WO2023050593A1 - 智能穿戴设备天线装置及智能穿戴设备 - Google Patents

智能穿戴设备天线装置及智能穿戴设备 Download PDF

Info

Publication number
WO2023050593A1
WO2023050593A1 PCT/CN2021/138608 CN2021138608W WO2023050593A1 WO 2023050593 A1 WO2023050593 A1 WO 2023050593A1 CN 2021138608 W CN2021138608 W CN 2021138608W WO 2023050593 A1 WO2023050593 A1 WO 2023050593A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
smart wearable
wearable device
antenna base
strap
Prior art date
Application number
PCT/CN2021/138608
Other languages
English (en)
French (fr)
Inventor
何其娟
胡思仁
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023050593A1 publication Critical patent/WO2023050593A1/zh
Priority to US18/403,981 priority Critical patent/US20240235013A9/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0464Annular ring patch

Definitions

  • the present application relates to the technical field of antennas, in particular to an antenna device for a smart wearable device and a smart wearable device.
  • Optical sensors have high requirements for optical path sealing and product assembly process control, and may be equipped with optical path filter components.
  • Capacitive sensors need to be designed according to the ID form, and usually need to be designed separately for sensing capacitors, which are easily limited by the size of smart wearable devices.
  • the main purpose of this application is to propose an antenna device for a smart wearable device and a smart wearable device, aiming to use the antenna structure of the smart wearable device to realize wearing detection.
  • this application proposes an antenna device for a smart wearable device, and the antenna device for a smart wearable device includes:
  • a watch strap is electrically connected to the antenna base, and when the smart wearable device is worn by the user, the length formed from the point of tangency between the strap and the user's arm to the connection point with the antenna base is a first length;
  • the antenna body is coupled and connected to the antenna base
  • the wearing posture detection circuit is electrically connected to the antenna body, and is used to determine the wearing posture of the smart wearable device according to the first length.
  • the antenna body and the antenna base form a detection capacitance
  • the wearing posture detection circuit is specifically used to determine the wearing posture of the smart wearable device according to the magnitude of the detection capacitance.
  • two tangent points are formed between the wristband and the user's arm, and the lengths formed between the two tangent points and the connection points of the antenna base are respectively a first sub-length and a second sub-length;
  • the antenna body and the antenna base form two detection capacitors, namely a first detection capacitor and a second detection capacitor;
  • the wearing posture detection circuit is specifically configured to determine the wearing posture of the smart wearable device according to the magnitudes of the first detection capacitance and the second detection capacitance.
  • the smart wearable device antenna device also includes:
  • the mechatronic unit corresponds to the position of the strap, and the mechatronic unit is electrically connected to the antenna body and the antenna base respectively.
  • the number of the mechatronic units is two,
  • the two mechanical and electronic units are respectively arranged on both sides of the center line of the antenna base along the direction of the strap; or,
  • the two mechatronic units are respectively arranged on the same side of the central line of the antenna base along the direction of the strap.
  • the smart wearable device antenna device also includes:
  • An adjustable capacitor one end of the adjustable capacitor is connected to the antenna base;
  • the antenna adjustment controller is electrically connected to the wearing posture detection circuit and the adjustable capacitor, and is used to adjust the capacitance value of the adjustable capacitor according to the wearing posture to configure the Antenna parameters of the smart wearable device antenna device.
  • the antenna adjustment controller includes:
  • a processor is electrically connected to the wearing posture detection circuit, and the processor is used to output a corresponding control signal according to the wearing posture;
  • An adjustable capacitor drive chip the controlled end of the adjustable capacitor drive chip is connected to the processor, the output terminal of the adjustable capacitor drive chip is electrically connected to the adjustable capacitor, and the adjustable capacitor drive chip is used for The capacitance value of the adjustable capacitor is adjusted according to the control signal to configure the antenna parameters of the smart wearable device antenna device.
  • the antenna body further includes:
  • a ring-shaped metal frame, the ring-shaped metal frame is coupled to the antenna base.
  • the smart wearable device antenna device also includes:
  • a motion sensor is connected to the wearing posture detection circuit, and the user of the motion sensor acquires motion data of the smart wearable device;
  • the wearing posture detection circuit is also used to determine the wearing posture of the smart wearable device according to the motion data of the smart wearable device.
  • the present application also proposes a smart wearable device, and the smart wearable device includes the smart wearable device antenna device as described above.
  • This application sets the antenna base and the strap and the antenna body that are electrically connected to the antenna base respectively, and through the antenna body, when the smart wearable device is worn by the user, the point of tangency between the strap and the user's arm and the antenna
  • the length formed by the connection points of the base is the first length to determine the wearing posture of the smart wearable device.
  • This application uses the combination of the antenna base and the strap with the antenna body to realize the wearing detection of the smart wearable device.
  • Fig. 1 is a schematic structural diagram of an embodiment of the smart wearable device of the present application
  • FIG. 2 is a schematic structural diagram of an embodiment of the smart wearable device antenna device applied to the smart wearable device of the present application;
  • FIG. 3 is a schematic structural diagram of an embodiment of the smart wearable device of the present application.
  • Fig. 4 is a schematic structural diagram of another embodiment of the smart wearable device antenna device applied to the smart wearable device of the present application;
  • FIG. 5 is a schematic structural diagram of an embodiment of configuring a user arm for a smart wearable device of the present application
  • Fig. 6 is a schematic structural diagram of another embodiment of configuring a user's arm for a smart wearable device of the present application
  • FIG. 7 is a schematic diagram of a circuit structure of an embodiment of an antenna device for a smart wearable device according to the present application.
  • FIG. 8 is a schematic diagram of a circuit structure of another embodiment of an antenna device for a smart wearable device according to the present application.
  • the present application proposes an antenna device for a smart wearable device, which is applied to a smart wearable device, and the smart wearable device may be a smart watch, a smart bracelet, and the like.
  • the smart wearable device may be a smart watch, a smart bracelet, and the like.
  • Common wearing detection methods use light sensors or inductive capacitors.
  • Optical sensors have high requirements for optical path sealing and product assembly process control, and may be equipped with optical path filter components.
  • Capacitive sensors need to be designed according to the ID morphology, and usually require a separate design of the sensing capacitor. That is to say, more components need to be added to smart wearable devices.
  • smart wearable devices such as smart watches and bracelets
  • smart wearable devices are gradually entering people's lives as a miniaturized smart device that integrates smart applications and communication interactions. , which integrates wireless communication module, CPU, power supply and other modules inside. Due to the size limitation of smart wearable devices, it is difficult to add components to smart wearable devices.
  • the smart wearable device antenna device includes:
  • the strap 20 is electrically connected to the antenna base 10.
  • the length formed from the point of tangency between the strap 20 and the user's arm 100 to the connection point with the antenna base 10 is the first length;
  • the antenna body 30 is coupled with the antenna base 10;
  • the wearing posture detection circuit (not shown in the figure) is electrically connected to the antenna body 30, and is used to determine the wearing posture of the smart wearable device according to the first length.
  • the antenna base 10 can be used as a grounding part in the antenna device.
  • the antenna base 10 can be a metal base, for example, a pure metal base, or a metal base made of metal material at least in part.
  • the antenna base 10 can be specifically arranged on one side of the bottom case of the smart wearable device, or integrally formed with the bottom case of the smart wearable device, that is, the antenna base 10 is a part of the bottom case.
  • the bottom shell of the smart wearable device can be made of ceramics, PC or glass, etc. In this embodiment, the bottom shell of the smart wearable device can be used as the medium between the antenna body 30 and the antenna base 10 of the smart wearable device, so as to realize the connection between the antenna body 30 and the antenna base 10.
  • the antenna base 10 can be set in the shape of a hollow metal ring, and the middle ring area can be set in a hollow structure. Further, the hollow structure can also be filled with fillers of transparent materials, so that the heart rate sensor, etc. can see through the transparent The filler detects the vital sign parameters of the human body.
  • the bottom shell fits the user's wrist, and the antenna base 10 can be in contact with the user's wrist.
  • the thickness, size, and shape of the antenna base 10 can be set according to actual application products and application environments, so as to meet different application requirements.
  • the shape of the antenna base 10 may be circular or square, such as rectangular or square.
  • the smart wearable device can be worn by the user's left hand or by the user's right hand.
  • the straps 20 are distinguished according to the materials used, such as metal straps 20, leather straps 20, leather straps 20, silicone straps 20 and jewelry straps 20, etc. Different tightening methods, such as butterfly buckle, pin buckle, buckle and so on.
  • the strap 20 can be a metal strap 20, or at least partly a metal strap 20 made of metal material.
  • the strap 20 is realized by non-metal such as silica gel or leather strap 20,
  • the flank metal is designed embedded in the strap 20 to realize the electrical connection between the strap 20 and the metal base.
  • the watch strap 20 and the antenna base 10 can be arranged integrally or separately. When the integrated arrangement, the display assembly, the antenna adjustment controller 40, etc. can be detachably connected with the watch strap 20 and the antenna base 10. According to application requirements, different antenna bases 10 and watch straps 20 can be replaced.
  • the number of the strap 20 can be one or two, and when there is one, the two ends of the strap 20 are fixed on the two ends of the dial.
  • one end of the two watch straps 20 is respectively fixed on the two ends of the dial, and the other ends of the two watch straps 20 can be detachably connected by buckles, pin buckles, butterfly buckles and the like.
  • two straps 20 are provided as an example for illustration.
  • the two straps 20 are respectively a first strap 21 and a second strap 22.
  • the first strap 21 is set at one end of the antenna base 10, and the second strap 20 is The strap 22 is disposed on the other end of the antenna base 10 away from the second strap 22 .
  • two watch straps 20 form two tangent points with the user's arm 100, and the lengths formed by the connection points between the two tangent points and the antenna base 10 are respectively the first sub-length and The second sublength.
  • the tangent point formed by the first strap 21 and the user's wrist is the tangent point A
  • the tangent point formed by the second strap 22 and the user's wrist is the tangent point B.
  • the first lengths formed from the point of tangency between the strap 20 and the user's arm 100 to the connection point with the antenna base 10 are: the first sub-length L1 formed by the distance between the tangency point A and the antenna base 10, and the distance between the tangency point B and the antenna base 10.
  • the distances between the two tangent points and the connection point of the antenna base 10 are different, that is, the first sub-length L1 is different from the first sub-length L2 , of course, in other embodiments, they can also be set to be the same.
  • first sub-length L1 and the second sub-length L2 will change with the difference between the left and right hands, for example, when the left hand is switched to the right hand, the first sub-length L1 increases, while the second sub-length L2 decreases.
  • the right hand is switched to the left hand, the first sub-length L1 decreases, while the second sub-length L2 increases.
  • the wearing posture detection circuit can be realized by a microprocessor, such as a single-chip microcomputer, DSP, etc., and the wearing posture detection circuit can also be realized by using an MCU of a smart wearable device.
  • the wearing posture detection circuit is electrically connected to the antenna body 30, and the antenna body 30 is connected to the antenna
  • the bases 10 are coupled and connected.
  • the electrical parameters such as current, voltage, etc.
  • the wearing posture detection circuit can be based on the electrical parameters. Change to determine the specific value of the first length.
  • this embodiment can establish a mapping relationship between the differential relationship formed by the first sub-length and the second sub-length in the smart wearable device and the cooperation to realize the left and right hand recognition, and change according to the first sub-length and the second sub-length, that is It can be realized that when the user wears the smart wearable device, it can be specifically identified whether the smart wearable device is currently worn by the user's left hand or right hand.
  • the dial can be adapted to be worn by the left and right hands of the user, and the display interface of the display component of the dial can also be adapted to switch between the left hand and the right hand.
  • the position of the knob is usually set according to the left hand wearing. When the user wears the smart wearable device to the left hand, the position of the knob 70 is towards the user's right hand.
  • This embodiment can also combine the antenna detection with the data of the internal gyroscope according to the needs of practical applications to determine whether the watch is currently worn by the left hand or the right hand, and can combine gestures and postures to record statistical work, exercise, sleep and other scenarios for health analysis. provide support.
  • the length of the tangent point formed between the wristband 20 and the arm of the smart wearable device is different from the antenna base 10 , the current on the antenna base 10 will be different, and the corresponding electrical connection flowing into the antenna body 30 will be different.
  • the current on the component CN1 and then to the adjustable capacitor C1 is different, and the current gesture of the user can be judged.
  • the activity of the left hand is less than that of the right hand. Therefore, when worn by the left hand, the strap 20 on the outside of the left hand tends to be longer, and the inner strap 20 is shorter.
  • a motion sensor can also be set in the smart wearable device to obtain the user's motion actions, such as a gyroscope, and combined with the motion data obtained by the gyroscope, it can be further judged whether it is worn by the left hand or the right hand.
  • the movement trajectory of the user's arm can be determined according to the spatial position data detected by the motion sensor; according to the movement trajectory of the user's arm, it can be determined whether the smart watch is worn by the left hand or the right hand. Specifically, if the user wears it on the left hand, there will be a corresponding motion data when the user performs exercises such as raising the wrist after wearing it; There will be another corresponding motion data; the two motion data will be different due to the difference in the motion trajectory, so it can be based on the difference of the first length formed from the tangent point of the user's arm 100 to the connection point with the antenna base 10, and The difference in motion data acquired by the motion sensor determines whether the user is currently wearing the left hand or the right hand.
  • the motion sensor as a sports watch, can also acquire the user's motion data, and according to the motion data generated by the user, can generate gesture control instructions, etc., to achieve the purpose of controlling the smart wearable device.
  • the antenna base 10 and the strap 20 and the antenna body 30 electrically connected to the antenna base 10 are provided, and the antenna body 30 is used to determine the tangency point between the strap 20 and the user's arm 100 when the smart wearable device is worn by the user.
  • the wearing posture of the smart wearable device is determined from the first length formed by the connection point with the antenna base 10 .
  • the antenna base 10 and the strap 20 are combined with the antenna body 30 to realize the wearing detection of the smart wearable device.
  • the antenna body 30, the strap 20 and the antenna base 10 form a detection capacitor
  • the wearing posture detection circuit is specifically used to determine the wearing posture of the smart wearable device according to the size of the detection capacitance.
  • the coupling connection between the antenna body 30 and the antenna base 10, the detection capacitor is formed between the antenna body 30 and the antenna base 10, and the wristband 20 electrically connected to the antenna base 10, and the antenna body 30 is equivalent to the portion of the detection capacitor.
  • One polar plate, the antenna base 10 and the wristband 20 are equivalent to the other polar plate of the detection capacitor.
  • the coupling between the watch strap 20 and the arm is an open space coupling. According to the concentration and distribution of charges on the edge of the metal, that is, the tangential position between the embedded metal of the watch strap 20 and the arm can cause a sudden change in charge distribution.
  • the effective length between the antenna base 10 and the strap 20 will change, that is, the composition of the antenna base 10 and the strap 20 in the detection capacitor will be changed.
  • the area of the plate is known from electrostatics. For parallel plate capacitors, there is the following relationship:
  • ⁇ r is the dielectric constant
  • S is the area of the two pole plates in the detection capacitance formed by the antenna body 30, the antenna base 10 and the wristband 20
  • L is the distance between the two pole plates in the detection capacitance, that is The distance between the antenna body 30 and the antenna base 10, as can be seen from formula (1)
  • the capacity of the capacitor is proportional to the dielectric constant of the medium, proportional to the area of the two pole plates, and proportional to the distance between the two pole plates Inversely proportional.
  • Q is the amount of charge carried by the detection capacitor, that is, the charging charge.
  • the charging charge is fixed in a capacitor.
  • the effective length between the antenna base 10 and the strap 20 is changed, that is, the two plates of the capacitor are changed.
  • the effective area of ⁇ S changes, it can be seen from formula (1) that a change of ⁇ C will inevitably occur, and it can be further known from formula (2) that due to the change of ⁇ C, there will be a change of ⁇ V.
  • the voltage-current relationship of the capacitive element set the voltage and current as time functions, and find the voltage-current relationship.
  • the charge on the plates also changes, so a current is generated in the capacitive element, which can be obtained by the following relationship:
  • the current flowing through the detection capacitor is proportional to the capacitance
  • the capacitance is proportional to the area of the two plates. Based on this, as the length of the strap 20 and the tangent point to the antenna base 10 becomes shorter, the capacitance of the detection capacitor becomes smaller, and the current flowing from the antenna base 10 to the antenna body 30 also becomes smaller. On the contrary, the length of the strap 20 and the tangent point and the antenna base 10 becomes longer, the capacitance of the detection capacitor becomes larger, and the current flowing from the antenna base 10 to the antenna body 30 also becomes larger.
  • the left and right hands can be distinguished, and then when the user wears the smart wearable device, it can be specifically identified whether the smart wearable device is currently worn by the user's left hand or right hand.
  • the antenna body 30 and the antenna base 10 form two detection capacitors, which are respectively the first detection capacitor and the second detection capacitor; wherein,
  • the wearing posture detection circuit is specifically used to determine the wearing posture of the smart wearable device according to the magnitudes of the first detection capacitance and the second detection capacitance.
  • the antenna body 30 constitutes a first detection capacitor via the antenna base 10, the first wristband 21 and the antenna base 10, and the first detection capacitance can detect the phase formed by the first wristband 21 and the wrist.
  • the point of tangency is the change of the first sub-length from the antenna base 10 .
  • Antenna body 30 constitutes a first detection capacitor through antenna base 10, second wristband 22 and antenna base 10, and the second detection capacitor can detect the tangent point formed by second wristband 22 and wrist. change in length.
  • the capacitance is proportional to the area of the two plates. If the length of the first wristband 21 and the tangent point to the antenna base 10 becomes shorter, the capacitance of the first detection capacitor becomes smaller, and the current flowing from the antenna base 10 to the first mechatronic unit also becomes smaller. Now, while the length of the second wristband 22 and the tangent point and the antenna base 10 becomes longer, the capacitance of the second detection capacitor becomes larger, and the current that the antenna base 10 flows to the second mechatronic unit also becomes larger. .
  • the difference between the left and right hands can be realized, and then when the user wears the smart wearable device, it can be specifically identified whether the smart wearable device is currently worn by the user's left hand or right hand .
  • the length of the second watch strap 22 and the tangent point and the antenna base 10 become shorter, and the length of the first watch strap 21 and the tangent point and the antenna base 10 becomes longer, when opposite changes occur, it is also possible to detect and identify Out wear smart switch between the user's left/right hand.
  • the left and right hand recognition self-check of the smart wearable device can be formed, which can avoid misjudgment of the smart wearable device when the user accidentally triggers it, and is conducive to improving the left and right hands. Accuracy of recognition.
  • the antenna body 30 further includes:
  • the antenna adjustment controller 40 is electrically connected to the wearing posture detection circuit, and the antenna adjustment controller 40 is used to determine that the smart wearable device is a worn posture according to the first length, and configure the antenna parameters of the two smart wearable device antenna devices according to the worn posture .
  • this embodiment sets the antenna parameters of the adjustable capacitor as adjustable when the antenna performance is asymmetrical when the smart wearable device is worn by left and right hands, so as to adjust the antenna parameters of the antenna body 30 adaptively according to the difference between the left and right hands.
  • the performance of the antenna can be adaptively adjusted according to whether it is worn by the left hand or the right hand, and there is no need to restrict the design of the antenna radiation unit, which can improve the convenience of use of the smart wearable device.
  • This application uses the antenna base 10 and the watch strap 20 to detect the distance between the strap 20 and the user's wrist from the antenna base 10 to improve antenna radiation efficiency and wear detection without additional sensors and circuits for left and right hand identification.
  • the multiplexing of the antenna device of the smart wearable device is beneficial to reduce the use of components of the smart wearable device, and can reduce the volume of the electronic control board 50 of the smart wearable device, making the smart wearable device more portable.
  • the smart wearable device antenna device also includes:
  • the mechatronics unit 31 ( 32 ) corresponds to the position of the strap, and the mechatronics unit 31 ( 32 ) is electrically connected to the antenna body 30 and the antenna base 10 respectively.
  • the mechatronic unit 31 ( 32 ) includes an electrical connector CN1 , and the electrical connector CN1 is an elastic electrical connector CN1 .
  • the mechatronic unit 31 ( 32 ) can realize the detachable electrical connection between the antenna body 30 and the antenna base 10 .
  • the number of mechatronic units is two; where,
  • the two mechanical and electronic units 31, 32 are respectively arranged on both sides of the center line of the antenna base 10 along the direction of the strap 20; or,
  • the two mechatronic units 31 , 32 are respectively arranged on the same side of the center line of the antenna base 10 along the direction of the strap 20 .
  • the two mechatronic units 31, 32 can form two antenna units with the antenna base 10, and the two antenna units can work in two same frequency bands or in two different frequency bands,
  • the two mechatronic units 31 and 32 both work in the LTE700 frequency band.
  • the two mechatronic units 31 and 32 can make the smart wearable device have good low-frequency characteristics.
  • the two mechatronic units 31 and 32 can also work in the LTE700 frequency band and the LTE1700 frequency band respectively.
  • the two mechatronic units 31, 32 can be set at the positions corresponding to the watch strap 20. In order to shorten the distance with the watch strap 20, they can be set as close as possible to the position of the watch strap 20.
  • the two mechatronic units 31, 32 When the antenna base 10 is located on both sides of the center line of the strap 20, one of the mechatronic units 31 can be set at the 1 o'clock position of the dial, and the other mechatronic unit 32 can be set at the 7 o'clock position of the dial.
  • one of the mechatronic units 31 can be set at the 11 o'clock position of the dial, and the other mechatronic unit 32 is set at the 5 o'clock position of the dial.
  • one of the mechatronic units 31 can be set at the 1 o'clock position of the dial, and the other mechatronic unit 32 can Set at 5 o'clock on the dial.
  • one of the mechatronic units 31 can be set at the 11 o'clock position of the dial, and the other mechatronic unit 32 is set at the 7 o'clock position of the dial.
  • a camera 60 can also be arranged on the dial of the smart wearable device, for example, on the face cover.
  • One side of the camera 60 is set at the 1 o'clock position or the 11 o'clock position, and the other mechatronic unit 32 is set at the far end of the camera 60, such as the 5 o'clock position or the 7 o'clock position.
  • the smart wearable device antenna device also includes:
  • An adjustable capacitor C1 one end of the adjustable capacitor C1 is connected to the antenna adjustment controller 40 , and the other end of the adjustable capacitor C1 is connected to the antenna body connection 10 .
  • the antenna adjustment controller 40 is specifically used to adjust the capacitance value of the adjustable capacitor C1 according to the wearing posture, so as to configure the antenna parameters of the antenna device of the smart wearable device.
  • the adjustable capacitor C1 can be set on the electronic control board 50 of the smart wearable device, and connected in series between the antenna network of the smart wearable device and the antenna base 10 .
  • one end of the adjustable capacitor C1 can be connected to the antenna adjustment controller 40 in the antenna network of the smart wearable device, and the other end of the adjustable capacitor C1 can be electrically connected CN1, such as the contact PAD (pad) of the elastic structure, the elastic piece contacts the reserved PAD point and other electrical connections, so as to realize the electrical connection with the antenna base 10 .
  • the value of the adjustable capacitor C1 is preferably in the range of 0.5pF ⁇ 10pF.
  • the elastic electrical connector CN1 can be set as a shrapnel, pogo Pin, etc., and the pluggable electrical connection between the antenna base 10 and the adjustable capacitor C1 can be realized through the electrical connector CN1.
  • the coupling current on the electrical connector CN1 flows from the antenna base 10 to the adjustable capacitor C1, that is, the current flows from the antenna base 10 to the adjustable capacitor C1 through the electrical connector CN1, and then through the adjustable capacitor C1.
  • C1 flows to the antenna network of the smart wearable device, so that the antenna base 10 and the mechatronic unit form an antenna unit to realize the radiation and reception of wireless signals.
  • the antenna base 10 and the watch strap 20 are integrally designed, the antenna body 30 and the antenna base 10 can be detachably connected from the electrical connector CN1, and can be adapted to different needs of the watch strap 20 or storage requirements.
  • the capacitance value of the adjustable capacitor C1 can be adjusted, and the adjustable capacitor C1 can improve the performance of the antenna in the high frequency band.
  • the impedance matching of the antenna will produce a variety of different states due to the adjustable capacitance of the adjustable capacitor C1.
  • the matching states are combined together. In different scenarios, such as when the left and right hands are worn differently, the corresponding matching state can be given, so that the return loss and efficiency of the antenna in this state are the best, so that the antenna no matter what the situation is Can work under better performance.
  • One end of the adjustable capacitor C1 can also be connected to the radiator of the antenna body 30, and the other end of the adjustable capacitor C1 is connected to the antenna base 10 through the electrical connector CN1, so as to realize the coupling connection between the radiator and the antenna base 10.
  • the embodiment can also realize the length detection of the first length from the tangent point of the strap to the user's arm to the connection point with the antenna base through the adjustable capacitor C1, thereby realizing the wearing posture of the smart wearable device.
  • the antenna adjustment controller 40 includes:
  • the processor 41 is electrically connected to the wearing posture detection circuit, and the processor 41 is used to output corresponding control signals according to the wearing posture;
  • Adjustable capacitor driver chip the controlled end of the adjustable capacitor driver chip 42 is connected to the processor 41, the output terminal of the adjustable capacitor driver chip 42 is electrically connected to the adjustable capacitor C1, and the adjustable capacitor driver chip 42 is used to Adjust the capacitance value of the adjustable capacitor C1 to configure the antenna parameters of the antenna device of the smart wearable device.
  • the processor 41 can process the received data and signals by running or executing the stored software programs and/or modules, and calling the stored data, so as to determine the current user current signal according to the magnitude of the received current signal.
  • the left hand or right hand is worn, and according to the mapping relationship between the antenna and the left/right hand, and the antenna performance, calculate the adjustment value of the capacitance value of the adjustable capacitor C1, for example, the capacitance range of the adjustable capacitor C1 is 8.2pF at most and 1.2pF at minimum pF, step 0.2pF, after calculating the adjustment value of the capacitance value, adjust the capacitance value of the adjustable capacitor C1 step by step.
  • the processor 41 can control the operation of the adjustable capacitor driving chip 42, by controlling the bias voltage of the adjustable capacitor driving chip 42, thereby adjusting the capacitance of the adjustable capacitor C1, the impedance matching of the antenna will be due to the adjustable capacitor
  • the capacitance of C1 changes and works in its corresponding matching state, so that the return loss and efficiency of the antenna in this state are the best.
  • the obtained detected current signal can be calculated and compared, and other signal processing can be performed to determine the left/right hand wearing posture according to the detected current signal.
  • the adjustable capacitor driving chip 42 controls the operation of the adjustable capacitor driving chip 42, so as to adaptively adjust the capacitance value of the adjustable capacitor C1 according to the corresponding relationship between the current signal and the capacitance value configuration table.
  • the capacitance values corresponding to the two mechatronic units 31 and 32 are both 10pF.
  • the processor 41 calculates the magnitude of the current signal, and determines that the current wearing state of the smart wearable device is left-handed. .
  • the antenna device works in the LTE700 frequency band, adjust the adjustable capacitor C1 corresponding to one mechanical electronic unit 31 to 8.2pF according to the capacitor configuration table, and adjust the adjustable capacitor C1 corresponding to the other mechanical electronic unit 32 to 6.8pF, the antenna works at the maximum good condition.
  • the antenna works in the LTE1700 frequency band, adjust the adjustable capacitor C1 corresponding to one mechatronic unit 31 to 1.2pF according to the capacitor configuration table, and adjust the adjustable capacitor C1 corresponding to the other mechatronic unit 32 to 1.5pF, the antenna works in the best state .
  • the antenna body 30 further includes:
  • An annular metal frame 33 is coupled to the antenna base 10 through two mechatronic units 31 and 32 .
  • the annular metal frame 33 can be made of a pure metal material, or can be made of a metal material and a non-metallic material.
  • the annular metal frame 33 constitutes a part of the housing of the smart wearable device, and does not need to occupy the space on the top of the housing. It can well meet the housing design requirements of ultra-thin smart wearable devices.
  • the annular metal frame 33 can be made of titanium alloy, aluminum and other metal materials.
  • the outer contour of the annular metal frame 33 can be circular, square or polygonal. Of course, in other embodiments, the shape of the annular metal frame 33 is not limited, it only needs to be able to adapt to the shape of the smart wearable device.
  • the present application also proposes a smart wearable device, which includes the above smart wearable device antenna device; and,
  • the detailed structure of the smart wearable device antenna device can refer to the above-mentioned embodiments, and will not be repeated here; it can be understood that, since the above smart wearable device antenna device is used in the smart wearable device of this application,
  • the embodiments include all the technical solutions of all the embodiments of the antenna device for smart wearable devices described above, and the achieved technical effects are also completely the same, and will not be repeated here.
  • the smart wearable device further includes a cover and a bottom case, and the cover and the bottom case are respectively arranged on both sides of the ring-shaped metal frame 10 of the antenna device of the smart wearable device, so as to enclose and form an accommodating cavity;
  • the electric control component is arranged in the accommodating cavity, and the electric control component is electrically connected with the antenna device of the smart wearable device.
  • the material of the surface cover and the bottom case can be made of hard materials such as plastic, tempered glass, etc., which is not limited here.
  • the bottom case can be enclosed with the face cover and the frame to form the housing of the smart wearable device, and a housing cavity is formed in the housing, and the display components, the antenna adjustment controller 40, the battery, etc. of the smart wearable device can be accommodated in the housing In the cavity, and form the dial of the smart wearable device with the housing.
  • the electric control component includes an electric control board 50 and various functional circuit parts arranged on the electric control board 50 , etc., and the controllable capacitor C1 in the above embodiment can be arranged on the electric control board 50 .
  • the cover can be a touch screen, and when the display module is a display screen, the cover and the display module can be integrated through a screen bonding assembly process.
  • the ring-shaped metal frame 10 can be a hollow structure, the face cover is closed on one side of the ring-shaped metal frame 10, and the bottom case is covered on the other end of the ring-shaped metal frame 10, so that the face cover, the ring-shaped metal frame 10 and the bottom case are stacked in sequence , and enclose to form an accommodating cavity.
  • the face cover and the annular metal frame 10 as well as the bottom case and the annular metal frame 10 can be bonded by waterproof glue to realize the waterproof between the face cover and the annular metal frame 10 and the bottom case and the annular metal frame 10, so that the outside moisture does not It will enter into the accommodation cavity to ensure that the electronic control components in the accommodation cavity can work normally and stably.
  • the electronic control component can realize functions such as calling, sending and receiving information, taking pictures, video calls, scanning QR codes, mobile payment, viewing environmental information, and viewing body information.
  • the electronic control assembly also includes a camera 60, a battery, a loudspeaker, a microphone, a deck assembly, a wireless communication module and sensors that realize various functions, not shown in the figure, wherein the sensors can be gravity sensors, acceleration sensors, etc. sensor, distance sensor, heart rate sensor, air pressure sensor, ultraviolet detector, etc.
  • the wireless communication module in the electronic control component can be WIFI, 5G communication module, GPS, Bluetooth communication module, etc., and the wireless communication module is electrically connected to the antenna structure, so as to receive and return data through the antenna structure.
  • the electronic control assembly may include elements for identification, such as fingerprint recognition sensors, facial recognition sensors, and the like.
  • the antenna structure has different types and quantities depending on the wireless communication module. For example, when a WIFI module is installed in a smart wearable device, the antenna structure includes a WIFI antenna that can realize WIFI communication. When a Bluetooth communication module is installed, the antenna The structure includes a bluetooth antenna capable of bluetooth communication.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Hardware Design (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Support Of Aerials (AREA)
  • Electric Clocks (AREA)

Abstract

本申请一些实施例公开了一种智能穿戴设备天线装置及智能穿戴设备,该智能穿戴设备天线装置包括:天线底座;表带,与天线底座电连接,在智能穿戴设备被用户佩戴时,表带与用户手臂相切点至与天线底座的连接点形成的长度为第一长度;天线本体,与天线底座耦合连接;佩戴姿势检测电路,与天线本体电连接,用于根据第一长度确定智能穿戴设备被佩戴姿势。本申请利用智能穿戴设备的天线结构实现了佩戴检测。

Description

智能穿戴设备天线装置及智能穿戴设备
本申请要求于2021年09月30日提交中国专利局、申请号为202111168381.0、发明名称为“智能穿戴设备天线装置及智能穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别涉及一种智能穿戴设备天线装置及智能穿戴设备。
背景技术
随着人工智能和穿戴设备的普及,穿戴设备检测方式越来越多,常见的佩戴检测多采用光感应器或感应电容器。光感应器对光路密封和产品组装工艺控制要求较高,同时可能配套光路滤波元件。电容感应器需要根据ID形态进行设计,并且通常需要单独进行感应电容器设计,容易受到智能穿戴设备的体积限制。
发明内容
本申请的主要目的是提出一种智能穿戴设备天线装置及智能穿戴设备,旨在利用智能穿戴设备的天线结构实现佩戴检测。
为实现上述目的,本申请提出一种智能穿戴设备天线装置,所述智能穿戴设备天线装置包括:
天线底座;
表带,与所述天线底座电连接,在智能穿戴设备被用户佩戴时,所述表带与用户手臂相切点至与所述天线底座的连接点形成的长度为第一长度;
天线本体,与所述天线底座耦合连接;
佩戴姿势检测电路,与所述天线本体电连接,用于根据所述第一长度确定智能穿戴设备被佩戴姿势。
可选地,所述天线本体与所述天线底座构成检测电容;
所述佩戴姿势检测电路,具体用于根据所述检测电容的大小,确定所述智能穿戴设备被佩戴姿势。
可选地,所述表带与用户手臂形成有两个相切点,两个相切点分别与所述天线底座的连接点形成的长度分别为第一子长度和第二子长度;
所述天线本体与所述天线底座构成两个检测电容,分别为第一检测电容和第二检测电容;
所述佩戴姿势检测电路,具体用于根据所述第一检测电容和所述第二检测电容的大小,确定所述智能穿戴设备被佩戴姿势。
可选地,所述智能穿戴设备天线装置还包括:
机械电子单元,对应所述表带的位置,所述机械电子单元分别连接所述天线本体与所述天线底座电连接。
可选地,所述机械电子单元的数量为两个,
两个所述机械电子单元分设于所述天线底座沿所述表带方向的中心线的两侧;或者,
两个所述机械电子单元分设于所述天线底座沿所述表带方向的中心线的同一侧。
可选地,所述智能穿戴设备天线装置还包括:
可调电容,所述可调电容的一端与所述天线底座连接;
天线调节控制器,所述天线调节控制器分别与所述佩戴姿势检测电路和所述可调电容电连接,用于根据所述被佩戴姿势调节所述可调电容的电容值,以配置所述智能穿戴设备天线装置的天线参数。
可选地,所述天线调节控制器包括:
处理器,与佩戴姿势检测电路电连接,所述处理器用于根据所述被佩戴姿势输出对应的控制信号;
可调电容驱动芯片,所述可调电容驱动芯片的受控端与所述处理器连接,可调电容驱动芯片的输出端与所述可调电容电连接,所述可调电容驱动芯片用于根据所述控制信号调节所述可调电容的电容值,以配置所述智能穿戴设备天线装置的天线参数。
可选地,所述天线本体还包括:
环形金属边框,所述环形金属边框与所述天线底座耦合连接。
可选地,所述智能穿戴设备天线装置还包括:
运动传感器,与所述佩戴姿势检测电路连接,所述运动传感器用户获取智能穿戴设备的运动数据;
佩戴姿势检测电路,还用于根据所述智能穿戴设备的运动数据确定智能穿戴设备被佩戴姿势。
本申请还提出一种智能穿戴设备,所述智能穿戴设备包括如上所述的智能穿戴设备天线装置。
本申请通过设置天线底座及分别与天线底座电连接的表带和天线本体,并且通过天线本体来根据在智能穿戴设备被用户佩戴时,所述表带与用户手臂相切点至与所述天线底座的连接点形成的长度为第一长度,来确定智能穿戴设备被佩戴姿势。本申请利用天线底座及表带与天线本体结合,实现了智能穿戴设备佩戴检测。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请智能穿戴设备一实施例的结构示意图;
图2为本申请智能穿戴设备天线装置应用于智能穿戴设备一实施例的结构示意图;
图3为本申请智能穿戴设备一实施例的结构示意图;
图4为本申请智能穿戴设备天线装置应用于智能穿戴设备另一实施例的结构示意图;
图5为本申请智能穿戴设备配置用户手臂一实施例的结构示意图;
图6为本申请智能穿戴设备配置用户手臂另一实施例的结构示意图;
图7为本申请智能穿戴设备天线装置一实施例的电路结构示意图;
图8为本申请智能穿戴设备天线装置另一实施例的电路结构示意图。
附图标号说明:
标号 名称 标号 名称
10 天线底座 41 处理器
20 表带 42 可调电容驱动芯片
21 第一表带 50 电控板
22 第二表带 60 摄像头
30 天线本体 70 旋钮
31、32 两个机械电子单元 C1 可调电容
33 环形金属边框 CN1 电连接件
40 天线调节控制器    
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请提出一种智能穿戴设备天线装置,应用于智能穿戴设备中,该智能穿戴设备可以为智能手表、智能手环等。随着人工智能和穿戴设备的普及,穿戴设备自适应检测方式越来越多,常见的佩戴检测多采用光感应器或感应电容器。光感应器对光路密封和产品组装工艺控制要求较高,同时可能配套光路滤波元件。电容感应器需要根据ID形态进行设计,并且通常需要单独进行感应电容器设计。也即需要在智能穿戴设备中增加较多的元件,然而智能穿戴设备,例如智能手表、手环等正逐步的走入人们的生活作为一种集智能应用和通信交互于一体的小型化智能设备,内部集成了无线通信模块、CPU、电源等模块。由于智能穿戴设备体积限制,较难在智能穿戴设备中增加元件。
为了解决上述问题,参照图1至图8,该智能穿戴设备天线装置包括:
天线底座10;
表带20,与天线底座10电连接,在智能穿戴设备被用户佩戴时,表带20与用户手臂100相切点至与天线底座10的连接点形成的长度为第一长度;
天线本体30,与天线底座10耦合连接;
佩戴姿势检测电路(图未示出),与天线本体30电连接,用于根据第一长度确定智能穿戴设备被佩戴姿势。
本实施例中,天线底座10可以作为天线装置中的接地部,该天线底座10可以是金属底座,例如可以为纯金属底座,或者至少部分为金属材质制得的金属底座。天线底座10具体可以设置于智能穿戴设备的底壳的一侧,或者与智能穿戴设备的底壳一体成型,也即天线底座10为底壳的部分结构。智能穿戴设备的底壳可以为陶瓷,PC或玻璃等等,本实施例中,智能穿戴设备的底壳可以作为智能穿戴设备的天线本体30与天线底座10中间的介质,从而实现天线本体30与天线底座10的耦合电连接。具体而言,天线底座10可以设置为中空金属环形形状,中间环形区域可以设置为镂空结构,进一步地,在镂空结构中还可以填充设置透明材质的填充件,以供心率传感器等等透过透明填充件对人体的生命体征参数进行检测。底壳在智能穿戴设备佩戴至用户手腕时,贴合用户的手腕,天线底座10能够与用户的手腕接触。天线底座10的厚度、尺寸及形状可以根据实际应用产品及应用环境等进行设置,以满足不同的应用需求。在一具体实施例中天线底座10的形状可以为圆形、方形, 例如为长方形或者正方形。
根据用户的佩戴习惯,智能穿戴设备可以被用户左手佩戴,也可以被用户右手佩戴。可以理解的是,表带20根据其使用的材质进行区分,比如金属表带20、皮革表带20、皮革表带20、硅胶表带20和珠宝表带20等,也可以根据其表带20的收紧方式来区别,比如蝴蝶扣、针扣、卡扣等。本实施例中表带20可以为金属表带20,也可以为至少部分为金属材质制得的金属表带20,例如表带20为非金属如硅胶或皮革表带20来实现时,则可以在表带20内嵌设计侧翼金属,以实现表带20与金属底座之间的电连接。表带20与天线底座10之间可以一体设置,也可以分体设置,当一体设置时,显示组件、天线调节控制器40等可以与表带20及天线底座10可拆卸连接,用户可以根据实际应用需求,更换不同的天线底座10和表带20。
表带20的数量可以为一个,也可以为两个,当设置为一个时,表带20的两个端部固定在表盘的两端。当设置为两个时,两个表带20的一端分别固定在表盘的两端,两个表带20的另一端可以通过卡扣、针扣、蝴蝶扣等可拆卸连接。本实施例以表带20设置有两个为例进行说明,两个表带20分别为第一表带21和第二表带22,第一表带21设置于天线底座10的一端,第二表带22则设置于天线底座10远离第二表带22的另一端。在智能穿戴设备佩戴至用户手腕时,两个表带20与用户手臂100形成有两个相切点,两个相切点分别与天线底座10的连接点形成的长度分别为第一子长度和第二子长度。具体地,第一表带21与用户手腕形成的相切点即为切点A,第二表带22与用户手腕形成的相切点即为切点B。表带20与用户手臂100相切点至与天线底座10的连接点形成的第一长度分别为:切点A距离天线底座10形成的第一子长度L1,以及切点B距离天线底座10形成的第二子长度L2。两个相切点距与天线底座10连接点处的距离不同,也即第一子长度L1与第一子长度L2不同,当然在其他实施例中,也可以设置为相同。并且第一子长度L1和第二子长度L2会随着左右手佩戴的不同而发生变化,例如,在左手切换至右手时,第一子长度L1增大,而第二子长度L2减小,在右手切换至左手时,第一子长度L1减小,而第二子长度L2增大。
佩戴姿势检测电路可以采用微处理器,例如单片机、DSP等等来实现,佩戴姿势检测电路也可以采用智能穿戴设备的MCU来实现,佩戴姿势检测 电路与天线本体30电连接,天线本体30与天线底座10之间耦合连接,随着第一长度的改变,天线本体30与天线底座10耦合产生的电参数(例如电流、电压等)也会随之发生变化,佩戴姿势检测电路可以根据电参数的变化,确定第一长度的具体值。
基于此,本实施例可以在智能穿戴设备中形成第一子长度和第二子长度形成的差分关系与配合实现左右手识别之间建立映射关系,根据第一子长度和第二子长度变化,即可实现在用户佩戴智能穿戴设备时,具体识别出佩戴智能穿戴设备当前被用户左手佩戴还是右手佩戴。
在一些实施例中,还可以根据实际应用的需求,表盘可以适应用户的左右手佩戴不同,表盘的显示组件的显示界面也适应左手/右手进行切换。并且在设置有旋钮70的智能穿戴设备中,旋钮的位置通常是根据左手佩戴来设置的,用户在将智能穿戴设备佩戴至左手时,旋钮70的位置为朝向用户的右手。本实施例还可以根据实际应用的需求将天线检测与内部陀螺仪的数据进行结合,判断出手表当前的佩戴是左手还是右手,并可以结合手势姿势记录统计工作、运动、睡眠等场景为健康分析提供支持。
可以理解的是,智能穿戴设备的表带20与手臂之间形成的切点距离天线底座10的长度不同,天线底座10上的电流就会不同,相应的对应流到天线本体30中的电连接件CN1再到可调电容C1上的电流就不同,可以判断用户的当前手势。对非左撇倾向人而言,左手的活动相较于右手的活动较少,因此在左手佩戴时,左手倾向于朝手腕外侧的表带20长,内侧表带20短。考虑到部分用户为左手书写习惯,在用户佩戴在左手,左手活动较多时,例如在书写时,表带20发生变化,可能会引起误判,上述通过表带20长度变化的例子可以仅适用于手势姿势的判断。为了精确的左右佩戴判断,在一些实施例中,还可以在智能穿戴设备中设置运动传感器等获取用户的运动动作,例如陀螺仪,结合陀螺仪获取的运动数据进一步判断出是左手佩戴还是右手配戴,可以根据运动传感器检测的空间位置数据确定用户手臂的运动轨迹;根据用户手臂的运动轨迹确定智能手表为左手佩戴或右手佩戴。具体而言,在用户为左手佩戴的情况下,佩戴完成后进行抬腕等运动时,会有一个对应的运动数据;在用户为右手佩戴的情况下,佩戴完成后进行抬腕等运动时,会有另一个对应的运动数据;两个运动数据会因为运动轨迹的不同,而产生 不同,因此可以根据用户手臂100相切点至与天线底座10的连接点形成的第一长度的不同,以及运动传感器获取的运动数据的不同,确定用户当前佩戴的是左手还是右手。在一些实施例中,运动传感器作为运动手表,还可以获取用户的运动数据,并且根据用户产生的运动数据,可以产生手势控制指令等,实现控制智能穿戴设备的目的。
本申请通过设置天线底座10及分别与天线底座10电连接的表带20和天线本体30,并且通过天线本体30来根据在智能穿戴设备被用户佩戴时,表带20与用户手臂100相切点至与天线底座10的连接点形成的第一长度,来确定智能穿戴设备被佩戴姿势。本申请利用天线底座10及表带20与天线本体30结合,实现了智能穿戴设备佩戴检测。
参照图1至图8,在一实施例中,天线本体30与表带20及天线底座10构成检测电容;
佩戴姿势检测电路,具体用于根据检测电容的大小,确定智能穿戴设备被佩戴姿势。
本实施例中,天线本体30与天线底座10之间耦合连接,天线本体30与天线底座10,以及与天线底座10电连接的表带20之间形成检测电容,天线本体30相当于检测电容的一个极板,天线底座10与表带20相当于检测电容的另一个极板。表带20与手臂之间的耦合为开放空间的耦合,根据电荷集中分布在金属的边缘位置,即手表表带20内嵌金属与手臂相切位置能引起电荷分布的突变。具体地,当用户手腕分别与天线底座10与表带20接触时,天线底座10与表带20之间的有效长度会发生改变,也即改变了检测电容器中,天线底座10与表带20构成的极板的面积,由静电学可知,对于平行板电容器,有如下的关系式:
C=εr·S/L      (1)
其中,εr为介电常数,S为天线本体30、天线底座10与表带20形成的检测电容中,两个极板的面积,L为检测电容中两个极板之间的距离,也即天线本体30与天线底座10之间的距离,由公式(1)可知,电容的容量与介质的介电常数成正比,与两个极板的面积成正比,与两个极板之间的距离成反比。
另外,当一个电容器充有Q量的电荷,那么电容器两个极板要形成一定 的电压,有如下关系式:
C=Q/V        (2)
其中,Q为检测电容所带电荷量,即充电电荷,充电电荷在一个电容器中固定不变,当改变了天线底座10与表带20之间的有效长度,也即改变了电容器两个极板的有效面积,产生了一个ΔS的变化时,由公式(1)可知,必然要产生一个ΔC的变化,由公式(2)进一步得知,由于ΔC的变化,因此会产生一个ΔV的变化。根据电容元件的电压电流关系设电压、电流为时间函数,求其电压、电流关系。当极板间的电压变化时,极板上的电荷也随之变化,于是在电容元件中产生了电流,此电流可由下关系式求得:
I=dq/dt=C(dV/dt)   (3)
综上可知,流过检测电容的电流与电容量呈正比例关系,而电容量与两个极板的面积呈正比例关系。基于此,随着表带20与相切点与天线底座10的长度变短,检测电容的电容量则变小,天线底座10流到天线本体30上的电流也就变小。反之,表带20与相切点与天线底座10的长度变长,检测电容的电容量则变大,天线底座10流到天线本体30上的电流也就变大。通过检测检测电容产生的电容量变化变大还是变小,即可实现左右手别,进而在用户佩戴智能穿戴设备时,具体识别出佩戴智能穿戴设备当前被用户左手佩戴还是右手佩戴。
本实施例中,天线本体30与天线底座10构成两个检测电容,分别为第一检测电容和第二检测电容;其中,
佩戴姿势检测电路,具体用于根据第一检测电容和第二检测电容的大小,确定智能穿戴设备被佩戴姿势。
本实施例中,具体而言,可以对应表带20的两个端部,或者对应两个表带20与表盘连接处的位置设置。以两个表带20为例而言,天线本体30经天线底座10与第一表带21及天线底座10构成第一检测电容,第一检测电容可以检测第一表带21与手腕形成的相切点,距离天线底座10的第一子长度的变化。天线本体30经天线底座10与第二表带22及天线底座10构成第一检测电容,第二检测电容可以检测第二表带22与手腕形成的相切点,距离天线底座10的第二子长度的变化。
基于流过检测电容的电流与电容量呈正比例关系,电容量与两个极板的 面积呈正比例关系的特性。若第一表带21与相切点与天线底座10的长度变短,第一检测电容的电容量则变小,天线底座10流到第一机械电子单元上的电流也就变小。此时,而第二表带22与相切点与天线底座10的长度变长,第二检测电容的电容量则变大,天线底座10流到第二机械电子单元上的电流也就变大。通过检测第一检测电容和第二检测电容产生的电容量产生的差分变化,即可实现左右手别,进而在用户佩戴智能穿戴设备时,具体识别出佩戴智能穿戴设备当前被用户左手佩戴还是右手佩戴。同理,在第二表带22与相切点与天线底座10的长度变短,第一表带21与相切点与天线底座10的长度变长,产生相反的变化时,也可以检测识别出佩戴智能在用户左/右手之间的切换。本实施例通过设置两个机械电子单元31、32形成差分的检测电容,可以形成智能穿戴设备的左右手识别自检,可以避免在用户误触发时,导致智能穿戴设备的误判,有利于提高左右手识别的准确性。
参照图7,在一实施例中,天线本体30还包括:
天线调节控制器40,与佩戴姿势检测电路电连接,天线调节控制器40用于根据第一长度确定智能穿戴设备为被佩戴姿势,并根据被佩戴姿势配置两个智能穿戴设备天线装置的天线参数。
需要说明的是,在智能穿戴设备的天线设计时,通常仅针对用户佩戴习惯,例如传统的手表佩戴习惯为左手,智能穿戴设备的天线设计也是针对左手佩戴时进行调试和设置。而在智能穿戴设备佩戴至右手时,天线性能是非对等,此时可能会使得天线性能不是工作在较佳状态而影响智能穿戴设备的正常使用。为此,本实施例针对智能穿戴设备左右手佩戴时天线性能非对称情况下,将可调电容的天线参数设置为可调,从而针对左右手佩戴的不同,适应性的调整天线本体30的天线参数,使天线性能能够跟随左手佩戴或者右手佩戴进行自适应地调节,无需对天线辐射单体进行设计限制,可以提高智能穿戴设备的使用便利性。本申请利用天线底座10和表带20来检测表带20与用户手腕切点距离天线底座10的长度同时实现提高天线辐射效率和佩戴检测,无需另行设置左右手识别用的传感器和电路,即可实现智能穿戴设备天线装置的复用,有利于减少智能穿戴设备的器件使用,可以缩小智能穿戴设备的电控板50体积,使智能穿戴设备更轻便化。
参照图1至图4,在一实施例中,智能穿戴设备天线装置还包括:
机械电子单元31(32),对应表带的位置,机械电子单元31(32)分别连接天线本体30与天线底座10电连接。
本实施例中,机械电子单元31(32)包括电连接件CN1,电连接件CN1为弹性电连接件CN1。机械电子单元31(32)可以实现天线本体30与天线底座10之间的可拆电连接。机械电子单元的数量为两个;其中,
两个机械电子单元31、32分设于天线底座10沿表带20方向的中心线的两侧;或者,
两个机械电子单元31、32分设于天线底座10沿表带20方向的中心线的同一侧。
本实施例中,两个机械电子单元31、32可以和天线底座10形成两个天线单体,并且两个天线单体可以工作于两个相同的频段,也可以工作于两个不同的频段,例如两个机械电子单元31、32均工作于LTE700频段,此时两个机械电子单元31、32可以使智能穿戴设备具有很好的低频特性。两个机械电子单元31、32也可以分别工作于LTE700频段和LTE1700频段。
两个机械电子单元31、32可以设置对应表带20的位置进行设置,为了缩短与表带20的距离,可以尽可能的靠近表带20的位置进行设置,在两个机械电子单元31、32分设于天线底座10沿表带20方向的中心线的两侧时,其中一个机械电子单元31可以设置在表盘的1点钟位置,另一个机械电子单元32则设置在表盘的7点钟位置。或者,其中一个机械电子单元31可以设置在表盘的11点钟位置,另一个机械电子单元32则设置在表盘的5点钟位置。
在两个机械电子单元31、32分设于天线底座10沿表带20方向的中心线的同一侧时,其中一个机械电子单元31可以设置在表盘的1点钟位置,另一个机械电子单元32则设置在表盘的5点钟位置。或者,其中一个机械电子单元31可以设置在表盘的11点钟位置,另一个机械电子单元32则设置在表盘的7点钟位置。
本实施例中,在智能穿戴设备的表盘上,例如面盖上还可以设置有摄像头60,摄像头60可以设置在表表盘的12点钟方向,两个机械电子单元31、32可以设置在摄像头60的一侧,也即设置在1点钟位置或者11点钟位置, 另一个机械电子单元32则设置在于摄像头60相对远离的一端,例如5点钟位置或者7点钟位置。
参照图7,在一实施例中,智能穿戴设备天线装置还包括:
可调电容C1,可调电容C1的一端与天线调节控制器40连接,可调电容C1的另一端与天线本体连接10连接。
天线调节控制器40具体用于根据被佩戴姿势调节可调电容C1的电容值,以配置智能穿戴设备天线装置的天线参数。
可调电容C1具体可以设置在智能穿戴设备的电控板50上,并且串联在智能穿戴设备的天线网络与天线底座10之间。在实现本实施例的智能穿戴设备的天线性能可调时,可调电容C1的一端可以与智能穿戴设备的天线网络中的天线调节控制器40连接,可调电容C1的另一端可以通过电连接件CN1,例如弹性结构的接触PAD(焊盘),弹片接触到预留的PAD点等电连接,从而实现与天线底座10电连接。其中,可调电容C1值优选0.5pF~10pF范围。弹性电连接件CN1可以设置为弹片,pogo Pin等,通过电连接件CN1可以实现天线底座10与可调电容C1的可插拔电连接。
如此,在天线装置工作时,电连接件CN1上有耦合电流从天线底座10流到可调电容C1,也即电流自天线底座10经电连接件CN1流向可调电容C1,再经可调电容C1流向智能穿戴设备的天线网络,从而使天线底座10与机械电子单元形成一天线单体,实现无线信号的辐射和接收。本实施例中,天线底座10与表带20一体设计,天线本体30与天线底座10可以从电连接件CN1处可拆卸的连接,可以适用不同的表带20需求或收纳需求。
可调电容C1的电容值可以调节,可调电容C1可以改善天线在高频段的性能。根据可调天线的工作原理是:通过对可调电容C1的容值大小进行微调,天线的阻抗匹配将会由于可调电容C1容值大小可调而产生多种不同的状态,这些不同的阻抗匹配状态组合在一起,在不同场景下,例如左右手佩戴不同的情况下,可以给出其对应的匹配状态,使得该状态下的天线回波损耗和效率最佳,进而使天线无论在何种情况下均能工作在较佳的性能。
可调电容C1的一端还可以与天线本体30的辐射体连接,可调电容C1的另一端经电连接件CN1与天线底座10连接,从而实现辐射体与天线底座10之间的耦合连接,本实施例还可以经可调电容C1实现表带与用户手臂相 切点至与天线底座的连接点形成的长度为第一长度的长度检测,进而实现智能穿戴设备被佩戴姿势。
参照图8,在一实施例中,天线调节控制器40包括:
处理器41,与佩戴姿势检测电路电连接,处理器41用于根据被佩戴姿势输出对应的控制信号;
可调电容驱动芯片,可调电容驱动芯片42的受控端与处理器41连接,可调电容驱动芯片42的输出端与可调电容C1电连接,可调电容驱动芯片42用于根据控制信号调节可调电容C1的电容值,以配置智能穿戴设备天线装置的天线参数。
本实施例中,处理器41可以通过运行或执行存储的软件程序和/或模块,以及调用存储的数据,对接收到的数据、信号进行处理,从而根据接收的电流信号大小来确定此时用户佩戴的左手还是右手,并根据天线与左/右手,以及天线性能之间的映射关系,计算可调电容C1的电容值的调节量,例如可调电容C1的电容区间为最大8.2pF,最小1.2pF,步进0.2pF,在计算出电容值的调节量后,逐步的对可调电容C1的电容值进行调节。处理器41具体可以控制可调电容驱动芯片42工作,通过控制可调电容驱动芯片42的偏置电压,从而对可调电容C1的容值大小进行调节,天线的阻抗匹配将会由于可调电容C1容值变化,工作于其对应的匹配状态,使得该状态下的天线回波损耗和效率最佳。本实施例中还可以通过设置电容配置表的方式,预先根据实际需要进行设置,根据接收的电流信号大小确定此时用户佩戴的左手还是右手,并根据天线与左/右手,以及天线性能之间的映射关系,根据检测的电流信号的大小,从电容配置表中,选择适配的电容值,并对可调电容C1进行调节。
本实施例可以用户佩戴产品后根据两路侧翼金属与手臂之间的检测状态,并将获取的检测的电流信号进行运算比较等信号处理,以根据检测的电流信号大小判断左/右手配戴姿势,并控制可调电容驱动芯片42工作,从而根据电流信号与电容值配置表之间的对应关系,对可调电容C1的电容值大小进行自适应调节。例如,初始状态下两个机械电子单元31、32对应的电容值均为10pF,在用户佩戴智能穿戴设备时,通过处理器41计算电流信号大小,确定检测智能穿戴设备当前的佩戴状态为左手佩戴。当天线装置的工作LTE700频段,根据电容配置表调节一个机械电子单元31对应的可调电容C1 配置8.2pF,另一个机械电子单元32对应的可调电容C1配置为6.8pF时,天线工作在最佳状态。当天线工作在LTE1700频段,根据电容配置表调节一个机械电子单元31对应的可调电容C1配置1.2pF,另一个机械电子单元32对应的可调电容C1配置1.5pF时,天线工作在最佳状态。
参照图1至图4,在一实施例中,天线本体30还包括:
环形金属边框33,环形金属边框33通过两个机械电子单元31、32与天线底座10耦合连接。
本实施例中,环形金属边框33可以是纯金属材料制得,也可以采用金属材料和非金属材料共同构成,环形金属边框33构成智能穿戴设备壳体的一部分,无需占用壳体顶部的空间,可以很好的满足超薄智能穿戴设备的壳体设计需求。环形金属边框33可以采用钛合金、铝等金属材料制得。环形金属边框33的外部轮廓可以呈圆形、方形或多边形。当然在其他实施例中,环形金属边框33的形状可以不限,仅需能适应智能穿戴设备的外形即可。
本申请还提出一种智能穿戴设备,智能穿戴设备包括如上的智能穿戴设备天线装置;以及,
该智能穿戴设备天线装置的详细结构可参照上述实施例,此处不再赘述;可以理解的是,由于在本申请智能穿戴设备中使用了上述智能穿戴设备天线装置,因此,本申请智能穿戴设备的实施例包括上述智能穿戴设备天线装置全部实施例的全部技术方案,且所达到的技术效果也完全相同,在此不再赘述。
参照图1至图4,智能穿戴设备还包括面盖及底壳,面盖及底壳分设于智能穿戴设备天线装置的环形金属边框10的两侧,以围合形成容置腔;
电控组件,设于容置腔内,电控组件与智能穿戴设备天线装置电连接。
在本实施中,面盖及底壳的材质可以为塑胶、钢化玻璃等等硬质材质制得,此处不做限定。底壳可以与面盖和边框围合构成智能穿戴设备的壳体,该壳体内形成有容置腔,智能穿戴设备的显示组件和天线调节控制器40、电池等等可以容置于该容置腔内,并且与壳体形成智能穿戴设备的表盘。电控组件包括电控板50及设置在电控板50上的各个功能电路部分等等,上述实施例中的可控电容C1可以设置于电控板50上。面盖可以为触摸屏,当显示模块为显示屏时,面盖与显示模块可通过屏幕贴合组装工艺进行集成。环形 金属边框10可以为中空结构,面盖盖合于环形金属边框10的一侧,底壳盖合于环形金属边框10的另一端,以使面盖、环形金属边框10以及底壳依次叠设,并围合形成容置腔。面盖与环形金属边框10以及底壳与环形金属边框10可通过防水胶相粘接,实现面盖与环形金属边框10以及底壳与环形金属边框10之间的防水,以使外界的水分不会进入容置腔内,保证容置腔内的电控组件等能够正常和稳定工作。电控组件可实现通话、收发信息、摄像、视频通话、扫描二维码、移动支付、查看环境信息以及查看身体信息等功能。因此,在本实施例中,该电控组件还包括未图示的摄像头60、电池、扬声器、麦克风、卡座组件、无线通信模块及实现各种功能的传感器,其中传感器可以是重力传感器、加速传感器、距离传感器、心率传感器、气压传感器,紫外线检测器等。其中,电控组件中的无线通信模块可以是WIFI、5G通信模块、GPS、蓝牙通信模块等,无线通信模块与天线结构电连接,从而通过天线结构接收和回传数据。电控组件可包括用于身份识别的元件,例如指纹识别传感器、面部识别传感器等。天线结构根据无线通信模块的不同,设置的类型和数量也不同,例如在智能穿戴设备内设置有WIFI模块时,天线结构则包括能够实现WIFI通信的WIFI天线,在设置有蓝牙通信模块时,天线结构则包括能够实现蓝牙通信的蓝牙天线等。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种智能穿戴设备天线装置,其特征在于,所述智能穿戴设备天线装置包括:
    天线底座;
    表带,与所述天线底座电连接,在智能穿戴设备被用户佩戴时,所述表带与用户手臂相切点至与所述天线底座的连接点形成的长度为第一长度;
    天线本体,与所述天线底座耦合连接;
    佩戴姿势检测电路,与所述天线本体电连接,用于根据所述第一长度确定智能穿戴设备被佩戴姿势。
  2. 如权利要求1所述的智能穿戴设备天线装置,其特征在于,所述天线本体与所述天线底座构成检测电容;
    所述佩戴姿势检测电路,具体用于根据所述检测电容的大小,确定所述智能穿戴设备被佩戴姿势。
  3. 如权利要求2所述的智能穿戴设备天线装置,其特征在于,所述表带与用户手臂形成有两个相切点,两个相切点分别与所述天线底座的连接点形成的长度分别为第一子长度和第二子长度;
    所述天线本体与所述天线底座构成两个检测电容,分别为第一检测电容和第二检测电容;
    所述佩戴姿势检测电路,具体用于根据所述第一检测电容和所述第二检测电容的大小,确定所述智能穿戴设备被佩戴姿势。
  4. 如权利要求1所述的智能穿戴设备天线装置,其特征在于,所述智能穿戴设备天线装置还包括:
    机械电子单元,对应所述表带的位置,所述机械电子单元分别连接所述天线本体与所述天线底座电连接。
  5. 如权利要求4所述的智能穿戴设备天线装置,其特征在于,所述机械电子单元的数量为两个,
    两个所述机械电子单元分设于所述天线底座沿所述表带方向的中心线的两侧;或者,
    两个所述机械电子单元分设于所述天线底座沿所述表带方向的中心线的 同一侧。
  6. 如权利要求1所述的智能穿戴设备天线装置,其特征在于,所述智能穿戴设备天线装置还包括:
    可调电容,所述可调电容的一端与所述天线底座连接;
    天线调节控制器,所述天线调节控制器分别与所述佩戴姿势检测电路和所述可调电容电连接,用于根据所述被佩戴姿势调节所述可调电容的电容值,以配置所述智能穿戴设备天线装置的天线参数。
  7. 如权利要求6所述的智能穿戴设备天线装置,其特征在于,所述天线调节控制器包括:
    处理器,与佩戴姿势检测电路电连接,所述处理器用于根据所述被佩戴姿势输出对应的控制信号;
    可调电容驱动芯片,所述可调电容驱动芯片的受控端与所述处理器连接,可调电容驱动芯片的输出端与所述可调电容电连接,所述可调电容驱动芯片用于根据所述控制信号调节所述可调电容的电容值,以配置所述智能穿戴设备天线装置的天线参数。
  8. 如权利要求1所述的智能穿戴设备天线装置,其特征在于,所述天线本体还包括:
    环形金属边框,所述环形金属边框与所述天线底座耦合连接。
  9. 如权利要求1至8任意一项所述的智能穿戴设备天线装置,其特征在于,所述智能穿戴设备天线装置还包括:
    运动传感器,与所述佩戴姿势检测电路连接,所述运动传感器用户获取智能穿戴设备的运动数据;
    佩戴姿势检测电路,还用于根据所述智能穿戴设备的运动数据确定智能穿戴设备被佩戴姿势。
  10. 一种智能穿戴设备,其特征在于,所述智能穿戴设备包括如权利要求1-9任意一项所述的智能穿戴设备天线装置。
PCT/CN2021/138608 2021-09-30 2021-12-16 智能穿戴设备天线装置及智能穿戴设备 WO2023050593A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/403,981 US20240235013A9 (en) 2021-09-30 2024-01-04 Antenna apparatus for smart wearable device and smart wearable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111168381.0 2021-09-29
CN202111168381.0A CN113991280B (zh) 2021-09-30 2021-09-30 智能穿戴设备天线装置及智能穿戴设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/403,981 Continuation US20240235013A9 (en) 2021-09-30 2024-01-04 Antenna apparatus for smart wearable device and smart wearable device

Publications (1)

Publication Number Publication Date
WO2023050593A1 true WO2023050593A1 (zh) 2023-04-06

Family

ID=79737684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138608 WO2023050593A1 (zh) 2021-09-30 2021-12-16 智能穿戴设备天线装置及智能穿戴设备

Country Status (3)

Country Link
US (1) US20240235013A9 (zh)
CN (1) CN113991280B (zh)
WO (1) WO2023050593A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204708A (ja) * 2014-04-15 2015-11-16 株式会社Nttドコモ 端末装置及び送電制御方法
CN106648105A (zh) * 2016-12-29 2017-05-10 努比亚技术有限公司 一种智能设备的天线切换方法及装置
CN108288752A (zh) * 2017-12-29 2018-07-17 瑞声精密制造科技(常州)有限公司 智能穿戴设备的天线系统及智能穿戴设备
CN108804170A (zh) * 2018-06-15 2018-11-13 努比亚技术有限公司 智能穿戴设备的穿戴确定方法、智能穿戴设备及存储介质
CN111026273A (zh) * 2019-12-10 2020-04-17 深圳市圆周率智能信息科技有限公司 智能穿戴设备自动设置方法、装置、电子设备及存储介质
CN111916898A (zh) * 2020-08-18 2020-11-10 安徽华米信息科技有限公司 圆极化天线结构及智能穿戴设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570005B (zh) * 2012-01-02 2014-03-12 西安电子科技大学 可穿戴的组合式超宽带天线
US9166282B2 (en) * 2012-01-19 2015-10-20 Nike, Inc. Wearable device assembly having antenna
US9450298B2 (en) * 2014-10-01 2016-09-20 Salutron, Inc. User-wearable devices with primary and secondary radiator antennas
US20160174842A1 (en) * 2014-12-17 2016-06-23 Elwha Llc Epidermal electronics systems having radio frequency antennas systems and methods
CN117199775A (zh) * 2017-03-02 2023-12-08 广东小天才科技有限公司 智能穿戴设备
CN110048224B (zh) * 2019-03-28 2021-05-11 Oppo广东移动通信有限公司 天线模组和电子设备
CN110336119B (zh) * 2019-06-30 2021-06-15 RealMe重庆移动通信有限公司 可穿戴设备以及智能手表
CN110247173B (zh) * 2019-06-30 2021-06-15 RealMe重庆移动通信有限公司 可穿戴设备以及智能手表
CN112468913B (zh) * 2019-09-06 2022-07-19 华为技术有限公司 佩戴检测装置
CN113346231B (zh) * 2021-05-31 2023-02-28 歌尔股份有限公司 一种天线及可穿戴设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204708A (ja) * 2014-04-15 2015-11-16 株式会社Nttドコモ 端末装置及び送電制御方法
CN106648105A (zh) * 2016-12-29 2017-05-10 努比亚技术有限公司 一种智能设备的天线切换方法及装置
CN108288752A (zh) * 2017-12-29 2018-07-17 瑞声精密制造科技(常州)有限公司 智能穿戴设备的天线系统及智能穿戴设备
CN108804170A (zh) * 2018-06-15 2018-11-13 努比亚技术有限公司 智能穿戴设备的穿戴确定方法、智能穿戴设备及存储介质
CN111026273A (zh) * 2019-12-10 2020-04-17 深圳市圆周率智能信息科技有限公司 智能穿戴设备自动设置方法、装置、电子设备及存储介质
CN111916898A (zh) * 2020-08-18 2020-11-10 安徽华米信息科技有限公司 圆极化天线结构及智能穿戴设备

Also Published As

Publication number Publication date
US20240235013A9 (en) 2024-07-11
CN113991280A (zh) 2022-01-28
US20240136705A1 (en) 2024-04-25
CN113991280B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US11540736B2 (en) Wearable electronic device including biometric sensor
CN106462793B (zh) 基于测量的天线阻抗的适应性天线调谐
US9833159B2 (en) Wearable electronic device
CN106990879A (zh) 电子设备和在电子设备中确定触摸的方法
KR20200120407A (ko) 생체 센서 및 무선 충전 모듈을 포함하는 웨어러블 전자 장치
CN107589553B (zh) 智能眼镜与镜盒
US20150364938A1 (en) Three-Dimensional Wireless Charging Coil
CN205547676U (zh) 可穿戴设备及智能手环
US8235586B2 (en) Smart card watch
US20070258039A1 (en) Spectacle frame bridge housing electronics for electro-active spectacle lenses
CN207133527U (zh) 智能眼镜与镜盒
US20180043646A1 (en) Method of power transmission to contact lens and system using the same
JP2007304587A (ja) 電気活性なレンズのための電子機器を収容する眼鏡フレームのブリッジ
CN112312826A (zh) 包括具有反射特性的第一光学构件和具有能够吸收由第一光学构件反射的光的吸收特性的第二光学构件的传感器及包括该传感器的电子设备
CN112148074A (zh) 电子设备
WO2023050593A1 (zh) 智能穿戴设备天线装置及智能穿戴设备
TWM494342U (zh) 具有紫外線感測器的智慧型手錶
US10466653B2 (en) Smart glasses and wristwatch including the same
US20230144358A1 (en) Wearable device and method for measuring human body impedance
CN213665223U (zh) 一种可穿戴设备
KR101678645B1 (ko) 스마트 안경 및 이를 포함하는 손목시계
CN209995502U (zh) 用于连接表盘的智能表带
CN210019300U (zh) 一种无线无源脉搏测试装置及其应用的手机壳和穿戴装置
CN219418052U (zh) 盖板、显示组件以及智能穿戴设备
CN209951534U (zh) 一种颠覆传统视觉习惯并进行脑眼协调运动影像训练系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE