WO2023050261A1 - Techniques for managing assignment index for group common shared channel - Google Patents

Techniques for managing assignment index for group common shared channel Download PDF

Info

Publication number
WO2023050261A1
WO2023050261A1 PCT/CN2021/122055 CN2021122055W WO2023050261A1 WO 2023050261 A1 WO2023050261 A1 WO 2023050261A1 CN 2021122055 W CN2021122055 W CN 2021122055W WO 2023050261 A1 WO2023050261 A1 WO 2023050261A1
Authority
WO
WIPO (PCT)
Prior art keywords
shared channels
codebook
control information
feedback
harq
Prior art date
Application number
PCT/CN2021/122055
Other languages
French (fr)
Inventor
Xiaolong Guo
Jing Shi
Wei Gou
Peng Hao
Xingguang WEI
Xing Liu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2021/122055 priority Critical patent/WO2023050261A1/en
Publication of WO2023050261A1 publication Critical patent/WO2023050261A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint

Definitions

  • This disclosure is directed generally to digital wireless communications.
  • LTE Long-Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • LTE-A LTE Advanced
  • 5G The 5th generation of wireless system, known as 5G, advances the LTE and LTE-Awireless standards and is committed to supporting higher data-rates, large number of connections, ultra-low latency, high reliability and other emerging business needs.
  • assignment index e.g., downlink assignment index (DAI)
  • group common shared channel e.g., group common physical downlink shared channel (GC-PDSCH)
  • codebook e.g., codebook for managing control information.
  • a first example wireless communication method includes receiving, by a communication device, a control information that indicate whether a feedback mode is enabled for providing feedback for data received on at least some of X shared channels; and transmitting, by the communication device, a codebook comprising the feedback that indicates whether data is received by the communication device on Y shared channels in response to the control information indicating that the feedback mode is enabled for the Y shared channels, wherein X and Y are positive integers, wherein X is greater than or equal to Y, and wherein the codebook is generated based on a first set of assignment indexes associated with the Y shared channels.
  • a downlink control information (DCI) received by the communication device includes the control information that indicates that the feedback mode is disabled for Z shared channels, Z is a positive integer that is less than X, the communication device determines not to transmit the feedback for data received on Z shared channels in response to the feedback mode being disabled for the Z shared channels, and the Z shared channels are associated with a second set of assignment indexes.
  • a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels, the codebook is generated based on the first set of assignment indexes associated with the Y shared channels and the second set of assignment indexes associated with the Z shared channels.
  • RRC radio resource control
  • a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels, the communication device receives a downlink control information (DCI) that indicate that the feedback mode is enabled to only send a non-acknowledgement indication for Z shared channels, Z is a positive integer that is less than X, the codebook is generated based on the first set of assignment indexes associated with the Y shared channels, and in response to data for at least one shared channel from the Z shared channels being incorrectly decoded, the codebook is generated to include the non-acknowledgement indication for at least one assignment index associated with the at least one shared channel from the Z shared channels.
  • DCI downlink control information
  • the method further comprises transmitting, by the communication device, a second codebook comprising the feedback for data received on Z shared channels, Z is a positive integer that is less than X, a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels, a downlink control information (DCI) indicating that the second codebook is a type-1 codebook, and the codebook is a type-2 codebook that is generated based on the first set of assignment indexes associated with the Y shared channels.
  • a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is disabled for data received on the X shared channels, and the communication device determines not to transmit the feedback for the X shared channels.
  • a second example wireless communication method includes transmitting, by a network device, a control information that indicate whether a feedback mode is enabled for providing feedback for data transmitted on at least some of X shared channels; and receiving, by the network device, a codebook comprising the feedback that indicates whether data is transmitted by the network device on Y shared channels in response to the control information indicating that the feedback mode is enabled for the Y shared channels, where X and Y are positive integers, where X is greater than or equal to Y, and where the codebook is based on a first set of assignment indexes associated with the Y shared channels.
  • a downlink control information (DCI) transmitted by the network device includes the control information that indicates that the feedback mode is disabled for Z shared channels, Z is a positive integer that is less than X, and the Z shared channels are associated with a second set of assignment indexes.
  • a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, and the codebook is based on the first set of assignment indexes associated with the Y shared channels and the second set of assignment indexes associated with the Z shared channels.
  • a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, the network device transmits a downlink control information (DCI) that indicate that the feedback mode is enabled to only receive a non-acknowledgement indication for Z shared channels, Z is a positive integer that is less than X, the codebook is based on the first set of assignment indexes associated with the Y shared channels, and the codebook includes the non-acknowledgement indication for at least one assignment index associated with at least one shared channel from the Z shared channels which indicates that data for the at least one shared channel is incorrectly decoded by a communication device.
  • DCI downlink control information
  • the method further includes receiving, by the network device, a second codebook comprising the feedback for data received on Z shared channels, Z is a positive integer that is less than X, a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, a downlink control information (DCI) indicating that the second codebook is a type-1 codebook, and the codebook is a type-2 codebook that is based on the first set of assignment indexes associated with the Y shared channels.
  • RRC radio resource control
  • a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is disabled for data received on the X shared channels, and the codebook received by the network device excludes the feedback for the X shared channels.
  • RRC radio resource control
  • one or more assignment indexes in the first set of assignment indexes or the second set of assignment indexes include one or more downlink assignment indexes (DAIs)
  • the X shared channel includes group common physical downlink shared channels (GC-PDSCHs) .
  • a third example wireless communication method includes transmitting, by a network device to a first set of communication devices, a first control information that indicates whether the first set of communication devices are to use a feedback mode to send feedback for data received on a plurality of shared channels; and transmitting, by the network device to a second set of communication devices, a second control information that indicates that the second set of communication devices are disabled from using the feedback mode to send the feedback for data received on the plurality of shared channels.
  • a fourth example wireless communication method includes transmitting, by a network device to a first set of communication devices, a first control information that indicates whether the first set of communication devices are to use a feedback mode to send feedback for data received on a plurality of shared channels; and transmitting, by the network device to a second set of communication devices, a second control information that indicates that the second set of communication devices are enabled to use the feedback mode to send the feedback for data received on the plurality of shared channels.
  • the plurality of shared channel includes a plurality of group common physical downlink shared channels (GC-PDSCHs) .
  • GC-PDSCHs group common physical downlink shared channels
  • the above-described methods are embodied in the form of processor-executable code and stored in a non-transitory computer-readable storage medium.
  • the code included in the computer readable storage medium when executed by a processor, causes the processor to implement the methods described in this patent document.
  • a device that is configured or operable to perform the above-described methods is disclosed.
  • FIG. 1 shows a scenario where there is a downlink assignment index (DAI) mismatch for multiple user equipment (UEs) with different HARQ-ACK enabling/disabling configuration.
  • DAI downlink assignment index
  • FIG. 2 shows an example scenario where separate DAI counting is performed or where DAI is separately determined according to HARQ-ACK enabler indication field.
  • FIG. 3 shows an example scenario where DAI mismatch is addressed by switching a feedback mode.
  • FIG. 4 shows an example scenario where DAI mismatch is addressed by switching codebook type.
  • FIG. 5 shown an example scenario where only RRC-HARQ-disabling and DCI-HARQ-enabler UEs exist.
  • FIG. 6 shows an example scenario where a per G-RNTI is used to configure HARQ-ACK enabling/disabling.
  • FIG. 7 shows an exemplary block diagram of a hardware platform that may be a part of a network device or a communication device.
  • FIG. 8 shows an example of wireless communication including a base station (BS) and user equipment (UE) based on some implementations of the disclosed technology.
  • BS base station
  • UE user equipment
  • FIG. 9 shows an exemplary flowchart for transmitting a codebook.
  • FIG. 10 shows an exemplary flowchart for receiving a codebook.
  • FIGS. 11-12 show exemplary flowcharts for transmission of control information.
  • Type-1 codebook is constructed according to K1 sets
  • Type-2 codebook is constructed according to downlink assignment index (DAI) field, including counter-DAI (C-DAI) and total-DAI (T-DAI) .
  • DCI downlink control information
  • MBS services are scheduled by group common DCI, all UEs in the group receive the same group common DCI (GC-DCI) and the scheduled group common physical downlink shared channel (GC-PDSCH) .
  • Each multicast broadcast services (MBS) service is corresponding with one G-RNTI, DAI counting in the GC-DCI is performed per G-RNTI.
  • a GC-DCI indicates a same DAI value for a group of UE associated with the G-RNTI, where the GC-DAI can increase the DAI value for subsequent PDSCH transmission that is related to a prior PDSCH transmission.
  • ACK/NACK based and NACK-only based feedback are supported, and Type-1 and Type-2 codebook generation are basically the same as what described for unicast.
  • HARQ-ACK enabling/disabling is configured by RRC and DCI. If RRC configures UE to enable HARQ-ACK feedback, UE ignores the HARQ-ACK enabling/disabling indication and always provide HARQ-ACK feedback. If RRC configures UE to disable HARQ-ACK feedback, UE always do not provide feedback.
  • RRC configures UE to enable or disable HARQ-ACK according to HARQ-ACK enabler field value in the DCI
  • UE provides the HARQ-ACK information of the corresponding GC-PDSCH when field value is set to indicate an enabled HARQ-ACK information, for example, by using a bit value of ‘1’
  • UEs in the group can be divided into 3 classes according to the above configuration, named RRC-HARQ-enabling, RRC-HARQ-disabling and DCI-HARQ-enabler hereinafter.
  • FIG. 1 shows a scenario where there is a DAI mismatch for multiple UEs with different HARQ-ACK enabling/disabling configuration.
  • UEs with different HARQ-ACK enabler configuration will face with the issue in FIG. 1.
  • UE 1 is DCI-HARQ-enabler where UE 1 is indicated to provide HARQ-ACK information of PDSCH #1 and #3 , UE 2 is RRC-HARQ-enabling, HARQ-ACK information of all PDSCHs are needed, UE 3 is RRC-HARQ-disabling, feedback is not needed and field values corresponding with HARQ-ACK are ignored.
  • Type-2 codebook When constructing Type-2 codebook according to DAI value in the GC-DCI, UE 2 requires that the DAI value is set to 1, 2, 3, whereas UE 1 need to set the DAI value to 2 for the GC-PDSCH#3 and not to set the DAI value for GC-PDSCH#2. However, since all three UEs receive the same GC-DCI, a requirement to have DAI values set to 1, 2, 3 for UE 2 and DAI value set to 1, 2 for UE 1 is not workable.
  • UE 1 can reduce the DAI value by 1 for the GC-PDSCH#3 when constructing Type-2 codebook, however when the DCI for GC-PDSCH#2 is missed by UE 1, UE will regard it as a normal DCI missing case so that NACK feedback will be provided for the GC-PDSCH #2.
  • HARQ-ACK enabling/disabling configuration is introduced to save HARQ-ACK information bits, such behavior is conflict with it. Some methods are needed to address the DAI mismatch issue.
  • the base station performs separate DAI counting using one DAI field in the GC-DCI according to HARQ-ACK-enabler field value in the GC-DCI, where for DCI with field indicating enabling, DAI counting is performed for DCI-HARQ-enabling PDSCHs, and where for DCI with field indicating disabling, DAI counting is performed for DCI-HARQ-disabling PDSCHs.
  • UE belongs to different classes generate different Type-2 codebook according to the HARQ-ACK enabling/disabling configuration.
  • FIG. 2 shows an example scenario where separate DAI counting is performed or where DAI is separately determined according to HARQ-ACK enabler indication field.
  • GC-DCI schedule PDSCHs of one MBS services in one carrier HARQ-ACK-enable and HARQ-ACK-disable represent that the HARQ-ACK-enabler field indicating enabling and disabling, respectively.
  • DAI counting is performed for PDSCH 1, 3 and 4.
  • DAI counting is performed for PDSCH 2 and 5.
  • the DAI field is the same for all DCIs, UE can differentiate the DCI counting order according to the HARQ-ACK-enabler field value.
  • UE 1 is DCI-HARQ-enabler, where enabling/disabling of HARQ-ACK feedback is dynamically changed with DCI. Thus, UE1 does not provide HARQ-ACK information for those PDSCHs scheduled by HARQ-disabling DCI and only generates Type-2 codebook according to the DAI counting in HARQ-enabling DCIs.
  • HARQ-ACK information is ⁇ HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4 ⁇ .
  • UE 2 is RRC-HARQ-enabling, so that although receives the same GC-DCI as UE 1, UE 2 does not respond to the HARQ-ACK enabler indication, and provides HARQ-ACK information of all the PDSCHs.
  • UE 2 constructs Type-2 codebook according to two DAI counting order separately, and concatenates two parts into one codebook. Concatenation rules can be: (1) codebook for DCI-disabling PDSCHs is concatenated after codebook for DCI-enabling PDSCHs, where for the example in FIG.
  • the HARQ-ACK information is ⁇ HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4, HARQ-PDSCH2, HARQ-PDSCH5 ⁇ ;
  • concatenation order is determined by the first DCI, e.g. if the first DCI is HARQ-ACK-disabling, codebook for DCI-disabling will be put forward or before the DCI-enabling PDSCHs (e.g., the HARQ information is ⁇ HARQ-PDSCH2, HARQ-PDSCH5, HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4 ⁇ ) .
  • UE 3 is RRC-HARQ-disabling, it never provides HARQ-ACK feedback no matter whether indicated HARQ-ACK-enabling by GC-DCI. DAI counting has no impact on UE 3.
  • Fields relevant to HARQ-ACK feedback in the GC-DCI e.g. PRI (PUCCH resource indicator) and K1, are set the same as the corresponding PDSCH needs HARQ-ACK feedback no matter what the HARQ-ACK-enabler field indicates.
  • UE 1 determines the PUCCH resource according to the PRI in the last DCI with HARQ-ACK-enabling
  • UE 2 determines the PUCCH resource according to the PRI in the last DCI among all the DCIs.
  • C-DAI and T-DAI are shown to be the same value, in some embodiments related to carrier aggregation, C-DAI and T-DAI may be different.
  • This embodiment addresses the DAI mismatch issue above by using dynamically change to HARQ-ACK feedback mode for reference.
  • the feedback mode can be changed by DCI indication so that the DCI can indicate for one or more GC-PDSCH that the feedback mode to change to NACK-only mode from ACK/NACK based feedback (Type-2 codebook) .
  • Dynamically HARQ-ACK feedback switch can be realized by field value in DCI, e.g. specific value of K1 and PRI.
  • HARQ-ACK enabler field is introduced in GC-DCI, it can be used to indicate feedback mode switch.
  • FIG. 3 shows an example scenario where DAI mismatch is addressed by switching a feedback mode.
  • GC-DCI schedules PDSCHs of one MBS services in one carrier, HARQ-ACK-enable and HARQ-ACK-disable represent that the HARQ-ACK-enabler field indicates enabling and disabling, respectively.
  • DAI counting is performed for PDSCH 1, 3 and 4.
  • feedback mode is indicated to switch to NACK-only and DAI is not included in the corresponding DCI.
  • DAI counting is performed for the PDSCHs that have HARQ-ACK enabled.
  • UE 1 is DCI-HARQ-enabler, enabling/disabling of HARQ-ACK feedback is dynamically changed with DCI, UE1 does not provide HARQ-ACK information for those PDSCHs scheduled by HARQ-disabling DCI and only generates Type-2 codebook according to the DAI counting in HARQ-enabling DCIs.
  • HARQ-ACK information is ⁇ HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4 ⁇ .
  • UE 2 is RRC-HARQ-enabling, although receives the same GC-DCI as UE 1, it does not response to the HARQ-ACK enabler indication, and provides HARQ-ACK information of all the PDSCHs.
  • UE 2 constructs Type-2 codebook according to DAI counting order the same as UE 1. For PDSCHs indicated HARQ-ACK-disabling, UE 2 provides NACK-only feedback that indicates that the UE 2 decoded the PDSCH incorrectly.
  • Type-2 codebook and NACK-only feedback are indicated in one slot, for non-overlapping cases, they are transmitted separately in each PUCCH, for overlapping cases, NACK-only feedback can be multiplexed with Type-2 codebook by transforming to ACK/NACK bits.
  • UE 3 is RRC-HARQ-disabling, it never provides HARQ-ACK feedback no matter whether indicated HARQ-ACK-enabling by GC-DCI. DAI counting and feedback mode switch has no impact on UE 3.
  • both PUCCH resources are configured.
  • UE 1 and UE 2 determines the PUCCH resource carrying Type-2 codebook according to PRI in the last DCI among the DCIs with HARQ-ACK-enabling.
  • UE 2 determines the PUCCH resource for NACK-only according to PRI in the corresponding DCI with HARQ-ACK-disabling.
  • This embodiment addressees the DAI mismatch issue above by using dynamically change to codebook type for reference.
  • the codebook type can be changed by DCI indication, for GC-PDSCHs which exist DAI mismatch issue, DCI indicates the codebook type to change to Type-1 from Type-2 for a PDSCH.
  • Dynamically codebook type switch can be realized by field value in DCI, e.g. specific value of K1 and PRI.
  • HARQ-ACK enabler field is introduced in GC-DCI, it can be used to indicate codebook type switch.
  • FIG. 4 shows an example scenario where DAI mismatch is addressed by switching codebook type.
  • GC-DCI schedule PDSCHs of one MBS services in one carrier HARQ-ACK-enable and HARQ-ACK-disable represent that the HARQ-ACK-enabler field value is 0 and 1, respectively.
  • DAI counting is performed for PDSCH 1, 3and 4.
  • codebook type is indicated to switch to Type-1 and DAI is not included in the corresponding DCI.
  • DAI counting is performed for the PDSCHs that have HARQ-ACK enabled..
  • UE 1 is DCI-HARQ-enabler, enabling/disabling of HARQ-ACK feedback is dynamically changed with DCI, UE1 does not provide HARQ-ACK information for those PDSCHs scheduled by HARQ-disabling DCI and only generates Type-2 codebook according to the DAI counting in HARQ-enabling DCIs.
  • HARQ-ACK information is ⁇ HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4 ⁇ .
  • UE 2 is RRC-HARQ-enabling, although receives the same GC-DCI as UE 1, it does not response to the HARQ-ACK enabler indication, and provides HARQ-ACK information of all the PDSCHs.
  • UE 2 constructs Type-2 codebook according to DAI counting order the same as UE 1. For PDSCHs indicated HARQ-ACK-disabling, UE 2 provides Type-1 codebook.
  • Type-1 codebook is multiplexed with Type-2 codebook
  • multiplexing rules can be (1) Type-1 codebook for DCI-disabling PDSCHs is concatenated after Type-2 codebook for DCI-enabling PDSCHs, HARQ-ACK information is ⁇ HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4, HARQ-PDSCH2, HARQ-PDSCH5 ⁇ ; (2) concatenation order is determined by the first DCI, e.g. if the first DCI is HARQ-ACK-disabling, Type-1 codebook for DCI-disabling will be put forward.
  • UE 3 is RRC-HARQ-disabling, it never provides HARQ-ACK feedback no matter whether indicated HARQ-ACK-enabling by GC-DCI. DAI counting and codebook type switch has no impact on UE 3.
  • UE 1 and UE 2 determines the PUCCH resource carrying Type-2 codebook according to PRI in the last DCI among the DCIs with HARQ-ACK-enabling.
  • UE 2 determines the PUCCH resource carrying Type-1 codebook according to PRI in the last DCI among all the DCIs.
  • This embodiment avoids the DCI mismatch issue by configuring HARQ-ACK enabling/disabling according to different UE classes in the group. As RRC-HARQ-disabling UEs will have no impact and not be affected by DCI HARQ-ACK enabler indication, two cases will be included in the embodiment.
  • FIG. 5 shown an example scenario where only RRC-HARQ-disabling and DCI-HARQ-enabler UEs exist.
  • FIG. 5 only RRC-HARQ-disabling and DCI-HARQ-enabler UEs exist in the group receiving the MBS service, only DCI-HARQ-enabler UEs make response to HARQ-ACK-enabler indication field in DCI, no limitation on HARQ-ACK enabling/disabling configuration is needed.
  • DAI counting is performed for PDSCH 1, 3 and 4.
  • DAI field is not included in the HARQ-disabling DCIs.
  • UE 1 is DCI-HARQ-enabler, enabling/disabling of HARQ-ACK feedback is dynamically changed with DCI, UE1 does not provide HARQ-ACK information for those PDSCHs scheduled by HARQ-disabling DCI and only generates Type-2 codebook according to the DAI counting in HARQ-enabling DCIs.
  • HARQ-ACK information is ⁇ HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4 ⁇ .
  • UE 2 is RRC-HARQ-disabling, it never provides HARQ-ACK feedback no matter whether indicated HARQ-ACK-enabling by GC-DCI.
  • All UEs in the group will not provide the HARQ-ACK information of GC-PDSCH 2.
  • PRI and K1 can be not configured for HARQ-ACK-disabling DCIs. It can be described that the HARQ-ACK enabling/disabling configuration in GC-DCI is per PDSCH.
  • HARQ-ACK-enabler field indicates either enabling or disabling in GC-DCIs.
  • UEs except RRC-HARQ-disabling class provide HARQ-ACK information of all PDSCHs, and for the field indicating HARQ-ACK-disabling only RRC-HARQ-enabling UEs provide HARQ-ACK information.
  • DAI field is included in all the DCIs and DAI counting is performed for all PDSCHs of the service no matter what the HARQ-ACK-enabler field indicates.
  • UE 1 is DCI-HARQ-enabler
  • UE 2 is RRC-HARQ-enabling
  • HARQ-ACK feedback enabler is always set enabling, they generate Type-2 codebook according to the DAI counting in all DCIs.
  • HARQ-ACK information is ⁇ HARQ-PDSCH1, HARQ-PDSCH2, HARQ-PDSCH3, HARQ-PDSCH4 ⁇ .
  • UE 3 is RRC-HARQ-disabling, it never provides HARQ-ACK feedback.
  • UE1 and UE3 do not provide HARQ-ACK information of all PDSCHs. Only UE 2 generates Type-2 codebook according to the DAI counting and transmit it in the PUCCH indicated by PRI in the last DCI.
  • HARQ-ACK enabler field is set ‘enabling’ or ‘disabling’ . It can be described that the HARQ-ACK enabling/disabling configuration in GC-DCI is per G-RNTI or per MBS service.
  • NACK-only feedback is used to save PUCCH resources for group-common PDSCHs, for one GC-PDSCH, UEs which decode it incorrectly will transmit the corresponding PUCCH and UEs which decode it correctly will not.
  • Base station schedule the re-transmission when any UE transmit the NACK-only PUCCH.
  • DAI field in the uplink scheduling DCIs indicate whether HARQ-ACK information is to be transmitted in the slot (semi-static codebook) or the number of HARQ-ACK information bits (dynamic codebook) .
  • HARQ-ACK codebook is overlapped with PUSCH, UL DAI value included in the DCI can help UE realize the DCI missing issue and generate reliable codebooks.
  • NACK-only PUCCH When multiple NACK-only PUCCH overlap with PUSCH in the slot, transforming to ACK/NACK bits and multiplexing with PUSCH can be applied. For example, NACK-only based feedback of 2 PDSCHs are needed, UE decodes the first PDSCH correctly and do not transmit the PUCCH, UE decodes the second PDSCH incorrectly and transmit the PUCCH, at this time, actually only one PUCCH overlaps with PUSCH, UE transforms NACK-only to ACK/NACK bits by setting bit value 1 for the first PDSCH and bit value 0 for the second PDSCH.
  • UE When DCI scheduling the first PDSCH is missed, UE only transform NACK-only to ACK/NACK bits for the second PDSCH, e.g., only 1 bit and bit value is 1. Base station cannot know which PDSCH is missed and which PDSCH the HARQ-ACK bit belong to. UL DAI value should be also applied here to help UE realize the issue.
  • DAI field is separately configured in the uplink scheduling DCI to indicate the HARQ-ACK information of NACK-only when multiplexed with PUSCH.
  • UL DAI is set to the number of received PDSCHs by UE.
  • each NACK-only or to say each PDSCH is determined by each G-RNTI, both ascending or descending order can be applied.
  • PDSCH which is decoded correctly e.g., the corresponding NACK-only resource is not sent
  • 1 is set to the HARQ-ACK bit
  • 0 is set for PDSCH with NACK feedback.
  • UE can realize the DTX case by judging whether the DAI value equals to the number of received PDSCHs and set NACK value for the DTX PDSCH. For example, NACK-only feedback of 3 PDSCHs are to be multiplexed with PUSCH, the first PDSCH is ACK, the second PDSCH is DTX, and the third PDSCH is NACK, DAI value in the DCI is 3, and UE only receives 2 PDSCHs, so that one NACK value will be added in the transformed bits.
  • the transformed HARQ-ACK bits will be ⁇ 1, 0, 0 ⁇ .
  • FIG. 7 shows an exemplary block diagram of a hardware platform 700 that may be a part of a network device (e.g., base station) or a communication device (e.g., a user equipment (UE) ) .
  • the hardware platform 700 includes at least one processor 710 and a memory 705 having instructions stored thereupon. The instructions upon execution by the processor 710 configure the hardware platform 500 to perform the operations described in FIGS. 1 to 6 and 8 to 12 and in the various embodiments described in this patent document.
  • the transmitter 715 transmits or sends information or data to another device.
  • a network device transmitter can send a message to a user equipment.
  • the receiver 720 receives information or data transmitted or sent by another device.
  • a user equipment can receive a message from a network device.
  • FIG. 8 shows an example of a wireless communication system (e.g., a 5G or NR cellular network) that includes a base station 820 and one or more user equipment (UE) 811, 812 and 813.
  • the UEs access the BS (e.g., the network) using a communication link to the network (sometimes called uplink direction, as depicted by dashed arrows 831, 832, 833) , which then enables subsequent communication (e.g., shown in the direction from the network to the UEs, sometimes called downlink direction, shown by arrows 841, 842, 843) from the BS to the UEs.
  • a wireless communication system e.g., a 5G or NR cellular network
  • the UEs access the BS (e.g., the network) using a communication link to the network (sometimes called uplink direction, as depicted by dashed arrows 831, 832, 833) , which then enables subsequent communication (e.
  • the BS send information to the UEs (sometimes called downlink direction, as depicted by arrows 841, 842, 843) , which then enables subsequent communication (e.g., shown in the direction from the UEs to the BS, sometimes called uplink direction, shown by dashed arrows 831, 832, 833) from the UEs to the BS.
  • the UE may be, for example, a smartphone, a tablet, a mobile computer, a machine to machine (M2M) device, an Internet of Things (IoT) device, and so on.
  • M2M machine to machine
  • IoT Internet of Things
  • FIG. 9 shows an exemplary flowchart for transmitting a codebook.
  • Operation 902 includes receiving, by a communication device, a control information that indicate whether a feedback mode is enabled for providing feedback for data received on at least some of X shared channels.
  • Operation 904 includes transmitting, by the communication device, a codebook comprising the feedback that indicates whether data is received by the communication device on Y shared channels in response to the control information indicating that the feedback mode is enabled for the Y shared channels, wherein X and Y are positive integers, wherein X is greater than or equal to Y, and wherein the codebook is generated based on a first set of assignment indexes associated with the Y shared channels.
  • a downlink control information (DCI) received by the communication device includes the control information that indicates that the feedback mode is disabled for Z shared channels, Z is a positive integer that is less than X, the communication device determines not to transmit the feedback for data received on Z shared channels in response to the feedback mode being disabled for the Z shared channels, and the Z shared channels are associated with a second set of assignment indexes.
  • a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels, the codebook is generated based on the first set of assignment indexes associated with the Y shared channels and the second set of assignment indexes associated with the Z shared channels.
  • RRC radio resource control
  • a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels, the communication device receives a downlink control information (DCI) that indicate that the feedback mode is enabled to only send a non-acknowledgement indication for Z shared channels, Z is a positive integer that is less than X, the codebook is generated based on the first set of assignment indexes associated with the Y shared channels, and in response to data for at least one shared channel from the Z shared channels being incorrectly decoded, the codebook is generated to include the non-acknowledgement indication for at least one assignment index associated with the at least one shared channel from the Z shared channels.
  • DCI downlink control information
  • the method further comprises transmitting, by the communication device, a second codebook comprising the feedback for data received on Z shared channels, Z is a positive integer that is less than X, a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels, a downlink control information (DCI) indicating that the second codebook is a type-1 codebook, and the codebook is a type-2 codebook that is generated based on the first set of assignment indexes associated with the Y shared channels.
  • a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is disabled for data received on the X shared channels, and the communication device determines not to transmit the feedback for the X shared channels.
  • FIG. 10 shows an exemplary flowchart for receiving a codebook.
  • Operation 1002 includes transmitting, by a network device, a control information that indicate whether a feedback mode is enabled for providing feedback for data transmitted on at least some of X shared channels.
  • Operation 1004 includes receiving, by the network device, a codebook comprising the feedback that indicates whether data is transmitted by the network device on Y shared channels in response to the control information indicating that the feedback mode is enabled for the Y shared channels, where X and Y are positive integers, where X is greater than or equal to Y, and where the codebook is based on a first set of assignment indexes associated with the Y shared channels.
  • a downlink control information (DCI) transmitted by the network device includes the control information that indicates that the feedback mode is disabled for Z shared channels, Z is a positive integer that is less than X, and the Z shared channels are associated with a second set of assignment indexes.
  • a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, and the codebook is based on the first set of assignment indexes associated with the Y shared channels and the second set of assignment indexes associated with the Z shared channels.
  • a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, the network device transmits a downlink control information (DCI) that indicate that the feedback mode is enabled to only receive a non-acknowledgement indication for Z shared channels, Z is a positive integer that is less than X, the codebook is based on the first set of assignment indexes associated with the Y shared channels, and the codebook includes the non-acknowledgement indication for at least one assignment index associated with at least one shared channel from the Z shared channels which indicates that data for the at least one shared channel is incorrectly decoded by a communication device.
  • DCI downlink control information
  • the method further includes receiving, by the network device, a second codebook comprising the feedback for data received on Z shared channels, Z is a positive integer that is less than X, a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, a downlink control information (DCI) indicating that the second codebook is a type-1 codebook, and the codebook is a type-2 codebook that is based on the first set of assignment indexes associated with the Y shared channels.
  • RRC radio resource control
  • a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is disabled for data received on the X shared channels, and the codebook received by the network device excludes the feedback for the X shared channels.
  • RRC radio resource control
  • one or more assignment indexes in the first set of assignment indexes or the second set of assignment indexes include one or more downlink assignment indexes (DAIs)
  • the X shared channel includes group common physical downlink shared channels (GC-PDSCHs) .
  • FIG. 11 shows an exemplary flowchart for transmission of control information.
  • Operation 1102 includes transmitting, by a network device to a first set of communication devices, a first control information that indicates whether the first set of communication devices are to use a feedback mode to send feedback for data received on a plurality of shared channels.
  • Operation 1104 includes transmitting, by the network device to a second set of communication devices, a second control information that indicates that the second set of communication devices are disabled from using the feedback mode to send the feedback for data received on the plurality of shared channels.
  • FIG. 12 shows an exemplary flowchart for transmission of control information.
  • Operation 1202 includes transmitting, by a network device to a first set of communication devices, a first control information that indicates whether the first set of communication devices are to use a feedback mode to send feedback for data received on a plurality of shared channels.
  • Operation 1204 includes transmitting, by the network device to a second set of communication devices, a second control information that indicates that the second set of communication devices are enabled to use the feedback mode to send the feedback for data received on the plurality of shared channels.
  • the plurality of shared channel includes a plurality of group common physical downlink shared channels (GC-PDSCHs) .
  • GC-PDSCHs group common physical downlink shared channels
  • a computer-readable medium may include removable and non-removable storage devices including, but not limited to, Read Only Memory (ROM) , Random Access Memory (RAM) , compact discs (CDs) , digital versatile discs (DVD) , etc. Therefore, the computer-readable media can include a non-transitory storage media.
  • program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • Computer-or processor-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps or processes.
  • a hardware circuit implementation can include discrete analog and/or digital components that are, for example, integrated as part of a printed circuit board.
  • the disclosed components or modules can be implemented as an Application Specific Integrated Circuit (ASIC) and/or as a Field Programmable Gate Array (FPGA) device.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • DSP digital signal processor
  • the various components or sub-components within each module may be implemented in software, hardware or firmware.
  • the connectivity between the modules and/or components within the modules may be provided using any one of the connectivity methods and media that is known in the art, including, but not limited to, communications over the Internet, wired, or wireless networks using the appropriate protocols.

Abstract

An example wireless communication method includes receiving, by a communication device, a control information that indicate whether a feedback mode is enabled for providing feedback for data received on at least some of X shared channels; transmitting, by the communication device, a codebook comprising the feedback that indicates whether data is received by the communication device on Y shared channels in response to the control information indicating that the feedback mode is enabled for the Y shared channels, wherein X and Y are positive integers, wherein X is greater than or equal to Y, and wherein the codebook is generated based on a first set of assignment indexes associated with the Y shared channels.

Description

TECHNIQUES FOR MANAGING ASSIGNMENT INDEX FOR GROUP COMMON SHARED CHANNEL TECHNICAL FIELD
This disclosure is directed generally to digital wireless communications.
BACKGROUND
Mobile telecommunication technologies are moving the world toward an increasingly connected and networked society. In comparison with the existing wireless networks, next generation systems and wireless communication techniques will need to support a much wider range of use-case characteristics and provide a more complex and sophisticated range of access requirements and flexibilities.
Long-Term Evolution (LTE) is a standard for wireless communication for mobile devices and data terminals developed by 3rd Generation Partnership Project (3GPP) . LTE Advanced (LTE-A) is a wireless communication standard that enhances the LTE standard. The 5th generation of wireless system, known as 5G, advances the LTE and LTE-Awireless standards and is committed to supporting higher data-rates, large number of connections, ultra-low latency, high reliability and other emerging business needs.
SUMMARY
Techniques are disclosed for managing assignment index (e.g., downlink assignment index (DAI) ) for group common shared channel (e.g., group common physical downlink shared channel (GC-PDSCH) ) , for generating a codebook, and/or for managing control information.
A first example wireless communication method includes receiving, by a communication device, a control information that indicate whether a feedback mode is enabled for providing feedback for data received on at least some of X shared channels; and transmitting, by the communication device, a codebook comprising the feedback that indicates whether data is received by the communication device on Y shared channels in response to the control information indicating that the feedback mode is enabled for the Y shared channels, wherein X and Y are positive integers, wherein X is greater than or equal to Y, and wherein the codebook is generated based on a first set of assignment indexes associated with the Y shared channels.
In some embodiments, a downlink control information (DCI) received by the communication device includes the control information that indicates that the feedback mode is disabled for Z shared channels, Z is a positive integer that is less than X, the communication device determines not to transmit the feedback for data received on Z shared channels in response to the feedback mode being disabled for the Z shared channels, and the Z shared channels are associated with a second set of assignment indexes. In some embodiments, a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels, the codebook is generated based on the first set of assignment indexes associated with the Y shared channels and the second set of assignment indexes associated with the Z shared channels. In some embodiments, a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels, the communication device receives a downlink control information (DCI) that indicate that the feedback mode is enabled to only send a non-acknowledgement indication for Z shared channels, Z is a positive integer that is less than X, the codebook is generated based on the first set of assignment indexes associated with the Y shared channels, and in response to data for at least one shared channel from the Z shared channels being incorrectly decoded, the codebook is generated to include the non-acknowledgement indication for at least one assignment index associated with the at least one shared channel from the Z shared channels.
In some embodiments, the method further comprises transmitting, by the communication device, a second codebook comprising the feedback for data received on Z shared channels, Z is a positive integer that is less than X, a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels, a downlink control information (DCI) indicating that the second codebook is a type-1 codebook, and the codebook is a type-2 codebook that is generated based on the first set of assignment indexes associated with the Y shared channels. In some embodiments, a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is disabled for data received on the X shared channels, and the communication device determines not to transmit the feedback for the X shared channels.
A second example wireless communication method includes transmitting, by a network device, a control information that indicate whether a feedback mode is enabled for providing feedback for data transmitted on at least some of X shared channels; and receiving, by the network device, a codebook comprising the feedback that indicates whether data is transmitted by the network device on Y shared channels in response to the control information indicating that the feedback mode is enabled for the Y shared channels, where X and Y are positive integers, where X is greater than or equal to Y, and where the codebook is based on a first set of assignment indexes associated with the Y shared channels.
In some embodiments, a downlink control information (DCI) transmitted by the network device includes the control information that indicates that the feedback mode is disabled for Z shared channels, Z is a positive integer that is less than X, and the Z shared channels are associated with a second set of assignment indexes. In some embodiments, a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, and the codebook is based on the first set of assignment indexes associated with the Y shared channels and the second set of assignment indexes associated with the Z shared channels. In some embodiments, a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, the network device transmits a downlink control information (DCI) that indicate that the feedback mode is enabled to only receive a non-acknowledgement indication for Z shared channels, Z is a positive integer that is less than X, the codebook is based on the first set of assignment indexes associated with the Y shared channels, and the codebook includes the non-acknowledgement indication for at least one assignment index associated with at least one shared channel from the Z shared channels which indicates that data for the at least one shared channel is incorrectly decoded by a communication device.
In some embodiments, the method further includes receiving, by the network device, a second codebook comprising the feedback for data received on Z shared channels, Z is a positive integer that is less than X, a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, a downlink control information (DCI) indicating  that the second codebook is a type-1 codebook, and the codebook is a type-2 codebook that is based on the first set of assignment indexes associated with the Y shared channels.
In some embodiments, a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is disabled for data received on the X shared channels, and the codebook received by the network device excludes the feedback for the X shared channels. In some embodiments, one or more assignment indexes in the first set of assignment indexes or the second set of assignment indexes include one or more downlink assignment indexes (DAIs) , and the X shared channel includes group common physical downlink shared channels (GC-PDSCHs) .
A third example wireless communication method includes transmitting, by a network device to a first set of communication devices, a first control information that indicates whether the first set of communication devices are to use a feedback mode to send feedback for data received on a plurality of shared channels; and transmitting, by the network device to a second set of communication devices, a second control information that indicates that the second set of communication devices are disabled from using the feedback mode to send the feedback for data received on the plurality of shared channels.
A fourth example wireless communication method includes transmitting, by a network device to a first set of communication devices, a first control information that indicates whether the first set of communication devices are to use a feedback mode to send feedback for data received on a plurality of shared channels; and transmitting, by the network device to a second set of communication devices, a second control information that indicates that the second set of communication devices are enabled to use the feedback mode to send the feedback for data received on the plurality of shared channels.
In some embodiments, the plurality of shared channel includes a plurality of group common physical downlink shared channels (GC-PDSCHs) .
In yet another exemplary aspect, the above-described methods are embodied in the form of processor-executable code and stored in a non-transitory computer-readable storage medium. The code included in the computer readable storage medium when executed by a processor, causes the processor to implement the methods described in this patent document.
In yet another exemplary embodiment, a device that is configured or operable to perform the above-described methods is disclosed.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 shows a scenario where there is a downlink assignment index (DAI) mismatch for multiple user equipment (UEs) with different HARQ-ACK enabling/disabling configuration.
FIG. 2 shows an example scenario where separate DAI counting is performed or where DAI is separately determined according to HARQ-ACK enabler indication field.
FIG. 3 shows an example scenario where DAI mismatch is addressed by switching a feedback mode.
FIG. 4 shows an example scenario where DAI mismatch is addressed by switching codebook type.
FIG. 5 shown an example scenario where only RRC-HARQ-disabling and DCI-HARQ-enabler UEs exist.
FIG. 6 shows an example scenario where a per G-RNTI is used to configure HARQ-ACK enabling/disabling.
FIG. 7 shows an exemplary block diagram of a hardware platform that may be a part of a network device or a communication device.
FIG. 8 shows an example of wireless communication including a base station (BS) and user equipment (UE) based on some implementations of the disclosed technology.
FIG. 9 shows an exemplary flowchart for transmitting a codebook.
FIG. 10 shows an exemplary flowchart for receiving a codebook.
FIGS. 11-12 show exemplary flowcharts for transmission of control information.
DETAILED DESCRIPTION
For ACK/NACK based HARQ-ACK feedback for one service, Type-1 codebook is constructed according to K1 sets, and Type-2 codebook is constructed according to downlink assignment index (DAI) field, including counter-DAI (C-DAI) and total-DAI (T-DAI) . When constructing Type-2 codebook, UE can realize downlink control information (DCI) missing if DAI field values in the received DCI are not discontinuous.
MBS services are scheduled by group common DCI, all UEs in the group receive the same group common DCI (GC-DCI) and the scheduled group common physical downlink shared channel (GC-PDSCH) . Each multicast broadcast services (MBS) service is corresponding with one G-RNTI, DAI counting in the GC-DCI is performed per G-RNTI. In other words, for each G-RNTI, a GC-DCI indicates a same DAI value for a group of UE associated with the G-RNTI, where the GC-DAI can increase the DAI value for subsequent PDSCH transmission that is related to a prior PDSCH transmission. For the current HARQ-ACK feedback mechanism of MBS services, ACK/NACK based and NACK-only based feedback are supported, and Type-1 and Type-2 codebook generation are basically the same as what described for unicast.
HARQ-ACK enabling/disabling is configured by RRC and DCI. If RRC configures UE to enable HARQ-ACK feedback, UE ignores the HARQ-ACK enabling/disabling indication and always provide HARQ-ACK feedback. If RRC configures UE to disable HARQ-ACK feedback, UE always do not provide feedback. If RRC configures UE to enable or disable HARQ-ACK according to HARQ-ACK enabler field value in the DCI, UE provides the HARQ-ACK information of the corresponding GC-PDSCH when field value is set to indicate an enabled HARQ-ACK information, for example, by using a bit value of ‘1’ , and do not provide HARQ-ACK when field value is set to indicate a disabled HARQ-ACK information, for example, by using a bit value of ‘0’ . UEs in the group can be divided into 3 classes according to the above configuration, named RRC-HARQ-enabling, RRC-HARQ-disabling and DCI-HARQ-enabler hereinafter.
FIG. 1 shows a scenario where there is a DAI mismatch for multiple UEs with different HARQ-ACK enabling/disabling configuration. For GC-DCI scheduling PDSCHs of one service in one single carrier, UEs with different HARQ-ACK enabler configuration will face with the issue in FIG. 1. As shown in the example scenario of FIG. 1, UE 1 is DCI-HARQ-enabler where UE 1 is indicated to provide HARQ-ACK information of PDSCH #1 and #3 , UE 2 is RRC-HARQ-enabling, HARQ-ACK information of all PDSCHs are needed, UE 3 is RRC-HARQ-disabling, feedback is not needed and field values corresponding with HARQ-ACK are ignored. When constructing Type-2 codebook according to DAI value in the GC-DCI, UE 2 requires that the DAI value is set to 1, 2, 3, whereas UE 1 need to set the DAI value to 2 for the GC-PDSCH#3 and not to set the DAI value for GC-PDSCH#2. However, since all three UEs  receive the same GC-DCI, a requirement to have DAI values set to 1, 2, 3 for UE 2 and DAI value set to 1, 2 for UE 1 is not workable.
If DAI values are set as the requirement from UE2, UE 1 can reduce the DAI value by 1 for the GC-PDSCH#3 when constructing Type-2 codebook, however when the DCI for GC-PDSCH#2 is missed by UE 1, UE will regard it as a normal DCI missing case so that NACK feedback will be provided for the GC-PDSCH #2. HARQ-ACK enabling/disabling configuration is introduced to save HARQ-ACK information bits, such behavior is conflict with it. Some methods are needed to address the DAI mismatch issue.
The example headings for the various sections below are used to facilitate the understanding of the disclosed subject matter and do not limit the scope of the claimed subject matter in any way. Accordingly, one or more features of one example section can be combined with one or more features of another example section. Furthermore, 5G terminology is used for the sake of clarity of explanation, but the techniques disclosed in the present document are not limited to 5G technology only, and may be used in wireless systems that implemented other protocols.
I. Embodiment 1
In this embodiment the base station performs separate DAI counting using one DAI field in the GC-DCI according to HARQ-ACK-enabler field value in the GC-DCI, where for DCI with field indicating enabling, DAI counting is performed for DCI-HARQ-enabling PDSCHs, and where for DCI with field indicating disabling, DAI counting is performed for DCI-HARQ-disabling PDSCHs. UE belongs to different classes generate different Type-2 codebook according to the HARQ-ACK enabling/disabling configuration.
FIG. 2 shows an example scenario where separate DAI counting is performed or where DAI is separately determined according to HARQ-ACK enabler indication field. In FIG. 2, GC-DCI schedule PDSCHs of one MBS services in one carrier, HARQ-ACK-enable and HARQ-ACK-disable represent that the HARQ-ACK-enabler field indicating enabling and disabling, respectively. For HARQ-enabling DCIs, DAI counting is performed for  PDSCH  1, 3 and 4. For HARQ-disabling DCIs, DAI counting is performed for  PDSCH  2 and 5. The DAI field is the same for all DCIs, UE can differentiate the DCI counting order according to the HARQ-ACK-enabler field value.
UE 1 is DCI-HARQ-enabler, where enabling/disabling of HARQ-ACK feedback is dynamically changed with DCI. Thus, UE1 does not provide HARQ-ACK information for those PDSCHs scheduled by HARQ-disabling DCI and only generates Type-2 codebook according to the DAI counting in HARQ-enabling DCIs. HARQ-ACK information is {HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4} .
UE 2 is RRC-HARQ-enabling, so that although receives the same GC-DCI as UE 1, UE 2 does not respond to the HARQ-ACK enabler indication, and provides HARQ-ACK information of all the PDSCHs. UE 2 constructs Type-2 codebook according to two DAI counting order separately, and concatenates two parts into one codebook. Concatenation rules can be: (1) codebook for DCI-disabling PDSCHs is concatenated after codebook for DCI-enabling PDSCHs, where for the example in FIG. 2, the HARQ-ACK information is {HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4, HARQ-PDSCH2, HARQ-PDSCH5} ; (2) concatenation order is determined by the first DCI, e.g. if the first DCI is HARQ-ACK-disabling, codebook for DCI-disabling will be put forward or before the DCI-enabling PDSCHs (e.g., the HARQ information is {HARQ-PDSCH2, HARQ-PDSCH5, HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4} ) .
UE 3 is RRC-HARQ-disabling, it never provides HARQ-ACK feedback no matter whether indicated HARQ-ACK-enabling by GC-DCI. DAI counting has no impact on UE 3.
Fields relevant to HARQ-ACK feedback in the GC-DCI, e.g. PRI (PUCCH resource indicator) and K1, are set the same as the corresponding PDSCH needs HARQ-ACK feedback no matter what the HARQ-ACK-enabler field indicates.
UE 1 determines the PUCCH resource according to the PRI in the last DCI with HARQ-ACK-enabling, UE 2 determines the PUCCH resource according to the PRI in the last DCI among all the DCIs. In FIG. 1, while C-DAI and T-DAI are shown to be the same value, in some embodiments related to carrier aggregation, C-DAI and T-DAI may be different.
II. Embodiment 2
This embodiment addresses the DAI mismatch issue above by using dynamically change to HARQ-ACK feedback mode for reference. For GC-PDSCHs in which DAI mismatch issue exists, the feedback mode can be changed by DCI indication so that the DCI can indicate for one or more GC-PDSCH that the feedback mode to change to NACK-only mode from ACK/NACK based feedback (Type-2 codebook) .
Dynamically HARQ-ACK feedback switch can be realized by field value in DCI, e.g. specific value of K1 and PRI. HARQ-ACK enabler field is introduced in GC-DCI, it can be used to indicate feedback mode switch.
FIG. 3 shows an example scenario where DAI mismatch is addressed by switching a feedback mode. In FIG. 3, GC-DCI schedules PDSCHs of one MBS services in one carrier, HARQ-ACK-enable and HARQ-ACK-disable represent that the HARQ-ACK-enabler field indicates enabling and disabling, respectively. For HARQ-enabling DCIs, DAI counting is performed for  PDSCH  1, 3 and 4. For HARQ-disabling PDSCHs, feedback mode is indicated to switch to NACK-only and DAI is not included in the corresponding DCI. DAI counting is performed for the PDSCHs that have HARQ-ACK enabled.
UE 1 is DCI-HARQ-enabler, enabling/disabling of HARQ-ACK feedback is dynamically changed with DCI, UE1 does not provide HARQ-ACK information for those PDSCHs scheduled by HARQ-disabling DCI and only generates Type-2 codebook according to the DAI counting in HARQ-enabling DCIs. HARQ-ACK information is {HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4} .
UE 2 is RRC-HARQ-enabling, although receives the same GC-DCI as UE 1, it does not response to the HARQ-ACK enabler indication, and provides HARQ-ACK information of all the PDSCHs. UE 2 constructs Type-2 codebook according to DAI counting order the same as UE 1. For PDSCHs indicated HARQ-ACK-disabling, UE 2 provides NACK-only feedback that indicates that the UE 2 decoded the PDSCH incorrectly. Type-2 codebook and NACK-only feedback are indicated in one slot, for non-overlapping cases, they are transmitted separately in each PUCCH, for overlapping cases, NACK-only feedback can be multiplexed with Type-2 codebook by transforming to ACK/NACK bits.
UE 3 is RRC-HARQ-disabling, it never provides HARQ-ACK feedback no matter whether indicated HARQ-ACK-enabling by GC-DCI. DAI counting and feedback mode switch has no impact on UE 3.
For UEs supported NACK-only and ACK/NACK feedback, both PUCCH resources are configured. UE 1 and UE 2 determines the PUCCH resource carrying Type-2 codebook according to PRI in the last DCI among the DCIs with HARQ-ACK-enabling. UE 2 determines the PUCCH resource for NACK-only according to PRI in the corresponding DCI with HARQ-ACK-disabling.
III. Embodiment 3
This embodiment addressees the DAI mismatch issue above by using dynamically change to codebook type for reference. The codebook type can be changed by DCI indication, for GC-PDSCHs which exist DAI mismatch issue, DCI indicates the codebook type to change to Type-1 from Type-2 for a PDSCH.
Dynamically codebook type switch can be realized by field value in DCI, e.g. specific value of K1 and PRI. HARQ-ACK enabler field is introduced in GC-DCI, it can be used to indicate codebook type switch.
FIG. 4 shows an example scenario where DAI mismatch is addressed by switching codebook type. In FIG. 4, GC-DCI schedule PDSCHs of one MBS services in one carrier, HARQ-ACK-enable and HARQ-ACK-disable represent that the HARQ-ACK-enabler field value is 0 and 1, respectively. For HARQ-enabling DCIs, DAI counting is performed for PDSCH 1, 3and 4. For HARQ-disabling PDSCHs, i.e.  PDSCH  2 and 5, codebook type is indicated to switch to Type-1 and DAI is not included in the corresponding DCI. DAI counting is performed for the PDSCHs that have HARQ-ACK enabled..
UE 1 is DCI-HARQ-enabler, enabling/disabling of HARQ-ACK feedback is dynamically changed with DCI, UE1 does not provide HARQ-ACK information for those PDSCHs scheduled by HARQ-disabling DCI and only generates Type-2 codebook according to the DAI counting in HARQ-enabling DCIs. HARQ-ACK information is {HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4} .
UE 2 is RRC-HARQ-enabling, although receives the same GC-DCI as UE 1, it does not response to the HARQ-ACK enabler indication, and provides HARQ-ACK information of all the PDSCHs. UE 2 constructs Type-2 codebook according to DAI counting order the same as UE 1. For PDSCHs indicated HARQ-ACK-disabling, UE 2 provides Type-1 codebook. Both codebooks are indicated in one slot, no matter overlapped or not, Type-1 codebook is multiplexed with Type-2 codebook, multiplexing rules can be (1) Type-1 codebook for DCI-disabling PDSCHs is concatenated after Type-2 codebook for DCI-enabling PDSCHs, HARQ-ACK information is {HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4, HARQ-PDSCH2, HARQ-PDSCH5} ; (2) concatenation order is determined by the first DCI, e.g. if the first DCI is HARQ-ACK-disabling, Type-1 codebook for DCI-disabling will be put forward.
UE 3 is RRC-HARQ-disabling, it never provides HARQ-ACK feedback no matter whether indicated HARQ-ACK-enabling by GC-DCI. DAI counting and codebook type switch has no impact on UE 3.
UE 1 and UE 2 determines the PUCCH resource carrying Type-2 codebook according to PRI in the last DCI among the DCIs with HARQ-ACK-enabling. UE 2 determines the PUCCH resource carrying Type-1 codebook according to PRI in the last DCI among all the DCIs.
IV. Embodiment 4
This embodiment avoids the DCI mismatch issue by configuring HARQ-ACK enabling/disabling according to different UE classes in the group. As RRC-HARQ-disabling UEs will have no impact and not be affected by DCI HARQ-ACK enabler indication, two cases will be included in the embodiment.
FIG. 5 shown an example scenario where only RRC-HARQ-disabling and DCI-HARQ-enabler UEs exist. In FIG. 5, only RRC-HARQ-disabling and DCI-HARQ-enabler UEs exist in the group receiving the MBS service, only DCI-HARQ-enabler UEs make response to HARQ-ACK-enabler indication field in DCI, no limitation on HARQ-ACK enabling/disabling configuration is needed. For HARQ-enabling DCIs, DAI counting is performed for  PDSCH  1, 3 and 4. DAI field is not included in the HARQ-disabling DCIs.
UE 1 is DCI-HARQ-enabler, enabling/disabling of HARQ-ACK feedback is dynamically changed with DCI, UE1 does not provide HARQ-ACK information for those PDSCHs scheduled by HARQ-disabling DCI and only generates Type-2 codebook according to the DAI counting in HARQ-enabling DCIs. HARQ-ACK information is {HARQ-PDSCH1, HARQ-PDSCH3, HARQ-PDSCH4} .
UE 2 is RRC-HARQ-disabling, it never provides HARQ-ACK feedback no matter whether indicated HARQ-ACK-enabling by GC-DCI.
All UEs in the group will not provide the HARQ-ACK information of GC-PDSCH 2. PRI and K1 can be not configured for HARQ-ACK-disabling DCIs. It can be described that the HARQ-ACK enabling/disabling configuration in GC-DCI is per PDSCH.
When UEs belong to each class exist in the group receiving the MBS service, HARQ-ACK-enabler field indicates either enabling or disabling in GC-DCIs. For the field indicating HARQ-ACK-enabling, UEs except RRC-HARQ-disabling class provide HARQ-ACK  information of all PDSCHs, and for the field indicating HARQ-ACK-disabling only RRC-HARQ-enabling UEs provide HARQ-ACK information. DAI field is included in all the DCIs and DAI counting is performed for all PDSCHs of the service no matter what the HARQ-ACK-enabler field indicates.
In FIG. 6, UE 1 is DCI-HARQ-enabler, UE 2 is RRC-HARQ-enabling, HARQ-ACK feedback enabler is always set enabling, they generate Type-2 codebook according to the DAI counting in all DCIs. HARQ-ACK information is {HARQ-PDSCH1, HARQ-PDSCH2, HARQ-PDSCH3, HARQ-PDSCH4} .
UE 3 is RRC-HARQ-disabling, it never provides HARQ-ACK feedback.
And if HARQ-ACK feedback enabler is always set disabling, UE1 and UE3 do not provide HARQ-ACK information of all PDSCHs. Only UE 2 generates Type-2 codebook according to the DAI counting and transmit it in the PUCCH indicated by PRI in the last DCI.
PRI and K1 are configured in all DCIs, no matter HARQ-ACK enabler field is set ‘enabling’ or ‘disabling’ . It can be described that the HARQ-ACK enabling/disabling configuration in GC-DCI is per G-RNTI or per MBS service.
V. Embodiment 5
NACK-only feedback is used to save PUCCH resources for group-common PDSCHs, for one GC-PDSCH, UEs which decode it incorrectly will transmit the corresponding PUCCH and UEs which decode it correctly will not. Base station schedule the re-transmission when any UE transmit the NACK-only PUCCH.
For unicast, DAI field in the uplink scheduling DCIs indicate whether HARQ-ACK information is to be transmitted in the slot (semi-static codebook) or the number of HARQ-ACK information bits (dynamic codebook) . When HARQ-ACK codebook is overlapped with PUSCH, UL DAI value included in the DCI can help UE realize the DCI missing issue and generate reliable codebooks.
When multiple NACK-only PUCCH are indicated in the same slot, multiplexing methods can be applied no matter they are overlapped or not. Transforming to ACK/NACK based HARQ-ACK feedback and defining combination of NACK-only which corresponds to a PUCCH transmission are two reliable methods.
When multiple NACK-only PUCCH overlap with PUSCH in the slot, transforming to ACK/NACK bits and multiplexing with PUSCH can be applied. For example, NACK-only based  feedback of 2 PDSCHs are needed, UE decodes the first PDSCH correctly and do not transmit the PUCCH, UE decodes the second PDSCH incorrectly and transmit the PUCCH, at this time, actually only one PUCCH overlaps with PUSCH, UE transforms NACK-only to ACK/NACK bits by setting bit value 1 for the first PDSCH and bit value 0 for the second PDSCH.
When DCI scheduling the first PDSCH is missed, UE only transform NACK-only to ACK/NACK bits for the second PDSCH, e.g., only 1 bit and bit value is 1. Base station cannot know which PDSCH is missed and which PDSCH the HARQ-ACK bit belong to. UL DAI value should be also applied here to help UE realize the issue.
In this embodiment, DAI field is separately configured in the uplink scheduling DCI to indicate the HARQ-ACK information of NACK-only when multiplexed with PUSCH. As gNB cannot know the number of actual multiplexed NACK-only for each UE, UL DAI is set to the number of received PDSCHs by UE.
In the transformed ACK/NACK bits, the bit position of each NACK-only or to say each PDSCH is determined by each G-RNTI, both ascending or descending order can be applied. For PDSCH which is decoded correctly, e.g., the corresponding NACK-only resource is not sent, 1 is set to the HARQ-ACK bit, and 0 is set for PDSCH with NACK feedback.
When UL DAI for NACK-only is included in the DCI scheduling PUSCH, UE can realize the DTX case by judging whether the DAI value equals to the number of received PDSCHs and set NACK value for the DTX PDSCH. For example, NACK-only feedback of 3 PDSCHs are to be multiplexed with PUSCH, the first PDSCH is ACK, the second PDSCH is DTX, and the third PDSCH is NACK, DAI value in the DCI is 3, and UE only receives 2 PDSCHs, so that one NACK value will be added in the transformed bits. The transformed HARQ-ACK bits will be {1, 0, 0} .
FIG. 7 shows an exemplary block diagram of a hardware platform 700 that may be a part of a network device (e.g., base station) or a communication device (e.g., a user equipment (UE) ) . The hardware platform 700 includes at least one processor 710 and a memory 705 having instructions stored thereupon. The instructions upon execution by the processor 710 configure the hardware platform 500 to perform the operations described in FIGS. 1 to 6 and 8 to 12 and in the various embodiments described in this patent document. The transmitter 715 transmits or sends information or data to another device. For example, a network device transmitter can send  a message to a user equipment. The receiver 720 receives information or data transmitted or sent by another device. For example, a user equipment can receive a message from a network device.
The implementations as discussed above will apply to a wireless communication. FIG. 8 shows an example of a wireless communication system (e.g., a 5G or NR cellular network) that includes a base station 820 and one or more user equipment (UE) 811, 812 and 813. In some embodiments, the UEs access the BS (e.g., the network) using a communication link to the network (sometimes called uplink direction, as depicted by dashed  arrows  831, 832, 833) , which then enables subsequent communication (e.g., shown in the direction from the network to the UEs, sometimes called downlink direction, shown by  arrows  841, 842, 843) from the BS to the UEs. In some embodiments, the BS send information to the UEs (sometimes called downlink direction, as depicted by  arrows  841, 842, 843) , which then enables subsequent communication (e.g., shown in the direction from the UEs to the BS, sometimes called uplink direction, shown by dashed  arrows  831, 832, 833) from the UEs to the BS. The UE may be, for example, a smartphone, a tablet, a mobile computer, a machine to machine (M2M) device, an Internet of Things (IoT) device, and so on.
FIG. 9 shows an exemplary flowchart for transmitting a codebook. Operation 902 includes receiving, by a communication device, a control information that indicate whether a feedback mode is enabled for providing feedback for data received on at least some of X shared channels. Operation 904 includes transmitting, by the communication device, a codebook comprising the feedback that indicates whether data is received by the communication device on Y shared channels in response to the control information indicating that the feedback mode is enabled for the Y shared channels, wherein X and Y are positive integers, wherein X is greater than or equal to Y, and wherein the codebook is generated based on a first set of assignment indexes associated with the Y shared channels.
In some embodiments, a downlink control information (DCI) received by the communication device includes the control information that indicates that the feedback mode is disabled for Z shared channels, Z is a positive integer that is less than X, the communication device determines not to transmit the feedback for data received on Z shared channels in response to the feedback mode being disabled for the Z shared channels, and the Z shared channels are associated with a second set of assignment indexes. In some embodiments, a radio resource control (RRC) signaling received by the communication device includes the control  information that indicates that the feedback mode is enabled for data received on the X shared channels, the codebook is generated based on the first set of assignment indexes associated with the Y shared channels and the second set of assignment indexes associated with the Z shared channels. In some embodiments, a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels, the communication device receives a downlink control information (DCI) that indicate that the feedback mode is enabled to only send a non-acknowledgement indication for Z shared channels, Z is a positive integer that is less than X, the codebook is generated based on the first set of assignment indexes associated with the Y shared channels, and in response to data for at least one shared channel from the Z shared channels being incorrectly decoded, the codebook is generated to include the non-acknowledgement indication for at least one assignment index associated with the at least one shared channel from the Z shared channels.
In some embodiments, the method further comprises transmitting, by the communication device, a second codebook comprising the feedback for data received on Z shared channels, Z is a positive integer that is less than X, a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels, a downlink control information (DCI) indicating that the second codebook is a type-1 codebook, and the codebook is a type-2 codebook that is generated based on the first set of assignment indexes associated with the Y shared channels. In some embodiments, a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is disabled for data received on the X shared channels, and the communication device determines not to transmit the feedback for the X shared channels.
FIG. 10 shows an exemplary flowchart for receiving a codebook. Operation 1002 includes transmitting, by a network device, a control information that indicate whether a feedback mode is enabled for providing feedback for data transmitted on at least some of X shared channels. Operation 1004 includes receiving, by the network device, a codebook comprising the feedback that indicates whether data is transmitted by the network device on Y shared channels in response to the control information indicating that the feedback mode is enabled for the Y shared channels, where X and Y are positive integers, where X is greater than  or equal to Y, and where the codebook is based on a first set of assignment indexes associated with the Y shared channels.
In some embodiments, a downlink control information (DCI) transmitted by the network device includes the control information that indicates that the feedback mode is disabled for Z shared channels, Z is a positive integer that is less than X, and the Z shared channels are associated with a second set of assignment indexes. In some embodiments, a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, and the codebook is based on the first set of assignment indexes associated with the Y shared channels and the second set of assignment indexes associated with the Z shared channels. In some embodiments, a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, the network device transmits a downlink control information (DCI) that indicate that the feedback mode is enabled to only receive a non-acknowledgement indication for Z shared channels, Z is a positive integer that is less than X, the codebook is based on the first set of assignment indexes associated with the Y shared channels, and the codebook includes the non-acknowledgement indication for at least one assignment index associated with at least one shared channel from the Z shared channels which indicates that data for the at least one shared channel is incorrectly decoded by a communication device.
In some embodiments, the method further includes receiving, by the network device, a second codebook comprising the feedback for data received on Z shared channels, Z is a positive integer that is less than X, a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, a downlink control information (DCI) indicating that the second codebook is a type-1 codebook, and the codebook is a type-2 codebook that is based on the first set of assignment indexes associated with the Y shared channels.
In some embodiments, a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is disabled for data received on the X shared channels, and the codebook received by the network device excludes the feedback for the X shared channels. In some embodiments, one or more assignment indexes in the first set of assignment indexes or the second set of assignment indexes include one  or more downlink assignment indexes (DAIs) , and the X shared channel includes group common physical downlink shared channels (GC-PDSCHs) .
FIG. 11 shows an exemplary flowchart for transmission of control information. Operation 1102 includes transmitting, by a network device to a first set of communication devices, a first control information that indicates whether the first set of communication devices are to use a feedback mode to send feedback for data received on a plurality of shared channels. Operation 1104 includes transmitting, by the network device to a second set of communication devices, a second control information that indicates that the second set of communication devices are disabled from using the feedback mode to send the feedback for data received on the plurality of shared channels.
FIG. 12 shows an exemplary flowchart for transmission of control information. Operation 1202 includes transmitting, by a network device to a first set of communication devices, a first control information that indicates whether the first set of communication devices are to use a feedback mode to send feedback for data received on a plurality of shared channels. Operation 1204 includes transmitting, by the network device to a second set of communication devices, a second control information that indicates that the second set of communication devices are enabled to use the feedback mode to send the feedback for data received on the plurality of shared channels.
In some embodiments, the plurality of shared channel includes a plurality of group common physical downlink shared channels (GC-PDSCHs) .
In this document the term “exemplary” is used to mean “an example of” and, unless otherwise stated, does not imply an ideal or a preferred embodiment.
Some of the embodiments described herein are described in the general context of methods or processes, which may be implemented in one embodiment by a computer program product, embodied in a computer-readable medium, including computer-executable instructions, such as program code, executed by computers in networked environments. A computer-readable medium may include removable and non-removable storage devices including, but not limited to, Read Only Memory (ROM) , Random Access Memory (RAM) , compact discs (CDs) , digital versatile discs (DVD) , etc. Therefore, the computer-readable media can include a non-transitory storage media. Generally, program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract  data types. Computer-or processor-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps or processes.
Some of the disclosed embodiments can be implemented as devices or modules using hardware circuits, software, or combinations thereof. For example, a hardware circuit implementation can include discrete analog and/or digital components that are, for example, integrated as part of a printed circuit board. Alternatively, or additionally, the disclosed components or modules can be implemented as an Application Specific Integrated Circuit (ASIC) and/or as a Field Programmable Gate Array (FPGA) device. Some implementations may additionally or alternatively include a digital signal processor (DSP) that is a specialized microprocessor with an architecture optimized for the operational needs of digital signal processing associated with the disclosed functionalities of this application. Similarly, the various components or sub-components within each module may be implemented in software, hardware or firmware. The connectivity between the modules and/or components within the modules may be provided using any one of the connectivity methods and media that is known in the art, including, but not limited to, communications over the Internet, wired, or wireless networks using the appropriate protocols.
While this document contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as  requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
Only a few implementations and examples are described and other implementations, enhancements and variations can be made based on what is described and illustrated in this disclosure.

Claims (18)

  1. A wireless communication method, comprising:
    receiving, by a communication device, a control information that indicate whether a feedback mode is enabled for providing feedback for data received on at least some of X shared channels;
    transmitting, by the communication device, a codebook comprising the feedback that indicates whether data is received by the communication device on Y shared channels in response to the control information indicating that the feedback mode is enabled for the Y shared channels,
    wherein X and Y are positive integers,
    wherein X is greater than or equal to Y, and
    wherein the codebook is generated based on a first set of assignment indexes associated with the Y shared channels.
  2. The method of claim 1,
    wherein a downlink control information (DCI) received by the communication device includes the control information that indicates that the feedback mode is disabled for Z shared channels,
    wherein Z is a positive integer that is less than X,
    wherein the communication device determines not to transmit the feedback for data received on Z shared channels in response to the feedback mode being disabled for the Z shared channels, and
    wherein the Z shared channels are associated with a second set of assignment indexes.
  3. The method of claim 2,
    wherein a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels, and
    wherein the codebook is generated based on the first set of assignment indexes associated with the Y shared channels and the second set of assignment indexes associated with the Z shared channels.
  4. The method of claim 1,
    wherein a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels,
    wherein the communication device receives a downlink control information (DCI) that indicate that the feedback mode is enabled to only send a non-acknowledgement indication for Z shared channels,
    wherein Z is a positive integer that is less than X,
    wherein the codebook is generated based on the first set of assignment indexes associated with the Y shared channels, and
    wherein, in response to data for at least one shared channel from the Z shared channels being incorrectly decoded, the codebook is generated to include the non-acknowledgement indication for at least one assignment index associated with the at least one shared channel from the Z shared channels.
  5. The method of claim 1, further comprising:
    transmitting, by the communication device, a second codebook comprising the feedback for data received on Z shared channels,
    wherein Z is a positive integer that is less than X,
    wherein a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is enabled for data received on the X shared channels,
    wherein a downlink control information (DCI) indicating that the second codebook is a type-1 codebook, and
    wherein the codebook is a type-2 codebook that is generated based on the first set of assignment indexes associated with the Y shared channels.
  6. The method of claim 1,
    wherein a radio resource control (RRC) signaling received by the communication device includes the control information that indicates that the feedback mode is disabled for data received on the X shared channels, and
    wherein the communication device determines not to transmit the feedback for the X shared channels.
  7. A wireless communication method, comprising:
    transmitting, by a network device, a control information that indicate whether a feedback mode is enabled for providing feedback for data transmitted on at least some of X shared channels;
    receiving, by the network device, a codebook comprising the feedback that indicates whether data is transmitted by the network device on Y shared channels in response to the control information indicating that the feedback mode is enabled for the Y shared channels,
    wherein X and Y are positive integers,
    wherein X is greater than or equal to Y, and
    wherein the codebook is based on a first set of assignment indexes associated with the Y shared channels.
  8. The method of claim 7,
    wherein a downlink control information (DCI) transmitted by the network device includes the control information that indicates that the feedback mode is disabled for Z shared channels,
    wherein Z is a positive integer that is less than X, and
    wherein the Z shared channels are associated with a second set of assignment indexes.
  9. The method of claim 8,
    wherein a radio resource control (RRC) signaling transmitted by the network  device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels, and
    wherein the codebook is based on the first set of assignment indexes associated with the Y shared channels and the second set of assignment indexes associated with the Z shared channels.
  10. The method of claim 7,
    wherein a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels,
    wherein the network device transmits a downlink control information (DCI) that indicate that the feedback mode is enabled to only receive a non-acknowledgement indication for Z shared channels,
    wherein Z is a positive integer that is less than X,
    wherein the codebook is based on the first set of assignment indexes associated with the Y shared channels, and
    wherein the codebook includes the non-acknowledgement indication for at least one assignment index associated with at least one shared channel from the Z shared channels which indicates that data for the at least one shared channel is incorrectly decoded by a communication device.
  11. The method of claim 7, further comprising:
    receiving, by the network device, a second codebook comprising the feedback for data received on Z shared channels,
    wherein Z is a positive integer that is less than X,
    wherein a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is enabled for data transmitted on the X shared channels,
    wherein a downlink control information (DCI) indicating that the second codebook is a type-1 codebook, and
    wherein the codebook is a type-2 codebook that is based on the first set of  assignment indexes associated with the Y shared channels.
  12. The method of claim 7,
    wherein a radio resource control (RRC) signaling transmitted by the network device includes the control information that indicates that the feedback mode is disabled for data received on the X shared channels, and
    wherein the codebook received by the network device excludes the feedback for the X shared channels.
  13. The method of any of claims 1 to 12,
    wherein one or more assignment indexes in the first set of assignment indexes or the second set of assignment indexes include one or more downlink assignment indexes (DAIs) , and
    wherein the X shared channel includes group common physical downlink shared channels (GC-PDSCHs) .
  14. A wireless communication method, comprising:
    transmitting, by a network device to a first set of communication devices, a first control information that indicates whether the first set of communication devices are to use a feedback mode to send feedback for data received on a plurality of shared channels; and
    transmitting, by the network device to a second set of communication devices, a second control information that indicates that the second set of communication devices are disabled from using the feedback mode to send the feedback for data received on the plurality of shared channels.
  15. A wireless communication method, comprising:
    transmitting, by a network device to a first set of communication devices, a first control information that indicates whether the first set of communication devices are to use a feedback mode to send feedback for data received on a plurality of shared  channels; and
    transmitting, by the network device to a second set of communication devices, a second control information that indicates that the second set of communication devices are enabled to use the feedback mode to send the feedback for data received on the plurality of shared channels.
  16. The method of any of claims 14 to 15, wherein the plurality of shared channel includes a plurality of group common physical downlink shared channels (GC-PDSCHs) .
  17. An apparatus for wireless communication comprising a processor, configured to implement a method recited in one or more of claims 1 to 16.
  18. A non-transitory computer readable program storage medium having code stored thereon, the code, when executed by a processor, causing the processor to implement a method recited in one or more of claims 1 to 16.
PCT/CN2021/122055 2021-09-30 2021-09-30 Techniques for managing assignment index for group common shared channel WO2023050261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122055 WO2023050261A1 (en) 2021-09-30 2021-09-30 Techniques for managing assignment index for group common shared channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122055 WO2023050261A1 (en) 2021-09-30 2021-09-30 Techniques for managing assignment index for group common shared channel

Publications (1)

Publication Number Publication Date
WO2023050261A1 true WO2023050261A1 (en) 2023-04-06

Family

ID=85780380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122055 WO2023050261A1 (en) 2021-09-30 2021-09-30 Techniques for managing assignment index for group common shared channel

Country Status (1)

Country Link
WO (1) WO2023050261A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807981A (en) * 2010-04-02 2010-08-18 中兴通讯股份有限公司 Preprocessing method used by codebook and communication system
US20200213044A1 (en) * 2017-10-09 2020-07-02 Huawei Technologies Co., Ltd. Method and apparatus for sending harq-ack feedback codebook and device
WO2020220359A1 (en) * 2019-04-30 2020-11-05 Oppo广东移动通信有限公司 Method and device for determining harq codebook

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807981A (en) * 2010-04-02 2010-08-18 中兴通讯股份有限公司 Preprocessing method used by codebook and communication system
US20200213044A1 (en) * 2017-10-09 2020-07-02 Huawei Technologies Co., Ltd. Method and apparatus for sending harq-ack feedback codebook and device
WO2020220359A1 (en) * 2019-04-30 2020-11-05 Oppo广东移动通信有限公司 Method and device for determining harq codebook

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On HARQ enhancements for NTN", 3GPP, R1-2006465, 28 August 2020 (2020-08-28), XP051918038 *

Similar Documents

Publication Publication Date Title
US10659210B2 (en) Method for transmitting ACK/NACK in wireless communication system and device using same
WO2017193890A1 (en) Method for transmitting harq feedback information, ue unit, base station, and system
JP6908135B2 (en) Feedback information transmission / reception method, equipment and communication system
KR20170134442A (en) Determining the codeword for the acknowledgment information
EP3323265B1 (en) Method and device for determining uplink control channel
CN110932836A (en) Control information sending method, user equipment and base station
US20220408433A1 (en) Uplink control channel resource allocation methods and devices
WO2023050261A1 (en) Techniques for managing assignment index for group common shared channel
JP6532912B2 (en) HARQ feedback using carrier aggregation
US20230361924A1 (en) Method and apparatus for harq-ack feedback transmission
US20240048335A1 (en) Harq-ack codebook determination techniques
WO2023122932A1 (en) Hybrid automatic repeat request acknowledgment generation techniques for group common shared channels
WO2023077405A1 (en) Methods and systems for multiplexing resources for feedback messages in wireless networks
US20230412311A1 (en) Techniques for constructing a hybrid automatic repeat request acknowledgement codebook
US20240073894A1 (en) Method and apparatus for harq-ack codebook determination
WO2022205296A1 (en) Method and apparatus for harq-ack feedback for semi-persistent scheduling transmission
WO2024031358A1 (en) Harq-ack transmissions
WO2022236534A1 (en) Hybrid automatic repeat request acknowledgement codebook generation techniques
WO2024020946A1 (en) Techniques for performing scheduling in a wireless communications
WO2023077433A1 (en) Method and apparatus for harq-ack codebook determination for multiple services
WO2022204856A1 (en) Method and apparatus for nack-only based harq-ack feedback multiplexing
WO2023010426A1 (en) Methods and systems for coverage enhancement in wireless networks
US20240097831A1 (en) Transmission scheduling techniques
WO2023010425A1 (en) Methods and devices for scheduling codebook
WO2023010279A1 (en) Method and apparatus for pucch resource configuration for multicast service

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958840

Country of ref document: EP

Kind code of ref document: A1