WO2023050697A1 - 海底四分量节点地震数据采集系统及其数据采集方法 - Google Patents

海底四分量节点地震数据采集系统及其数据采集方法 Download PDF

Info

Publication number
WO2023050697A1
WO2023050697A1 PCT/CN2022/077906 CN2022077906W WO2023050697A1 WO 2023050697 A1 WO2023050697 A1 WO 2023050697A1 CN 2022077906 W CN2022077906 W CN 2022077906W WO 2023050697 A1 WO2023050697 A1 WO 2023050697A1
Authority
WO
WIPO (PCT)
Prior art keywords
data acquisition
seismic data
seabed
submarine
component node
Prior art date
Application number
PCT/CN2022/077906
Other languages
English (en)
French (fr)
Inventor
苟量
余刚
刘海波
徐朝红
王熙明
夏淑君
安树杰
肖梦雄
Original Assignee
中国石油集团东方地球物理勘探有限责任公司
中油奥博(成都)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油集团东方地球物理勘探有限责任公司, 中油奥博(成都)科技有限公司 filed Critical 中国石油集团东方地球物理勘探有限责任公司
Publication of WO2023050697A1 publication Critical patent/WO2023050697A1/zh
Priority to US18/395,727 priority Critical patent/US20240125963A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3808Seismic data acquisition, e.g. survey design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • G01V1/201Constructional details of seismic cables, e.g. streamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3817Positioning of seismic devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3817Positioning of seismic devices
    • G01V1/3835Positioning of seismic devices measuring position, e.g. by GPS or acoustically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3843Deployment of seismic devices, e.g. of streamers
    • G01V1/3852Deployment of seismic devices, e.g. of streamers to the seabed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • G01V1/201Constructional details of seismic cables, e.g. streamers
    • G01V2001/204Reinforcements, e.g. by tensioning cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention belongs to the technical field of marine geophysical exploration, and relates to a seabed four-component node seismic data acquisition system and a data acquisition method thereof.
  • Marine seismic surveying is a method of conducting seismic surveys on the ocean using survey ships.
  • the principles, instruments used, and data processing methods of marine seismic exploration are basically the same as those of land seismic exploration.
  • Submarine seismic exploration technology is a kind of marine seismic exploration technology, which also consists of seismic sources and acquisition instruments.
  • Most submarine seismic exploration technologies use non-explosive sources (mainly air guns), which float close to the sea surface and are towed by a marine seismic survey ship; the acquisition instruments are placed on the seabed to receive the longitudinal and transverse wave signals emitted by the source and reflected by the bottom of the seabed. Since seawater cannot propagate shear waves, only when the geophone is placed on the seabed can shear waves and converted waves be received.
  • Submarine seismic exploration technology can be divided into ocean bottom cable exploration technology (Ocean Bottom Cable, referred to as OBC) and submarine node seismograph exploration technology (Ocean Bottom Node, referred to as OBN).
  • OBC technology is to connect hundreds of geophones to the submarine cable, and the special release boat will sink the acquisition cable to the seabed under the guidance of the locator (the submarine cable can be one or more), and one end of the submarine cable It is connected to a fixed instrument ship (the instrument ship must be anchored back and forth at sea to ensure that the hull does not turn and the ship position does not deviate), and the marine seismic survey ship collects seabed seismic data by firing shots around the sea surface according to the designed survey line.
  • the submarine node seismograph exploration technology is to place the node seismic instrument underwater without cable power supply and without communication.
  • Each node seismic instrument operates independently, completely independent of all other nodes, and can continuously collect data for several months.
  • OBN's data acquisition work is a two-ship operation—the source ship and the node seismic instrument deployment and recovery ship.
  • the layout and spacing of nodal seismic instruments are not restricted, which is suitable for all-round angle exploration.
  • ropes or wire cables may be attached to each nodal instrument, so that nodal seismic instruments can be recovered easily, similar to how fishermen recover long series of crab pots.
  • ROVs carry nodal seismic instruments and deploy instruments on the seabed according to the designed measuring point coordinates. When recovering, the ROV dives to The seabed goes to recover deepwater node seismic instruments one by one.
  • the instrument Since there is no power supply and communication cable connected to the submarine node seismic instrument, it is impossible to provide real-time power supply or battery charging to the submarine node seismic instrument. As a result, the instrument needs to carry a large number of rechargeable batteries to ensure that it can work on the seabed for a long time, and the node seismic instrument is added.
  • the production cost, volume and weight of the seabed node cannot be positioned on the seabed, the working status of the seabed node seismic instrument cannot be monitored in real time, and the data collected by the seabed node seismic instrument cannot be transmitted in real time (the instrument can only perform blind sampling), It is impossible to time the node seismic instruments working on the seabed. They can only rely on expensive atomic clock chips to time the instruments. When working on the seabed for a long time, the time drift of the atomic clock chip will cause timing errors.
  • the fiber optic geophone has the advantages of high sensitivity, wide frequency range, good high frequency response, flat frequency characteristic response, linear phase change, good consistency of technical parameters, stable and reliable performance, no electricity and passive, corrosion resistance and high temperature resistance , is the development direction of geophone technology.
  • optical fiber detectors have higher sensitivity and better high-frequency response characteristics, and can realize multi-channel, large data volume, and high-speed transmission.
  • it has higher reliability, high temperature and high pressure resistance, no power supply, waterproof and corrosion resistance, long-term deployment, anti-electromagnetic interference, and small channel crosstalk.
  • the present invention provides a seabed four-component node seismic data acquisition system and its data acquisition method, which overcomes the inability of the prior art to The real-time precise positioning and precise timing of submarine node seismic instruments replace atomic clock chips that are expensive and cannot avoid timing drift.
  • Bottom four-component node seismic data acquisition system including multiple submarine buoys, multiple sea surface buoys, armored photoelectric composite cables, multiple submarine four-component node seismic data acquisition instruments, and sea surface source ships;
  • a plurality of said seabed four-component node seismic data acquisition instruments are arranged in the seabed seismic data acquisition work area;
  • the submarine submersible buoys are arranged around the seabed seismic data acquisition work area, and the submarine submersible buoys correspond to the surface buoys one by one, and are connected by an armored photoelectric composite cable;
  • the sea surface source ship performs source excitation under the water surface of the submarine seismic data acquisition work area through the air gun source (14) towed by the stern.
  • the submarine submersible has a built-in long baseline or short baseline or ultra-short baseline positioning system's underwater acoustic signal source and rechargeable battery;
  • Said sea surface buoy has built-in GPS and Beidou satellite signal receiving antennas, solar panels, photoelectric conversion modules and composite modulation and demodulation instruments.
  • the armored photoelectric composite cable is provided with a cable inside, and the outer layer is wrapped with a high-strength sheath woven with Kevlar fibers or armored with one or more layers of stainless steel wires;
  • the wire Cables include continuous grating optical fibers, single-mode and multimode optical fibers, coaxial cables, and twisted-pair power cables.
  • a hydroacoustic transponder is installed on the top of the four-component node seismic data acquisition instrument on the seabed, and the four-component node seismic data acquisition instrument is a conventional four-component node seismic data acquisition instrument with a built-in three-component conventional geophone and piezoelectric hydrophone , or an optical fiber four-component node seismic data acquisition instrument.
  • the submarine optical fiber four-component seismic data acquisition instrument includes a pressurized cabin in which a three-component optical fiber detector, an optical fiber sound pressure hydrophone, a three-component attitude sensor, a semiconductor light source, an internal photoelectric conversion module, Modem module, preamplifier and A/D conversion module, data storage module, rechargeable battery module.
  • the data collection method of described seabed four-component node seismic data collection system comprises the following steps:
  • the submarine submersible buoy transmits positioning and timing signals to the water area around the seismic data acquisition instrument of the seabed four-component node through the underwater acoustic signal transmitting source;
  • the hydroacoustic transponder installed on the top of each seabed four-component node seismic data acquisition instrument receives the positioning and timing signals from the submarine submersible respectively, and performs precise positioning and uninterrupted real-time timing for itself;
  • step (h) According to the position of each seabed four-component node seismic data acquisition instrument's own precise positioning position and the trajectory connection of the underwater sound propagation between each seabed submerged mark, use step (g) to calculate the seabed seismic data acquisition work area water Real-time three-dimensional water temperature, pressure, density, and seawater salt saturation values in the body, and real-time correction of the hydroacoustic velocity for each hydroacoustic propagation trajectory between the submarine submerged mark and the seismic data acquisition instrument of each submarine four-component node ;
  • the fiber optic geophone has the advantages of high sensitivity, wide frequency range, good high frequency response, flat frequency characteristic response, linear phase change, good consistency of technical parameters, stable and reliable performance, no electricity and passive, corrosion resistance and high temperature resistance , is the development direction of geophone technology.
  • optical fiber detectors have higher sensitivity and better high-frequency response characteristics, and can realize multi-channel, large data volume, and high-speed transmission.
  • it has higher reliability, high temperature and high pressure resistance, no power supply, waterproof and corrosion resistance, long-term deployment, anti-electromagnetic interference, and small channel crosstalk.
  • the seabed four-component node seismic data acquisition system and the data acquisition method thereof of the present invention have the advantages of high sensitivity, wide frequency band, good high-frequency response, flat frequency characteristic response, linear phase change, and good consistency of technical parameters.
  • the advantages of stable and reliable performance, no electricity and passive, corrosion resistance and high temperature resistance are the development direction of geophone technology.
  • optical fiber detectors have higher sensitivity and better high-frequency response characteristics, and can realize multi-channel, large data volume, and high-speed transmission.
  • it because there are no electronic components at the front end, it has higher reliability, high temperature and high pressure resistance, no power supply, waterproof and corrosion resistance, long-term deployment, anti-electromagnetic interference, and small channel crosstalk. It can overcome the defects of low sensitivity, small dynamic range, limited signal frequency band and high power consumption of conventional electronic geophones and piezoelectric hydrophones.
  • Figure 1 is a schematic diagram of the layout of the collection system of the present invention.
  • the submarine four-component node seismic data acquisition system based on underwater acoustic signal positioning and timing service of the present invention will be explained and described in more detail below in conjunction with the accompanying drawings and specific embodiments.
  • the accompanying drawings show preferred embodiments of the present invention.
  • the present invention can be implemented in many different forms and is not limited to the embodiments described in this specification. On the contrary, these embodiments are provided to make the understanding of the present disclosure more thorough and comprehensive. They are not intended to limit the present invention, but are merely examples, and at the same time, the advantages of the present invention will become clearer and easier to understand.
  • Fig. 1 is a schematic layout diagram of the seabed four-component node seismic data acquisition system of the present invention, including a submarine submerged mark 1, a sea surface buoy 4, an armored photoelectric composite cable 10, a seabed four-component node seismic data acquisition instrument 11, and a sea surface source ship 13;
  • a plurality of said seabed four-component node seismic data acquisition instruments 11 are arranged in the seabed seismic data acquisition work area according to the pre-designed measurement grid;
  • the submarine submersible mark 1 is arranged around the submarine seismic data acquisition work area, and has a built-in underwater acoustic signal emission source 2 and a rechargeable battery 3 of a long baseline or short baseline or ultra-short baseline positioning system;
  • Said sea surface buoy 4 is equipped with GPS and Beidou satellite signal receiving antenna 5, solar panel 6, photoelectric conversion module 7 and composite modulation and demodulation instrument 8;
  • the armored photoelectric composite cable 10 is internally provided with a cable 9, and the outer layer is wrapped with a high-strength sheath woven with Kevlar fibers or armored with one or more layers of stainless steel wires;
  • the wires Cable 9 includes continuous grating optical fiber, single mode and multimode optical fiber, coaxial cable and twisted pair power supply line;
  • the submarine submersible buoy (1) corresponds to the surface buoy (4) one by one, and is connected by an armored photoelectric composite cable (10);
  • the top of the bottom four-component node seismic data acquisition instrument 11 is equipped with a hydroacoustic transponder 12, which can be a conventional four-component node seismic data acquisition instrument with a built-in three-component conventional geophone and piezoelectric hydrophone or an optical fiber four-component node seismic data acquisition instruments;
  • the submarine optical fiber four-component seismic data acquisition instrument 11 includes a pressurized cabin in which a three-component optical fiber detector, an optical fiber sound pressure hydrophone, a three-component attitude sensor, a semiconductor light source, an internal photoelectric conversion module, a modulation Demodulation module, preamplifier and A/D conversion module, data storage module, rechargeable battery module;
  • the sea source ship 13 performs source excitation below the water surface through the air gun source 14 towed by the stern.
  • the data collection method of described seabed four-component node seismic data collection system comprises the following steps:
  • the submarine submersible mark 1 transmits positioning and timing signals to the waters around the seabed four-component node seismic data acquisition instrument 11 through the underwater acoustic signal transmitting source 2;
  • the hydroacoustic transponder 12 installed on the top of each seabed four-component node seismic data acquisition instrument 11 in the survey work area respectively receives the positioning and timing signals emitted from the submarine submerged marks around the survey work area, and accurately locates and corrects itself. Intermittent real-time timing;
  • step (h) According to the position of the precise positioning of each seabed four-component node seismic data acquisition instrument 11 itself and the trajectory connection of the underwater sound propagation between each seabed submerged mark, use step (g) to calculate the water body of the entire measurement work area Real-time three-dimensional water temperature, pressure, density, and salt saturation values of seawater, real-time hydroacoustic velocity for each underwater acoustic propagation trajectory between the submarine submerged mark 1 and each submarine four-component node seismic data acquisition instrument 11 Correction;
  • the submarine four-component node seismic data acquisition system of the present invention has the advantages of high sensitivity, wide frequency band, good high-frequency response, flat frequency characteristic response, linear phase change, good consistency of technical parameters, stable and reliable performance, and no
  • the advantages of electric passive, corrosion resistance and high temperature resistance are the development direction of geophone technology.
  • optical fiber detectors have higher sensitivity and better high-frequency response characteristics, and can realize multi-channel, large data volume, and high-speed transmission.
  • it has higher reliability, high temperature and high pressure resistance, no power supply, waterproof and corrosion resistance, long-term deployment, anti-electromagnetic interference, and small channel crosstalk. It can overcome the defects of low sensitivity, small dynamic range, limited signal frequency band and high power consumption of conventional electronic geophones and piezoelectric hydrophones.
  • the present invention provides a seismic data acquisition system and data acquisition method based on the four-component node of the seabed, which overcomes the inability of the prior art to accurately locate and accurately time the seismic instrument at the seabed node during operation, and replaces the expensive and unavoidable timing drift
  • the atomic clock chip has greatly reduced the manufacturing cost of the submarine four-component node seismic data acquisition system, laid a good foundation for the large-scale promotion and application of the submarine four-component seismic data acquisition, and provided strong technical support.

Abstract

一种海底四分量节点地震数据采集系统,包括多个海底潜标(1),多个海面浮标(4),铠装光电复合缆(10),多个海底四分量节点地震数据采集仪器(11),海面震源船(13)。一种海底四分量节点地震数据采集系统的数据采集方法,包括海面浮标(4)将定位和授时信号通过铠装光电复合缆(10)传送到海底潜标(1)内,布放到海底的四分量节点地震数据采集仪器(11)通过工区四周布放的海底潜标(1)中的水声信号发射源(2)发出的水声信号进行精确定位与授时。海面浮标(4)内置的复合调制解调仪器(8)和连续光栅光纤缆实时测量从海面到海底的海水温度、压力、密度、含盐饱和度数值,用于对每条海底潜标(1)到每个海底四分量节点地震数据采集仪器(11)之间的水声传播轨迹进行水声速度的实时校正,确保海底节点地震仪器(11)的定位和授时精度满足误差要求。

Description

海底四分量节点地震数据采集系统及其数据采集方法 技术领域
本发明属于海洋地球物理勘探技术领域,涉及一种海底四分量节点地震数据采集系统及其数据采集方法。
背景技术
海洋地震勘探是利用勘探船在海洋上进行地震勘探的方法。海洋地震勘探的原理、使用的仪器,以及处理资料的方法都和陆地地震勘探基本相同。海底地震勘探技术是海上地震勘探技术的一种,同样由震源和采集仪器组成。海底地震勘探技术大都采用非炸药震源(以空气枪为主),震源漂浮在接近海面,由海上地震勘探船拖曳;采集仪器放到海底来接收震源发出、经过海底底层反射的纵横波信号。由于海水不能传播横波,只有把检波器放到海底才可接收到横波及转换波。其特点是在水中激发,水中接收,激发,接收条件均一;可进行不停船的连续观测。检波器最初使用压电检波器,现在发展到压电与振速检波器组合使用。海底地震勘探技术又可分为海底电缆勘探技术(Ocean Bottom Cable,简称OBC)和海底节点地震仪勘探技术(Ocean Bottom Node,简称OBN)。OBC技术是将成百上千个检波器连接在海底电缆上,由专用的放线艇在定位仪的引导下将采集电缆沉放到海底(海底电缆可以是一条或多条),海底电缆的一端连接到固定的仪器船上(仪器船要在海上抛前后锚以保证船身不转向和船位不偏移),而由海洋地震勘探船在海面四周按设计测线放炮的方式采集海底地震数据。
目前的海底地震数据采集方式主要有两种,一种是单分量、二分量、三分量或四分量海底地震数据采集缆(OBC)沉入海底采集地震数据,另一是独立的三分量或四分量海底地震数据采集站(OBS和OBN)沉底采集地震数据,两者都使用独立的海洋地震气枪激发源在水中拖移时激发。独立的海底地震数据采集缆和海底地震数据采集站如ION、Sercel、Fairfield和OYOGeospace等公司生产销售的各种OBC、OBS和OBN。
海底节点地震仪勘探技术(OBN)是把节点地震仪器放置水下无缆供电并且不进行通讯,每个节点地震仪器自主运行,完全独立于所有其它节点,可以连续采集数据数个月。OBN的数据采集工作是两船作业-震源船和节点地震仪器布放和回收船。节点地震仪器的布设方式和间距没有约束限制,适合全方位角勘探。布设节点地震仪器时,每个节点仪器上可能会附加沿绳线或钢丝缆,可轻松回收节点地震仪器,类似渔民回收长串列蟹笼。往数千米水深的海底布设节点地震仪器时,不适用附加沿绳线或钢丝缆,一般由ROV携带节点地震仪器在海底按照设计的测点坐标布设仪器,回收时,也是由ROV下潜到海底去逐一回收深水节点地震仪器。
由于没有供电与通讯电缆与海底节点地震仪器相连接,无法对海底节点地震仪器进行实时供电或电池充电,致使仪器需要携带大量的可充电电池以保证能长时间在海底工作,增加了节点地震仪器的生产成本、体积和重量,无法对投放在海底的节点地震仪器进行定位、无法实时监测海底节点地震仪器的工作状态、无法实时传输海底节点地震仪器采集的数据(仪器只能进行盲采)、无法给在海底工作的节点地震仪器进行授时,它们只能依靠价格昂贵的原子钟芯片给仪器授时,长期在海底工作时会由于原子钟芯片的时间漂移而带来授时误差。
光纤地震检波器具有灵敏度高、频带宽、高频响应好、具有平坦的频率特性响应、相位呈线性变化、技术参数一致性好、性能稳定可靠、无电无源、耐腐蚀、耐高温的优势,是地震检波器技术的发展方向。光纤检波器比常规的检波器具有更高的灵敏度、更好的高频响应特性,可实现多通道、大数据量、高速传输。而且由于前端没有电子元件,使其具有更高的可靠性,耐高温高压,无需供电,防水耐腐蚀,可长期布放,抗电磁干扰,通道串扰小。
发明内容
鉴于现有的海底节点地震仪器存在的无法精准定位和原子钟价格昂贵且有授时漂移的技术问题,本发明提供了海底四分量节点地震数据采集系统及其数据采集方法,克服了现有技术无法对海底节点地震仪器在作业时的实时精准定位和精确授时,替代了价格昂贵且无法避免授时漂移的原子钟芯片。
底四分量节点地震数据采集系统,包括多个海底潜标,多个海面浮标,铠装光电复合缆,多个海底四分量节点地震数据采集仪器,海面震源船;
多个所述海底四分量节点地震数据采集仪器布设在海底地震数据采集工区内;
所述的海底潜标布设在海底地震数据采集工区四周,海底潜标与海面浮标一一对应,并且通过铠装光电复合缆连接;
所述海面震源船通过船尾拖曳的气枪震源(14)在海底地震数据采集工区的水面以下进行震源激发。
其中,海底潜标内置长基线或短基线或超短基线定位系统的水声信号发射源和可充电电池;
所述的海面浮标内置有GPS和北斗卫星信号接收天线、太阳能电池板、光电转换模块和复合调制解调仪器。
其中,所述的铠装光电复合缆内部设有线缆,外层再包裹用凯夫拉纤维编织的高强度护套或者用一层或多层不锈钢丝绞合的铠装;所述的线缆包括连续光栅光纤、单模和多模光纤、同轴电缆和双绞供电线。
其中,所述的海底四分量节点地震数据采集仪器顶部安装有水声应答器,四分量节点地 震数据采集仪器为内置三分量常规检波器和压电水听器的常规四分量节点地震数据采集仪器,或光纤四分量节点地震数据采集仪器。
其中,所述的海底光纤四分量地震数据采集仪器,包括承压舱,承压舱内设有三分量光纤检波器、光纤声压水听器、三分量姿态传感器、半导体光源、内部光电转换模块、调制解调模块、前置放大与A/D转换模块、数据存储模块,可充电电池模块。
所述的海底四分量节点地震数据采集系统的数据采集方法,包括以下步骤:
(a)首先在海底地震数据采集工区四周投放四个海底潜标,铠装光电复合缆的尾端连接海底潜标,首端连接海面浮标;
(b)将海底四分量节点地震数据采集仪器按照预先设计好的测网坐标用绳索或钢缆或ROV投放到海底地震数据采集工区的海底;
(c)启动海底潜标和海面浮标内的仪器,将海面浮标内GPS或北斗卫星信号接收天线接收到的定位和授时信号通过光电复合缆发送给海底潜标;
(d)海底潜标通过水声信号发射源将定位和授时信号向海底四分量节点地震数据采集仪器周围的水域中发射;
(e)每个海底四分量节点地震数据采集仪器顶部安装的水声应答器分别接收来自海底潜标发射的定位和授时信号,对其自身进行精准定位和不间断的实时授时;
(f)铠装光电复合缆内的各种光纤与海面浮标内的复合调制解调仪器相连接,实时不间断的测量沿铠装光电复合缆从海面到海底潜标位置的水温、压力、密度、海水的含盐饱和度;
(g)利用所有铠装光电复合缆测量的从海面到海底潜标位置的水温、压力、密度、海水的含盐饱和度数据,插值计算出全测量工区水体内实时的三维水温、压力、密度、海水的含盐饱和度数值;
(h)根据每个海底四分量节点地震数据采集仪器自身的精准定位的位置与每个海底潜标之间的水声传播的轨迹连线,利用步骤(g)计算出海底地震数据采集工区水体内实时的三维水温、压力、密度、海水的含盐饱和度数值,对每条从海底潜标到每个海底四分量节点地震数据采集仪器之间的水声传播轨迹进行水声速度的实时校正;
(i)用每条从海底潜标到每个海底四分量节点地震数据采集仪器之间的水声传播轨迹进行的水声速度的实时校正量对每个海底四分量节点地震数据采集仪器的定位和授时数据进行实时校正,确保每个海底四分量节点地震数据采集仪器的定位和授时精度满足该测量工区内的测量误差要求。
光纤地震检波器具有灵敏度高、频带宽、高频响应好、具有平坦的频率特性响应、相位呈线性变化、技术参数一致性好、性能稳定可靠、无电无源、耐腐蚀、耐高温的优势,是地 震检波器技术的发展方向。光纤检波器比常规的检波器具有更高的灵敏度、更好的高频响应特性,可实现多通道、大数据量、高速传输。而且由于前端没有电子元件,使其具有更高的可靠性,耐高温高压,无需供电,防水耐腐蚀,可长期布放,抗电磁干扰,通道串扰小。
本发明的海底四分量节点地震数据采集系统及其数据采集方法,其光纤传感器具有灵敏度高、频带宽、高频响应好、具有平坦的频率特性响应、相位呈线性变化、技术参数一致性好、性能稳定可靠、无电无源、耐腐蚀、耐高温的优势,是地震检波器技术的发展方向。光纤检波器比常规的检波器具有更高的灵敏度、更好的高频响应特性,可实现多通道、大数据量、高速传输。而且由于前端没有电子元件,使其具有更高的可靠性,耐高温高压,无需供电,防水耐腐蚀,可长期布放,抗电磁干扰,通道串扰小。可以克服常规电子检波器和压电水听器灵敏度低、动态范围小、信号频带有限以及功耗较大的缺陷。
附图说明
图1是本发明采集系统布设示意图。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明的基于水声信号定位授时的海底四分量节点地震数据采集系统进行更详细的说明和描述。附图给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本说明书所描述的实施例。相反地,提供这些实施例的目的是使对本发明公开内容的理解更加透彻全面。它们并不构成对本发明的限定,仅作举例而已,同时通过说明本发明的优点将变得更加清楚和容易理解。
图1是本发明的海底四分量节点地震数据采集系统布设示意图,包括海底潜标1,海面浮标4,铠装光电复合缆10,海底四分量节点地震数据采集仪器11,海面震源船13;
多个所述海底四分量节点地震数据采集仪器11按照预先设计的测量网格布设在海底地震数据采集工区内;
所述的海底潜标1布设在海底地震数据采集工区四周,内置长基线或短基线或超短基线定位系统的水声信号发射源2和可充电电池3;
所述的海面浮标4内置有GPS和北斗卫星信号接收天线5、太阳能电池板6、光电转换模块7和复合调制解调仪器8;
所述的铠装光电复合缆10内部设有线缆9,外层再包裹用凯夫拉纤维编织的高强度护套或者用一层或多层不锈钢丝绞合的铠装;所述的线缆9包括连续光栅光纤、单模和多模光纤、同轴电缆和双绞供电线;
海底潜标(1)与海面浮标(4)一一对应,并且通过铠装光电复合缆(10)连接;
所述的海底四分量节点地震数据采集仪器11顶部安装有水声应答器12,可为内置三分量 常规检波器和压电水听器的常规四分量节点地震数据采集仪器或光纤四分量节点地震数据采集仪器;
所述的海底光纤四分量地震数据采集仪器11,包括承压舱,承压舱内设有三分量光纤检波器、光纤声压水听器、三分量姿态传感器、半导体光源、内部光电转换模块、调制解调模块、前置放大与A/D转换模块、数据存储模块,可充电电池模块;
所述海面震源船13通过船尾拖曳的气枪震源14在水面以下进行震源激发。
所述的海底四分量节点地震数据采集系统的数据采集方法,包括以下步骤:
(a)首先在海底地震数据采集工区四周投放四个海底潜标1,铠装光电复合缆10的尾端连接海底潜标1,首端连接海面浮标4;
(b)将海底四分量节点地震数据采集仪器11按照预先设计好的测网坐标用绳索或钢缆或ROV投放到海底地震数据采集工区的海底;
(c)启动海底潜标1和海面浮标4内的仪器,将海面浮标4内GPS或北斗卫星信号接收天线5接收到的定位和授时信号通过光电复合缆发送给海底潜标1;
(d)海底潜标1将定位和授时信号通过水声信号发射源2向海底四分量节点地震数据采集仪器11周围的水域中发射;
(e)测量工区内的每个海底四分量节点地震数据采集仪器11顶部安装的水声应答器12分别接收来自测量工区四周海底潜标发射的定位和授时信号,对其自身进行精准定位和不间断的实时授时;
(f)铠装光电复合缆10内的各种光纤与海面浮标内的复合调制解调仪器8相连接,实时不间断的测量沿铠装光电复合缆10从海面到海底潜标位置的水温、压力、密度、海水的含盐饱和度;
(g)利用测量工区四周连接海面浮标4和海底潜标1之间的所有铠装光电复合缆10测量的从海面到海底潜标位置的水温、压力、密度、海水的含盐饱和度数据,插值计算出全测量工区水体内实时的三维水温、压力、密度、海水的含盐饱和度数值;
(h)根据每个海底四分量节点地震数据采集仪器11自身的精准定位的位置与每个海底潜标之间的水声传播的轨迹连线,利用步骤(g)计算出全测量工区水体内实时的三维水温、压力、密度、海水的含盐饱和度数值,对每条从海底潜标1到每个海底四分量节点地震数据采集仪器11之间的水声传播轨迹进行水声速度的实时校正;
(i)用每条从海底潜标1到每个海底四分量节点地震数据采集仪器11之间的水声传播轨迹进行的水声速度的实时校正量对每个海底四分量节点地震数据采集仪器11的定位和授时数据进行实时校正,确保每个海底四分量节点地震数据采集仪器11的定位和授时精度满足 该测量工区内的测量误差要求。
本发明的海底四分量节点地震数据采集系统,其光纤传感器具有灵敏度高、频带宽、高频响应好、具有平坦的频率特性响应、相位呈线性变化、技术参数一致性好、性能稳定可靠、无电无源、耐腐蚀、耐高温的优势,是地震检波器技术的发展方向。光纤检波器比常规的检波器具有更高的灵敏度、更好的高频响应特性,可实现多通道、大数据量、高速传输。而且由于前端没有电子元件,使其具有更高的可靠性,耐高温高压,无需供电,防水耐腐蚀,可长期布放,抗电磁干扰,通道串扰小。可以克服常规电子检波器和压电水听器灵敏度低、动态范围小、信号频带有限以及功耗较大的缺陷。
本发明提供了基于海底四分量节点地震数据采集系统及其数据采集方法,克服了现有技术无法对海底节点地震仪器在作业时的实时精准定位和精确授时,替代了价格昂贵且无法避免授时漂移的原子钟芯片,大幅度降低了海底四分量节点地震数据采集系统的制造成本,为大规模推广应用海底四分量地震数据的采集奠定了良好的基础,提供了有力的技术支撑。

Claims (6)

  1. 海底四分量节点地震数据采集系统,其特征在于,包括多个海底潜标(1),多个海面浮标(4),铠装光电复合缆(10),多个海底四分量节点地震数据采集仪器(11),海面震源船(13);
    多个所述海底四分量节点地震数据采集仪器(11)按照预先设计的测量网格布设在海底地震数据采集工区内;
    多个所述的海底潜标(1)布设在海底地震数据采集工区四周,海底潜标(1)与海面浮标(4)一一对应,并且通过铠装光电复合缆(10)连接;
    所述海面震源船(13)通过船尾拖曳的气枪震源(14)在海底地震数据采集工区的水面以下进行震源激发。
  2. 根据权利要求1所述的海底四分量节点地震数据采集系统,其特征在于,所述的海底潜标(1)内置长基线或短基线或超短基线定位系统的水声信号发射源(2)和可充电电池(3);
    所述的海面浮标(4)内置有GPS和北斗卫星信号接收天线(5)、太阳能电池板(6)、光电转换模块(7)和复合调制解调仪器(8)。
  3. 根据权利要求1所述的海底四分量节点地震数据采集系统,其特征在于,所述的铠装光电复合缆(10)内部设有线缆(9),外层再包裹用凯夫拉纤维编织的高强度护套或者用一层或多层不锈钢丝绞合的铠装;所述的线缆(9)包括连续光栅光纤、单模和多模光纤、同轴电缆和双绞供电线。
  4. 根据权利要求1所述的海底四分量节点地震数据采集系统,其特征在于,所述的海底四分量节点地震数据采集仪器(11)顶部安装有水声应答器(12),四分量节点地震数据采集仪器(11)为内置三分量常规检波器和压电水听器的常规四分量节点地震数据采集仪器,或光纤四分量节点地震数据采集仪器。
  5. 根据权利要求4所述的基于水声信号定位授时的海底四分量节点地震仪器,其特征在于,所述的海底光纤四分量地震数据采集仪器(11),包括承压舱,承压舱内设有三分量光纤检波器、光纤声压水听器、三分量姿态传感器、半导体光源、内部光电转换模块、调制解调模块、前置放大与A/D转换模块、数据存储模块,可充电电池模块。
  6. 根据权利要求1到5任一项所述的海底四分量节点地震数据采集系统的数据采集方法,其特征在于,包括以下步骤:
    (a)首先在海底地震数据采集工区四周投放四个海底潜标(1),铠装光电复合缆(10)的尾端连接海底潜标(1),首端连接海面浮标(4);
    (b)将海底四分量节点地震数据采集仪器(11)按照预先设计好的测网坐标用绳索或钢缆或ROV布设到海底地震数据采集工区的海底;
    (c)启动海底潜标(1)和海面浮标(4)内的仪器,将海面浮标(4)内GPS或北斗卫星信号接收天线(5)接收到的定位和授时信号通过光电复合缆发送给海底潜标(1);
    (d)海底潜标(1)通过水声信号发射源(2)将定位和授时信号向海底四分量节点地震数据采集仪器(11)周围的水域中发射;
    (e)每个海底四分量节点地震数据采集仪器(11)顶部安装的水声应答器(12)分别接收来自海底潜标(1)发射的定位和授时信号,对其自身进行精准定位和不间断的实时授时;
    (f)铠装光电复合缆(10)内的各种光纤与海面浮标(4)内的复合调制解调仪器(8)相连接,实时不间断的测量沿铠装光电复合缆(10)从海面到海底潜标(1)位置的水温、压力、密度、海水的含盐饱和度;
    (g)利用所有铠装光电复合缆(10)测量的从海面到海底潜标(1)位置的水温、压力、密度、海水的含盐饱和度数据,插值计算出全测量工区水体内实时的三维水温、压力、密度、海水的含盐饱和度数值;
    (h)根据每个海底四分量节点地震数据采集仪器(11)自身的精准定位的位置与每个海底潜标之间的水声传播的轨迹连线,利用步骤(g)计算出海底地震数据采集工区水体内实时的三维水温、压力、密度、海水的含盐饱和度数值,对每条从海底潜标(1)到每个海底四分量节点地震数据采集仪器(11)之间的水声传播轨迹进行水声速度的实时校正;
    (i)用每条从海底潜标(1)到每个海底四分量节点地震数据采集仪器(11)之间的水声传播轨迹进行的水声速度的实时校正量对每个海底四分量节点地震数据采集仪器(11)的定位和授时数据进行实时校正,确保每个海底四分量节点地震数据采集仪器(11)的定位和授时精度满足该测量工区内的测量误差要求。
PCT/CN2022/077906 2021-09-30 2022-02-25 海底四分量节点地震数据采集系统及其数据采集方法 WO2023050697A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/395,727 US20240125963A1 (en) 2021-09-30 2023-12-25 Methods and systems for acquiring seismic data of four-component ocean bottom node (obn)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111156782.4 2021-09-30
CN202111156782.4A CN113759423B (zh) 2021-09-30 2021-09-30 海底四分量节点地震数据采集系统及其数据采集方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/395,727 Continuation US20240125963A1 (en) 2021-09-30 2023-12-25 Methods and systems for acquiring seismic data of four-component ocean bottom node (obn)

Publications (1)

Publication Number Publication Date
WO2023050697A1 true WO2023050697A1 (zh) 2023-04-06

Family

ID=78798376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077906 WO2023050697A1 (zh) 2021-09-30 2022-02-25 海底四分量节点地震数据采集系统及其数据采集方法

Country Status (3)

Country Link
US (1) US20240125963A1 (zh)
CN (1) CN113759423B (zh)
WO (1) WO2023050697A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116400408A (zh) * 2023-06-09 2023-07-07 厦门大学 具有在线数据传输和水下定位功能的智能海底地震仪
CN117472917A (zh) * 2023-12-28 2024-01-30 中国石油集团东方地球物理勘探有限责任公司 一种海洋节点采集数据存储系统、方法、设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759423B (zh) * 2021-09-30 2023-10-31 中国石油集团东方地球物理勘探有限责任公司 海底四分量节点地震数据采集系统及其数据采集方法
CN114442077A (zh) * 2022-01-21 2022-05-06 中国科学院声学研究所 可实时监测水下设备的有缆式声学发射潜标及其监测方法
CN114609673B (zh) 2022-03-10 2022-12-09 中国科学院地质与地球物理研究所 一种具有二次定位功能的组合式海底地震采集节点

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160124105A1 (en) * 2014-10-29 2016-05-05 Seabed Geosolutions B.V. Touch down monitoring of an ocean bottom seismic node
US20180335537A1 (en) * 2015-11-23 2018-11-22 Westerngeco Llc Gradient-Based 4D Seabed Acquisition Positioning
CN109061720A (zh) * 2018-09-12 2018-12-21 国家海洋局第海洋研究所 一种基于海底物联网的海底地震监测装置及系统
CN109298452A (zh) * 2018-09-12 2019-02-01 国家海洋局第海洋研究所 一种卫星传输海底地震探测装置
CN112666599A (zh) * 2020-12-23 2021-04-16 中油奥博(成都)科技有限公司 基于无人艇的海洋四分量光纤地震数据采集缆及采集方法
WO2021178942A1 (en) * 2020-03-06 2021-09-10 Schlumberger Technology Corporation Marine seismic imaging
CN113391343A (zh) * 2021-06-11 2021-09-14 中油奥博(成都)科技有限公司 海底光纤四分量地震仪器系统及其数据采集方法
CN113759423A (zh) * 2021-09-30 2021-12-07 中油奥博(成都)科技有限公司 海底四分量节点地震数据采集系统及其数据采集方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680877B (zh) * 2017-01-19 2019-06-18 中国科学院地质与地球物理研究所 一种低功耗宽频带单舱球海底地震仪
NO20171338A1 (en) * 2017-08-11 2019-01-28 Polarcus Dmcc Passive acoustic source positioning for a marine seismic survey
CN111323810B (zh) * 2020-03-16 2022-05-31 自然资源部第二海洋研究所 一种震源位于拖缆下方的海洋地震探测系统及其方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160124105A1 (en) * 2014-10-29 2016-05-05 Seabed Geosolutions B.V. Touch down monitoring of an ocean bottom seismic node
US20180335537A1 (en) * 2015-11-23 2018-11-22 Westerngeco Llc Gradient-Based 4D Seabed Acquisition Positioning
CN109061720A (zh) * 2018-09-12 2018-12-21 国家海洋局第海洋研究所 一种基于海底物联网的海底地震监测装置及系统
CN109298452A (zh) * 2018-09-12 2019-02-01 国家海洋局第海洋研究所 一种卫星传输海底地震探测装置
WO2021178942A1 (en) * 2020-03-06 2021-09-10 Schlumberger Technology Corporation Marine seismic imaging
CN112666599A (zh) * 2020-12-23 2021-04-16 中油奥博(成都)科技有限公司 基于无人艇的海洋四分量光纤地震数据采集缆及采集方法
CN113391343A (zh) * 2021-06-11 2021-09-14 中油奥博(成都)科技有限公司 海底光纤四分量地震仪器系统及其数据采集方法
CN113759423A (zh) * 2021-09-30 2021-12-07 中油奥博(成都)科技有限公司 海底四分量节点地震数据采集系统及其数据采集方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU JINGNAN, CHEN GUANXU, ZHAO JIANHU, GAO KEFU, LIU YANXIONG: "Development and Trends of Marine Space-Time Frame Network", GEOMATICS AND INFORMATION SCIENCE OF WUHAN UNIVERSITY, vol. 44, no. 1, 1 January 2019 (2019-01-01), pages 17 - 37, XP093053892, DOI: 10.13203/j.whugis20180340 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116400408A (zh) * 2023-06-09 2023-07-07 厦门大学 具有在线数据传输和水下定位功能的智能海底地震仪
CN116400408B (zh) * 2023-06-09 2023-08-18 厦门大学 具有在线数据传输和水下定位功能的智能海底地震仪
CN117472917A (zh) * 2023-12-28 2024-01-30 中国石油集团东方地球物理勘探有限责任公司 一种海洋节点采集数据存储系统、方法、设备及存储介质

Also Published As

Publication number Publication date
CN113759423A (zh) 2021-12-07
CN113759423B (zh) 2023-10-31
US20240125963A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
WO2023050697A1 (zh) 海底四分量节点地震数据采集系统及其数据采集方法
US7417924B2 (en) Apparatus, systems and methods for determining position of marine seismic acoustic receivers
AU2008249163B2 (en) In-sea power generation for marine seismic operations
US20090245019A1 (en) Method and system for determining geodetic positions of towed marine sensor array components
CA2072107C (en) Seismic cable device
US20090316525A1 (en) Marine seismic streamer system configurations, systems, and methods for non-linear seismic survey navigation
WO2022257429A1 (zh) 海底光纤四分量地震仪器系统及其数据采集方法
CN109143325A (zh) 一种海底四分量节点地震仪器系统及海底地震数据采集方法
RU2485554C1 (ru) Способ проведения 3d подводно-подледной сейсмоакустической разведки с использованием подводного судна
US20140321238A1 (en) Remotely operated modular positioning vehicle and method
CN112817048A (zh) 基于深海机器人的深海地震数据采集拖缆及采集方法
CN208872883U (zh) 一种海底四分量节点地震仪器系统
CN115016005A (zh) 基于智能auv的海底节点地震数据采集系统布放与回收方法
CN115079251A (zh) 基于铠装螺旋光缆的海底地震数据采集缆及采集方法
KR101488216B1 (ko) 선체장착형 천부지층 탐사시스템
KR101656860B1 (ko) 분리형 3차원 해양 탄성파 탐사를 위한 베인 각도조절식 디플렉터 시스템
RU2392643C2 (ru) Система для морской сейсмической разведки
US20120134235A1 (en) Areal Marine Seismic Exploration Method
Khan et al. Cutting-edge marine seismic technologies—Some novel approaches to acquiring 3D seismic data in a complex marine environment
US20100329075A1 (en) Method for assistance in the localization of towed streamers comprising a step for defining and a step for generating distinct acoustic cycles
US20240134078A1 (en) Umbilical cable with sensors for collecting subsurface data and method
CN215264066U (zh) 基于深海机器人的深海地震数据采集拖缆
CN212460072U (zh) 一种海洋信息探测集群装置
CN214067407U (zh) 一种大间距、多单元单道地震国产接收缆
RU189790U1 (ru) Стример для инженерных изысканий

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874100

Country of ref document: EP

Kind code of ref document: A1