WO2023050286A1 - Multicast or broadcast support over user equipment to network relay - Google Patents

Multicast or broadcast support over user equipment to network relay Download PDF

Info

Publication number
WO2023050286A1
WO2023050286A1 PCT/CN2021/122112 CN2021122112W WO2023050286A1 WO 2023050286 A1 WO2023050286 A1 WO 2023050286A1 CN 2021122112 W CN2021122112 W CN 2021122112W WO 2023050286 A1 WO2023050286 A1 WO 2023050286A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless node
service
multicast
broadcast
relay
Prior art date
Application number
PCT/CN2021/122112
Other languages
French (fr)
Inventor
Karthika Paladugu
Prasad Reddy KADIRI
Hong Cheng
Peng Cheng
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/122112 priority Critical patent/WO2023050286A1/en
Publication of WO2023050286A1 publication Critical patent/WO2023050286A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for multicast or broadcast support over a user equipment to network relay.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs.
  • a UE may communicate with a base station via downlink communications and uplink communications.
  • Downlink (or “DL” ) refers to a communication link from the base station to the UE
  • uplink (or “UL” ) refers to a communication link from the UE to the base station.
  • New Radio which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • the method may include transmitting, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the method may include receiving, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the method may include configuring the selected service for multicast or broadcast provision to the second wireless node.
  • the method may include providing the selected service to the second wireless node.
  • the method may include receiving, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the method may include transmitting, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the method may include configuring the selected service for multicast or broadcast provision from the first wireless node.
  • the method may include receiving a communication associated with the selected service.
  • the method may include transmitting, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the method may include receiving, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the method may include configuring the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
  • the first wireless node may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to transmit, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the one or more processors may be configured to receive, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the one or more processors may be configured to configure the selected service for multicast or broadcast provision to the second wireless node.
  • the one or more processors may be configured to provide the selected service to the second wireless node.
  • the second wireless node may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to receive, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the one or more processors may be configured to transmit, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the one or more processors may be configured to configure the selected service for multicast or broadcast provision from the first wireless node.
  • the one or more processors may be configured to receive a communication associated with the selected service.
  • the base station may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to transmit, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the one or more processors may be configured to receive, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the one or more processors may be configured to configure the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a first wireless node.
  • the set of instructions when executed by one or more processors of the first wireless node, may cause the first wireless node to transmit, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the set of instructions when executed by one or more processors of the first wireless node, may cause the first wireless node to receive, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the set of instructions when executed by one or more processors of the first wireless node, may cause the first wireless node to configure the selected service for multicast or broadcast provision to the second wireless node.
  • the set of instructions when executed by one or more processors of the first wireless node, may cause the first wireless node to provide the selected service to the second wireless node.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a second wireless node.
  • the set of instructions when executed by one or more processors of the second wireless node, may cause the second wireless node to receive, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the set of instructions when executed by one or more processors of the second wireless node, may cause the second wireless node to transmit, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the set of instructions when executed by one or more processors of the second wireless node, may cause the second wireless node to configure the selected service for multicast or broadcast provision from the first wireless node.
  • the set of instructions when executed by one or more processors of the second wireless node, may cause the second wireless node to receive a communication associated with the selected service.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a base station.
  • the set of instructions when executed by one or more processors of the base station, may cause the base station to transmit, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the set of instructions when executed by one or more processors of the base station, may cause the base station to receive, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the set of instructions when executed by one or more processors of the base station, may cause the base station to configure the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
  • the apparatus may include means for transmitting, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the apparatus may include means for receiving, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the apparatus may include means for configuring the selected service for multicast or broadcast provision to the second wireless node.
  • the apparatus may include means for providing the selected service to the second wireless node.
  • the apparatus may include means for receiving, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the apparatus may include means for transmitting, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the apparatus may include means for configuring the selected service for multicast or broadcast provision from the first wireless node.
  • the apparatus may include means for receiving a communication associated with the selected service.
  • the apparatus may include means for transmitting, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the apparatus may include means for receiving, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the apparatus may include means for configuring the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings, specification, and appendix.
  • aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios.
  • Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements.
  • some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) .
  • Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components.
  • Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects.
  • transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) .
  • RF radio frequency
  • aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of a control-plane protocol architecture for a Layer 2 UE-to-network relay, in accordance with the present disclosure.
  • Fig. 4 is a diagram illustrating an example of a user-plane protocol architecture for a Layer 2 UE-to-network relay, in accordance with the present disclosure.
  • Fig. 5 is a diagram illustrating an example of an architecture for a Layer 3 UE-to-network relay, in accordance with the present disclosure.
  • Fig. 6 is a diagram illustrating an example of broadcast service discovery, in accordance with the present disclosure.
  • Fig. 7 is a diagram illustrating an example of multicast service discovery and configuration such as may be used for a Layer 3 relaying service, in accordance with the present disclosure.
  • Fig. 8 is a diagram illustrating an example of multicast service configuration such as may be used for a Layer 2 relaying service, in accordance with the present disclosure.
  • Fig. 9 is a diagram illustrating an example process performed, for example, by a wireless node, in accordance with the present disclosure.
  • Fig. 10 is a diagram illustrating an example process performed, for example, by a wireless node, in accordance with the present disclosure.
  • Fig. 11 is a diagram illustrating an example process performed, for example, by a base station, in accordance with the present disclosure.
  • Figs. 12-14 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
  • NR New Radio
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples.
  • the wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities.
  • UE user equipment
  • a base station 110 is an entity that communicates with UEs 120.
  • a base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) .
  • Each base station 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
  • a base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) .
  • CSG closed subscriber group
  • a base station 110 for a macro cell may be referred to as a macro base station.
  • a base station 110 for a pico cell may be referred to as a pico base station.
  • a base station 110 for a femto cell may be referred to as a femto base station or an in-home base station.
  • the BS 110a may be a macro base station for a macro cell 102a
  • the BS 110b may be a pico base station for a pico cell 102b
  • the BS 110c may be a femto base station for a femto cell 102c.
  • a base station may support one or multiple (e.g., three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) .
  • the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • the wireless network 100 may include one or more relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) .
  • a relay station may be a UE 120 that can relay transmissions for other UEs 120.
  • the BS 110d e.g., a relay base station
  • the BS 110a e.g., a macro base station
  • a base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
  • the wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100.
  • macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110.
  • the network controller 130 may communicate with the base stations 110 via a backhaul communication link.
  • the base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit.
  • a UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio)
  • Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity.
  • Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices.
  • Some UEs 120 may be considered a Customer Premises Equipment.
  • a UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks 100 may be deployed in a given geographic area.
  • Each wireless network 100 may support a particular RAT and may operate on one or more frequencies.
  • a RAT may be referred to as a radio technology, an air interface, or the like.
  • a frequency may be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands.
  • devices of the wireless network 100 may communicate using one or more operating bands.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4a or FR4-1 52.6 GHz –71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • frequencies included in these operating bands may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • a UE 120 may include a communication manager 140.
  • the communication manager 140 may transmit, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; receive, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services; configure the selected service for multicast or broadcast provision to the second wireless node; and provide the selected service to the second wireless node.
  • the communication manager 140 may perform one or more other operations described herein.
  • a UE 120 may include a communication manager 160.
  • the communication manager 160 may receive, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; transmit, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services; configure the selected service for multicast or broadcast provision from the first wireless node; and receive a communication associated with the selected service.
  • the communication manager 160 may perform one or more other operations described herein.
  • the base station 110 may include a communication manager 150.
  • the communication manager 150 may transmit, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; receive, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services; and configure the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
  • the communication manager 150 may perform one or more other operations described herein.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • the base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ⁇ 1) .
  • the UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ⁇ 1) .
  • a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) .
  • the transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120.
  • MCSs modulation and coding schemes
  • CQIs channel quality indicators
  • the base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120.
  • the transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • the transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t.
  • each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.
  • Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream.
  • Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal.
  • the modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
  • a set of antennas 252 may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r.
  • R received signals e.g., R received signals
  • each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254.
  • DEMOD demodulator component
  • Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples.
  • Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • CQI CQI parameter
  • the network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292.
  • the network controller 130 may include, for example, one or more devices in a core network.
  • the network controller 130 may communicate with the base station 110 via the communication unit 294.
  • One or more antennas may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280.
  • the transmit processor 264 may generate reference symbols for one or more reference signals.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110.
  • the modem 254 of the UE 120 may include a modulator and a demodulator.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 3-13) .
  • the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240.
  • the base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244.
  • the base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications.
  • the modem 232 of the base station 110 may include a modulator and a demodulator.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 3-13) .
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with multicast or broadcast services via a relay UE, as described in more detail elsewhere herein.
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, and/or other processes as described herein.
  • the memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively.
  • the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • the UE 120 includes means for transmitting, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; means for receiving, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services; means for configuring the selected service for multicast or broadcast provision to the second wireless node; and/or means for providing the selected service to the second wireless node.
  • the means for the UE 120 to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • the UE 120 includes means for receiving, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; means for transmitting, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services; means for configuring the selected service for multicast or broadcast provision from the first wireless node; and/or means for receiving a communication associated with the selected service.
  • the means for the UE 120 to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • the base station 110 includes means for transmitting, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; means for receiving, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services; and/or means for configuring the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
  • the means for the base station 110 to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • the techniques described herein relate to relaying between a remote UE and a network (e.g., a base station 110) via a relay UE.
  • the relay UE is an example of a first wireless node.
  • the remote UE is an example of a second wireless node.
  • Figs. 3 and 4 provide an example user plane and control plane architecture for one form of relaying, referred to herein as a Layer 2 UE-to-network relaying or Layer 2 relaying.
  • Fig. 5 provides an example architecture for another form of relaying, referred to herein as Layer 3 UE-to-network relaying or Layer 3 relaying. Relaying may occur via a local link between the remote UE and the relay UE.
  • the local link is a PC5 connection associated with a sidelink.
  • the techniques described herein can be applied for any form of local link, including Bluetooth, WiFi, or the like.
  • Fig. 3 is a diagram illustrating an example of a control-plane protocol architecture 300 for a Layer 2 UE-to-network relay, in accordance with the present disclosure.
  • Fig. 4 is a diagram illustrating an example of a user-plane protocol architecture 400 for a Layer 2 UE-to-network relay, in accordance with the present disclosure.
  • the control-plane protocol architecture 300 and the user-plane protocol architecture 400 may correspond to a remote UE (e.g., UE 120, a first wireless node) shown by reference numbers 305 and 405 and a relay UE (e.g., UE 120, a second wireless node) shown by reference numbers 310 and 410.
  • a remote UE e.g., UE 120, a first wireless node
  • a relay UE e.g., UE 120, a second wireless node
  • a non-Uu interface e.g., a sidelink interface such as a PC5 interface, a WiFi interface, a WiFi-D interface, a Bluetooth interface, a Bluetooth LE interface
  • a Uu interface between the relay UE and a gNB e.g., a next generation radio access network (NG-RAN) , also referred to herein as a 5G access network (5G-AN)
  • 5G-AN 5G access network
  • gNB may be an N3 interface between the gNB and a core network.
  • the remote UE and the relay UE may be associated with respective non-Uu protocol stacks 315/320 and 415/420, enabling communication on the non-Uu interface between the remote UE and the relay UE.
  • the non-Uu protocol stack may include a radio link control (RLC) component, a medium access control (MAC) component, a physical (PHY) component, and/or the like.
  • PC5 is generally referred to herein as “sidelink” (e.g., sidelink signaling interfaces, sidelink unicast link, sidelink RLC channels, and/or the like) . Communications between the remote UE and the relay UE using the PC5 interface may be referred to as sidelink communications.
  • a PC5 protocol stack may be associated with one or more of PC5-Sentities, PC5-radio resource control (RRC) entities, or PC5 packet data convergence protocol (PDCP) entities.
  • the PC5-Sentity may manage a sidelink signaling interface, such as a PC5-Sinterface.
  • a UE that includes a PC5-Sentity and/or a PC5-RRC entity may handle control signaling and configuration of a sidelink connection with another UE, such as the connection used for relaying between the remote UE and the relay UE.
  • the non-Uu protocol stacks 315/320 and 415/420 may not include PC5-Sentities or PC5-RRC entities.
  • the NG-RAN may handle control signaling and configuration of the sidelink connection.
  • the relaying operations described herein are described as being implemented using sidelink interfaces. It should be understood that the relaying operations described herein can be implemented using various non-Uu interfaces, such as a PC5 interface, a WiFi interface, a WiFi-D interface, a Bluetooth interface, or a Bluetooth LE interface.
  • the remote UE is associated with a non-access stratum (NAS) stack, which includes an NAS session management (NAS-SM) component, an NAS session management (NAS-SM) component, and one or more radio access components (e.g., an RRC component and a PDCP component) .
  • NAS-SM NAS session management
  • NAS-SM NAS session management
  • PDCP PDCP component
  • the relay UE is associated with a radio access stack, including an RLC component, a MAC component, and a PHY component.
  • the gNB is associated with a radio access interface stack shown by reference number 340, which includes an RLC component, a MAC component, a PHY component, an RRC entity, and a PDCP entity.
  • the remote UE, the relay UE, and the gNB may include an adaptation layer.
  • the adaptation layer may handle relaying from the remote UE to the network or from the network to the remote UE.
  • the network may refer to any one or more of the gNB, the access and mobility management function (AMF) , the session management function (SMF) , the user plane function (UPF) , or the core network (CNW) .
  • the CNW may be referred to as a 5G core (5GC) .
  • the adaptation layer is referred to as an adaptation layer entity.
  • the adaptation layer entity may be a separate entity between a RLC entity and a packet data convergence entity.
  • the adaptation layer entity may be logically part of the packet data convergence entity or the radio link control entity
  • the remote UE is associated with a user-plane protocol stack, which may include an application (APP) component, a protocol data unit (PDU) component, a service data adaptation protocol (SDAP) component, and a PDCP component.
  • APP application
  • PDU protocol data unit
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • the gNB is associated with user-plane components shown by reference number 430, which include an SDAP component and a PDCP component.
  • the SDAP component and the PDCP component may be referred to herein as radio access entities.
  • NR user-plane traffic may be transported to the relay UE via one or more bearers, such as a data radio bearer (DRB) or signaling radio bearer (SRB) .
  • DRBs and SRBs can also be referred to as radio bearers or radio access bearers.
  • Uu user-plane traffic may be provided from the non-Uu stack 420 of the relay UE to the adaptation component, and from the adaptation component to the radio access (Uu) stack 435 of the relay UE.
  • the radio access stack of the relay UE may provide the Uu user-plane traffic to the Uu stack 440 of the gNB.
  • the physical layer may offer, to the MAC sublayer, transport channels.
  • the MAC sublayer may offer, to the RLC sublayer, logical channels.
  • the RLC sublayer may offer, to the PDCP sublayer, RLC channels.
  • the PDCP sublayer may offer, to the SDAP sublayer, radio bearers.
  • the SDAP sublayer may offer, to the CNW, QoS flows.
  • the adaptation layer may handle the mapping of these types of flows, channels, and bearers to each other to facilitate Layer 2 relay services, as described elsewhere herein.
  • the RAP layer may be referred to as an adaptation layer, a relay adaption layer, and/or the like.
  • a radio access bearer may include an SRB, a DRB, and/or the like.
  • An RLC channel can also be referred to as an RLC bearer. In such a case, an RLC channel identifier associated with the RLC channel may be referred to as an RLC bearer identifier.
  • Figs. 3 and 4 are provided as examples. Other examples may differ from what is described with respect to Figs. 3 and 4.
  • Fig. 5 is a diagram illustrating an example 500 of an architecture for a Layer 3 UE-to-network relay, in accordance with the present disclosure.
  • Example 500 includes a remote UE (e.g., UE 120, a second wireless node) , a relay UE (e.g., UE 120, shown as “L3 UE-to-NW Relay UE” , a first wireless node) , an NG-RAN (e.g., a network node, BS 110, the NG-RAN of Figs. 3 and 4) , and a 5G core (e.g., the core network of Figs. 3 and 4) .
  • a remote UE e.g., UE 120, a second wireless node
  • a relay UE e.g., UE 120, shown as “L3 UE-to-NW Relay UE” , a first wireless node
  • an NG-RAN e.g., a network
  • the remote UE may include an application layer.
  • the application layer may run applications of the remote UE, which may communicate with the 5G core via the relay UE.
  • the remote UE may be associated with an Internet Protocol (IP) entity and a PC5 stack (e.g., including one or more entities of Figs. 3 and 4) .
  • IP Internet Protocol
  • the remote UE may communicate with the relay UE using a non-PC5 stack such as WiFi, WiFi-D, Bluetooth or Bluetooth LE. IP communications of the remote UE may be relayed to the 5G core via the relay UE.
  • the IP communications may be communicated to the relay UE via a local link like sidelink, WiFi, WiFi-D, Bluetooth or Bluetooth LE (e.g., for sidelink, a PC5 local link, which may be a secure unicast link established prior to relaying) , then between the relay UE and the NG-RAN via the radio access (e.g., Uu) interface, then to the 5G core via an N3 or N2 interface.
  • the remote UE and/or the relay UE may be provisioned by the 5G core or preconfigured with a policy (e.g., a sidelink policy) and parameters for the policy.
  • the remote UE may have no non-access stratum (NAS) or access stratum (AS) connection with the NG-RAN.
  • NAS non-access stratum
  • AS access stratum
  • the relay UE may have an IP relay entity, a PC5 stack, and a Uu stack.
  • the IP relay entity may handle IP communications with the remote UE.
  • the relay UE may also support non-IP relaying for the remote UE, where the non-IP entity is above the PC5 or non-PC5 stack (e.g., the non-Uu stack) .
  • the PC5 stack may handle the local link with the remote UE.
  • the Uu stack may handle Uu communications with the NG-RAN.
  • the NG-RAN may have a Uu stack and an N3/N2 entity.
  • the Uu stack of the NG-RAN may handle Uu communications with the remote UE.
  • the N3/N2 entity may handle communications with the 5G core.
  • the 5G core may have an IP entity and an N3/N2 entity.
  • the IP entity may handle IP communications with the relay UE.
  • the N3/N2 entity may handle communications with the NG-RAN.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
  • a remote UE may communicate with a network via a relay UE (e.g., a first wireless node) .
  • the relay UE may relay uplink communications associated with a relay service from the remote UE to the network, and/or may relay downlink communications associated with a relay service from the network to the remote UE.
  • Examples of relay services include Layer 2 UE-to-network relaying and Layer 3 UE-to-network relaying.
  • MBS multicast and broadcast services
  • An MBS can be characterized as point-to-multipoint (PTM) , where data is transmitted from a single source entity to multiple recipients, and can be contrasted with a unicast service, which is point-to-point (PTP) .
  • PTM point-to-multipoint
  • PTP point-to-point
  • a multicast service is a service associated with multiple destination UEs, such as a service that is directed to the multiple UEs via a plurality of dedicated channels or a common channel (e.g., the UEs may share an interest in receiving the traffic) .
  • a broadcast service is a service that is transmitted for reception by any UE.
  • MBS is well supported for direct connections, such as between a UE and a network
  • MBS communication may not be defined for architectures involving a relay UE and a remote UE.
  • certain challenges may arise in the provision of MBS communications.
  • procedures for discovery of services associated with MBS may be unclear.
  • remote UEs may experience degraded performance or failure of MBS communications in the case of mobility (e.g., cell selection, cell reselection, relay selection, relay reselection, and so on) if a target cell or relay UE does not support a given MBS.
  • configuration procedures for MBS configuration may not be well defined for architectures including a relay UE.
  • provision of multicast services or broadcast services may be less reliable or may fail in architectures involving a remote UE, which reduces throughput, degrades user experience, and decreases compatibility of network services.
  • Some techniques and apparatuses described herein provide discovery, service continuity, and configuration of multicast services and broadcast services in association with a relay UE (e.g., a first wireless node) .
  • a relay UE e.g., a first wireless node
  • some techniques and apparatuses described herein enable MBS provision for Layer 2 UE-to-network relays, Layer 3 UE-to-network relays, and other forms of relay.
  • provision of multicast services and broadcast services is enabled, which improves reliability, enables the usage of multicast services and broadcast services for relaying services, and improves compatibility of network services.
  • Fig. 6 is a diagram illustrating an example 600 of broadcast service discovery, in accordance with the present disclosure.
  • example 600 includes a remote UE (e.g., UE 120, the remote UE of Figs. 3-5, a second wireless node) and a relay UE (e.g., UE 120, the relay UE of Figs. 3-5, a first wireless node) .
  • a remote UE e.g., UE 120, the remote UE of Figs. 3-5, a second wireless node
  • a relay UE e.g., UE 120, the relay UE of Figs. 3-5, a first wireless node
  • the relay UE may transmit, and the remote UE may receive, a relay discovery message.
  • the relay UE may advertise a set of supported broadcast services.
  • the relay discovery message may indicate a list of broadcast services and a set of frequencies associated with the list of broadcast services.
  • the relay discovery message may include a discovery announcement message.
  • the relay discovery message may include a relay discovery additional information message, such as is defined for a PC5 interface.
  • the relay UE may receive information indicating the set of broadcast services.
  • the relay UE may receive the information indicating the set of broadcast services via system information (e.g., a system information block) .
  • the remote UE may perform cell selection (or reselection) or relay selection (or reselection) based at least in part on the relay discovery message. For example, the remote UE may use the set of broadcast services as a criterion for cell selection or reselection or relay selection or reselection. In some aspects, the remote UE may select or reselect a cell or relay that supports a broadcast service in use by the remote UE or desired by the remote UE (e.g., to support service continuity) . In a Layer 3 relay, the UE may perform cell and/or relay selection or reselection for direct or indirect mobility (e.g., no handover may be supported) .
  • direct or indirect mobility e.g., no handover may be supported
  • the remote UE may select or reselect a cell or relay that supports a selected broadcast service and frequency to support service continuity.
  • a remote UE in an RRC connected state may transmit a service request indication message (e.g., a Uu MBS interest indication) to the NG-RAN via relay UE.
  • the NG-RAN may take into account the selected service indicated by the service request indication message for handover preparation.
  • the remote UE may select or reselect to a cell or relay that supports the selected service and the frequency associated with the selected service. In this way, interruption to broadcast services associated with cell or relay selection or reselection is reduced.
  • the remote UE may transmit, and the relay UE may receive, a service request indication message.
  • the service request indication message may be an MBS interest indication.
  • the remote UE may indicate a selected service (e.g., a selected broadcast service of the set of broadcast services) .
  • the remote UE may indicate a set of frequencies (e.g., one or more frequencies) associated with the selected service.
  • the remote UE may indicate multiple selected services.
  • the service indication may be a Mode B Discovery solicitation message associated with the PC5 protocol.
  • the service request indication message may be part of a local link setup procedure for a local link between the remote UE and the relay UE (e.g., a PC5-RRC reconfiguration procedure for the sidelink) .
  • the service request indication message may be a local link connection setup message.
  • the service request indication message may be part of a link reconfiguration procedure, such as after a local link has been established with the relay UE.
  • the service request indication message may be a link reconfiguration message for connection reconfiguration of the local link.
  • the relay UE may transmit, and the remote UE may receive, an MBS configuration request.
  • the relay UE may configure the selected service for broadcast provision to the remote UE.
  • the relay UE may configure a logical channel (such as a sidelink multicast common control channel (SMCCH) logical channel) for transporting broadcast data to remote UEs.
  • the relay UE may configure resources on the local link for transporting broadcast data to remote UEs, such as for a WiFi or Bluetooth connection.
  • the MBS configuration request may indicate a broadcast group identifier associated with the selected service.
  • a broadcast group identifier may identify a broadcast service, such as based at least in part on a temporary mobile group identifier (TMGI) or a MBS session identifier (ID) (sometimes referred to herein as a session identifier) .
  • TMGI temporary mobile group identifier
  • ID MBS session identifier
  • the remote UE may transmit, and the relay UE may receive, an MBS configuration response.
  • the MBS configuration response may acknowledge receipt and/or implementation of the MBS configuration request.
  • the relay UE may perform relaying of the selected service indicated by the service request indication message.
  • the relay UE may relay broadcast traffic to the remote UE in any radio access RRC state (e.g., connected, idle mode, inactive mode) .
  • the relay UE may support one or more broadcast services irrespective of whether the remote UE indicates interest in the one or more broadcast services.
  • the relay UE may support broadcast relaying for one or more broadcast services that are configured for receive-only mode (ROM) without having received an indication (e.g., a service request indication message) pertaining to the one or more broadcast services.
  • ROM receive-only mode
  • a configuration e.g., an SMCCH configuration
  • the relay UE may provide a ROM broadcast service to the remote UE.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
  • Fig. 7 is a diagram illustrating an example 700 of multicast service discovery and configuration such as may be used for a Layer 3 relaying service, in accordance with the present disclosure.
  • example 700 includes a remote UE (e.g., UE 120, the remote UE of Figs. 3-5, a second wireless node) , a relay UE (e.g., UE 120, the relay UE of Figs. 3-5, a first wireless node) , an NG-RAN (e.g., BS 110, the NG-RAN of Figs. 3-5) , and a 5G core (e.g., the core network of Figs. 3-4, the 5G core of Fig. 5) .
  • a remote UE e.g., UE 120, the remote UE of Figs. 3-5, a second wireless node
  • a relay UE e.g., UE 120, the relay UE of Figs. 3-5, a first wireless node
  • the relay UE and/or the remote UE may receive information indicating a set of supported multicast services supported by the network and for which the remote UE or the relay UE is authorized (not shown in Fig. 7) .
  • the relay UE and/or the remote UE may receive a policy (e.g., a ProSe policy) indicating multicast service information for a relay protocol data unit (PDU) session for which the remote UE or the relay UE is authorized.
  • a relay PDU session is a PDU session of a relay UE that is used by the remote UE for relayed communications.
  • a PDU session provides end-to-end user plane connectivity between a UE and the core network through the user plane function.
  • the information indicating the set of multicast services may include, for example, one or more MBS session identifiers, one or more destination identifiers (e.g., a destination Layer 2 identifier or the like) , one or more local link quality of service (QoS) parameters, or the like.
  • MBS session identifiers e.g., a MBS session identifier
  • destination identifiers e.g., a destination Layer 2 identifier or the like
  • QoS local link quality of service
  • the remote UE may be preconfigured with information indicating a set of multicast services (not shown in Fig. 7) for which the remote UE or the relay UE is authorized.
  • the remote UE may be preconfigured with one or more MBS session identifiers (e.g., one or more 5G TMGIs or an IP multicast address) corresponding to the set of multicast services.
  • the remote UE may receive information indicating a set of multicast services from the 5G core.
  • the remote UE may receive information indicating a set of multicast services from an application function (AF) (e.g., via a session initiation protocol (SIP) invite or response) while in coverage (also not shown in Fig. 7) .
  • AF application function
  • SIP session initiation protocol
  • the relay UE may receive information indicating a set of multicast services supported by the network and for which the relay UE or the remote UE is authorized. For example, the relay UE may receive this information from an AF (e.g., via a SIP invite or response) .
  • the information indicating the set of multicast services supported by the network may include a set of MBS session identifiers, as described above.
  • An MBS session identifier may include a TMGI or an IP multicast address, among other examples.
  • the relay UE may transmit, and the remote UE may receive, a relay discovery message.
  • the relay discovery message may indicate that the relay UE supports MBS service relaying.
  • the relay discovery message may indicate a set of multicast services supported by the relay UE (e.g., one or more MBS session identifiers) .
  • the set of multicast services may include the same set of multicast services indicated to the relay UE as described above, or may include a subset of the set of multicast services indicated to the relay UE.
  • the remote UE and/or the relay UE are provisioned with multicast service information for a set of multicast services, such as via preconfiguration, from an AF (e.g., via SIP invite or response) , or via a ProSe policy.
  • the multicast service information for each Relay Service Code (RSC) , may indicate an MBS support indication (e.g., should this RSC support MBS) , one or more MBS session identifiers (e.g., indicating an MBS supported by an RSC) , one or more destination identifiers, one or more sidelink QoS parameters, or the like.
  • the relay UE may indicate support for MBS relaying by advertising in discovery messages, such as the relay discovery message shown by reference number 710.
  • the remote UE and the relay UE may perform local link setup. For example, the remote UE and the relay UE may establish or reconfigure a local link to support a multicast service.
  • the remote UE may perform cell selection (or reselection) or relay selection (or reselection) based at least in part on a multicast service. For example, the remote UE may perform cell selection or relay selection to a cell or relay UE that supports a multicast service selected by the remote UE.
  • the remote UE may transmit, and the relay UE may receive, a service request indication message indicating a selected service.
  • the service request indication message may be an MBS interest indication.
  • the remote UE may indicate one or more multicast services, such as via a Model B Discovery solicitation message, during a local link setup procedure (e.g., a PC5-RRC reconfiguration procedure for sidelink) , or during a link reconfiguration procedure after the local link is configured.
  • the relay UE may setup or modify one or more PDU sessions for multicast over the relay UE.
  • the relay UE may configure a selected service for multicast provision.
  • the relay UE may request a multicast session join on a relay PDU session (which is for the relay UE’s traffic with the 5G network) based at least in part on an MBS session identifier associated with the selected service requested by the UE.
  • the 5G core may configure the multicast session based at least in part on a multicast group identifier and/or a destination identifier associated with the multicast session.
  • the 5G core may provide the multicast group identifier and/or the destination identifier to the relay UE in connection with configuring the relay PDU session.
  • the relay UE may advertise multicast services for which the relay UE has joined a multicast session via the relay discovery message shown by reference number 710.
  • the relay UE may request the multicast session join prior to transmitting the relay discovery message.
  • the relay UE may join multicast sessions of one or more of the set of multicast services, and may advertise the one or more multicast services via the relay discovery message.
  • the multicast session join is requested prior to advertising multicast services via the discovery message.
  • the relay UE may transmit, and the remote UE may receive, an MBS configuration request.
  • the relay UE may configure the selected service for multicast or broadcast provision to the remote UE.
  • the remote UE may transmit, and the relay UE may receive, an MBS configuration response (sometimes referred to as a multicast configuration) .
  • the MBS configuration request may indicate a cast type for multicast data forwarding.
  • the relay UE may support forwarding of multicast data to remote UEs (e.g., over the local link) using either unicast (e.g., PTP) or groupcast (e.g., PTM) .
  • the MBS configuration request may indicate quality of service information (e.g., local link quality of service information) based at least in part on a 5G QoS identifier (5QI) to PC5 QoS identifier (PQI) table and a unicast sidelink data radio bearer configuration.
  • quality of service information e.g., local link quality of service information
  • 5QI 5G QoS identifier
  • PQI PC5 QoS identifier
  • the MBS configuration request may indicate quality of service information (e.g., local link quality of service information) based at least in part on a 5QI to PQI mapping (sometimes referred to herein as a mapping between a multicast radio bearer quality of service and a quality of service on the local link) , a multicast group identifier, a destination identifier (e.g., a Layer 2 identifier) , and/or whether hybrid automatic repeat request (HARQ) feedback is enabled or disabled.
  • quality of service information e.g., local link quality of service information
  • a 5QI to PQI mapping sometimes referred to herein as a mapping between a multicast radio bearer quality of service and a quality of service on the local link
  • a multicast group identifier e.g., a Layer 2 identifier
  • HARQ hybrid automatic repeat request
  • the remote UE and the relay UE may configure a groupcast data radio bearer based at least in part on provisioned or preconfigured information (e.g., the policy, the preconfiguration, etc. ) , as described in more detail elsewhere herein.
  • provisioned or preconfigured information e.g., the policy, the preconfiguration, etc.
  • the relay UE may perform multicast data relaying for the remote UE.
  • the relay UE may relay traffic associated with the selected service via a data radio bearer between the relay UE and the remote UE.
  • the data radio bearer may be configured based at least in part on the selected service (e.g., PTM or PTP communication) .
  • Fig. 7 is provided as an example. Other examples may differ from what is described with regard to Fig. 7.
  • Fig. 8 is a diagram illustrating an example 800 of multicast service configuration such as may be used for a Layer 2 relaying service, in accordance with the present disclosure.
  • example 800 includes a remote UE (e.g., UE 120, the remote UE of Figs. 3-5, a second wireless node) , a relay UE (e.g., UE 120, the relay UE of Figs. 3-5, a first wireless node) , an NG-RAN (e.g., BS 110, the NG-RAN of Figs. 3-5) , and a 5G core (e.g., the core network of Figs. 3-4, the 5G core of Fig. 5) .
  • a remote UE e.g., UE 120, the remote UE of Figs. 3-5, a second wireless node
  • a relay UE e.g., UE 120, the relay UE of Figs. 3-5, a first wireless node
  • the relay UE and the remote UE may perform relay discovery (e.g., based at least in part on a relay discovery message) , as described above in connection with Figs. 6 and 7.
  • the remote UE and the relay UE may perform local link setup.
  • the remote UE and the relay UE may configure the local link based at least in part on a selected service (described below) .
  • the remote UE, the relay UE, or the NG-RAN may configure the local link (e.g., one or more sidelink radio link control (RLC) bearers or channels of the local link) based at least in part on a radio access (Uu) multicast radio bearer 5QI to local link QoS (e.g., PQI) mapping table (sometimes referred to herein as a mapping between a multicast radio bearer quality of service and a quality of service on the local link) .
  • RLC radio link control
  • Uu radio access
  • QoS e.g., PQI mapping table
  • a remote UE or NG-RAN may select or reselect a cell or relay that supports a selected multicast service to support service continuity, as mentioned above.
  • an NG-RAN may support MBS service continuity during a network-managed handover for direct or indirect mobility.
  • the NG-RAN (which may know which MBS sessions the remote UE has joined) may switch the multicast PDU session to a unicast PDU session before handover, and may prepare a target base station or UE with an MRB or DRB configuration for the remote UE’s multicast service.
  • the remote UE may select or reselect a cell or relay that supports a selected multicast service to enable service continuity.
  • the relay UE may transition to a connected state (e.g., an RRC connected mode) with the 5G core.
  • the remote UE and the 5G core may set up a Uu (e.g., AS and NAS) connection between the remote UE and the 5G core, such as to facilitate a selected service selected by the remote UE.
  • the relay UE and/or the remote UE may modify one or more remote UE PDU sessions. For example, the remote UE may request a multicast session join on a PDU session of the remote UE via the local link.
  • the NG-RAN may configure the remote UE with a multicast radio bearer (MRB) for PTM, PTP, or both. Additionally, or alternatively, the NG-RAN may configure one or more Uu RLC bearers or channels for the relay UE to support the MRB configured for the remote UE (for PTM, PTP, or both) based at least in part on an MBS capability of the relay UE. For example, if the relay UE supports MBS, then the NG-RAN may configure an MRB for PTM. Otherwise, the NG-RAN may configure an MRB for PTP. If the MRB is configured with PTM, then the relay UE may use the provisioned multicast service information (described above) for a groupcast DRB configuration to support MBS relaying (e.g., an MBS relaying groupcast DRB configuration) .
  • MBS multicast radio bearer
  • the relay UE may perform multicast data relaying for the remote UE.
  • the relay UE may be provided with multicast group paging monitoring information for the remote UE.
  • the multicast group paging monitoring information may indicate how the remote UE is to monitor for multicast group paging.
  • the relay UE may receive multicast group paging pertaining to the remote UE. If the remote UE is in an idle mode or an inactive mode, the relay UE may forward the multicast group paging to the remote UE.
  • the remote UE may transition to an RRC connected state, based at least in part on the multicast group paging, to receive multicast data.
  • the relay UE may forward multicast system information (e.g., multicast system information block (SIB) information) from a serving cell of the remote UE.
  • multicast system information e.g., multicast system information block (SIB) information
  • the first wireless node may forward the multicast SIB information using a Layer 2 UE-to-network relay SIB forwarding procedure.
  • Fig. 8 is provided as an example. Other examples may differ from what is described with regard to Fig. 8.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a wireless node, in accordance with the present disclosure.
  • Example process 900 is an example where a first wireless node (e.g., UE 120, the first wireless node of Figs. 3-8) performs operations associated with multicast or broadcast support over a user equipment to network relay.
  • a first wireless node e.g., UE 120, the first wireless node of Figs. 3-8
  • process 900 may include transmitting, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service (block 910) .
  • the first wireless node e.g., using communication manager 140 and/or transmission component 1204, depicted in Fig. 12
  • process 900 may include receiving, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services (block 920) .
  • the first wireless node e.g., using communication manager 140 and/or reception component 1202, depicted in Fig. 12
  • process 900 may include configuring the selected service for multicast or broadcast provision to the second wireless node (block 930) .
  • the first wireless node e.g., using communication manager 140 and/or configuration component 1208, depicted in Fig. 12
  • process 900 may include providing the selected service to the second wireless node (block 940) .
  • the UE e.g., using communication manager 140 and/or transmission component 1204, depicted in Fig. 12
  • Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 900 includes receiving information identifying the one or more supported services via system information.
  • the service request indication message is received via at least one of a discovery solicitation message, a local link connection setup message for a local link with the second wireless node, or a link reconfiguration message for connection reconfiguration of the local link.
  • the service request indication message indicates a frequency associated with the selected service.
  • configuring the selected service for multicast or broadcast provision to the second wireless node further comprises configuring at least one of a logical channel on a local link or resources on the local link to transport broadcast data via the local link.
  • process 900 includes providing a receive-only mode (ROM) broadcast service to the second wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the first wireless node, and wherein the ROM broadcast service is provided without having received a service request indication message pertaining to the ROM broadcast service.
  • ROM receive-only mode
  • process 900 includes receiving information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
  • process 900 includes receiving information identifying the one or more supported services from an application function.
  • configuring the selected service for multicast or broadcast provision to the second wireless node further comprises requesting a multicast session join associated with the selected service for a relay protocol data unit session for the second wireless node.
  • configuring the selected service for multicast or broadcast provision to the second wireless node further comprises transmitting, to the second wireless node, a multicast configuration indicating at least one of a cast type for the selected service, local link quality of service information, a unicast data radio bearer configuration, a destination identifier, or whether hybrid automatic repeat request feedback is enabled.
  • configuring the selected service for multicast or broadcast provision to the second wireless node further comprises configuring a data radio bearer for the selected service based at least in part on a preconfiguration.
  • process 900 includes receiving, prior to transmitting the relay discovery message, information identifying the one or more supported services, wherein the information identifying the one or more supported services includes at least one of a relay service code, an indication of whether the relay service code supports multicast or broadcast, a session identifier, a multicast group identifier, a destination identifier, or local link quality of service information.
  • configuring the selected service for multicast or broadcast provision to the second wireless node further comprises configuring the selected service based at least in part on configuration information, received from a base station, indicating one or more radio access radio link control (RLC) bearers based at least in part on a capability of the first wireless node for multicast communication.
  • RLC radio access radio link control
  • configuring the selected service for multicast or broadcast provision to the second wireless node further comprises configuring a local link with the second wireless node based at least in part on a mapping between a multicast radio bearer quality of service and a quality of service on the local link.
  • process 900 includes receiving multicast group paging monitoring information associated with the second wireless node, and forwarding multicast group paging to the second wireless node based at least in part on the multicast group paging monitoring information.
  • process 900 includes forwarding, to the second wireless node, multicast system information block information.
  • process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
  • Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a wireless node, in accordance with the present disclosure.
  • Example process 1000 is an example where a second wireless node (e.g., UE 120, the relay UE of Figs. 3-8) performs operations associated with multicast or broadcast support over a user equipment to network relay.
  • a second wireless node e.g., UE 120, the relay UE of Figs. 3-8
  • process 1000 may include receiving, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service (block 1010) .
  • the second wireless node e.g., using communication manager 140 and/or reception component 1202, depicted in Fig. 12
  • process 1000 may include transmitting, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services (block 1020) .
  • the second wireless node e.g., using communication manager 140 and/or transmission component 1204, depicted in Fig. 12
  • process 1000 may include configuring the selected service for multicast or broadcast provision from the first wireless node (block 1030) .
  • the second wireless node e.g., using communication manager 140 and/or configuration component 1208, depicted in Fig. 12
  • process 1000 may include receiving a communication associated with the selected service (block 1040) .
  • the second wireless node e.g., using communication manager 140 and/or reception component 1202, depicted in Fig. 12
  • Process 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 1000 includes performing relay selection of the first wireless node based at least in part on the relay discovery message.
  • the service request indication message is transmitted via at least one of a discovery solicitation message, a local link connection setup message for a local link with the second wireless node, or a link reconfiguration message for connection reconfiguration of the local link.
  • the service request indication message indicates a frequency associated with the selected service.
  • configuring the selected service for multicast or broadcast provision to the second wireless node further comprises receiving a configuration of a logical channel on a local link to transport broadcast data via the local link.
  • process 1000 includes receiving a ROM broadcast service from the first wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the second wireless node, and wherein the ROM broadcast service is received without the second wireless node having transmitted a service request indication message pertaining to the ROM broadcast service.
  • process 1000 includes receiving information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
  • a multicast broadcast service session identifier associated with the selected service is preconfigured for the second wireless node.
  • process 1000 includes receiving a multicast broadcast service session identifier associated with the selected service from an application function.
  • configuring the selected service for multicast or broadcast provision to the second wireless node further comprises receiving, from the first wireless node, a multicast configuration indicating at least one of a cast type for the selected service, local link quality of service information, a unicast data radio bearer configuration, a destination identifier, or whether hybrid automatic repeat request feedback is enabled.
  • configuring the selected service for multicast or broadcast provision to the second wireless node further comprises configuring a data radio bearer for the selected service based at least in part on a preconfiguration.
  • process 1000 includes receiving information identifying the one or more supported services, wherein the information identifying the one or more supported services includes at least one of a relay service code, an indication of whether the relay service code supports multicast or broadcast, a session identifier, a multicast group identifier, a destination identifier, or local link quality of service information, wherein the relay discovery message indicates that the second wireless node supports the one or more supported services.
  • the information identifying the one or more supported services includes at least one of a relay service code, an indication of whether the relay service code supports multicast or broadcast, a session identifier, a multicast group identifier, a destination identifier, or local link quality of service information
  • the service request indication message includes a request for a multicast session join on a protocol data unit session via a local link with the first wireless node.
  • configuring the selected service for multicast or broadcast provision to the second wireless node further comprises configuring the selected service based at least in part on configuration information, received from a base station, indicating a multicast radio bearer for the selected service.
  • configuring the selected service for multicast or broadcast provision from the first wireless node further comprises configuring a local link with the first wireless node based at least in part on a mapping between a multicast radio bearer quality of service and a quality of service on the local link.
  • process 1000 includes receiving, prior to the communication and from the first wireless node, multicast group paging associated with the selected service.
  • process 1000 includes receiving, from the first wireless node, multicast system information block information.
  • process 1000 includes performing cell selection or reselection to a first wireless node or cell that supports the selected service.
  • process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
  • Fig. 11 is a diagram illustrating an example process 1100 performed, for example, by a base station, in accordance with the present disclosure.
  • Example process 1100 is an example where the base station (e.g., base station 110, the NG-RAN, 5G core, or core network of Figs. 3-5) performs operations associated with multicast or broadcast support over a user equipment to network relay.
  • the base station e.g., base station 110, the NG-RAN, 5G core, or core network of Figs. 3-5
  • the base station e.g., base station 110, the NG-RAN, 5G core, or core network of Figs. 3-5
  • process 1100 may include transmitting, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service (block 1110) .
  • the base station e.g., using communication manager 150 and/or transmission component 1304, depicted in Fig. 13
  • process 1100 may include receiving, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services (block 1120) .
  • the base station e.g., using communication manager 150 and/or reception component 1302, depicted in Fig. 13
  • process 1100 may include configuring the selected service for multicast or broadcast provision to the second wireless node via the first wireless node (block 1130) .
  • the base station e.g., using communication manager 150 and/or configuration component 1308, depicted in Fig. 13
  • Process 1100 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the information indicating the one or more supported services is provided via a system information block.
  • process 1100 includes configuring a handover of the second wireless node to a cell or first wireless node that supports the selected service.
  • the information indicating the one or more supported services is provided via a policy.
  • the information indicating the one or more supported services is provided via a preconfiguration.
  • the information indicating the one or more supported services is provided via a session initiation protocol message.
  • configuring the selected service further comprises configuring the second wireless node with a multicast radio bearer, and configuring the first wireless node with a radio access RLC bearer to support the multicast radio bearer.
  • process 1100 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 11. Additionally, or alternatively, two or more of the blocks of process 1100 may be performed in parallel.
  • Fig. 12 is a diagram of an example apparatus 1200 for wireless communication, in accordance with the present disclosure.
  • the apparatus 1200 may be a first wireless node such as a UE, or a first wireless node such as a UE may include the apparatus 1200.
  • the apparatus 1200 includes a reception component 1202 and a transmission component 1204, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1200 may communicate with another apparatus 1206 (such as a UE, a base station, or another wireless communication device) using the reception component 1202 and the transmission component 1204.
  • the apparatus 1200 may include the communication manager 140.
  • the communication manager 140 may include one or more of a configuration component 1208 or a relaying component 1210, among other examples.
  • the apparatus 1200 may be configured to perform one or more operations described herein in connection with Figs. 3-8. Additionally, or alternatively, the apparatus 1200 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9, or a combination thereof.
  • the apparatus 1200 and/or one or more components shown in Fig. 12 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 12 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1202 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1206.
  • the reception component 1202 may provide received communications to one or more other components of the apparatus 1200.
  • the reception component 1202 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1200.
  • the reception component 1202 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 1204 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1206.
  • one or more other components of the apparatus 1200 may generate communications and may provide the generated communications to the transmission component 1204 for transmission to the apparatus 1206.
  • the transmission component 1204 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1206.
  • the transmission component 1204 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1204 may be co-located with the reception component 1202 in a transceiver.
  • the transmission component 1204 may transmit, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the reception component 1202 may receive, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the configuration component 1208 may configure the selected service for multicast or broadcast provision to the second wireless node.
  • the transmission component 1204 or the relaying component 1210 may provide the selected service to the second wireless node.
  • the reception component 1202 may receive information identifying the one or more supported services via system information.
  • the relaying component 1210 may provide a receive-only mode (ROM) broadcast service to the second wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the first wireless node, and wherein the ROM broadcast service is provided without having received a service request indication message pertaining to the ROM broadcast service.
  • ROM receive-only mode
  • the reception component 1202 may receive information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
  • the reception component 1202 may receive information identifying the one or more supported services from an application function.
  • the relaying component 1210 may forward, to the second wireless node, multicast system information block information.
  • Fig. 12 The number and arrangement of components shown in Fig. 12 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 12. Furthermore, two or more components shown in Fig. 12 may be implemented within a single component, or a single component shown in Fig. 12 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 12 may perform one or more functions described as being performed by another set of components shown in Fig. 12.
  • Fig. 13 is a diagram of an example apparatus 1300 for wireless communication, in accordance with the present disclosure.
  • the apparatus 1300 may be a second wireless node such as a remote UE, or a second wireless node such as a remote UE may include the apparatus 1300.
  • the apparatus 1300 includes a reception component 1302 and a transmission component 1304, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1300 may communicate with another apparatus 1306 (such as a UE, a base station, or another wireless communication device) using the reception component 1302 and the transmission component 1304.
  • the apparatus 1300 may include the communication manager 160.
  • the communication manager 160 may include one or more of a configuration component 1308 or a reselection component 1310, among other examples.
  • the apparatus 1300 may be configured to perform one or more operations described herein in connection with Figs. 3-8. Additionally, or alternatively, the apparatus 1300 may be configured to perform one or more processes described herein, such as process 1000 of Fig. 10, or a combination thereof.
  • the apparatus 1300 and/or one or more components shown in Fig. 13 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 13 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1302 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1306.
  • the reception component 1302 may provide received communications to one or more other components of the apparatus 1300.
  • the reception component 1302 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1300.
  • the reception component 1302 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 1304 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1306.
  • one or more other components of the apparatus 1300 may generate communications and may provide the generated communications to the transmission component 1304 for transmission to the apparatus 1306.
  • the transmission component 1304 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1306.
  • the transmission component 1304 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1304 may be co-located with the reception component 1302 in a transceiver.
  • the reception component 1302 may receive, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the transmission component 1304 may transmit, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the configuration component 1308 may configure the selected service for multicast or broadcast provision from the first wireless node.
  • the reception component 1302 may receive a communication associated with the selected service.
  • the reselection component 1310 may perform relay selection of the first wireless node based at least in part on the relay discovery message.
  • the reception component 1302 may receive a receive-only mode (ROM) broadcast service from the first wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the second wireless node, and wherein the ROM broadcast service is received without the second wireless node having transmitted a service request indication message pertaining to the ROM broadcast service.
  • ROM receive-only mode
  • the reception component 1302 may receive information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
  • the reception component 1302 may receive a multicast broadcast service session identifier associated with the selected service from an application function.
  • the reception component 1302 may receive, prior to the communication and from the first wireless node, multicast group paging associated with the selected service.
  • the reception component 1302 may receive, from the first wireless node, multicast system information block information.
  • the reselection component 1310 may perform cell selection or reselection to a first wireless node or cell that supports the selected service.
  • Fig. 13 The number and arrangement of components shown in Fig. 13 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 13. Furthermore, two or more components shown in Fig. 13 may be implemented within a single component, or a single component shown in Fig. 13 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 13 may perform one or more functions described as being performed by another set of components shown in Fig. 13.
  • Fig. 14 is a diagram of an example apparatus 1400 for wireless communication, in accordance with the present disclosure.
  • the apparatus 1400 may be a base station, or a base station may include the apparatus 1400.
  • the apparatus 1400 includes a reception component 1402 and a transmission component 1404, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1400 may communicate with another apparatus 1406 (such as a UE, a base station, or another wireless communication device) using the reception component 1402 and the transmission component 1404.
  • the apparatus 1400 may include the communication manager 150.
  • the communication manager 150 may include a configuration component 1408, among other examples.
  • the apparatus 1400 may be configured to perform one or more operations described herein in connection with Figs. 3-8. Additionally, or alternatively, the apparatus 1400 may be configured to perform one or more processes described herein, such as process 1100 of Fig. 11, or a combination thereof.
  • the apparatus 1400 and/or one or more components shown in Fig. 14 may include one or more components of the base station described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 14 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1402 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1406.
  • the reception component 1402 may provide received communications to one or more other components of the apparatus 1400.
  • the reception component 1402 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1400.
  • the reception component 1402 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2.
  • the transmission component 1404 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1406.
  • one or more other components of the apparatus 1400 may generate communications and may provide the generated communications to the transmission component 1404 for transmission to the apparatus 1406.
  • the transmission component 1404 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1406.
  • the transmission component 1404 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2. In some aspects, the transmission component 1404 may be co-located with the reception component 1402 in a transceiver.
  • the transmission component 1404 may transmit, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service.
  • the reception component 1402 may receive, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services.
  • the configuration component 1408 may configure the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
  • the configuration component 1408 may configure a handover of the second wireless node to a cell or first wireless node that supports the selected service.
  • Fig. 14 The number and arrangement of components shown in Fig. 14 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 14. Furthermore, two or more components shown in Fig. 14 may be implemented within a single component, or a single component shown in Fig. 14 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 14 may perform one or more functions described as being performed by another set of components shown in Fig. 14.
  • a method of wireless communication performed by a first wireless node comprising: transmitting, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; receiving, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services; configuring the selected service for multicast or broadcast provision to the second wireless node; and providing the selected service to the second wireless node.
  • Aspect 2 The method of Aspect 1, further comprising: receiving information identifying the one or more supported services via system information.
  • Aspect 3 The method of any of Aspects 1-2, wherein the service request indication message is received via at least one of: a discovery solicitation message, a local link connection setup message for a local link with the second wireless node, or a link reconfiguration message for connection reconfiguration of the local link.
  • Aspect 4 The method of any of Aspects 1-3, wherein the service request indication message indicates a frequency associated with the selected service.
  • Aspect 5 The method of any of Aspects 1-4, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: configuring at least one of a logical channel on a local link or resources on the local link to transport broadcast data via the local link.
  • Aspect 6 The method of any of Aspects 1-5, further comprising: providing a receive-only mode (ROM) broadcast service to the second wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the first wireless node, and wherein the ROM broadcast service is provided without having received a service request indication message pertaining to the ROM broadcast service.
  • ROM receive-only mode
  • Aspect 7 The method of any of Aspects 1-6, further comprising: receiving information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
  • Aspect 8 The method of any of Aspects 1-7, further comprising: receiving information identifying the one or more supported services from an application function.
  • Aspect 9 The method of any of Aspects 1-8, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: requesting a multicast session join associated with the selected service for a relay protocol data unit session for the second wireless node.
  • Aspect 10 The method of any of Aspects 1-9, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: transmitting, to the second wireless node, a multicast configuration indicating at least one of: a cast type for the selected service, local link quality of service information, a unicast data radio bearer configuration, a destination identifier, or whether hybrid automatic repeat request feedback is enabled.
  • Aspect 11 The method of any of Aspects 1-10, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: configuring a data radio bearer for the selected service based at least in part on a preconfiguration.
  • Aspect 12 The method of any of Aspects 1-11, further comprising: receiving, prior to transmitting the relay discovery message, information identifying the one or more supported services, wherein the information identifying the one or more supported services includes at least one of: a relay service code, an indication of whether the relay service code supports multicast or broadcast, a session identifier, a multicast group identifier, a destination identifier, or local link quality of service information.
  • Aspect 13 The method of any of Aspects 1-12, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: configuring the selected service based at least in part on configuration information, received from a base station, indicating one or more radio access radio link control (RLC) bearers based at least in part on a capability of the first wireless node for multicast communication.
  • RLC radio access radio link control
  • Aspect 14 The method of any of Aspects 1-13, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: configuring a local link with the second wireless node based at least in part on a mapping between a multicast radio bearer quality of service and a quality of service on the local link.
  • Aspect 15 The method of any of Aspects 1-14, further comprising: receiving multicast group paging monitoring information associated with the second wireless node; and forwarding multicast group paging to the second wireless node based at least in part on the multicast group paging monitoring information.
  • Aspect 16 The method of any of Aspects 1-15, further comprising: forwarding, to the second wireless node, multicast system information block information.
  • a method of wireless communication performed by a second wireless node comprising: receiving, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; transmitting, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services; configuring the selected service for multicast or broadcast provision from the first wireless node; and receiving a communication associated with the selected service.
  • Aspect 18 The method of Aspect 17, further comprising: performing relay selection of the first wireless node based at least in part on the relay discovery message.
  • Aspect 19 The method of any of Aspects 17-18, wherein the service request indication message is transmitted via at least one of: a discovery solicitation message, a local link connection setup message for a local link with the second wireless node, or a link reconfiguration message for the local link.
  • Aspect 20 The method of any of Aspects 17-19, wherein the service request indication message indicates a frequency associated with the selected service.
  • Aspect 21 The method of any of Aspects 17-20, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: receiving a configuration of a logical channel on a local link to transport broadcast data via the local link.
  • Aspect 22 The method of any of Aspects 17-21, further comprising: receiving a receive-only mode (ROM) broadcast service from the first wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the second wireless node, and wherein the ROM broadcast service is received without the second wireless node having transmitted a service request indication message pertaining to the ROM broadcast service.
  • ROM receive-only mode
  • Aspect 23 The method of any of Aspects 17-22, further comprising: receiving information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
  • Aspect 24 The method of any of Aspects 17-23, wherein a multicast broadcast service session identifier associated with the selected service is preconfigured for the second wireless node.
  • Aspect 25 The method of any of Aspects 17-24, further comprising: receiving a multicast broadcast service session identifier associated with the selected service from an application function.
  • Aspect 26 The method of any of Aspects 17-25, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: receiving, from the first wireless node, a multicast configuration indicating at least one of: a cast type for the selected service, local link quality of service information, a unicast data radio bearer configuration, a destination identifier, or whether hybrid automatic repeat request feedback is enabled.
  • Aspect 27 The method of any of Aspects 17-26, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: configuring a data radio bearer for the selected service based at least in part on a preconfiguration.
  • Aspect 28 The method of any of Aspects 17-27, further comprising: receiving information identifying the one or more supported services, wherein the information identifying the one or more supported services includes at least one of: a relay service code, an indication of whether the relay service code supports multicast or broadcast, a session identifier, a multicast group identifier, a destination identifier, or local link quality of service information, wherein the relay discovery message indicates that the second wireless node supports the one or more supported services.
  • Aspect 29 The method of any of Aspects 17-28, wherein the service request indication message includes a request for a multicast session join on a protocol data unit session via a local link with the first wireless node.
  • Aspect 30 The method of any of Aspects 17-29, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: configuring the selected service based at least in part on configuration information, received from a base station, indicating a multicast radio bearer for the selected service.
  • Aspect 31 The method of any of Aspects 17-30, wherein configuring the selected service for multicast or broadcast provision from the first wireless node further comprises: configuring a local link with the first wireless node based at least in part on a mapping between a multicast radio bearer quality of service and a quality of service on the local link.
  • Aspect 32 The method of any of Aspects 17-31, further comprising: receiving, prior to the communication and from the first wireless node, multicast group paging associated with the selected service.
  • Aspect 33 The method of any of Aspects 17-32, further comprising: receiving, from the first wireless node, multicast system information block information.
  • Aspect 34 The method of any of Aspects 17-33, further comprising: performing cell selection or reselection to a first wireless node or cell that supports the selected service.
  • a method of wireless communication performed by a base station comprising: transmitting, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; receiving, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services; and configuring the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
  • Aspect 36 The method of Aspect 35, wherein the information indicating the one or more supported services is provided via a system information block.
  • Aspect 37 The method of any of Aspects 35-36, further comprising: configuring a handover of the second wireless node to a cell or first wireless node that supports the selected service.
  • Aspect 38 The method of any of Aspects 35-37, wherein the information indicating the one or more supported services is provided via a policy.
  • Aspect 39 The method of any of Aspects 35-38, wherein the information indicating the one or more supported services is provided via a preconfiguration.
  • Aspect 40 The method of any of Aspects 35-39, wherein the information indicating the one or more supported services is provided via a session initiation protocol message.
  • Aspect 41 The method of any of Aspects 35-40, wherein configuring the selected service further comprises: configuring the second wireless node with a multicast radio bearer; and configuring the first wireless node with a radio access radio link control (RLC) bearer to support the multicast radio bearer.
  • RLC radio access radio link control
  • Aspect 42 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-41.
  • Aspect 43 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-41.
  • Aspect 44 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-41.
  • Aspect 45 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-41.
  • Aspect 46 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-41.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a + a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) .
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a relay user equipment (UE) may transmit, to a remote UE, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The UE may receive, from the remote UE, a service request indication message indicating a selected service of the one or more supported services. The UE may configure the selected service for multicast or broadcast provision to the remote UE. The UE may provide the selected service to the remote UE. Numerousother aspects are described.

Description

MULTICAST OR BROADCAST SUPPORT OVER USER EQUIPMENT TO NETWORK RELAY
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for multicast or broadcast support over a user equipment to network relay.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs. A UE may communicate with a base station via downlink communications and uplink communications. “Downlink” (or “DL” ) refers to a communication link from the base station to the UE, and “uplink” (or “UL” ) refers to a communication link from the UE to the base station.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different UEs to communicate on a municipal, national, regional, and/or global level. New Radio (NR) , which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services,  making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
Some aspects described herein relate to a method of wireless communication performed by a first wireless node. The method may include transmitting, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The method may include receiving, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The method may include configuring the selected service for multicast or broadcast provision to the second wireless node. The method may include providing the selected service to the second wireless node.
Some aspects described herein relate to a method of wireless communication performed by a second wireless node. The method may include receiving, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The method may include transmitting, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The method may include configuring the selected service for multicast or broadcast provision from the first wireless node. The method may include receiving a communication associated with the selected service.
Some aspects described herein relate to a method of wireless communication performed by a base station. The method may include transmitting, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The method may include receiving, from the first wireless node or  the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The method may include configuring the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
Some aspects described herein relate to a first wireless node for wireless communication. The first wireless node may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to transmit, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The one or more processors may be configured to receive, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The one or more processors may be configured to configure the selected service for multicast or broadcast provision to the second wireless node. The one or more processors may be configured to provide the selected service to the second wireless node.
Some aspects described herein relate to a second wireless node for wireless communication. The second wireless node may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to receive, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The one or more processors may be configured to transmit, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The one or more processors may be configured to configure the selected service for multicast or broadcast provision from the first wireless node. The one or more processors may be configured to receive a communication associated with the selected service.
Some aspects described herein relate to a base station for wireless communication. The base station may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to transmit, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The one or more processors may be configured to receive, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services.  The one or more processors may be configured to configure the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a first wireless node. The set of instructions, when executed by one or more processors of the first wireless node, may cause the first wireless node to transmit, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The set of instructions, when executed by one or more processors of the first wireless node, may cause the first wireless node to receive, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The set of instructions, when executed by one or more processors of the first wireless node, may cause the first wireless node to configure the selected service for multicast or broadcast provision to the second wireless node. The set of instructions, when executed by one or more processors of the first wireless node, may cause the first wireless node to provide the selected service to the second wireless node.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a second wireless node. The set of instructions, when executed by one or more processors of the second wireless node, may cause the second wireless node to receive, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The set of instructions, when executed by one or more processors of the second wireless node, may cause the second wireless node to transmit, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The set of instructions, when executed by one or more processors of the second wireless node, may cause the second wireless node to configure the selected service for multicast or broadcast provision from the first wireless node. The set of instructions, when executed by one or more processors of the second wireless node, may cause the second wireless node to receive a communication associated with the selected service.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a base station.  The set of instructions, when executed by one or more processors of the base station, may cause the base station to transmit, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The set of instructions, when executed by one or more processors of the base station, may cause the base station to receive, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The set of instructions, when executed by one or more processors of the base station, may cause the base station to configure the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for transmitting, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The apparatus may include means for receiving, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The apparatus may include means for configuring the selected service for multicast or broadcast provision to the second wireless node. The apparatus may include means for providing the selected service to the second wireless node.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for receiving, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The apparatus may include means for transmitting, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The apparatus may include means for configuring the selected service for multicast or broadcast provision from the first wireless node. The apparatus may include means for receiving a communication associated with the selected service.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for transmitting, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or  a broadcast service. The apparatus may include means for receiving, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The apparatus may include means for configuring the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings, specification, and appendix.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages, will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
While aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios. Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements. For example, some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) . Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components. Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects. For example, transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware  components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) . It is intended that aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
Fig. 3 is a diagram illustrating an example of a control-plane protocol architecture for a Layer 2 UE-to-network relay, in accordance with the present disclosure.
Fig. 4 is a diagram illustrating an example of a user-plane protocol architecture for a Layer 2 UE-to-network relay, in accordance with the present disclosure.
Fig. 5 is a diagram illustrating an example of an architecture for a Layer 3 UE-to-network relay, in accordance with the present disclosure.
Fig. 6 is a diagram illustrating an example of broadcast service discovery, in accordance with the present disclosure.
Fig. 7 is a diagram illustrating an example of multicast service discovery and configuration such as may be used for a Layer 3 relaying service, in accordance with the present disclosure.
Fig. 8 is a diagram illustrating an example of multicast service configuration such as may be used for a Layer 2 relaying service, in accordance with the present disclosure.
Fig. 9 is a diagram illustrating an example process performed, for example, by a wireless node, in accordance with the present disclosure.
Fig. 10 is a diagram illustrating an example process performed, for example, by a wireless node, in accordance with the present disclosure.
Fig. 11 is a diagram illustrating an example process performed, for example, by a base station, in accordance with the present disclosure.
Figs. 12-14 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. One skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be  implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
While aspects may be described herein using terminology commonly associated with a 5G or New Radio (NR) radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure. The wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples. The wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities. A base station 110 is an entity that communicates with UEs 120. A base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) . Each base station 110 may provide communication coverage for a particular geographic area. In the Third Generation Partnership Project (3GPP) , the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) . A base station 110 for a macro cell may be referred to as a macro base station. A base station 110 for a pico cell may be referred to as a pico base station. A base station 110 for a femto cell may be referred to as a femto base station or an in-home base station. In the example shown in Fig. 1, the BS 110a may be a macro base station for a macro cell 102a, the BS 110b may be a pico  base station for a pico cell 102b, and the BS 110c may be a femto base station for a femto cell 102c. A base station may support one or multiple (e.g., three) cells.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) . In some examples, the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
The wireless network 100 may include one or more relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) . A relay station may be a UE 120 that can relay transmissions for other UEs 120. In the example shown in Fig. 1, the BS 110d (e.g., a relay base station) may communicate with the BS 110a (e.g., a macro base station) and the UE 120d in order to facilitate communication between the BS 110a and the UE 120d. A base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
The wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100. For example, macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110. The network controller 130 may communicate with the base stations 110 via a backhaul communication link. The base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
The UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile. A UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit. A UE 120 may be a  cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, and/or any other suitable device that is configured to communicate via a wireless medium.
Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity. Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices. Some UEs 120 may be considered a Customer Premises Equipment. A UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components. In some examples, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In general, any number of wireless networks 100 may be deployed in a given geographic area. Each wireless network 100 may support a particular RAT and may operate on one or more frequencies. A RAT may be referred to as a radio technology, an air interface, or the like. A frequency may be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications,  device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network. In such examples, a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4-1 (52.6 GHz –71 GHz) , FR4 (52.6 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above examples in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly  represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band. It is contemplated that the frequencies included in these operating bands (e.g., FR1, FR2, FR3, FR4, FR4-a, FR4-1, and/or FR5) may be modified, and techniques described herein are applicable to those modified frequency ranges.
In some aspects, a UE 120 may include a communication manager 140. As described in more detail elsewhere herein, the communication manager 140 may transmit, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; receive, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services; configure the selected service for multicast or broadcast provision to the second wireless node; and provide the selected service to the second wireless node. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
In some aspects, a UE 120 may include a communication manager 160. As described in more detail elsewhere herein, the communication manager 160 may receive, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; transmit, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services; configure the selected service for multicast or broadcast provision from the first wireless node; and receive a communication associated with the selected service. Additionally, or alternatively, the communication manager 160 may perform one or more other operations described herein.
In some aspects, the base station 110 may include a communication manager 150. As described in more detail elsewhere herein, the communication manager 150 may transmit, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; receive, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services; and configure the selected service for multicast or broadcast provision to the second wireless node via the first  wireless node. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure. The base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ≥ 1) . The UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ≥ 1) .
At the base station 110, a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) . The transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120. The base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120. The transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. The transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t. For example, each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232. Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal. The modems 232a through 232t may transmit a set of downlink  signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
At the UE 120, a set of antennas 252 (shown as antennas 252a through 252r) may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r. For example, each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254. Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples. Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples. In some examples, one or more components of the UE 120 may be included in a housing 284.
The network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292. The network controller 130 may include, for example, one or more devices in a core network. The network controller 130 may communicate with the base station 110 via the communication unit 294.
One or more antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one  or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at the UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280. The transmit processor 264 may generate reference symbols for one or more reference signals. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110. In some examples, the modem 254 of the UE 120 may include a modulator and a demodulator. In some examples, the UE 120 includes a transceiver. The transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266. The transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 3-13) .
At the base station 110, the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240. The base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244. The base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications. In some examples, the modem 232 of the base station 110 may include a modulator and a demodulator. In some examples, the base station 110 includes a transceiver. The transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230. The transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 3-13) .
The controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with multicast or broadcast services via a relay UE, as described in more detail elsewhere herein. For example, the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, and/or other processes as described herein. The memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively. In some examples, the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, and/or other processes as described herein. In some examples, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, the UE 120 includes means for transmitting, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; means for receiving, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services; means for configuring the selected service for multicast or broadcast provision to the second wireless node; and/or means for providing the selected service to the second wireless node. The means for the UE 120 to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
In some aspects, the UE 120 includes means for receiving, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; means for transmitting, to the second wireless node, a service request indication  message indicating a selected service of the one or more supported services; means for configuring the selected service for multicast or broadcast provision from the first wireless node; and/or means for receiving a communication associated with the selected service. The means for the UE 120 to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
In some aspects, the base station 110 includes means for transmitting, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; means for receiving, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services; and/or means for configuring the selected service for multicast or broadcast provision to the second wireless node via the first wireless node. The means for the base station 110 to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
The techniques described herein relate to relaying between a remote UE and a network (e.g., a base station 110) via a relay UE. The relay UE is an example of a first wireless node. The remote UE is an example of a second wireless node. Figs. 3 and 4 provide an example user plane and control plane architecture for one form of relaying, referred to herein as a Layer 2 UE-to-network relaying or Layer 2 relaying. Fig. 5 provides an example architecture for another form of relaying, referred to herein as Layer 3 UE-to-network relaying or Layer 3 relaying. Relaying may occur via a local link between the remote UE and the relay UE. In examples 300, 400, and 500 (shown  in Figs. 3, 4, and 5, respectively) , the local link is a PC5 connection associated with a sidelink. The techniques described herein can be applied for any form of local link, including Bluetooth, WiFi, or the like.
Fig. 3 is a diagram illustrating an example of a control-plane protocol architecture 300 for a Layer 2 UE-to-network relay, in accordance with the present disclosure. Fig. 4 is a diagram illustrating an example of a user-plane protocol architecture 400 for a Layer 2 UE-to-network relay, in accordance with the present disclosure. For example, the control-plane protocol architecture 300 and the user-plane protocol architecture 400 may correspond to a remote UE (e.g., UE 120, a first wireless node) shown by  reference numbers  305 and 405 and a relay UE (e.g., UE 120, a second wireless node) shown by  reference numbers  310 and 410.
As shown in Fig. 3, in the control-plane, there may be a non-Uu interface (e.g., a sidelink interface such as a PC5 interface, a WiFi interface, a WiFi-D interface, a Bluetooth interface, a Bluetooth LE interface) between the remote UE and the relay UE, a Uu interface between the relay UE and a gNB (e.g., a next generation radio access network (NG-RAN) , also referred to herein as a 5G access network (5G-AN) ) , and an N2 interface between the gNB and a core network.
As shown in Fig. 4, there may be an N3 interface between the gNB and a core network.
As further shown, the remote UE and the relay UE may be associated with respective non-Uu protocol stacks 315/320 and 415/420, enabling communication on the non-Uu interface between the remote UE and the relay UE. The non-Uu protocol stack may include a radio link control (RLC) component, a medium access control (MAC) component, a physical (PHY) component, and/or the like.
“PC5” is generally referred to herein as “sidelink” (e.g., sidelink signaling interfaces, sidelink unicast link, sidelink RLC channels, and/or the like) . Communications between the remote UE and the relay UE using the PC5 interface may be referred to as sidelink communications. A PC5 protocol stack may be associated with one or more of PC5-Sentities, PC5-radio resource control (RRC) entities, or PC5 packet data convergence protocol (PDCP) entities. The PC5-Sentity may manage a sidelink signaling interface, such as a PC5-Sinterface. A UE that includes a PC5-Sentity and/or a PC5-RRC entity may handle control signaling and configuration of a sidelink connection with another UE, such as the connection used for relaying between the remote UE and the relay UE. In some aspects, the non-Uu protocol stacks 315/320  and 415/420 may not include PC5-Sentities or PC5-RRC entities. Also, in some cases, the NG-RAN may handle control signaling and configuration of the sidelink connection. In some contexts, the relaying operations described herein are described as being implemented using sidelink interfaces. It should be understood that the relaying operations described herein can be implemented using various non-Uu interfaces, such as a PC5 interface, a WiFi interface, a WiFi-D interface, a Bluetooth interface, or a Bluetooth LE interface.
As shown by reference number 330 of Fig. 3, the remote UE is associated with a non-access stratum (NAS) stack, which includes an NAS session management (NAS-SM) component, an NAS session management (NAS-SM) component, and one or more radio access components (e.g., an RRC component and a PDCP component) . As shown by reference number 335 of Fig. 3, the relay UE is associated with a radio access stack, including an RLC component, a MAC component, and a PHY component. Furthermore, the gNB is associated with a radio access interface stack shown by reference number 340, which includes an RLC component, a MAC component, a PHY component, an RRC entity, and a PDCP entity.
As shown in Figs. 3 and 4, the remote UE, the relay UE, and the gNB may include an adaptation layer. The adaptation layer may handle relaying from the remote UE to the network or from the network to the remote UE. As used herein, “the network” may refer to any one or more of the gNB, the access and mobility management function (AMF) , the session management function (SMF) , the user plane function (UPF) , or the core network (CNW) . The CNW may be referred to as a 5G core (5GC) . In some aspects, the adaptation layer is referred to as an adaptation layer entity. In some aspects, the adaptation layer entity may be a separate entity between a RLC entity and a packet data convergence entity. In some aspects, the adaptation layer entity may be logically part of the packet data convergence entity or the radio link control entity
As shown by reference number 425 of Fig. 4, the remote UE is associated with a user-plane protocol stack, which may include an application (APP) component, a protocol data unit (PDU) component, a service data adaptation protocol (SDAP) component, and a PDCP component. Furthermore, the gNB is associated with user-plane components shown by reference number 430, which include an SDAP component and a PDCP component. The SDAP component and the PDCP component may be referred to herein as radio access entities.
NR user-plane traffic may be transported to the relay UE via one or more bearers, such as a data radio bearer (DRB) or signaling radio bearer (SRB) . DRBs and SRBs can also be referred to as radio bearers or radio access bearers. Uu user-plane traffic may be provided from the non-Uu stack 420 of the relay UE to the adaptation component, and from the adaptation component to the radio access (Uu) stack 435 of the relay UE. The radio access stack of the relay UE may provide the Uu user-plane traffic to the Uu stack 440 of the gNB.
The physical layer may offer, to the MAC sublayer, transport channels. The MAC sublayer may offer, to the RLC sublayer, logical channels. The RLC sublayer may offer, to the PDCP sublayer, RLC channels. The PDCP sublayer may offer, to the SDAP sublayer, radio bearers. The SDAP sublayer may offer, to the CNW, QoS flows. The adaptation layer may handle the mapping of these types of flows, channels, and bearers to each other to facilitate Layer 2 relay services, as described elsewhere herein. In some aspects, the RAP layer may be referred to as an adaptation layer, a relay adaption layer, and/or the like. A radio access bearer may include an SRB, a DRB, and/or the like. An RLC channel can also be referred to as an RLC bearer. In such a case, an RLC channel identifier associated with the RLC channel may be referred to as an RLC bearer identifier.
As indicated above, Figs. 3 and 4 are provided as examples. Other examples may differ from what is described with respect to Figs. 3 and 4.
Fig. 5 is a diagram illustrating an example 500 of an architecture for a Layer 3 UE-to-network relay, in accordance with the present disclosure. Example 500 includes a remote UE (e.g., UE 120, a second wireless node) , a relay UE (e.g., UE 120, shown as “L3 UE-to-NW Relay UE” , a first wireless node) , an NG-RAN (e.g., a network node, BS 110, the NG-RAN of Figs. 3 and 4) , and a 5G core (e.g., the core network of Figs. 3 and 4) .
The remote UE may include an application layer. The application layer may run applications of the remote UE, which may communicate with the 5G core via the relay UE. As further shown, the remote UE may be associated with an Internet Protocol (IP) entity and a PC5 stack (e.g., including one or more entities of Figs. 3 and 4) . In some cases, the remote UE may communicate with the relay UE using a non-PC5 stack such as WiFi, WiFi-D, Bluetooth or Bluetooth LE. IP communications of the remote UE may be relayed to the 5G core via the relay UE. For example, the IP communications may be communicated to the relay UE via a local link like sidelink,  WiFi, WiFi-D, Bluetooth or Bluetooth LE (e.g., for sidelink, a PC5 local link, which may be a secure unicast link established prior to relaying) , then between the relay UE and the NG-RAN via the radio access (e.g., Uu) interface, then to the 5G core via an N3 or N2 interface. The remote UE and/or the relay UE may be provisioned by the 5G core or preconfigured with a policy (e.g., a sidelink policy) and parameters for the policy. The remote UE may have no non-access stratum (NAS) or access stratum (AS) connection with the NG-RAN.
As shown, the relay UE may have an IP relay entity, a PC5 stack, and a Uu stack. The IP relay entity may handle IP communications with the remote UE. In some cases, the relay UE may also support non-IP relaying for the remote UE, where the non-IP entity is above the PC5 or non-PC5 stack (e.g., the non-Uu stack) . The PC5 stack may handle the local link with the remote UE. The Uu stack may handle Uu communications with the NG-RAN. As further shown, the NG-RAN may have a Uu stack and an N3/N2 entity. The Uu stack of the NG-RAN may handle Uu communications with the remote UE. The N3/N2 entity may handle communications with the 5G core. As further shown, the 5G core may have an IP entity and an N3/N2 entity. The IP entity may handle IP communications with the relay UE. The N3/N2 entity may handle communications with the NG-RAN.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
A remote UE (e.g., a second wireless node) may communicate with a network via a relay UE (e.g., a first wireless node) . For example, the relay UE may relay uplink communications associated with a relay service from the remote UE to the network, and/or may relay downlink communications associated with a relay service from the network to the remote UE. Examples of relay services include Layer 2 UE-to-network relaying and Layer 3 UE-to-network relaying.
Some radio access technologies (RATs) , such as 5G/NR, support multicast services and/or broadcast services, collectively referred to as multicast and broadcast services (MBS) . An MBS can be characterized as point-to-multipoint (PTM) , where data is transmitted from a single source entity to multiple recipients, and can be contrasted with a unicast service, which is point-to-point (PTP) . A multicast service is a service associated with multiple destination UEs, such as a service that is directed to the multiple UEs via a plurality of dedicated channels or a common channel (e.g., the UEs  may share an interest in receiving the traffic) . A broadcast service is a service that is transmitted for reception by any UE.
While MBS is well supported for direct connections, such as between a UE and a network, MBS communication may not be defined for architectures involving a relay UE and a remote UE. Thus, certain challenges may arise in the provision of MBS communications. As one example, procedures for discovery of services associated with MBS may be unclear. As another example, remote UEs may experience degraded performance or failure of MBS communications in the case of mobility (e.g., cell selection, cell reselection, relay selection, relay reselection, and so on) if a target cell or relay UE does not support a given MBS. As yet another example, configuration procedures for MBS configuration may not be well defined for architectures including a relay UE. Thus, provision of multicast services or broadcast services may be less reliable or may fail in architectures involving a remote UE, which reduces throughput, degrades user experience, and decreases compatibility of network services.
Some techniques and apparatuses described herein provide discovery, service continuity, and configuration of multicast services and broadcast services in association with a relay UE (e.g., a first wireless node) . For example, some techniques and apparatuses described herein enable MBS provision for Layer 2 UE-to-network relays, Layer 3 UE-to-network relays, and other forms of relay. Thus, provision of multicast services and broadcast services is enabled, which improves reliability, enables the usage of multicast services and broadcast services for relaying services, and improves compatibility of network services.
Fig. 6 is a diagram illustrating an example 600 of broadcast service discovery, in accordance with the present disclosure. As shown, example 600 includes a remote UE (e.g., UE 120, the remote UE of Figs. 3-5, a second wireless node) and a relay UE (e.g., UE 120, the relay UE of Figs. 3-5, a first wireless node) .
As shown by reference number 610, the relay UE may transmit, and the remote UE may receive, a relay discovery message. For example, the relay UE may advertise a set of supported broadcast services. In some aspects, the relay discovery message may indicate a list of broadcast services and a set of frequencies associated with the list of broadcast services. In some aspects, the relay discovery message may include a discovery announcement message. In some aspects, the relay discovery message may include a relay discovery additional information message, such as is defined for a PC5 interface. In some aspects, the relay UE may receive information  indicating the set of broadcast services. For example, the relay UE may receive the information indicating the set of broadcast services via system information (e.g., a system information block) .
In some aspects, the remote UE may perform cell selection (or reselection) or relay selection (or reselection) based at least in part on the relay discovery message. For example, the remote UE may use the set of broadcast services as a criterion for cell selection or reselection or relay selection or reselection. In some aspects, the remote UE may select or reselect a cell or relay that supports a broadcast service in use by the remote UE or desired by the remote UE (e.g., to support service continuity) . In a Layer 3 relay, the UE may perform cell and/or relay selection or reselection for direct or indirect mobility (e.g., no handover may be supported) . In this case, the remote UE may select or reselect a cell or relay that supports a selected broadcast service and frequency to support service continuity. In a Layer 2 relay, a remote UE in an RRC connected state may transmit a service request indication message (e.g., a Uu MBS interest indication) to the NG-RAN via relay UE. The NG-RAN may take into account the selected service indicated by the service request indication message for handover preparation. For idle or inactive mode reselection, the remote UE may select or reselect to a cell or relay that supports the selected service and the frequency associated with the selected service. In this way, interruption to broadcast services associated with cell or relay selection or reselection is reduced.
As shown by reference number 620, the remote UE may transmit, and the relay UE may receive, a service request indication message. In some aspects, the service request indication message may be an MBS interest indication. For example, the remote UE may indicate a selected service (e.g., a selected broadcast service of the set of broadcast services) . In some aspects, the remote UE may indicate a set of frequencies (e.g., one or more frequencies) associated with the selected service. In some aspects, the remote UE may indicate multiple selected services. In some aspects, the service indication may be a Mode B Discovery solicitation message associated with the PC5 protocol. In some aspects, the service request indication message may be part of a local link setup procedure for a local link between the remote UE and the relay UE (e.g., a PC5-RRC reconfiguration procedure for the sidelink) . For example, the service request indication message may be a local link connection setup message. In some aspects, the service request indication message may be part of a link reconfiguration procedure, such as after a local link has been established with the relay UE. For  example, the service request indication message may be a link reconfiguration message for connection reconfiguration of the local link.
As shown by reference number 630, the relay UE may transmit, and the remote UE may receive, an MBS configuration request. For example, the relay UE may configure the selected service for broadcast provision to the remote UE. In some aspects, the relay UE may configure a logical channel (such as a sidelink multicast common control channel (SMCCH) logical channel) for transporting broadcast data to remote UEs. In some aspects, the relay UE may configure resources on the local link for transporting broadcast data to remote UEs, such as for a WiFi or Bluetooth connection. In some aspects, the MBS configuration request may indicate a broadcast group identifier associated with the selected service. A broadcast group identifier may identify a broadcast service, such as based at least in part on a temporary mobile group identifier (TMGI) or a MBS session identifier (ID) (sometimes referred to herein as a session identifier) . As shown by reference number 640, the remote UE may transmit, and the relay UE may receive, an MBS configuration response. The MBS configuration response may acknowledge receipt and/or implementation of the MBS configuration request. In some aspects, the relay UE may perform relaying of the selected service indicated by the service request indication message. For example, the relay UE may relay broadcast traffic to the remote UE in any radio access RRC state (e.g., connected, idle mode, inactive mode) .
In some aspects, the relay UE may support one or more broadcast services irrespective of whether the remote UE indicates interest in the one or more broadcast services. For example, the relay UE may support broadcast relaying for one or more broadcast services that are configured for receive-only mode (ROM) without having received an indication (e.g., a service request indication message) pertaining to the one or more broadcast services. In this case, a configuration (e.g., an SMCCH configuration) associated with the one or more broadcast services may be preconfigured for the remote UE and the relay UE, or may be defined in a wireless communication specification. Thus, the relay UE may provide a ROM broadcast service to the remote UE.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
Fig. 7 is a diagram illustrating an example 700 of multicast service discovery and configuration such as may be used for a Layer 3 relaying service, in accordance  with the present disclosure. As shown, example 700 includes a remote UE (e.g., UE 120, the remote UE of Figs. 3-5, a second wireless node) , a relay UE (e.g., UE 120, the relay UE of Figs. 3-5, a first wireless node) , an NG-RAN (e.g., BS 110, the NG-RAN of Figs. 3-5) , and a 5G core (e.g., the core network of Figs. 3-4, the 5G core of Fig. 5) .
In some aspects, the relay UE and/or the remote UE may receive information indicating a set of supported multicast services supported by the network and for which the remote UE or the relay UE is authorized (not shown in Fig. 7) . For example, the relay UE and/or the remote UE may receive a policy (e.g., a ProSe policy) indicating multicast service information for a relay protocol data unit (PDU) session for which the remote UE or the relay UE is authorized. A relay PDU session is a PDU session of a relay UE that is used by the remote UE for relayed communications. A PDU session provides end-to-end user plane connectivity between a UE and the core network through the user plane function. The information indicating the set of multicast services may include, for example, one or more MBS session identifiers, one or more destination identifiers (e.g., a destination Layer 2 identifier or the like) , one or more local link quality of service (QoS) parameters, or the like.
In some aspects, the remote UE may be preconfigured with information indicating a set of multicast services (not shown in Fig. 7) for which the remote UE or the relay UE is authorized. For example, the remote UE may be preconfigured with one or more MBS session identifiers (e.g., one or more 5G TMGIs or an IP multicast address) corresponding to the set of multicast services. In some aspects, the remote UE may receive information indicating a set of multicast services from the 5G core. For example, the remote UE may receive information indicating a set of multicast services from an application function (AF) (e.g., via a session initiation protocol (SIP) invite or response) while in coverage (also not shown in Fig. 7) .
In some aspects, the relay UE may receive information indicating a set of multicast services supported by the network and for which the relay UE or the remote UE is authorized. For example, the relay UE may receive this information from an AF (e.g., via a SIP invite or response) . The information indicating the set of multicast services supported by the network may include a set of MBS session identifiers, as described above. An MBS session identifier may include a TMGI or an IP multicast address, among other examples.
As shown by reference number 710, the relay UE may transmit, and the remote UE may receive, a relay discovery message. In some aspects, the relay  discovery message may indicate that the relay UE supports MBS service relaying. In some aspects, the relay discovery message may indicate a set of multicast services supported by the relay UE (e.g., one or more MBS session identifiers) . For example, the set of multicast services may include the same set of multicast services indicated to the relay UE as described above, or may include a subset of the set of multicast services indicated to the relay UE.
In some aspects, the remote UE and/or the relay UE are provisioned with multicast service information for a set of multicast services, such as via preconfiguration, from an AF (e.g., via SIP invite or response) , or via a ProSe policy. The multicast service information, for each Relay Service Code (RSC) , may indicate an MBS support indication (e.g., should this RSC support MBS) , one or more MBS session identifiers (e.g., indicating an MBS supported by an RSC) , one or more destination identifiers, one or more sidelink QoS parameters, or the like. The relay UE may indicate support for MBS relaying by advertising in discovery messages, such as the relay discovery message shown by reference number 710.
As shown by reference number 720, the remote UE and the relay UE may perform local link setup. For example, the remote UE and the relay UE may establish or reconfigure a local link to support a multicast service. In some aspects, the remote UE may perform cell selection (or reselection) or relay selection (or reselection) based at least in part on a multicast service. For example, the remote UE may perform cell selection or relay selection to a cell or relay UE that supports a multicast service selected by the remote UE.
As shown by reference number 730, the remote UE may transmit, and the relay UE may receive, a service request indication message indicating a selected service. In some aspects, the service request indication message may be an MBS interest indication. For example, the remote UE may indicate one or more multicast services, such as via a Model B Discovery solicitation message, during a local link setup procedure (e.g., a PC5-RRC reconfiguration procedure for sidelink) , or during a link reconfiguration procedure after the local link is configured.
As shown by reference number 740, the relay UE may setup or modify one or more PDU sessions for multicast over the relay UE. Thus, the relay UE may configure a selected service for multicast provision. For example, the relay UE may request a multicast session join on a relay PDU session (which is for the relay UE’s traffic with the 5G network) based at least in part on an MBS session identifier associated with the  selected service requested by the UE. In some aspects, the 5G core may configure the multicast session based at least in part on a multicast group identifier and/or a destination identifier associated with the multicast session. For example, the 5G core may provide the multicast group identifier and/or the destination identifier to the relay UE in connection with configuring the relay PDU session. The relay UE may advertise multicast services for which the relay UE has joined a multicast session via the relay discovery message shown by reference number 710. In some aspects, the relay UE may request the multicast session join prior to transmitting the relay discovery message. For example, the relay UE may join multicast sessions of one or more of the set of multicast services, and may advertise the one or more multicast services via the relay discovery message. In some aspects, the multicast session join is requested prior to advertising multicast services via the discovery message.
As shown by reference number 750, the relay UE may transmit, and the remote UE may receive, an MBS configuration request. For example, the relay UE may configure the selected service for multicast or broadcast provision to the remote UE.
As shown by reference number 760, the remote UE may transmit, and the relay UE may receive, an MBS configuration response (sometimes referred to as a multicast configuration) . In some aspects, the MBS configuration request may indicate a cast type for multicast data forwarding. For example, the relay UE may support forwarding of multicast data to remote UEs (e.g., over the local link) using either unicast (e.g., PTP) or groupcast (e.g., PTM) . If the MBS configuration request indicates a sidelink unicast cast type, then the MBS configuration request may indicate quality of service information (e.g., local link quality of service information) based at least in part on a 5G QoS identifier (5QI) to PC5 QoS identifier (PQI) table and a unicast sidelink data radio bearer configuration. If the MBS configuration request indicates a sidelink groupcast cast type, then the MBS configuration request may indicate quality of service information (e.g., local link quality of service information) based at least in part on a 5QI to PQI mapping (sometimes referred to herein as a mapping between a multicast radio bearer quality of service and a quality of service on the local link) , a multicast group identifier, a destination identifier (e.g., a Layer 2 identifier) , and/or whether hybrid automatic repeat request (HARQ) feedback is enabled or disabled.
In some aspects, for the groupcast cast type, the remote UE and the relay UE may configure a groupcast data radio bearer based at least in part on provisioned or  preconfigured information (e.g., the policy, the preconfiguration, etc. ) , as described in more detail elsewhere herein.
As shown by reference number 770, the relay UE may perform multicast data relaying for the remote UE. For example, the relay UE may relay traffic associated with the selected service via a data radio bearer between the relay UE and the remote UE. The data radio bearer may be configured based at least in part on the selected service (e.g., PTM or PTP communication) .
As indicated above, Fig. 7 is provided as an example. Other examples may differ from what is described with regard to Fig. 7.
Fig. 8 is a diagram illustrating an example 800 of multicast service configuration such as may be used for a Layer 2 relaying service, in accordance with the present disclosure. As shown, example 800 includes a remote UE (e.g., UE 120, the remote UE of Figs. 3-5, a second wireless node) , a relay UE (e.g., UE 120, the relay UE of Figs. 3-5, a first wireless node) , an NG-RAN (e.g., BS 110, the NG-RAN of Figs. 3-5) , and a 5G core (e.g., the core network of Figs. 3-4, the 5G core of Fig. 5) .
As shown by reference number 810, the relay UE and the remote UE may perform relay discovery (e.g., based at least in part on a relay discovery message) , as described above in connection with Figs. 6 and 7. As shown by reference number 820, the remote UE and the relay UE may perform local link setup. In some aspects, the remote UE and the relay UE may configure the local link based at least in part on a selected service (described below) . For example, the remote UE, the relay UE, or the NG-RAN may configure the local link (e.g., one or more sidelink radio link control (RLC) bearers or channels of the local link) based at least in part on a radio access (Uu) multicast radio bearer 5QI to local link QoS (e.g., PQI) mapping table (sometimes referred to herein as a mapping between a multicast radio bearer quality of service and a quality of service on the local link) .
In some aspects, a remote UE or NG-RAN may select or reselect a cell or relay that supports a selected multicast service to support service continuity, as mentioned above. For example, for a remote UE in an RRC connected state, an NG-RAN may support MBS service continuity during a network-managed handover for direct or indirect mobility. In some aspects, the NG-RAN (which may know which MBS sessions the remote UE has joined) may switch the multicast PDU session to a unicast PDU session before handover, and may prepare a target base station or UE with an MRB or DRB configuration for the remote UE’s multicast service. During idle or  inactive mode reselection, the remote UE may select or reselect a cell or relay that supports a selected multicast service to enable service continuity.
As shown by reference number 830, the relay UE may transition to a connected state (e.g., an RRC connected mode) with the 5G core. As shown by reference number 840, the remote UE and the 5G core may set up a Uu (e.g., AS and NAS) connection between the remote UE and the 5G core, such as to facilitate a selected service selected by the remote UE. As shown by reference number 850, the relay UE and/or the remote UE may modify one or more remote UE PDU sessions. For example, the remote UE may request a multicast session join on a PDU session of the remote UE via the local link. In some aspects, the NG-RAN may configure the remote UE with a multicast radio bearer (MRB) for PTM, PTP, or both. Additionally, or alternatively, the NG-RAN may configure one or more Uu RLC bearers or channels for the relay UE to support the MRB configured for the remote UE (for PTM, PTP, or both) based at least in part on an MBS capability of the relay UE. For example, if the relay UE supports MBS, then the NG-RAN may configure an MRB for PTM. Otherwise, the NG-RAN may configure an MRB for PTP. If the MRB is configured with PTM, then the relay UE may use the provisioned multicast service information (described above) for a groupcast DRB configuration to support MBS relaying (e.g., an MBS relaying groupcast DRB configuration) .
As shown by reference number 860, the relay UE may perform multicast data relaying for the remote UE. For example, the relay UE may be provided with multicast group paging monitoring information for the remote UE. The multicast group paging monitoring information may indicate how the remote UE is to monitor for multicast group paging. The relay UE may receive multicast group paging pertaining to the remote UE. If the remote UE is in an idle mode or an inactive mode, the relay UE may forward the multicast group paging to the remote UE. The remote UE may transition to an RRC connected state, based at least in part on the multicast group paging, to receive multicast data. In some aspects, the relay UE may forward multicast system information (e.g., multicast system information block (SIB) information) from a serving cell of the remote UE. For example, the first wireless node may forward the multicast SIB information using a Layer 2 UE-to-network relay SIB forwarding procedure.
As indicated above, Fig. 8 is provided as an example. Other examples may differ from what is described with regard to Fig. 8.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a wireless node, in accordance with the present disclosure. Example process 900 is an example where a first wireless node (e.g., UE 120, the first wireless node of Figs. 3-8) performs operations associated with multicast or broadcast support over a user equipment to network relay.
As shown in Fig. 9, in some aspects, process 900 may include transmitting, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service (block 910) . For example, the first wireless node (e.g., using communication manager 140 and/or transmission component 1204, depicted in Fig. 12) may transmit, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include receiving, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services (block 920) . For example, the first wireless node (e.g., using communication manager 140 and/or reception component 1202, depicted in Fig. 12) may receive, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include configuring the selected service for multicast or broadcast provision to the second wireless node (block 930) . For example, the first wireless node (e.g., using communication manager 140 and/or configuration component 1208, depicted in Fig. 12) may configure the selected service for multicast or broadcast provision to the second wireless node, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include providing the selected service to the second wireless node (block 940) . For example, the UE (e.g., using communication manager 140 and/or transmission component 1204, depicted in Fig. 12) may provide the selected service to the second wireless node, as described above.
Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
With respect to process 900, in a first aspect, process 900 includes receiving information identifying the one or more supported services via system information.
With respect to process 900, in a second aspect, alone or in combination with the first aspect, the service request indication message is received via at least one of a discovery solicitation message, a local link connection setup message for a local link with the second wireless node, or a link reconfiguration message for connection reconfiguration of the local link.
With respect to process 900, in a third aspect, alone or in combination with one or more of the first and second aspects, the service request indication message indicates a frequency associated with the selected service.
With respect to process 900, in a fourth aspect, alone or in combination with one or more of the first through third aspects, configuring the selected service for multicast or broadcast provision to the second wireless node further comprises configuring at least one of a logical channel on a local link or resources on the local link to transport broadcast data via the local link.
With respect to process 900, in a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 900 includes providing a receive-only mode (ROM) broadcast service to the second wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the first wireless node, and wherein the ROM broadcast service is provided without having received a service request indication message pertaining to the ROM broadcast service.
With respect to process 900, in a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 900 includes receiving information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
With respect to process 900, in a seventh aspect, alone or in combination with one or more of the first through sixth aspects, process 900 includes receiving information identifying the one or more supported services from an application function.
With respect to process 900, in an eighth aspect, alone or in combination with one or more of the first through seventh aspects, configuring the selected service for multicast or broadcast provision to the second wireless node further comprises requesting a multicast session join associated with the selected service for a relay protocol data unit session for the second wireless node.
With respect to process 900, in a ninth aspect, alone or in combination with one or more of the first through eighth aspects, configuring the selected service for multicast or broadcast provision to the second wireless node further comprises transmitting, to the second wireless node, a multicast configuration indicating at least one of a cast type for the selected service, local link quality of service information, a unicast data radio bearer configuration, a destination identifier, or whether hybrid automatic repeat request feedback is enabled.
With respect to process 900, in a tenth aspect, alone or in combination with one or more of the first through ninth aspects, configuring the selected service for multicast or broadcast provision to the second wireless node further comprises configuring a data radio bearer for the selected service based at least in part on a preconfiguration.
With respect to process 900, in an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, process 900 includes receiving, prior to transmitting the relay discovery message, information identifying the one or more supported services, wherein the information identifying the one or more supported services includes at least one of a relay service code, an indication of whether the relay service code supports multicast or broadcast, a session identifier, a multicast group identifier, a destination identifier, or local link quality of service information.
With respect to process 900, in a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, configuring the selected service for multicast or broadcast provision to the second wireless node further comprises configuring the selected service based at least in part on configuration information, received from a base station, indicating one or more radio access radio link control (RLC) bearers based at least in part on a capability of the first wireless node for multicast communication.
With respect to process 900, in a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, configuring the selected service for multicast or broadcast provision to the second wireless node further comprises configuring a local link with the second wireless node based at least in part on a mapping between a multicast radio bearer quality of service and a quality of service on the local link.
With respect to process 900, in a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, process 900 includes receiving  multicast group paging monitoring information associated with the second wireless node, and forwarding multicast group paging to the second wireless node based at least in part on the multicast group paging monitoring information.
With respect to process 900, in a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, process 900 includes forwarding, to the second wireless node, multicast system information block information.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a wireless node, in accordance with the present disclosure. Example process 1000 is an example where a second wireless node (e.g., UE 120, the relay UE of Figs. 3-8) performs operations associated with multicast or broadcast support over a user equipment to network relay.
As shown in Fig. 10, in some aspects, process 1000 may include receiving, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service (block 1010) . For example, the second wireless node (e.g., using communication manager 140 and/or reception component 1202, depicted in Fig. 12) may receive, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service, as described above.
As further shown in Fig. 10, in some aspects, process 1000 may include transmitting, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services (block 1020) . For example, the second wireless node (e.g., using communication manager 140 and/or transmission component 1204, depicted in Fig. 12) may transmit, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services, as described above.
As further shown in Fig. 10, in some aspects, process 1000 may include configuring the selected service for multicast or broadcast provision from the first wireless node (block 1030) . For example, the second wireless node (e.g., using communication manager 140 and/or configuration component 1208, depicted in Fig. 12)  may configure the selected service for multicast or broadcast provision from the first wireless node, as described above.
As further shown in Fig. 10, in some aspects, process 1000 may include receiving a communication associated with the selected service (block 1040) . For example, the second wireless node (e.g., using communication manager 140 and/or reception component 1202, depicted in Fig. 12) may receive a communication associated with the selected service, as described above.
Process 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
With respect to process 1000, in a first aspect, process 1000 includes performing relay selection of the first wireless node based at least in part on the relay discovery message.
With respect to process 1000, in a second aspect, alone or in combination with the first aspect, the service request indication message is transmitted via at least one of a discovery solicitation message, a local link connection setup message for a local link with the second wireless node, or a link reconfiguration message for connection reconfiguration of the local link.
With respect to process 1000, in a third aspect, alone or in combination with one or more of the first and second aspects, the service request indication message indicates a frequency associated with the selected service.
With respect to process 1000, in a fourth aspect, alone or in combination with one or more of the first through third aspects, configuring the selected service for multicast or broadcast provision to the second wireless node further comprises receiving a configuration of a logical channel on a local link to transport broadcast data via the local link.
With respect to process 1000, in a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 1000 includes receiving a ROM broadcast service from the first wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the second wireless node, and wherein the ROM broadcast service is received without the second wireless node having transmitted a service request indication message pertaining to the ROM broadcast service.
With respect to process 1000, in a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 1000 includes receiving information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
With respect to process 1000, in a seventh aspect, alone or in combination with one or more of the first through sixth aspects, a multicast broadcast service session identifier associated with the selected service is preconfigured for the second wireless node.
With respect to process 1000, in an eighth aspect, alone or in combination with one or more of the first through seventh aspects, process 1000 includes receiving a multicast broadcast service session identifier associated with the selected service from an application function.
With respect to process 1000, in a ninth aspect, alone or in combination with one or more of the first through eighth aspects, configuring the selected service for multicast or broadcast provision to the second wireless node further comprises receiving, from the first wireless node, a multicast configuration indicating at least one of a cast type for the selected service, local link quality of service information, a unicast data radio bearer configuration, a destination identifier, or whether hybrid automatic repeat request feedback is enabled.
With respect to process 1000, in a tenth aspect, alone or in combination with one or more of the first through ninth aspects, configuring the selected service for multicast or broadcast provision to the second wireless node further comprises configuring a data radio bearer for the selected service based at least in part on a preconfiguration.
With respect to process 1000, in an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, process 1000 includes receiving information identifying the one or more supported services, wherein the information identifying the one or more supported services includes at least one of a relay service code, an indication of whether the relay service code supports multicast or broadcast, a session identifier, a multicast group identifier, a destination identifier, or local link quality of service information, wherein the relay discovery message indicates that the second wireless node supports the one or more supported services.
With respect to process 1000, in a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the service request indication message  includes a request for a multicast session join on a protocol data unit session via a local link with the first wireless node.
With respect to process 1000, in a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, configuring the selected service for multicast or broadcast provision to the second wireless node further comprises configuring the selected service based at least in part on configuration information, received from a base station, indicating a multicast radio bearer for the selected service.
With respect to process 1000, in a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, configuring the selected service for multicast or broadcast provision from the first wireless node further comprises configuring a local link with the first wireless node based at least in part on a mapping between a multicast radio bearer quality of service and a quality of service on the local link.
With respect to process 1000, in a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, process 1000 includes receiving, prior to the communication and from the first wireless node, multicast group paging associated with the selected service.
With respect to process 1000, in a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, process 1000 includes receiving, from the first wireless node, multicast system information block information.
With respect to process 1000, in a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, process 1000 includes performing cell selection or reselection to a first wireless node or cell that supports the selected service.
Although Fig. 10 shows example blocks of process 1000, in some aspects, process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
Fig. 11 is a diagram illustrating an example process 1100 performed, for example, by a base station, in accordance with the present disclosure. Example process 1100 is an example where the base station (e.g., base station 110, the NG-RAN, 5G core, or core network of Figs. 3-5) performs operations associated with multicast or broadcast support over a user equipment to network relay.
As shown in Fig. 11, in some aspects, process 1100 may include transmitting, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service (block 1110) . For example, the base station (e.g., using communication manager 150 and/or transmission component 1304, depicted in Fig. 13) may transmit, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service, as described above.
As further shown in Fig. 11, in some aspects, process 1100 may include receiving, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services (block 1120) . For example, the base station (e.g., using communication manager 150 and/or reception component 1302, depicted in Fig. 13) may receive, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services, as described above.
As further shown in Fig. 11, in some aspects, process 1100 may include configuring the selected service for multicast or broadcast provision to the second wireless node via the first wireless node (block 1130) . For example, the base station (e.g., using communication manager 150 and/or configuration component 1308, depicted in Fig. 13) may configure the selected service for multicast or broadcast provision to the second wireless node via the first wireless node, as described above.
Process 1100 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
With respect to process 1100, in a first aspect, the information indicating the one or more supported services is provided via a system information block.
With respect to process 1100, in a second aspect, alone or in combination with the first aspect, process 1100 includes configuring a handover of the second wireless node to a cell or first wireless node that supports the selected service.
With respect to process 1100, in a third aspect, alone or in combination with one or more of the first and second aspects, the information indicating the one or more supported services is provided via a policy.
With respect to process 1100, in a fourth aspect, alone or in combination with one or more of the first through third aspects, the information indicating the one or more supported services is provided via a preconfiguration.
With respect to process 1100, in a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the information indicating the one or more supported services is provided via a session initiation protocol message.
With respect to process 1100, in a sixth aspect, alone or in combination with one or more of the first through fifth aspects, configuring the selected service further comprises configuring the second wireless node with a multicast radio bearer, and configuring the first wireless node with a radio access RLC bearer to support the multicast radio bearer.
Although Fig. 11 shows example blocks of process 1100, in some aspects, process 1100 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 11. Additionally, or alternatively, two or more of the blocks of process 1100 may be performed in parallel.
Fig. 12 is a diagram of an example apparatus 1200 for wireless communication, in accordance with the present disclosure. The apparatus 1200 may be a first wireless node such as a UE, or a first wireless node such as a UE may include the apparatus 1200. In some aspects, the apparatus 1200 includes a reception component 1202 and a transmission component 1204, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1200 may communicate with another apparatus 1206 (such as a UE, a base station, or another wireless communication device) using the reception component 1202 and the transmission component 1204. As further shown, the apparatus 1200 may include the communication manager 140. The communication manager 140 may include one or more of a configuration component 1208 or a relaying component 1210, among other examples.
In some aspects, the apparatus 1200 may be configured to perform one or more operations described herein in connection with Figs. 3-8. Additionally, or alternatively, the apparatus 1200 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9, or a combination thereof. In some aspects, the apparatus 1200 and/or one or more components shown in Fig. 12 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 12 may be  implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1202 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1206. The reception component 1202 may provide received communications to one or more other components of the apparatus 1200. In some aspects, the reception component 1202 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1200. In some aspects, the reception component 1202 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 1204 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1206. In some aspects, one or more other components of the apparatus 1200 may generate communications and may provide the generated communications to the transmission component 1204 for transmission to the apparatus 1206. In some aspects, the transmission component 1204 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1206. In some aspects, the transmission component 1204 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1204 may be co-located with the reception component 1202 in a transceiver.
The transmission component 1204 may transmit, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or  more supported services include at least one of a multicast service or a broadcast service. The reception component 1202 may receive, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The configuration component 1208 may configure the selected service for multicast or broadcast provision to the second wireless node. The transmission component 1204 or the relaying component 1210 may provide the selected service to the second wireless node.
The reception component 1202 may receive information identifying the one or more supported services via system information.
The relaying component 1210 may provide a receive-only mode (ROM) broadcast service to the second wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the first wireless node, and wherein the ROM broadcast service is provided without having received a service request indication message pertaining to the ROM broadcast service.
The reception component 1202 may receive information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
The reception component 1202 may receive information identifying the one or more supported services from an application function.
The relaying component 1210 may forward, to the second wireless node, multicast system information block information.
The number and arrangement of components shown in Fig. 12 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 12. Furthermore, two or more components shown in Fig. 12 may be implemented within a single component, or a single component shown in Fig. 12 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 12 may perform one or more functions described as being performed by another set of components shown in Fig. 12.
Fig. 13 is a diagram of an example apparatus 1300 for wireless communication, in accordance with the present disclosure. The apparatus 1300 may be a second wireless node such as a remote UE, or a second wireless node such as a remote UE may include the apparatus 1300. In some aspects, the apparatus 1300 includes a reception component 1302 and a transmission component 1304, which may be in  communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1300 may communicate with another apparatus 1306 (such as a UE, a base station, or another wireless communication device) using the reception component 1302 and the transmission component 1304. As further shown, the apparatus 1300 may include the communication manager 160. The communication manager 160 may include one or more of a configuration component 1308 or a reselection component 1310, among other examples.
In some aspects, the apparatus 1300 may be configured to perform one or more operations described herein in connection with Figs. 3-8. Additionally, or alternatively, the apparatus 1300 may be configured to perform one or more processes described herein, such as process 1000 of Fig. 10, or a combination thereof. In some aspects, the apparatus 1300 and/or one or more components shown in Fig. 13 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 13 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1302 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1306. The reception component 1302 may provide received communications to one or more other components of the apparatus 1300. In some aspects, the reception component 1302 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1300. In some aspects, the reception component 1302 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 1304 may transmit communications, such as reference signals, control information, data communications, or a combination thereof,  to the apparatus 1306. In some aspects, one or more other components of the apparatus 1300 may generate communications and may provide the generated communications to the transmission component 1304 for transmission to the apparatus 1306. In some aspects, the transmission component 1304 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1306. In some aspects, the transmission component 1304 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1304 may be co-located with the reception component 1302 in a transceiver.
The reception component 1302 may receive, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The transmission component 1304 may transmit, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The configuration component 1308 may configure the selected service for multicast or broadcast provision from the first wireless node. The reception component 1302 may receive a communication associated with the selected service.
The reselection component 1310 may perform relay selection of the first wireless node based at least in part on the relay discovery message.
The reception component 1302 may receive a receive-only mode (ROM) broadcast service from the first wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the second wireless node, and wherein the ROM broadcast service is received without the second wireless node having transmitted a service request indication message pertaining to the ROM broadcast service.
The reception component 1302 may receive information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
The reception component 1302 may receive a multicast broadcast service session identifier associated with the selected service from an application function.
The reception component 1302 may receive, prior to the communication and from the first wireless node, multicast group paging associated with the selected service.
The reception component 1302 may receive, from the first wireless node, multicast system information block information.
The reselection component 1310 may perform cell selection or reselection to a first wireless node or cell that supports the selected service.
The number and arrangement of components shown in Fig. 13 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 13. Furthermore, two or more components shown in Fig. 13 may be implemented within a single component, or a single component shown in Fig. 13 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 13 may perform one or more functions described as being performed by another set of components shown in Fig. 13.
Fig. 14 is a diagram of an example apparatus 1400 for wireless communication, in accordance with the present disclosure. The apparatus 1400 may be a base station, or a base station may include the apparatus 1400. In some aspects, the apparatus 1400 includes a reception component 1402 and a transmission component 1404, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1400 may communicate with another apparatus 1406 (such as a UE, a base station, or another wireless communication device) using the reception component 1402 and the transmission component 1404. As further shown, the apparatus 1400 may include the communication manager 150. The communication manager 150 may include a configuration component 1408, among other examples.
In some aspects, the apparatus 1400 may be configured to perform one or more operations described herein in connection with Figs. 3-8. Additionally, or alternatively, the apparatus 1400 may be configured to perform one or more processes described herein, such as process 1100 of Fig. 11, or a combination thereof. In some aspects, the apparatus 1400 and/or one or more components shown in Fig. 14 may include one or more components of the base station described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 14 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be  implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1402 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1406. The reception component 1402 may provide received communications to one or more other components of the apparatus 1400. In some aspects, the reception component 1402 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1400. In some aspects, the reception component 1402 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2.
The transmission component 1404 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1406. In some aspects, one or more other components of the apparatus 1400 may generate communications and may provide the generated communications to the transmission component 1404 for transmission to the apparatus 1406. In some aspects, the transmission component 1404 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1406. In some aspects, the transmission component 1404 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2. In some aspects, the transmission component 1404 may be co-located with the reception component 1402 in a transceiver.
The transmission component 1404 may transmit, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service. The reception component 1402 may receive, from the first wireless  node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services. The configuration component 1408 may configure the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
The configuration component 1408 may configure a handover of the second wireless node to a cell or first wireless node that supports the selected service.
The number and arrangement of components shown in Fig. 14 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 14. Furthermore, two or more components shown in Fig. 14 may be implemented within a single component, or a single component shown in Fig. 14 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 14 may perform one or more functions described as being performed by another set of components shown in Fig. 14.
The following provides an overview of some Aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a first wireless node, comprising: transmitting, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; receiving, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services; configuring the selected service for multicast or broadcast provision to the second wireless node; and providing the selected service to the second wireless node.
Aspect 2: The method of Aspect 1, further comprising: receiving information identifying the one or more supported services via system information.
Aspect 3: The method of any of Aspects 1-2, wherein the service request indication message is received via at least one of: a discovery solicitation message, a local link connection setup message for a local link with the second wireless node, or a link reconfiguration message for connection reconfiguration of the local link.
Aspect 4: The method of any of Aspects 1-3, wherein the service request indication message indicates a frequency associated with the selected service.
Aspect 5: The method of any of Aspects 1-4, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further  comprises: configuring at least one of a logical channel on a local link or resources on the local link to transport broadcast data via the local link.
Aspect 6: The method of any of Aspects 1-5, further comprising: providing a receive-only mode (ROM) broadcast service to the second wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the first wireless node, and wherein the ROM broadcast service is provided without having received a service request indication message pertaining to the ROM broadcast service.
Aspect 7: The method of any of Aspects 1-6, further comprising: receiving information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
Aspect 8: The method of any of Aspects 1-7, further comprising: receiving information identifying the one or more supported services from an application function.
Aspect 9: The method of any of Aspects 1-8, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: requesting a multicast session join associated with the selected service for a relay protocol data unit session for the second wireless node.
Aspect 10: The method of any of Aspects 1-9, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: transmitting, to the second wireless node, a multicast configuration indicating at least one of: a cast type for the selected service, local link quality of service information, a unicast data radio bearer configuration, a destination identifier, or whether hybrid automatic repeat request feedback is enabled.
Aspect 11: The method of any of Aspects 1-10, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: configuring a data radio bearer for the selected service based at least in part on a preconfiguration.
Aspect 12: The method of any of Aspects 1-11, further comprising: receiving, prior to transmitting the relay discovery message, information identifying the one or more supported services, wherein the information identifying the one or more supported services includes at least one of: a relay service code, an indication of whether the relay service code supports multicast or broadcast, a session identifier, a multicast group identifier, a destination identifier, or local link quality of service information.
Aspect 13: The method of any of Aspects 1-12, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: configuring the selected service based at least in part on configuration information, received from a base station, indicating one or more radio access radio link control (RLC) bearers based at least in part on a capability of the first wireless node for multicast communication.
Aspect 14: The method of any of Aspects 1-13, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: configuring a local link with the second wireless node based at least in part on a mapping between a multicast radio bearer quality of service and a quality of service on the local link.
Aspect 15: The method of any of Aspects 1-14, further comprising: receiving multicast group paging monitoring information associated with the second wireless node; and forwarding multicast group paging to the second wireless node based at least in part on the multicast group paging monitoring information.
Aspect 16: The method of any of Aspects 1-15, further comprising: forwarding, to the second wireless node, multicast system information block information.
Aspect 17: A method of wireless communication performed by a second wireless node, comprising: receiving, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; transmitting, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services; configuring the selected service for multicast or broadcast provision from the first wireless node; and receiving a communication associated with the selected service.
Aspect 18: The method of Aspect 17, further comprising: performing relay selection of the first wireless node based at least in part on the relay discovery message.
Aspect 19: The method of any of Aspects 17-18, wherein the service request indication message is transmitted via at least one of: a discovery solicitation message, a local link connection setup message for a local link with the second wireless node, or a link reconfiguration message for the local link.
Aspect 20: The method of any of Aspects 17-19, wherein the service request indication message indicates a frequency associated with the selected service.
Aspect 21: The method of any of Aspects 17-20, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: receiving a configuration of a logical channel on a local link to transport broadcast data via the local link.
Aspect 22: The method of any of Aspects 17-21, further comprising: receiving a receive-only mode (ROM) broadcast service from the first wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the second wireless node, and wherein the ROM broadcast service is received without the second wireless node having transmitted a service request indication message pertaining to the ROM broadcast service.
Aspect 23: The method of any of Aspects 17-22, further comprising: receiving information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
Aspect 24: The method of any of Aspects 17-23, wherein a multicast broadcast service session identifier associated with the selected service is preconfigured for the second wireless node.
Aspect 25: The method of any of Aspects 17-24, further comprising: receiving a multicast broadcast service session identifier associated with the selected service from an application function.
Aspect 26: The method of any of Aspects 17-25, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: receiving, from the first wireless node, a multicast configuration indicating at least one of: a cast type for the selected service, local link quality of service information, a unicast data radio bearer configuration, a destination identifier, or whether hybrid automatic repeat request feedback is enabled.
Aspect 27: The method of any of Aspects 17-26, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: configuring a data radio bearer for the selected service based at least in part on a preconfiguration.
Aspect 28: The method of any of Aspects 17-27, further comprising: receiving information identifying the one or more supported services, wherein the information identifying the one or more supported services includes at least one of: a relay service code, an indication of whether the relay service code supports multicast or broadcast, a session identifier, a multicast group identifier, a destination identifier, or local link  quality of service information, wherein the relay discovery message indicates that the second wireless node supports the one or more supported services.
Aspect 29: The method of any of Aspects 17-28, wherein the service request indication message includes a request for a multicast session join on a protocol data unit session via a local link with the first wireless node.
Aspect 30: The method of any of Aspects 17-29, wherein configuring the selected service for multicast or broadcast provision to the second wireless node further comprises: configuring the selected service based at least in part on configuration information, received from a base station, indicating a multicast radio bearer for the selected service.
Aspect 31: The method of any of Aspects 17-30, wherein configuring the selected service for multicast or broadcast provision from the first wireless node further comprises: configuring a local link with the first wireless node based at least in part on a mapping between a multicast radio bearer quality of service and a quality of service on the local link.
Aspect 32: The method of any of Aspects 17-31, further comprising: receiving, prior to the communication and from the first wireless node, multicast group paging associated with the selected service.
Aspect 33: The method of any of Aspects 17-32, further comprising: receiving, from the first wireless node, multicast system information block information.
Aspect 34: The method of any of Aspects 17-33, further comprising: performing cell selection or reselection to a first wireless node or cell that supports the selected service.
Aspect 35: A method of wireless communication performed by a base station, comprising: transmitting, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service; receiving, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services; and configuring the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
Aspect 36: The method of Aspect 35, wherein the information indicating the one or more supported services is provided via a system information block.
Aspect 37: The method of any of Aspects 35-36, further comprising: configuring a handover of the second wireless node to a cell or first wireless node that supports the selected service.
Aspect 38: The method of any of Aspects 35-37, wherein the information indicating the one or more supported services is provided via a policy.
Aspect 39: The method of any of Aspects 35-38, wherein the information indicating the one or more supported services is provided via a preconfiguration.
Aspect 40: The method of any of Aspects 35-39, wherein the information indicating the one or more supported services is provided via a session initiation protocol message.
Aspect 41: The method of any of Aspects 35-40, wherein configuring the selected service further comprises: configuring the second wireless node with a multicast radio bearer; and configuring the first wireless node with a radio access radio link control (RLC) bearer to support the multicast radio bearer.
Aspect 42: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-41.
Aspect 43: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-41.
Aspect 44: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-41.
Aspect 45: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-41.
Aspect 46: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-41.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As used herein, a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods are described herein without reference to specific software code, since those skilled in the art will understand that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, “satisfying a threshold” may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. Many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. The disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a + a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with  “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) . Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (30)

  1. A first wireless node for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    transmit, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service;
    receive, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services;
    configure the selected service for multicast or broadcast provision to the second wireless node; and
    provide the selected service to the second wireless node.
  2. The first wireless node of claim 1, wherein the service request indication message is received via at least one of:
    a discovery solicitation message,
    a local link connection setup message for a local link with the second wireless node, or
    a link reconfiguration message for connection reconfiguration of the local link.
  3. The first wireless node of claim 1, wherein the service request indication message indicates a frequency associated with the selected service.
  4. The first wireless node of claim 1, wherein the one or more processors, to configure the selected service for multicast or broadcast provision to the second wireless node, are configured to:
    configure at least one of a logical channel on a local link or resources on the local link to transport broadcast data via the local link.
  5. The first wireless node of claim 1, wherein the one or more processors are further configured to:
    provide a receive-only mode (ROM) broadcast service to the second wireless node, wherein a configuration associated with the ROM broadcast service is  preconfigured for the first wireless node, and wherein the ROM broadcast service is provided without having received a service request indication message pertaining to the ROM broadcast service.
  6. The first wireless node of claim 1, wherein the one or more processors are further configured to:
    receive information identifying the one or more supported services in a policy associated with a relay protocol data unit session for the second wireless node.
  7. The first wireless node of claim 1, wherein the one or more processors are further configured to:
    receive information identifying the one or more supported services from an application function.
  8. The first wireless node of claim 1, wherein the one or more processors, to configure the selected service for multicast or broadcast provision to the second wireless node, are configured to:
    request a multicast session join associated with the selected service for a relay protocol data unit session for the second wireless node.
  9. The first wireless node of claim 1, wherein the one or more processors, to configure the selected service for multicast or broadcast provision to the second wireless node, are configured to:
    transmit, to the second wireless node, a multicast configuration indicating at least one of:
    a cast type for the selected service,
    local link quality of service information,
    a unicast data radio bearer configuration,
    a multicast group identifier,
    a destination identifier, or
    whether hybrid automatic repeat request feedback is enabled.
  10. The first wireless node of claim 1, wherein the one or more processors, to configure the selected service for multicast or broadcast provision to the second wireless node, are configured to:
    configure a data radio bearer for the selected service based at least in part on a preconfiguration.
  11. The first wireless node of claim 1, wherein the one or more processors are further configured to:
    receiving, prior to transmitting the relay discovery message, information identifying the one or more supported services, wherein the information identifying the one or more supported services includes at least one of:
    a relay service code,
    an indication of whether the relay service code supports multicast or broadcast,
    a session identifier,
    a multicast group identifier,
    a destination identifier, or
    local link quality of service information.
  12. The first wireless node of claim 1, wherein the one or more processors, to configure the selected service for multicast or broadcast provision to the second wireless node, are configured to:
    configure the selected service based at least in part on configuration information, received from a base station, indicating one or more radio access radio link control (RLC) bearers based at least in part on a capability of the first wireless node for multicast communication.
  13. The first wireless node of claim 1, wherein the one or more processors, to configure the selected service for multicast or broadcast provision to the second wireless node, are configured to:
    configure a local link with the second wireless node based at least in part on a mapping between a multicast radio bearer quality of service and a quality of service on the local link.
  14. The first wireless node of claim 1, wherein the one or more processors are further configured to:
    receiving multicast group paging monitoring information associated with the second wireless node; and
    forwarding multicast group paging to the second wireless node based at least in part on the multicast group paging monitoring information.
  15. The first wireless node of claim 1, wherein the one or more processors are further configured to:
    forward, to the second wireless node, multicast system information block information.
  16. A second wireless node for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    receive, from a first wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service;
    transmit, to the second wireless node, a service request indication message indicating a selected service of the one or more supported services;
    configure the selected service for multicast or broadcast provision from the first wireless node; and
    receive a communication associated with the selected service.
  17. The second wireless node of claim 16, wherein the one or more processors are further configured to:
    perform relay selection of the first wireless node based at least in part on the relay discovery message.
  18. The second wireless node of claim 16, wherein the service request indication message is transmitted via at least one of:
    a discovery solicitation message,
    a local link connection setup message for a local link with the second wireless node, or
    a link reconfiguration message for the local link.
  19. The second wireless node of claim 16, wherein the one or more processors are further configured to:
    receive a receive-only mode (ROM) broadcast service from the first wireless node, wherein a configuration associated with the ROM broadcast service is preconfigured for the second wireless node, and wherein the ROM broadcast service is received without the second wireless node having transmitted a service request indication message pertaining to the ROM broadcast service.
  20. The second wireless node of claim 16, wherein the one or more processors, to configure the selected service for multicast or broadcast provision to the second wireless node, are configured to:
    receive, from the first wireless node, a multicast configuration indicating at least one of:
    a cast type for the selected service,
    local link quality of service information,
    a unicast data radio bearer configuration,
    a multicast group identifier,
    a destination identifier, or
    whether hybrid automatic repeat request feedback is enabled.
  21. The second wireless node of claim 16, wherein the one or more processors, to configure the selected service for multicast or broadcast provision to the second wireless node, are configured to:
    configure a data radio bearer for the selected service based at least in part on a preconfiguration.
  22. The second wireless node of claim 16, wherein the one or more processors are further configured to:
    receiving information identifying the one or more supported services, wherein the information identifying the one or more supported services includes at least one of:
    a relay service code,
    an indication of whether the relay service code supports multicast or broadcast,
    a session identifier,
    a multicast group identifier,
    a destination identifier, or
    local link quality of service information,
    wherein the relay discovery message indicates that the second wireless node supports the one or more supported services.
  23. The second wireless node of claim 16, wherein the one or more processors, to configure the selected service for multicast or broadcast provision to the second wireless node, are configured to:
    configure the selected service based at least in part on configuration information, received from a base station, indicating a multicast radio bearer for the selected service.
  24. The second wireless node of claim 16, wherein the one or more processors, to configure the selected service for multicast or broadcast provision from the first wireless node, are configured to:
    configure a local link with the first wireless node based at least in part on a mapping between a multicast radio bearer quality of service and a quality of service on the local link.
  25. The second wireless node of claim 16, wherein the one or more processors are further configured to:
    perform cell selection or reselection to a first wireless node or cell that supports the selected service.
  26. A base station for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    transmit, to a first wireless node or a second wireless node, information indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service;
    receive, from the first wireless node or the second wireless node, a service request indication message indicating a selected service of the one or more supported services; and
    configure the selected service for multicast or broadcast provision to the second wireless node via the first wireless node.
  27. The base station of claim 26, wherein the information indicating the one or more supported services is provided via at least one of:
    a system information block,
    a policy,
    a preconfiguration, or
    a session initiation protocol message.
  28. The base station of claim 26, wherein the one or more processors are further configured to:
    configure a handover of the second wireless node to a cell or first wireless node that supports the selected service.
  29. The base station of claim 26, wherein the one or more processors, to configure the selected service, are configured to:
    configure the second wireless node with a multicast radio bearer; and
    configure the first wireless node with a radio access radio link control (RLC) bearer to support the multicast radio bearer.
  30. A method of wireless communication performed by a first wireless node, comprising:
    transmitting, to a second wireless node, a relay discovery message indicating one or more supported services, wherein the one or more supported services include at least one of a multicast service or a broadcast service;
    receiving, from the second wireless node, a service request indication message indicating a selected service of the one or more supported services;
    configuring the selected service for multicast or broadcast provision to the second wireless node; and
    providing the selected service to the second wireless node.
PCT/CN2021/122112 2021-09-30 2021-09-30 Multicast or broadcast support over user equipment to network relay WO2023050286A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122112 WO2023050286A1 (en) 2021-09-30 2021-09-30 Multicast or broadcast support over user equipment to network relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122112 WO2023050286A1 (en) 2021-09-30 2021-09-30 Multicast or broadcast support over user equipment to network relay

Publications (1)

Publication Number Publication Date
WO2023050286A1 true WO2023050286A1 (en) 2023-04-06

Family

ID=85780377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122112 WO2023050286A1 (en) 2021-09-30 2021-09-30 Multicast or broadcast support over user equipment to network relay

Country Status (1)

Country Link
WO (1) WO2023050286A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029866A1 (en) * 2013-07-29 2015-01-29 Htc Corporation Method of relay discovery and communication in a wireless communications system
WO2017132991A1 (en) * 2016-02-05 2017-08-10 华为技术有限公司 Method and device for communication resource allocation, terminal device, base station, and communication system
CN113039819A (en) * 2018-10-31 2021-06-25 康维达无线有限责任公司 New radio vehicle sidelink discovery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029866A1 (en) * 2013-07-29 2015-01-29 Htc Corporation Method of relay discovery and communication in a wireless communications system
WO2017132991A1 (en) * 2016-02-05 2017-08-10 华为技术有限公司 Method and device for communication resource allocation, terminal device, base station, and communication system
CN113039819A (en) * 2018-10-31 2021-06-25 康维达无线有限责任公司 New radio vehicle sidelink discovery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Clarification on AQP and MBS support in UE-to-Network Relay", 3GPP TSG-WG SA2 MEETING #146E, S2-2105722, 10 August 2021 (2021-08-10), XP052055609 *

Similar Documents

Publication Publication Date Title
US11812481B2 (en) Layer 2 relay unicast link setup
US11564280B2 (en) User equipment to network relay
US20220141894A1 (en) Triggering migration to enable inter-donor topology adaptation in a wireless network
US11589414B2 (en) Layer 2 user equipment relay procedure
CN115553062A (en) Relay adaptation protocol layer configuration
EP4349070A1 (en) Local re-routing in integrated access and backhaul deployments
US20220417886A1 (en) Techniques for sharing protocol data unit sessions between multiple subscriber services
US20230082718A1 (en) Protocol data unit session management
US11528654B2 (en) Transport layer separation in an integrated access and backhaul network
WO2022042437A1 (en) Layer 2 relay initial configuration
WO2023069815A1 (en) Capability compatibility for paging subgroup
WO2023019057A2 (en) Joining and leaving multicast sessions
WO2022213001A1 (en) Multicast radio bearer configuration information
KR20230066557A (en) Resource reporting for converged access and backhaul wireless access dual connectivity
WO2023050286A1 (en) Multicast or broadcast support over user equipment to network relay
US11824622B2 (en) Relay node identifier update
US11778520B2 (en) Handovers of connections between subscriptions
US20240022968A1 (en) Inter-radio access technology handover with multicast broadcast service continuity
US20230247445A1 (en) Multiple path support for layer 3 user equipment to network relay
US20230319915A1 (en) User-equipment-to-user-equipment relay operations
EP4360289A1 (en) Techniques for sharing protocol data unit sessions between multiple subscriber services
WO2023064655A1 (en) User equipment route selection policy rules for multi-access protocol data unit sessions
WO2023150558A1 (en) Multiple path support for layer 3 user equipment to network relay
WO2023196736A1 (en) User-equipment-to-user-equipment relay operations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958861

Country of ref document: EP

Kind code of ref document: A1