WO2023050395A1 - 金属产品整形方法及电子装置 - Google Patents

金属产品整形方法及电子装置 Download PDF

Info

Publication number
WO2023050395A1
WO2023050395A1 PCT/CN2021/122389 CN2021122389W WO2023050395A1 WO 2023050395 A1 WO2023050395 A1 WO 2023050395A1 CN 2021122389 W CN2021122389 W CN 2021122389W WO 2023050395 A1 WO2023050395 A1 WO 2023050395A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
shaping
information
coordinate
position data
Prior art date
Application number
PCT/CN2021/122389
Other languages
English (en)
French (fr)
Inventor
夏雨
徐纪超
邱林飞
高建光
刘锋
王新志
Original Assignee
富鼎电子科技(嘉善)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富鼎电子科技(嘉善)有限公司 filed Critical 富鼎电子科技(嘉善)有限公司
Priority to CN202180088943.2A priority Critical patent/CN117043694A/zh
Priority to US18/274,457 priority patent/US20240094700A1/en
Priority to PCT/CN2021/122389 priority patent/WO2023050395A1/zh
Publication of WO2023050395A1 publication Critical patent/WO2023050395A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40931Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of geometry
    • G05B19/40932Shape input
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/27Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an absolute digital measuring device
    • G05B19/29Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an absolute digital measuring device for point-to-point control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32228Repair, rework of manufactured article

Definitions

  • the present application relates to the technical field of workpiece shaping, in particular to a metal product shaping method and an electronic device.
  • the currently commonly used metal product shaping method is that the degree of deformation of the workpiece cannot be judged by the naked eye, and then the workpiece is manually shaped according to the degree of deformation of the workpiece.
  • relying on the naked eye to judge the degree of deformation of the workpiece and then perform manual shaping requires a large labor cost and the shaping efficiency is low.
  • the present application provides a metal product shaping method, the metal product shaping method comprising:
  • the position data information is obtained by measuring each preset point of the workpiece by the measurement system;
  • a shaping system is controlled to shape the workpiece.
  • the position data information of the workpiece is obtained by controlling the measurement system to measure the workpiece surface, and the position data information is converted into coordinate information, and the coordinate information is fitted to obtain the surface contour curve of the workpiece, and the obtained surface contour curve is compared with The standard contour curve is compared to obtain the comparison result, and the shaping information of the workpiece is obtained based on the comparison result.
  • the shaping system is controlled to shape the workpiece, and the degree of deformation of the workpiece is obtained based on the comparison between the surface contour curve of the workpiece and the standard contour curve, and can According to the shaping information obtained by the degree of deformation, the workpiece is automatically shaped to improve the efficiency of workpiece shaping and reduce labor costs.
  • converting the position data information into coordinate information, and fitting the coordinate information to obtain the surface contour curve of the workpiece includes:
  • the obtained position data information can be converted into coordinate information based on the measurement coordinate system, and the coordinate information is fitted to obtain the surface contour curve of the workpiece , to obtain the contour curve of the workpiece surface by means of measurement and calculation, so as to analyze the deformation of the workpiece and realize the visualization of the deformation of the workpiece.
  • the fitting of the coordinate information to obtain the contour curve of the workpiece surface includes:
  • a comparison result is generated, including:
  • the comparison result is generated based on the judgment result.
  • the judging whether the deformation amount of each position point is within a preset range and generating a judging result includes:
  • the obtaining of the shaping information of the workpiece according to the comparison result includes:
  • the preset shaping information set collects shaping information corresponding to different types of workpiece deformations, so as to obtain the shaping information of the workpiece according to the comparison result.
  • the shaping information includes a shaping method, a shaping amount, and a holding time.
  • the shaping information includes the shaping method, shaping amount and holding time, so as to match the corresponding shaping method, shaping amount and holding time for the deformation of different workpieces, so as to realize accurate shaping of each workpiece.
  • the mobile measurement system measures the position data information of the workpiece surface, including:
  • the measuring system is moved to sequentially measure the position data information of multiple target coordinate points on the surface of the workpiece.
  • the measurement system can make a one-to-one correspondence between the target coordinate point and each position data information when measuring the position data information of the workpiece, so as to facilitate accurate acquisition of the position of each target coordinate point Data information.
  • the controlling the shaping system to shape the workpiece based on the shaping information includes:
  • the shaping component in the shaping system starts to work according to the shaping instruction, so as to successively shape each position point of the workpiece.
  • the shaping system sequentially shapes each position of the workpiece based on the shaping instructions, so as to automatically shape the workpiece, reduce manpower input, and improve the efficiency of workpiece shaping.
  • the metal product shaping method further includes:
  • the workpieces that are qualified and unqualified for reshaping are processed separately, wherein the workpiece that is judged to be unqualified for reshaping is re-determined about the deformation of the workpiece and the next reshaping is performed on the workpiece. Until the shaping is qualified, in order to improve the pass rate of workpiece shaping.
  • the present application also provides an electronic device, the electronic device comprising:
  • a memory where a computer program is stored in the memory, and the computer program is loaded by the processor to execute the metal product shaping method described in any one of the above.
  • the electronic device is provided with a processor and a memory, wherein the memory is used to store a computer program, the computer program can be loaded by the processor and used to execute the metal product shaping method, so as to realize the electronic control of the workpiece shaping, simplify the control process, and improve Shaping efficiency.
  • FIG. 1 is a structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is a flow chart of the metal product shaping method provided by the embodiment of the present application.
  • Fig. 3 is a graph of the first deformation of the workpiece surface provided by the embodiment of the present application.
  • Fig. 4 is a graph of the second deformation of the workpiece surface provided by the embodiment of the present application.
  • Fig. 5 is a graph of the third deformation of the workpiece surface provided by the embodiment of the present application.
  • Fig. 6 is a graph of the fourth deformation of the workpiece surface provided by the embodiment of the present application.
  • Fig. 7 is a graph of the fifth deformation of the workpiece surface provided by the embodiment of the present application.
  • Fig. 8 is a graph of the sixth deformation of the workpiece surface provided by the embodiment of the present application.
  • Fig. 9 is a graph of the seventh deformation of the workpiece surface provided by the embodiment of the present application.
  • Fig. 10 is a graph of the eighth deformation of the workpiece surface provided by the embodiment of the present application.
  • Fig. 11 is a graph of the ninth deformation of the workpiece surface provided by the embodiment of the present application.
  • Fig. 12 is a graph of the tenth deformation of the workpiece surface provided by the embodiment of the present application.
  • Fig. 13 is a schematic diagram of the determination of the deformation amount of the workpiece surface provided by the embodiment of the present application.
  • Fig. 14 is a partial structural schematic diagram of the shaping system provided by the embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • An embodiment of the present application provides a metal product shaping method, the metal product shaping method includes:
  • the position data information is obtained by measuring each preset point of the workpiece by the measurement system;
  • a shaping system is controlled to shape the workpiece.
  • the position data information of the workpiece is obtained by controlling the measurement system to measure the workpiece surface, and the position data information is converted into coordinate information, and the coordinate information is fitted to obtain the surface contour curve of the workpiece, and the obtained surface contour curve is compared with The standard contour curve is compared to obtain the comparison result, and the shaping information of the workpiece is obtained based on the comparison result.
  • the shaping system is controlled to shape the workpiece, and the degree of deformation of the workpiece is obtained based on the comparison between the surface contour curve of the workpiece and the standard contour curve, and can According to the shaping information obtained by the degree of deformation, the workpiece is automatically shaped to improve the efficiency of workpiece shaping and reduce labor costs.
  • the embodiment of the present application also provides an electronic device, the electronic device includes:
  • a memory where a computer program is stored in the memory, and the computer program is loaded by the processor to execute the metal product shaping method described in any one of the above.
  • the electronic device is provided with a processor and a memory, wherein the memory is used to store a computer program, the computer program can be loaded by the processor and used to execute the metal product shaping method, so as to realize the electronic control of the workpiece shaping, simplify the control process, and improve Shaping efficiency.
  • FIG. 1 is a structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 100 includes, but is not limited to, a processor 10 , a memory 20 , a measurement system 30 and a shaping system 40 .
  • the measurement system 30 is used to measure the workpiece to obtain the position data information of the workpiece;
  • the processor 10 is connected to the measurement system 30 by communication, and is used to obtain the position data information measured by the measurement system 30, and process the position data information;
  • the shaping system 40 It is connected to the processor 10 in communication, and is used for executing shaping instructions sent by the processor 10 to shape the workpiece.
  • Fig. 2 is a flow chart of the metal product shaping method provided by the embodiment of the present application. According to different requirements, the order of the steps in the flowchart can be changed, and some steps can be omitted.
  • the metal product shaping method includes:
  • the position data information is obtained by measuring the workpiece by the measuring system 30 .
  • the position data information of the workpiece is the height value between each target position point on the surface of the workpiece and the measuring system 30 .
  • the workpiece is fixedly placed at a preset position
  • the measuring system 30 is moved above the workpiece, and the measuring system 30 moves along a preset plane to measure the surface of the workpiece to obtain position data information of the workpiece.
  • the measuring system 30 measures the position of the target position point A to obtain the height value between the target position point A and the measuring system 30.
  • the measuring system 30 is a laser laser system.
  • the measurement system 30 is connected to the processor 10 through communication, and the processor 10 directly calls the position data information of the workpiece measured by the measurement system 30 through a serial communication protocol.
  • the serial communication protocol is the Modbus/TCP protocol. It can be understood that the measuring system 30 can also send the measured position data information to the processor 10 in real time.
  • step S1 includes: establishing the coordinate system of the measurement system 30, and binding the coordinate system with the position data of the workpiece; moving the measurement system 30 to sequentially measure the surface of the workpiece The position data information of multiple target coordinate points.
  • the coordinate system is a three-dimensional coordinate system. Specifically, the coordinate system is bound to the position data of the workpiece, so as to establish a one-to-one correspondence between the corresponding coordinate values of the position points of the workpiece in the coordinate system.
  • the measurement system 30 moves along a preset motion track to measure the corresponding positions of each target coordinate point on the surface of the workpiece to obtain position data information of each target coordinate point.
  • the preset motion track may be a track moving along the length direction of the workpiece.
  • a preset coordinate system is established in the processor 10, and the preset coordinate system is bound to the position data of the workpiece, so that the positions of different position points of the workpiece correspond to coordinate points one by one in the preset coordinate system,
  • the corresponding relationship between the position point and the coordinate point is established, and based on the corresponding relationship, the coordinate information corresponding to each position point is obtained through the known position data information of different position points of the workpiece.
  • the coordinate information is the coordinate value corresponding to each position point of the workpiece.
  • the position data of the position point A on the workpiece surface is the height value Ha between the position point A and the measurement system 30, based on the one-to-one correspondence between the position point of the workpiece and the corresponding coordinate value in the coordinate system, then The position point A corresponds to a unique coordinate value (Xa, Ya, Za) in the coordinate system.
  • the fitting method in this embodiment is to use the coordinate values corresponding to multiple position points on the surface of the workpiece, and use the least square method to fit the contour curve of the surface of the workpiece.
  • the fitting can connect multiple discrete position point coordinate values with a curve to graphically display the contour of the workpiece surface, so as to display the contour of the workpiece surface more clearly and intuitively.
  • step S2 includes: establishing a measurement coordinate system, and binding the measurement coordinate system with the position data of the workpiece; based on the binding of the measurement coordinate system and the position data of the workpiece, binding the The position data information is converted into coordinate information; the coordinate information is fitted to obtain the workpiece surface contour curve.
  • the measurement coordinate system is set in the processor 10, and the measurement coordinate system is bound to the position data of the workpiece to establish the corresponding relationship between the position points on the workpiece surface and the corresponding coordinate values in the measurement coordinate system, so that the workpiece surface There is a one-to-one correspondence between the position points on the coordinate system and the corresponding coordinate values in the measurement coordinate system.
  • the coordinate information corresponding to each position point is obtained by corresponding the known position data information of different position points of the workpiece.
  • the coordinate information is the coordinate value corresponding to each position point of the workpiece.
  • the least square method is used to fit the coordinate information to obtain the surface contour curve of the workpiece, so as to obtain the contour curve of the workpiece surface by means of measurement and calculation, so as to analyze the deformation of the workpiece and realize the visualization of the deformation of the workpiece.
  • the surface contour curve is the contour line of the workpiece surface.
  • the objective function is set as: According to the extreme value principle, if F(A, B, C) is to be the minimum value, there must be Right now:
  • the flatness deviation value is the distance between the actual surface of the workpiece and the ideal plane of the workpiece.
  • the surface contour curve is the surface contour line on the actual workpiece surface.
  • the surface contour curve of the workpiece is obtained by fitting, so as to realize the visualization of the deformation of the workpiece.
  • fitting is to connect multiple discrete target points on the surface of the workpiece with a smooth curve to graphically display the contour of the workpiece surface, so as to display the contour of the workpiece surface more clearly and intuitively.
  • the surface contour curve is compared with the standard contour curve to obtain the deformation amount corresponding to each position point, and whether the deformation amount of each position point is judged to be within a preset range to generate a judgment result, and the comparison result is obtained based on the judgment result.
  • the deformation amount between the position point on the surface contour curve of the comparison result workpiece and the position point corresponding to the standard contour curve of the standard workpiece is compared.
  • the amount of deformation is the distance between a position point on the surface contour curve of the workpiece and a position point corresponding to the standard contour curve of the standard workpiece.
  • the distance between the position point A on the surface contour curve of the workpiece and the position point A' of the standard contour curve of the standard workpiece corresponding to the position point A is 0.2mm, then the deformation of the workpiece position point A after comparison is 0.2mm .
  • the preset range is a preset qualified limit, such as 0.25mm, that is, if the deformation is within 0.25mm, the workpiece is qualified and no reshaping is required; otherwise, the workpiece is unqualified.
  • step S3 includes: comparing the surface contour curve with the standard contour curve to obtain the deformation amount corresponding to each position point; judging whether the deformation amount of each position point is within a preset range, and generating a judgment result; The comparison result is generated based on the judgment result.
  • the standard contour curve is the contour curve of the standard workpiece, and the deformation corresponding to each position point on the workpiece is obtained by comparing the surface contour curve of the workpiece with the standard contour curve of the standard workpiece.
  • the workpiece and the standard workpiece belong to the same type of product, and the position points of the workpiece and the position points of the standard workpiece have a one-to-one correspondence.
  • the preset range is the basis for judging whether the workpiece is qualified.
  • the preset range is 0.25mm. Based on the above settings, if the deformation of point A on the surface of the workpiece exceeds 0.25 mm, the deformation of point A exceeds the preset range.
  • the judging whether the deformation amount of each position point is within the preset range, and generating the judgment result includes: if the deformation amount of each position point is within the preset range, then judging that the workpiece is a qualified product; if If at least one deformation amount of each position point is not within the preset range, it is determined that the workpiece is a defective product.
  • Fig. 3-Fig. 12 are graphs of ten deformation types of the workpiece surface provided by the embodiment of the present application.
  • the workpiece is located in a three-dimensional coordinate system, the three-dimensional coordinate system is bound with the position data of the workpiece, and is the same as the coordinate system of the measuring system 30 .
  • the measurement system 30 measures the position of each preset point on the surface of the workpiece, acquires the position data information of each preset point, and converts the acquired position data information of each preset point into the coordinates of each preset point in the three-dimensional coordinate system information, for example, the coordinate information of the preset point A is (Xa, Ya, Za).
  • the deformation of the workpiece can be judged according to the coordinate information of each preset point. It can be understood that the above deformation examples of the workpiece only represent a part of the deformation types of the workpiece, and the deformation of the workpiece can be defined by different permutations and combinations according to the deformation conditions of each preset point.
  • the plane where the preset position of the workpiece is placed is parallel to the plane where X/Y is located in the three-dimensional coordinate system.
  • the deformation of the point for example, the acceptable deformation setting range is ( ⁇ 0.25mm), if the Z-axis coordinate of the preset point A is 0.3mm, then the preset point A exceeds 0.25 of the acceptable deformation, and the predetermined The deformation of the set point A is convex; if the Z-axis coordinate of the preset point B is -0.3mm, the preset point B exceeds -0.25mm of the acceptable deformation amount, and the deformation of the preset point B is judged to be concave.
  • Fig. 13 is a schematic diagram of the determination of the deformation amount of the workpiece surface provided by the embodiment of the present application.
  • the surface contour curve 0 is the standard contour line of the workpiece
  • the surface contour curve 1 is the surface contour line of the workpiece before shaping
  • the surface contour curve 2 is the surface contour line of the workpiece after shaping. It can be understood that, comparing the workpiece surface contour line with the standard contour line, the deformation of each target position point is within ( ⁇ 0.25mm) of the standard contour line, which is a qualified product.
  • the deformation of point A on the surface of the workpiece is 0.1mm, and the deformation of point A does not exceed the preset range ( ⁇ 0.25mm), it is determined that the workpiece is a qualified product, and there is no need to reshape point A; if the workpiece The deformation of point A on the surface is 0.3mm. If the deformation of point A exceeds the preset range ( ⁇ 0.25mm), it is determined that the workpiece is unqualified, and point A needs to be reshaped.
  • the deformation amount of each position point by comparing the deformation amount of each position point with the preset range, the result of whether the deformation amount of each position point is within the preset range is obtained, and the comparison result is obtained based on the judgment result, so as to obtain the results of different position points on the workpiece surface.
  • Deformation situation For example, if there are 9 target position points on the surface of the workpiece, the deformation amounts corresponding to the 9 target position points are compared with the preset range respectively to obtain whether the deformation amounts at the 9 position points are within the preset range.
  • the shaping information includes the shaping method, shaping amount and holding time, so as to match the corresponding shaping method, shaping amount and holding time for the deformation of different workpieces, so as to realize accurate shaping of each workpiece.
  • the holding time is the pressure holding time after the workpiece is reshaped, so as to eliminate the stress of the workpiece after reshaping and improve the effect of workpiece reshaping.
  • the shaping information is sent to the shaping system 40, and the shaping system 40 shapes the workpiece surface based on the received shaping information.
  • Fig. 14 is a partial structural schematic diagram of the shaping system provided by the embodiment of the present application.
  • the shaping system 40 includes a workbench 41, a positioning assembly 42 and a shaping assembly 43, wherein the positioning assembly 42 is used to position the workpiece on the workbench 41, and the shaping assembly 43 includes 2N driving elements 431 and each driving element 431
  • the connected transmission parts 432, N is the number of target position points on the surface of the workpiece, and N ⁇ 1
  • the driving part 431 is used to drive the transmission part 432 to move toward or away from the workpiece
  • 2N driving parts 431 are symmetrically arranged on the sides of the workbench 41
  • the shaping system 40 controls the corresponding driving element 431 to drive the transmission element 432 to shape the surface of the workpiece based on the received shaping information.
  • the driving part 431 is a servo; the transmission part 432 is a screw.
  • step S5 includes: generating a shaping instruction based on the shaping information, and sending the shaping instruction to the shaping system 40; the shaping component 43 in the shaping system 40 starts working according to the shaping instruction to sequentially Each location point of the workpiece is shaped.
  • the shaping system 40 further includes a controller (not shown), specifically, the processor 10 is connected to the controller based on Modbus/TCP communication, so as to send the shaping information to the controller.
  • the controller automatically generates shaping instructions based on the obtained shaping information.
  • the controller is a PLC controller.
  • the controller communicates with the shaping system 40 based on the CANlink protocol.
  • the controller sends shaping instructions to the shaping system 40.
  • the shaping system 40 sequentially shapes each position of the workpiece based on the shaping instructions, so as to automatically shape the workpiece and reduce manpower and labor costs. , Improve the efficiency of workpiece shaping.
  • the measurement system 30 reacquires the position data information of the reshaped workpiece surface, and converts the reshaped workpiece surface coordinate information based on the reshaped position data information, so that the reshaped workpiece surface coordinate information Fitting is carried out to obtain the surface contour curve of the workpiece after shaping, and the surface contour curve is compared with the standard contour curve of the standard workpiece to determine the shaping effect of the workpiece after shaping. If the shaping is qualified, the first signal is output. If the shaping is not If qualified, the second signal is output.
  • the processor 10 sends the first command signal to return the shaping system 40 to the initial position, so as to shape the next workpiece.
  • the processor 10 Based on the second signal, it is determined that the shaped workpiece is unqualified, and the processor 10 sends a second command signal to perform next shaping on the workpiece.
  • the workpieces that are qualified and unqualified are processed separately.
  • the deformation of the workpiece that is judged to be unqualified is re-determined and the next shaping is performed on the workpiece until the shaping Qualified to improve the pass rate of workpiece shaping.
  • the electronic device 100 includes a processor 10 and a memory 20, and a computer program 21 is stored in the memory 20, and the computer program 21 is loaded by the processor 10 and executes the metal described in any one of the above.
  • the electronic device 100 is provided with a processor 10 and a memory 20, wherein the memory 20 is used to store a computer program 21, and the computer program 21 can be loaded by the processor 10 and used to execute the metal product shaping method, so as to realize electronic processing when shaping the workpiece. control, simplify the control process and improve the shaping efficiency.
  • the schematic diagram is only an example of the electronic device 100 and does not constitute a limitation to the electronic device 100. It may include more or less components than those shown in the illustration, or combine some components, or have different Components, for example, the electronic device 100 may also include input and output devices, network access devices, buses, and the like.
  • the processor 10 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor can be a microprocessor or the processor 10 can also be any conventional processor, etc., the processor 10 is the control center of the electronic device 100, and uses various interfaces and lines to connect various parts of the entire electronic device 100 .
  • the memory 20 can be used to store computer programs 21 and/or modules/units, and the processor 10 runs or executes the computer programs 21 and/or modules/units stored in the memory 20, and calls data stored in the memory 20, Various functions of the electronic device 100 are realized.
  • the memory 20 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system, an application program required by at least one function, etc.;
  • the memory 20 can include volatile memory and non-volatile memory, such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card), at least one disk storage device, flash memory device, or other storage device.
  • volatile memory and non-volatile memory such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card), at least one disk storage device, flash memory device
  • the metal product shaping method and the electronic device 100 provided in this application can measure the workpiece surface by controlling the measurement system 30 to obtain the position data information of the workpiece, convert the position data information into coordinate information, and use the least square method to simulate the coordinate information. Combine the surface contour curve of the workpiece, compare the obtained surface contour curve with the standard contour curve, obtain the comparison result, obtain the shaping information of the workpiece based on the comparison result, and control the shaping system 40 to shape the workpiece based on the shaping information.
  • the workpiece surface contour curve is compared with the standard contour curve to obtain the degree of deformation of the workpiece, and the workpiece can be automatically reshaped according to the reshaping information obtained by the degree of deformation, so as to improve the efficiency of workpiece reshaping and reduce labor costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Numerical Control (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本申请提出一种金属产品整形方法,包括:获取工件的位置数据信息;将所述位置数据信息转换成坐标信息,并对所述坐标信息进行拟合得到所述工件的表面轮廓曲线;将所述表面轮廓曲线与标准轮廓曲线进行对比,生成对比结果;根据所述对比结果,得到所述工件的整形信息;控制整形系统对所述工件进行整形。本申请通过测量以获取工件的位置数据信息,并将位置数据信息转换成坐标信息,对坐标信息进行拟合得到工件的表面轮廓曲线,表面轮廓曲线与标准轮廓曲线对比得到工件的变形情况,依据变形程度得到的整形信息以对工件进行整形,以提高工件整形效率和降低人力成本投入。本申请同时提供一种电子装置。

Description

金属产品整形方法及电子装置 技术领域
本申请涉及工件整形技术领域,尤其涉及一种金属产品整形方法及电子装置。
背景技术
在生产加工中,工件容易发生变形。通常需要对平整度不合格的工件进行表面整形。
由于每个工件的变形程度不同,对应需要的整形方式也不相同。目前常用的金属产品整形方法是由人工肉眼无法判断工件的变形程度,而后根据工件的变形程度手动对工件进行整形。然而,依靠人工肉眼判断工件变形程度后进行手动整形的方式需投入较大的人力成本且整形效率低。
发明内容
鉴于以上内容,有必要提出一种金属产品整形方法及电子装置,以解决依靠人工肉眼判断工件变形程度后进行手动整形的方式需投入较大的人力成本且整形效率低的技术问题。
本申请提供一种金属产品整形方法,所述金属产品整形方法包括:
获取工件的位置数据信息,所述位置数据信息由测量系统测量工件各个预设点获得;
将所述位置数据信息转换成坐标信息,并对所述坐标信息进行拟合得到所述工件的表面轮廓曲线;
将所述表面轮廓曲线与标准轮廓曲线进行对比,生成对比结果;
根据所述对比结果,得到所述工件的整形信息;
基于所述整形信息,控制整形系统对所述工件进行整形。
如此,通过控制测量系统对工件表面进行测量以获取工件的位置数据信息,并将位置数据信息转换成坐标信息,对坐标信息进行 拟合得到工件的表面轮廓曲线,并将得到的表面轮廓曲线与标准轮廓曲线进行对比,得到对比结果,基于对比结果得到工件的整形信息,基于整形信息,控制整形系统对工件进行整形,以基于工件表面轮廓曲线与标准轮廓曲线对比得到工件的变形程度,且能够依据变形程度得到的整形信息自动对工件进行整形,以提高工件整形效率和降低人力成本投入。
本申请一实施例中,将所述位置数据信息转换成坐标信息,并对所述坐标信息进行拟合得到所述工件的表面轮廓曲线包括:
建立测量坐标系,并将所述测量坐标系与所述工件的位置数据绑定;
基于所述测量坐标系与所述工件的位置数据绑定,将所述位置数据信息转换成坐标信息;
对所述坐标信息进行拟合得到所述工件表面轮廓曲线。
如此,通过将工件的位置数据信息与测量坐标系进行绑定,以使获得的位置数据信息能够基于测量坐标系将位置数据信息转换成坐标信息,对坐标信息进行拟合得到工件的表面轮廓曲线,以通过测量计算的手段获得工件表面的轮廓曲线,以便于分析工件的变形情况,以实现工件的变形情况可视化。
本申请一实施例中,所述对所述坐标信息进行拟合得到所述工件表面的轮廓曲线,包括:
基于所述坐标信息一一对应得出各个位置点的坐标值(X、Y、Z);
根据多点最小二乘法,计算出理想平面方程Z=AX+BY+C,得出各个位置点平面度偏差值;
基于计算得到的各个位置点的平面度偏差值,拟合出所述工件的表面轮廓曲线。
如此,基于各个位置点的坐标值,并通过利用多点最小二乘法,计算理想平面方程Z=AX+BY+C,得到各个位置点的平面度偏差值,以拟合出工件的表面轮廓曲线,以实现工件的变形情况可视化。
本申请一实施例中,所述根据所述表面轮廓曲线,并将所述表面轮廓曲线与标准轮廓曲线进行对比,生成对比结果,包括:
将所述表面轮廓曲线与标准轮廓曲线进行对比以获取各个位置点对应的变形量;
判断各个位置点的变形量是否在预设范围内,生成判断结果;
基于所述判断结果生成所述对比结果。
如此,通过将表面轮廓曲线与标准轮廓曲线进行对比,以获得各个位置点对应的变形量,将各个位置点的变形量判断是否在预设范围内,生成判断结果,基于判断结果得到对比结果,以实现基于各个位置点的变形量与预设范围自动对比判断。
本申请一实施例中,所述判断各个位置点的变形量是否在预设范围内,生成判断结果,包括:
若各个位置点的变形量均在所述预设范围内,则判定所述工件为合格品;
若各个位置点的变形量至少一个不在所述预设范围内,则判定所述工件为不合格品。
如此,通过各个位置点的变形量与预设范围对比,以实现获得各个位置点的变形量是否在预设范围内,并以此判定工件是否为合格品。
本申请一实施例中,所述根据所述对比结果,得到所述工件的整形信息,包括:
将所述对比结果与预设的整形信息集进行匹配,以得到所述工件的整形信息。
如此,通过将对比结果与预设的整形信息集进行匹配,预设的整形信息集集合了不同种类的工件变形情况对应的整形信息,以实现根据对比结果匹配得到该工件的整形信息。
本申请一实施例中,所述整形信息包括整形方式、整形量和保压时间。
如此,整形信息包括整形方式、整形量和保压时间,以对不同工件的变形情况匹配相对应的整形方式、整形量和保压时间,以实现对各个工件的精确整形。
本申请一实施例中,所述移动测量系统测量工件表面位置数据信息,包括:
建立所述移动测量系统的坐标系,并将所述坐标系与所述工件的位置数据进行绑定;
移动所述测量系统依次量取所述工件表面的多个目标坐标点的位置数据信息。
如此,通过将坐标系与工件的位置数据进行绑定,以使测量系统测量工件的位置数据信息时能够在目标坐标点与各个位置数据信息进行一一对应,便于准确获取各个目标坐标点的位置数据信息。
本申请一实施例中,所述基于所述整形信息,控制整形系统对所述工件进行整形,包括:
基于所述整形信息生成整形指令,并将所述整形指令发送至整形系统;
整形系统中的整形组件依据所述整形指令开始工作,以依次对所述工件的各个位置点进行整形。
如此,通过基于整形信息生成整形指令并发送至整形系统,整形系统基于整形指令依次对工件的各个位置点进行整形,以对工件自动整形,降低人力人本投入,提高工件整形效率。
本申请一实施例中,所述金属产品整形方法还包括:
判定所述工件的整形效果,整形合格则输出第一信号,整形不合格则输出第二信号;
基于所述第一信号发出第一命令信号,根据所述第一命令信号将所述整形系统回归至初始位置;
基于所述第二信号发出第二命令信号;根据所述第二命令信号控制所述整形系统,并对所述工件进行下一次整形。
如此,通过对一次整形后的工件整形效果的判定,以对整形合格和整形不合格的工件分别处理,其中,经判定整形不合格的工件重新判定工件变形情况并对该工件进行下一次整形,直至整形合格,以提高工件整形的合格率。
本申请同时提供一种电子装置,所述电子装置包括:
处理器;及
存储器,所述存储器中存储有计算机程序,所述计算机程序由所述处理器加载并执行上述任意一项所述的金属产品整形方法。
如此,电子装置通过设置处理器和存储器,其中存储器用于存储计算机程序,计算机程序可由处理器加载并用于执行该金属产品整形方法,以实现对工件整形时的电子化控制,简化控制过程,提高整形效率。
附图说明
图1是本申请实施例提供的电子装置的架构图。
图2是本申请实施例提供的金属产品整形方法的流程图。
图3是本申请实施例提供的工件表面第一种变形的曲线图。
图4是本申请实施例提供的工件表面第二种变形的曲线图。
图5是本申请实施例提供的工件表面第三种变形的曲线图。
图6是本申请实施例提供的工件表面第四种变形的曲线图。
图7是本申请实施例提供的工件表面第五种变形的曲线图。
图8是本申请实施例提供的工件表面第六种变形的曲线图。
图9是本申请实施例提供的工件表面第七种变形的曲线图。
图10是本申请实施例提供的工件表面第八种变形的曲线图。
图11是本申请实施例提供的工件表面第九种变形的曲线图。
图12是本申请实施例提供的工件表面第十种变形的曲线图。
图13是本申请实施例提供的工件表面变形量判定的示意图。
图14是本申请实施例提供的整形系统的部分结构示意图。
主要元件符号说明
电子装置                100
处理器                  10
存储器                  20
计算机程序              21
测量系统                30
整形系统                40
工作台                  41
定位组件                42
整形组件                43
驱动件                  431
传动件                  432
具体实施方式
为了能够更清楚地理解本申请的目的、特征和优点,下面结合附图和具体实施例对本申请进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互结合。在下面的描述中阐述了很多具体细节以便于充分理解本申请,所述描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请实施例提供一种金属产品整形方法,所述金属产品整形方法包括:
获取工件的位置数据信息,所述位置数据信息由测量系统测量工件各个预设点获得;
将所述位置数据信息转换成坐标信息,并对所述坐标信息进行拟合得到所述工件的表面轮廓曲线;
根据所述表面轮廓曲线,并将所述表面轮廓曲线与标准轮廓曲线进行对比,生成对比结果;
根据所述对比结果,得到所述工件的整形信息;
基于所述整形信息,控制整形系统对所述工件进行整形。
如此,通过控制测量系统对工件表面进行测量以获取工件的位置数据信息,并将位置数据信息转换成坐标信息,对坐标信息进行 拟合得到工件的表面轮廓曲线,并将得到的表面轮廓曲线与标准轮廓曲线进行对比,得到对比结果,基于对比结果得到工件的整形信息,基于整形信息,控制整形系统对工件进行整形,以基于工件表面轮廓曲线与标准轮廓曲线对比得到工件的变形程度,且能够依据变形程度得到的整形信息自动对工件进行整形,以提高工件整形效率和降低人力成本投入。
本申请实施例同时提供一种电子装置,所述电子装置包括:
处理器;及
存储器,所述存储器中存储有计算机程序,所述计算机程序由所述处理器加载并执行上述任意一项所述的金属产品整形方法。
如此,电子装置通过设置处理器和存储器,其中存储器用于存储计算机程序,计算机程序可由处理器加载并用于执行该金属产品整形方法,以实现对工件整形时的电子化控制,简化控制过程,提高整形效率。
以下将结合附图对本申请的一些实施方式作详细说明。
图1为本申请实施例提供的电子装置的架构图。该电子装置100包括,但不限于,处理器10、存储器20、测量系统30和整形系统40。其中,测量系统30用于测量工件以获取工件的位置数据信息;处理器10通信连接于测量系统30,用于获取测量系统30测量得到的位置数据信息,并对位置数据信息处理;整形系统40通信连接于处理器10,用于执行处理器10发送的整形指令以对工件进行整形。
图2为本申请实施例提供的金属产品整形方法的流程图。根据不同的需求,该流程图中步骤的顺序可以改变,某些步骤可以省略。该金属产品整形方法包括:
S1、获取工件的位置数据信息,所述位置数据信息由测量系统30测量工件获得。
其中,工件的位置数据信息为工件表面各个目标位置点与测量系统30之间的高度值。具体地,该将工件固定放置于预设位置上,移动测量系统30至工件的上方,测量系统30沿预设平面移动以对工件表面进行测量,以获取工件的位置数据信息。例如,工件表面上的目标位置点A,则测量系统30对目标位置点A的位置进行测 量,以获得目标位置点A与测量系统30之间的高度值。本实施例中,测量系统30为激光镭射系统。
本实施方式中,测量系统30通信连接于处理器10,处理器10通过串行通信协议直接调取测量系统30测量工件的位置数据信息。具体地,串行通讯协议为Modbus/TCP协议。可以理解,测量系统30也可将测量得到的位置数据信息实时发送至处理器10。
在一些实施例中,步骤S1包括:建立所述测量系统30的坐标系,并将所述坐标系与所述工件的位置数据进行绑定;移动所述测量系统30依次量取所述工件表面的多个目标坐标点的位置数据信息。
其中,坐标系为三维坐标系。具体地,将坐标系与工件的位置数据进行绑定,以建立工件的位置点在该坐标系中对应的坐标值之间的一一对应。
具体地,测量系统30沿预设运动轨迹移动对工件表面上各个目标坐标点的对应的位置测量以获取各个目标坐标点的位置数据信息。
其中,预设运动轨迹可为沿工件的长度方向进行移动的轨迹。
S2、将所述位置数据信息转换成坐标信息,并对所述坐标信息进行拟合得到所述工件的表面轮廓曲线。
其中,处理器10中建立预设坐标系,并将预设坐标系与工件的位置数据进行绑定,以使工件的不同位置点的位置在该预设坐标系中一一对应的坐标点,建立位置点与坐标点之间的对应关系,基于该对应关系,通过已知的工件不同位置点的位置数据信息得到各位置点对应的坐标信息。其中,坐标信息为工件各个位置点对应的坐标值。示例性的,工件表面的位置点A的位置数据为位置点A与测量系统30之间的高度值Ha,基于工件的位置点与坐标系中的对应的坐标值之间的一一对应,则该位置点A在坐标系中对应有唯一的坐标值(Xa、Ya、Za)。
本实施例中的拟合方式为利用工件表面多个位置点对应的坐标值,采用最小二乘法拟合出工件表面的轮廓曲线。
本实施例中,拟合能够将多个离散的位置点坐标值使用一条曲线连接起来,以图形化展示工件表面的轮廓,以将工件表面轮廓展 现的更加清晰直观。
在一些实施例中,步骤S2包括:建立测量坐标系,并将所述测量坐标系与所述工件的位置数据绑定;基于所述测量坐标系与所述工件的位置数据绑定,将所述位置数据信息转换成坐标信息;对所述坐标信息进行拟合得到所述工件表面轮廓曲线。
其中,测量坐标系设于处理器10中,将测量坐标系与工件的位置数据绑定,以建立工件表面上的位置点与测量坐标系中对应的坐标值之间对应关系,以使工件表面上的位置点与测量坐标系中对应的坐标值之间一一对应。基于该对应关系,通过已知的工件不同位置点的位置数据信息对应得到各位置点对应的坐标信息。其中,坐标信息为工件各个位置点对应的坐标值。利用最小二乘法对坐标信息进行拟合得到工件的表面轮廓曲线,以通过测量计算的手段获得工件表面的轮廓曲线,以便于分析工件的变形情况,以实现工件的变形情况可视化。其中,表面轮廓曲线为工件表面的轮廓线。
在一些实施例中,所述对所述坐标信息进行拟合得到所述工件表面轮廓曲线包括:基于所述坐标信息一一对应得出各个位置点的坐标值(X、Y、Z);根据多点最小二乘法,计算出理想平面方程Z=AX+BY+C,得出各个位置点平面度偏差值;基于计算得到的各个位置点的平面度偏差值,拟合出所述工件的表面轮廓曲线。
示例性的,假设位置点的数量为9个(N=9),则9个位置点的坐标值分别为(Xi、Yi、Zi),(i=1、2、3,、、、,9)。
根据多点最小二乘法,设目标函数为:
Figure PCTCN2021122389-appb-000001
Figure PCTCN2021122389-appb-000002
根据极值原理,欲使F(A、B、C)为最小值,必有
Figure PCTCN2021122389-appb-000003
即:
Figure PCTCN2021122389-appb-000004
在已知(Xi、Yi、Zi)的条件下,依据上述公式可求得各个位置点对应的平面参数A、B、C。
其中,平面度偏差值为工件实际表面与工件理想平面进行比较,两者之间的距离。表面轮廓曲线为实际工件表面上的表面轮廓线。
具体地,基于获取的各个位置点的平面参数A、B、C,拟合得到工件的表面轮廓曲线,以实现工件的变形情况可视化。
其中,拟合是将工件表面上多个离散的目标位置点用一条光滑的曲线连接起来,以图形化展示工件表面的轮廓,以将工件表面轮廓展现的更加清晰直观。
S3、将所述表面轮廓曲线与标准轮廓曲线进行对比,生成对比结果;
其中,表面轮廓曲线与标准轮廓曲线进行对比,以获得各个位置点对应的变形量,将各个位置点的变形量判断是否在预设范围内,生成判断结果,基于判断结果得到对比结果。其中对比结果工件的表面轮廓曲线上的位置点与该位置点对应的标准工件的标准轮廓曲线的位置点之间的变形量。
本实施例中,变形量为工件的表面轮廓曲线上的位置点与该位置点对应的标准工件的标准轮廓曲线的位置点之间的距离。例如,工件的表面轮廓曲线上的位置点A与该位置点A对应的标准工件的标准轮廓曲线的位置点A’的距离为0.2mm,则对比后工件位置点A的变形量即为0.2mm。预设范围为预先设定的合格限值,例如0.25mm,即,变形量在0.25mm以内,则工件合格,无需进行整形,否则,则工件为不合格。
在一些实施例中,步骤S3包括:将所述表面轮廓曲线与标准 轮廓曲线进行对比以获取各个位置点对应的变形量;判断各个位置点的变形量是否在预设范围内,生成判断结果;基于所述判断结果生成所述对比结果。
具体地,标准轮廓曲线为标准工件的轮廓曲线,通过将工件的表面轮廓曲线与标准工件的标准轮廓曲线进行对比,以获取工件上各个位置点对应的变形量。
可以理解,工件与标准工件属于同一类产品,工件的位置点与标准工件的位置点具有一一对应关系。
其中,预设范围为判定工件是否合格的依据。例如,预设范围为0.25mm。基于上述设定,若工件表面位置点A的变形量为超过0.25mm,则A点变形量超出预设范围。
进一步地,所述判断各个位置点的变形量是否在预设范围内,生成判断结果包括:若各个位置点的变形量均在所述预设范围内,则判定所述工件为合格品;若各个位置点的变形量至少一个不在所述预设范围内,则判定所述工件为不合格品。
图3-图12是本申请实施例提供的工件表面十种变形种类的曲线图。其中,工件位于一三维坐标系下,该三维坐标系与工件的位置数据绑定,且与测量系统30的坐标系统一。测量系统30对工件表面各个预设点的位置进行测量,获取各个预设点的位置数据信息,基于获取的各个预设点的位置数据信息转换为各个预设点在该三维坐标系下的坐标信息,例如,预设点A的坐标信息为(Xa、Ya、Za)。通过将工件放置在预设位置上,进而可根据各个预设点的坐标信息判断工件的变形情况。可以理解地,上述工件的变形示例仅代表工件变形种类的一部分,工件变形可根据各个预设点的变形情况通过不同的排列组合进行界定。
示例性的,工件放置的预设位置所在的平面与三维坐标系下X/Y所在的平面平行,此时,通过判断工件各个预设点的坐标信息的Z轴坐标值判断工件在各个预设点的变形情况,例如,可接收的变形量设定范围为(±0.25mm),若预设点A的Z轴坐标为0.3mm,则预设点A超出可接收变形量的0.25,判定预设点A的变形为上凸;若预设点B的Z轴坐标为-0.3mm,则预设点B超出可接收变形量的 -0.25mm,判定预设点B的变形为下凹。
图13是本申请实施例提供的工件表面变形量判定的示意图。其中,表面轮廓曲线0为工件的标准轮廓线,表面轮廓曲线1为整形前工件的表面轮廓线,表面轮廓曲线2为整形后工件的表面轮廓线。可以理解地,将工件表面轮廓线与标准轮廓线进行对比,各目标位置点的变形量均在标准轮廓线的(±0.25mm)以内为合格品。示例性的,若工件表面位置点A的变形量为0.1mm,A点变形量未超出预设范围(±0.25mm),则判定该工件为合格品,则无需对A点进行整形;若工件表面位置点A的变形量为0.3mm,A点变形量超出预设范围(±0.25mm),则判定该工件为不合格品,需要对A点进行整形。
具体地,通过各个位置点的变形量与预设范围对比,以实现获得各个位置点的变形量是否在预设范围内的结果,基于判断结果得到对比结果,以获得工件表面上不同位置点的变形情况。例如,工件表面的目标位置点为9个,则分别将9个目标位置点对应的变形量分别与预设范围对比,以获得9个位置点上的变形量是否在预设范围内。
S4、根据所述对比结果,得到所述工件的整形信息。
具体地,整形信息包括整形方式、整形量和保压时间,以对不同工件的变形情况匹配相对应的整形方式、整形量和保压时间,以实现对各个工件的精确整形。
示例性的,工件上目标位置点有9个,其中4个位置点上的变形量超出预设范围,则基于该4个位置点上的变形量在预设整形信息集中匹配最佳的整形方式、整形量和保压时间。
可以理解,保压时间是对工件整形后的压力保持时间,以消除工件整形后的应力,提高工件整形效果。
S5、基于所述整形信息,控制整形系统40对所述工件进行整形。
本实施方式中,基于处理器10得到的整形信息,并将该整形信息发送至整形系统40,整形系统40基于接收的整形信息对工件表面进行整形。
图14是本申请实施例提供的整形系统的部分结构示意图。该整形系统40包括,工作台41、定位组件42和整形组件43,其中定位组件42用于将工件定位至工作台41上,整形组件43包括2N个驱动件431和与每个驱动件431上相连接的传动件432,N为工件表面目标位置点的数量,且N≥1,驱动件431用于驱动传动件432朝向或远离工件移动,2N个驱动件431分别对称设于工作台41的沿放置工件所在平面的两侧,以在整形系统40基于接受到的整形信息,控制相应的驱动件431驱动传动件432对工件表面进行整形。
本实施例中,驱动件431为伺服器;传动件432为丝杆。
在一些实施例中,步骤S5包括:基于所述整形信息生成整形指令,并将所述整形指令发送至整形系统40;整形系统40中的整形组件43依据所述整形指令开始工作,以依次对所述工件的各个位置点进行整形。
本实施例中,整形系统40还包括控制器(未图示),具体地,处理器10基于Modbus/TCP通信连接于控制器,以将整形信息发送至控制器。控制器基于获取的整形信息自动生成整形指令。其中,控制器为PLC控制器。控制器基于CANlink协议通信连接于整形系统40,控制器将整形指令发送至整形系统40,整形系统40基于整形指令依次对工件的各个位置点进行整形,以对工件自动整形,降低人力人本投入,提高工件整形效率。
S6、判定所述工件的整形效果,整形合格则输出第一信号,整形不合格则输出第二信号;
其中,对工件进行一次整形后,测量系统30重新获取整形后工件表面的位置数据信息,并基于整形后的位置数据信息转换为整形后的工件表面坐标信息,以对整形后的工件表面坐标信息进行拟合,以得到整形后的工件的表面轮廓曲线,并将该表面轮廓曲线与标准工件的标准轮廓曲线进行对比,以判定整形后工件的整形效果,整形合格则输出第一信号,整形不合格则输出第二信号。
S7、基于所述第一信号发出第一命令信号,根据所述第一命令信号将所述整形系统40回归至初始位置。
基于第一信号获知整形后的工件判定合格,处理器10发送第一 命令信号,以将整形系统40回归至初始位置,以对下一个工件进行整形。
S8、基于所述第二信号发出第二命令信号,根据所述第二命令信号控制所述整形系统40,并对所述工件进行下一次整形。
基于第二信号获知整形后的工件判定不合格,处理器10发送第二命令信号,以对该工件进行下一次整形。
通过对一次整形后的工件整形效果的判定,以对整形合格和整形不合格的工件分别处理,其中,经判定整形不合格的工件重新判定工件变形情况并对该工件进行下一次整形,直至整形合格,以提高工件整形的合格率。
请再次参见图1,电子装置100包括处理器10和存储器20,所述存储器20中存储有计算机程序21,所述计算机程序21由所述处理器10加载并执行上述任意一项所述的金属产品整形方法。
如此,电子装置100通过设置处理器10和存储器20,其中存储器20用于存储计算机程序21,计算机程序21可由处理器10加载并用于执行该金属产品整形方法,以实现对工件整形时的电子化控制,简化控制过程,提高整形效率。
本领域技术人员可以理解,所述示意图仅仅是电子装置100的示例,并不构成对电子装置100的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如该电子装置100还可以包括输入输出设备、网络接入设备、总线等。
处理器10可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器10也可以是任何常规的处理器等,该处理器10是该电子装置100的控制中心,利用各种接口和线路连接整个电子装置100的各个部分。
存储器20可用于存储计算机程序21和/或模块/单元,该处理器10通过运行或执行存储在该存储器20内的计算机程序21和/或 模块/单元,以及调用存储在存储器20内的数据,实现该电子装置100的各种功能。存储器20可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据电子装置100的使用所创建的数据等。此外,存储器20可以包括易失性存储器及非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他存储器件。
本申请提供的金属产品整形方法及电子装置100可以通过控制测量系统30对工件表面进行测量以获取工件的位置数据信息,并将位置数据信息转换成坐标信息,利用最小二乘法对坐标信息进行拟合得到工件的表面轮廓曲线,并将得到的表面轮廓曲线与标准轮廓曲线进行对比,得到对比结果,基于对比结果得到工件的整形信息,基于整形信息,控制整形系统40对工件进行整形,以基于工件表面轮廓曲线与标准轮廓曲线对比得到工件的变形程度,且能够依据变形程度得到的整形信息自动对工件进行整形,以提高工件整形效率和降低人力成本投入。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (11)

  1. 一种金属产品整形方法,其特征在于,包括:
    获取工件的位置数据信息,所述位置数据信息由测量系统测量工件各个预设点获得;
    将所述位置数据信息转换成坐标信息,并对所述坐标信息进行拟合得到所述工件的表面轮廓曲线;
    将所述表面轮廓曲线与标准轮廓曲线进行对比,生成对比结果;
    根据所述对比结果,得到所述工件的整形信息;
    基于所述整形信息,控制整形系统对所述工件进行整形。
  2. 如权利要求1所述的金属产品整形方法,其特征在于,
    将所述位置数据信息转换成坐标信息,并对所述坐标信息进行拟合得到所述工件的表面轮廓曲线包括:
    建立测量坐标系,并将所述测量坐标系与所述工件的位置数据绑定;
    基于所述测量坐标系与所述工件的位置数据绑定,将所述位置数据信息转换成坐标信息;
    对所述坐标信息进行拟合得到所述工件表面轮廓曲线。
  3. 如权利要求2所述的金属产品整形方法,其特征在于,
    所述对所述坐标信息进行拟合得到所述工件表面的轮廓曲线,包括:
    基于所述坐标信息一一对应得出各个位置点的坐标值(X、Y、Z);
    根据多点最小二乘法,计算出理想平面方程Z=AX+BY+C,得出各个位置点平面度偏差值;
    基于计算得到的各个位置点的平面度偏差值,拟合出所述工件的表面轮廓曲线。
  4. 如权利要求1所述的金属产品整形方法,其特征在于,
    所述根据所述表面轮廓曲线,并将所述表面轮廓曲线与标准轮廓曲线进行对比,生成对比结果,包括:
    将所述表面轮廓曲线与标准轮廓曲线进行对比以获取各个位置点对应的变形量;
    判断各个位置点的变形量是否在预设范围内,生成判断结果;
    基于所述判断结果生成所述对比结果。
  5. 如权利要求4所述的金属产品整形方法,其特征在于,
    所述判断各个位置点的变形量是否在预设范围内,生成判断结果,包括:
    若各个位置点的变形量均在所述预设范围内,则判定所述工件为合格品;
    若各个位置点的变形量至少一个不在所述预设范围内,则判定所述工件为不合格品。
  6. 如权利要求1所述的金属产品整形方法,其特征在于,
    所述根据所述对比结果,得到所述工件的整形信息,包括:
    将所述对比结果与预设的整形信息集进行匹配,以得到所述工件的整形信息。
  7. 如权利要求6所述的金属产品整形方法,其特征在于,
    所述整形信息包括整形方式、整形量和保压时间。
  8. 如权利要求1所述的金属产品整形方法,其特征在于,
    所述移动测量系统测量工件表面位置数据信息,包括:
    建立所述移动测量系统的坐标系,并将所述坐标系与所述工件的位置数据进行绑定;
    移动所述测量系统依次量取所述工件表面的多个目标坐标点的位置数据信息。
  9. 如权利要求1所述的金属产品整形方法,其特征在于,
    所述基于所述整形信息,控制整形系统对所述工件进行整形,包括:
    基于所述整形信息生成整形指令,并将所述整形指令发送至整形系统;
    整形系统中的整形组件依据所述整形指令开始工作,以依次对所述工件的各个位置点进行整形。
  10. 如权利要求1所述的金属产品整形方法,其特征在于,
    还包括:
    判定所述工件的整形效果,整形合格则输出第一信号,整形不 合格则输出第二信号;
    基于所述第一信号发出第一命令信号,根据所述第一命令信号将所述整形系统回归至初始位置;
    基于所述第二信号发出第二命令信号;根据所述第二命令信号控制所述整形系统,并对所述工件进行下一次整形。
  11. 一种电子装置,其特征在于,所述电子装置包括:
    处理器;及
    存储器,所述存储器中存储有计算机程序,所述计算机程序由所述处理器加载并执行如权利要求1至10中任意一项所述的金属产品整形方法。
PCT/CN2021/122389 2021-09-30 2021-09-30 金属产品整形方法及电子装置 WO2023050395A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180088943.2A CN117043694A (zh) 2021-09-30 2021-09-30 金属产品整形方法及电子装置
US18/274,457 US20240094700A1 (en) 2021-09-30 2021-09-30 Reshaping method for metal paroduct and electronic device
PCT/CN2021/122389 WO2023050395A1 (zh) 2021-09-30 2021-09-30 金属产品整形方法及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122389 WO2023050395A1 (zh) 2021-09-30 2021-09-30 金属产品整形方法及电子装置

Publications (1)

Publication Number Publication Date
WO2023050395A1 true WO2023050395A1 (zh) 2023-04-06

Family

ID=85781169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122389 WO2023050395A1 (zh) 2021-09-30 2021-09-30 金属产品整形方法及电子装置

Country Status (3)

Country Link
US (1) US20240094700A1 (zh)
CN (1) CN117043694A (zh)
WO (1) WO2023050395A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359415A (zh) * 2014-10-31 2015-02-18 广东工业大学 一种水火弯板角变形量测量方法及系统
CN104570935A (zh) * 2013-10-29 2015-04-29 鸿富锦精密工业(深圳)有限公司 产品加工验证系统及方法
CN110672007A (zh) * 2019-09-24 2020-01-10 佛山科学技术学院 一种基于机器视觉的工件表面质量检测方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570935A (zh) * 2013-10-29 2015-04-29 鸿富锦精密工业(深圳)有限公司 产品加工验证系统及方法
CN104359415A (zh) * 2014-10-31 2015-02-18 广东工业大学 一种水火弯板角变形量测量方法及系统
CN110672007A (zh) * 2019-09-24 2020-01-10 佛山科学技术学院 一种基于机器视觉的工件表面质量检测方法及系统

Also Published As

Publication number Publication date
US20240094700A1 (en) 2024-03-21
CN117043694A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
US20160059371A1 (en) System for machining surface of workpiece and method thereof
CN101480674A (zh) 弯曲金属物的弯曲设备和方法
EP3254782B1 (en) Method and apparatus for auto-calibration of a wire bending machine
CN104296665A (zh) 一种基于机器视觉的工件尺寸测量方法及系统
TW201525633A (zh) Cnc加工調機系統及方法
CN109848989B (zh) 一种基于红宝石探针的机器人执行末端自动标定及检测方法
JP5395470B2 (ja) 形状認識装置
JPH08210816A (ja) ロボット−視覚センサシステムにおいてセンサ座標系とロボット先端部の関係を定める座標系結合方法
CN102962654A (zh) 一种汽轮机无冠部导叶片的加工方法
CN114663500A (zh) 视觉标定方法、计算机设备及存储介质
WO2023050395A1 (zh) 金属产品整形方法及电子装置
CN106054814A (zh) 基于图像灰度的计算机辅助加工方法
CN109483545B (zh) 一种焊缝重构方法、智能机器人焊接方法及系统
CN209174713U (zh) 冷弯模具的弯曲半径调整装置
CN111578872B (zh) 一种模具的型面返修方法
CN111300490A (zh) 一种基于深度视觉传感器的机器人轨迹生成系统及方法
CN114670192A (zh) 机器人工件坐标系的校准方法、装置、存储介质和终端
CN110060330B (zh) 一种基于点云图像的三维建模方法、装置和机器人
CN112435350A (zh) 一种加工轨迹形变补偿方法及系统
Rekas et al. Gapi nski
CN113112593A (zh) 一种3d图形在折弯机数控系统上的应用
TWI667559B (zh) 自動化曲面誤差補償方法及其電腦程式產品
JP3085272U (ja) プログラムされたシート曲げ用の短縮した段取り時間をもつ高性能機械
CN113814795B (zh) 一种基于双通道在机测量的工件加工数据测量、修正、校验方法及系统
CN105345813A (zh) 一种基于广义坐标的机械手高精度定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180088943.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18274457

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE