WO2023050421A1 - 一种射频前端模组、射频装置以及通信设备 - Google Patents

一种射频前端模组、射频装置以及通信设备 Download PDF

Info

Publication number
WO2023050421A1
WO2023050421A1 PCT/CN2021/122440 CN2021122440W WO2023050421A1 WO 2023050421 A1 WO2023050421 A1 WO 2023050421A1 CN 2021122440 W CN2021122440 W CN 2021122440W WO 2023050421 A1 WO2023050421 A1 WO 2023050421A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
module
radio frequency
switch
port
Prior art date
Application number
PCT/CN2021/122440
Other languages
English (en)
French (fr)
Inventor
王树起
杨腾智
李卫华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180102488.7A priority Critical patent/CN117999740A/zh
Priority to PCT/CN2021/122440 priority patent/WO2023050421A1/zh
Publication of WO2023050421A1 publication Critical patent/WO2023050421A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present application relates to the field of radio frequency technology, and in particular to a radio frequency front-end module, a radio frequency device and communication equipment.
  • DBDC dual band dual concurrent
  • the working frequency bands of the two channels can be different frequencies.
  • the DBDC communication mode can significantly increase the data transmission rate, transmission reliability, and improve transmission delay.
  • the existing radio frequency system can support the dual-frequency concurrent mode of the two frequency bands of Wi-Fi 5G and Wi-Fi 6G in wireless fidelity (Wi-Fi) technology.
  • RF systems can include multiple independent channels. Each channel can work independently in parallel. For example, when channel 1 is used as a transmitting channel, channel 2 can be used as a receiving channel or a transmitting channel. When channel 2 is used as a transmitting channel, channel 1 can also be used as a receiving channel or a transmitting channel.
  • a Wi-Fi chip In existing radio frequency systems, a Wi-Fi chip (usually a system on chip) usually integrates a baseband signal processor and multiple radio frequency (radio frequency, RF) transceiver circuits. Among them, the RF transceiver circuit performs RF front-end processing through a front end module (FEM) to realize receiving/transmitting the frequency band supported by the FEM.
  • FEM front end module
  • the existing FEM supports only one frequency band and is integrated separately.
  • the existing FEM usually includes a SPDT1, a sending branch and a receiving branch.
  • the transmit branch generally includes a power amplifier and a filter connected in series.
  • the receiving branch generally includes a low noise amplifier.
  • the contact end k1a of SPDT1 is coupled to the sending branch, the contact end k1b of SPDT1 is coupled to the receiving branch, and the moving end k1c of SPDT1 is coupled to the receiving end of the RF front-end module.
  • the receiving end of the FEM can be coupled with one end of the duplexer.
  • the sending branch and the receiving branch support signals in the 5G frequency band, so the FEM is a 5G FEM.
  • the FEM is a 6G FEM.
  • the RF transceiver circuit can transmit and receive 5G frequency band signals through 5G FEM.
  • the RF transceiver circuit can transmit and receive 6G frequency band signals through 6G FEM.
  • the port RX of the down-conversion circuit of each RF transceiver circuit is connected to the 5G FEM and the 6G FEM through the switch K1, so that the RF transceiver circuit can receive 5G frequency band signals through the 5G FEM or receive 6G frequency band signals through the 6G FEM. frequency band signal.
  • the port TX of the up-conversion circuit of the RF transceiver circuit is connected to the 5G FEM and the 6G FEM respectively through the switch K2, so that the RF transceiver circuit can send the 5G frequency band signal through the 5G FEM or the 6G frequency band signal through the 6G FEM.
  • the Wi-Fi chip and the existing FEM are separately integrated, while the baseband signal processor is connected to the existing FEM through a switch, which requires the wiring of the printed circuit board (PCB) integrated with the radio frequency system in the communication equipment Higher, also increases board level cost. It is also necessary to add general purpose I/O ports (GPIO) to the baseband signal processor for gating control of the switch connected to the RF transceiver circuit, increasing the packaging cost of the baseband processor in the radio frequency system .
  • PCB printed circuit board
  • GPIO general purpose I/O ports
  • the present application provides a radio frequency front-end module, a radio frequency device and communication equipment.
  • the RF front-end module does not need to be connected to the RF transceiver circuit through an additional switch.
  • the RF front-end module can be directly connected to the RF transceiver circuit, which can reduce the board-level cost of the PCB of the RF system to which the RF front-end module belongs, and does not require the baseband signal processor in the RF system to add GPIO to additional switch control.
  • the present application provides a radio frequency front-end module, including: a first port, a second port, a receiving branch, a sending branch, and a switching module; wherein: the first port is coupled to the switching module through the switching module The sending branch and the receiving branch, the second port is coupled to the sending branch and the receiving branch through the switching module; the first port supports signal transmission in the first frequency band; the The second port supports signal transmission in a second frequency band, and the first frequency band is different from the second frequency band; the receiving branch supports receiving and processing of signals in the first frequency band and the second frequency band; the sending The branch supports the sending processing of signals in the first frequency band and the second frequency band; the switching module is used to selectively transmit the signal processed by the sending branch to the first port or the second Two ports, or selectively transmit the signal received by the first port or the signal received by the second port to the receiving branch.
  • the radio frequency front-end module can support receiving and sending of the first frequency band, and support receiving and sending of the second frequency band.
  • the switching module has a gating function (or capability), that is, the switching module can selectively switch on any port and any branch in the sending branch or receiving branch.
  • the switching module may connect the first port to the receiving branch, so that the first frequency band signal received at the first port is provided to the receiving branch.
  • the second port may be connected to the receiving branch, so that the second frequency band signal received at the second port is provided to the receiving branch.
  • the sending branch is connected to the first port, so that the signal output by the sending branch is sent through the first port.
  • the sending branch is connected to the second port, so that the signal output by the sending branch is sent through the second port.
  • the switching module can selectively connect any port and any branch in the sending branch or receiving branch, when the RF front-end module is used in the RF system, using a RF front-end module can support the first Frequency band and second frequency band receive/transmit.
  • two existing front-end modules are required and connected to the RF transceiver circuit through a switch, so that the RF transceiver circuit can support the receiving/transmitting of the first frequency band and the second frequency band.
  • radio frequency front-end module provided by the embodiment of the present application is applied to the radio frequency system, there is no need to add a switch between the RF transceiver circuit and the radio frequency front-end module to reduce board-level costs, and it is not necessary to increase the SOC chip. GPIO, SOC chip packaging costs are lower.
  • the radio frequency front-end module provided by this application can occupy less space.
  • the radio frequency front-end module may further include: a first isolation module and a second isolation module; wherein, the first port is coupled to the switching module through the first isolation module, and the first The isolation module is used to selectively conduct or isolate the first port from the switching module; the second port is coupled to the switching module through the second isolation module, and the second isolation module is used for selectively conducting or isolating the second port from the switching module.
  • the frequency at which the second port receives or is coupled to an interference signal falls into the first frequency range.
  • an interference signal also called a blocking signal
  • a frequency band, or the power of the interfering signal is too large.
  • the interference signal will affect the processing of the signal in the first frequency band by the receiving branch, and may cause blockage of the down conversion circuit of the radio frequency transceiver circuit.
  • the first isolation module can transmit the signal of the first frequency band to the switching module
  • the switching module provides the signal of the first frequency band to the receiving branch
  • the second isolation module connects the second port and the switching module Isolate between, isolate or attenuate the interference signal, prevent the interference signal from being coupled to the receiving branch, and affect the processing of the first frequency band signal by the receiving branch.
  • the receiving branch processes signals of the second frequency band
  • the frequency received or coupled to the interference signal by the first port falls within the frequency band of the signal of the second frequency band or the power of the interference signal is too large.
  • the interference signal will affect the processing of the signal in the second frequency band by the receiving branch, and may cause the down conversion circuit of the radio frequency transceiver circuit to be blocked.
  • the second isolation module can transmit the signal of the second frequency band to the switch module, and the switch module provides the signal of the second frequency band to the receiving branch, and the first isolation module isolates the first port from the switch module, attenuates the interference signal, and prevents
  • the interference signal is coupled to the receiving branch, affecting the processing of the signal in the second frequency band by the receiving branch.
  • the switching module can output the signal provided by the sending branch to the first isolation module, and the first isolation module conducts the switching module with the first port so that the signal can be transmitted through the first port to send.
  • the switching module may output the signal provided by the sending branch to the second isolation module, and the second isolation module may conduct between the switching module and the second port, so as to send the signal through the second port.
  • the first isolation module when the receiving branch is connected to the second port and receives the signal of the second frequency band through the second port, the first isolation module The interference signal received by the port is isolated, so that the power of the isolated interference signal is attenuated below a preset first threshold at the receiving branch.
  • the first isolation module when the receiving branch is connected to the second port and receives the signal of the second frequency band through the second port, the first isolation module The interference signal received by the port is isolated, so that the power density of the isolated interference signal in the second frequency band is less than a second threshold, and at least some frequencies of the interference signal fall within the range of the second frequency band.
  • the second isolation module when the receiving branch is connected to the second port and receives the first frequency band signal through the first port, the second isolation module The received interference signal is isolated, and the power of the isolated interference signal is attenuated to a preset third threshold at the receiving branch.
  • the interference signal received by the second port is isolated making the power density of the isolated interference signal in the first frequency band less than a preset fourth threshold, and at least some frequencies of the interference signal fall within the range of the first frequency band.
  • the first isolation module may include at least one single-pole single-throw switch. By adjusting the on-off state of each switch in the first isolation module, the isolation degree of the first isolation module can be changed.
  • the second isolation module includes at least one single pole single throw switch. By adjusting the on-off state of each switch in the second isolation module, the isolation degree of the second isolation module can be changed. For example, when the first isolation module includes a SPST switch, when the SPST switch in the first isolation module is in a conduction state, the connection between the first port and the switch module can be conducted. When the single-pole single-throw switch in the first isolation module is in an open circuit state, it can isolate the first port from the switching module.
  • the second isolation module may include a single pole single throw switch in the case.
  • the single-pole-single-throw switch in the second isolation module When the single-pole-single-throw switch in the second isolation module is in a conduction state, it can conduct conduction between the second port and the switching module.
  • the single-pole single-throw switch in the second isolation module When the single-pole single-throw switch in the second isolation module is in an open circuit state, it can isolate the second port from the switching module.
  • the isolation degree of the first isolation module is adjustable, and the isolation degree of the second isolation module is adjustable.
  • the first isolation module isolates the first port from the switching module, it can selectively adjust the degree of attenuation of the interference signal received by the first port; or, the second isolation module isolates the When the second port is isolated from the switching module, the degree of attenuation of the interference signal received by the second port can be selectively adjusted.
  • the isolation function (or isolation capability) of the first isolation module is adjustable, that is, the degree of attenuation of interference signals can be adjusted, and the application flexibility of the radio frequency front-end module can be improved.
  • the isolation function (or isolation capability) of the second isolation module is also adjustable. Adjusting the attenuation degree of the interference signal can improve the application flexibility of the RF front-end module.
  • the switch module includes at least a first switch and a second switch.
  • the first switching switch is respectively coupled to the first isolation module, the sending branch and the receiving branch.
  • the first switch can selectively connect one of the sending branch and the receiving branch to the first isolation module.
  • the second switching switch is respectively coupled to the second isolation module, the sending branch and the receiving branch. The second switch can be used to selectively conduct one of the sending branch and the receiving branch with the second isolation module.
  • the second switch when the first switch connects the receiving branch to the first isolation module, the second switch connects the receiving branch to the second isolation module. Inter-isolation can attenuate the interference signal coupled to the second switch, preventing the interference signal from entering the receiving branch and causing blockage. It can be seen that the second switch has an isolation effect on the interference signal.
  • the first switch isolates the receiving branch from the first isolation module, which can The interference signal coupled to the first switch is suppressed and attenuated to prevent the interference signal from entering the receiving branch and causing blockage. It can be seen that the first switch has an isolation effect on the interference signal.
  • the first switch can be a single pole multiple throw switch.
  • the moving end of the first changeover switch is coupled to the first isolation module, the first contact end of the first changeover switch is coupled to the sending branch, and the second contact end of the first changeover switch Coupled with the receiving branch.
  • the second switch can be a single-pole multiple-throw switch. The moving end of the second changeover switch is coupled to the second isolating switch, the third contact end of the second changeover switch is coupled to the sending branch, and the fourth contact end of the second changeover switch is coupled to the The receiving branches are coupled.
  • the switch module includes at least a third switch and a fourth switch.
  • the third switch is coupled to the first isolation module, the second isolation module and the fourth switch respectively.
  • the third switch can be used to selectively conduct between one of the first isolation module and the second isolation module and the fourth switch.
  • the fourth switching switch is coupled to the sending branch, the receiving branch and the third switching switch.
  • the fourth switching switch may be used to selectively connect one of the sending branch and the receiving branch to the third switching switch.
  • the third switch may be a single pole multiple throw switch.
  • the fourth switch is a single-pole multiple-throw switch.
  • the moving terminal of the third switch is coupled to the moving terminal of the fourth switch, the fifth contact terminal of the third switch is coupled to the first isolation module, and the third switch terminal is coupled to the first isolation module.
  • the six-contact terminal is coupled with the second isolation module.
  • the seventh contact end of the fourth switch is coupled to the sending branch, and the eighth contact end of the fourth switch is coupled to the receiving branch.
  • the receiving branch includes an adjustable low-noise amplifier, and a working frequency band of the adjustable low-noise amplifier covers the first frequency band and the second frequency band.
  • the receiving branch includes an adjustable low noise amplifier and a bypass switch connected in parallel with the low noise amplifier. When the bypass switch is in a conducting state, the bypass switch transmits the signal provided by the switching module to the third port. When the bypass switch is in an off state, the low noise amplifier processes the signal provided by the switching module, and provides the processed signal to the third port.
  • the sending branch includes: a power amplifier and a filter connected in series; wherein, the bandwidth of the filter covers the first frequency band and the second frequency band, or the filter is An adjustable filter, the working frequency band of the adjustable filter covers the first frequency band and the second frequency band.
  • the first frequency band is a Wi-Fi 5G frequency band
  • the second frequency band is a Wi-Fi 6G frequency band.
  • the present application provides a radio frequency device, a signal splitter, a radio frequency front-end module as described in the first aspect and any design, a down-conversion circuit and an up-conversion circuit; wherein, the signal splitter is respectively connected to the The first port of the radio frequency front-end module, the second port of the radio frequency front-end module and the antenna are coupled; the down-conversion circuit is coupled with the receiving branch of the radio frequency front-end module for the radio frequency The signal output by the front-end module is subjected to down-mixing processing; the up-conversion circuit is coupled with the sending branch of the radio frequency front-end module, and is used to output the baseband signal to the radio frequency front-end module after up-mixing processing The sending branch of .
  • the demultiplexer may provide a signal of a first frequency band to the first port, or provide a signal of a second frequency band to the second port.
  • the down-conversion circuit can perform down-conversion processing on the signal processed by the radio frequency front-end module.
  • the up-conversion circuit may perform up-mixing processing on the baseband signal provided by the baseband signal processor, such as converting the baseband signal into a radio frequency signal.
  • the converted signal is provided to the radio frequency front-end module, and the received signal is processed by the radio frequency front-end module and then output to the signal separator.
  • the signal splitter may provide the signal output by the first port or the second port and processed by the radio frequency front-end module to the antenna.
  • the up-conversion circuit may have the function or capability of up-mixing processing.
  • the down-conversion circuit may have a down-mixing processing function or capability.
  • the radio frequency device also includes a polyphase filter, which can provide local oscillator signals for the up-conversion circuit and the down-conversion circuit.
  • the down-conversion circuit may perform down-mixing processing on the signal processed by the radio frequency front-end module based on the local oscillator signal.
  • downconversion circuits can convert radio frequency signals to baseband signals.
  • the frequency down conversion circuit may include, but not limited to, a low noise amplifier, a first mixer, a low pass filter, a variable gain amplifier, and an analog-to-digital converter, the first mixer and the Polyphase filter coupling.
  • the up-conversion circuit may perform up-mixing processing on the baseband signal provided by the baseband signal processor based on the local oscillator signal.
  • an upconversion circuit can convert a baseband signal to a radio frequency signal.
  • the up-conversion circuit may include, but is not limited to, a power amplifier, a second mixer, and a low-pass filter, the second mixer being coupled to the polyphase filter.
  • the power amplifier, the second mixer and the low-pass filter are serially connected in series. Wherein, the gain of the power amplifier is smaller than the gain of the power amplifier in the radio frequency front-end module.
  • the present application also provides a communication device, which may include a Wi-Fi chip, and a plurality of RF front-end modules as described in the first aspect and any design, the Wi-Fi chips are respectively coupled to the A plurality of radio frequency front-end modules; wherein, the plurality of radio frequency front-end modules are configured to support dual-band concurrent or single-band multiple input and multiple output.
  • a communication device which may include a Wi-Fi chip, and a plurality of RF front-end modules as described in the first aspect and any design, the Wi-Fi chips are respectively coupled to the A plurality of radio frequency front-end modules; wherein, the plurality of radio frequency front-end modules are configured to support dual-band concurrent or single-band multiple input and multiple output.
  • the multiple radio frequency front-end modules are configured to support dual-frequency concurrency; the multiple radio frequency front-end modules include a first radio frequency front-end module and a second radio frequency front-end module.
  • the first RF front-end module sends or receives signals in the first frequency band
  • the second RF front-end module is specifically used to send or receive signals in the second frequency band
  • the first RF front-end module sends Or when receiving signals of the second frequency band
  • the second radio frequency front-end module is specifically used to send or receive signals of the first frequency band.
  • the second radio frequency front-end module is specifically used to send or receive signals of the second frequency band.
  • the signal in the first frequency band sent by the first radio frequency device will cause coexistence interference to the second radio frequency device.
  • the RF front-end module in the second RF device has a first isolation module and a second isolation module, the first port can be used to receive signals in the second frequency band, and the second isolation module can combine the interference signal received at the second port with the switching Module isolation, attenuating the power or power density of the interference signal, avoiding affecting the processing of the second frequency band signal by the receiving branch.
  • the second port can be used to receive signals of the second frequency band
  • the first isolation module can isolate the interference signal received at the first port from the switching module, attenuate the power or power density of the interference signal, and avoid affecting the receiving branch to the second frequency band signal processing.
  • the multiple radio frequency front-end modules are configured as single-band multiple-input multiple-output.
  • the plurality of radio frequency front-end modules include a first radio frequency front-end module and a second radio frequency front-end module.
  • the first radio frequency front-end module sends a signal of the first frequency band or the second frequency band
  • the second radio frequency front-end module is specifically used to send a signal of the same frequency band as the signal sent by the first radio frequency device signal; or, when the first radio frequency front-end module receives a signal of the first frequency band or the second frequency band, the second radio frequency front-end module is specifically used to receive a signal related to the first radio frequency front-end module Signals in the same frequency band as the transmitted signal.
  • the first frequency band and the second frequency band may be Wi-Fi 5G frequency band and Wi-Fi 6G frequency band respectively.
  • FIG. 1(a) is a schematic structural diagram of an existing communication device
  • Fig. 1 (b) is a structural schematic diagram of an existing radio frequency front-end module
  • Fig. 2 is a schematic structural diagram of a radio frequency front-end module provided by the present application
  • FIG. 3 is a schematic diagram of coexistence interference
  • FIG. 4 is a schematic diagram of interference signals in the coexistence interference problem
  • FIG. 5 is a schematic structural diagram of another radio frequency front-end module provided by the present application.
  • FIG. 6 is a schematic structural diagram of another radio frequency front-end module provided by the present application.
  • FIG. 7 is a schematic structural diagram of another radio frequency front-end module provided by the present application.
  • FIG. 8 is a schematic structural diagram of another radio frequency front-end module provided by the present application.
  • Fig. 9(a) is a schematic structural diagram of a communication device provided by the present application.
  • FIG. 9(b) is a schematic diagram of coexistence interference suppression in communication equipment provided by the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by the present application.
  • FIG. 12 is a schematic structural diagram of another communication device provided by the present application.
  • Wireless communication devices often include radio frequency systems.
  • the radio frequency system may support the data communication function of the communication device.
  • the radio frequency system With the development of electronic circuit technology, the radio frequency system has a high degree of integration and can be integrated on the chip.
  • a traditional radio frequency system supports 2 spatial streams, that is, has 2 channels.
  • a single radio frequency system can support 4 spatial streams, that is, has 4 channels, as shown in Figure 1(a).
  • the radio frequency system with 4 channels can improve the stability of wireless air interface data transmission, and at the same rate, the coverage is nearly doubled, and the advantage is more obvious in high-speed scenarios.
  • Figure 1(a) shows the architecture of a radio frequency system.
  • the Wi-Fi chip in the radio frequency system usually integrates a baseband signal processor and an RF transceiver circuit, which enables the radio frequency system to form multiple signal transceivers.
  • Each channel may include a radio frequency transceiver circuit (RF transceiver circuit), a radio frequency FEM and an antenna. If the RF front-end module in the channel is 5G FEM, the channel can support sending and receiving Wi-Fi 5G frequency band signals. If the RF front-end module in the channel is 6G FEM, the channel can support sending and receiving Wi-Fi 6G frequency band signals.
  • the RF transceiver circuit can interact with the baseband signal processor.
  • the baseband signal processor usually includes a central processing unit (CPU), a media access control (MAC) layer, and a physical layer (PHY).
  • CPU central processing unit
  • MAC media access control
  • PHY physical layer
  • the CPU, MAC, and PHY can be implemented through corresponding protocol layer processing modules according to the functions of each protocol layer in the communication device.
  • the PHY layer can realize the functions of the PHY layer in 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac and other protocols
  • the MAC layer can realize the MAC layer function.
  • each channel can support sending and receiving Wi-Fi 5G frequency band signals and Wi-Fi 6G frequency band signals.
  • the port RX of the down-conversion circuit of the RF transceiver circuit in each channel is connected to the 5G FEM and the 6G FEM respectively through the switch K1, so that the RF transceiver circuit can receive the 5G frequency band signal through the 5G FEM or the 6G frequency band signal through the 6G FEM.
  • the port TX of the up-conversion circuit of the RF transceiver circuit is connected to the 5G FEM and the 6G FEM respectively through the switch K2, so that the RF transceiver circuit can send the 5G frequency band signal through the 5G FEM or the 6G frequency band signal through the 6G FEM.
  • the Wi-Fi chip and the existing FEM are separately integrated, and the Wi-Fi chip and the existing FEM are connected through a switch.
  • This requires high wiring requirements for the PCB integrated with the radio frequency system in the communication device, and also increases board-level costs. It is also necessary to add GPIO on the Wi-Fi chip to control the switching switch connected to the RF transceiver circuit, that is, to select the working front-end module through the switching switch, which also increases the packaging cost of the Wi-Fi chip in the RF system.
  • the present application provides a radio frequency front-end module 10, which does not need to be connected to the RF transceiver circuit through an additional switch.
  • the RF front-end module 10 can be directly connected with the RF transceiver circuit, which can reduce the board-level cost of the PCB of the RF system to which the RF front-end module 10 belongs, and does not require the Wi-Fi chip in the RF system to add GPIO for additional switch control.
  • the radio frequency front-end module 10 provided in the embodiment of the present application can support signal reception/transmission in the first frequency band and signal reception/transmission in the second frequency band.
  • the first frequency band and the second frequency band are different frequency bands.
  • the radio frequency front-end module 10 may include: a plurality of ports, a receiving branch, a switching module, and a sending branch.
  • the multiple ports in the RF front-end module 10 may at least include a first port and a second port.
  • the first port and the second port may be respectively coupled to two output ends of a signal splitter (or referred to as a duplexer, diplexer).
  • the first port can support signal transmission in the first frequency band.
  • the first port may be coupled to the switching module, for example, coupled to the first terminal P1 of the switching module.
  • the second port can support signal transmission in the second frequency band.
  • the second port may be coupled with the switching module, for example, coupled with the second terminal P2 of the switching module.
  • the multiple ports in the radio frequency front-end module 10 may also include a third port.
  • a switching module can be coupled to the receiving branch.
  • the receiving branch can be coupled with the third terminal P3 of the switching module.
  • the receiving branch is connected to the down conversion circuit of the RF transceiver circuit through the third port.
  • the switching module can selectively transmit the signal received by the first port or the signal received by the second port to the receiving branch.
  • the receiving branch can perform signal processing on the first frequency band signal or the second frequency band signal provided by the switching module, and provide the processed signal to the frequency down conversion circuit of the RF transceiver circuit.
  • the receiving branch may include an adjustable low noise amplifier, that is, a low noise amplifier with adjustable parameters.
  • One end of the adjustable low noise amplifier is connected to the third end P3 of the switching module, and the other end of the adjustable low noise amplifier is connected to the third port of the radio frequency front-end module 10 .
  • the working frequency band of the adjustable low noise amplifier can cover the first frequency band and the second frequency band.
  • the adjustable low noise amplifier can support the processing of the first frequency band and the second frequency band.
  • the adjustable low-noise amplifier may have the ability (or function) of signal processing for signals in the first frequency band, such as performing amplification processing on signals in the first frequency band.
  • the receiving branch may include a bypass switch connected in parallel with the low noise amplifier.
  • a bypass switch may be used to selectively bypass the low noise amplifier. For example, when the bypass switch is in a conducting state, the low noise amplifier can be short-circuited to transmit the signal provided by the switching module to the third port.
  • the multiple ports in the radio frequency front-end module 10 may also include a fourth port.
  • the switching module can be coupled to the transmission branch.
  • the sending branch can be coupled with the fourth terminal P4 of the switching module.
  • the sending branch is connected to the up-conversion circuit of the RF transceiver circuit through the fourth port.
  • the sending branch can amplify and process the signal provided by the up-conversion circuit (the first frequency band signal or the second frequency band signal), and provide the processed signal to the switching module.
  • the switching module can selectively transmit the sent signal processed by the sending branch to the first port or the second port.
  • the transmitting branch may include a power amplifier and a first filter connected in series.
  • the power amplifier in the sending branch can be an adjustable power amplifier (power amplifier with adjustable parameters).
  • One end of the first filter is coupled to the fourth end P4 of the switching module, and the other end is coupled to one end of the adjustable power amplifier.
  • the other end of the adjustable power amplifier is coupled to the fourth port of the radio frequency front-end module 10 .
  • the working frequency band of the adjustable power amplifier covers the first frequency band and the second frequency band.
  • the adjustable power amplifier can support the processing of the first frequency band and the second frequency band.
  • the adjustable power amplifier may have a signal processing capability (or function) for signals in the first frequency band, such as performing amplification processing on signals in the first frequency band. It may also have a signal processing capability (or function) for signals in the second frequency band, such as performing amplification processing on signals in the second frequency band.
  • the power amplifier in the sending branch can match the frequency band of the signal.
  • the first filter in the sending branch is usually a bandpass filter.
  • the first filter may be a broadband filter, and the passband of the broadband filter may cover the first frequency band and the second frequency band, so that This enables the filter to support filtering processing of signals in the first frequency band and signals in the second frequency band.
  • the first filter may be an adjustable filter with adjustable bandwidth.
  • the working frequency band of the adjustable filter can cover the first frequency band and the second frequency band.
  • a tunable filter may include multiple filter circuits.
  • the first filter circuit among the plurality of filter circuits may have the function or capability of filtering signals in the first frequency band
  • the second filter circuit may have the function or capability of filtering signals in the second frequency band.
  • the adjustable filter can selectively use a filter circuit to filter the signal output by the adjustable power amplifier.
  • the transmit branch may include a power coupler, a power detector, a tuning circuit, and the like.
  • the switching module has a gating function (or capability), that is, the switching module can selectively switch on any port and any branch in the sending branch or receiving branch.
  • the switching module may connect the first port to the receiving branch, so that the first frequency band signal received at the first port is provided to the receiving branch.
  • the second port may be connected to the receiving branch, so that the second frequency band signal received at the second port is provided to the receiving branch.
  • the sending branch is connected to the first port, so that the signal output by the sending branch is sent through the first port.
  • the sending branch is connected to the second port, so that the signal output by the sending branch is sent through the second port.
  • the radio frequency front-end module 10 can be made to work in a time division duplex (time division duplex, TDD) mode. At the same time, the RF front-end module 10 supports signal reception or transmission in one frequency band.
  • TDD time division duplex
  • the radio frequency front-end module 10 provided by the present application when the radio frequency front-end module 10 provided by the present application is applied to a radio frequency system, there is no need to add a switch between the RF transceiver circuit and the radio frequency front-end module 10 .
  • the RF transceiver circuit needs two existing radio frequency front-end modules to support the RF transceiver circuit to process two frequency bands.
  • the RF front-end module 10 provided in this application can support two frequency bands, so it is applied in a radio frequency system, and one RF front-end module 10 is connected with an RF transceiver circuit, which can support the RF transceiver circuit to process two frequency bands.
  • the RF front-end module 10 provided by this application can reduce board-level costs, and does not need to add GPIO to the SOC chip, and the packaging cost of the SOC chip is low, that is, system-in-a-package (system in a package, SIP).
  • the radio frequency front-end module 10 provided by the present application can occupy less space.
  • the radio frequency front-end module 10 provided in the embodiment of the present application can support Wi-Fi communication, and the first frequency band and the second frequency band can be Wi-Fi 5G frequency band and Wi-Fi 6G frequency band respectively.
  • the first frequency band may be a 5G low frequency band (lowband)
  • the second frequency band may be a 5G high frequency band (highband).
  • the first frequency band may be a 6G low frequency band
  • the second frequency band may be a 6G high frequency band.
  • the existing radio frequency system shown in Figure 1(a) is configured in DBDC mode.
  • the DBDC communication mode can significantly increase the data transmission rate, transmission reliability, and improve transmission delay.
  • the radio frequency system works in the DBDC communication mode, which can support station (station, STA) mode and direct connection (direct) mode, which can also be called Wi-Fi P2P mode.
  • the working frequency band of STA operation is It is different from the working frequency band of P2P operation.
  • a communication device can be coupled to a wireless router in the home, and use a frequency band corresponding to the STA to download and play online videos.
  • the communication device can use the frequency band corresponding to P2P to transmit the video to the display device in the home, such as a TV.
  • DBAC dual-band asynchronism-concurrent
  • the DBDC communication mode can significantly increase the data transmission rate.
  • the existing radio frequency system works in the DBDC communication mode and can support dual STA or dual channel access.
  • a communication device may transmit the same data (for example, game application data) on two different frequency bands, and the data transmission delays on the two different frequency bands are different.
  • the communication device may apply the data of the frequency band whose transmission was successful first. It can be seen that the DBDC communication mode can improve the reliability of data transmission and improve the overall delay.
  • the radio frequency system works in the DBDC communication mode and can support two concurrent access point (access point, AP) modes.
  • Wi-Fi 6 is the first Wi-Fi standard designed specifically for a world where everything is connected. Table 1 shows the history of Wi-Fi standards. As more and more communication devices support the new generation of Wi-Fi 6. Wi-Fi 6 based on 2.4GHz and 5GHz frequency bands has been familiar to more and more people. At the same time, in the certification roadmap of the Wi-Fi Alliance (wireless fidelity alliance, WFA), the characteristics of the 6G frequency band are clearly defined, that is, Wi-Fi 6E, which is an enhanced version of Wi-Fi 6 (E stands for extended).
  • WFA wireless fidelity alliance
  • Wi-Fi 6E adds a 6GHz frequency band (5925-7125MHz, a total of 1.2GHz bandwidth) to the original frequency band of Wi-Fi 6.
  • a frequency band may refer to a frequency range.
  • the frequency range of the Wi-Fi working application is the frequency band (full frequency band) of the Wi-Fi working application.
  • the full Wi-Fi frequency band can be divided into multiple frequency bands. For example, 2.4 frequency bands, 5 frequency bands, 6 frequency bands, etc., the range of each frequency band can be referred to in Table 1 below.
  • the continued growth of Wi-Fi will be greatly facilitated by the new 6G frequency band, which is adjacent to the 5G frequency band and has greater availability.
  • the 6G frequency band can accommodate seven 160MHz frequency bands (frequency band bandwidth, band), or 14 80MHz frequency bands.
  • Wi-Fi operating frequency bands included 2.4GHz and 5GHz frequency bands. In a smart home scenario, there may be as many as dozens of communication devices occupying bandwidth resources. These different communication devices have different requirements for bandwidth, and if they are mixed together, devices with low bandwidth requirements may seize the frequency band resources of devices with high bandwidth requirements. For users of devices with high bandwidth requirements adverse effects on experience. 6GHz is a relatively idle frequency band.
  • Wi-Fi 5G may refer to the 5G frequency band in Table 1
  • Wi-Fi 6G may refer to the 6G frequency band in Table 1.
  • the Wi-Fi 6G signal sent by channel 1 is an interference signal to the Wi-Fi 5G signal received by channel 2 (the interference signal in the embodiment of this application can refer to non-useful signal or noise).
  • the Wi-Fi 5G signal sent by channel 2 is an interference signal to the Wi-Fi 6G signal sent by channel 1.
  • the Wi-Fi 5G high frequency and Wi-Fi 6G low frequency only have a 20M guard band, and the Wi-Fi 5G high frequency and Wi-Fi 6G low frequency are relatively close.
  • the working frequency bands of any two channels in the radio frequency system of communication equipment are Wi-Fi 5G high frequency and Wi-Fi 6G low frequency respectively.
  • the sensitivity of the radio frequency system refers to the ability of the RF transceiver circuit in the radio frequency system to receive weak signals. Improving the sensitivity of the radio frequency system can improve the ability of the radio frequency system to capture weak signals.
  • channel 1 sends Wi-Fi 6G low-frequency signals
  • channel 2 receives Wi-Fi 5G high-frequency signals.
  • the power of the interference signal is too large, which will affect the receiving sensitivity of the Wi-Fi 5G frequency band.
  • This type of interference signal is called a blocker signal.
  • Channel 1 sends Wi-Fi 6G low-frequency signals at 5955MHz, that is, for channel 2 to receive Wi-Fi 5G signals, the frequency of the blocker signal generated when channel 1 sends signals is 5955MHz.
  • Table 2 the influence on the sensitivity of channel 2 to receive signals of different frequencies is shown in Table 2 below.
  • Table 2 shows the sensitivity of the Wi-Fi 5G receiving frequency band when the signal in the Wi-Fi 5G receiving frequency band is processed using the level 7 corresponding method of the modulation and coding scheme (MCS) of the Wi-Fi protocol.
  • MCS modulation and coding scheme
  • channel 1 when there is no filter between the antenna (Ant) in each channel and the RF front-end module, channel 1 sends Wi-Fi 6G frequency band signals, while channel 2 receives Wi-Fi
  • the 5G frequency band signal is an interference signal.
  • the power of the interfering signal is 24dBm.
  • the power of the interference signal at the receiving end of the 5G FEM in channel 2 is 9dBm (ie 24dBm-15dBm), which is greater than the down conversion circuit in the RF transceiver circuit
  • the required value of the interference signal power (-35dBm) affects the processing of the Wi-Fi 5G frequency band signal by the down-conversion circuit in the RF transceiver circuit of channel 2, resulting in a sharp degradation of the received signal throughput rate of the existing RF system, which seriously affects the user experience. .
  • the second interference mechanism is the noise floor generated when channel 1 sends Wi-Fi 6G band signals, that is, inherent noise.
  • the noise floor can include interference from at least one frequency, which may fall Enter the Wi-Fi 5G frequency band of channel 2.
  • the frequency of the Wi-Fi interference signal indicated by the thick solid line in Figure 3 is around 5945MHz, and falls within the band of the channel where the 5825MHz of the Wi-Fi 5G frequency band of channel 2 is located, that is, the interference signal is in the band of the Wi-Fi 5G frequency band Inner noise floor (band-in noise floor).
  • the power density of the Wi-Fi interference signal near 5945MHz is affected by the isolation between the antenna in channel 1 and the antenna in channel 2, and the attenuated power density is still relatively large (corresponding to the signal indicated by the dotted line in Figure 3), which will affect the channel 2.
  • the interference of at least one frequency included in the noise floor of the Wi-Fi 6G signal sent by channel 1 falls within the Wi-Fi 5G frequency band, and the power density is -130dBm/Hz.
  • the power density of the interference signal is -145dBm/Hz (-130dBm/Hz-15dBm/Hz), which is greater than the in-band noise floor of the RF transceiver circuit
  • the required value (-183dBm/Hz) affects the down-conversion circuit in the RF transceiver circuit of channel 2, resulting in a sharp degradation of the received signal throughput rate of the RF system and seriously affecting user experience.
  • the present application also provides a solution for coexistence interference suppression, which can attenuate the interference signal by improving the isolation of the RF front-end module 10, thereby avoiding excessive power of the interference signal, or the down-conversion of the interference signal
  • the power density of the working frequency band of the circuit is too large to prevent interference signals from affecting the work of the down-conversion circuit.
  • the RF front-end module 10 may further include a first isolation module and a second isolation module.
  • the first port can be coupled to the switching module through the first isolation module.
  • the second port can be coupled to the switching module through the second isolation module.
  • the first isolation module may be used to selectively conduct or isolate the first port and the switching module.
  • the first isolation module may have the function or capability of conducting the connection between the first port and the switching module, and may transmit the first frequency band signal to the switching module.
  • the first isolation module may also have the function or capability of isolating the first port from the switching module.
  • the first isolation module can make the connection between the first port and the switch module non-conductive.
  • the first isolation module can isolate the first port from the switching module, and the isolation of the first isolation module The degree can isolate or effect the interference signal.
  • the isolation of the first isolation module may refer to a ratio or a difference between the power of a signal input to the first isolation module and the power of a signal output by the first isolation module.
  • the first isolation module isolates the interference signal, and can attenuate the power of the isolated interference signal until the receiving branch is attenuated below a preset first power threshold (the power of the isolated interference signal is less than the first power threshold).
  • the interference signal is any signal received by the first port (at this time, the receiving branch receives the second frequency band signal through the second port).
  • the power of the interfering signal can be any value.
  • the first isolation module isolates the first port from the switching module, both of which attenuate the power of the interference signal. It should be noted that if the interference signal can be a signal with too much power, such as the aforementioned blocker signal, it may block the down-conversion circuit in the RF transceiver circuit.
  • the first isolation module isolates the interference signal, attenuates the power of the interference signal, and prevents the interference signal from causing blocking of the down conversion circuit in the RF transceiver circuit. It can be seen that the radio frequency front-end module 10 provided in the embodiment of the present application may have a strong coexistence interference suppression capability.
  • the first power threshold may represent the minimum power of an interference signal that affects the processing of the second frequency band signal by the receiving branch (or the processing of the second frequency band signal by the down-conversion circuit in the RF transceiver circuit).
  • the interfering signal will affect the processing of the receiving branch in the RF front-end module 10 (or the down conversion circuit in the RF transceiver circuit) to the second frequency band signal processing or processing. Effect.
  • the interference signal will not affect the processing or processing effect of the receiving branch in the RF front-end module 10 or the down conversion circuit in the RF transceiver circuit) to the second frequency band signal.
  • the first isolation module isolates the interference signal at the first port, and the power of the attenuated interference signal at the input end of the receiving branch will not affect the reception of the second port by the receiving branch. Processing of the first frequency band signal. It may also not affect the processing of the second frequency band signal by the frequency down conversion circuit in the RF transceiver circuit.
  • the first isolation module isolates the interference signal so that the isolated interference signal is below the preset first power density threshold of the power density of the second frequency band.
  • the power density (in the second frequency band) of the isolated interference signal at the receiving branch is smaller than the first power density threshold.
  • each of the first isolation modules can reduce the power density of the interference signal and avoid the coexistence problem mentioned above, that is, the processing of the interference signal to the second frequency band signal by the down-conversion circuit in the RF transceiver circuit.
  • all frequencies of the interference signal received by the first port are not within the range of the second frequency band, and the above coexistence problem will not occur.
  • the first isolation module can also reduce the power density of such interfering signals. It can be seen that the radio frequency front-end module 10 provided in the embodiment of the present application may have a strong coexistence interference suppression capability.
  • the first power density threshold may represent the minimum power density of interference signals that affect the processing of the second frequency band signal by the receiving branch (or the processing of the second frequency band signal by the down conversion circuit in the RF transceiver circuit).
  • the relationship between the power density of the interference signal and the first power density threshold, the impact on the second frequency band signal processing by the receiving branch (or the second frequency band signal processing by the frequency conversion circuit in the RF transceiver circuit), and the relationship between the aforementioned interference signal and the first power has a similar effect on the processing of the second frequency band signal by the receiving branch, and will not be repeated here.
  • the second isolation module may be used to selectively conduct or isolate the first port and the switching module.
  • the second isolation module may have the function or capability of conducting the connection between the second port and the switch module, and may transmit the second frequency band signal to the switch module.
  • the second isolation module may also have the function or capability of isolating the second port from the switching module.
  • the second isolation module can make the connection between the second port and the switch module non-conductive.
  • the isolation of the second isolation module can play a role in the interference signal to the isolation effect or effect.
  • the isolation of the second isolation module may refer to a ratio or a difference between the power of a signal input to the second isolation module and the power of a signal output by the second isolation module.
  • the second isolation module isolates the interference signal, and can attenuate the power of the isolated interference signal until the receiving branch is attenuated below a preset second power threshold (the power of the isolated interference signal is less than the second power threshold).
  • the interference signal is any signal received by the second port (at this time, the receiving branch receives the first frequency band signal through the first port).
  • the power of the interfering signal can be any value.
  • the second isolation module isolates the second port from the switching module, and attenuates the power of the interference signal. It should be noted that if the interference signal can be a signal with too much power, such as the aforementioned blocker signal, it may block the down-conversion circuit in the RF transceiver circuit.
  • the second isolation module isolates the interference signal and attenuates the power of the interference signal, which can prevent the interference signal from blocking the down conversion circuit in the RF transceiver circuit. It can be seen that the radio frequency front-end module 10 provided in the embodiment of the present application can have a strong coexistence interference suppression capability.
  • the second power threshold may represent the minimum power of an interference signal that affects the processing of the first frequency band signal by the receiving branch (or the processing of the first frequency band signal by the down-conversion circuit in the RF transceiver circuit).
  • the interfering signal will affect the processing of the receiving branch (or the down-converting circuit in the RF transceiver circuit) in the RF front-end module 10 to the first frequency band signal processing or processing. Effect.
  • the interference signal will not affect the processing process or processing effect of the first frequency band signal by the receiving branch in the RF front-end module 10 or the down conversion circuit in the RF transceiver circuit).
  • the second isolation module isolates the interference signal at the second port, and the power of the attenuated interference signal at the input end of the receiving branch will not affect the reception of the first port by the receiving branch. Processing of the second frequency band signal. It may also not affect the processing of the first frequency band signal by the frequency down conversion circuit in the RF transceiver circuit.
  • the second isolation module isolates the interference signal so that the isolated interference signal is below the preset second power density threshold of the power density of the first frequency band.
  • the power density (in the first frequency band) of the isolated interference signal at the receiving branch is smaller than the second power density threshold.
  • the second power density threshold may represent the minimum power density of interference signals that affect the processing of the first frequency band signal by the receiving branch (or the processing of the first frequency band signal by the down conversion circuit in the RF transceiver circuit).
  • the relationship between the power density of the interfering signal and the second power density threshold, the impact on the receiving branch processing the first frequency band signal (or the frequency conversion circuit in the RF transceiver circuit processing the first frequency band signal), and the aforementioned interfering signal and the second power The relationship between the thresholds has a similar effect on the processing of the first frequency band signal by the receiving branch, and will not be repeated here.
  • each of the second isolation modules can reduce the power density of the interference signal and avoid the above-mentioned coexistence problem, that is, the processing of the first frequency band signal by the down-conversion circuit in the RF transceiver circuit by the interference signal.
  • all frequencies of the interference signals received by the second port are not within the range of the first frequency band, and the above coexistence problem will not occur.
  • the second isolation module can also reduce the power density of such interfering signals. It can be seen that the radio frequency front-end module 10 provided in the embodiment of the present application may have a strong coexistence interference suppression capability.
  • the aforementioned first power threshold or second power threshold may be the power threshold of the blocker signal at the receiving branch of the RF front-end module 10 in the communication protocol or communication standard, or the down-conversion place in the RF transceiver circuit
  • the power threshold of the blocker signal may be -35dBm.
  • the aforementioned first power density threshold or second power density threshold may be the power density threshold of the interference signal at the receiving branch of the radio frequency front-end module 10 in the communication protocol or communication standard, or the power of the interference signal at the down-conversion place in the RF transceiver circuit. Density threshold. For example, when the radio frequency front-end module 10 provided by this application is applied to scenarios supporting Wi-Fi 5G and Wi-Fi 6G radio frequency systems, the first power density threshold or the second power density threshold may be -183dBm.
  • the signal splitter connected to the radio frequency front-end module 10 provides the signal of the first frequency band to the first port or provides the signal of the second frequency band to the second port.
  • the radio frequency front-end module 10 provided by the application can be in the receiving state of the first frequency band, and the first isolation module connects the first port with the switching module. conduction.
  • the switching module is connected to the receiving module.
  • the signal of the first frequency band received at the first port is transmitted to the receiving branch through the first isolation module and the switching module.
  • the receiving branch can perform signal processing on the signal of the first frequency band, and transmit the processed signal to the frequency down conversion circuit of the RF transceiver circuit through the third port.
  • the second isolation module isolates the second port from the switching module.
  • the radio frequency front-end module 10 provided by this application can be in the receiving state of the second frequency band, and the second isolation module conducts between the second port and the switching module.
  • the switching module is connected to the receiving module.
  • the signal of the second frequency band received at the second port is transmitted to the receiving branch through the second isolation module, the switching module.
  • the receiving branch can process the signal of the second frequency band, and transmit the processed signal to the down-converting circuit of the RF transceiver circuit through the third port.
  • the first isolation module isolates the second port from the switching module.
  • the radio frequency front-end module 10 provided by this application occupies less space. And when the radio frequency front-end module 10 is applied to a radio frequency system, there is no need to add a switch between the RF transceiver circuit and the radio frequency front-end module 10 to reduce board-level costs, and it is not necessary to add GPIO to the SOC chip. Package cost is lower.
  • the radio frequency front-end module 10 provided in the embodiment of the present application can support signal transceiving processes in multiple frequency bands. For example, signals of the first frequency band and signals of the second frequency band are supported.
  • the radio frequency front-end module 10 provided in the embodiment of the present application may have strong coexistence interference suppression capability.
  • the RF front-end module 10 is applied to the RF system to operate in the DBDC mode of the Wi-Fi 5G frequency band and the Wi-Fi 6G frequency band , when the first port of the radio frequency front-end module 10 receives the signal of the Wi-Fi 5G frequency band, the interference signal of the Wi-Fi 6G frequency band may be received at the second port.
  • the second isolation module in the radio frequency front-end module 10 isolates the second port from the switching module, which can reduce the power or power density of the interference signal, and avoid the impact of the Wi-Fi 6G frequency band signal interference signal on the radio frequency front-end module 10.
  • the receiving branch processes the signal of the Wi-Fi 5G frequency band.
  • the second port of the radio frequency front-end module 10 receives the signal of the Wi-Fi 6G frequency band
  • the interference signal of the Wi-Fi 5G frequency band may be received at the first port.
  • the first isolation module in the radio frequency front-end module 10 isolates the first port from the switching module, which can reduce the power or power density of the interference signal, and prevent the interference signal of the Wi-Fi 5G frequency band from affecting the radio frequency front-end module 10.
  • the receiving branch (or the down-conversion circuit of the RF transceiver circuit) processes the signal of the Wi-Fi 6G frequency band.
  • the first isolation module may include a switch. As shown in FIG. 5 , one end of the switch M1 is connected to the first end P1 of the switching module, and the other end of the switch M1 is connected to the first port. When the switch M1 is in a conducting state, it can conduct the connection between the first port and the switching module. When the switch M1 is in the disconnected state, it can disconnect (or isolate) the first port from the switching module.
  • the switch M1 can be a single-pole single-throw switch, a single-pole multi-throw switch, a multi-pole multi-throw switch, etc., which has the function or capability of the aforementioned switch M1, and can selectively switch between the first port and the switching module. on or off.
  • the isolation of the switch M1 may be the isolation of the first isolation module.
  • isolation may also be provided between different antennas, between different radio frequency traces, or between different ports of a switch.
  • the isolation between antennas may refer to the ratio or difference between the power of the signal sent by the antenna that sends the signal and the power of the signal received by the antenna that receives the signal.
  • the isolation of the switch may refer to the ratio or difference between the signal power received by the input signal port of the switch and the signal power transmitted by the output signal port.
  • the isolation between different radio frequency traces may refer to the ratio or difference between the power received by one trace and the power of a signal transmitted by another trace, and the power of a signal transmitted by the other trace.
  • the second isolation module may include at least one switch. As shown in FIG. 5 , one end of the switch N1 is connected to the second end P2 of the switching module, and the other end of the switch N1 is connected to the second port. When the switch N1 is in the conducting state, it can make the connection between the second port and the switching module. When the switch N1 is in the disconnected state, it can disconnect (or isolate) the second port from the switching module.
  • the switch N1 can be a single-pole single-throw switch, a single-pole multi-throw switch, a multi-pole multi-throw switch, etc., which has the function or capability of the aforementioned switch N1, and can selectively switch between the second port and the switching module. on or off.
  • the isolation of the switch N1 may be the isolation of the second isolation module.
  • the isolation degree of the first isolation module may be adjustable.
  • the first isolation module may include a plurality of switches.
  • the first isolation module can selectively adjust the degree of isolation.
  • the first isolation module may include a plurality of switches. For example switches M1 and M2 connected in series. In the first isolation module, when the switch M1 is in the on state and the switch M2 is in the off state, the isolation degree of the first isolation module is the isolation degree of the isolation switch M2. In the first isolation module, when the switch M2 is in the on state and the switch M1 is in the off state, the isolation of the first isolation module is the isolation of the switch M1.
  • the isolation of the first isolation module when the switch M1 is in the off state and the switch M2 is in the off state, the isolation of the first isolation module may be the sum of the isolation of the switch M2 and the isolation of the switch M1.
  • the isolation degree of the first isolation module is different, the degree of attenuation of the power or power density of the interference signal is different.
  • the degree of attenuation of the interference signal by the first isolation module is zero.
  • the attenuation degree of the interference signal can be adjusted by switching the first isolation module by switching the on-off state of each switch.
  • the first isolation module can selectively adjust the degree of attenuation of the interference signal received by the first port. It should be understood that the higher the degree of attenuation of the interference signal received by the first port by the first isolation module, it may reflect the stronger ability to reduce the power or power density of the interference signal.
  • the isolation degree of the second isolation module can be adjustable.
  • the second isolation module may include a plurality of switches.
  • the second isolation module can selectively adjust the isolation.
  • the second first isolation module may include a plurality of switches. For example switches N1 and N2 connected in series. In the second isolation module, when the switch N1 is in the on state and the switch N2 is in the off state, the isolation of the second isolation module is the isolation of the switch M2. In the second isolation module, when the switch N2 is in the on state and the switch N1 is in the off state, the isolation of the second isolation module is the isolation of the switch N1.
  • the isolation of the two isolation modules can be the sum of the isolation of the switch N2 and the isolation of the switch N1.
  • the isolation degree of the second isolation module is different, the attenuation degree of the power or power density of the interference signal is different.
  • the degree of attenuation of the interference signal by the second isolation module is zero.
  • the attenuation degree of the interference signal can be adjusted by switching the second isolation module by switching the on-off state of each switch.
  • the second isolation module can selectively adjust the degree of attenuation of the interference signal received by the second port. It should be understood that the higher the degree of attenuation of the interference signal received by the second port by the second isolation module, it may reflect the stronger ability to reduce the power or power density of the interference signal.
  • the switch module can selectively connect any port and any branch in the sending branch or receiving branch through a plurality of switches.
  • the switching module may include at least two switching switches, which are respectively a first switching switch and a second switching switch.
  • the radio frequency front-end module 10 includes a first isolation module.
  • the first switching switch may be coupled to the first isolation module, the sending branch and the receiving branch respectively.
  • the first switch can conduct one of the sending branch and the receiving branch to the first isolation module, and isolate the other of the sending branch and the receiving branch from the first isolation module. That is, the first switch can selectively connect one of the sending branch and the receiving branch to the first isolation module. For example, when the first switch connects the sending branch to the first isolation module, it can isolate the receiving branch from the first isolation module. Similarly, when the first switch connects the receiving branch to the first isolation module, it can isolate the sending branch from the first isolation module.
  • the first switch may be a single-pole multiple-throw switch.
  • the moving terminal k4c of the first switch is coupled to the first isolation module, the first contact terminal k4a of the first switch is coupled to the sending branch, and the second contact terminal of the first switch k4b is coupled to the receiving branch.
  • the moving terminal k4c of the first changeover switch is conducted with the first contact terminal k4a
  • the first isolation module and the sending branch can be conducted.
  • the disconnection state between the moving terminal k4c and the second contact terminal k4b of the first switch can isolate the receiving branch from the first isolation module and reduce (or attenuate) the power of the interference signal.
  • the moving terminal k4c of the first switch is connected to the second contact terminal k4b, the first isolation module can be connected to the receiving branch.
  • the radio frequency front-end module 10 does not include the first isolation module.
  • the first switch can be respectively coupled to the first port, the sending branch and the receiving branch.
  • the first switch can connect one of the sending branch and the receiving branch to the first port, and isolate the other of the sending branch and the receiving branch from the first port. That is, the first switch can selectively connect one of the sending branch and the receiving branch to the first port. For example, when the first switch connects the sending branch to the first port, it can isolate the receiving branch from the first port. Similarly, when the first switch connects the receiving branch to the first port, it can isolate the sending branch from the first port.
  • the radio frequency front-end module 10 includes a second isolation module.
  • the second switch can be coupled to the second isolation module, the sending branch and the receiving branch respectively.
  • the second switch can conduct one of the sending branch and the receiving branch to the second isolation module, and isolate the other of the sending branch and the receiving branch from the second isolation module. That is, the second switch can selectively connect one of the sending branch and the receiving branch to the second isolation module. For example, when the second switch connects the sending branch to the second isolation module, it can isolate the receiving branch from the second isolation module. Similarly, when the second switch connects the receiving branch to the first isolation module, it can isolate the sending branch from the second isolation module.
  • the second switch can be a single-pole multiple-throw switch.
  • the moving terminal k5c of the second switch is coupled to the first isolation module
  • the first contact terminal k5a of the second switch is coupled to the sending branch
  • the second contact terminal of the second switch k5b is coupled to the receiving branch.
  • the second isolation module can be connected to the sending branch.
  • the disconnection state between the moving terminal k5c and the second contact terminal k5b of the second switch can isolate the receiving branch from the second isolation module and reduce (or attenuate) the power of the interference signal.
  • the second isolation module can be connected to the receiving branch.
  • the second contact terminal k4b of the first switch can be directly coupled with the second contact terminal k5b of the second switch, and the second contact terminal k5b of the first switch The second contact terminal k4b is coupled to the receiving branch via the second contact terminal k5b of the second selector switch.
  • the radio frequency front-end module 10 does not include the second isolation module.
  • the second switch can be coupled to the second port, the sending branch and the receiving branch, respectively.
  • the second switch can connect one of the sending branch and the receiving branch to the second port, and isolate the other of the sending branch and the receiving branch from the second port. That is, the second switch can selectively connect one of the sending branch and the receiving branch to the second port. For example, when the second switch connects the sending branch to the second port, it can isolate the receiving branch from the second port. Similarly, when the second switch connects the receiving branch to the second port, it can isolate the sending branch from the second port.
  • the switching module may include a third switching switch and a fourth switching switch.
  • the radio frequency front-end module 10 includes a first isolation module and a second isolation module.
  • the third switch is coupled to the first isolation module, the second isolation module and the fourth switch, and is used to isolate the first isolation module from the second isolation module. Conducting between one of the modules and the fourth switch, and isolating the other of the first isolation module and the second isolation module from the fourth switch. For example, when the third switch turns on the fourth switch and the first isolation module, it can isolate the fourth switch from the second isolation module. At this time, the third switch isolates the fourth switch from the second isolation module, which can also reduce the power or power density of the interference signal.
  • the third switch when the third switch turns on the fourth switch and the second isolation module, it can isolate the fourth switch from the first isolation module. At this time, the structure in which the third switch isolates the fourth switch from the first isolation module can reduce the power or power density of the interference signal entering the fourth switch.
  • the fourth switching switch is coupled to the transmitting branch, the receiving branch and the third switching switch for switching one of the transmitting branch and the receiving branch to the third conduction between the switches. For example, when the fourth switching switch conducts the third switching switch and the sending branch, it can isolate the third switching switch from the receiving branch. When the fourth switching switch conducts the third switching switch and the receiving branch, it can isolate the third switching switch from the sending branch.
  • the third switch can be a single pole multiple throw switch.
  • the fourth switch can be a single pole multiple throw switch. Please refer to FIG. 5 , the moving terminal k6c of the third switch is coupled to the moving terminal k7c of the fourth switch, and the fifth contact terminal k6a of the third switch is coupled to the first isolating switch, The sixth contact terminal k6b of the third changeover switch is coupled with the second isolation switch. The seventh contact terminal k7a of the fourth switch is coupled to the sending branch, and the eighth contact terminal k7b of the fourth switch is coupled to the receiving branch.
  • the first isolation module can be connected to the fourth switch.
  • the second isolation module can be connected to the fourth switch.
  • the sending branch can be connected to the third switch.
  • the receiving branch can be connected to the third switch.
  • the radio frequency front-end module 10 does not include the first isolation module and the second isolation module.
  • the third switch is coupled to the first port, the second port, and the fourth switch for switching one of the first port and the second port to the fourth port.
  • the switches are conducted, and the other one of the first port and the second port is isolated from the fourth switching switch.
  • the third switch when the third switch connects the fourth switch to the first port, it can isolate the fourth switch from the second port. At this time, the third switch isolates the fourth switch from the second port, which can also reduce the power or power density of the interference signal.
  • the third switch connects the fourth switch to the second port, it can isolate the fourth switch from the first port.
  • the structure in which the third switch isolates the fourth switch from the first port can reduce the power or power density of the interference signal entering the fourth switch.
  • the present application also provides a communication device.
  • the communication device may include a Wi-Fi chip and the radio frequency front-end module 10 described in any of the above-mentioned embodiments.
  • the Wi-Fi chip can be a system-on-chip, including multiple RF transceiver circuits and baseband signal processors.
  • the baseband signal processor may include the aforementioned PHY, MAC, CPU, and the like.
  • Multiple RF transceiver circuits may correspond to multiple RF front-end modules 10 . Each RF transceiver circuit is connected to the corresponding front-end module 10 .
  • the port TX of the up-conversion circuit is connected to the fourth end of the RF front-end module 10
  • the port RX of the down-conversion circuit is connected to the third end of the RF front-end module 10 .
  • the radio frequency front-end module 10 takes up less space, and there is no need to add a switch between the RF transceiver circuit and the radio frequency front-end module 10, which reduces the board-level cost and does not need to GPIO is added to the -Fi chip, and the package cost of the Wi-Fi chip is lower.
  • each radio frequency front-end module 10 in the communication device may be a radio frequency front-end module including a first isolation module and a second isolation module.
  • the communication device provided by the embodiment of the present application has a good coexistence interference suppression function or capability.
  • the receiving/transmitting link formed by the radio frequency front-end module 10 in the communication device and the connected RF transceiver circuit is called a channel.
  • each channel may include an RF transceiver circuit, a radio frequency front-end module 10 , a duplexer (or signal splitter) and an antenna.
  • the port (TX) of the up-conversion circuit of the RF transceiver circuit in each channel is coupled to the fourth port of the radio frequency front-end module 10 .
  • the port (RX) of the down conversion circuit of the RF transceiver circuit is coupled to the third port of the radio frequency front-end module 10 .
  • the first port of the radio frequency front-end module 10 is coupled with the first end T1 of the duplexer, the second port of the radio frequency front-end module is coupled with the second end T2 of the duplexer, and the third end T3 of the duplexer is coupled with the antenna .
  • the radio frequency front-end module 10 in each channel may be any radio frequency front-end module 10 shown in FIG. 2 , FIG. 5 to FIG. 8 .
  • the structure of the radio frequency front-end module 10 shown in FIG. 5 is used as an example below for illustration.
  • the first frequency band and the second frequency band are respectively 5G frequency band and 6G frequency band as an example for illustration.
  • channel 3 and channel 4 two channels in the communication device are marked as channel 3 and channel 4 respectively.
  • channel 3 sends 6G frequency band signals
  • channel 4 receives Wi-Fi 5G frequency band signals.
  • the second switch active terminal k5c in the RF front-end module 10 of channel 3 is connected to the contact terminal k5a, and the second isolation The module conducts the second port with the moving terminal k5c of the second switch.
  • the up-conversion circuit of the RF transceiver circuit, the sending branch in the radio frequency front-end module 10, the second switch, the second isolation module, the duplexer and the antenna form a sending path, and transmit the Wi-Fi 6G frequency band through the formed sending path Signal.
  • the first switching switch active terminal k4c is connected to the contact terminal k4b, and the first isolation module conducts the first port to the first switching switch moving terminal k4c.
  • the down-conversion circuit of the RF transceiver circuit, the receiving branch in the RF front-end module 10, the first switch, the first isolation module, the duplexer and the antenna form a receiving path, and receive 5G frequency band signals through the formed receiving path.
  • channel 3 When channel 3 sends Wi-Fi 6G frequency band signals, it will generate Wi-Fi 6G interference signals (as shown at A1 in Figure 9(b)), and channel 3 will generate 6G interference signals when sending Wi-Fi 6G frequency band signals.
  • the power is Pa.
  • the isolation between the antenna in channel 3 and the antenna in channel 4 is Pb.
  • the antenna in channel 4 will also receive Wi-Fi 5G band signals.
  • the duplexer is used to input the Wi-Fi 5G frequency band signal to the first port of the radio frequency front-end module 10, and the isolation degree of the duplexer to the Wi-Fi 6G interference signal is Pd.
  • the isolation degree of the second isolation module is Pf
  • the second isolation module isolates the Wi-Fi 6G interference signal at the receiving end from the second switch.
  • the receiving branch of the RF front-end module 10 processes the minimum power of the interference signal of the 5G frequency band signal, or represents the power reference value of the interference signal affecting the operation of the down-conversion circuit in the RF transceiver circuit).
  • the isolation degree of the moving terminal k5c and the contact terminal k5b of the second switch in the channel 4 is Ph
  • the isolation degree of the second isolation module is Pf.
  • the receiving branch of group 10 processes the minimum power of the interference signal of the Wi-Fi 5G frequency band signal, or represents the power reference value of the interference signal that affects the operation of the down-conversion circuit of the RF transceiver circuit).
  • the second isolation module and the second switch in channel 4 can work together to isolate (or attenuate) Wi-Fi 6G interference signals.
  • the 6G interference signal generated when channel 3 sends Wi-Fi 6G frequency band signals it is difficult for the 6G interference signal generated when channel 3 sends Wi-Fi 6G frequency band signals to enter the receiving branch of the RF front-end module 10 in channel 4, or the down conversion circuit of the RF receiver, which can avoid channel 3.
  • the interference signal generated by sending Wi-Fi 6G frequency band signals blocks the channel 4.
  • the down-conversion circuit for receiving Wi-Fi 5G signals it is difficult for the 6G interference signal generated when channel 3 sends Wi-Fi 6G frequency band signals to enter the receiving branch of the RF front-end module 10 in channel 4, or the down conversion circuit of the RF receiver, which can avoid channel 3.
  • the interference signal generated by sending Wi-Fi 6G frequency band signals blocks the channel 4.
  • the down-conversion circuit for receiving Wi-Fi 5G signals it is difficult for the 6G interference signal generated when channel 3 sends Wi-Fi 6G frequency band signals to enter the receiving branch of the RF front-end module 10 in channel 4, or the down conversion circuit of the RF receiver,
  • the in-band loss (loss) of the duplexer is 1 dBm, and the out-of-band rejection is greater than 45 dB.
  • the first isolation module may include a single pole single throw switch.
  • the second isolation module may include a single pole single throw switch.
  • the isolation of each SPST switch is greater than 22dB.
  • the isolation of SPDT in the switching module is greater than 22dB.
  • the antenna spacing isolation between adjacent channels is greater than 15dB.
  • the RF front-end module 10 outputs a 6G signal with a power of 25dBm and a noise floor of -130dBm/Hz.
  • the signal is output to the antenna through the duplexer and transmitted by the antenna.
  • the power of the interference signal generated when channel 3 sends the Wi-Fi 6G frequency band signal is 24dBm, as shown in A1 in Figure 9(b).
  • the isolation between antennas is 15dB.
  • the antenna in channel 4 can receive the Wi-Fi 6G band interference signal with a strength of 9dBm (24dBm-15dBm).
  • the duplexer has a 1dB isolation to 6G frequency band interference signals.
  • the interference power at the second port of the radio frequency front-end module 10 is 8dBm (9dBm-1dBm).
  • the isolation of the second isolation module is 22dB.
  • the interference power coupled to the second switch is -14dBm (8dBm-22dBm).
  • the isolation between the moving terminal k5c and the contact terminal k5b of the second changeover switch is 22dB.
  • the interference power coupled to the receiving branch is -36dBm (-14dBm-22dBm). At this time, the power of the interference signal at E1 is lower than the power reference value (-35dBm) of the interference signal at the receiving branch.
  • the noise floor of the Wi-Fi 6G signal output by the RF front-end module 10 is -130dBm/Hz.
  • the signal is output to the antenna through the duplexer and transmitted by the antenna.
  • the noise floor generated when channel 3 sends the Wi-Fi 6G frequency band signal falls into the Wi-Fi 5G frequency band with a power density of -175dBm/Hz.
  • the isolation between antennas is 15dB. That is, the power density of the interference signal received by channel 4 is -190dBm/Hz (-175-15).
  • the power density (noise floor) of the Wi-Fi 6G band interference signal that the antenna in channel 4 can receive is -190dBm/Hz.
  • the duplexer has a 1dB isolation to 6G frequency band interference signals.
  • the isolation of the second isolation module is 22dB.
  • the isolation between the moving terminal k5c and the contact terminal k5b of the second changeover switch is 22dB.
  • the power density (noise floor) of the interference signal falling on the Wi-Fi 5G frequency band is -191dBm/Hz.
  • the power density (noise floor) of the attenuated interference signal at E1 in Figure 9(b) is smaller than the power density of the interference signal at the receiving branch Threshold or noise floor threshold (-183dBm/Hz).
  • the Wi-Fi chip may include one or more RF transceiver circuits.
  • the communication device may also include a radio frequency front-end module 10 connected to each RF transceiver circuit and a signal splitter (or duplexer) corresponding to each radio frequency front-end module 10 .
  • the Wi-Fi chip can also include a baseband signal processor, and the baseband signal processor can be coupled with each RF transceiver circuit.
  • each RF transceiver circuit may include an up-conversion circuit and a frequency down-conversion circuit.
  • the first end T1 of the demultiplexer is coupled to the first port of the RF front-end module 10
  • the second terminal T2 of the demultiplexer is coupled to the second port of the radio frequency front-end module
  • the third terminal T3 of the demultiplexer is coupled to the antenna coupling.
  • the frequency down conversion circuit is coupled to the third port of the RF front-end module 10 .
  • the demultiplexer can provide a signal of the first frequency band to the first port, or provide a signal of the second frequency band to the second port.
  • the down-conversion circuit can down-mix the signal processed by the RF front-end module 10 and output it to the baseband signal processor.
  • the baseband signal processor can process the signal output by the down-conversion circuit to obtain the baseband signal. Or the baseband signal processor can receive the baseband signal output by the down-conversion circuit.
  • the RF transceiver circuit may also include a polyphase filter (poly phase filter, PPF), which is used to provide a local oscillator signal for the down-conversion circuit, so that the down-conversion circuit performs down-mixing processing.
  • PPF poly phase filter
  • the down-conversion circuit can perform down-mixing processing on the signal processed by the radio frequency front-end module 10 (such as the signal in the first frequency band or the signal in the second frequency band) based on the local oscillator signal.
  • the down-conversion circuit can modulate the radio frequency signal based on the local oscillator signal, or perform spectrum shift on the radio frequency signal, so as to move the radio frequency signal to the frequency of the baseband signal, that is, process the radio frequency signal into a baseband signal.
  • the down-conversion circuit may at least include a low-noise amplifier LNA, a first mixer, a low-pass filter, a variable gain amplifier (variable gain amplifier, VGA) and an analog-to-digital converter.
  • the first mixer is coupled to the PPF.
  • the analog-to-digital converter, VGA, low-pass filter, first mixer and low-noise amplifier are serially connected in sequence.
  • the analog-to-digital converter is coupled to the baseband signal processor, and the low-noise amplifier is coupled to the third port of the radio frequency front-end module 10 .
  • the low noise amplifier can amplify the signal from the third port, and output the amplified signal to the first mixer.
  • the first mixer can receive the local oscillator signal provided by the PPF, modulate or shift the frequency spectrum of the radio frequency signal output by the low noise amplifier based on the received local oscillator signal, and output it to the low-pass filter.
  • the low-pass filter can perform filtering processing on the signal output by the first mixer, so as to realize denoising.
  • the VGA performs gain adjustment on the signal after denoising processing.
  • the gain adjustment of the VGA is related to the change of the gain of the signal by the low noise amplifier, so that the signal gain output by the VGA is a preset gain.
  • the signal output from the VGA to the analog-to-digital converter is an analog signal.
  • the analog signal is then converted to a digital signal by an analog-to-digital converter and supplied to the baseband signal processor.
  • the baseband signal processor may include the aforementioned CPU, MAC layer and PHY layer, and may process the digital signal provided by the down-conversion circuit according to its functions.
  • the RF transceiver circuit may also include an up-conversion circuit.
  • the up-conversion circuit is coupled to the fourth port of the radio frequency front-end module 10 .
  • the up-conversion circuit is coupled with the baseband signal processor, and can perform up-mixing processing on the baseband signal provided by the baseband signal processor. For example, the baseband signal is converted into a signal of the first frequency band or a signal of the second frequency band, and the converted signal is provided to the fourth port.
  • the signal splitter can provide the signal output by the first port or the second port and processed by the radio frequency front-end module 10 to the antenna.
  • the PPF in the radio frequency device 30 can also be used to provide a local oscillator signal for the up-conversion circuit, so that the up-conversion circuit can perform up-mixing processing.
  • the up-conversion circuit can convert the baseband signal provided by the baseband signal processor into a signal of the first frequency band or a signal of the second frequency band based on the local oscillator signal provided by the PPF.
  • the up-conversion circuit can modulate the baseband signal based on the local oscillator signal, or perform spectrum shift on the baseband signal, so as to move the baseband signal to the frequency of the radio frequency signal, that is, process the baseband signal into a signal of the first frequency band or a second frequency band signal of.
  • the up-conversion circuit at least includes a sequentially coupled power amplifier, a second mixer, and a low-pass filter, the second mixer is coupled to the PPF, wherein,
  • the gain of the power amplifier in the up-conversion circuit is smaller than the gain of the power amplifier in the radio frequency front-end module 10, and is used to carry out pre-amplification processing to the transmitted signal, which is convenient to distinguish, and the power amplifier (or adjustable power) in the up-conversion circuit Amplifier) is denoted as pre-amplifier (pre PA, PPA).
  • the digital-to-analog converter, the low-pass filter, the second mixer and the PPA are serially connected in series.
  • the digital-to-analog converter is coupled to the baseband signal processor, and the PPA is coupled to the fourth port of the radio frequency front-end module 10 .
  • the digital-to-analog converter can convert the digital signal from the baseband processing module into an analog signal, which is also a baseband signal.
  • the baseband signal is denoised through a low-pass filter.
  • the second mixer can receive the own signal provided by the PPF, modulate or frequency shift the baseband signal output by the low-pass filter based on the received local oscillator signal, form a radio frequency signal, and output it to the PPA.
  • the PPA can amplify the radio frequency signal, wherein the amplification gain of the PPA is smaller than the amplification gain of the PA of the radio frequency front-end module 10 .
  • the PPA outputs the amplified signal to the fourth port of the RF front-end module 10.
  • a baseband signal processor can provide a baseband signal to an up-conversion circuit or process a baseband signal from a down-conversion circuit. Please refer to FIG. 11 , the PPFs in the multiple RF transceiver circuits are coupled.
  • the Wi-Fi chip includes multiple RF transceiver circuits, enabling the communication device to support DBDC mode and single-frequency multiple-input multiple-output mode.
  • the RF front-end modules corresponding to multiple RF transceiver circuits can also be configured in DBDC mode and single-frequency multiple-input multiple-output mode.
  • the radio frequency front-end modules corresponding to the multiple RF transceiver circuits may be respectively recorded as a first radio frequency front-end module and a second radio frequency front-end module.
  • the RF front-end modules corresponding to multiple RF transceiver circuits can also be configured in DBDC mode.
  • the second radio frequency front-end module can be specifically used for sending or receiving signals of the second frequency band.
  • the first radio frequency front-end module is sending or receiving signals of the second frequency band
  • the second radio frequency front-end module may be used to send or receive signals of the first frequency band.
  • the RF front-end modules corresponding to multiple RF transceiver circuits can also be configured in a single-frequency multiple-input multiple-output mode.
  • the second radio frequency front-end module may be specifically used for sending signals of the first frequency band.
  • the second radio frequency front-end module may be used to send signals of the second frequency band.
  • the first radio frequency front-end module receives signals of the first frequency band
  • the second radio frequency front-end module may be specifically used for receiving signals of the first frequency band.
  • the second radio frequency front-end module may be used to receive signals of the second frequency band. That is, the first radio frequency front-end module and the second radio frequency front-end module synchronously transmit signals of the same frequency band, or synchronously receive signals of the same frequency band.
  • the first frequency band and the second frequency band may be Wi-Fi 5G and Wi-Fi 6G respectively.
  • the first frequency band and the second frequency band are Wi-Fi 5G high frequency and Wi-Fi 5G low frequency respectively.
  • the first frequency band and the second frequency band are Wi-Fi 6G high frequency and Wi-Fi 6G low frequency respectively.
  • the RF front-end module 10 occupies less PCB board area and has lower hardware cost, it facilitates PCB layout of communication equipment and simplifies board-level routing in communication equipment.
  • the communication device has strong coexistence interference suppression capability and good signal receiving sensitivity, which can bring better experience to users.
  • the present application also provides a communication device, which may include a Wi-Fi chip.
  • the Wi-Fi chip can include four RF transceiver circuits and a baseband signal processor.
  • the baseband signal processor may include the aforementioned CPU, MAC, and PHY.
  • the communication device also includes four radio frequency front-end modules 10 corresponding to the four RF transceiver circuits.
  • the first frequency band and the second frequency band supported by each radio frequency front-end module 10 (the first frequency band and the second frequency band are different) may be Wi-Fi 5G and Wi-Fi 6G respectively.
  • the first frequency band and the second frequency band are Wi-Fi 5G high frequency and Wi-Fi 5G low frequency respectively.
  • the first frequency band and the second frequency band are Wi-Fi 6G high frequency and Wi-Fi 6G low frequency respectively.
  • four RF front-end modules 10 can be configured in DBDC mode.
  • the four radio frequency front-end modules 10 can also be configured in a single-band multiple-input multiple-output mode.
  • the four radio frequency front-end modules 10 can all work in receiving/sending signals in the Wi-Fi 5G frequency band, and this communication device can be recorded as a 5G 4*4 communication device.
  • the four radio frequency front-end modules 10 can all work in WiFi 5G low frequency (LB), and can support WiFi 5G LB 4x4 time division mode.
  • the four radio frequency front-end modules 10 can all work in WiFi 5G high frequency (HB), and support WiFi 5G HB 4x4 time-division mode.
  • two RF front-end modules 10 work on WiFi 5G LB, and the other two RF front-end modules 10 work on WiFi 5G HB, enabling communication devices to support WiFi 5G LB 2x2 and 5G HB 2x2 air interfaces Unrelated concurrent work mode.
  • the four radio frequency front-end modules 10 can all work in receiving/sending signals in the Wi-Fi 6G frequency band, and this communication device can be recorded as a 6G 4*4 communication device.
  • the four RF front-end modules 10 can all work in WiFi 6G LB, and can support WiFi 6G LB 4x4 time-division mode.
  • the four RF front-end modules 10 can all work in WiFi 6G HB, and support WiFi 6G HB 4x4 time-division mode.
  • radio frequency front-end modules 10 work on WiFi 6G LB, and the other two radio frequency front-end modules 10 work on WiFi 6G HB, so that communication equipment can support WiFi 6G LB 2x2 and 6G HB 2x2 air interfaces Unrelated concurrent work mode.
  • the communication device can be recorded as a 5G 2*2+6G 2*2 communication device . If the two RF front-end modules 10 in the communication device work on Wi-Fi 5G HB, and the two RF front-end modules 10 work on Wi-Fi 5G LB, the communication device can be recorded as 5G LB 2*2+5G HB 2 *2 communication equipment.
  • the communication device can be recorded as 6G LB 2*2+6G HB 2 *2 communication equipment.
  • the present application also provides a radio frequency device, which may include a signal splitter, any radio frequency front-end module 10 in the foregoing embodiments, a down-conversion circuit and an up-conversion circuit; wherein, the signal splitter is connected to the radio frequency front-end The first port of the module, the second port of the radio frequency front-end module and the antenna are coupled; the down conversion circuit is coupled with the receiving branch of the radio frequency front-end module, and is used for the radio frequency front-end module The output signal is subjected to down-mixing processing; the up-conversion circuit is coupled to the sending branch of the radio frequency front-end module, and is used to output the baseband signal to the radio frequency front-end module after up-mixing processing Send branch.
  • a radio frequency device which may include a signal splitter, any radio frequency front-end module 10 in the foregoing embodiments, a down-conversion circuit and an up-conversion circuit; wherein, the signal splitter is connected to the radio frequency front-end The first port of the module, the second
  • radio frequency device provided in the embodiment of the present application can be integrated separately, and the radio frequency front-end module 10 and the down-conversion circuit and the up-conversion circuit are integrated on the same PCB or packaged together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请提供一种射频前端模组、射频装置以及通信设备。射频前端模组可不需要通过额外的开关与射频收发电路耦合,降低通信设备板级成本,提高集成度。第一端口通过切换模块耦合至发送支路以及接收支路,第二端口通过切换模块耦合至发送支路以及接收支路;第一端口支持第一频段的信号传输;第二端口支持第二频段的信号传输,第一频段与第二频段不同;接收支路支持第一频段和第二频段的信号的接收处理;发送支路支持第一频段和第二频段的信号的发送处理;切换模块用于将发送支路处理后的信号选择性地传输至第一端口或第二端口,或者选择性地将第一端口接收的信号或第二端口接收的信号,传输至接收支路。

Description

一种射频前端模组、射频装置以及通信设备 技术领域
本申请涉及射频技术领域,尤其涉及一种射频前端模组、射频装置以及通信设备。
背景技术
目前,越来越多的通信设备可以支持双频并发(dual band dual concurrent,DBDC)通信模式(mode)。双频并发通信模式中,两个通道的工作频段可以是异频的。DBDC通信模式可以显著提升数据传输速率,传输可靠性,改善传输时延。如图1(a),现有射频系统可以支持无线保真(wireless fidelity,Wi-Fi)技术中的Wi-Fi 5G和Wi-Fi 6G两种频段的双频并发模式。射频系统可以包括多个独立的通道。各通道可以并行独立工作。例如通道1作为发射通道时,通道2可以作为接收通道或者发送通道。通道2作为发射通道时,通道1也可以作为接收通道或者发送通道。
现有射频系统中,Wi-Fi芯片(通常为片上系统)通常集成基带信号处理器以及多个射频(radio frequency,RF)收发电路。其中,RF收发电路通过前端模组(front end module,FEM)进行射频前端处理,实现收/发FEM所支持的频段。而现有FEM仅支持一种频段,并且单独集成。如图1(b)所示,现有FEM通常包括一个SPDT1,发送支路和接收支路。发送支路一般包括串联的功率放大器和滤波器。接收支路一般包括低噪声放大器。SPDT1的触点端k1a与发送支路耦合,SPDT1的触点端k1b与接收支路耦合,SPDT1的动端k1c与射频前端模组的接收端耦合。FEM的接收端可以与双工器的一端耦合。现有FEM中,发送支路和接收支路支持5G频段的信号,则该FEM为5G FEM。相应的,若发送支路和接收支路支持6G频段的信号,则该FEM为6G FEM。RF收发电路通过5G FEM,可实现收发5G频段信号。RF收发电路通过6G FEM,可实现收发6G频段信号。
图1(a)中,每个RF收发电路的下变频电路的端口RX通过切换开关K1分别与5G FEM和6G FEM连接,可使RF收发电路通过5G FEM接收5G频段信号或者通过6G FEM接收6G频段信号。RF收发电路的上变频电路的端口TX通过切换开关K2分别与5G FEM和6G FEM连接,可使RF收发电路通过5G FEM发送5G频段信号或者通过6G FEM发送6G频段信号。
Wi-Fi芯片和现有FEM分别单独集成,而基带信号处理器与现有FEM通过切换开关连接,这对通信设备中集成射频系统的印制电路板(printed circuit board,PCB)的走线要求较高,也增加板级成本。还需要在基带信号处理器上增加通用输入/输出端口(general purpose I/O ports,GPIO),用于对RF收发电路连接的切换开关进行选通控制,增加射频系统中基带处理器的封装成本。
发明内容
本申请提供一种射频前端模组、射频装置以及通信设备。射频前端模组不需要通过额外的切换开关与RF收发电路连接。射频前端模组可以直接与RF收发电路连接,可以降低射频前端模组所属射频系统的PCB的板级成本,也不需要射频系统中基带信号处理器增加GPIO对额外的切换开关控制。
第一方面,本申请提供一种射频前端模组,包括:第一端口、第二端口、接收支路、发送支路、切换模块;其中:所述第一端口通过所述切换模块耦合至所述发送支路以及所述接收支路,所述第二端口通过所述切换模块耦合至所述发送支路以及所述接收支路;所述第一端口支持第一频段的信号传输;所述第二端口支持第二频段的信号传输,所述第一频段与所述第二频段不同;所述接收支路支持所述第一频段和所述第二频段的信号的接收处理;所述发送支路支持所述第一频段和所述第二频段的信号的发送处理;所述切换模块用于将所述发送支路处理后的信号选择性地传输至所述第一端口或所述第二端口,或者选择性地将所述第一端口接收的信号或所述第二端口接收的信号,传输至所述接收支路。
基于上述射频前端模组的结构,射频前端模组可以支持第一频段的接收和发送,以及支持第二频段的接收和发送。切换模块具有选通功能(或者能力),即切换模块可以选择性导通任意一个端口与发送支路或者接收支路中的任一支路。例如,切换模块可以将第一端口与接收支路导通,使第一端口处接收的第一频段信号提供给接收支路。或者可以将第二端口与接收支路导通,使第二端口处接收的第二频段信号提供给接收支路。或者,将发送支路与第一端口导通,使发送支路输出的信号通过第一端口发送。或者将发送支路与第二端口导通,使发送支路输出的信号通过第二端口发送。基于切换模块可以选择性导通任意一个端口与发送支路或者接收支路中的任一支路的功能,射频前端模组应用于射频系统的情形下,使用一个射频前端模组可以支持第一频段和第二频段的收/发。而现有射频系统中需要两个现有前端模组,并通过切换开关与RF收发电路连接,才能使RF收发电路支持第一频段和第二频段的收/发。可见,本申请实施例提供的射频前端模组应用于射频系统的情形下,可以不需要在RF收发电路与射频前端模组之间增加切换开关,降低板级成本,也不需要对SOC芯片增加GPIO,SOC芯片封装成本较低。本申请提供的射频前端模组可以占用较小空间。
一种可能的设计中,射频前端模组还可以包括:第一隔离模块和第二隔离模块;其中,所述第一端口通过所述第一隔离模块耦合至所述切换模块,所述第一隔离模块用于选择性地将所述第一端口与所述切换模块导通或隔离;所述第二端口通过所述第二隔离模块耦合至所述切换模块,所述第二隔离模块用于选择性地将所述第二端口与所述切换模块导通或隔离。
本申请实施例中,在射频前端模组接收信号场景中,接收支路处理第一频段的信号情形下,第二端口接收或者耦合到干扰信号(也可称为阻塞信号)的频率落入第一频段,或者干扰信号的功率过大。该干扰信号会影响接收支路对第一频段的信号的处理,可能造成射频收发电路的下变频电路阻塞。本申请提供的射频前端模组中第一隔离模块可以将第一频段的信号传输至切换模块,切换模块将第一频段的信号提供给接收支路,第二隔离模块将第二端口和切换模块之间隔离,隔离或衰减干扰信号,防止干扰信号耦合到接收支路,影响接收支路处理第一频段的信号。类似地,接收支路处理第二频段的信号的情形下,第一端口接收或者耦合到干扰信号的频率落入第二频段的信号所述频段内或者干扰信号的功率过大。该干扰信号会影响接收支路对第二频段的信号的处理,可能造成射频收发电路的下变频电路阻塞。第二隔离模块可以将第二频段的信号传输至切换模块,切换模块将第二频段的信号提供给接收支路,第一隔离模块将第一端口和切换模块之间隔离,衰减干扰信号,防止干扰信号耦合到接收支路,影响接收支路处理第二频段的信号。在射频前端模组发送信号场景中,切换模块可以将发送支路提供的信号输出至第一隔离模块,第一隔离 模块将切换模块与第一端口之间导通,以便将该信号经由第一端口发送。或者切换模块可以将发送支路提供的信号输出至第二隔离模块,第二隔离模块可以将切换模块与第二端口之间导通,以便将该信号经由第二端口发送。
一种可能的设计中,所述第一隔离模块可以在所述接收支路与所述第二端口导通并通过所述第二端口接收所述第二频段的信号时,对所述第一端口接收到的干扰信号进行隔离,使隔离后的干扰信号的功率在所述接收支路处衰减到预设的第一阈值之下。
一种可能的设计中,所述第一隔离模块可以在所述接收支路与所述第二端口导通并通过所述第二端口接收所述第二频段的信号时,对所述第一端口接收到的干扰信号进行隔离,使隔离后的干扰信号在所述第二频段的功率密度小于第二阈值,所述干扰信号的至少部分频率落入所述第二频段的范围。
一种可能的设计中,所述第二隔离模块可以在所述接收支路与所述第二端口导通并通过所述第一端口接收所述第一频段信号时,对所述第二端口接收到的干扰信号进行隔离,使隔离后的干扰信号的功率在所述接收支路处衰减到预设的第三阈值。
一种可能的设计中,在所述接收支路与所述第一端口导通并通过所述第一端口接收所述第一频段信号时,对所述第二端口接收到的干扰信号进行隔离,使隔离后的干扰信号在所述第一频段的功率密度小于预设的第四阈值,所述干扰信号的至少部分频率落入所述第一频段的范围。
一种可能的设计中,所述第一隔离模块可以包括至少一个单刀单掷开关。通过调整第一隔离模块中的各开关的通断状态,可以改变第一隔离模块的隔离度。所述第二隔离模块包括至少一个单刀单掷开关。通过调整第二隔离模块中的各开关的通断状态,可以改变第二隔离模块的隔离度。例如,第一隔离模块包括一个单刀单掷开关的情形下,第一隔离模块中的单刀单掷开关处于导通状态时,可以将第一端口和切换模块之间导通。第一隔离模块中的单刀单掷开关处于断路状态时,可以将第一端口和切换模块之间隔离。类似地,第二隔离模块可以包括一个单刀单掷开关的情形下。第二隔离模块中的单刀单掷开关处于导通状态时,可以将第二端口和切换模块之间导通。第二隔离模块中的单刀单掷开关处于断路状态时,可以将第二端口和切换模块之间隔离。
一种可能的设计中,所述第一隔离模块的隔离度可调,所述第二隔离模块的隔离度可调。所述第一隔离模块将所述第一端口与所述切换模块隔离时,可以选择性地调整对所述第一端口接收的干扰信号的衰减程度;或者,所述第二隔离模块将所述第二端口与所述切换模块隔离时,可以选择性地调整对所述第二端口接收的干扰信号的衰减程度。本申请实施例中,第一隔离模块的隔离功能(或者隔离能力)是可调的,也即可以调整对干扰信号的衰减程度,提升射频前端模块的应用灵活性。类似地,第二隔离模块的隔离功能(或者隔离能力)也是可调的。调对干扰信号的衰减程度,可提升射频前端模块的应用灵活性。
在一种可能的设计中,所述切换模块至少包括第一切换开关和第二切换开关。所述第一切换开关分别与所述第一隔离模块、所述发送支路和所述接收支路耦合。第一切换开关可以选择性地将所述发送支路和所述接收支路中的一个与所述第一隔离模块导通。所述第二切换开关分别与所述第二隔离模块、所述发送支路和所述接收支路耦合。第二切换开关可以用于选择性地将所述发送支路和所述接收支路中的一个与所述第二隔离模块导通。
基于上述切换模块的结构,所述第一切换开关将所述接收支路与所述第一隔离模块导通时,所述第二切换开关将所述接收支路与所述第二隔离模块之间隔离,可以对耦合到第 二切换开关的干扰信号进行衰减,防止干扰信号进入接收支路造成阻塞,可见第二切换开关对干扰信号具有隔离作用。此外,所述第二切换开关将所述接收支路与所述第二隔离模块导通时,所述第一切换开关将所述接收支路与所述第一隔离模块之间隔离,可以对耦合到第一切换开关的干扰信号进行抑衰减,防止干扰信号进入接收支路造成阻塞,可见,第一切换开关对干扰信号具有隔离作用。
在一些示例中,所述第一切换开关可以为单刀多掷开关。所述第一切换开关的动端与所述第一隔离模块耦合,所述第一切换开关的第一触点端与所述发送支路耦合,所述第一切换开关的第二触点端与所述接收支路耦合。所述第二切换开关可以为单刀多掷开关。所述第二切换开关为的动端与所述第二隔离开关耦合,所述第二切换开关的第三触点端与发送支路耦合,所述第二切换开关的第四触点端与所述接收支路耦合。
在一种可能的设计中,所述切换模块至少包括第三切换开关和第四切换开关。所述第三切换开关分别与所述第一隔离模块、所述第二隔离模块和所述第四切换开关耦合。所述第三切换开关可以用于选择性地将所述第一隔离模块和所述第二隔离模块中的一个与所述第四切换开关之间导通。所述第四切换开关与所述发送支路、所述接收支路和所述第三切换开关耦合。所述第四切换开关可以用于将选择性地将所述发送支路和所述接收支路中的一个与所述第三切换开关之间导通。
在一些示例中,所述第三切换开关可以为单刀多掷开关。所述第四切换开关为单刀多掷开关。所述第三切换开关的动端与所述第四切换开关的动端耦合,所述第三切换开关的第五触点端与所述第一隔离模块耦合,所述第三切换开关的第六触点端与所述第二隔离模块耦合。所述第四切换开关的第七触点端与所述发送支路耦合,所述第四切换开关的第八触点端与所述接收支路耦合。
一种可能的设计中,所述接收支路包括可调低噪声放大器,所述可调低噪声放大器的工作频段覆盖所述第一频段和所述第二频段。所述接收支路包括可调低噪声放大器以及与所述低噪声放大器并联的旁路开关。所述旁路开关处于导通状态时,所述旁路开关将所述切换模块提供的信号传输至所述第三端口。所述旁路开关处于断路状态时,所述低噪声放大器对切换模块提供的信号进行处理,并将处理后的信号提供至所述第三端口。
一种可能的设计中,所述发送支路包括:串联的功率放大器和滤波器;其中,所述滤波器的带宽覆盖所述第一频段和所述第二频段,或者,所述滤波器为可调滤波器,所述可调滤波器的工作频段覆盖所述第一频段和所述第二频段。
一种可能的设计中,所述第一频段为Wi-Fi 5G频段,所述第二频段为Wi-Fi 6G频段。
第二方面,本申请提供一种射频装置,信号分离器、如第一方面及任一设计所述的射频前端模组,下变频电路以及上变频电路;其中,所述信号分离器分别与所述射频前端模组的第一端口,所述射频前端模组的第二端口以及天线相耦合;所述下变频电路与所述射频前端模组的接收支路相耦合,用于对所述射频前端模组输出的信号进行下混频处理;所述上变频电路与所述射频前端模组的发送支路相耦合,用于将基带信号进行上混频处理后输出至所述射频前端模组的所述发送支路。
基于上述射频装置的结构,在射频装置接收信号场景中,所述信号分离器可以向所述第一端口提供第一频段的信号,或者向所述第二端口提供第二频段的信号。所述下变频电路可以将所述射频前端模组处理后的信号进行下变频处理。在射频装置发送信号场景中,所述上变频电路可以将所述基带信号处理器提供的基带信号进行上混频处理,如将基带信 号转换为射频信号。并将转化后的信号提供至射频前端模组,经由射频前端模组对接收的信号进行处理后输出至信号分离器。所述信号分离器可以将所述第一端口或者所述第二端口输出的经所述射频前端模组处理后的信号提供至所述天线。
一种可能的设计中,上变频电路可以具有上混频处理的功能或能力。下变频电路可以具有下混频处理功能或能力。所述射频装置还包括多相滤波器,可以为所述上变频电路和所述下变频电路提供本振信号。
所述下变频电路可以基于所述本振信号,对所述射频前端模组处理后的信号进行下混频处理。例如,下变频电路可以将射频信号转换为基带信号。在一些示例中,所述下变频电路可以包括但不限于低噪声放大器、第一混频器、低通滤波器、可变增益放大器和模数转换器,所述第一混频器与所述多相滤波器耦合。
所述上变频电路可以基于所述本振信号,对基带信号处理器提供的基带信号进行上混频处理。例如,上变频电路可以将基带信号转换为射频信号。在一些示例中,所述上变频电路可以包括但不限于功率放大器、第二混频器和低通滤波器,所述第二混频器与所述多相滤波器耦合。功率放大器、第二混频器和低通滤波器依次串联。其中,所述功率放大器的增益小于所述射频前端模组中的功率放大器的增益。
第三方面,本申请还提供一种通信设备,可以包括Wi-Fi芯片,以及多个如第一方面及任一设计所述的射频前端模组,所述Wi-Fi芯片分别耦合至所述多个射频前端模组;其中,所述多个射频前端模组被配置为支持双频并发或者单频段多入多出。
一种可能的设计中,所述多个射频前端模组被配置为支持双频并发;所述多个射频前端模组包括第一射频前端模组和第二射频前端模组。在所述第一射频前端模组发送或接收第一频段的信号时,所述第二射频前端模组具体用于发送或接收第二频段的信号;或者在所述第一射频前端模组发送或接收第二频段的信号时,所述第二射频前端模组具体用于发送或接收第一频段的信号。
以在所述第一射频前端模组发送或接收第一频段的信号时,所述第二射频前端模组具体用于发送或接收第二频段的信号作为举例。第一射频装置发送的第一频段的信号对于第二射频装置会产生共存干扰。因第二射频装置中的射频前端模组具有第一隔离模块和第二隔离模块,第一端口可以用于接收第二频段信号,第二隔离模块可以将第二端口处接收的干扰信号与切换模块隔离,衰减干扰信号的功率或功率密度,避免影响接收支路对第二频段信号的处理。或者第二端口可以用于接收第二频段信号,第一隔离模块可以将第一端口处接收的干扰信号与切换模块隔离,衰减干扰信号的功率或功率密度,避免影响接收支路对第二频段信号的处理。
一种可能的设计中,所述多个射频前端模组被配置为单频段多入多出。所述多个射频前端模组包括第一射频前端模组和第二射频前端模组。在所述第一射频前端模组发送所述第一频段或者所述第二频段的信号时,所述第二射频前端模组具体用于发送与所述第一射频装置发送的信号相同频段的信号;或者,在所述第一射频前端模组接收所述第一频段或者所述第二频段的信号时,所述第二射频前端模组具体用于接收与所述第一射频前端模组发送的信号相同频段的信号。
在一些可能的设计中,所述第一频段和所述第二频段可以分别为Wi-Fi 5G频段和Wi-Fi 6G频段。
第二方面、第三方面中任一方面中的任一可能设计可以达到的技术效果,请参照上述 第一方面中的任一可能设计可以达到的技术效果,这里不再重复赘述。
附图说明
图1(a)为一种现有通信设备的结构示意图;
图1(b)为一种现有射频前端模组的结构示意图;
图2为本申请提供的一种射频前端模组的结构示意图;
图3为共存干扰的示意图;
图4为共存干扰问题中干扰信号的示意图;
图5为本申请提供的另一种射频前端模组的结构示意图;
图6为本申请提供的又一种射频前端模组的结构示意图;
图7为本申请提供的又一种射频前端模组的结构示意图;
图8为本申请提供的又一种射频前端模组的结构示意图;
图9(a)为本申请提供的一种通信设备结构示意图;
图9(b)为本申请提供的通信设备中共存干扰抑制情况的示意图;
图10射频收发电路的结构示意图;
图11为本申请提供的一种通信设备的具体结构示意图;
图12为本申请提供的又一种通信设备的结构示意图。
具体实施方式
无线通信设备通常包括射频系统。射频系统可以支持通信设备的数据通信功能。随着电子电路技术的发展,射频系统具有较高的集成度,可以集成在芯片上。传统射频系统支持2个空间流,即具有2个通道。随着数据传输需求的增加,考虑到芯片面积和性能,目前单个射频系统可以支持4个空间流,也即具有4个通道,如图1(a)所示。相比于具有2个通道的射频系统,具有4个通道的射频系统可以提升无线空口数据传输的稳定性,并且在相同速率下,覆盖范围提升近一倍,在高速场景下优势更为明显。
请参见图1(a),图1(a)示出一种射频系统的架构,射频系统中的Wi-Fi芯片通常集成基带信号处理器和RF收发电路,可使射频系统形成多个信号收发通道,每个通道可以包括射频收发电路(RF收发电路)、射频FEM和天线。通道中的射频前端模组为5G FEM,则通道可以支持收发Wi-Fi 5G频段信号。通道中的射频前端模组为6G FEM,则通道可以支持收发Wi-Fi 6G频段信号。RF收发电路可以和基带信号处理器交互信号,基带信号处理器通常包括中央处理器(central processing unit,CPU)、媒质访问控制(media access control,MAC)层、物理层(physical layer,PHY)。CPU、MAC和PHY等可以按照通信设备中每个协议层的功能通过对应的协议层处理模块实现。例如,PHY层可以实现802.11a、802.11b、802.11g、802.11n、802.11ac等协议中PHY层的功能,MAC层可以实现802.11a、802.11b、802.11g、802.11n、802.11ac等协议中MAC层的功能。
现有射频系统中,每个通道可以支持收发Wi-Fi 5G频段信号和Wi-Fi 6G频段信号。各通道中的RF收发电路的下变频电路的端口RX通过切换开关K1分别与5G FEM和6G FEM连接,可使RF收发电路通过5G FEM接收5G频段信号或者通过6G FEM接收6G频段信号。RF收发电路的上变频电路的端口TX通过切换开关K2分别与5G FEM和6G  FEM连接,可使RF收发电路通过5G FEM发送5G频段信号或者通过6G FEM发送6G频段信号。
Wi-Fi芯片和现有FEM分别单独集成,而Wi-Fi芯片与现有FEM通过切换开关连接,这对通信设备中集成射频系统的PCB的走线要求较高,也增加板级成本。还需要在Wi-Fi芯片上增加GPIO,对RF收发电路连接的切换开关进行选通控制,即通过切换开关选择工作的前端模组,也使射频系统中Wi-Fi芯片的封装成本增加。
有鉴于此,本申请提供一种射频前端模组10,不需要通过额外的切换开关与RF收发电路连接。射频前端模组10可以直接与RF收发电路连接,可以降低射频前端模组10所属射频系统的PCB的板级成本,也不需要射频系统中Wi-Fi芯片增加GPIO对额外的切换开关控制。
本申请实施例提供的射频前端模组10可以支持第一频段的信号收/发和第二频段信号的收/发。第一频段与第二频段为不同频段。请参见图2,射频前端模组10可以包括:多个端口、接收支路、切换模块、发送支路。射频前端模组10中的多个端口可以至少包括第一端口、第二端口。
第一端口和第二端口可以分别与信号分离器(或者称为双工器,diplexer)的两个输出端耦合。第一端口可以支持第一频段的信号传输。第一端口可以与切换模块耦合,例如与切换模块的第一端P1耦合。第二端口可以支持第二频段的信号传输。第二端口可以与切换模块耦合,例如与切换模块的第二端P2耦合。
射频前端模组10中的多个端口还可以包括第三端口。切换模块可以与接收支路耦合。如接收支路可以与切换模块的第三端P3耦合。接收支路通过第三端口与RF收发电路的下变频电路连接。切换模块可以选择性地将第一端口接收的信号或第二端口接收的信号,传输至所述接收支路。接收支路可以对由切换模块提供的第一频段信号或者第二频段信号进行信号处理,并将处理后的信号提供至RF收发电路的下变频电路。
在一些示例中,请参见图2,接收支路可以包括可调低噪声放大器,也即参数可调的低噪声放大器。可调低噪声放大器的一端与切换模块的第三端P3连接,可调低噪声放大器的另一端与射频前端模组10的第三端口连接。通过调节低噪声放大器的参数,可使可调低噪声放大器的工作频段覆盖第一频段和第二频段。换句话说,可调低噪声放大器可以支持对第一频段及第二频段的处理。例如可调低噪声放大器可以具有对第一频段信号的信号处理的能力(或功能),如对第一频段的信号进行放大处理。也可以具有对第二频段信号的信号处理的能力(或功能),如对第二频段的信号进行放大处理。或者说,接收支路中的低噪声放大器可以与信号的频段相匹配。接收支路可以包括旁路开关,旁路开关与低噪声放大器并联。旁路开关可以用于选择性地对所述低噪声放大器进行旁路。例如,旁路开关处于导通状态时,可将低噪声放大器短路,将切换模块提供的信号传输至第三端口。
射频前端模组10中的多个端口还可以包括第四端口。切换模块可以与发送支路耦合。如发送支路可以与切换模块的第四端P4耦合。发送支路通过第四端口与RF收发电路的上变频电路连接。发送支路可以对上变频电路提供的信号(第一频段信号或者第二频段信号)进行放大处理,并将处理后的信号提供至切换模块。切换模块可以将发送支路处理后的发送信号选择性地传输至第一端口或第二端口。
在一些示例中,请参见图2,发送支路可以包括串联的功率放大器和第一滤波器。发 送支路中的功率放大器可以为可调功率放大器(参数可调的功率放大器)。第一滤波器的一端与切换模块的第四端P4耦合,另一端与可调功率放大器的一端耦合。可调功率放大器的另一端与射频前端模组10的第四端口耦合。可调功率放大器的工作频段覆盖第一频段和第二频段。换句话说,可调功率放大器可以支持对第一频段及第二频段的处理。可调功率放大器可以具有对第一频段的信号的信号处理的能力(或功能),如对第一频段的信号进行放大处理。也可以具有对第二频段的信号的信号处理的能力(或功能),如对第二频段的信号进行放大处理。或者说,发送支路中的功率放大器可以与信号的频段相匹配。
发送支路中的第一滤波器通常是带通滤波器,示例性的,第一滤波器可以为宽频带滤波器,该宽频带滤波器的通带可以覆盖第一频段和第二频段,从而使得该滤波器可以支持对第一频段的信号和第二频段的信号的滤波处理。或者,该第一滤波器可以为带宽可调的可调滤波器。可调滤波器的工作频段可以覆盖第一频段和第二频段。例如可调滤波器可以包括多个滤波电路。如多个滤波电路中的第一滤波电路可以具有对第一频段信号滤波的功能或能力,第二滤波电路可以具有对第二频段信号滤波的功能或能力。可调滤波器可以选择性地利用一个滤波电路对可调功率放大器输出的信号进行滤波。或者还可以是其它类型的可调滤波器,具体请参考现有技术,这里不再赘述。在一些示例中,发送支路可以包括功率耦合器(power coupler)、功率检波器(power detector)、调整(tuning)电路等。
本申请实施例中,切换模块具有选通功能(或者能力),即切换模块可以选择性导通任意一个端口与发送支路或者接收支路中的任一支路。例如,切换模块可以将第一端口与接收支路导通,使第一端口处接收的第一频段信号提供给接收支路。或者可以将第二端口与接收支路导通,使第二端口处接收的第二频段信号提供给接收支路。或者,将发送支路与第一端口导通,使发送支路输出的信号通过第一端口发送。或者将发送支路与第二端口导通,使发送支路输出的信号通过第二端口发送。基于切换模块可以选择性导通任意一个端口与发送支路或者接收支路中的任一支路的能力。可使射频前端模组10工作在分时双工(time division duplex,TDD)模式。在同一时刻,射频前端模组10支持一种频段的信号接收或发送。
可见,本申请提供的射频前端模组10应用于射频系统的情形下,不需要在RF收发电路与射频前端模组10之间增加切换开关。并且相比于现有射频系统中,RF收发电路需要两个现有射频前端模组,才能支持RF收发电路处理两种频段。而本申请提供的射频前端模组10可以支持两种频段,因而应用于射频系统中,一个射频前端模组10与RF收发电路连接,可以支持RF收发电路处理两种频段。本申请提供的射频前端模组10可以降低板级成本,也不需要对SOC芯片增加GPIO,SOC芯片封装成本较低,也即系统级封装(system in a package,SIP)。本申请提供的射频前端模组10可以占用较小空间。
本申请实施例提供的射频前端模组10可以支持Wi-Fi通信,第一频段和第二频段可以分别为Wi-Fi 5G频段和Wi-Fi 6G频段。或者,第一频段可以为5G低频频段(lowband),第二频段可以为5G高频频段(highband)。或者,第一频段可以为6G低频频段,第二频段可以为6G高频频段。
图1(a)所示的现有射频系统配置为DBDC模式,DBDC通信模式可以显著提升数据传输速率,传输可靠性,改善传输时延。便于理解DBDC通信模式的优点,下面简要介绍应用DBDC通信模式的应用场景。在一种可能的场景中,射频系统工作在DBDC通信模式下,可以支持站点(station,STA)模式和直连(direct)模式又可称为Wi-Fi P2P模式 并行运行,STA运行的工作频段与P2P运行的工作频段不同。例如,在智能家庭场景中,通信设备可以耦合到家庭中的无线路由器,采用STA对应的频段下载和播放在线视频。然后通信设备可以采用P2P对应的频段,将视频传输给家庭中的显示设备,如电视。相比于双频异步(dual-band asynchronism-concurrent,DBAC),即相同时刻各通道发送或接收状态一致,DBDC通信模式可以显著提升数据传输速率。在另一种可能的场景中,现有射频系统工作在DBDC通信模式下,可以支持双STA或双通道接入。例如,通信设备可以在2个不同频段上传输相同的数据(例如,游戏应用程序的数据),两个不同频段上的数据传输时延不同。通信设备可以应用首先传输成功的频段的数据。可见,DBDC通信模式,可以提升数据传输的可靠性,并改善总体时延。在又一种可能的场景中,射频系统工作在DBDC通信模式下,可以支持2个接入点(access point,AP)模式并发。
即相同时刻,通道1工作在5G发送模式,且通道2工作在6G接收模式,或者通道1工作在6G发送模式,且通道2工作在5G接收模式,会发生严重的共存干扰问题。例如Wi-Fi 6G的发送对Wi-Fi 5G的接收具有干扰,或者Wi-Fi 6G的发送对Wi-Fi 5G的接收具有干扰。为便于明晰共存干扰问题,下面以Wi-Fi通信中的工作频带作为举例进行介绍。但并不表示共存干扰问题仅存在与Wi-Fi通信场景中,共存干扰问题也可能发生在移动通信场景中,或者未来其它通信场景中。
自1999年以来,Wi-Fi通信标准历经了五个主要版本。Wi-Fi 1~5可以被认为是在802.11原始标准基础上的增量改进。Wi-Fi 6则是第一个专门为万物互联的世界而设计的Wi-Fi标准。如表1示出了Wi-Fi标准历程。随着越来越多的通信设备支持新一代Wi-Fi 6。基于2.4GHz和5GHz频段的Wi-Fi 6已经为越来越多的为人熟识。与此同时,在Wi-Fi联盟(wireless fidelity alliance,WFA)的认证路标中,明确定义6G频段特性,即Wi-Fi 6E,它是Wi-Fi 6的增强版本(E代表extended)。相比Wi-Fi 6,Wi-Fi 6E在Wi-Fi 6原有的频段上加入了6GHz频段(5925-7125MHz,共1.2GHz带宽)。本申请中,频段可指频率范围。Wi-Fi工作应用的频率范围为Wi-Fi工作应用的频段(全频段)。Wi-Fi全频段可以划分为多个频段。例如,2.4频段、5频段、6频段等,各频段范围可以参见如下表1。
表1
Figure PCTCN2021122440-appb-000001
新的6G频段将极大促进Wi-Fi的持续增长,该频段与5G频段相邻,具有更大可用性。6G频段可容纳7个160MHz的频带(频段带宽,band),或14个80MHz的频带。在引入 Wi-Fi 6E之前,Wi-Fi工作频段包括2.4GHz和5GHz频段。在智能家庭场景中,可能有多达数十个通信设备占用带宽资源。这些不同的通信设备对于带宽的需求各不相同,而混杂在一起使用就可能会出现对带宽要求不高的设备却抢占对带宽需求较高的设备频带资源的情况,对于高带宽需求设备的用户体验带来不利影响。而6GHz则是一个较为空闲的频段,使用支持Wi-Fi 6E的通信系统可以将2.4GHz和5GHz的传统频带分配给对于性能要求不高的设备,而将6GHz频带分配给高性能需求设备,可让不同的设备各取所需。本申请实施例中Wi-Fi 5G可指表1中的5G频段,Wi-Fi 6G可指表1中的6G频段。
现有射频系统中两个通道之间的共存干扰问题,可有两种干扰机理。第一种干扰机理中,通道1发送Wi-Fi 6G信号对于通道2接收Wi-Fi 5G信号是干扰信号(本申请实施例中干扰信号可指非有用信号或噪声)。同样通道2发送Wi-Fi 5G信号对通道1发送Wi-Fi 6G信号是干扰信号。而Wi-Fi 5G高频与Wi-Fi 6G低频只有20M保护带(guard band),Wi-Fi 5G高频与Wi-Fi 6G低频较为接近。通信设备的射频系统中任2个通道的工作频带分别为Wi-Fi 5G高频和Wi-Fi 6G低频,由于两种频带较为接近,会导致射频系统灵敏度退化。射频系统的灵敏度是指射频系统中RF收发电路对微弱信号的接收能力。提高射频系统的灵敏度,可以提高射频系统捕获弱信号的能力。
假设现有射频系统中通道1发送Wi-Fi 6G低频信号,通道2接收Wi-Fi 5G高频信号。对于通道2接收Wi-Fi 5G频段信号,干扰信号的功率过大,会影响Wi-Fi 5G频段接收灵敏度,这类干扰信号称为阻塞(blocker)信号。通道1发送Wi-Fi 6G低频信号为5955MHz,也即对于通道2接收Wi-Fi5G信号,通道1发送信号时产生的blocker信号的频率为5955MHz。blocker信号功率不同时,对通道2接收不同频率信号的灵敏度的影响如下表2所示。表2示出Wi-Fi 5G接收频段的信号是采用Wi-Fi协议的调制编码机制(modulation and coding scheme,MCS)的等级7对应方式进行处理的情况下,Wi-Fi 5G接收频段的灵敏度。其中,通道1不产生任何blocker信号的情形下,通道2接收Wi-Fi 5G接收频段中的多个频率情形下的灵敏度接收均为-79dBm。通道1发送信号时产生的blocker信号的功率(信号强度或者电平)越大,对通道2接收频段中各频率的灵敏度的消极影响越大,或者说通道2灵敏度退化程度越大。
表2
Figure PCTCN2021122440-appb-000002
如图3所示,现有射频系统中,各通道中的天线(Ant)与射频前端模组之间无滤波器的情形下,通道1发送Wi-Fi 6G频段信号对于通道2接收Wi-Fi 5G频段信号是干扰信号。干扰信号的功率为24dBm。通道1和通道2中的天线之间的隔离度为15dB的情形下,通道2的5G FEM的接收端处的干扰信号的功率为9dBm(即24dBm-15dBm),大于RF 收发电路中下变频电路对干扰信号的功率的要求值(-35dBm),影响通道2的RF收发电路中下变频电路对Wi-Fi 5G频段信号的处理,导致现有射频系统接收信号吞吐率急剧退化,严重影响用户体验。
第二种干扰机理,如图4所示,通道1发送Wi-Fi 6G频段信号时产生的底噪(noise floor),也即固有噪声,底噪可以包括至少一个频率的干扰,该频率可能落入通道2的Wi-Fi 5G频段。图3中粗实线表示的Wi-Fi干扰信号的频率在5945MHz附近,落入通道2的Wi-Fi 5G频段的5825MHz所在信道的带内,也即该干扰信号为Wi-Fi 5G频段的带内底噪(band-in noise floor)。该Wi-Fi干扰信号在5945MHz附近的功率密度经过通道1中天线和通道2中天线之间的隔离度作用,被衰减的功率密度仍较大(对应图3虚线表示的信号),会影响通道2中Wi-Fi 5G频段信号的5825MHz所在信道的带内的信号处理。
请再参见图3,现有射频系统中,各通道中的天线与射频前端模组之间无滤波器的情形下,通道1发送Wi-Fi 6G信号的底噪所包括的至少一个频率的干扰(干扰信号)落入Wi-Fi 5G频段内,且功率密度为-130dBm/Hz。通道1和通道2中的天线之间的隔离度为15dB的情形下,该干扰信号的功率密度为-145dBm/Hz(-130dBm/Hz-15dBm/Hz),大于RF收发电路对带内底噪的要求值(-183dBm/Hz),影响通道2的RF收发电路中下变频电路,导致射频系统接收信号吞吐率急剧退化,严重影响用户体验。
鉴于此,本申请还提供一种共存干扰抑制的解决方案,可以通过提升射频前端模组10的隔离度的方式,使干扰信号被衰减,从而避免干扰信号的功率过大,或者干扰信号在下变频电路工作频段的功率密度过大,避免干扰信号影响下变频电路工作。
如图5所示,基于前述射频前端模组10的结构,射频前端模组10还可以包括第一隔离模块和第二隔离模块。第一端口可以通过第一隔离模块耦合至切换模块。第二端口可以通过第二隔离模块耦合至切换模块。
本申请实施例中,第一隔离模块可以用于选择性地将第一端口与切换模块之间导通或隔离。第一隔离模块可以具有将第一端口与切换模块之间导通的功能或能力,可以将第一频段信号传输至切换模块。第一隔离模块也可以具有将第一端口与切换模块之间隔离的功能或能力。第一隔离模块可以使第一端口与切换模块之间不导通。
在所述接收支路与第二端口导通并通过所述第二端口接收所述第二频段信号时,第一隔离模块可以将第一端口与切换模块之间隔离,第一隔离模块的隔离度可对干扰信号起到隔离作用或者效果。本申请实施例中,第一隔离模块的隔离度可以指输入第一隔离模块的信号的功率与第一隔离模块输出信号的功率的比值或差值。
一个示例中,第一隔离模块对干扰信号隔离,可使隔离后的干扰信号的功率衰减到接收支路处衰减到预设的第一功率阈值之下(隔离后的干扰信号的功率小于所述第一功率阈值)。本示例中,干扰信号是为第一端口接收的任意信号(此时接收支路通过第二端口接收第二频段信号)。干扰信号的功率可以为任意数值。第一隔离模块将第一端口与切换模块之间隔离,均使该干扰信号的功率衰减。需要注意的是,若干扰信号可以为功率过大的信号,例如前述blocker信号,可能使RF收发电路中下变频电路阻塞的信号。第一隔离模块对该干扰信号隔离,衰减该干扰信号的功率,可以避免该干扰信号造成RF收发电路中下变频电路阻塞。可见,本申请实施例提供的射频前端模组10可以具有较强的共存干扰抑制能力。
在一些场景中,所述第一功率阈值可以表征影响所述接收支路处理第二频段信号(或者RF收发电路中下变频电路处理第二频段信号)的干扰信号的最小功率。换句话说,若干扰信号的功率大于等于第一功率阈值,则干扰信号会影响射频前端模组10中接收支路(或者RF收发电路中下变频电路)处理对第二频段信号处理过程或处理效果。若干扰信号的功率小于第一功率阈值,则干扰信号不会影响射频前端模组10中接收支路或者RF收发电路中下变频电路)对第二频段信号的处理过程或处理效果。可见,本申请实施例中,第一隔离模块对第一端口处的干扰信号进行隔离,衰减后的干扰信号在接收支路的输入端处的功率,不会影响接收支路对第二端口接收第一频段信号的处理。也可以不影响RF收发电路中下变频电路对第二频段信号的处理。
另一个示例中,第一隔离模块对干扰信号隔离,可使隔离后的干扰信号在第二频段的功率密度预设的第一功率密度阈值之下。例如,隔离后的干扰信号在接收支路处的功率密度(在第二频段)小于第一功率密度阈值。
一种可能的情形中,第一端口接收到的干扰信号的部分频率可以落入第二频段范围内,该干扰信号可能导致上述共存问题。第一隔离模块均可以降低该干扰信号的功率密度,避免发生上述共存问题,也即干扰信号对RF收发电路中下变频电路对第二频段信号的处理。另一种可能的情形中,第一端口接收到的干扰信号的全部频率均未在第二频段范围内,不会出现上述共存问题。第一隔离模块也可以降低这样干扰信号的功率密度。可见,本申请实施例提供的射频前端模组10可以具有较强的共存干扰抑制能力。
在一些场景中,所述第一功率密度阈值可以表征影响所述接收支路处理第二频段信号(或者RF收发电路中下变频电路处理第二频段信号)的干扰信号的最小功率密度。干扰信号的功率密度与第一功率密度阈值之间的关系,对接收支路处理第二频段信号(或RF收发电路中变频电路处理第二频段信号)的影响,与前述干扰信号与第一功率阈值之间的关系对接收支路处理第二频段信号的影响类似,此处不再赘述。
本申请实施例中,第二隔离模块可以用于选择性地将第一端口与切换模块之间导通或隔离。第二隔离模块可以具有将第二端口与切换模块之间导通的功能或能力,可以将第二频段信号传输至切换模块。第二隔离模块也可以具有将第二端口与切换模块之间隔离的功能或能力。第二隔离模块可以使第二端口与切换模块之间不导通。
在所述接收支路通过所述第一端口接收所述第一频段信号时,第二隔离模块可以将第二端口与切换模块之间隔离时,第二隔离模块的隔离度可对干扰信号起到隔离作用或者效果。本申请实施例中,第二隔离模块的隔离度可以指输入第二隔离模块的信号的功率与第二隔离模块输出信号的功率的比值或差值。
一个示例中,第二隔离模块对干扰信号隔离,可使隔离后的干扰信号的功率衰减到接收支路处衰减到预设的第二功率阈值之下(隔离后的干扰信号的功率小于所述第二功率阈值)。本示例中,干扰信号是为第二端口接收的任意信号(此时接收支路通过第一端口接收第一频段信号)。干扰信号的功率可以为任意数值。第二隔离模块将第二端口与切换模块之间隔离,均使该干扰信号的功率衰减。需要注意的是,若干扰信号可以为功率过大的信号,例如前述blocker信号,可能使RF收发电路中下变频电路阻塞的信号。第二隔离模块对该干扰信号隔离,衰减该干扰信号的功率,可以避免该干扰信号造成RF收发电路中下变频电路阻塞。可见,本申请实施例提供的射频前端模组10可以具有较强的共存干扰 抑制能力。
在一些场景中,所述第二功率阈值可以表征影响所述接收支路处理第一频段信号(或者RF收发电路中下变频电路处理第一频段信号)的干扰信号的最小功率。换句话说,若干扰信号的功率大于等于第二功率阈值,则干扰信号会影响射频前端模组10中接收支路(或者RF收发电路中下变频电路)处理对第一频段信号处理过程或处理效果。若干扰信号的功率小于第二功率阈值,则干扰信号不会影响射频前端模组10中接收支路或者RF收发电路中下变频电路)对第一频段信号的处理过程或处理效果。可见,本申请实施例中,第二隔离模块对第二端口处的干扰信号进行隔离,衰减后的干扰信号在接收支路的输入端处的功率,不会影响接收支路对第一端口接收第二频段信号的处理。也可以不影响RF收发电路中下变频电路对第一频段信号的处理。
另一个示例中,第二隔离模块对干扰信号隔离,可使隔离后的干扰信号在第一频段的功率密度预设的第二功率密度阈值之下。例如,隔离后的干扰信号在接收支路处的功率密度(在第一频段)小于第二功率密度阈值。
在一些场景中,所述第二功率密度阈值可以表征影响所述接收支路处理第一频段信号(或者RF收发电路中下变频电路处理第一频段信号)的干扰信号的最小功率密度。干扰信号的功率密度与第二功率密度阈值之间的关系,对接收支路处理第一频段信号(或RF收发电路中变频电路处理第一频段信号)的影响,与前述干扰信号与第二功率阈值之间的关系对接收支路处理第一频段信号的影响类似,此处不再赘述。
一种可能的情形中,第二端口接收到的干扰信号的部分频率可以落入第一频段范围内,该干扰信号可能导致上述共存问题。第二隔离模块均可以降低该干扰信号的功率密度,避免发生上述共存问题,也即干扰信号对RF收发电路中下变频电路对第一频段信号的处理。另一种可能的情形中,第二端口接收到的干扰信号的全部频率均未在第一频段范围内,不会出现上述共存问题。第二隔离模块也可以降低这样干扰信号的功率密度。可见,本申请实施例提供的射频前端模组10可以具有较强的共存干扰抑制能力。
一种可能的设计中,前述第一功率阈值或第二功率阈值可以为通信协议或者通信标准中,射频前端模组10的接收支路处blocker信号的功率阈值,或者RF收发电路中下变频处blocker信号的功率阈值。例如,本申请提供的射频前端模组10应用于支持Wi-Fi 5G和Wi-Fi 6G射频系统的场景中,第一功率阈值或第二功率阈值可以为-35dBm。
前述第一功率密度阈值或第二功率密度阈值可以为通信协议或者通信标准中,射频前端模组10的接收支路处干扰信号的功率密度阈值,或者RF收发电路中下变频处干扰信号的功率密度阈值。例如,本申请提供的射频前端模组10应用于支持Wi-Fi 5G和Wi-Fi 6G射频系统的场景中,第一功率密度阈值或第二功率密度阈值可以为-183dBm。
射频前端模组10连接的信号分离器向第一端口提供第一频段的信号或者向第二端口提供第二频段的信号。基于上述对射频前端模组10的结构的说明以及模块的介绍,应理解,本申请提供的射频前端模组10可以处于第一频段接收状态,第一隔离模块将第一端口与切换模块之间导通。切换模块与接收模块之间导通。第一端口处接收第一频段的信号经由第一隔离模块,切换模块,传输至接收支路。接收支路可以第一频段的信号进行信号处理,并将处理后的信号经由第三端口传输至向RF收发电路的下变频电路。此时,第二隔离模块将第二端口与切换模块之间隔离。
本申请提供的射频前端模组10可以处于第二频段接收状态,第二隔离模块将第二端 口与切换模块之间导通。切换模块与接收模块之间导通。第二端口处接收第二频段的信号经由第二隔离模块,切换模块,传输至接收支路。接收支路可以第二频段的信号进行信号处理,并将处理后的信号经由第三端口传输至向RF收发电路的下变频电路。此时,第一隔离模块将第二端口与切换模块之间隔离。
相比于现有射频前端模组10,本申请提供的射频前端模组10占用空间较小。并且该射频前端模组10应用于射频系统的情形下,也不需要在RF收发电路与射频前端模组10之间增加切换开关,降低板级成本,也不需要对SOC芯片增加GPIO,SOC芯片封装成本较低。并且,本申请实施例提供的射频前端模组10可以支持多个频段的信号收发过程。例如支持第一频段的信号和第二频段的信号。本申请实施例提供的射频前端模组10可以具有较强的共存干扰抑制能力。
假设在第一频段为Wi-Fi 5G频段,第二频段为Wi-Fi 6G频段的场景,射频前端模组10应用于射频系统运行在Wi-Fi 5G频段和Wi-Fi 6G频段的DBDC模式下,射频前端模组10的第一端口接收Wi-Fi 5G频段的信号时,第二端口处可能接收到的Wi-Fi 6G频段的干扰信号。此时,射频前端模组10中第二隔离模块将第二端口与切换模块之间隔离,可以降低干扰信号的功率或功率密度,避免Wi-Fi 6G频段信号干扰信号对射频前端模组10中的接收支路(或者RF收发电路的下变频电路)处理Wi-Fi 5G频段的信号。类似地,射频前端模组10的第二端口接收Wi-Fi 6G频段的信号时,第一端口处可能接收到的Wi-Fi 5G频段的干扰信号。此时,射频前端模组10中第一隔离模块将第一端口与切换模块之间隔离,可以降低干扰信号的功率或功率密度,避免Wi-Fi 5G频段的干扰信号对射频前端模组10中的接收支路(或者RF收发电路的下变频电路)处理Wi-Fi 6G频段的信号。
一种可能的实施方式中,第一隔离模块可以包括一个开关。如图5所示,开关M1的一端与切换模块的第一端P1连接,开关M1的另一端与第一端口连接。开关M1处于导通状态时,可使第一端口与切换模块之间导通。开关M1处于断路状态时,可使第一端口与切换模块之间断路(或隔离)。本申请实施例中,开关M1可以为单刀单掷开关,单刀多掷开关,多刀多掷开关等,具有前述开关M1的功能或能力,可以使第一端口与切换模块之间选择性的导通或断路。
本示例中,开关M1的隔离度可以为第一隔离模块的隔离度。本申请中,不同天线间、不同射频走线间或者开关的不同端口间也可以具有隔离度。例如天线之间的隔离度可以指,发送信号的天线发出信号功率与接收信号的天线接收到该信号的功率的比值或差值。开关的隔离度,可以指开关的输入信号的端口所接收信号功率与输出信号的端口发送该信号功率的比值或差值。不同射频走线间的隔离度,可以指一个走线接收到另一个走线所传输信号的功率,与该另一走线处传输信号的功率的比值或差值。
第二隔离模块可以包括至少一个开关。如图5所示,开关N1的一端与切换模块的第二端P2连接,开关N1的另一端与第二端口连接。开关N1处于导通状态时,可使第二端口与切换模块之间导通。开关N1处于断路状态时,可使第二端口与切换模块之间断路(或隔离)。本申请实施例中,开关N1可以为单刀单掷开关,单刀多掷开关,多刀多掷开关等,具有前述开关N1的功能或能力,可以使第二端口与切换模块之间选择性的导通或断路。本示例中,开关N1的隔离度可以为第二隔离模块的隔离度。
又一种可能的实施方式中,第一隔离模块的隔离度可以是可调的。例如,第一隔离模块可以包括多个开关。第一隔离模块可以选择性地调整隔离度。请参见图6,第一隔离模块可以包括多个开关。例如串联的开关M1和M2。第一隔离模块中,开关M1处于导通状态,且开关M2处于断开状态的情形下,第一隔离模块的隔离度为隔离开关M2的隔离度。第一隔离模块中,开关M2处于导通状态,且开关M1处于断开状态的情形下,第一隔离模块的隔离度为开关M1的隔离度。第一隔离模块中,开关M1处于断开状态,且开关M2处于断开状态的情形下,第一隔离模块的隔离度可为开关M2的隔离度与开关M1的隔离度的总和。第一隔离模块的隔离度不同时,对干扰信号的功率或功率密度的衰减程度不同。第一隔离模块中,开关M1处于导通状态,且开关M2处于导通状态的情形下,第一隔离模块对干扰信号的衰减程度为零。
可见,第一隔离模块包括多个开关的情形下,也可以通过切换各开关的通断状态,实现切换第一隔离模块调整对干扰信号的衰减程度。如第一隔离模块可以选择性地调整对第一端口接收的干扰信号的衰减程度。应理解的,第一隔离模块对第一端口接收的干扰信号的衰减程度越高,可反映对降低干扰信号的功率或者功率密度的能力越强。
类似地,第二隔离模块的隔离度可以是可调的。例如,第二隔离模块可以包括多个开关。第二隔离模块可以选择性地调整隔离度。请参见图6,第二一隔离模块可以包括多个开关。例如串联的开关N1和N2。第二隔离模块中,开关N1处于导通状态,且开关N2处于断开状态的情形下,第二隔离模块的隔离度为开关M2的隔离度。第二隔离模块中,开关N2处于导通状态,且开关N1处于断开状态的情形下,第二隔离模块的隔离度为开关N1的隔离度。第二隔离模块中,开关N1处于断开状态,且开关N2处于断开状态的情形下,二隔离模块的隔离度可为开关N2的隔离度与开关N1的隔离度的总和。第二隔离模块的隔离度不同时,对干扰信号的功率或功率密度的衰减程度不同。第二隔离模块中,开关M1处于导通状态,且开关M2处于导通状态的情形下,第二隔离模块对干扰信号的衰减程度为零。
可见,第二隔离模块包括多个开关的情形下,也可以通过切换各开关的通断状态,实现切换第二隔离模块调整对干扰信号的衰减程度。如第二隔离模块可以选择性地调整对第二端口接收的干扰信号的衰减程度。应理解的,第二隔离模块对第二端口接收的干扰信号的衰减程度越高,可反映对降低干扰信号的功率或者功率密度的能力越强。
基于上实施例提供任意一种射频前端模组10,切换模块可以通过多个切换开关,实现选择性导通任意一个端口与发送支路或者接收支路中的任一支路。
一种可能的设计中,切换模块可以包括至少两个切换开关,分别为第一切换开关和第二切换开关。在一个示例中,射频前端模组10中包括第一隔离模块。如图7所示,第一切换开关可以分别与第一隔离模块、发送支路和接收支路耦合。第一切换开关可以将发送支路和接收支路中的一个与第一隔离模块导通,以及将发送支路和接收支路中的另一个与第一隔离模块之间隔离。也即第一切换开关可以选择性地将发送支路和接收支路中的一个与第一隔离模块导通。例如,第一切换开关将发送支路与第一隔离模块导通时,可将接收支路与第一隔离模块之间隔离。类似地,第一切换开关将接收支路与第一隔离模块导通时,可将发送支路与第一隔离模块之间隔离。
所述第一切换开关可以为单刀多掷开关。第一切换开关的动端k4c与所述第一隔离模块耦合,所述第一切换开关的第一触点端k4a与所述发送支路耦合,所述第一切换开关的 第二触点端k4b与所述接收支路耦合。第一切换开关的动端k4c与第一触点端k4a导通时,可使第一隔离模块与发送支路导通。此时第一切换开关的动端k4c与第二触点端k4b之间断路状态,可使接收支路与第一隔离模块之间隔离,可以降低(或衰减)干扰信号的功率。第一切换开关的动端k4c与第二触点端k4b导通时,可使第一隔离模块与接收支路导通。
另一个示例中,射频前端模组10中不包括第一隔离模块。第一切换开关可以分别与第一端口、发送支路和接收支路耦合。第一切换开关可以将发送支路和接收支路中的一个与第一端口导通,以及将发送支路和接收支路中的另一个与第一端口之间隔离。也即第一切换开关可以选择性地将发送支路和接收支路中的一个与第一端口导通。例如,第一切换开关将发送支路与第一端口导通时,可将接收支路与第一端口之间隔离。类似地,第一切换开关将接收支路与第一端口导通时,可将发送支路与第一端口之间隔离。
类似地,一个示例中,射频前端模组10中包括第二隔离模块。如图7所示,第二切换开关可以分别与第二隔离模块、发送支路和接收支路耦合。第二切换开关可以将发送支路和接收支路中的一个与第二隔离模块导通,以及将发送支路和接收支路中的另一个与第二隔离模块之间隔离。也即第二切换开关可以选择性地将发送支路和接收支路中的一个与第二隔离模块导通。例如,第二切换开关将发送支路与第二隔离模块导通时,可将接收支路与第二隔离模块之间隔离。类似地,第二切换开关将接收支路与第一隔离模块导通时,可将发送支路与第二隔离模块之间隔离。
所述第二切换开关可以为单刀多掷开关。第二切换开关的动端k5c与所述第一隔离模块耦合,所述第二切换开关的第一触点端k5a与所述发送支路耦合,所述第二切换开关的第二触点端k5b与所述接收支路耦合。第二切换开关的动端k5c与第一触点端k5a导通时,可使第二隔离模块与发送支路导通。此时第二切换开关的动端k5c与第二触点端k5b之间断路状态,可使接收支路与第二隔离模块之间隔离,可以降低(或衰减)干扰信号的功率。第二切换开关的动端k5c与第二触点端k5b导通时,可使第二隔离模块与接收支路导通。
在一些示例中,为减少射频前端模组10中的走线,第一切换开关的第二触点端k4b可以直接与第二切换开关的第二触点端k5b耦合,第一切换开关的第二触点端k4b通过第二切换开关的第二触点端k5b与接收支路耦合。
一个示例中,射频前端模组10中不包括第二隔离模块。第二切换开关可以分别与第二端口、发送支路和接收支路耦合。第二切换开关可以将发送支路和接收支路中的一个与第二端口导通,以及将发送支路和接收支路中的另一个与第二端口之间隔离。也即第二切换开关可以选择性地将发送支路和接收支路中的一个与第二端口导通。例如,第二切换开关将发送支路与第二端口导通时,可将接收支路与第二端口之间隔离。类似地,第二切换开关将接收支路与第二端口导通时,可将发送支路与第二端口之间隔离。
另一种可能的设计中,切换模块可以包括第三切换开关和第四切换开关。在一个示例中,射频前端模组10中包括第一隔离模块和第二隔离模块。如图8所示,所述第三切换开关与所述第一隔离模块、所述第二隔离模块和所述第四切换开关耦合,用于将所述第一隔离模块和所述第二隔离模块中的一个与所述第四切换开关之间导通,以及将所述第一隔离模块和所述第二隔离模块中的另一个与所述第四切换开关之间隔离。例如,第三切换开关将第四切换开关和第一隔离模块导通时,可将第四切换开关和第二隔离模块之间隔离。 此时,第三切换开关将第四切换开关与第二隔离模块之间隔离,也可以降低干扰信号的功率或功率密度。类似地,第三切换开关将第四切换开关和第二隔离模块导通时,可将第四切换开关和第一隔离模块之间隔离。此时,第三切换开关将第四切换开关与第一隔离模块之间隔离的结构,可以降低进入第四切换开关的干扰信号的功率或功率密度。
所述第四切换开关与所述发送支路、所述接收支路和所述第三切换开关耦合,用于将所述发送支路和所述接收支路中的一个与所述第三切换开关之间导通。例如,第四切换开关将第三切换开关和发送支路导通时,可将第三切换开关和接收支路之间隔离。第四切换开关将第三切换开关与接收支路导通时,可将第三切换开关与发送支路之间隔离。
第三切换开关可以为单刀多掷开关。第四切换开关可以为单刀多掷开关。请参见图5,所述第三切换开关的动端k6c与所述第四切换开关的动端k7c耦合,所述第三切换开关的第五触点端k6a与所述第一隔离开关耦合,所述第三切换开关的第六触点端k6b与所述第二隔离开关耦合。所述第四切换开关的第七触点端k7a与所述发送支路耦合,所述第四切换开关的第八触点端k7b与所述接收支路耦合。
第三切换开关的动端k6c与第五触点端k6a导通时,可使第一隔离模块与第四切换开关导通。第三切换开关的动端k6c与第六触点端k6b导通时,可使第二隔离模块与第四切换开关导通。第四切换开关的动端k7c与第七触点端k7a导通时,可使发送支路与第三切换开关导通。第四切换开关的动端k7c与第八触点端k7b导通时,可使接收支路与第三切换开关导通。
在一个示例中,射频前端模组10中不包括第一隔离模块和第二隔离模块。所述第三切换开关与所述第一端口、所述第二端口和所述第四切换开关耦合,用于将所述第一端口和所述第二端口中的一个与所述第四切换开关之间导通,以及将所述第一端口和所述第二端口中的另一个与所述第四切换开关之间隔离。例如,第三切换开关将第四切换开关和第一端口导通时,可将第四切换开关和第二端口之间隔离。此时,第三切换开关将第四切换开关与第二端口之间隔离,也可以降低干扰信号的功率或功率密度。类似地,第三切换开关将第四切换开关和第二端口导通时,可将第四切换开关和第一端口之间隔离。此时,第三切换开关将第四切换开关与第一端口之间隔离的结构,可以降低进入第四切换开关的干扰信号的功率或功率密度。
本申请还提供一种通信设备。通信设备可以包括Wi-Fi芯片以及多个上述实施例中的任意所述的射频前端模组10。如图9(a)所示,Wi-Fi芯片可为片上系统,包括多个RF收发电路和基带信号处理器。基带信号处理器可以包括前述PHY、MAC、CPU等。多个RF收发电路可以与多个射频前端模组10相对应。每个RF收发电路与对应的前端模组10连接。例如,每个RF收发电路中,上变频电路的端口TX与射频前端模组10的第四端连接,下变频电路的端口RX与射频前端模组10的第三端连接。
本申请实施例提供的通信设备中,射频前端模组10占用空间较小,并且也不需要在RF收发电路与射频前端模组10之间增加切换开关,降低板级成本,也不需要对Wi-Fi芯片增加GPIO,Wi-Fi芯片封装成本较低。
一种可能的设计中,通信设备中每个射频前端模组10可以为包括第一隔离模块和第二隔离模块的射频前端模组。本申请实施例提供的通信设备具有良好的共存干扰抑制功能或能力。便于介绍,将通信设备中的射频前端模组10及连接的RF收发电路形成的收/发链路称为通道。
请参见图9(a),每个通道可以包括RF收发电路、射频前端模组10、双工器(或信号分离器)和天线。每个通道中的RF收发电路的上变频电路的端口(TX)与射频前端模组10的第四端口耦合。RF收发电路的下变频电路的端口(RX)与射频前端模组10的第三端口耦合。射频前端模组10的第一端口与双工器的第一端T1耦合,射频前端模组的第二端口与双工器的第二端T2耦合,双工器的第三端T3与天线耦合。
各通道中的射频前端模组10可以为图2、图5至图8中示出的任意一种射频前端模组10。为便于介绍本申请实施例提供的射频系统通道具有较强共存干扰抑制能力,下面以图5示出的射频前端模组10的结构作为举例说明。以第一频段和第二频段分别为5G频段和6G频段作为举例进行说明。
请参见图9(b),通信设备中的两个通道,分别记为通道3和通道4。假设通道3发送6G频段信号,通道4接收Wi-Fi 5G频段信号,此情形下,通道3的射频前端模组10中的第二切换开关动端k5c与触点端k5a导通,第二隔离模块将第二端口与第二切换开关的动端k5c导通。RF收发电路的上变频电路、射频前端模组10中的发送支路、第二切换开关、第二隔离模块、双工器以及天线形成发送通路,并通过形成的发送通路发送Wi-Fi 6G频段信号。
通道4的射频前端模组10中的第一切换开关动端k4c与触点端k4b导通,第一隔离模块将第一端口与第一切换开关的动端k4c导通。RF收发电路的下变频电路、射频前端模组10中的接收支路、第一切换开关、第一隔离模块、双工器以及天线形成接收通路,并通过形成的接收通路接收5G频段信号。
通道3发送Wi-Fi 6G频段信号时,会产生Wi-Fi 6G干扰信号(如图9(b)中的A1处所示),通道3发送Wi-Fi 6G频段信号时产生的6G干扰信号的功率为Pa。通道3中的天线和通道4中的天线之间的隔离度为Pb。通道4中天线可接收到通道3产生的Wi-Fi 6G干扰信号(如图9(b)中的B1处所示),此时Wi-Fi 6G干扰信号的功率为Pc=Pa-Pb。
通道4中的天线也会接收Wi-Fi 5G频段信号。双工器用于将Wi-Fi 5G频段信号输入至射频前端模组10的第一端口,双工器对Wi-Fi 6G干扰信号的隔离度为Pd。天线将接收到的Wi-Fi 6G干扰信号输入双工器后,射频前端模组10的第二端口处的Wi-Fi 6G干扰信号(如图9(b)中的C1处所示)的功率为Pe=Pc-Pd。
一种可能的设计中,在通道4中,第二隔离模块的隔离度为Pf,第二隔离模块将接收端处的Wi-Fi 6G干扰信号与第二切换开关之间隔离。第二隔离模块可衰减耦合到第二切换开关处的干扰信号的功率,使耦合到第二切换开关处的干扰信号的功率为Pg=Pe-Pf,并且Pg不超过第二功率阈值(表征影响射频前端模组10的接收支路处理5G频段信号的干扰信号的最小功率,或者表征影响RF收发电路中下变频电路工作的干扰信号的功率参考值)。
另一种可能的设计中,通道4中第二切换开关的动端k5c与触点端k5b的隔离度为Ph第二隔离模块的隔离度为Pf。第二隔离模块将第二端口处的Wi-Fi 6G干扰信号与第二切换开关之间隔离,可使耦合到第二切换开关处的干扰信号的功率为Pg=Pe-Pf。耦合到触点端k5b处的Wi-Fi 6G干扰信号(如图9(b)中的E1处所示)的功率为Pi=Pg-Ph,并且Pi不超过第二阈值(表征影响射频前端模组10的接收支路处理Wi-Fi 5G频段信号的干扰信号的最小功率,或者表征影响RF收发电路下变频电路工作的干扰信号的功率参考值)。此时通道4中第二隔离模块与第二切换开关可以一同对Wi-Fi 6G干扰信号具有隔离作用(或衰减作用)。
这样的设计中,通道3发送Wi-Fi 6G频段信号时产生的6G干扰信号,难以进入通道4中的射频前端模组10中的接收支路,或者RF接收机的下变频电路,可以避免通道3发送Wi-Fi 6G频段信号产生的干扰信号阻塞通道4接收Wi-Fi 5G信号的下变频电路。
在一测试场景中,双工器的带内损耗(loss)为1dBm,带外抑制大于45dB。第一隔离模块可以包括一个单刀单掷开关。第二隔离模块可以包括一个单刀单掷开关。各单刀单掷开关的隔离度大于22dB。切换模块中SPDT的隔离度大于22dB。相邻通道之间的天线间隔隔离度大于15dB。
在一测试中,射频前端模组10输出6G信号的功率(Power)为25dBm,底噪(noise floor)为-130dBm/Hz。信号经过双工器输出至天线,由天线发射。通道3发送Wi-Fi 6G频段信号时产生的干扰信号的功率为24dBm,如图9(b)中的A1处所示。天线之间的隔离度为15dB。如图9(b)中的B1处所示,通道4中的天线可接收到Wi-Fi 6G频段干扰信号的强度为9dBm(24dBm-15dBm)。双工器对6G频段干扰信号的隔离度为1dB。如图9(b)中的C1处所示,射频前端模组10的第二端口处的干扰功率为8dBm(9dBm-1dBm)。第二隔离模块的隔离度为22dB。如图9(b)中的D1处所示,耦合到第二切换开关处的干扰功率为-14dBm(8dBm-22dBm)。第二切换开关的动端k5c与触点端k5b的隔离度为22dB。如图9(b)中的E1处所示,耦合到接收支路处的干扰功率为-36dBm(-14dBm-22dBm)。此时E1处干扰信号的功率小于接收支路处的干扰信号的功率参考值(-35dBm)。
在一测试中,射频前端模组10输出Wi-Fi 6G信号的底噪(noise floor)为-130dBm/Hz。信号经过双工器输出至天线,由天线发射。通道3发送Wi-Fi 6G频段信号时产生的底噪,落入Wi-Fi 5G频段的功率密度为-175dBm/Hz。如图9(b)中的A1处所示,天线之间的隔离度为15dB。也即通道4接收到干扰信号的功率密度为-190dBm/Hz(-175-15)。如图9(b)中的B1处所示,通道4中的天线可接收到Wi-Fi 6G频段干扰信号的功率密度(底噪)为-190dBm/Hz。双工器对6G频段干扰信号的隔离度为1dB。第二隔离模块的隔离度为22dB。第二切换开关的动端k5c与触点端k5b的隔离度为22dB。干扰信号落在Wi-Fi 5G频段的功率密度(底噪)为-191dBm/Hz。干扰信号经过第二隔离模块的隔离以及第二切换开关的隔离,衰减后的干扰信号在图9(b)中的E1处的功率密度(底噪)小于接收支路处的干扰信号的功率密度阈值或者底噪阈值(-183dBm/Hz)。
本申请实施例提供的通信设备中,Wi-Fi芯片可以包括一个或多个RF收发电路。通信设备还可以包括与各RF收发电路连接的射频前端模组10和各射频前端模组10对应信号分离器(或双工器)。Wi-Fi芯片还可以包括基带信号处理器,基带信号处理器可以与各RF收发电路耦合。
请参见图10,本申请提供的通信设备中,每个RF收发电路可以包括上变频电路和下变频电路。信号分离器的第一端T1与射频前端模组10的第一端口耦合,信号分离器的第二端T2与射频前端模组10的第二端口耦合,信号分离器的第三端T3与天线耦合。下变频电路与射频前端模组10的第三端口耦合。
RF收发电路处于接收工况(接收状态或接收模式)下,信号分离器可以向第一端口提供第一频段的信号,或者向第二端口提供第二频段的信号。下变频电路可以将射频前端模组10处理后的信号进行下混频处理,并输出至基带信号处理器。基带信号处理器可以对下变频电路输出的信号进行处理,得到基带信号。或者基带信号处理器可以接收下变频电路输出的基带信号。
RF收发电路还可以包括多相滤波器(poly phase filter,PPF),用于为下变频电路提供本振信号,以便下变频电路进行下混频处理。
下变频电路可以基于本振信号将射频前端模组10处理后的信号(如第一频段的信号或者第二频段的信号)进行下混频处理。例如,下变频电路可以基于本振信号,进行射频信号调制,或者说对射频信号进行频谱搬移,实现将射频信号搬移到基带信号频率上,即将射频信号处理为基带信号。
在一些示例中,请参见图10,所述下变频电路可以至少包括低噪声放大器LNA、第一混频器、低通滤波器、可变增益放大器(variable gain amplifier,VGA)和模数转换器。所述第一混频器与所述PPF耦合。
模数转换器、VGA、低通滤波器、第一混频器和低噪声放大器依次串联。模数转换器与基带信号处理器耦合,低噪声放大器与射频前端模组10的第三端口耦合。低噪声放大器可以对来自第三端口的信号进行放大处理,在对信号放大后输出至第一混频器。第一混频器可以接收PPF提供的本振信号,基于接收的本振信号对低噪声放大器输出的射频信号进行调制,或者频谱搬移,并输出至低通滤波器。低通滤波器可以对第一混频器输出的信号进行滤波处理,可实现去噪。VGA对去噪处理后的信号进行增益调节。可选地,VGA的增益调节以及低噪声放大器对信号的增益改变相关,使得VGA输出的信号增益为预设增益。VGA向模数转换器输出的信号为模拟信号。然后由模数转换器将模拟信号转换为数字信号并提供给基带信号处理器。基带信号处理器可以包括前述CPU、MAC层以及PHY层,可以依据其功能,对下变频电路提供的数字信号进行处理。
RF收发电路还可以包括上变频电路。上变频电路与射频前端模组10的第四端口耦合。RF收发电路处于发送工况(发送状态或发送模式)下,上变频电路与基带信号处理器耦合,可以将基带信号处理器提供给的基带信号进行上混频处理。如,将基带信号转化为第一频段的信号或者第二频段的信号,并将转化后的信号提供至第四端口。信号分离器可以将第一端口或者第二端口输出的经射频前端模组10处理后的信号提供至天线。
射频装置30中的PPF还可以用于为上变频电路提供本振信号,以便上变频电路进行上混频处理。上变频电路可以基于PPF提供的本振信号将基带信号处理器提供的基带信号转化为第一频段的信号或者第二频段的信号。例如,上变频电路可以基于本振信号,进行基带信号调制,或者说对基带信号进行频谱搬移,实现将基带信号搬移到射频信号频率上,即将基带信号处理为第一频段的信号或者第二频段的信号。
在一些示例中,请继续参见图10,所述上变频电路至少包括依次耦合的功率放大器、第二混频器和低通滤波器,所述第二混频器与所述PPF耦合,其中,上变频电路中的功率放大器的增益小于所述射频前端模组10中的功率放大器的增益,用于对发送信号进行预放大处理,便于区分,将上变频电路中的功率放大器(或可调功率放大器)记为预放大器(pre PA,PPA)。
数模转换器、低通滤波器、第二混频器和PPA依次串联。数模转换器与基带信号处理器耦合,PPA与射频前端模组10的第四端口耦合。数模转换器可以对来自基带处理模块的数字信号转换为模拟信号,也是基带信号。经由低通滤波器,对基带信号进行去噪。第二混频器可以接收PPF提供的本身信号,基于接收的本振信号对低通滤波器输出的基带信号进行调制或频率搬移后,形成射频信号,并输出至PPA。PPA可以对该射频信号进行放大,其中PPA对该射频信号放大增益小于射频前端模组10的PA的放大增益。PPA将放大 后的信号输出至射频前端模组10的第四端口。
通信设备中,Wi-Fi芯片中,基带信号处理器可以向上变频电路提供基带信号或者对来自下变频电路的基带信号进行处理。请参见图11,所述多个RF收发电路中的PPF之间耦合。
Wi-Fi芯片包括多个RF收发电路,可以使通信设支持DBDC模式以及单频多入多出模式。多个RF收发电路对应的射频前端模组也可以被配置为DBDC模式以及单频多入多出模式。例如,多个RF收发电路对应的射频前端模组可以分别记为第一射频前端模组和第二射频前端模组。
多个RF收发电路对应的射频前端模组也可以被配置为DBDC模式。所述第一射频前端模组发送或接收第一频段的信号时,所述第二射频前端模组可以具体用于发送或接收第二频段的信号。或者,在所述第一射频前端模组发送或接收第二频段的信号时,所述第二射频前端模组可以用于发送或接收第一频段的信号。
多个RF收发电路对应的射频前端模组也可以被配置为单频多入多出模式。所述第一射频前端模组发送第一频段的信号时,所述第二射频前端模组可以具体用于发送第一频段的信号。或者,在所述第一射频前端模组发送第二频段的信号时,所述第二射频前端模组可以用于发送第二频段的信号。或者,所述第一射频前端模组接收第一频段的信号时,所述第二射频前端模组可以具体用于接收第一频段的信号。或者,在所述第一射频前端模组接收第二频段的信号时,所述第二射频前端模组可以用于接收第二频段的信号。也即,第一射频前端模组与第二射频前端模组同步发送相同频段的信号,或者同步接收相同频段的信号。
在一些场景中,第一频段和第二频段可以分别为Wi-Fi 5G和Wi-Fi6G。或者,第一频段和第二频段分别为Wi-Fi 5G高频和Wi-Fi 5G低频。或者,第一频段和第二频段分别为Wi-Fi 6G高频和Wi-Fi 6G低频。
相比于传统通信设备,因射频前端模组10占用PCB板面积较少,并且硬件成本较低,便于通信设备PCB布局,简化通信设备中的板级走线。并且通信设备具有较强的共存干扰抑制能力,信号接收灵敏度较好,可以给用户带来较好的体验。
如图12所示,本申请还提供一种通信设备,可以包括Wi-Fi芯片。Wi-Fi芯片可以包括四个RF收发电路和基带信号处理器。基带信号处理器可以包括前述CPU、MAC及PHY等。通信设备还包括与四个RF收发电路对应的四个射频前端模组10。在一些示例中,每个射频前端模组10支持的第一频段和第二频段(第一频段和第二频段不同),可以分别为Wi-Fi 5G和Wi-Fi6G。或者,第一频段和第二频段分别为Wi-Fi 5G高频和Wi-Fi 5G低频。或者,第一频段和第二频段分别为Wi-Fi 6G高频和Wi-Fi 6G低频。
在另一些示例中,在通信设备中,四个射频前端模组10可配置为DBDC模式。四个射频前端模组10也可以配置为单频段多入多出模式。
四个射频前端模组10可以全部工作在Wi-Fi 5G频段信号的收/发,该通信设备可以记为5G 4*4通信设备。四个射频前端模组10可以全部工作在WiFi 5G低频(LB),可以支持WiFi 5G LB 4x4时分模式。四个射频前端模组10可以全部工作在WiFi 5G高频(HB),支持WiFi 5G HB 4x4时分模式。四个射频前端模组10中,两个射频前端模组10工作在WiFi 5G LB,另两个射频前端模组10工作在WiFi 5G HB,可使通信设备支持WiFi 5G LB 2x2和5G HB 2x2空口不相关并发工作模式。
四个射频前端模组10可以全部工作在Wi-Fi 6G频段信号的收/发,该通信设备可以记为6G 4*4通信设备。四个射频前端模组10可以全部工作在WiFi 6G LB,可以支持WiFi 6G LB 4x4时分模式。四个射频前端模组10可以全部工作在WiFi 6G HB,支持WiFi 6G HB 4x4时分模式。四个射频前端模组10中,两个射频前端模组10工作在WiFi 6G LB,另两个射频前端模组10工作在WiFi 6G HB,可使通信设备支持WiFi 6G LB 2x2和6G HB 2x2空口不相关并发工作模式。
若通信设备中的两个射频前端模组10工作在Wi-Fi 5G,两个射频前端模组10工作在Wi-Fi 6G,该通信设备可记为5G 2*2+6G 2*2通信设备。若通信设备中的两个射频前端模组10工作在Wi-Fi 5G HB,两个射频前端模组10工作在Wi-Fi 5G LB,该通信设备可记为5G LB 2*2+5G HB 2*2通信设备。若通信设备中的两个射频前端模组10工作在Wi-Fi 6G HB,两个射频前端模组10工作在Wi-Fi 6G LB,该通信设备可记为6G LB 2*2+6G HB 2*2通信设备。
本申请还提供一种射频装置,可以包括信号分离器、前述实施例中的任意一种射频前端模组10,下变频电路以及上变频电路;其中,所述信号分离器分别与所述射频前端模组的第一端口,所述射频前端模组的第二端口以及天线相耦合;所述下变频电路与所述射频前端模组的接收支路相耦合,用于对所述射频前端模组输出的信号进行下混频处理;所述上变频电路与所述射频前端模组的发送支路相耦合,用于将基带信号进行上混频处理后输出至所述射频前端模组的所述发送支路。下变频电路的结构和功能,上变频电路的结构和功能,可以参见前述实施例的相关介绍和说明,此处不再赘述。本申请实施例提供的射频装置可以单独集成,射频前端模组10和下变频电路以及上变频电路集成在同一PCB或者一同封装。
以上,仅为本申请的具体实施方式,但在本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求书的保护范围为准。

Claims (20)

  1. 一种射频前端模组,其特征在于,包括:第一端口、第二端口、接收支路、发送支路、切换模块;其中:
    所述第一端口通过所述切换模块耦合至所述发送支路以及所述接收支路,所述第二端口通过所述切换模块耦合至所述发送支路以及所述接收支路;所述第一端口支持第一频段的信号传输;所述第二端口支持第二频段的信号传输,所述第一频段与所述第二频段不同;
    所述接收支路支持所述第一频段和所述第二频段的信号的接收处理;
    所述发送支路支持所述第一频段和所述第二频段的信号的发送处理;
    所述切换模块用于将所述发送支路处理后的信号选择性地传输至所述第一端口或所述第二端口,或者选择性地将所述第一端口接收的信号或所述第二端口接收的信号,传输至所述接收支路。
  2. 如权利要求1所述的射频前端模组,其特征在于,还包括:第一隔离模块和第二隔离模块;
    其中,所述第一端口通过所述第一隔离模块耦合至所述切换模块,所述第一隔离模块用于选择性地将所述第一端口与所述切换模块导通或隔离;
    所述第二端口通过所述第二隔离模块耦合至所述切换模块,所述第二隔离模块用于选择性地将所述第二端口与所述切换模块导通或隔离。
  3. 如权利要求2所述的射频前端模组,其特征在于,所述第一隔离模块具体用于:
    在所述接收支路与所述第二端口导通并通过所述第二端口接收所述第二频段的信号时,对所述第一端口接收到的干扰信号进行隔离,使隔离后的干扰信号的功率在所述接收支路处衰减到预设的第一阈值之下。
  4. 如权利要求2所述的射频前端模组,其特征在于,所述第一隔离模块具体用于:
    在所述接收支路与所述第二端口导通并通过所述第二端口接收所述第二频段的信号时,对所述第一端口接收到的干扰信号进行隔离,使隔离后的干扰信号在所述第二频段的功率密度小于预设的第二阈值,所述干扰信号的至少部分频率落入所述第二频段的范围。
  5. 如权利要求2至4所述的射频前端模组,其特征在于,所述第二隔离模块具体用于:
    在所述接收支路与所述第二端口导通并通过所述第一端口接收所述第一频段信号时,对所述第二端口接收到的干扰信号进行隔离,使隔离后的干扰信号的功率在所述接收支路处衰减到预设的第三阈值;或者,
    在所述接收支路与所述第一端口导通并通过所述第一端口接收所述第一频段信号时,对所述第二端口接收到的干扰信号进行隔离,使隔离后的干扰信号在所述第一频段的功率密度小于预设的第四阈值,所述干扰信号的至少部分频率落入所述第一频段的范围。
  6. 如权利要求2-5所述的射频前端模组,其特征在于,所述第一隔离模块的隔离度可调,所述第二隔离模块的隔离度可调。
  7. 如权利要求2-5任一所述的射频前端模组,其特征在于,
    所述第一隔离模块包括至少一个单刀单掷开关;
    所述第二隔离模块包括至少一个单刀单掷开关。
  8. 如权利要求2-7任一所述的射频前端模组,其特征在于,所述切换模块包括:第一切换开关和第二切换开关;
    所述第一切换开关分别与所述第一隔离模块、所述发送支路和所述接收支路耦合,用于选择性地将所述发送支路和所述接收支路中的一个与所述第一隔离模块导通;
    所述第二切换开关分别与所述第二隔离模块、所述发送支路和所述接收支路耦合,用于选择性地将所述发送支路和所述接收支路中的一个与所述第二隔离模块导通。
  9. 如权利要求8所述的射频前端模组,其特征在于,所述第一切换开关,具体用于:
    在所述接收支路通过所述第二端口接收所述第二频段的信号时,断开所述第一隔离模块与所述接收支路;
    所述第二切换开关,具体用于:
    在所述接收支路通过所述第一端口接收所述第一频段的信号时,断开所述第二隔离模块处与所述接收支路。
  10. 如权利要求8或9所述的射频前端模组,其特征在于,所述第一切换开关和所述第二切换开关为单刀多掷开关;
    所述第一切换开关的动端与所述第一隔离模块耦合,所述第一切换开关的第一触点端与所述发送支路耦合,所述第一切换开关的第二触点端与所述接收支路耦合;
    所述第二切换开关为的动端与所述第二隔离开关耦合,所述第二切换开关的第三触点端与发送支路耦合,所述第二切换开关的第四触点端与所述接收支路耦合。
  11. 如权利要求2-7任一所述的射频前端模组,其特征在于,所述切换模块包括:第三切换开关和第四切换开关;
    所述第三切换开关与所述第一隔离模块、所述第二隔离模块和所述第四切换开关耦合,用于选择性地将所述第一隔离模块和所述第二隔离模块中的一个与所述第四切换开关之间导通;
    所述第四切换开关与所述发送支路、所述接收支路和所述第三切换开关耦合,用于将选择性地将所述发送支路和所述接收支路中的一个与所述第三切换开关之间导通。
  12. 如权利要求11所述的射频前端模组,其特征在于,所述第三切换开关和所述第四切换开关为单刀多掷开关;
    所述第三切换开关的动端与所述第四切换开关的动端耦合,所述第三切换开关的第五触点端与所述第一隔离模块耦合,所述第三切换开关的第六触点端与所述第二隔离模块耦合;
    所述第四切换开关的第七触点端与所述发送支路耦合,所述第四切换开关的第八触点端与所述接收支路耦合。
  13. 如权利要求1-12任一所述的射频前端模组,其特征在于,所述第一频段为无线保真Wi-Fi 5G频段,所述第二频段为Wi-Fi 6G频段。
  14. 如权利要求1-13任一所述的射频前端模组,其特征在于,所述接收支路包括可调低噪声放大器,所述可调低噪声放大器的工作频段覆盖所述第一频段和所述第二频段。
  15. 如权利要求14所述的射频前端模组,其特征在于,还包括:第三端口;
    所述可调低噪声放大器的一端与所述第三端口耦合,所述可调低噪声放大器的另一端与所述切换模块耦合;
    所述接收支路还包括与所述低噪声放大器并联的旁路开关;所述旁路开关用于选择性地对所述低噪声放大器进行旁路。
  16. 如权利要求1-13任一所述的射频前端模组,其特征在于,所述发送支路包括:串 联的功率放大器和滤波器;其中,所述滤波器的带宽覆盖所述第一频段和所述第二频段,或者,所述滤波器为可调滤波器,所述可调滤波器的工作频段覆盖所述第一频段和所述第二频段。
  17. 一种射频装置,其特征在于,包括:信号分离器、如权利要求1-16任一所述的射频前端模组,下变频电路以及上变频电路;其中,
    所述信号分离器分别与所述射频前端模组的第一端口,所述射频前端模组的第二端口以及天线相耦合;
    所述下变频电路与所述射频前端模组的接收支路相耦合,用于对所述射频前端模组输出的信号进行下混频处理;
    所述上变频电路与所述射频前端模组的发送支路相耦合,用于将基带信号进行上混频处理后输出至所述射频前端模组的所述发送支路。
  18. 一种通信设备,其特征在于,包括:Wi-Fi芯片,以及多个如权利要求1-16任一所述的射频前端模组,所述Wi-Fi芯片分别耦合至所述多个射频前端模组;其中,
    所述多个射频前端模组被配置为支持双频并发或者单频段多入多出。
  19. 如权利要求18所述的通信设备,其特征在于,所述多个射频前端模组包括第一射频前端模组和第二射频前端模组;所述多个射频前端模组被配置为支持双频并发;
    在所述第一射频前端模组发送或接收第一频段的信号时,所述第二射频前端模组具体用于发送或接收第二频段的信号;或者,
    在所述第一射频前端模组发送或接收第二频段的信号时,所述第二射频前端模组具体用于发送或接收第一频段的信号。
  20. 如权利要求18所述的通信设备,其特征在于,所述多个射频前端模组包括第一射频前端模组和第二射频前端模组;所述多个射频前端模组被配置为单频段多入多出;
    在所述第一射频前端模组发送所述第一频段或者所述第二频段的信号时,所述第二射频前端模组具体用于发送与所述第一射频装置发送的信号相同频段的信号;或者,
    在所述第一射频前端模组接收所述第一频段或者所述第二频段的信号时,所述第二射频前端模组具体用于接收与所述第一射频前端模组发送的信号相同频段的信号。
PCT/CN2021/122440 2021-09-30 2021-09-30 一种射频前端模组、射频装置以及通信设备 WO2023050421A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180102488.7A CN117999740A (zh) 2021-09-30 2021-09-30 一种射频前端模组、射频装置以及通信设备
PCT/CN2021/122440 WO2023050421A1 (zh) 2021-09-30 2021-09-30 一种射频前端模组、射频装置以及通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122440 WO2023050421A1 (zh) 2021-09-30 2021-09-30 一种射频前端模组、射频装置以及通信设备

Publications (1)

Publication Number Publication Date
WO2023050421A1 true WO2023050421A1 (zh) 2023-04-06

Family

ID=85781211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122440 WO2023050421A1 (zh) 2021-09-30 2021-09-30 一种射频前端模组、射频装置以及通信设备

Country Status (2)

Country Link
CN (1) CN117999740A (zh)
WO (1) WO2023050421A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120184228A1 (en) * 2011-01-14 2012-07-19 Mujtaba Syed A Dynamic transmit configurations in devices with multiple antennas
CN108923792A (zh) * 2018-06-29 2018-11-30 Oppo广东移动通信有限公司 多路选择开关及相关产品
US20200244408A1 (en) * 2017-08-10 2020-07-30 Samsung Electronics Co., Ltd. Electronic device and method for processing radio frequency signals having different frequency bands
CN112436845A (zh) * 2020-12-02 2021-03-02 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120184228A1 (en) * 2011-01-14 2012-07-19 Mujtaba Syed A Dynamic transmit configurations in devices with multiple antennas
US20200244408A1 (en) * 2017-08-10 2020-07-30 Samsung Electronics Co., Ltd. Electronic device and method for processing radio frequency signals having different frequency bands
CN108923792A (zh) * 2018-06-29 2018-11-30 Oppo广东移动通信有限公司 多路选择开关及相关产品
CN112436845A (zh) * 2020-12-02 2021-03-02 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备

Also Published As

Publication number Publication date
CN117999740A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US10128872B2 (en) Enabling radio frequency multiplexing in a wireless system
US9154171B2 (en) Reconfigurable radio frequency circuits and methods of receiving
EP2885876B1 (en) Direct conversion receiver circuit for concurrent reception of multiple carriers
CN106575976B (zh) 与用于无线应用的时分和频分双工协议相关的系统和方法
US20230344463A1 (en) Mixed signal low noise interference cancellation
US10084489B2 (en) Multiple antenna system and transceiver front end for interband downlink carrier aggregation
US20120163245A1 (en) Module for mobile communication terminal and mobile communication terminal
KR101803342B1 (ko) 무선 네트워크에서 운용되는 다중대역 라디오 장치 및 방법
US20070161357A1 (en) Multiband antenna switch
US20210006274A1 (en) Radio frequency front end circuit and communication device
US11658794B2 (en) Radio frequency module and communication device
US11349510B2 (en) Radio frequency front end module and communication device
WO2023061090A1 (zh) 一种覆盖多频段的射频前端模块及无线通信设备
US11996869B2 (en) Radio frequency module and communication device
CN117897912A (zh) 用于支持各种同时、同步和异步通信模式的射频(rf)前端
US11336309B2 (en) Front-end module and communication device
WO2023185307A1 (zh) 一种射频前端装置和信号处理方法
WO2023050421A1 (zh) 一种射频前端模组、射频装置以及通信设备
CN114389638B (zh) 一种功率放大器模组、控制方法、终端及计算机存储介质
CN112653502B (zh) 一种基于频率协调的便携终端射频通道
JP2022170177A (ja) 電力増幅モジュール
US20230163791A1 (en) Radio-frequency circuit
WO2024016282A1 (zh) 联动天线电路及终端
CN115441881B (zh) 联动天线电路及终端
CN114448463B (zh) 一种功率放大器模组、控制方法、终端及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958988

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102488.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021958988

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021958988

Country of ref document: EP

Effective date: 20240410