parameter, when the processor 101 determines that the control device 100 is facing a controlled device, it sends a corresponding control command to the controlled device.
  • the first communication unit used to determine the connection between the control device 100 and the target controlled device provided in the embodiment of the present application may specifically be an ultra wide band (Ultra Wide Band, UWB for short) communication unit, or may Positioning is based on the angle of arrival (Angle of Arrival, AOA) of the Bluetooth signal.
  • UWB Ultra Wide Band
  • FIG. 6 is a schematic structural diagram of a control system of a display device according to another embodiment of the present application.
  • the control device 100 in FIG. 6 may be the control device in FIG. 3 or FIG. 4, and the control device in FIG. 4 is taken as an example in FIG.
  • each controlled device is also provided with a UWB communication unit, and the UWB communication unit provided in the controlled device is recorded as the second UWB communication unit.
  • the first UWB communication unit as shown in FIG. 6 is specifically configured to perform UWB communication.
  • the processor 101 in the control device 100 can send a UWB tag acquisition request through the first UWB communication unit, when the second UWB communication unit in any one of the multiple controlled devices receives the UWB tag acquisition request information After that, the UWB tag corresponding to the second UWB communication unit will be sent.
  • the second UWB communication unit 1 of the display device 200 corresponds to the UWB tag 1
  • the second UBW communication unit 2 of the air conditioner 210 corresponds to the UWB tag 2
  • the second UWB unit 3 of the air cleaner 220 Corresponds to UWB tag 3.
  • the processor 101 in the control device 100 receives the UWB tag 1 through the first UWB unit, the processor 101 can transmit the UWB tag 1 according to the UWB tag 1.
  • the processor 101 may then execute the step of sending air parameters and/or control commands to the display device 200 in the foregoing embodiments of the present application.
  • each controlled device may further be provided with a third communication unit for communicating with the second communication unit 104 in the control device 100 .
  • the processor 101 may send air parameters and/or control commands to the display device 200 through the second communication unit 104, and the display device 200 receives air parameters and/or control commands sent by the control device 100 according to the third communication unit 1 .
  • Fig. 7 is a schematic structural diagram of a control device according to another embodiment of the present application. On the basis of the control device 100 shown in Figure 3, Figure 4 and Figure 6, the control device 100 shown in Figure 7 also includes:
  • the posture detection unit 105 is configured to determine the posture of the control device 100, the posture includes the orientation and position of the control device, etc., and the orientation is the direction in which the control device 100 can communicate, such as the direction in which infrared rays are emitted.
  • the posture detection unit 105 may include a gyroscope, which is used to detect information such as an angle toward which the control device 100 is facing and an angle to a horizontal plane, and send the information to the processor.
  • the first UWB communication unit in the control device 100 can test the angle and distance of the source of the received UWB tag through its UBW antenna, and the test result is combined with the orientation of the control device detected by the posture detection unit 105 , the current positional relationship between the control apparatus 100 and the controlled device can be determined.
  • At least one interaction unit 106 is configured to receive instructions from the user of the control device and/or send prompt information to the user of the control device.
  • at least one interaction unit 106 may include at least one of the following: a keyboard 1061 and a microphone 1062, respectively used to receive instructions issued by the user through pressing and sound; a vibration motor 1063 and a buzzer 1064, respectively used to The form sends a prompt message to the user.
  • the interaction unit 106 may also include LED prompt lights and the like.
  • the second communication unit may specifically include: an infrared communication unit 1032 and/or a Bluetooth communication unit 1031, which are respectively used to communicate with the controlled
  • the device sends data, the sent data includes air parameters and/or control commands.
  • the processor 101 can choose to use the infrared communication unit 1032 or the Bluetooth communication unit 1031 to communicate with the target controlled device according to the third communication unit set in the target controlled device.
  • the device sends a control signal.
  • At least one air detection unit 102 provided in the control device 100 as shown in FIG. 7 may include at least one of the following: fine particulate matter (Fine particulate matter, referred to as: PM) sensor 1021, total volatile Compound (Total volatile organic compounds, TVOC for short) sensor 1022, temperature and humidity sensor 1023, etc.
  • PM fine particulate matter
  • Total volatile Compound Total volatile organic compounds
  • TVOC Total volatile organic compounds
  • control device processor 101 shown in Figure 7 is connected to all other units, and the processor 101 can be functionally divided into a data acquisition module and a logical processing module, wherein the data acquisition module is used to communicate with the communication unit , sensors and other units to obtain data, the logic processor is used to process the data, and is responsible for task scheduling and timing control of each communication unit, sensors and other units.
  • the control device of the display device may be provided with an air detection unit for detecting air parameters, and a second communication unit for determining a target controlled device connected to the control device.
  • This enables the control device to send the air parameters and/or control commands obtained by the air detection unit to the target controlled device through the first communication unit when the second communication unit determines to be connected to the target controlled device among the plurality of controlled devices. Therefore, although the control device provided in the embodiment of the present application corresponds to the display device, it can also control other controlled devices, thereby enriching the functions of the control device.
  • control device also has an air detection unit to detect the air parameters of the environment where the control device is located, and then the display device can display the air parameters or the control device executes corresponding control commands according to the air parameters, which further enriches the functions of the control device and improves control.
  • the degree of intelligence of the device can further improve the experience of users of electronic devices such as display devices and control devices.
  • the first communication unit 103 set in the control device 100 is recorded as the first AOA unit, correspondingly, each controlled device is also set with an AOA communication unit, and the AOA communication unit set in the controlled device Recorded as the second AOA communication unit.
  • the Bluetooth signal is received by at least two sets of antennas, the angle of arrival (Angle of Arrival, AOA) of the Bluetooth signal is determined, and then the position of the Bluetooth transmitter that sends the Bluetooth signal is determined. It is worth noting that the present application may also use other communication methods to determine the orientation, which will not be described one by one here.
  • FIG. 8 is a schematic diagram of a circuit structure of a control device according to an embodiment of the present application.
  • FIG. 8 shows a specific circuit implementation manner of the control device 100 in FIG. 7 .
  • the processor 101 of the control device 100 as shown in FIG. 8 includes: a processor N1.
  • the processor N1 is connected to the first UWB communication unit 104 through the UART interface provided by the pins marked 42 and 31; the first UWB communication unit 104 is also connected to two UWB antennas, and the first UWB communication unit 104 can pass two
  • the UWB antenna performs UWB communication, such as sending a UWB tag acquisition request, receiving a UWB tag, and so on.
  • the processor N1 is connected to the Bluetooth communication unit 1031 through the ANT and VANT interfaces provided by the pins labeled 37 and 38.
  • the Bluetooth communication unit 1031 is also connected to a Bluetooth antenna, and the Bluetooth communication unit 1031 performs Bluetooth communication through the Bluetooth antenna.
  • the processor N1 is connected to the infrared communication unit 1032 through the IR_OUT interface provided by the pin marked 30; the infrared communication unit 1032 can send infrared signals through the infrared emitting device provided therein.
  • the processor N1 is also connected to the I2C bus through the I2C interface provided by the pins marked 47 and 48.
  • the fine particle sensor 1021, the TVOC sensor 1022, the temperature and humidity sensor 1023 and the gyroscope 105 are also connected to the I2C bus.
  • sensors such as the fine particle sensor 1021, TVOC sensor 1022, temperature and humidity sensor 1023, and gyroscope 105 connected on the I2C bus, if there is a sensor whose output level is different from the level on the I2C bus, the detection result of the sensor input to the level shifter.
  • the processor N1 is also connected to the microphone 1062 through the MIC interface provided by the pins labeled 28 and 29, and the user's voice collected by the microphone can be sent to the processor N1 through the MIC+ and MIC- interfaces;
  • the KEY-ROW0 ⁇ KEY-ROW3 pins of 5-8 are connected to the multi-row keys of the keyboard 1061, and the KEY-LINE0 ⁇ KEY-LINE4 pins marked as 20-24 are connected to the multi-column keys of the keyboard 1061, and the keyboard 1061 can include multiple rows of keys.
  • Each button is distributed in rows and columns (ROW-LINE). Each row of buttons is connected to the same row pin (ROW), and each row of buttons is connected to the same column pin (LINE).
  • Each button corresponds to, for example, "power” , “Volume Up”, “Volume Down”, “Home Page” and other functions; the processor N1 is also connected to the gyroscope 105 through the pin marked 34; the processor N1 is also connected to two LED1 and LED2 interfaces marked 43 and 44 LED.
  • the control device such as the display device electronic device based on the embodiment of the present application can be used to control multiple controlled devices, so that the control device needs to send different control commands to different controlled devices when controlling different controlled devices. Therefore, the embodiment of the present application also provides a method for controlling an electronic device.
  • the control device is controlling multiple controlled devices, after determining the target controlled device among the multiple controlled devices that is currently heading, it obtains the corresponding information of the target controlled device. configuration file, and then after receiving the control command from the user to the target controlled device, send the control command to the target controlled device according to the data format corresponding to the target controlled device in the configuration file, so that the user can control the target device through the control device respectively. Control multiple controlled devices. Exemplarily, FIG.
  • FIG. 9 is a schematic flowchart of a method for controlling a controlled device according to an embodiment of the present application.
  • the control method shown in FIG. 9 can be executed by the control device provided in any embodiment of the present application, specifically, it can be executed by a processor in the control device.
  • the control method includes:
  • the processor in the control device determines, based on the orientation of the control device, a target controlled device that the control device is facing among the plurality of controlled devices.
  • the processor in the control device determines through the first communication unit that the control device is heading towards a target controlled device among the plurality of controlled devices.
  • the processor when the first communication unit is the first UWB communication unit, the processor first sends a UWB tag acquisition request to the direction it is facing through the first UWB communication unit in S1011; subsequently, when multiple controlled After receiving the UWB tag acquisition request, the target controlled device in the device sends the UWB tag of the target controlled device to the first UWB communication unit in S1012, so that the processor receives the UWB tag from the target controlled device through the first UWB communication unit. After the UWB tag is sent by the device, the target controlled device that the control device is facing at this time can be determined according to the received UWB tag in S1013.
  • FIG. 10 is a schematic structural diagram of a control device according to an embodiment of the present application.
  • the control device 100 shown in FIG. 10 is provided with a casing, and a first communication unit and a second communication unit are arranged inside the area 110 above the casing in the figure, and the direction A marked by the upward arrow in the figure is the direction of the control device 100.
  • the antennas of the first communication unit and the second communication unit in the area 110 are also facing the direction A, so that both communication units can communicate in the direction A, for example, the first UWB communication unit can
  • the direction A sends a UWB tag acquisition request, and receives the UWB tag from the A direction, and the second communication unit can send a control command to the A direction.
  • the air detection unit when an air detection unit is included in the control device as shown in FIG.
  • the air detection unit can detect the air outside the casing through the opening.
  • the casing of the control device as shown in FIG. 10 is further provided with a plurality of buttons, and the user can send a control command to the control device by clicking the buttons.
  • the control device includes a switch/power button 131 , a circular touch button 132 and a volume up and down button 133 .
  • the structure of the control device 100 shown in FIG. 10 is only an example, and the control device 100 can also have other shapes and buttons with other functions. The position and function of the buttons are not limited.
  • the processor can control the attitude detection unit provided in the device to determine the angle the control device is facing at this time, and combine the signal arrival angle and signal arrival time when receiving the UWB tag through the first UWB communication unit , to determine the target controlled equipment that the current control device is facing.
  • FIG. 11 is a schematic diagram of the processor determining the target controlled device according to the embodiment of the present application.
  • the UWB communication unit sends a UWB tag acquisition request to the A direction.
  • the attitude detection unit such as the gyroscope installed in the control device 100 can detect the current attitude data of the control device 100 and send it to the processor, so that the processor can use it according to
  • the posture data determines that the posture of the control device 100 is facing the direction A in FIG. 10 , and the direction A is recorded as the signal transmission direction of the control device.
  • the processor in the control device 100 receives the UWB tag sent by the second UWB communication unit 2001 in the controlled device 200 through the first UWB communication unit, it can be determined according to the two antennas of the first UWB communication unit.
  • the UWB signal arrives in the B direction, and the B direction is recorded as the signal receiving direction of the control device.
  • the processor can also be based on the time ranging method (ToF), according to the first moment when the processor sends the UWB tag acquisition request through the first UWB communication unit, and the second time when the processor receives the UWB tag through the first UWB communication unit.
  • ToF time ranging method
  • the distance for the UWB signal to go back and forth between the control device 100 and the controlled device 200 can be obtained, and half of the distance is the control The distance L between the device 100 and the controlled device 200 .
  • the processor when the processor sends a UWB tag acquisition request through the first UWB communication unit, record the time stamp information of the first moment TX when the request is sent, and then, when the processor receives the request through the first UWB communication unit at the second moment When the UWB tag is used, the time stamp information of the second moment RX when the UWB tag is received can be obtained, and then the distance L between the control device 100 and the controlled device 200 can be obtained through formula 1.
  • L is the distance between the control device and the controlled device
  • RX is the time stamp information at the second moment when the UWB tag is received
  • TX is the time stamp information at the first time moment when the request is sent.
  • the control device 100 can also separately set a ranging module, such as a ToF (Time of flight, time of flight) laser ranging module, etc., and direct the signal transmitting/receiving direction of the module towards the first UWB communication unit same direction of signal emission. Therefore, when the first UWB communication unit is heading towards the target electronic device, the distance L between the control device 100 and the controlled device 200 is simultaneously determined by the distance measuring module, and the parallel processing method with the first UWB communication unit makes it possible to determine the distance There is no need to depend on whether the UWB tag is received through the first UWB communication unit, so the ranging module has a certain degree of independence, which can improve the overall processing efficiency of the control device.
  • a ranging module such as a ToF (Time of flight, time of flight) laser ranging module, etc.
  • the processor determines that when the angle a between the signal transmitting direction A of the control device 100 and the signal receiving direction B is smaller than the first threshold, and the distance L between the control device 100 and the controlled device 200 When it is smaller than the second threshold, it is determined that the controlled device 200 that the control device is currently facing is the target controlled device, and the control device 100 can subsequently control the target controlled device.
  • the first threshold may be 7°
  • the second threshold may be 5m
  • the first threshold and the second threshold can be preset according to different application scenarios, or can be set by the user. This application does not limit the specific values of the first threshold and the second threshold.
  • the processor determines the target controlled device according to the UWB tag after receiving a UWB tag through the first UWB communication unit.
  • the processor may receive a UWB tag acquisition request through the first UWB communication unit.
  • UWB tags sent by multiple controlled devices at this time, the processor also needs to determine the target controlled device that the user actually wants to control from the controlled devices corresponding to the multiple UWB tags.
  • the processor when the processor receives multiple UWB tags sent by multiple controlled devices through the first communication unit in step S1012, when the processor cannot determine the target controlled device that the current user aims the control device at , the processor may send the received multiple UWB tags to the display device, so that the display device prompts the user on its display screen to determine the target controlled device from the multiple controlled devices corresponding to the multiple UWB tags, and then, The display device sends information such as the UWB tag of the target controlled device selected by the user to the control device, so that the control device determines the target controlled device according to the information sent by the display device.
  • FIG. 12 is a schematic diagram of a display device displaying a UWB tag according to an embodiment of the present application.
  • the display device 200 receives the multiple UWB tags sent by the control device 100 , it displays information such as names and images of the controlled devices corresponding to the multiple UWB tags on its display screen 201 . This enables the user of the display device 200 to indicate to the display device 200 the target controlled device among the multiple controlled devices through a control device, voice, buttons on the display device, and the like. Subsequently, the display device 200 sends the target controlled device selected by the user to the control device 100, so that the control device 100 determines the target controlled device.
  • the attitude of the control device is also relatively fixed. Therefore, after the control device receives the target controlled device sent by the display device, it can also determine the orientation of the control device through the gesture detection unit, and store the correspondence between the orientation and the target controlled device. For example, in the example shown in FIG. 11 , when the control device 100 determines that the current orientation A corresponds to the controlled device 200, it can store the correspondence between the direction A and the controlled device 200, and so on, which can be obtained through the following table 1
  • the corresponding relationship between direction C-controlled device 210 and direction D-controlled device 220 is stored in a form such as a table.
  • the processor when the processor receives multiple UWB tags sent by multiple controlled devices through the first UWB communication unit in S1012, the processor can determine the direction the current control device is facing according to the gesture detection unit, and then can obtain from In the mapping relationship, it is determined that the controlled device corresponding to the current heading direction is the target controlled device. For example, when the processor simultaneously receives the UWB tag 1 of the controlled device 200 and the UWB tag 2 of the controlled device 210 through the first UWB communication unit, it determines that the controlled device 200 is the target controlled device according to the direction A of the current orientation. In addition, if it is determined that the current heading direction is D, but the UWB tag 3 of the controlled device 220 is not received, multiple received UWB tags may be sent to the display device for selection by the user of the display device.
  • the processor of the control device further determines a first configuration file corresponding to the target controlled device according to the target controlled device determined in S101.
  • control device since the control device can control multiple different controlled devices, the control commands of each controlled device need to be sent in different forms. Therefore, configuration files corresponding to multiple controlled devices may be stored in advance in the storage unit of the control device, so that the processor obtains the first configuration file corresponding to the target controlled device from the storage unit after determining the target controlled device.
  • the configuration files of multiple different controlled devices stored in the storage unit of the control device may be preset, for example, stored in the controlled device in advance.
  • the control device before the user uses the control device to control the target controlled device for the first time, after the user uses the control device to bind the control device and the target controlled device on the display device, configure the control device to control the target device,
  • the display device sends the first configuration information of the target controlled device to the control device, and the control device stores it.
  • the configuration file may not be stored in the control device, but after the target controlled device is determined, a configuration file acquisition request is sent to the display device, and the display device sends the first configuration file of the target controlled device to The control device can reduce the storage space occupied by the control device for storing different configuration files.
  • the configuration file described in the embodiment of the present application may be different keys on the control device, and the data format of the control command when the key controls the controlled device to perform a preset function.
  • the control device shown in FIG. 10 when the control device 100 shown in FIG. 10 is facing the air conditioner, the volume increase and decrease buttons 133 correspond to the control commands indicating the temperature increase and decrease of the air conditioner. Therefore, in the configuration file corresponding to the air conditioner, include Correspondence between "+ key” and “data format of the first infrared signal", "- key” and “data format of the second infrared signal".
  • the volume increase and decrease buttons 133 correspond to the control commands indicating the increase and decrease of the wind force, so the configuration file corresponding to the air purifier includes "+ button” and "third button”.
  • the data format of the infrared signal the corresponding relationship between "-key” and "the data format of the fourth infrared signal”.
  • the control device can control the target controlled device according to the first configuration file.
  • the processor of the control device receives an instruction to send a control command such as the first control command to the target controlled device through an interactive unit such as a button, it determines the data format corresponding to the first control command from the first configuration file.
  • control device After determining the data format of the first control command, the control device can send the first control command to the target controlled device through the second communication unit according to the data format, so as to control the target controlled device.
  • the processor of the control device when the control device 100 shown in FIG. 10 faces the air conditioner, after S101-S102, the processor of the control device has determined the first configuration file. Then the control device detects the user's click operation on the "+ button" among the volume increase/decrease buttons 133, which corresponds to an instruction to send the first control command of temperature increase to the air conditioner. Then the data format of the first infrared signal corresponding to the first control command is obtained from the first configuration file, and then in S104, the processor sends the first infrared signal through its second communication unit according to the data format of the first infrared signal , as the first control command instructing the air conditioner to raise the temperature, so as to realize the control of the air conditioner.
  • the above-mentioned embodiment of sending infrared signals through the second communication unit is only an example, and the second communication unit may include: one or more of communication units such as an infrared communication unit, a Bluetooth communication unit, and a WIFI communication unit, Then the first configuration file may include the data format of the control command corresponding to the communication mode of the target controlled device.
  • the control device can select infrared, bluetooth or WIFI from the second communication unit to send a control command to the target controlled device according to the instruction of the first configuration file.
  • the control device When the second communication unit includes a Bluetooth communication unit, and the third communication unit of the target controlled device directed by the control device is also a Bluetooth communication unit, the control device will send the Bluetooth communication protocol to the target controlled device through the Bluetooth communication unit.
  • the first configuration file may also include the Bluetooth information of the target controlled device.
  • the specific communication steps include: the control unit turns on the Bluetooth communication unit, searches for the Bluetooth signal of the target controlled device according to the Bluetooth information, and establishes a Bluetooth connection with the Bluetooth communication unit of the target controlled device, and then sends control commands. Finally, after the first control command is sent, the connection is disconnected and the Bluetooth is turned off. Alternatively, after the first control command is sent, the bluetooth connection between the two may also be maintained.
  • the control device When the second communication unit includes an infrared communication unit, and the third communication unit of the target controlled device directed by the control device is also an infrared communication unit, the control device will send an infrared communication protocol to the target controlled device through the infrared communication unit.
  • First control command For example, in the infrared communication protocol, the binary digital signal in the first control command can be modulated into an infrared pulse sequence, and sent out in the form of light pulses through the infrared emitting tube, and the third communication unit of the target controlled device will receive the light The pulse is converted into an electrical signal, and after demodulation and other processing, it is restored to a binary digital signal for subsequent processing.
  • the data format in the first configuration file may be a binary digital signal corresponding to the control command of the target controlled device.
  • the data format of the first control command is "1100” and the data format of the second control command is "0011"
  • the processor receives the instruction to send the first control command
  • the first It is determined in the configuration file that the data format of the first control command is "1100”
  • the above data format is modulated into infrared pulses through the infrared communication unit and sent to the target controlled device.
  • the control device can determine the configuration file corresponding to the target controlled device when the first communication unit determines that it is heading towards any target controlled device among the multiple controlled devices, and then when receiving the control command At the same time, according to the data format corresponding to the target controlled device in the configuration file, the control command is sent to the target controlled device, so that the same button of one control device can be used to control multiple controlled devices separately, thus greatly enriching the The function of the control device of the display device improves the user experience of the display device.
  • the first communication unit in the control device needs to continuously determine the target controlled device that the current control device is facing to achieve subsequent control. For example, when the first communication unit is a UWB communication unit, even if the user does not use the control device and puts the control device on the desktop, the control device still continuously sends UWB tag acquisition requests, which greatly consumes the power of the control device.
  • the control device can set a sleep mode (also called a low power consumption mode, etc.), in the sleep mode, the first communication unit may not send a UWB tag acquisition request, and the air detection unit may not acquire Air parameters, so that the power consumption rate of the control device in the sleep mode is lower than that in the normal working mode. And when the user picks up the control device to control the controlled device, the control device needs to switch from the sleep mode to the work mode as soon as possible to meet the user's needs.
  • a sleep mode also called a low power consumption mode, etc.
  • the posture detection unit provided can detect the posture of the control device to determine whether the control device moves, when the processor determines that the control device has moved through the posture data detected by the posture detection unit , indicating that the user picks up the control device and is about to use the control device to control the controlled device. At this time, the processor can control the entire control device to switch from the sleep mode to the normal working mode.
  • the power supply of the control control device starts to supply power to the first communication unit and the air detection unit, or activates the first communication unit and the air detection unit to start sending UWB tag acquisition requests, collecting air parameters, etc., so that the user can pick up the control device, and before the user actually operates the control device, the switch of the working mode of the control device is completed.
  • FIG. 13 is a schematic diagram of a control sequence of a control device according to an embodiment of the present application.
  • the control device before time T0, the user does not use the control device, and the control device is placed on the desktop, the control device is in sleep mode, and the first communication unit and the air detection unit in the control device are not working.
  • the processor in the control device determines that the posture of the control device has changed through a posture detection unit such as a gyroscope, and then starts to switch the control device from sleep mode to working mode.
  • a posture detection unit such as a gyroscope
  • the processor may control the power supply to supply power to the first communication unit, the air detection unit, etc., and make these units complete the switching of the working mode at time T1 after the initialization and other operations are completed. Subsequently, at time T2 after time T1, after the user actually moves the control device towards the target controlled device, the control device can execute the method for controlling the controlled device provided in any of the above-mentioned embodiments of the embodiments of the present application, which will not be repeated here. repeat.
  • the processor in the control device determines that the control device has not changed its posture for a certain period of time through the attitude detection unit such as a gyroscope, and then starts to switch to the sleep mode, for example, the processor controls the power supply to stop the first A communication unit, air detection unit, etc. power supply.
  • the control device will continue to maintain the sleep mode to save power.
  • the control device is only in the working mode between T1-T4 after the user picks up the control device and before putting down the control device, and is in the sleep mode for the rest of the time, so it can greatly reduce the time spent on the control device. power consumption. Moreover, even if the control device is set to sleep mode, the control device can also intelligently "automatically" switch from sleep mode to working mode in advance after the user picks up the control device T0 and before the actual use of the control device T4. The switching process is agnostic to the user and does not require any operation by the user. Therefore, the control device can save power consumption without affecting the user's normal use of its functions, further improving the user experience of the control device.
  • control device when the control device according to the embodiment of the present application is provided with at least one air detection unit, the control device can not only obtain the air parameters, but also perform subsequent processing on the air parameters, for example, determine the value of the controlled air parameters according to the air parameters
  • the control command sent by the device can "replace" the user's control command to determine the appropriate control command for the controlled device, improve the intelligence of the control device, reduce the complexity of the user's use of the control device, and further improve the user experience of the control device.
  • Fig. 14 is a schematic flowchart of a control method for an electronic device according to an embodiment of the present application.
  • the control method of the controlled device as shown in FIG. 14 can be applied to any control device in the foregoing embodiments of the present application for execution, and the control device may include a processor, a first communication unit, a second communication unit, and at least An air detection unit.
  • the control method for electronic equipment as shown in Figure 14 includes:
  • the air parameters may include: a temperature of 28 degrees, a humidity of 40% RH (Relative Humidity, relative humidity), a CO2 concentration of 550 ppm (parts per million, concentration), and the like.
  • control device may execute S201 at intervals, for example, acquire air parameters through at least one air detection unit every 5 minutes.
  • each air detection unit may be set to collect its own air parameters at different intervals, so that the control device receives the air parameters sent by the air detection units.
  • the processor may determine control commands corresponding to at least two target controlled devices among the plurality of controlled devices according to the received control parameters. Wherein, the processor may compare the air parameter obtained in S201 with the threshold, and determine the control command corresponding to the target controlled device when the relationship between the air parameter and the threshold meets a preset condition. For example, the processor determines that the control command sent to the air conditioner is "cooling mode, temperature is 26 degrees" according to the temperature of 28 degrees, which is greater than the preset temperature threshold of 26 degrees; Then it is determined that the control command sent to the air purifier is "turn on the fresh air, the air volume is high", etc., and the control commands of the above-mentioned multiple different controlled devices can form a control command set.
  • the processor can also store in advance the corresponding relationship between different air parameters and control commands of different target controlled devices.
  • the temperature is below 26°C, the humidity is above 60% RH, and the control command is set to dehumidification mode.
  • the control command is to set the mode to heating, and the temperature is set to 20°C.
  • the air conditioner includes a fresh air function
  • the control command to determine that the air quality is excellent is to turn off the fresh air, and if it is good, the new air will be closed.
  • the fresh air volume is generally medium, and if it is poor, the fresh air volume is high.
  • the control command is to close the fresh air when the CO2 concentration is 400-500ppm
  • the control command is low fresh air volume when the CO2 concentration is 500-600ppm
  • the fresh air volume is medium when the CO2 concentration is 600-700ppm.
  • the control command is above 700ppm, the fresh air volume is high.
  • the fresh air volume corresponding to the control command is selected based on the high principle.
  • S203 The processor determines through the first communication unit that the control device is heading towards the target controlled device.
  • the specific implementation manner and principle of the processor determining that the control device is directed towards the target controlled device are the same as S101 shown in FIG. 9 , and will not be repeated here.
  • the processor sends a first control command corresponding to the target controlled device in the determined set of control commands to the target controlled device S202.
  • the set of control commands determined in setting S202 includes: the first control command sent to the air conditioner is "cooling mode, temperature is 26 degrees” and the second control command sent to the air purifier is "open fresh air, high air volume”. Then, when it is determined in S203 that the target controlled device 1 that the control device is currently facing is an air conditioner, then determine the first control command "cooling mode, temperature is 26 degrees” from the control command set, and send it to the target through the first communication unit. The control device 1 sends the first control command.
  • the specific implementation and principle of sending the first control command in this embodiment are the same as S104 shown in FIG.
  • the processor determines to send the first control command, it can determine the first configuration file corresponding to the target controlled device, Then determine the data format of the first control command from the first configuration file, and then use the corresponding data format to send the first control command to the target controlled device through the first communication unit.
  • the control device can obtain air parameters according to at least one air detection unit provided inside it, and determine at least two targets among multiple controlled equipment by the processor A set of control commands for the controlled device. Subsequently, when the user uses the control device, when the user directs the control device towards the target controlled device, the processor in the control device can determine the target controlled device through the first communication unit, and determine the corresponding target controlled device in the control command set. Finally, when the user does not need to operate, "actively" instead of the user sends the first control command to realize the control of the target controlled device, so as to set the target controlled device to a more appropriate mode .
  • the control device provided in this embodiment can greatly improve the intelligence of the control device and improve user experience.
  • the control device can determine the control commands that can be used to control the target controlled device on behalf of the user when the user does not use the control device to control the target controlled device according to the air parameters. , so that when the subsequent user moves the control device towards the target controlled device, the control command can be sent.
  • the control device needs to receive a power-on instruction from the user of the control device to the target controlled device before sending the first control command, and then control The processor of the device sends a power-on command to the target controlled device through the second communication unit, so that after the target controlled device is powered on, the processor sends the first control command to the target controlled device through the second communication unit.
  • the control device when the user uses the control device to align the air conditioner, he only needs to click the switch power button 131 on the control device, and after the control device receives the power-on instruction, In addition to sending the start-up command to the air conditioner, the control device will also send the first control command determined in advance according to the air parameters to the air conditioner, such as setting the temperature to 26 degrees, high fresh air volume, etc., so that the user does not need to further set the air conditioner , to bring users the effect of "one-key opening and setting" when using the control device to control the controlled device.
  • the air parameters such as setting the temperature to 26 degrees, high fresh air volume, etc.
  • the control device after the processor of the control device determines the control commands of different target controlled devices according to the air parameters obtained in advance, the control device aims at a target controlled device, and then sends the target controlled device corresponding control commands.
  • the embodiment of the present application also provides a control method, so that the control device determines the target controlled device according to the air parameters. the first control command.
  • FIG. 15 is a schematic flowchart of a control method for an electronic device according to an embodiment of the present application.
  • S301 in FIG. 15 is the same as S201 in FIG. 13 , both are that the processor can use at least one air detection unit to acquire air parameters at certain time intervals. Subsequently, the processor does not immediately determine the control command even if the air parameters are acquired, but stores them.
  • S302 after the processor determines the current direction toward the target controlled device through the first communication unit, in S303, the first control command corresponding to the target controlled device is determined according to the air parameters obtained in S301. Finally, in S304, the second communication unit is used to send the first control command to the target controlled device.
  • the control device only determines the control command corresponding to the target controlled device according to the control parameters after determining the orientation towards the target controlled device, which can reduce the number of determined control commands. , more targeted, satisfying the intelligentization of the control device and reducing the power consumption of the control device.
  • the target controlled device may also send a power-on command after receiving the power-on instruction of the target controlled device, so that the target controlled device can Send the first control command to realize "one-key opening and setting".
  • the embodiment of the present application also provides a control method, so that after the control device determines the target controlled device, the air parameter is obtained through the air detection unit, and then the target controlled device is determined according to the air parameter The first control command, thereby further reducing the power consumption of the air detection unit in the control device for frequently acquiring air parameters.
  • FIG. 16 is a schematic flowchart of a control method for electronic equipment according to an embodiment of the present application.
  • the processor of the control device determines that the control device is controlled toward the target through the first communication unit
  • the air parameter corresponding to the target controlled device is obtained from the air detection unit corresponding to the target controlled device.
  • the processor determines the first control command corresponding to the target controlled device according to the air parameter acquired in S402.
  • the second communication unit is used to send the first control command to the target controlled device. Therefore, in the process shown in Figure 16, the control device only acquires the air parameters corresponding to the target controlled equipment through the air detection unit after determining that it is heading towards the target controlled equipment, which reduces the time required for the air detection unit to obtain the air parameters. The number of times, and then determine the control command corresponding to the target controlled device more directly according to the control parameters, which can also reduce the number of determined control commands, satisfy the intelligent control device and further reduce the power consumption of the control device . Similarly, before the control device as shown in FIG. 16 sends the first control command in S404, the target controlled device may also send a power-on command after receiving the power-on instruction of the target controlled device, so that the target controlled device can Send the first control command to realize "one-key opening and setting".
  • the control device in addition to the communication unit used to control the controlled device, at least one air detection unit is also provided, and the control device can use these air detection units to periodically Obtain air parameters and get control commands of different controlled devices.
  • the control device can periodically execute S201-S202, even if the control device is not facing the target controlled device, the processor in the control device can determine the set of control commands according to the air parameters.
  • the processor in the control device acquires the current air temperature through the temperature sensor in the air detection unit every 5 minutes, and determines the set of control commands for the target controlled equipment such as the air conditioner according to the air temperature.
  • the processor acquires the air temperature again and determines the set of control commands. During the 5 minutes between the two acquisitions of the air temperature, if it is determined that the control device is facing the air conditioner, a first control command is sent to the air conditioner according to the set of control commands.
  • the control device when the control device includes a plurality of air detection units, different detection cycles can be set for different air detection units, and after the processor acquires the air parameters of different air detection units, different Control command of the control device.
  • the air detection unit in the control device includes a temperature sensor and a particle detection sensor
  • the temperature sensor can be set to collect air temperature every 5 minutes
  • the particle detection sensor can be set to collect air quality every 10 minutes.
  • the processor obtains the air temperature through the temperature sensor every 5 minutes and determines the control command set of the target controlled equipment such as the air conditioner, and the processor obtains the air quality through the particle detection sensor every 10 minutes and Determine the set of control commands for target controlled equipment such as air purifiers.
  • the processor determines that the control device is heading towards the target controlled device, it determines the corresponding control command from the determined control command set and sends it to the target controlled device.
  • the embodiment of the present application also provides a control method of the control device, which can be used in the control device of the display device in any of the above-mentioned embodiments of the present application, and according to the power information of its internal power supply, determine the air parameters obtained by the air detection unit.
  • Working parameters so that different detection strategies are adopted when the power of the control device is in different states, which can not only ensure the acquisition of air parameters as much as possible, but also save the power consumption of the control device.
  • Fig. 17 is a schematic flowchart of a control method of a control device according to an embodiment of the present application.
  • the control method shown in Figure 17 can be executed by the processor in the control device, the method includes:
  • the processor in the control device may be configured to obtain the power information of the power supply unit at intervals.
  • the power supply unit can be a battery in the control device, etc., and the power information can be the remaining power of the power supply unit (expressed as a percentage between 0-1, such as 10%, 50%, etc.), or the power information can also be The consumption rate of the battery power, etc., for example, the power supply unit can calculate the power consumption rate in the interval time period according to the ratio of the battery power obtained at a certain time interval to the length of the time period.
  • S502 According to the power information acquired in S501, determine the working parameters when the control device acquires air parameters through a plurality of air detection units.
  • the control device in order to determine the working parameters, can determine the mapping relationship in advance according to the power interval corresponding to the remaining power, then when the power information includes the remaining power of the power supply unit, the power of the remaining power can be determined according to the mapping relationship
  • the working parameters corresponding to the interval may include: among the plurality of air detection units of the control device, identification information of at least one target air detection unit that can be used to obtain air parameters, detection sequence of at least one target air detection unit, and processing The interval time at which the controller periodically acquires air parameters through at least one target air detection unit.
  • the remaining power in the power information can be divided into high, medium and low power ranges according to the percentage.
  • the working parameters corresponding to the high power range can be: target air detection unit 1-detection interval is 10 minutes, target Air detection unit 2 - detection time interval is 10 minutes, target air detection unit 3 - detection time interval is 20 minutes, etc.
  • the working parameters corresponding to the medium power range can be: target air detection unit 1 - detection interval time is 20 minutes, target air detection unit 2 - detection time interval is 20 minutes, etc.
  • the working parameters corresponding to the low battery interval can be: target air detection unit 1 - detection interval is 30 minutes, target air detection unit 2 - detection time interval is 30 minutes, etc.
  • the order of the target air detection units in the above working parameters is the detection order.
  • the processor uses at least one target air detection unit corresponding to the identification information in the working parameters to acquire air parameters according to the detection sequence and detection interval in the working parameters.
  • target air detection unit 1-detection interval time is 20 minutes
  • target air detection unit 2-detection time interval is 20 minutes
  • the processor will pass the target air detection successively according to the above sequence at intervals of 20 minutes.
  • Unit 1 and target air detection unit 2 acquire air parameters.
  • control command set can be determined and subsequently processed according to the method shown in Figure 14, or the air parameters can be sent to the display device, etc., as in the embodiment shown in Figure 17,
  • the processing of the air parameter is not limited.
  • the different power intervals corresponding to the remaining power are among the multiple operating parameters in the mapping relationship, the value of the remaining power and the detection interval time of the target air detection unit in the corresponding working parameters and/or, the value of the remaining power is directly proportional to the number of target air detection units in the corresponding working parameter. Therefore, when the control device obtains the air parameters according to the working parameters, when the remaining power is sufficient, more air parameter detections can be performed through a larger number of air detection units, so as to improve the real-time performance of the air parameters; , reduce the number of air detection units used for air parameter detection and the frequency of detection, realize further reduction of power consumption of the control device, and prolong the use time of the control device.
  • the above power information can also include the power consumption speed of the power supply unit, then in the mapping relationship, the multiple intervals of different power consumption speeds correspond to multiple operating parameters, and among the multiple working parameters, the power consumption
  • the value of the consumption speed is directly proportional to the value of the detection interval time of the target air detection unit in the corresponding working parameter; and/or, the value of the power consumption speed is inversely proportional to the number of the target air detection unit in the corresponding working parameter.
  • the control device can perform more times of air parameter detection through a larger number of air detection units, so as to improve the real-time performance of the air parameters; when the power consumption is too fast, reduce the air parameter detection.
  • the number of air detection units used and the frequency of detection can reduce the further consumption of the power of the control device and prolong the use time of the control device
  • the power information can also include the remaining power and the power consumption speed, and according to the different intervals of the two, they correspond to a working parameter, and the trend of the working parameters should be the same as the respective trends in the above-mentioned embodiments , and can be preset.
  • an extremely low power range can also be divided separately.
  • the power of the power supply unit When it is about to be exhausted, the control device will determine to stop obtaining air parameters through the air detection unit after obtaining the power information at this time, according to the current power information is extremely low, so as to save the power consumption of the control device.
  • the control device may send a power indication to the display device corresponding to the control device, so that the display device displays power prompt information to the user .
  • FIG. 18 is a schematic diagram of a display device displaying battery prompts according to an embodiment of the present application. As shown in FIG. 18 , after receiving the instruction sent by the control device, the display device displays prompt information such as "the battery of the remote control is low" on the display screen 201 to remind the user that the control device needs to be charged.
  • the processor of the control device can determine the working parameters by itself according to the power information, and then obtain the air parameters according to the working parameters.
  • the display device corresponding to the control device can also determine the operating parameters of the control device, so as to achieve the purpose of reducing the calculation amount of the control device and further reduce the power consumption of the control device.
  • Fig. 19 is a schematic flowchart of a control method of a control device according to another embodiment of the present application.
  • the processor in the control device obtains the power information, it sends the power information to the display device in S601, and the display device determines the operating parameters according to the power information in S602, and sends them to the control device in S603. device.
  • the processor of the control device acquires air parameters through the target air detection unit according to the working parameters in S604.
  • the principle and implementation manner of the display device determining the working parameters according to the power information are the same as those of the control device in FIG. 17 , and will not be repeated here.
  • control device can use the control method shown in FIG. 19 to determine the working parameters.
  • control device can also use the control method shown in FIG. 19 to determine the working parameters, and the user of the display device can set the way the control device determines the working parameters.
  • the control device obtains its power information, if the remaining power of the control device is greater than the preset threshold, for example, the power information corresponds to the high and medium power intervals, indicating that the power is relatively sufficient.
  • the control device can pass The method shown in 17 automatically determines the working parameters according to the power information; and when the remaining power of the control device is less than the preset threshold, for example, when the power information corresponds to a low power interval, the control device can send the power information to the corresponding display device, by The display device determines the working parameters in the manner shown in FIG. 19 to save the power consumption of the control device.
  • the embodiment of the present application also provides an electronic device, including: a processor and a memory; wherein, the memory stores computer-executable instructions, and when the processor executes the computer-executable instructions stored in the memory, the processor can be used to execute the above-mentioned The control method for electronic equipment in any one of the embodiments.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer programs or executable instructions, which can be used to implement the control method for electronic equipment as in any one of the foregoing embodiments of the present application when executed. .
  • the embodiment of the present application also provides a chip for running instructions, and the chip is used to execute the electronic device control method in any one of the foregoing embodiments of the present application.
  • the present application provides a control device, including: a communication unit, an attitude detection unit, and a processor; the attitude detection unit is configured to determine the orientation of the control device; the processor is configured to:
  • the posture detection unit may include a gyroscope, which is used to detect information such as the angle the control device faces and the angle it makes with the horizontal plane and send the information to the processor.
  • a gyroscope which is used to detect information such as the angle the control device faces and the angle it makes with the horizontal plane and send the information to the processor.
  • control device further includes an air detection unit configured to detect air parameters of the environment where the control device is located, and the processor is further configured to: according to the air parameters and The mapping relationship of the control instructions of the controlled equipment determines the control command corresponding to the target controlled equipment, wherein the mapping relationship between the air parameters and the control instructions of the controlled equipment is preset in the control device .
  • control device further includes an air detection unit configured to detect air parameters of the environment where the control device is located, and the processor is further configured to: obtain the target controlled The first configuration file sent by the device, the first configuration file is used to indicate the mapping relationship between the air parameters and the control instructions of the controlled device; and according to the air parameters and the first configuration file, determine that the target controlled device The control command corresponding to the device.
  • air detection unit configured to detect air parameters of the environment where the control device is located
  • the processor is further configured to: obtain the target controlled The first configuration file sent by the device, the first configuration file is used to indicate the mapping relationship between the air parameters and the control instructions of the controlled device; and according to the air parameters and the first configuration file, determine that the target controlled device The control command corresponding to the device.
  • the processor is further configured to: initiate communication connections with the plurality of controlled devices, determine transmission parameters of communication signals; and Orientation, determining the target controlled device among the plurality of controlled devices.
  • the communication unit includes a first UWB communication unit
  • the processor is further configured to: send a UWB tag acquisition request through the first UWB communication unit; When the UWB tag sent from the target controlled device is received, it is determined through the UWB tag that the control device is heading towards the target controlled device.
  • the processor is further configured to: determine a second configuration file corresponding to the target controlled device, wherein the second configuration file includes a plurality of control commands of the target controlled device, And the data format corresponding to each of the control commands; when receiving the instruction to send the control command, determine the data format corresponding to the control command from the second configuration file; and according to the data format, send to the The target controlled device sends the control command.
  • the processor is further configured to: when executing the first task, receive an execution request of the second task; based on task mutual exclusion information, determine whether the first task and the second task is a mutual exclusion relationship, wherein the task mutual exclusion information includes a mutual exclusion relationship between each of the plurality of tasks that the control device can perform and other tasks in the plurality of tasks; and based on the mutual exclusion relationship , executing the first task and the second task in sequence.
  • the multiple controlled devices include a TV and an air conditioner; the control device is a remote control of the TV; the processor is further configured to: when it is determined that the remote control points to the TV , sending to the TV a control command that meets the requirements of the TV communication protocol; when it is judged that the remote controller is pointing to the air conditioner, according to the air parameters of the environment where the remote controller is sent by the air detection unit, send to the air conditioner A control command that meets the requirements of the air conditioner communication protocol, so as to control the air conditioner to make matching function settings in response to the air parameters.
  • control device further includes a power supply unit
  • processor is further configured to: acquire power information of the power supply unit, the power information includes the remaining power of the power supply unit and/or the The power consumption rate of the power supply unit;
  • control device further includes: at least one air detection unit configured to obtain air parameters of the environment where the control device is located to send the air parameters to the processor, wherein the communication The unit includes: a first communication unit configured to determine that the control device is heading towards a target controlled device among the plurality of controlled devices; and a second communication unit configured to communicate with any one of the plurality of controlled devices The controlled device communicates, wherein the processor is further configured to: when it is determined through the first communication unit that the control device is heading towards the target controlled device, send a message to the target through the second communication unit The controlled device sends the air parameters and/or control commands.
  • the first communication unit includes: a first UWB communication unit configured to perform UWB communication; the processor is further configured to send a UWB tag acquisition request through the first UWB communication unit, And when the UWB tag sent from the target controlled device is received by the first UWB communication unit, it is determined by the UWB tag that the control device is heading towards the target controlled device.
  • control command is a control command corresponding to the target controlled device in the control command set of multiple controlled devices determined by the processor according to the air parameters; or, the The control command is determined by the processor according to the air parameter and the targeted controlled device; or, the control command is determined by the processor according to the received instruction to send the control command.
  • control device is a control device corresponding to the target controlled device; and/or, the target controlled device is a display device, and the control device is a remote controller of the display device.
  • the processor of the remote controller is further configured to: after acquiring the air parameter, send the air parameter to the display device through the second communication unit.
  • the at least one air detection unit includes at least one of the following: a fine particle sensor, a TVOC sensor, and a temperature and humidity sensor; the at least one air detection unit is further configured to: periodically obtain the control device The air parameters of the environment are obtained, and the acquired air parameters are sent to the processor.
  • the processor is further configured to: control the control device to switch from the sleep mode to the work mode when it is determined by the posture detection unit that the posture of the control device changes.
  • control device further includes: at least one interaction unit configured to receive instructions from the user of the control device and/or send prompt information to the user of the control device; the at least one interaction unit include at least one of the following: keypad, microphone, vibration motor, buzzer, and LED.

Abstract

一种控制装置和用于电子设备的控制方法。一种控制装置(100),包括:通信单元(103、104)、姿态检测单元(105)以及处理器(101);姿态检测单元(105)被配置为确定控制装置(100)的朝向;处理器(101)被配置为:基于朝向确定多个被控设备中的、控制装置(100)朝向的目标被控设备(200);以及通过通信单元(103、104)向目标被控设备(200)发送控制指令。

Description

控制装置以及控制方法
相关申请的交叉引用
本申请要求于2021年9月30日提交的申请号为202111159133.X、于2021年9月30日提交的申请号为202111161802.7、2021年9月30日提交的申请号为202122403833.0、以及于2021年9月30日提交的申请号为202111162296.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种控制装置和用于电子设备的控制方法。
背景技术
目前,随着电子技术的不断发展,人们日常生活中使用到各种各样的电子设备,例如电视、空调等。同时,随着近年来人们对空气质量关注度的提高,空气净化器等用于改善空气质量的电子设备也得到了更为广泛的应用。
相关技术中,不同的电子设备通常具有各自的遥控器,例如每个电视单独设置有一个遥控器、空调单独设置有一个遥控器、空气净化器也单独设置有一个遥控器,使得电子设备的用户需要操作的遥控器的数量较多。以电视等显示装置的遥控器为例,该遥控器只能用于对电视进行控制,使得遥控器的功能较为单一,从而影响电子设备的用户的使用体验。
发明内容
本申请的实施例提供了一种控制装置,包括:通信单元、姿态检测单元以及处理器;所述姿态检测单元被配置为确定所述控制装置的朝向和/或姿态;所述处理器被配置为:
基于所述朝向确定多个被控设备中的、所述控制装置朝向的目标被控设备;以及通过所述通信单元向所述目标被控设备发送控制指令。
根据本申请的实施例,控制装置还包括:至少一个空气检测单元,被配置为获取所述控制装置所在环境的空气参数以将所述空气参数发送至所述处理器,其中,所述通信单元被配置为确定所述控制装置朝向多个被控设备中的目标被控设备;以及与所述多个被控设备中的任一被控设备进行通信,其中,所述处理器进一步被配置为:在通过所述第一通信单元确定所述控制装置朝向所述目标被控设备时,通过所述第二通信单元向所述目标被控设备发送所述空气参数和/或控制命令。
本申请的实施例提供了一种用于电子设备的控制方法,应用于控制装置以控制多个被控设备,所述方法包括:确定所述多个被控设备中的、所述控制装置朝向的目标被控设备;确定所述目标被控设备对应的配置文件;其中,所述配置文件中包括所述目标被控设备的多个控制命令,以及每个所述控制命令对应的数据格式;当接收到发送控制命令的指示,从所述配置文件中确定所述控制命令对应的数据格式;根据所述数据格式,向所述目标被控设备发送所述控制命令。
根据本申请的实施例的控制方法,其中,所述控制装置包括多个空气检测单元,所述方法进一步包括:获取所述控制装置中包括的供电单元的电量信息,所述电量信息包括所述供电单元的剩余电量和/或所述供电单元的电量消耗速度;根据所述电量信息,确定所述多个空气检测单元的工作参数,所述工作参数包括所述多个空气检测单元中的至少一个目标空气检测单元的标识信息、所述至少一个目标空气检测单元的检测顺序以及所述目标空气检测单元周期性获取空气参数的间隔时间;以及根据所述工作参数,通过所述至少一个目标空气检测单元获取空气参数。
附图说明
图1为根据本申请实施例中显示装置与控制装置之间操作场景的示意图;
图2为根据本申请示例性实施例中显示装置中硬件系统的硬件结构示意图;
图3为根据本申请实施例提供的一种控制系统的结构示意图;
图4为根据本申请另外的实施例的一种控制系统的结构示意图;
图5为根据本申请实施例的显示装置显示空气参数的示意图;
图6为根据本申请另外的实施例的一种显示装置的控制系统的结构示意图;
图7为根据本申请另外的实施例的一种控制装置的结构示意图;
图8为根据本申请实施例的控制装置的电路结构示意图;
图9为根据本申请实施例的被控设备的控制方法的流程示意图;
图10为根据本申请实施例的控制装置的结构示意图;
图11为根据本申请实施例的处理器确定目标被控设备的示意图;
图12为根据本申请实施例的显示装置显示UWB标签的示意图;
图13为根据本申请实施例的控制装置的控制时序示意图;
图14为根据本申请实施例的用于电子设备的控制方法的流程示意图;
图15为根据本申请另外的实施例的用于电子设备的控制方法的流程示意图;
图16为根据本申请另外的实施例的用于电子设备的控制方法的流程示意图;
图17为根据本申请另外的实施例的控制装置的控制方法的流程示意图;
图18为根据本申请实施例的显示装置显示电量提示的示意图;
图19为根据本申请另外的实施例的控制装置的控制方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行清楚、完整的描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请各实施例中使用的术语“遥控器”,是指电子设备(如本申请中以电子设备为显示装置作为示例)的一个组件,该组件通常可在较短的距离范围内无线控制电子设备。该组件一般可以使用红外线和/或射频(RF)信号和/或蓝牙和/或UWB与电子设备连接,也可以包括WiFi、无线USB、蓝牙、动作传感器、UWB等功能模块。
图1为根据本申请实施例中显示装置与控制装置之间操作场景的示意图。如图1所示,用户可通过控制装置100来操作显示装置200。其中,控制装置100具体可以是遥控器,其可与显示装置200之间通过红外协议通信、蓝牙协议通信、紫蜂(ZigBee)协议通信、UWB或其他短距离通信方式进行通信,用于通过无线通信方式来控制显示装置200。用户可以通过遥控器100上按键、语音输入、控制面板输入等输入用户指令,来控制显示装置200。如图1所示,显示装置200还可与服务器300通过多种通信方式进行数据通信。在本申请各个实施例中,可允许显示装置200通过局域网、无线局域网或其他网络与服务器300进行有线通信连接或无线通信连接。服务器300可以向显示装置200提供各种内容和互动。显示装置200,可以是液晶显示器、OLED(Organic Light Emitting Diode)显示器、投影显示装置;在一些实施例中,显示装置被可以是电视或显示器和机顶盒组成的显示系统。显示装置200除了提供广播接收视频功能之外,还可以附加提供计算机支持功能的网络电视功能。
图2为根据本申请实施例中显示装置200中硬件系统的硬件结构示意图。如图2所示,显示装置200中的显示装置包括:面板1、背光组件2、主板3、电源板4、后壳5和基座6。其中,面板1用于给用户呈现画面;背光组件2位于面板1的下方,通常是一些光学组件,用于供应充足的亮度与分布均匀的光源,使面板1能正常显示影像,背光组件2还包括背板20,主板3和电源板4设置于背板20上,通常在背板20上冲压形成一些凸包结构,主板3和电源板4通过螺钉或者挂钩固定在凸包上;后壳5盖设在面板1上,以隐藏背光组件2、主板3以及电源板4等显示装置的零部件,起到美观的效果;底座6,用于支撑显示装置。在一些实施例中,图2中还包括按键板,按键板可以设置在显示装置的背板上,本申请对此不做限定。
下面以具体地实施例,对本申请提供的控制装置100的具体实施方式进行详细说明,本申请提供的控制装置100可用于控制多个电子设备,将控制装置100可以控制的电子设备记为被控设备。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
其中,本申请提供的控制装置100具体可以是电视等显示装置200对应的遥控器,或者,控制装置100还可以是空调、空气净化器等电子设备对应的遥控器。本申请各实施例中,以控制装置100为电视对应的遥控器作为示例,而非对其进行限定。同时,遥控器可以被认为是与被控设备中的一个设备存在对应的关系。例如,以被控设备为显示装置200作为示例,该显示装置200的生产商可以同时提供显示装置200和与其对应的控制装置100,例如,生产商提供的电视在销售时可以提供与电视对应的遥控器,或者,生产商还可以为电视提供更多数量的遥控器作为别用或者替换等,此时,该显示装置200的控制装置100除了可以控制显示装置200,还可以控制除了显示装置200之外的多个被控设备。
图3为根据本申请实施例的一种控制系统的结构示意图。如图3所示,本实施例提供的控制系统包括多个被控设备,以及控制装置100。本实施例提供的控制装置包括:处理器101、通信单元(例如可以包括第一通信单元103和第二通信单元104)。在一些实施例中,第一通信单元103和第二通信单元104分别与处理器101连接。
图4为根据本申请另外的实施例的一种控制系统的结构示意图。如图4所示的控制装置100在图3所示的基础上还包括至少一个空气检测单元102,至少一个空气检测单元102分别与处理器101连接。如图4所示的控制装置100具有空气检测功能,以图1所示场景作为示例,用户除了可以使用控制装置100控制显示装置200,控制装置100还可以通过其内部设置的至少一个空气检测单元102获取控制装置100所在环境的空气参数。图3中将控制装置100中的至少一个空气检测单元记为空气检测单元a、空气检测单元b……,这些空气检测单元102被配置为获取控制装置100所在环境的空气参数并发送至处理器,由控制装置100的处理器对空气参数进行后续进一步的处理。空气检测单元具体可包括细颗粒物(Fine particulate matter,简称:PM)传感器、总挥发性有机化合物(Total volatile organic compounds,简称:TVOC)传感器和温湿度传感器等。上述传感器仅为示例,还可以 包括其他可用于获取空气参数的空气检测单元。在一些实施例中,控制装置100的外壳上设置有开口,使得控制装置100内部的空气检测单元102可以通过开口实现对控制装置100外部空气参数的采集,进而实现对使用该控制装置100的用户所在环境的环境进行检测。
在一些实施例中,本申请如图3和如图4提供的控制装置100,第一通信单元103被配置为确定控制装置当前的信号发射方向朝向多个被控设备中的目标被控设备,第二通信单元104被配置为能够与多个被控设备中任一被控设备进行通信。在本申请实施例中,第一通信单元可以具体是基于超宽带(Ultra Wide Band,简称:UWB)或蓝牙协议等进行通信。而第二通信单元可以根据红外、蓝牙、WIFI等协议进行通信。例如,在如图3和图4所示的场景中,控制装置100所在环境中包括多个被控设备,记为被控设备A、被控设备B……被控设备N,此时,控制装置100可以对环境中多个被控设备中的任一个进行控制。因此,本申请实施例提供的控制装置100在使用第二通信单元104与任一被控设备进行通信的基础上,还设置了用于确定控制装置100具体朝向多个被控设备中目标被控设备的第一通信单元103,使得控制装置100能够实现对环境中多个被控设备的同时控制。因此,本申请实施例提供的控制装置100在使用第二通信单元104与被控设备进行通信的基础上,还设置了用于确定控制装置100具体连接多个被控设备中目标被控设备的第一通信单元103,使得控制装置100能够实现对环境中多个被控设备的分别控制。
在一些实施例中,控制装置100中的处理器101可以被配置为控制不同的被控设备。
在一些实施例中,控制装置100可以包括通信单元、姿态检测单元以及处理器,姿态检测单元可以被配置为确定控制装置的朝向,处理器可以被配置为:基于朝向确定多个被控设备中的、控制装置朝向的目标被控设备;以及通过通信单元向目标被控设备发送控制指令。
在一种场景中,当处理器101通过第一通信单元104确定控制装置100朝向多个被控设备中的目标被控设备时,处理器101通过至少一个空气检测单元102获取到空气参数后,将空气参数再通过第一通信单元103发送到该目标被控设备。在另一种场景中,当控制装置100的处理器101通过第一通信单元确定控制装置100朝向多个被控设备中的目标被控设备时,通过第二通信单元104向目标被控设备发送控制命令。其中,控制命令可以是处理器101根据空气参数确定的多个被控设备的控制命令集合中,与目标被控设备对应的控制命令;或者,控制命令可以是处理器根据空气参数和所朝向的目标被控设备确定的;又或者,控制命令可以是处理器根据接收到的控制装置100的用户的发送控制命令的指示确定的。
在一些实施例中,如图3所示的控制装置100与目标被控设备200之间是对应的关系,例如,目标被控设备200为显示装置时,控制装置100则为该显示装置的遥控器。此时,控制装置100可以在确定朝向目标被控设备200时,向目标被控设备200发送控制命令;而由于控制装置100与目标被控设备存在对应关系,控制装置100也可以在无需确定是否朝向该目标被控设备的情况下,当通过至少一个空气检测单元获取到空气参数后,即可通过第二通信单元将控制参数发送至目标被控设备。在本申请的实施例中,控制装置在控制其他没有对应关系的被控设备,仍需要首先确定朝向被控设备后,再向该被控设备发送空气参数和/或控制命令。例如,由于控制装置100与显示装置200对应,因此当控制装置100中的处理器101接收到空气参数后,直接通过第二通信单元向显示装置200发送空气参数,第二通信单元可以根据蓝牙、WIFI等协议进行通信。
在一些实施例中,目标被控设备可以是显示装置,则控制装置100将其所采集的空气参数并发送至显示装置200后,显示装置可以在其显示屏幕上显示该空气参数。例如,图5为根据本申请实施例的显示装置显示空气参数的示意图。在如图5所示的场景A中,显示装置200在接收到控制装置发送的空气参数后,可以在其显示屏幕201上的任一位置显示空气参数。或者,在如图5所示的场景B中,当显示装置200具有多个显示屏幕时,可以在主显示屏幕201显示用户正在观看的内容时,在副显示屏幕202上显示时间、日期以及空气参数等其他内容。在一些实施例中,显示装置200可以直接显示所接收到的空气参数,或者,还可以在对接收到的空气参数所对应的区间与评价结果的对应关系进行判断后,显示对空气参数的评价结果(空气质量好、中、差等)、操作建议(例如,建议开启空气净化器)等内容。
在一些实施例中,由于控制装置可以控制不同的被控设备,则处理器101内可以存储不同被控设备对应的控制命令以及其数据格式等信息。当控制装置100的处理器101通过第一通信单元103确定朝向电视时,例如,当接收到用户对控制装置100上的按键“上”的点击操作时,处理器101从存储单元确定按键“上”对应于电视的控制命令的信息,并根据该控制命令的信息通过第二通信单元104向电视发送与电视对应的音量加大的控制命令。当控制装置100的处理器101通过第一通信单元103确定朝向空调时,若接收到用户对控制装置100上的按键“上”的点击操作,则处理器101从存储单元中确定按键“上”对应于空调的控制命令的信息,并根据该控制命令的信息通过第二通信单元104向空调发送与空调对应的提高温度的控制命令,从而实现对同一个按键对不同被控设备的控制。例如,当第二通信单元104是红外收发器时,存储单元中可以存储不同的控制命令对应的不同的红外数据格式。
在一些实施例中,处理器101还可以根据所接收到的空气参数,确定多个被控设备对应的控制命令,并向该多个被控设备发送各自对应的控制命令;或者,处理器101根据空气参数确定控制命令后,当处理器101确定控制装置100朝向一个被控设备时,向该被控设备发送对应的控制命令。
在一些实施例中,本申请实施例中提供的用于确定控制装置100与目标被控设备连接的第一通信单元,可以具体是超宽带(Ultra Wide Band,简称:UWB)通信单元,也可以是基于蓝牙信号到 达角(Angle of Arrival,AOA)来定位。例如,图6为根据本申请另外的实施例的一种显示装置的控制系统的结构示意图。图6中的控制装置100可以是图3或者图4中的控制装置,图6中以图4中的控制装置作为示例,其中,控制装置100内设置的第一通信单元103记为第一UWB单元,对应地,每个被控设备内也设置有UWB通信单元,将被控设备内设置的UWB通信单元记为第二UWB通信单元。
在一些实施例中,如图6所示的第一UWB通信单元,具体被配置为进行UWB通信。其中,控制装置100内的处理器101可以通过第一UWB通信单元发送UWB标签获取请求,当多个被控设备中的任一被控设备内的第二UWB通信单元接收到UWB标签获取请求信息后,将发送该第二UWB通信单元对应的UWB标签。例如图4所示的示例中,显示装置200的第二UWB通信单元1对应于UWB标签1、空调210的第二UBW通信单元2对应于UWB标签2、空气净化器220的第二UWB单元3对应于UWB标签3。则当显示装置200的第二UWB通信单元1向控制装置发送UWB标签1后,控制装置100内的处理器101通过第一UWB单元接收到UWB标签1后,处理器101即可根据UWB标签1确定显示装置200作为目标被控设备,随后处理器101可以执行本申请前述实施例中,向显示装置200发送空气参数和/或控制命令的步骤。
在一些实施例中,如图5所示的控制系统中,每个被控设备中还可以设置有第三通信单元,用于与控制装置100中的第二通信单元104进行通信。例如,当控制装置根据UWB标签1确定出当前控制装置100连接并控制的是显示装置200,处理器101可以通过第二通信单元104向该显示装置200发送空气参数和/或控制命令,显示装置200根据第三通信单元1接收控制装置100所发送的空气参数和/或控制命令。
图7为根据本申请另外的实施例的一种控制装置的结构示意图。如图7所示的控制装置100在图3、图4和图6所示的控制装置100的基础上,还包括:
姿态检测单元105,被配置为确定控制装置100所处的姿态,所述姿态包括控制装置的朝向和位置等,朝向即为控制装置100可以进行通信的方向,例如发射红外线的方向。例如,姿态检测单元105可以包括陀螺仪,用于检测控制装置100所朝向的角度和与水平面所呈的角度等信息并发送至处理器。在一些实施例中,控制装置100内的第一UWB通信单元,可以通过其UBW天线对接收到的UWB标签来源的角度和距离进行测试,测试结果结合姿态检测单元105检测到的控制装置的朝向,可以确定当前控制装置100与被控设备之间的位置关系。
至少一个交互单元106,被配置为接收控制装置的用户的指令和/或向控制装置的用户发出提示信息。例如,至少一个交互单元106可以包括如下至少一项:键盘1061和麦克风1062,分别用于接收用户通过按压和声音发出的指令;振动马达1063和蜂鸣器1064,分别用于通过振动和声音的形式向用户发出提示信息。交互单元106还可以包括LED提示灯等。
在一些实施例中,如图7所示的控制装置100中,第二通信单元具体可以包括:红外通信单元1032和/或蓝牙通信单元1031,分别用于通过红外和蓝牙的通信方式向被控设备发送数据,所发送的数据包括空气参数和/或控制命令。当第二通信单元同时包括红外通信单元1032和蓝牙通信单元1031时,处理器101可以根据目标被控设备中设置的第三通信单元,选择使用红外通信单元1032或者蓝牙通信单元1031向目标被控设备发送控制信号。
在一些实施例中,如图7所示的控制装置100内设置的至少一个空气检测单元102可以包括以下的至少一项:细颗粒物(Fine particulate matter,简称:PM)传感器1021、总挥发性有机化合物(Total volatile organic compounds,简称:TVOC)传感器1022和温湿度传感器1023等。上述传感器仅为示例,在控制装置100内可以设置其中任一个或者多个传感器,或者,还可以设置其他可用于获取空气参数的空气检测单元。
在一些实施例中,如图7所示的控制装置处理器101与其他所有单元连接,处理器101在功能上可以被划分为数据采集模块和逻辑处理模块,其中数据采集模块用于通过通信单元、传感器等单元获取数据,逻辑处理器用于对数据进行处理,并负责各个通信单元、传感器等单元的任务调度和时序控制等。
根据本申请实施例的显示装置的控制装置,可以设置有用于检测空气参数的空气检测单元,以及用于确定控制装置所连接的目标被控设备的第二通信单元。使得控制装置能够在通过第二通信单元确定与多个被控设备中的目标被控设备连接时,通过第一通信单元向目标被控设备发送空气检测单元得到的空气参数和/或控制命令。因此,本申请实施例提供的控制装置虽然与显示装置对应,但是也能够控制其他的被控设备,从而丰富了控制装置的功能。并且,控制装置还具有空气检测单元用来检测控制装置所在环境的空气参数,随后显示装置可以显示空气参数或者控制装置根据空气参数执行对应的控制命令,进一步丰富了控制装置的功能,提高了控制装置的智能化程度,进而提高显示装置等电子设备及控制装置的用户的使用体验。
在一些实施例中,控制装置100内设置的第一通信单元103记为第一AOA单元,对应地,每个被控设备内也设置有AOA通信单元,将被控设备内设置的AOA通信单元记为第二AOA通信单元。其中,通过至少两组天线接收蓝牙信号,确定蓝牙信号的到达角度(Angle of Arrival,AOA),进而确定发送该蓝牙信号的蓝牙发射器的位置。值得说明的,本申请还可以使用其他通信方式进行朝向判断,这里不再一一说明。
图8为根据本申请实施例的控制装置的电路结构示意图。如图8示出了如图7中控制装置100的一种具体电路实现方式。其中,如图8所示的控制装置100的处理器101包括:处理器N1。其中, 处理器N1通过标号42和31的引脚提供的UART接口,连接第一UWB通信单元104;第一UWB通信单元104还连接有两个UWB天线,第一UWB通信单元104可以通过两个UWB天线进行UWB通信,例如发送UWB标签获取请求、接收UWB标签等。处理器N1通过标号为37和38的引脚提供的ANT、VANT接口连接蓝牙通信单元1031,蓝牙通信单元1031还连接有蓝牙天线,蓝牙通信单元1031通过蓝牙天线进行蓝牙通信。处理器N1通过标号为30的引脚提供的IR_OUT接口连接红外通信单元1032;红外通信单元1032可以通过其设置的红外发射装置发送红外信号。处理器N1还通过标号47和48的引脚提供的I2C接口,连接I2C总线,在I2C总线上还连接有细颗粒物传感器1021、TVOC传感器1022、温湿度传感器1023和陀螺仪105等。对于I2C总线上连接的细颗粒物传感器1021、TVOC传感器1022、温湿度传感器1023和陀螺仪105等传感器,若其中存在输出电平与I2C总线上的电平不同的传感器,则将该传感器的检测结果输入到电平转换器。处理器N1还通过标号为28和29的引脚提供的MIC接口连接麦克风1062,麦克风采集到的用户的语音收,可以通过MIC+和MIC-接口发送至处理器N1;处理器N1还通过标号为5-8的KEY-ROW0~KEY-ROW3引脚连接键盘1061的多行按键、以及标号为20-24的KEY-LINE0~KEY-LINE4引脚连接键盘1061的多列按键,键盘1061可以包括多个按键,多个按键呈行列(ROW-LINE)分布,每一行按键连接相同的行引脚(ROW),每一列按键连接同一个列引脚(LINE),每个按键对应于例如“电源”、“音量增”、“音量减”“主页”等功能;处理器N1还通过标号为34的引脚连接陀螺仪105;处理器N1还通过标号为43和44的LED1、LED2接口连接两个LED。
基于本申请实施例的诸如显示装置电子设备的控制装置可用于控制多个被控设备,使得控制装置需要在控制不同被控设备时,向不同的被控设备发送不同的控制命令。因此,本申请实施例还提供一种电子设备的控制方法,由控制装置在控制多个被控设备时,确定当前朝向多个被控设备中的目标被控设备后,获取目标被控设备对应的配置文件,进而在接收到来自用户对目标被控设备的控制命令后,根据配置文件中与该目标被控设备对应的数据格式向目标被控设备发送控制命令,从而实现用户通过控制装置分别对多个被控设备进行控制。示例性地,图9为根据本申请实施例的被控设备的控制方法的流程示意图。如图9所示的控制方法可以由本申请任一实施例中提供的控制装置执行,具体可以由控制装置中的处理器执行,该控制方法包括:
控制装置中的处理器基于控制装置的朝向来确定多个被控设备中的、所述控制装置朝向的目标被控设备。
具体地,在S101:控制装置中的处理器通过第一通信单元确定控制装置朝向多个被控设备中的目标被控设备。
在一些实施例中,当第一通信单元是第一UWB通信单元时,处理器首先在S1011中通过第一UWB通信单元向其所朝向的方向发送UWB标签获取请求;随后,当多个被控设备中的目标被控设备接收到UWB标签获取请求后,在S1012中将该目标被控设备的UWB标签发送至第一UWB通信单元,使得处理器通过第一UWB通信单元接收到来自目标被控设备发送的UWB标签后,即可在S1013中根据接收到的UWB标签确定此时控制装置所朝向的目标被控设备。
在一些实施例中,图10为根据本申请实施例的控制装置的结构示意图。如图10所示的控制装置100设置有外壳,在图中外壳上方的区域110内部设置有第一通信单元和第二通信单元,则图中向上箭头标识出的A方向即为控制装置100所朝向的方向,此时,区域110内的第一通信单元和第二通信单元的天线也朝向A方向,使得两个通信单元均可在A方向上进行通信,例如,第一UWB通信单元可以向A方向发送UWB标签获取请求、并从A方向接收UWB标签,第二通信单元可以向A方向发送控制命令等。
在一些实施例中,当如图10所示的控制装置中包括空气检测单元时,空气检测单元可以设置在外壳的下方区域120内,并且在外壳的区域120上设置有开口,使得外壳内的空气检测单元可以通过开口对外壳外部的空气进行检测。
在一些实施例中,如图10所示的控制装置的外壳上还设置有多个按键,用户可以通过点击按键的方式向控制装置发出控制命令。在图10所示的示例中,控制装置包括开关/电源按键131、圆环触控按键132和音量增减按键133。需要说明的是,如图10所示控制装置100的结构仅为示例,控制装置100还可以是其他的形状、以及包括其他功能的按键等,本申请对控制装100置的外部的按键数量、按键位置和功能等不做限定。
在一些实施例中,在S1013中,处理器可以控制装置中设置的姿态检测单元确定控制装置此时朝向的角度,并结合通过第一UWB通信单元接收UWB标签时的信号到达角度和信号到达时间,判断当前控制装置所朝向的目标被控设备。
图11为本申请实施例的处理器确定目标被控设备的示意图,参考如图10所示的控制装置100的结构,当用户使用控制装置100朝向被控设备200时,控制装置100的第一UWB通信单元向A方向发送UWB标签获取请求,于此同时,控制装置100内设置的陀螺仪等姿态检测数单元,可以检测到当前控制装置100的姿态数据并发送至处理器,使得处理器根据姿态数据确定控制装置100的姿态为朝向图10中的A方向,将A方向记为控制装置的信号发射方向。
同时,当控制装置100内的处理器通过第一UWB通信单元接收到被控设备200内的第二UWB通信单元2001发送的UWB标签时,可以根据第一UWB通信单元的两个天线确定出接收到UWB标签时,UWB信号的到达B方向,将B方向记为控制装置的信号接收方向。以及,处理器还可以基于时间测距法(ToF),根据处理器通过第一UWB通信单元发送UWB标签获取请求的第一时刻,与 处理器通过第一UWB通信单元接收到UWB标签的第二时刻之间的时间长度,乘以UWB信号的传播速度(空气中的光速c)后,可以得到UWB信号在控制装置100和被控设备200之间往返一次的距离,该距离的一半即为控制装置100和被控设备200之间的距离L。
例如,当处理器通过第一UWB通信单元发送UWB标签获取请求时,记录发送该请求的第一时刻TX的时间戳信息,随后,当处理器在第二时刻接通过第一UWB通信单元接收到UWB标签时,可以得到接收到该UWB标签的第二时刻RX的时间戳信息,进而可以通过公式1得到控制装置100和被控设备200之间的距离L。
L=(RX-TX)*c/2公式1
其中,L为控制装置和被控设备之间的距离;RX为接收到该UWB标签的第二时刻的时间戳信息,TX为发送该请求的第一时刻的时间戳信息。
在另一些实施例中,控制装置100还可以单独设置测距模块,例如ToF(Time of flight,飞行时间)激光测距模块等,并将模块的信号发射/接收方向朝向与第一UWB通信单元相同的信号发射方向。从而在第一UWB通信单元朝向目标电子设备时,通过该测距模块同时确定控制装置100和被控设备200之间的距离L,通过与第一UWB通信单元并行的处理方式,使得确定距离时无需依赖于是否通过第一UWB通信单元接收到UWB标签,测距模块因此具有一定的独立性,能够提高控制装置整体的处理效率。
在本申请的实施例中,处理器确定当控制装置100的信号发射方向A和信号接收方向B之间的夹角a小于第一阈值,并且控制装置100和被控设备200之间的距离L小于第二阈值时,确定控制装置当前朝向的被控设备200为目标被控设备,后续可以由控制装置100实现对该目标被控设备进行的控制。
在一些实施例中,第一阈值可以为7°,第二阈值可以为5m等。第一阈值和第二阈值可以根据不同的应用场景进行预设、或者由用户进行设置,本申请对第一阈值和第二阈值的具体取值不作限定。
基于本申请的实施例,提供了一种处理器在通过第一UWB通信单元接收到一个UWB标签后,根据该一个UWB标签确定出目标被控设备的具体实现方式。而在实际应用中,由于被控设备通常设置在面积有限的房间内,当控制装置的处理器通过第一WUB通信单元发送UWB标签获取请求后,处理器可能会通过第一UWB通信单元接收到多个被控设备所发送的UWB标签,此时,处理器还需要从这多个UWB标签对应的被控设备中确定出用户实际想要控制的目标被控设备。
在一些实施例中,当处理器在步骤S1012中通过第一通信单元接收到多个被控设备发送的多个UWB标签时,当处理器无法确定当前用户将控制装置对准的目标被控设备,则处理器可以将接收到的多个UWB标签发送给显示装置,使得显示装置在其显示屏幕上提示用户从多个UWB标签对应的多个被控设备中确定出目标被控设备,随后,显示装置将用户所选择的目标被控设备的UWB标签等信息发送至控制装置,使得控制装置根据显示装置发送的信息确定目标被控设备。
例如,图12为根据本申请实施例的显示装置显示UWB标签的示意图。当显示装置200接收到控制装置100发送的多个UWB标签后,在其显示屏幕201上显示该多个UWB标签对应的被控设备的名称、图像等信息。使得显示装置200的用户可以通过控制装置、语音、显示装置上的按键等形式向显示装置200指示出多个被控设备中的目标被控设备。随后,显示装置200将用户所选择的目标被控设备发送至控制装置100,使得控制装置100确定目标被控设备。
在一些实施例中,由于实际应用中显示装置、空调等被控设备的位置较为固定,用户使用控制装置朝向这些被控设备后,控制装置所处的姿态也较为固定。因此,当控制装置接收到显示装置发送的目标被控设备后,还可以通过姿态检测单元确定控制装置的朝向,并将该朝向与目标被控设备之间对应关系进行存储。例如,在如图11所示的示例中,控制装置100可以在确定当前朝向A对应于被控设备200时,存储方向A-被控设备200的对应关系,以此类推,可以通过如下表1等表格的形式,将方向C-被控设备210的对应关系、方向D-被控设备220等对应关系以表格等形式进行存储。
表1
方向 被控设备的信息
A 被控设备200
C 被控设备210
D 被控设备220
在一些实施例中当处理器在S1012中通过第一UWB通信单元接收到多个被控设备发送的多个UWB标签时,处理器可以根据姿态检测单元确定当前控制装置朝向的方向,随后可以从映射关系中,确定当前朝向方向所对应的被控设备为目标被控设备。例如,当处理器通过第一UWB通信单元同时接收到被控设备200的UWB标签1、被控设备210的UWB标签2,则根据当前朝向的方向A确定被控设备200为目标被控设备。此外,若确定当前朝向方向为D,但并未接收到被控设备220的UWB标签3时,可以将接收到的多个UWB标签发送给显示装置,由显示装置的用户进行选择。
S102:控制装置的处理器,根据S101中所确定的目标被控设备,进一步确定目标被控设备对应的第一配置文件。
在一些实施例中,由于控制装置可以控制不同的多个被控设备,而每个被控设备的控制命令又 需要以不同的形式发送。因此,控制装置的存储单元中可以提前存储多个被控设备分别对应的配置文件,使得处理器在确定目标被控设备后,从存储单元中获取该目标被控设备对应的第一配置文件。
在一些实施例中,控制装置的存储单元中所存储的多个不同被控设备的配置文件可以是预设的,例如提前存储在被控设备中。或者,还可以是用户使用控制装置在第一次控制目标被控设备之前,用户使用控制装置在显示装置上将控制装置与目标被控设备进行绑定、将控制装置配置为控制目标设备后,显示装置将该目标被控设备的第一配置信息发送至控制装置,由控制装置进行存储。
在一些实施例中,控制装置中还可以不存储配置文件,而是在确定目标被控设备后,向显示装置发送配置文件获取请求,由显示装置将目标被控设备的第一配置文件发送给控制装置,从而可以减少控制装置存储不同配置文件所占用的存储空间。
本申请实施例所述的配置文件可以是控制装置上不同的按键,与该按键控制被控设备执行预设的功能时的控制命令的数据格式。以图10所示的控制装置作为示例,当如图10所示的控制装置100朝向空调时,音量增减按键133对应于指示空调增减温度的控制命令,因此空调对应的配置文件中,包括“+按键”和“第一红外信号的数据格式”,“-按键”和“第二红外信号的数据格式”的对应关系。当如图10所示的控制装置100朝向空气净化器时,音量增减按键133对应于指示风力增减的控制命令,因此空气净化器对应的配置文件中,包括“+按键”和“第三红外信号的数据格式”,“-按键”和“第四红外信号的数据格式”的对应关系。
S103:则在S102中确定第一配置文件之后,控制装置即可按照第一配置文件对目标被控设备进行控制。其中,当控制装置的处理器通过按键等交互单元接收到向目标被控设备发送诸如第一控制命令的控制命令的指示后,从第一配置文件中确定第一控制命令对应的数据格式。
S104:控制装置确定出第一控制命令的数据格式后,即可根据数据格式,通过第二通信单元向目标被控设备发送第一控制命令,实现对目标被控设备进行控制。
同样以图10所示的控制装置100作为示例,当如图10所示的控制装置100朝向空调时,经过S101-S102,控制装置的处理器已经确定第一配置文件。则控制装置检测到用户对音量增减按键133中“+按键”的点击操作,对应于向空调发送温度增加的第一控制命令的指示。则从第一配置文件中得到该第一控制命令对应的第一红外信号的数据格式,随后在S104中,处理器根据第一红外信号的数据格式,通过其第二通信单元发出第一红外信号,作为指示空调提高温度的第一控制命令,从而实现对空调进行的控制。
在一些实施例中,上述通过第二通信单元发送红外信号的实施例仅为示例,第二通信单元可以包括:红外通信单元、蓝牙通信单元、WIFI通信单元等通信单元中的一或多个,则第一配置文件可以包括与该目标被控设备的通信方式对应的控制命令的数据格式。控制装置可以根据第一配置文件的指示,从第二通信单元中选择红外、蓝牙或者WIFI的方式向目标被控设备发送控制命令。
当第二通信单元包括蓝牙通信单元,且控制装置朝向的目标被控设备的第三通信单元同样为蓝牙通信单元时,则控制装置将通过蓝牙通信单元,以蓝牙通信协议向目标被控设备发送第一控制命令。此时,第一配置文件中还可以包括该目标被控设备的蓝牙信息。则具体的通信步骤包括:控制单元开启蓝牙通信单元、根据蓝牙信息搜索目标被控设备的蓝牙信号并与目标被控设备的蓝牙通信单元建立蓝牙连接,随后可以进行控制命令的发送。最终在第一控制命令发送完成后,断开连接并关闭蓝牙。或者,第一控制命令发送完成后也可以继续保持二者之间的蓝牙连接。
当第二通信单元包括红外通信单元,且控制装置朝向的目标被控设备的第三通信单元同样为红外通信单元时,则控制装置将通过红外通信单元,以红外通信协议向目标被控设备发送第一控制命令。例如,红外通信协议中可以将第一控制命令中的二进制数字信号调制成红外脉冲序列,并通过红外发射管以光脉冲的形式发送出去,目标被控设备的第三通信单元将接收到的光脉冲转换成电信号,并进行解调等处理后还原为二级制数字信号并进行后续处理。则此时,第一配置文件中的数据格式可以是与该目标被控设备的控制命令对应的二进制数字信号。例如,第一配置文件中,第一控制命令的数据格式为“1100”、第二控制命令的数据格式为“0011”,则当处理器接收到发送第一控制命令的指示后,从第一配置文件中确定出第一控制命令的数据格式为“1100”,随后通过红外通信单元将上述数据格式调制到红外脉冲并发送至目标被控设备。
根据本申请实施例的控制装置可以在通过第一通信单元确定其朝向多个被控设备中的任一目标被控设备时,确定该目标被控设备对应的配置文件,进而在接收到控制命令时,根据配置文件中与目标被控设备对应的数据格式向目标被控设备发送控制命令,实现使用一个控制装置的相同按键,对多个被控设备均能够分别进行控制,从而极大地丰富了显示装置的控制装置的功能,提高了显示装置的用户体验。
根据本申请实施例的被控设备的控制方法中,控制装置中的第一通信单元需要不断确定当前控制装置所朝向的目标被控设备,才能够实现后续控制。例如,当第一通信单元是UWB通信单元时,即使用户并未使用控制装置,将控制装置静置在桌面上时,控制装置仍然不断发出UWB标签获取请求,极大地消耗了控制装置的电能。因此,一些实施例中,控制装置可以设置休眠模式(又可被称为低功耗模式等),在休眠模式下,第一通信单元可以不发出UWB标签获取请求,空气检测单元也可以不获取空气参数,使得控制装置在休眠模式下的电量消耗速度低于正常工作模式。而当用户拿起控制装置将要控制该被控设备时,控制装置就需要尽快从休眠模式切换为工作模式,来满足用户的使用需求。
在一些实施例中,本申请提供的控制装置中,设置的姿态检测单元可以检测控制装置的姿态从 而确定控制装置是否发生移动,当处理器通过姿态检测单元检测的姿态数据确定控制装置发生了移动,说明用户拿起了控制装置,即将使用控制装置对被控设备进行控制,此时,处理器即可控制整个控制装置从休眠模式切换为正常工作模式。例如,控制控制装置的电源开始向第一通信单元和空气检测单元供电,或者激活第一通信单元和空气检测单元使其分别开始发送UWB标签获取请求、采集空气参数等,从而可以在用户拿起控制装置、并在用户实际操作控制装置之前,完成控制装置工作模式的切换。
图13为根据本申请实施例的控制装置的控制时序示意图。如图13所示,在T0时刻之前,用户没有使用控制装置,控制装置静置在桌面上,则控制装置处于休眠模式,控制装置内的第一通信单元、空气检测单元等都没有工作。在T0时刻,用户拿起控制装置时,控制装置内的处理器通过陀螺仪等姿态检测单元,确定控制装置的姿态发生变化,则开始将控制装置从休眠模式切换为工作模式。例如,处理器可以控制电源对第一通信单元、空气检测单元等供电,并使得这些单元完成初始化等操作后,在T1时刻完成工作模式的切换。随后,在T1时刻之后的T2时刻,用户实际将控制装置朝向目标被控设备后,控制装置可以执行本申请实施例的上述任一实施例中提供的被控设备的控制方法,在此不再赘述。在T3时刻,当用户放下控制装置,控制装置内的处理器通过陀螺仪等姿态检测单元,确定控制装置在一定时间没有发生姿态变化,则开始切换为休眠模式,例如处理器控制电源停止对第一通信单元、空气检测单元等供电。在T4时刻之后,控制装置将继续保持休眠模式节省电量。
从上述图13可以看出,控制装置只有在用户拿起控制装置之后、放下控制装置之前,T1-T4时刻之间处于工作模式,其余时间都处于休眠模式,因此可以极大地减少了控制装置内的电量消耗。并且,即使控制装置设置了休眠模式,控制装置还可以在用户拿起控制装置T0时刻之后、实际使用控制装置T4时刻之前,更加智能地“自动”、提前完成从休眠模式切换到工作模式,这个切换过程对用户是不可知的,不需要用户进行任何的操作。因此,控制装置可以在节省电量消耗的前提下,又不影响用户正常使用其功能,进一步提高了控制装置的用户体验。
在一些实施例中,当根据本申请实施例的控制装置中设置有至少一个空气检测单元时,控制装置除了可以获取空气参数,还可以对空气参数进行后续处理,例如根据空气参数确定对被控设备发送的控制命令,从而“代替”用户的确定出对被控设备合适的控制命令,提高控制装置的智能化程度、减少用户使用控制装置时的复杂度,以进一步提高控制装置的用户体验。
图14为根据本申请实施例的用于电子设备的控制方法的流程示意图。如图14所示的被控设备的控制方法,可应用于本申请前述实施例中任一的控制装置中来执行,该控制装置可以包括处理器、第一通信单元、第二通信单元和至少一个空气检测单元。如图14所示的用于电子设备的控制方法包括:
S201中,当控制装置中的至少一个空气检测单元获取控制装置所在环境的空气参数,并发送至处理器。例如,空气参数可以包括:温度为28度、湿度为40%RH(Relative Humidity,相对湿度)、CO2浓度为550ppm(parts per million,浓度)等。
在一些实施例中,控制装置可以每间隔一段时间执行一次S201,例如每5分钟通过至少一个空气检测单元获取一次空气参数。或者,当控制装置中包括多个空气检测单元时,可以设置每个空气检测单元按照不同的间隔时间采集各自的空气参数,使得控制装置分别接收到空气检测单元发送的空气参数等。
S202:处理器可以根据接收到的控制参数,确定对多个被控设备中至少两个目标被控设备对应的控制命令。其中,处理器可以通过将S201中得到的空气参数与阈值进行比较,当空气参数与阈值的关系符合预设条件时,确定目标被控设备对应的控制命令。例如,处理器根据温度28度,大于预设的温度阈值26度,则确定向空调发送的控制命令为“制冷模式、温度为26度”;根据CO2浓度为550ppm大于预设的CO2阈值500ppm,则确定向空气净化器发送的控制命令为“开启新风、风量高”等,上述多个不同被控设备的控制命令可以形成控制命令集合。
在一些实施例中,处理器还可以提前存储不同空气参数与不同目标被控设备的控制命令的对应关系,例如,对于空调,夏季温度高于26℃,控制命令为模式设置为制冷,温度设置为26℃。温度26℃以下,湿度60%RH以上,控制命令为模式设置为除湿。冬季温度低于20℃,控制命令为模式设置为制热,温度设置为20℃。在一些实施例中,当空调包括新风功能时,当根据PM2.5和TVOC数据的数值的评价分级为优秀、良好或者差,进而确定空气质量为优秀时的控制命令为关闭新风,良好则新风量低,一般则新风量中,差则新风量高。又例如,当通过空气检测单元中的TVOC传感器的CO2数据,CO2浓度为400~500ppm时控制命令为关闭新风,500~600ppm时控制命令为新风量低,600~700ppm时控制命令为新风量中,700ppm以上时控制命令为新风量高。当CO2判断结果与PM2.5/TVOC不一致时,控制命令对应的新风量以就高原则选取。
S203:处理器通过第一通信单元确定控制装置朝向目标被控设备。处理器确定控制装置朝向目标被控设备的具体实现方式及原理如图9所示的S101相同,此处不再赘述。
S204:处理器向目标被控设备S202发送确定的控制命令集合中的与该目标被控设备对应的第一控制命令。
设定S202中确定的控制命令集合包括:向空调发送的第一控制命令为“制冷模式、温度为26度”和向空气净化器发送的第二控制命令为“开启新风、风量高”。则当S203中确定控制装置当前朝向的目标被控设备1为空调时,则从控制命令集合中确定“制冷模式、温度为26度”的第一控制 命令,并通过第一通信单元向目标被控设备1发送该第一控制命令。本实施例中发送第一控制命令的具体实现方式及原理与图8所示的S104相同,例如,当处理器确定发送第一控制命令时,可以确定目标被控设备对应的第一配置文件,随后从第一配置文件中确定第一控制命令的数据格式,再使用对应的数据格式通过第一通信单元向目标被控设备发送第一控制命令。
可以理解的是,按照上述相同的方式,在S2032中,当处理器通过第一通信单元确定控制装置朝向目标被控设备2,则从控制集合中确定该目标被控设备2对应的第二控制命令,在S2042再通过第二通信单元向目标被控设备2发送第二控制命令。
因此,根据如图14所示实施例的被控设备的控制方法,控制装置可以根据其内部设置的至少一个空气检测单元获取空气参数,并由处理器确定多个被控设备中至少两个目标被控设备的控制命令集合。随后,当用户使用控制装置时,当用户将控制装置朝向目标被控设备,控制装置内的处理器即可通过第一通信单元确定目标被控设备、并确定控制命令集合中目标被控设备对应的第一控制命令,最终在用户不需要进行操作的情况下,“主动”代替用户发送第一控制命令以实现对目标被控设备的控制,从而将目标被控设备设置为更为合适的模式。本实施例提供的控制装置能够极大地提高了控制装置的智能化程度、提高用户体验。
在一些实施例中,如图14所示的示例中,控制装置可以根据空气参数,在用户没有使用控制装置控制目标被控设备时,就代替用户确定了可用于控制目标被控设备的控制命令,使得后续用户将控制装置朝向目标被控设备时,即可发送该控制命令。然而,在一些场景中,当待控制的目标被控设备处于关闭状态时,控制装置还需要在发送第一控制命令之前,先接收到控制装置的用户对目标被控设备的开机指示,随后控制装置的处理器通过第二通信单元向目标被控设备发送开机命令,使得目标被控设备开机之后,处理器再通过第二通信单元向目标被控设备发送第一控制命令。对于用户来说,以控制装置为如图10所示的结构作为示例,当用户使用控制装置对准空调后,只需要点击控制装置上的开关电源按键131,控制装置接收到该开机指示后,除了向空调发送开机命令,还会随后向空调发送控制装置提前根据空气参数确定好的第一控制命令,例如将温度设置到26度、新风风量高等,使得用户不需要再对空调进行进一步的设置,给用户带来使用控制装置控制被控设备时的“一键开启和设置”的使用效果。
在本申请的实施例中,控制装置的处理器根据提前获取的空气参数,确定出不同目标被控设备的控制命令后,控制装置对准一个目标被控设备,即可发送该目标被控设备对应的控制命令。而为了减少控制装置频繁确定控制命令对电量的无效消耗,本申请的实施例还提供一种控制方法,使得控制装置确定出朝向的目标被控设备后,再根据空气参数确定该目标被控设备的第一控制命令。
例如,图15为本申请实施例的用于电子设备的控制方法的流程示意图。图15中的S301与图13中的S201相同,都是处理器可以按照一定的时间间隔使用至少一个空气检测单元获取空气参数。随后,处理器即使获取了空气参数,也不立即确定控制命令,而是进行存储。在S302中,处理器通过第一通信单元确定当前朝向目标被控设备后,S303中再通过根据S301中获取的空气参数,确定与目标被控设备对应的第一控制命令。最终,通过S304使用第二通信单元向目标被控设备发送该第一控制命令。因此,在如图15所示的过程中,控制装置只有在确定朝向目标被控设备后,再根据控制参数确定与该一个目标被控设备对应的控制命令,能够减少所确定的控制命令的数量,更具有针对性,满足控制装置智能化的同时减少对控制装置电量的消耗。同样地,如图15所示的控制装置在S304发送第一控制命令之前,也可以在接收到目标被控设备的开机指示后项目标被控设备发送开机命令,使得目标被控设备开机后再发送第一控制命令,实现“一键开启和设置”。
在一些实施例中,本申请实施例还提供一种控制方法,使得控制装置确定出朝向的目标被控设备后,再通过空气检测单元获取空气参数,进而再根据空气参数确定该目标被控设备的第一控制命令,从而进一步减少控制装置中空气检测单元频繁获取空气参数对电量的消耗。
例如,图16为根据本申请实施例的用于电子设备的控制方法的流程示意图.如图16所示,在S401中,当控制装置的处理器通过第一通信单元确定控制装置朝向目标被控设备后,再在S402从与目标被控设备对应的空气检测单元中,获取与该目标被控设备对应的空气参数。例如,当控制装置朝向空调时,处理器只通过温度计获取温度,当控制装置朝向空气净化器时,处理器只通过细颗粒物传感器、TVOC传感器等获取空气质量参数。随后在S403中,处理器再根据S402中获取的空气参数,确定与该目标被控设备对应的第一控制命令。最终,在S404使用第二通信单元向目标被控设备发送该第一控制命令。因此,在如图16所示的过程中,控制装置只有在确定朝向目标被控设备后,仅通过空气检测单元获取与该目标被控设备对应的空气参数,减少了空气检测单元获取空气参数的次数,后续再根据控制参数更加直接地确定与该一个目标被控设备对应的控制命令,还能够减少所确定的控制命令的数量,满足控制装置智能化的同时进一步减少了对控制装置电量的消耗。同样地,如图16所示的控制装置在S404发送第一控制命令之前,也可以在接收到目标被控设备的开机指示后项目标被控设备发送开机命令,使得目标被控设备开机后再发送第一控制命令,实现“一键开启和设置”。
在一些实施例中,本申请实施例提供的显示装置的控制装置中,除了用于控制被控设备的通信单元,还设置有至少一个空气检测单元,控制装置可以通过这些空气检测单元周期性地获取空气参数,并得到不同被控设备的控制命令。例如,在图14所示的示例中,控制装置可以通过周期性地执行S201-S202,即使控制装置没有朝向目标被控设备,控制装置中的处理器也可以根据空气参数确定出控制命令集合。示例性地,控制装置中的处理器,每间隔5分钟通过空气检测单元中的温度传感器获取到当前空气温度,并根据空气温度确定空调等目标被控设备的控制命令集合。在5分钟后, 处理器再次获取空气温度并确定控制命令集合。在这两次获取空气温度之间的5分钟时间内,若确定控制装置朝向空调,则根据控制命令集合向空调发送第一控制命令。
在一些实施例中,当控制装置中包括多个空气检测单元时,还可以对不同空气检测单元设置不同的检测周期,并由处理器获取到不同空气检测单元的空气参数后,分别生成不同被控设备的控制命令。例如,假设控制装置中的空气检测单元包括温度传感器和颗粒物检测传感器,则可以设置温度传感器每5分钟采集一次空气温度、颗粒物检测传感器每10分钟采集一次空气质量。参考如图14所示的流程,处理器每5分钟通过温度传感器获取一次空气温度并确定空调等目标被控设备的控制命令集合,以及,处理器每10分钟通过颗粒物检测传感器获取一次空气质量并确定空气净化器等目标被控设备的控制命令集合。在这个过程中,当处理器确定控制装置朝向目标被控设备,则从已经确定的控制命令集合中确定对应的控制命令并发送给目标被控设备。
在一些实施例中,由于控制装置通过其内部的电池等供电单元107提供电能,在控制装置中加入了较多数量的空气检测单元后,增加了控制装置的电能消耗。因此,本申请实施例还提供一种控制装置的控制方法,可用于本申请前述任一实施例中显示装置的控制装置,根据其内部供电电源的电量信息,确定其空气检测单元获取空气参数的工作参数,从而在控制装置电量处于不同状态时采用不同的检测策略,既能够保证对空气参数尽可能的获取,又能够节省对控制装置电量的消耗。
图17为根据本申请实施例的控制装置的控制方法的流程示意图。如图17所示的控制方法可以由控制装置中的处理器执行,该方法包括:
S501:获取控制装置中供电单元的电量信息。
控制装置中的处理器可以被配置为每间隔一段时间获取一次供电单元的电量信息。供电单元可以是控制装置中的电池等,电量信息可以是供电单元的剩余电量(表示为0-1之间的百分比,例如10%、50%等),或者,电量信息还可以是单位时间内电池电量的消耗速度等,例如,供电单元可以根据间隔一定时间获取的电池电量,与时间段长度之比计算出在间隔的时间段内电量的消耗速度。
S502:根据S501中获取的电量信息,确定控制装置通过多个空气检测单元获取空气参数时的工作参数。
在一些实施例中,为了确定工作参数,控制装置中可以提前根据剩余电量所对应的电量区间确定映射关系,则当电量信息中包括供电单元的剩余电量时,可以根据映射关系确定剩余电量所在电量区间对应的工作参数。本申请实施例中提供的工作参数可以包括:控制装置的多个空气检测单元中,可用于获取空气参数的至少一个目标空气检测单元的标识信息、至少一个目标空气检测单元的检测顺序,以及处理器通过至少一个目标空气检测单元周期性获取空气参数的间隔时间。
电量信息中的剩余电量可以根据百分比划分为高、中、低三个电量区间,在映射关系中,高电量区间对应的工作参数可以是:目标空气检测单元1-检测间隔时间为10分钟、目标空气检测单元2-检测时间间隔为10分钟、目标空气检测单元3-检测时间间隔为20分钟等。中电量区间对应的工作参数可以是:目标空气检测单元1-检测间隔时间为20分钟、目标空气检测单元2-检测时间间隔为20分钟等。低电量区间对应的工作参数可以是:目标空气检测单元1-检测间隔时间为30分钟、目标空气检测单元2-检测时间间隔为30分钟等,上述工作参数中目标空气检测单元的顺序即为检测顺序。
S503:处理器根据S502中所确定的工作参数,使用工作参数中标识信息所对应的至少一个目标空气检测单元,按照工作参数中的检测顺序和检测间隔时间获取空气参数。
例如,工作参数为目标空气检测单元1-检测间隔时间为20分钟、目标空气检测单元2-检测时间间隔为20分钟,则处理器按照上述顺序,每间隔20分钟时,先后分别通过目标空气检测单元1和目标空气检测单元2获取空气参数。
随后,在获取到空气参数后,可以按照例如图14所示的方法,确定控制命令集合并进行后续处理,或者还可以将空气参数发送给显示装置等,如图17所示的实施例中,对控制装置获取空气参数后,对空气参数所做的处理不做限定。
根据上述举例说明,当电量信息包括剩余电量时,剩余电量所对应的不同电量区间在映射关系中的多个工作参数中,剩余电量的数值与对应的工作参数中目标空气检测单元的检测间隔时间的数值成反比;和/或,剩余电量的数值与对应的工作参数中目标空气检测单元的数量成正比。因此,控制装置根据工作参数获取空气参数时,可以在剩余电量充足时,通过数量更多的空气检测单元执行更多次数的空气参数检测,尽可能提高空气参数的实时性;在剩余电量不足时,减少空气参数检测所使用的空气检测单元的数量和检测的频率,实现减少对控制装置的电量进一步的消耗,延长控制装置的使用时间。
在一些实施例中,上述电量信息还可以包括供电单元的电量消耗速度,则在映射关系中,不同电量消耗速度所在的多个区间分别对应于多个工作参数,并且多个工作参数中,电量消耗速度的数值与对应的工作参数中目标空气检测单元的检测间隔时间的数值成正比;和/或,电量消耗速度的数值与对应的工作参数中目标空气检测单元的数量成反比。此时,控制装置可以在电量消耗慢时,通过数量更多的空气检测单元执行更多次数的空气参数检测,尽可能提高空气参数的实时性;在电量消耗过快时,减少空气参数检测所使用的空气检测单元的数量和检测的频率,实现减少对控制装置的电量进一步的消耗,延长控制装置的使用时间
在一些实施例中,电量信息还可以包括剩余电量和电量消耗速度,并根据二者所在的不同区间,共同对应于一个工作参数,其工作参数中的趋势应与上述实施例中各自的趋势相同,并可以进行预设。
在一些实施例中,除了上述示例中根据电量信息所对应的电量区间分为高、中、低三个,还可以单独划分出极低的电量区间,在该极低区间时,供电单元的电量即将耗尽,则此时控制装置在获取电量信息后,根据此时电量信息为极低,则确定停止通过空气检测单元获取空气参数,来节省对控制装置电量的消耗。
在一些实施例中,当控制装置的确定供电单元的电量信息对应于极低的电量区间时,控制装置可以向与该控制装置对应的显示装置发送电量指示,使得显示装置向用户显示电量提示信息。图18为根据本申请实施例的显示装置显示电量提示的示意图。如图18所示的显示装置在接收到控制装置发送的指示后,在显示屏幕201上显示例如“遥控器电量低”等提示信息,提示用户控制装置需要进行充电。
如图17所示的控制方法中,控制装置的处理器可以自行根据电量信息确定工作参数,进而根据工作参数获取空气参数。而在另一些实施例中,还可以由控制装置对应的显示装置来确定控制装置的工作参数,实现减少控制装置计算量的目的,可以进一步减少对控制装置电量的消耗。
图19为根据本申请另外的实施例的控制装置的控制方法的流程示意图。如图19所示的控制方法中,控制装置中的处理器获取电量信息后,在S601将电量信息发送至显示装置,由显示装置在S602中根据电量信息确定工作参数,并在S603发送至控制装置。随后,控制装置的处理器在S604中根据工作参数通过目标空气检测单元获取空气参数。如图19所示的实施例中,显示装置根据电量信息确定工作参数与图17中控制装置的原理和实现方式相同,在此不再赘述。
在一些实施例中,控制装置可以使用如图19所示的控制方法确定工作参数。可替换地,控制装置还可以使用图19所示的控制方法确定工作参数,显示装置的用户可以对控制装置确定工作参数的方式进行设置。可替换地,控制装置还可以在获取其电量信息后,若控制装置的剩余电量大于预设阈值,例如电量信息对应于高和中电量区间,说明电量较为充足,此时控制装置可以通过如图17所示的方式自行根据电量信息确定工作参数;而当控制装置的剩余电量小于预设阈值,例如电量信息对应于低电量区间时,控制装置可以将电量信息发送至与其对应的显示装置,由显示装置通过如图19所示的方式确定工作参数,来节省对控制装置电能的消耗。
本申请的实施例还提供一种电子设备,包括:处理器以及存储器;其中,存储器中存储有计算机执行指令,当处理器执行存储器所存储的计算机执行指令,处理器可用于执行如本申请前述实施例中任一的用于电子设备的控制方法。
本申请还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序或可执行指令,当被执行时可用于执行如本申请前述实施例中任一的用于电子设备的控制方法。
本申请实施例还提供一种运行指令的芯片,所述芯片用于执行如本申请前述任一实施例中的电子设备的控制方法。
本申请提供一种控制装置,包括:通信单元、姿态检测单元以及处理器;所述姿态检测单元被配置为确定所述控制装置的朝向;所述处理器被配置为:
基于所述朝向确定多个被控设备中的、所述控制装置朝向的目标被控设备;以及
通过所述通信单元向所述目标被控设备发送控制指令。
在一些实施例中,姿态检测单元可以包括陀螺仪,用于检测控制装置所朝向的角度和与水平面所呈的角度等信息并发送至处理器。
在一些实施例中,所述控制装置还包括空气检测单元,所述空气检测单元被配置为检测所述控制装置所在环境的空气参数,所述处理器进一步被配置为:根据所述空气参数与所述被控设备的控制指令的映射关系,确定所述目标被控设备对应的所述控制命令,其中,所述空气参数与被控设备的控制指令的映射关系预先设置在所述控制装置中。
在一些实施例中,所述控制装置还包括空气检测单元,所述空气检测单元被配置为检测所述控制装置所在环境的空气参数,所述处理器进一步被配置为:获取所述目标被控设备发送的第一配置文件,所述第一配置文件用于指示空气参数与被控设备的控制指令的映射关系;以及根据所述空气参数和所述第一配置文件,确定所述目标被控设备对应的所述控制命令。
在一些实施例中,所述处理器进一步被配置为:发起与所述多个被控设备的通信连接,确定通信信号的传输参数;以及根据所述通信信号的传输参数和所述控制装置的朝向,在多个所述被控设备中确定所述目标被控设备。
在一些实施例中,所述通信单元包括第一UWB通信单元,所述处理器进一步被配置为:通过所述第一UWB通信单元发送UWB标签获取请求;当通过所述第一UWB通信单元接收到来自所述目标被控设备发送的UWB标签时,通过所述UWB标签确定所述控制装置朝向所述目标被控设备。
在一些实施例中,所述处理器进一步被配置为:确定所述目标被控设备对应的第二配置文件,其中,所述第二配置文件包括所述目标被控设备的多个控制命令,以及每个所述控制命令对应的数据格式;当接收到发送所述控制命令的指示,从所述第二配置文件确定所述控制命令对应的数据格式;以及根据所述数据格式,向所述目标被控设备发送所述控制命令。
在一些实施例中,所述处理器进一步被配置为:当执行第一任务时,接收到第二任务的执行请求;基于任务互斥信息,确定所述第一任务和所述第二任务是否为互斥关系,其中,所述任务互斥信息包括所述控制装置能够执行的多个任务中的每个任务与所述多个任务中其他任务之间的互斥关系;以及基于互斥关系,依次执行所述第一任务和所述第二任务。
在一些实施例中,多个所述被控设备包括电视和空调;所述控制装置为所述电视的遥控器;所 述处理器进一步被配置为:当判断所述遥控器指向所述电视时,向所述电视发送符合电视通信协议要求的控制指令;当判断所述遥控器指向所述空调时,根据所述空气检测单元发送的所述遥控器所在环境的空气参数,向所述空调发送符合所述空调通信协议要求的控制指令,以控制所述空调能够响应所述空气参数做出匹配性功能设置。
在一些实施例中,所述控制装置还包括供电单元,所述处理器进一步被配置为:获取所述供电单元的电量信息,所述电量信息包括所述供电单元的剩余电量和/或所述供电单元的电量消耗速度;
根据所述电量信息,确定所述空气检测单元的工作参数;以及根据所述工作参数,通过所述空气检测单元获取所述空气参数。
在一些实施例中,所述控制装置还包括:至少一个空气检测单元,被配置为获取所述控制装置所在环境的空气参数以将所述空气参数发送至所述处理器,其中,所述通信单元包括:第一通信单元,被配置为确定所述控制装置朝向多个被控设备中的目标被控设备;以及第二通信单元,被配置为与所述多个被控设备中的任一被控设备进行通信,其中,所述处理器进一步被配置为:在通过所述第一通信单元确定所述控制装置朝向所述目标被控设备时,通过所述第二通信单元向所述目标被控设备发送所述空气参数和/或控制命令。
在一些实施例中,所述第一通信单元包括:第一UWB通信单元,被配置为进行UWB通信;所述处理器进一步被配置为,通过所述第一UWB通信单元发送UWB标签获取请求,以及当通过所述第一UWB通信单元接收到来自所述目标被控设备发送的UWB标签时,通过所述UWB标签确定所述控制装置朝向所述目标被控设备。
在一些实施例中,所述控制命令是所述处理器根据所述空气参数确定的多个被控设备的控制命令集合中的、与所述目标被控设备对应的控制命令;或者,所述控制命令是所述处理器根据所述空气参数和所朝向的目标被控设备确定的;或者,所述控制命令是所述处理器根据接收到的发送控制命令的指示确定的。
在一些实施例中,所述控制装置为所述目标被控设备对应的控制装置;和/或,所述目标被控设备为显示装置、所述控制装置为所述显示装置的遥控器。
在一些实施例中,所述遥控器的处理器进一步被配置为:获取空气参数后,通过所述第二通信单元向所述显示装置发送所述空气参数。
在一些实施例中,所述至少一个空气检测单元包括以下的至少一项:细颗粒物传感器、TVOC传感器和温湿度传感器;所述至少一个空气检测单元进一步被配置为:周期性获取所述控制装置所在环境的空气参数,并将所获取的空气参数发送至所述处理器。
在一些实施例中,所述处理器进一步被配置为:当通过所述姿态检测单元确定所述控制装置的姿态发生变化时,控制所述控制装置从休眠模式切换为工作模式。
在一些实施例中,所述控制装置还包括:至少一个交互单元,被配置为接收所述控制装置的用户的指令和/或向所述控制装置的用户发出提示信息;所述至少一个交互单元包括以下的至少一项:键盘、麦克风、振动马达、蜂鸣器和LED。
这里需要说明的,本申请实施例都可以互相参考,相互组合,此处就不再详细展开。
以上各实施例仅用以说明本申请的构思和范围,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不脱离本申请的范围。

Claims (34)

  1. 一种控制装置,包括:
    通信单元、姿态检测单元以及处理器;
    所述姿态检测单元被配置为确定所述控制装置的朝向;
    所述处理器被配置为:
    基于所述朝向确定多个被控设备中的、所述控制装置朝向的目标被控设备;以及
    通过所述通信单元向所述目标被控设备发送控制指令。
  2. 根据权利要求1所述的控制装置,其中,所述控制装置还包括空气检测单元,所述空气检测单元被配置为检测所述控制装置所在环境的空气参数,所述处理器进一步被配置为:
    根据所述空气参数与所述被控设备的控制指令的映射关系,确定所述目标被控设备对应的所述控制命令,
    其中,所述空气参数与被控设备的控制指令的映射关系预先设置在所述控制装置中。
  3. 根据权利要求1所述的控制装置,其中,所述控制装置还包括空气检测单元,所述空气检测单元被配置为检测所述控制装置所在环境的空气参数,所述处理器进一步被配置为:
    获取所述目标被控设备发送的第一配置文件,所述第一配置文件用于指示空气参数与被控设备的控制指令的映射关系;以及
    根据所述空气参数和所述第一配置文件,确定所述目标被控设备对应的所述控制命令。
  4. 根据权利要求1所述的控制设备,其中,所述处理器进一步被配置为:
    发起与所述多个被控设备的通信连接,确定通信信号的传输参数;以及
    根据所述通信信号的传输参数和所述控制装置的朝向,在多个所述被控设备中确定所述目标被控设备。
  5. 根据权利要求1所述的控制设备,其中,所述通信单元包括第一UWB通信单元,所述处理器进一步被配置为:
    通过所述第一UWB通信单元发送UWB标签获取请求;
    当通过所述第一UWB通信单元接收到来自所述目标被控设备发送的UWB标签时,通过所述UWB标签确定所述控制装置朝向所述目标被控设备。
  6. 根据权利要求1所述的控制设备,其中,所述处理器进一步被配置为:
    确定所述目标被控设备对应的第二配置文件,其中,所述第二配置文件包括所述目标被控设备的多个控制命令,以及每个所述控制命令对应的数据格式;
    当接收到发送所述控制命令的指示,从所述第二配置文件确定所述控制命令对应的数据格式;以及
    根据所述数据格式,向所述目标被控设备发送所述控制命令。
  7. 根据权利要求1所述的控制装置,其中,所述处理器进一步被配置为:
    当执行第一任务时,接收到第二任务的执行请求;
    基于任务互斥信息,确定所述第一任务和所述第二任务是否为互斥关系,其中,所述任务互斥信息包括所述控制装置能够执行的多个任务中的每个任务与所述多个任务中其他任务之间的互斥关系;以及
    基于互斥关系,依次执行所述第一任务和所述第二任务。
  8. 根据权利要求1所述的控制装置,其中,多个所述被控设备包括电视和空调;所述控制装置为所述电视的遥控器;
    所述处理器进一步被配置为:
    当判断所述遥控器指向所述电视时,向所述电视发送符合电视通信协议要求的控制指令;
    当判断所述遥控器指向所述空调时,根据所述空气检测单元发送的所述遥控器所在环境的空气参数,向所述空调发送符合所述空调通信协议要求的控制指令,以控制所述空调能够响应所述空气参数做出匹配性功能设置。
  9. 根据权利要求8所述的控制装置,其中,所述控制装置还包括供电单元,所述处理器进一步被配置为:
    获取所述供电单元的电量信息,所述电量信息包括所述供电单元的剩余电量和/或所述供电单元的电量消耗速度;
    根据所述电量信息,确定所述空气检测单元的工作参数;以及
    根据所述工作参数,通过所述空气检测单元获取所述空气参数。
  10. 根据权利要求1所述的控制装置,其中,所述控制装置还包括:至少一个空气检测单元,被配置为获取所述控制装置所在环境的空气参数以将所述空气参数发送至所述处理器,
    其中,所述通信单元包括:
    第一通信单元,被配置为确定所述控制装置朝向多个被控设备中的目标被控设备;以及
    第二通信单元,被配置为与所述多个被控设备中的任一被控设备进行通信,
    其中,所述处理器进一步被配置为:在通过所述第一通信单元确定所述控制装置朝向所述目标被控设备时,通过所述第二通信单元向所述目标被控设备发送所述空气参数和/或控制命令。
  11. 根据权利要求10所述的控制装置,其中,所述第一通信单元包括:第一UWB通信单元, 被配置为进行UWB通信;
    所述处理器进一步被配置为,通过所述第一UWB通信单元发送UWB标签获取请求,以及当通过所述第一UWB通信单元接收到来自所述目标被控设备发送的UWB标签时,通过所述UWB标签确定所述控制装置朝向所述目标被控设备。
  12. 根据权利要求10或11所述的控制装置,其中,
    所述控制命令是所述处理器根据所述空气参数确定的多个被控设备的控制命令集合中的、与所述目标被控设备对应的控制命令;
    或者,所述控制命令是所述处理器根据所述空气参数和所朝向的目标被控设备确定的;
    或者,所述控制命令是所述处理器根据接收到的发送控制命令的指示确定的。
  13. 根据权利要求12所述的控制装置,其中,
    所述控制装置为所述目标被控设备对应的控制装置;和/或,
    所述目标被控设备为显示装置、所述控制装置为所述显示装置的遥控器。
  14. 根据权利要求13所述的控制装置,其中,
    所述遥控器的处理器进一步被配置为:获取空气参数后,通过所述第二通信单元向所述显示装置发送所述空气参数。
  15. 根据权利要求13或14所述的控制装置,其中,
    所述至少一个空气检测单元包括以下的至少一项:细颗粒物传感器、TVOC传感器和温湿度传感器;
    所述至少一个空气检测单元进一步被配置为:周期性获取所述控制装置所在环境的空气参数,并将所获取的空气参数发送至所述处理器。
  16. 根据权利要求1所述的控制装置,其中,所述处理器进一步被配置为:当通过所述姿态检测单元确定所述控制装置的姿态发生变化时,控制所述控制装置从休眠模式切换为工作模式。
  17. 根据权利要求13或14所述的控制装置,其中,所述控制装置还包括:
    至少一个交互单元,被配置为接收所述控制装置的用户的指令和/或向所述控制装置的用户发出提示信息;
    所述至少一个交互单元包括以下的至少一项:键盘、麦克风、振动马达、蜂鸣器和LED。
  18. 一种用于电子设备的控制方法,应用于控制装置以控制多个被控设备,所述方法包括:
    确定所述多个被控设备中的、所述控制装置朝向的目标被控设备;
    确定所述目标被控设备对应的配置文件;其中,所述配置文件中包括所述目标被控设备的多个控制命令,以及每个所述控制命令对应的数据格式;
    当接收到发送控制命令的指示,从所述配置文件中确定所述控制命令对应的数据格式;
    根据所述数据格式,向所述目标被控设备发送所述控制命令。
  19. 根据权利要求18所述的控制方法,其中,所述控制装置包括第一通信单元,所述第一通信单元为第一UWB通信单元;
    确定所述目标被控设备包括:
    通过所述第一UWB通信单元发送UWB标签获取请求;
    当通过所述第一UWB通信单元接收到来自所述目标被控设备发送的UWB标签时,通过所述UWB标签确定所述控制装置朝向所述目标被控设备。
  20. 根据权利要求19所述的控制方法,其中,所述控制装置包括姿态检测单元,确定所述控制装置朝向所述目标被控设备包括:
    通过所述姿态检测单元确定所述控制装置的信号发射方向;
    通过所述第一UWB通信单元,确定接收所述UWB标签时的信号接收方向,以及所述控制装置与所述目标被控设备之间的距离;以及
    当所述信号发射方向与所述信号接收方向之间的夹角小于第一阈值并且所述距离小于第二阈值时,确定所述控制装置朝向所述目标被控设备。
  21. 根据权利要求19所述的控制方法,其中,所述控制装置包括姿态检测单元,所述方法进一步包括:
    在发送UWB标签获取请求之后当通过所述第一UWB通信单元接收到多个UWB标签时,通过所述姿态检测单元确定所述控制装置的朝向;
    根据映射关系,确定所述朝向对应的被控设备为所述目标被控设备,其中,所述映射包括朝向与被控设备的对应关系。
  22. 根据权利要求19所述的控制方法,其中,所述控制装置包括姿态检测单元,所述方法进一步包括:
    当通过所述第一UWB通信单元接收到多个被控设备发送的UWB标签时,将所述多个UWB标签发送至显示装置;
    接收来自所述显示装置的所述目标被控设备的信息,所述目标被控设备是经由所述显示装置的用户从所述多个被控设备中选择的;
    通过所述姿态检测单元确定所述控制装置的朝向;以及
    基于所述朝向以及对应的所述目标被控设备来更新映射关系,所述映射关系包括朝向与被控设备的对应关系。
  23. 根据权利要求18-19中的任一项所述的控制方法,其中,所述控制装置还包括姿态检测单元,所述方法进一步包括:
    当通过所述姿态检测单元确定所述控制装置的姿态发生变化时,控制所述控制装置从休眠模式切换为工作模式。
  24. 根据权利要求18所述的控制方法,其中,所述控制装置还包括至少一个空气检测单元,所述方法还包括:
    通过所述至少一个空气检测单元,获取所述控制装置所在环境的空气参数;
    根据所述空气参数,确定控制命令集合,其中,所述控制命令集合包括所述多个被控设备中至少两个目标被控设备对应的控制命令;
    确定所述控制装置朝向所述多个被控设备中的目标被控设备;
    向所述目标被控设备发送所述控制命令集合中的所述确定的目标被控设备对应的控制命令。
  25. 根据权利要求18所述的控制方法,其中,所述控制装置还包括至少一个空气检测单元,所述方法还包括:
    通过所述至少一个空气检测单元,获取所述控制装置所在环境中与所述目标被控设备的功能对应的空气参数;
    根据所述空气参数,确定所述目标被控设备对应的控制命令。
  26. 根据权利要求18所述的方法,其中,所述控制装置包括多个空气检测单元,所述方法进一步包括:
    获取所述控制装置中包括的供电单元的电量信息,所述电量信息包括所述供电单元的剩余电量和/或所述供电单元的电量消耗速度;
    根据所述电量信息,确定所述多个空气检测单元的工作参数,所述工作参数包括所述多个空气检测单元中的至少一个目标空气检测单元的标识信息、所述至少一个目标空气检测单元的检测顺序以及所述目标空气检测单元周期性获取空气参数的间隔时间;以及
    根据所述工作参数,通过所述至少一个目标空气检测单元获取空气参数。
  27. 根据权利要求26所述的方法,其中,确定所述多个空气检测单元的工作参数包括:
    根据电量信息和工作参数的映射关系,确定所述电量信息对应的所述工作参数。
  28. 根据权利要求27所述的方法,其中,
    当所述电量信息包括所述剩余电量时,在所述多个电量信息对应的工作参数中,所述剩余电量的数值与所述目标空气检测单元的间隔时间的数值成反比;和/或,所述剩余电量的数值与所述目标空气检测单元的数量成正比;以及
    当所述电量信息包括所述电量消耗速度时,在所述多个电量信息对应的工作参数中,所述电量消耗速度的数值与所述目标空气检测单元的间隔时间的数值成正比;和/或,所述电量消耗速度的数值与所述目标空气检测单元的数量成反比。
  29. 根据权利要求26所述的方法,其中,所述方法进一步包括:
    在获取所述电量信息之后,根据所述电量信息来确定停止通过所述空气检测单元获取空气参数。
  30. 根据权利要求26-29中任一项所述的方法,其中,所述方法进一步包括:
    当执行第一任务时,接收到第二任务的执行请求;
    基于任务互斥信息,确定所述第一任务和所述第二任务是否为互斥关系,其中,所述任务互斥信息包括所述控制装置能够执行的多个任务中的每个任务与所述多个任务中其他任务之间的互斥关系;
    基于互斥关系,依次执行所述第一任务和所述第二任务。
  31. 根据权利要求30所述的方法,其中,所述方法进一步包括:
    在第三任务尚未执行时接收到第四任务的执行请求;
    确定所述第三任务和所述第四任务的优先级;
    根据所述优先级由高到低的顺序,依次执行所述第三任务和所述第四任务。
  32. 根据权利要求31所述的方法,其中,所述方法进一步包括:
    当所述第三任务和所述第四任务的优先级相同时,根据所述任务互斥信息中所述第三任务和所述第四任务的顺序,依次执行所述第三任务和所述第四任务。
  33. 根据权利要求26-29中任一项所述的方法,其中,所述方法进一步包括:
    判断所述控制装置是否需要进行固件升级;
    在所述控制装置需要进行固件升级且所述电量信息满足预设条件时,对所述控制装置进行固件升级处理。
  34. 一种计算机可读存储介质,其上存储有机器可执行指令,当被处理器执行时可执行如权利要求18-33中任一项所述的用于电子设备的控制方法。
PCT/CN2022/103157 2021-09-30 2022-06-30 控制装置以及控制方法 WO2023050952A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202122403833.0U CN215682490U (zh) 2021-09-30 2021-09-30 控制装置及控制系统
CN202111161802.7A CN115914703A (zh) 2021-09-30 2021-09-30 控制装置的控制方法及电子设备
CN202111162296.3 2021-09-30
CN202111161802.7 2021-09-30
CN202111159133.XA CN115914702A (zh) 2021-09-30 2021-09-30 电子设备的控制方法及装置
CN202122403833.0 2021-09-30
CN202111159133.X 2021-09-30
CN202111162296.3A CN115914727A (zh) 2021-09-30 2021-09-30 一种控制装置

Publications (1)

Publication Number Publication Date
WO2023050952A1 true WO2023050952A1 (zh) 2023-04-06

Family

ID=85780418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103157 WO2023050952A1 (zh) 2021-09-30 2022-06-30 控制装置以及控制方法

Country Status (1)

Country Link
WO (1) WO2023050952A1 (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279424A (ja) * 2005-03-29 2006-10-12 Yamaha Corp 電気機器遠隔操作システム
JP2010011379A (ja) * 2008-06-30 2010-01-14 Toshiba Corp 機器操作装置および機器操作方法
CN102891784A (zh) * 2011-07-20 2013-01-23 联想(北京)有限公司 控制方法、控制装置的装置及控制系统
CN103162377A (zh) * 2011-12-15 2013-06-19 基信康信息技术(上海)有限公司 移动终端及温度调节方法
WO2015029231A1 (ja) * 2013-08-30 2015-03-05 日立マクセル株式会社 端末装置およびリモート制御方法
CN204480021U (zh) * 2015-02-15 2015-07-15 刘昌伟 一种智能家居控制装置
CN105467863A (zh) * 2014-09-12 2016-04-06 联想(北京)有限公司 一种控制方法及电子设备
CN105872655A (zh) * 2016-03-25 2016-08-17 北京小米移动软件有限公司 设备控制方法、装置及电子设备
CN106154847A (zh) * 2015-04-13 2016-11-23 厦门千桥智能科技有限公司 室内空气监测和家电智能控制系统
KR20180063990A (ko) * 2016-12-04 2018-06-14 김성호 전자기기를 제어하는 적외선 리모컨
CN112269418A (zh) * 2020-11-06 2021-01-26 上海理工大学 一种二便自动处理装置的控制系统
US20210164675A1 (en) * 2018-07-17 2021-06-03 Miro Co., Ltd. Intelligent humidification system in which remote controller with built-in sensor and humidifier are linked
CN113014658A (zh) * 2021-03-10 2021-06-22 北京蜂巢世纪科技有限公司 设备控制及装置、电子设备、存储介质
WO2021238933A1 (zh) * 2020-05-27 2021-12-02 华为技术有限公司 一种应用于电子设备的控制方法及电子设备
CN215682490U (zh) * 2021-09-30 2022-01-28 海信视像科技股份有限公司 控制装置及控制系统
CN114071794A (zh) * 2021-11-24 2022-02-18 广州极飞科技股份有限公司 一种多设备配对控制方法、装置、遥控器及存储介质
CN114167740A (zh) * 2021-11-29 2022-03-11 珠海格力电器股份有限公司 设备控制方法、装置、遥控设备和存储介质

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279424A (ja) * 2005-03-29 2006-10-12 Yamaha Corp 電気機器遠隔操作システム
JP2010011379A (ja) * 2008-06-30 2010-01-14 Toshiba Corp 機器操作装置および機器操作方法
CN102891784A (zh) * 2011-07-20 2013-01-23 联想(北京)有限公司 控制方法、控制装置的装置及控制系统
CN103162377A (zh) * 2011-12-15 2013-06-19 基信康信息技术(上海)有限公司 移动终端及温度调节方法
WO2015029231A1 (ja) * 2013-08-30 2015-03-05 日立マクセル株式会社 端末装置およびリモート制御方法
CN105467863A (zh) * 2014-09-12 2016-04-06 联想(北京)有限公司 一种控制方法及电子设备
CN204480021U (zh) * 2015-02-15 2015-07-15 刘昌伟 一种智能家居控制装置
CN106154847A (zh) * 2015-04-13 2016-11-23 厦门千桥智能科技有限公司 室内空气监测和家电智能控制系统
CN105872655A (zh) * 2016-03-25 2016-08-17 北京小米移动软件有限公司 设备控制方法、装置及电子设备
KR20180063990A (ko) * 2016-12-04 2018-06-14 김성호 전자기기를 제어하는 적외선 리모컨
US20210164675A1 (en) * 2018-07-17 2021-06-03 Miro Co., Ltd. Intelligent humidification system in which remote controller with built-in sensor and humidifier are linked
WO2021238933A1 (zh) * 2020-05-27 2021-12-02 华为技术有限公司 一种应用于电子设备的控制方法及电子设备
CN112269418A (zh) * 2020-11-06 2021-01-26 上海理工大学 一种二便自动处理装置的控制系统
CN113014658A (zh) * 2021-03-10 2021-06-22 北京蜂巢世纪科技有限公司 设备控制及装置、电子设备、存储介质
CN215682490U (zh) * 2021-09-30 2022-01-28 海信视像科技股份有限公司 控制装置及控制系统
CN114071794A (zh) * 2021-11-24 2022-02-18 广州极飞科技股份有限公司 一种多设备配对控制方法、装置、遥控器及存储介质
CN114167740A (zh) * 2021-11-29 2022-03-11 珠海格力电器股份有限公司 设备控制方法、装置、遥控设备和存储介质

Similar Documents

Publication Publication Date Title
CN107229231B (zh) 家居设备管理方法及装置
JP7451733B2 (ja) ビーム指示方法、装置、機器及び媒体
CN106371324B (zh) 操作界面显示方法及装置
CN105634881B (zh) 应用场景推荐方法及装置
CN109683847A (zh) 一种音量调节方法和终端
US20170013562A1 (en) Method for controlling apparatus according to request information, and apparatus supporting the method
US20170214540A1 (en) Mobile terminal-based methods of controlling smart home appliances, and associated mobile terminals and accessories
JP2019513369A (ja) 植物モニタ、情報生成方法及び装置、ならびに植物モニタシステム
CN106371326B (zh) 设备工作场景的存储方法及装置
CN103702154A (zh) 触摸屏遥控器及其遥控方法
CN108965076A (zh) 一种展示设备状态的方法、装置、终端设备及存储介质
CN106779601B (zh) 可穿戴设备任务计划调整方法和设备
WO2017166066A1 (zh) 红外遥控方法、终端及装置
WO2020164256A1 (zh) 一种无线信号质量评估方法、电子设备及系统
CN109558046A (zh) 一种信息显示方法及终端设备
CN109888867A (zh) 一种充电方法及移动终端
CN204990678U (zh) 一种多功能万能遥控器
CN109521684A (zh) 一种家居设备控制方法及终端设备
US11575534B2 (en) System and method for aggregating and analyzing the status of a system
WO2022042751A1 (zh) 一种移动轨迹生成方法和装置
CN114327332A (zh) 一种物联网设备设置方法、装置、电子设备和存储介质
WO2023050952A1 (zh) 控制装置以及控制方法
CN215682490U (zh) 控制装置及控制系统
US9189956B2 (en) Remote controller and method of controlling light emission from light-emitting unit thereof
KR20210112375A (ko) 자원 풀을 전환하는 방법, 장치, 이동 단말, 네트워크 측 장치 및 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874349

Country of ref document: EP

Kind code of ref document: A1