WO2023050468A1 - 油气装备的织构化表面及其加工方法 - Google Patents

油气装备的织构化表面及其加工方法 Download PDF

Info

Publication number
WO2023050468A1
WO2023050468A1 PCT/CN2021/123235 CN2021123235W WO2023050468A1 WO 2023050468 A1 WO2023050468 A1 WO 2023050468A1 CN 2021123235 W CN2021123235 W CN 2021123235W WO 2023050468 A1 WO2023050468 A1 WO 2023050468A1
Authority
WO
WIPO (PCT)
Prior art keywords
texture
substrate
oil
coating
wear
Prior art date
Application number
PCT/CN2021/123235
Other languages
English (en)
French (fr)
Inventor
钟林
王国荣
刘清友
魏刚
何霞
陈林燕
胡刚
王川
张政
李智超
王紫萱
伍小龙
Original Assignee
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学 filed Critical 西南石油大学
Priority to US17/935,692 priority Critical patent/US20230100604A1/en
Publication of WO2023050468A1 publication Critical patent/WO2023050468A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids

Definitions

  • the invention relates to the technical field of oil and gas equipment, in particular to a textured surface of oil and gas equipment and a processing method thereof.
  • the purpose of the present invention is to provide a textured surface of oil and gas equipment and its processing method, in order to solve the problems existing in the above-mentioned prior art, and to improve the anti-friction, wear resistance and durability of oil and gas equipment through the technology of combining coating and texture. Corrosion and other properties, and then achieve the purpose of improving the service life of oil and gas equipment, oil and gas production efficiency, and reducing economic losses caused by equipment failure.
  • the present invention provides a textured coating for oil and gas equipment, including a substrate one, an anti-wear coating and a substrate two, and also includes a texture, and the texture includes a texture one and/or texture two; the first substrate and the second substrate can move relatively during operation, the first texture is arranged on the contact surface between the first substrate and the wear-resistant coating, the texture The second is arranged on the contact surface between the anti-wear coating and the second substrate.
  • the texture includes a plurality of pits or protrusions of different shapes, and the plurality of pits or protrusions are three-dimensionally distributed and combined to form a textured area.
  • the shape of the pit or the protrusion is one or more of circular, square, triangular, cylindrical, and cross-shaped textures.
  • the pit or the protrusion has a depth of 20-200 ⁇ m and a diameter of 50-500 ⁇ m.
  • the ratio of the area of the texture 1 to the surface area of the substrate 1 is 1%-15%, and the ratio of the area of the texture 2 to the surface area of the anti-wear coating is 1%-15%
  • the plurality of pits or protrusions of the texture are arranged uniformly or at intervals.
  • a solid lubricant is distributed on the surface of the second base.
  • the surface of the anti-wear coating is strengthened and modified by using a laser before laser processing the texture.
  • the invention also discloses a method for processing the textured surface of oil and gas equipment, which includes the following steps:
  • Step 1 selecting the substrate 1;
  • Step 2 spraying a coating on the outer surface of the substrate 1 to obtain the anti-wear coating
  • the texture 1 is processed on the contact surface of the substrate 1 with the anti-wear coating; and/or, on the outer surface of the substrate 1
  • the texture 2 is processed on the contact surface between the anti-wear coating and the substrate 2;
  • Step 3 selecting the substrate 2.
  • a solid lubricant is evenly sprayed on the surface of the base 2 to obtain the base 2 with a solid lubricating coating.
  • the invention proposes a combination of surface texture and coating applied to the textured surface of oil and gas equipment, and improves the anti-friction, wear resistance, erosion resistance and corrosion resistance of oil and gas equipment through the technology of combining coating and texture And various performances in anti-vibration, to achieve the purpose of improving the service life of oil and gas equipment, oil and gas production efficiency, and reducing economic losses caused by equipment failure.
  • Fig. 1 is a schematic structural view of the textured surface of the oil and gas equipment of the present invention
  • Fig. 2 is a schematic diagram of the layout of the coated textured bearing in the first embodiment
  • the purpose of the present invention is to provide a textured surface of oil and gas equipment and its processing method, in order to solve the problems existing in the above-mentioned prior art, and to improve the friction reduction, wear resistance and durability of oil and gas equipment through the technology of combining coating and texture. Erosion and corrosion resistance and other properties, thereby achieving the purpose of improving the service life of oil and gas equipment, oil and gas production efficiency, and reducing economic losses caused by equipment failure.
  • this embodiment provides a textured surface of oil and gas equipment, including a substrate 1, an anti-wear coating and a substrate 2, and also includes a texture, the texture includes texture 1 and/or texture 2;
  • the first substrate and the second substrate can move relatively during operation, the first texture is arranged on the contact surface between the first substrate and the anti-wear coating, and the second texture is arranged on the contact surface between the anti-wear coating and the second substrate.
  • the oil and gas equipment combined with texture coating is processed by the following methods:
  • Step 1 use laser processing texture-6 on the surface of substrate-1 to obtain surface texture; the shape of the pits (micro pits) or protrusions of texture-16 is selected from circles, squares, triangles, cylinders, ten One or more types of font textures, a plurality of micro pits or protrusions form a textured area, which are evenly arranged at intervals along the plane or curved surface on the entire surface of the substrate-1.
  • Step 2 Process a uniform hard wear-resistant coating on the surface of the substrate 1 with a surface texture, and strengthen the surface with a laser to obtain a hard wear-resistant coating 2 .
  • Step 3 using a laser to process the surface texture on the surface of the hard wear-resistant coating 2 to obtain a hard wear-resistant coating 2 with a surface texture 2 5; micro-pits of texture 1 6 and texture 2 5 or
  • the protrusions have a depth of 50-200 ⁇ m, a diameter of 50-500 ⁇ m, and a texture area ratio of 1%-15%.
  • the shape of micro-pits or protrusions in texture 25 is one or more selected from circular, square, triangular, cylindrical, and cross-shaped textures, and multiple micro-pits or protrusions are combined along three-dimensional directions
  • the textured areas are arranged at intervals in the contact area of friction oil and gas equipment.
  • Step 4 Evenly spraying the solid lubricant 3 on the surface of the base body 2 4 to obtain the base body 2 4 with a solid lubricating coating, and the base body 1 and the base body 2 4 are in contact with each other.
  • the relative positions of the base body 1 and the base body 2 4 can be interchanged, and step 4 can be omitted when there is only a single base body.
  • step one the specific process of using laser processing texture-6 includes the following steps:
  • Friction performance test of textured coating equipment According to the characteristics of the specific coating textured oil and gas equipment operating conditions, the following tests are selectively carried out on the coating textured objects.
  • the substrate-1 and the test diamond indenter slide relatively slowly, and gradually increase the load until the coating peels off. Record the coating peeling off load strength. Whether the coating is peeled off can be judged by the graphic fluctuation of the acoustic sensor. The greater the load strength when the coating peels off, the higher the bonding strength between the coating and the substrate-1.
  • the textured coating equipment and non-textured equipment were run to failure under simulated working conditions, combined with statistics on the service life of the coating textured equipment used in the field, to evaluate whether the surface texture has the effect of prolonging the life.
  • this embodiment provides a textured coating for a roller cone bit sliding bearing, including a journal substrate 1 7, a bearing anti-wear coating 8, a shaft sleeve substrate 2 9, and a bearing solid lubricant 10 , Bearing texture two 11, bearing texture one 12.
  • the coated textured sliding bearing can effectively improve the anti-wear and drag reduction effects of the bearing.
  • Step 1 using laser to process the bearing texture 2 11 on the surface of the journal base 1 7, and the bearing texture 2 11 is evenly spaced along the circumferential direction or arranged at intervals on the entire journal surface to obtain a textured journal;
  • the processing method may be spraying, electroplating, mask electrolytic processing, embossing processing, micro-ultrasonic processing or chemical etching to form a texture with target parameters.
  • the shape of the micro-pit texture is a textured area composed of one or two of circular, square, triangular, cylindrical, and cross-shaped textures.
  • Step 2 Spraying the bearing anti-wear coating 8 on the surface of the textured journal to obtain the coated journal; the coating is a wear-resistant alloy material.
  • Step 3 using a laser to process the bearing texture-12 on the surface of the bearing anti-wear coating 8 to obtain a textured coating;
  • the depth of the texture is 20-200 ⁇ m
  • the diameter is 50-500 ⁇ m
  • the texture area ratio is 1%-15%.
  • the bearing texture 2 11 and the bearing texture 1 12 can be processed by spraying, electroplating, mask electrolytic processing, embossing processing, micro-ultrasonic processing or chemical etching, etc., to form a texture with target parameters .
  • the shape of the journal texture is a textured area composed of one or more of circular, square, triangular, cylindrical, and cross-shaped textures. The textured area is part of the bearing area or evenly spaced along the circumferential direction on the entire journal surface.
  • Step 4 process the solid lubricant 3 on the surface of the shaft sleeve base 2 9 to obtain the shaft sleeve with the bearing solid lubricant 10 .
  • Step 5 Select the relevant methods for testing the coating bonding force and friction performance to test the coating textured drill bit sliding bearing.
  • the textured coated drill bit sliding bearing obtained by the above scheme of the present invention utilizes the common anti-friction effect of the coating and the texture, and utilizes the characteristics of the hydrodynamic lubrication effect produced by the surface texture to improve the bearing capacity of the lubricating oil film and reduce
  • the friction and wear between the journal bushings further improves the friction and wear performance of the sliding bearing;
  • the combination of the texture to increase the roughness of the substrate and the coating process greatly improves the bonding strength between the coating and the substrate, and alleviates the friction and wear of the coating during the operation of the sliding bearing.
  • the problem of peeling can be improved, and the ability of surface corrosion resistance and wear resistance can be increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

油气装备的织构化表面,包括基体一、抗磨涂层和基体二,还包括织构,所述织构包括织构一和/或织构二;所述基体一与所述基体二在工作时能够相对运动,所述织构一布置于所述基体一与所述抗磨涂层的接触表面,所述织构二布置于所述抗磨涂层与所述基体二的接触表面。一种油气装备的织构化表面的加工方法,通过涂层与织构结合的技术,同时提高油气装备的减摩、耐磨、耐腐蚀等多种性能,达到提高油气装备使用寿命、油气生产效率、减少设备失效带来的经济损失的目的。

Description

[根据细则37.2由ISA制定的发明名称] 油气装备的织构化表面及其加工方法 技术领域
本发明涉及油气装备技术领域,特别是涉及一种油气装备的织构化表面及其加工方法。
背景技术
目前,全球能源问题越来越严峻,常规油气资源的开发远远不能满足人类的需要,深海/深层油气和非常规资源勘探开发技术快速发展,有益于缓解能源危机。然而,高温、高压、腐蚀、冲蚀等复杂严苛的环境因素限制了油气装备寿命和工作性能,直接影响深海/深层油气和非常规资源勘探开发的效率和成本。
现有的油气装备通常依靠改进机械结构或只使用单一的涂层的技术改善相对运动部位的摩擦副摩擦学性能,存在减摩、抗磨效果不足、耐腐蚀性能差的缺点,导致装备寿命难以满足生产需求的问题。
因此,如何综合提高油气装备耐磨、耐腐蚀性能以应对复杂严苛的工况,打破油气开采技术的瓶颈、进一步提升油气装备的工作性能、实现油气增产,需是目前亟待解决的问题。
发明内容
本发明的目的是提供一种油气装备的织构化表面及其加工方法,以解决上述现有技术存在的问题,通过涂层与织构结合的技术提高油气装备的减摩、耐磨及耐腐蚀等多种性能,进而实现提高油气装备使用寿命、油气生产效率、减少设备失效带来的经济损失的目的。
为实现上述目的,本发明提供了如下方案:本发明提供一种油气装备的织构化涂层,包括基体一、抗磨涂层和基体二,还包括织构,所述织构包括织构一和/或织构二;所述基体一与所述基体二在工作时能够相对运动,所述织构一布置于所述基体一与所述抗磨涂层的接触表面,所述织构二布置于所述抗磨涂层与所述基体二的接触表面。
优选地,所述织构包括多个不同形状的凹坑或凸起,多个所述凹坑或凸起沿三维方向立体分布组合成的织构化区域。
所述凹坑或所述凸起的形状为圆形、正方形、三角形、圆柱形、十字形织构中的一种或多种。
优选地,所述凹坑或所述凸起的深度为20-200μm,直径为50-500μm。
优选的,所述织构一的面积占所述基体一表面积的比率为1%-15%,所述织构二的面积占所述抗磨涂层表面积的比率为1%-15%
优选的,所述织构的多个所述凹坑或所述凸起为均匀整齐排列或间隔排列。
优选地,所述基体二的表面分布有固体润滑剂。
优选的,所述抗磨涂层的表面在激光加工所述织构前,使用激光进行强化改性。
本发明还公开一种油气装备的织构化表面的加工方法,包括以下步骤:
步骤一、选取所述基体一;
步骤二、在所述基体一的外表面上喷涂涂层,进而得到所述抗磨涂层;
在所述基体一的外表面上喷涂涂层之前,在所述基体一与所述抗磨涂层的接触表面上加工出所述织构一;和/或,在所述基体一的外表面上喷涂涂层之后,在所述抗磨涂层与所述基体二的接触表面上加工出所述织构二;
步骤三、选取所述基体二。
优选的,所述步骤三中,在所述基体二的表面均匀喷涂固体润滑剂,得到带固体润滑涂层的所述基体二。
本发明相对于现有技术取得了以下有益技术效果:
本发明提出了一种将表面织构与涂层相结合应用于油气装备的织构化表面,通过涂层与织构结合的技术提高油气装备的减摩、耐磨、耐冲蚀、耐腐蚀及抗振中多种性能,达到提高油气装备使用寿命、油气生产效率、减少设备失效带来的经济损失的目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附 图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明油气装备的织构化表面的结构示意图;
图2为实施例一中涂层织构化轴承布置示意图;
其中,1基体一;2抗磨涂层;3固体润滑剂;4基体二;5织构二;6织构一;7轴颈基体一;8轴承抗磨涂层;9轴套基体二;10轴承固体润滑剂;11轴承织构二,12轴承织构一。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种油气装备的织构化表面及其加工方法,以解决上述现有技术存在的问题,通过涂层与织构结合的技术提高油气装备的减摩、耐磨、耐冲蚀及耐腐蚀等多种性能,进而实现提高油气装备使用寿命、油气生产效率、减少设备失效带来的经济损失的目的。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,本实施例提供一种油气装备的织构化表面,包括基体一、抗磨涂层和基体二,还包括织构,织构包括织构一和/或织构二;基体一与基体二在工作时能够相对运动,织构一布置于基体一与抗磨涂层的接触表面,织构二布置于抗磨涂层与基体二的接触表面。
织构涂层结合的油气装备采用以下方法进行加工:
步骤一、在基体一1表面使用激光加工织构一6获得表面织构;织构一6的凹坑(微凹坑)或凸起形状为选自圆形、正方形、三角形、圆柱形、十字形织构中的一种或多种,多个微凹坑或凸起组成织构化区域,沿平面或曲面间隔均匀排布于整个基体一1表面。
步骤二、在具有表面织构的基体一1表面加工均匀硬质抗磨涂层,并用激光强化表面,得到硬质抗磨涂层2。
步骤三、在硬质抗磨涂层2表面使用激光加工表面织构,得到带有表面织构二5的硬质抗磨涂层2;织构一6和织构二5的微凹坑或凸起的深度为50-200μm,直径为50-500μm,织构面积率为1%-15%。织构二5的微凹坑或凸起形状为选自圆形、正方形、三角形、圆柱形、十字形织构中的一种或多种,多个微凹坑或凸起沿三维立体方向组合成织构化区域,间隔排布于摩擦油气装备接触区域。
步骤四、在基体二4表面均匀喷涂固体润滑剂3,得到带固体润滑涂层的基体二4,基体一1和基体二4相接触。
其中,根据具体应用装备的情况,基体一1、基体二4的相对位置可互换,当只有单个基体时,可省略步骤四。
其中,在步骤一中,使用激光加工织构一6的具体过程包括以下步骤:
S1、将要加工的基体一1置于激光加工旋转平移加工台,利用顶针、同轴度检测表调整稳定的夹持位置,设置所需的激光加工参数;
S2、调整激光加工旋转平移加工台进行对焦,对加工表面进行预扫描,并并通过平移和旋转运动配合激光束在基体一1表面进行织构加工,形成织构一6。
织构涂层化后装备摩擦性性能测试:根据具体涂层织构化油气装备工况特点,对涂层织构化对象选择性地进行以下测试。
1、涂层与基底胶结强度
使用表面划痕测试仪对织构化基体一1上涂覆的表面涂层施加正向载荷,基体一1与测试金刚石压头相对缓慢滑动,逐渐增加载荷,直至涂层剥落,记录涂层剥落的载荷强度。其中涂层是否剥落可凭借声传感器的图形波动进行判定。涂层剥落时载荷强度越大,则涂层与基体一1的胶结强度越高。
2、织构涂层减摩抗磨效果测试
1)减摩性能测试
利用单元/全尺寸轴承试验机进行摩擦性能测试,利用激光加工单元/全尺寸织构化涂层钻头滑动轴承,在模拟工况下检测滑动轴承的摩擦系数以及磨损寿命,与相同模拟工况下无织构全尺寸试件进行对比分析。摩擦系数越低、磨损量越低的织构涂层减摩抗磨效果越好。
2)表面温度检测
利用多功能摩擦实验机的温度监测系统实时观测涂层织构化试件的温度变化,与无织构试件对比各个时间段、工况下的温度及其温升,以此评价表面织构在降温方面效果。
3)表面磨损分析
回收经摩擦实验的试件,通过超声波清洗,SEM、白光干涉仪、镜像显微镜等观测表面形貌,对比分析织构化和无织构摩擦副的表面磨损形貌,、涂层越保存完好的织构涂层减摩抗磨效果越好。
3、密封泄漏量测试
对有密封要求油气装备进行涂层织构化加工后,于全尺寸设备上模拟真实工况运行,回收泄露的润滑油或钻井液进行体积测量,进而对泄漏量进行定量分析。
5、实际使用寿命统计
织构涂层化后装备与无织构装备在模拟工况下运行至失效,结合统计现场使用的涂层织构化装备的使用寿命,评价表面织构是否具有延长寿命的效果。
实施例一
参照图2所示,本实施例提供了一种涂层织构化的牙轮钻头滑动轴承,包括轴颈基体一7、轴承抗磨涂层8、轴套基体二9、轴承固体润滑剂10、轴承织构二11,轴承织构一12。涂层织构化滑动轴承能有效提高轴承抗磨、减阻效果。
步骤一、在轴颈基体一7表面使用激光加工轴承织构二11,轴承织构二11沿周向间隔均匀或间隔排布于整个轴颈表面,得到带织构的轴颈;
可选的,加工方式可为喷镀、电镀、掩膜电解加工、压刻加工、微细超声波加工或化学刻蚀等方式,形成目标参数的织构。微凹坑织构形状为圆形、正方形、三角形、圆柱形、十字形织构中的一种或两种组成的织构化区域。
步骤二、在带织构的轴颈表面喷涂轴承抗磨涂层8,得到带涂层的轴颈;涂层为耐磨合金材料。
步骤三、在轴承抗磨涂层8表面使用激光加工轴承织构一12,得到 织构化涂层;
进一步的,织构的深度为20-200μm,直径为50-500μm,织构面积率为1%-15%。
可选的,轴承织构二11,轴承织构一12的加工方式可为喷镀、电镀、掩膜电解加工、压刻加工、微细超声波加工或化学刻蚀等方式,形成目标参数的织构。轴颈织构形状为圆形、正方形、三角形、圆柱形、十字形织构中的一种或多种组成的织构化区域。织构区域为部分轴承区域或沿圆周方向间隔均匀排布于整个轴颈表面。
步骤四、在轴套基体二9表面加工固体润滑剂3,得到带轴承固体润滑剂10的轴套。
步骤五、选择涂层结合力、摩擦性性能测试相关方法对涂层织构化钻头滑动轴承进行测试。
通过本发明上述方案得到的织构化涂层钻头滑动轴承,利用了涂层和织构共同的减摩效果,利用表面织构产生流体动压润滑效应的特性来提高润滑油膜承载力,减小轴颈轴套之间的摩擦磨损,进一步改善滑动轴承摩擦磨损性能;还利用织构增加基体粗糙度与涂层工艺结合大大提升涂层与基体结合强度,缓解涂层在滑动轴承运行过程中易剥落的问题,增加表面耐腐、耐磨的能力。
需要说明的是,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内,不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种油气装备的织构化表面,包括基体一、抗磨涂层和基体二;其特征在于:还包括织构,所述织构包括织构一和/或织构二;所述基体一与所述基体二在工作时能够相对运动,所述织构一布置于所述基体一与所述抗磨涂层的接触表面,所述织构二布置于所述抗磨涂层与所述基体二的接触表面。
  2. 根据权利要求1所述的油气装备的织构化表面,其特征在于:所述织构包括多个凹坑或凸起,多个所述凹坑或凸起沿三维方向立体分布组合成织构化区域。
  3. 根据权利要求2所述的油气装备的织构化表面,其特征在于:所述凹坑或所述凸起的形状为圆形、正方形、三角形、圆柱形、十字形织构中的一种或多种。
  4. 根据权利要求2所述的油气装备的织构化表面,其特征在于:所述凹坑或所述凸起的深度为20-200μm,直径为50-500μm。
  5. 根据权利要求1所述的油气装备的织构化表面,其特征在于:所述织构一的面积占所述基体一表面积的比率为1%-15%,所述织构二的面积占所述抗磨涂层表面积的比率为1%-15%。
  6. 根据权利要求2所述的油气装备的织构化表面,其特征在于:所述织构的多个所述凹坑或所述凸起为均匀整齐排列或间隔排列。
  7. 根据权利要求1所述的油气装备的织构化表面,其特征在于:所述基体二的表面分布有固体润滑剂。
  8. 根据权利要求1所述的油气装备的织构化表面,其特征在于:所述抗磨涂层的表面在激光加工所述织构前,使用激光进行强化改性。
  9. 一种如权利要求1-8任一项所述的油气装备的织构化表面的加工方法,其特征在于:包括以下步骤:
    步骤一、选取所述基体一;
    步骤二、在所述基体一的外表面上喷涂涂层,进而得到所述抗磨涂层;
    在所述基体一的外表面上喷涂涂层之前,在所述基体一与所述抗磨涂层的接触表面上加工出所述织构一;和/或,在所述基体一的外表面上喷涂涂层之后,在所述抗磨涂层与所述基体二的接触表面上加工出所述织构 二;
    步骤三、选取所述基体二。
  10. 根据权利要求9所述的油气装备的织构化表面的加工方法,其特征在于:所述步骤三中,在所述基体二的表面均匀喷涂固体润滑剂,得到带固体润滑涂层的所述基体二。
PCT/CN2021/123235 2021-09-30 2021-10-12 油气装备的织构化表面及其加工方法 WO2023050468A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/935,692 US20230100604A1 (en) 2021-09-30 2022-09-27 Textured surface of oil and gas equipment and machining method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111160029.2 2021-09-30
CN202111160029.2A CN113897577A (zh) 2021-09-30 2021-09-30 一种油气装备的织构化表面及其加工方法

Publications (1)

Publication Number Publication Date
WO2023050468A1 true WO2023050468A1 (zh) 2023-04-06

Family

ID=79189816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123235 WO2023050468A1 (zh) 2021-09-30 2021-10-12 油气装备的织构化表面及其加工方法

Country Status (2)

Country Link
CN (1) CN113897577A (zh)
WO (1) WO2023050468A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116214A1 (en) * 2001-12-26 2003-06-26 Paul Meli Secondary containment system for pipelines
US20110083879A1 (en) * 2009-10-07 2011-04-14 Avula Ramesh R Flexible textile sleeve with end fray resistant, protective coating and method of construction thereof
CN106853560A (zh) * 2016-12-01 2017-06-16 上海工程技术大学 基于激光织构的冷植入制备金属基自润滑涂层的方法
CN107740051A (zh) * 2017-10-09 2018-02-27 江苏大学 一种带有织构化涂层表面的基体及制备方法
CN107761072A (zh) * 2017-10-09 2018-03-06 江苏大学 一种表面涂层结合强度增强的基体及制备方法
CN110374881A (zh) * 2019-08-26 2019-10-25 珠海格力节能环保制冷技术研究中心有限公司 摩擦结构、摩擦零件和压缩机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105179451B (zh) * 2015-10-23 2018-07-06 安徽鑫科铜业有限公司 一种磁性涂层的织构耐磨轴颈及其加工方法
CN108893733B (zh) * 2018-01-16 2020-07-31 江苏大学 一种激光热力耦合织构固体润滑涂层制备方法
CN108775337A (zh) * 2018-08-20 2018-11-09 西南石油大学 一种表面涂层织构化的钻头滑动轴承
CN109236982B (zh) * 2018-10-25 2020-11-20 厦门理工学院 一种带织构化涂层的齿轮

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116214A1 (en) * 2001-12-26 2003-06-26 Paul Meli Secondary containment system for pipelines
US20110083879A1 (en) * 2009-10-07 2011-04-14 Avula Ramesh R Flexible textile sleeve with end fray resistant, protective coating and method of construction thereof
CN106853560A (zh) * 2016-12-01 2017-06-16 上海工程技术大学 基于激光织构的冷植入制备金属基自润滑涂层的方法
CN107740051A (zh) * 2017-10-09 2018-02-27 江苏大学 一种带有织构化涂层表面的基体及制备方法
CN107761072A (zh) * 2017-10-09 2018-03-06 江苏大学 一种表面涂层结合强度增强的基体及制备方法
CN110374881A (zh) * 2019-08-26 2019-10-25 珠海格力节能环保制冷技术研究中心有限公司 摩擦结构、摩擦零件和压缩机

Also Published As

Publication number Publication date
CN113897577A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
Hsu et al. Friction reduction using discrete surface textures: principle and design
Joshi et al. Effects of the micro surface texturing in lubricated non-conformal point contacts
Hu et al. Effect of spherical-convex surface texture on tribological performance of water-lubricated bearing
Shimizu et al. Friction characteristics of mechanically microtextured metal surface in dry sliding
Segu et al. The effect of multi-scale laser textured surface on lubrication regime
Niu et al. The friction and wear behavior of laser textured surfaces in non-conformal contact under starved lubrication
Wang Use of structured surfaces for friction and wear control on bearing surfaces
Ezhilmaran et al. Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction
Zhu et al. Model-based virtual surface texturing for concentrated conformal-contact lubrication
Syed et al. Influence of positive texturing on friction and wear properties of piston ring-cylinder liner tribo pair under lubricated conditions
Zhang et al. Effects of surface texturing on the tribological behavior of piston rings under lubricated conditions
CN106925894A (zh) 一种激光微造型制备轴承耐腐蚀表面的方法
Bruzzone et al. Functional characterization of structured surfaces for tribological applications
Syed et al. Experimental investigation on effects of positive texturing on friction and wear reduction of piston ring/cylinder liner system
Mao et al. Study on the influence of round pits arrangement patterns on tribological properties of journal bearings
WO2023050468A1 (zh) 油气装备的织构化表面及其加工方法
Yang et al. Study on tribological properties of surface concave convex micro-texture on the mold steel
Huang Study on tribological properties of 35CrMo steel after laser textured
Huang et al. Wear-triggered self-repairing behavior of bionic textured AISI 4140 steel filled with multi-solid lubricants
Chen et al. Friction reduction of chrome-coated surface with micro-dimple arrays generated by electrochemical micromachining
Gimeno et al. Effect of different laser texturing patterns on rolling contact surface and its tribological & fatigue life behavior on 100Cr6 bearing steel
US20230100604A1 (en) Textured surface of oil and gas equipment and machining method thereof
Bergseth et al. Effects of thrust washer bearing surface characteristics on planetary gear train wear
Zhao et al. Analysis of the tribological and dynamic performance of textured bearings under contaminated conditions
Bai et al. Effect of surface topography on zddp tribofilm formation during running-in stage subject to boundary lubrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959032

Country of ref document: EP

Kind code of ref document: A1