WO2023050028A1 - Feedback based inter user equipment coordination message request and response - Google Patents

Feedback based inter user equipment coordination message request and response Download PDF

Info

Publication number
WO2023050028A1
WO2023050028A1 PCT/CN2021/121163 CN2021121163W WO2023050028A1 WO 2023050028 A1 WO2023050028 A1 WO 2023050028A1 CN 2021121163 W CN2021121163 W CN 2021121163W WO 2023050028 A1 WO2023050028 A1 WO 2023050028A1
Authority
WO
WIPO (PCT)
Prior art keywords
inter
coordination
request message
resource
message
Prior art date
Application number
PCT/CN2021/121163
Other languages
French (fr)
Inventor
Hui Guo
Tien Viet NGUYEN
Shuanshuan Wu
Sourjya Dutta
Kapil Gulati
Gabi Sarkis
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/121163 priority Critical patent/WO2023050028A1/en
Publication of WO2023050028A1 publication Critical patent/WO2023050028A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for feedback based inter user equipment (inter-UE) coordination message request and response.
  • inter-UE inter user equipment
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs.
  • a UE may communicate with a base station via downlink communications and uplink communications.
  • Downlink (or “DL” ) refers to a communication link from the base station to the UE
  • uplink (or “UL” ) refers to a communication link from the UE to the base station.
  • New Radio which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • the method may include transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message.
  • the method may include receiving the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
  • the method may include transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message.
  • the method may include retransmitting the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
  • the method may include receiving a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window.
  • the method may include selecting, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window.
  • the method may include transmitting the self-contained inter-UE coordination message via the first sidelink resource.
  • the method may include receiving an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission.
  • the method may include reserving a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information.
  • the method may include periodically transmitting the inter-UE coordination response message via the reserved periodic resource.
  • the UE may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message.
  • the one or more processors may be configured to receive the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
  • the UE may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message.
  • the one or more processors may be configured to retransmit the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
  • the UE may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to receive a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window.
  • the one or more processors may be configured to select, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window.
  • the one or more processors may be configured to transmit the self-contained inter-UE coordination message via the first sidelink resource.
  • the UE may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to receive an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission.
  • the one or more processors may be configured to reserve a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information.
  • the one or more processors may be configured to periodically transmit the inter-UE coordination response message via the reserved periodic resource.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to retransmit the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to select, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to transmit the self-contained inter-UE coordination message via the first sidelink resource.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to reserve a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to periodically transmit the inter-UE coordination response message via the reserved periodic resource.
  • the apparatus may include means for transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message.
  • the apparatus may include means for receiving the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
  • the apparatus may include means for transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message.
  • the apparatus may include means for retransmitting the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
  • the apparatus may include means for receiving a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window.
  • the apparatus may include means for selecting, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window.
  • the apparatus may include means for transmitting the self-contained inter-UE coordination message via the first sidelink resource.
  • the apparatus may include means for receiving an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission.
  • the apparatus may include means for reserving a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information.
  • the apparatus may include means for periodically transmitting the inter-UE coordination response message via the reserved periodic resource.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios.
  • Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements.
  • some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end- user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) .
  • Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components.
  • Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects.
  • transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) .
  • RF radio frequency
  • aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of sidelink communication, in accordance with the present disclosure.
  • Fig. 4 is a diagram illustrating an example of selecting sidelink resources, in accordance with the present disclosure.
  • Figs. 5-8 are diagrams illustrating examples associated with feedback based inter-UE coordination message request and response, in accordance with the present disclosure.
  • Figs. 9-12 are diagrams illustrating example processes associated with feedback based inter-UE coordination message request and response, in accordance with the present disclosure.
  • Figs. 13-16 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
  • NR New Radio
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples.
  • the wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities.
  • UE user equipment
  • a base station 110 is an entity that communicates with UEs 120.
  • a base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) .
  • Each base station 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
  • a base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) .
  • CSG closed subscriber group
  • a base station 110 for a macro cell may be referred to as a macro base station.
  • a base station 110 for a pico cell may be referred to as a pico base station.
  • a base station 110 for a femto cell may be referred to as a femto base station or an in-home base station.
  • the BS 110a may be a macro base station for a macro cell 102a
  • the BS 110b may be a pico base station for a pico cell 102b
  • the BS 110c may be a femto base station for a femto cell 102c.
  • a base station may support one or multiple (e.g., three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) .
  • the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • the wireless network 100 may include one or more relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) .
  • a relay station may be a UE 120 that can relay transmissions for other UEs 120.
  • the BS 110d e.g., a relay base station
  • the BS 110a e.g., a macro base station
  • a base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
  • the wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100.
  • macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110.
  • the network controller 130 may communicate with the base stations 110 via a backhaul communication link.
  • the base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit.
  • a UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio)
  • Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity.
  • Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices.
  • Some UEs 120 may be considered a Customer Premises Equipment.
  • a UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks 100 may be deployed in a given geographic area.
  • Each wireless network 100 may support a particular RAT and may operate on one or more frequencies.
  • a RAT may be referred to as a radio technology, an air interface, or the like.
  • a frequency may be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands.
  • devices of the wireless network 100 may communicate using one or more operating bands.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4a or FR4-1 52.6 GHz –71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • frequencies included in these operating bands may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • the UE 120 may include a communication manager 140.
  • the communication manager 140 may perform one or more operations associated with feedback based inter-UE coordination message request and response. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • the base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ⁇ 1) .
  • the UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ⁇ 1) .
  • a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) .
  • the transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120.
  • MCSs modulation and coding schemes
  • CQIs channel quality indicators
  • the base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120.
  • the transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • the transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t.
  • each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.
  • Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream.
  • Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal.
  • the modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
  • a set of antennas 252 may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r.
  • R received signals e.g., R received signals
  • each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254.
  • DEMOD demodulator component
  • Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples.
  • Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • CQI CQI parameter
  • the network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292.
  • the network controller 130 may include, for example, one or more devices in a core network.
  • the network controller 130 may communicate with the base station 110 via the communication unit 294.
  • One or more antennas may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280.
  • the transmit processor 264 may generate reference symbols for one or more reference signals.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110.
  • the modem 254 of the UE 120 may include a modulator and a demodulator.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 5-16) .
  • the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240.
  • the base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244.
  • the base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications.
  • the modem 232 of the base station 110 may include a modulator and a demodulator.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 5-16) .
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with feedback based inter-UE coordination message request and response, as described in more detail elsewhere herein.
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, process 1200 of Fig. 12, and/or other processes as described herein.
  • the memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively.
  • the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, process 1200 of Fig. 12, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • the UE includes means for transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message; and/or means for receiving the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
  • the means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • the UE includes means for transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message; and/or means for retransmitting the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
  • the means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • the UE includes means for receiving a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window; means for selecting, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window; and/or means for transmitting the self-contained inter-UE coordination message via the first sidelink resource.
  • the means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • the UE includes means for receiving an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission; means for reserving a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information; and/or means for periodically transmitting the inter-UE coordination response message via the reserved periodic resource.
  • the means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of sidelink communications, in accordance with the present disclosure.
  • a first UE 305-1 may communicate with a second UE 305-2 (and one or more other UEs 305) via one or more sidelink channels 310.
  • the UEs 305-1 and 305-2 may communicate using the one or more sidelink channels 310 for P2P communications, D2D communications, V2X communications (e.g., which may include V2V communications, V2I communications, and/or V2P communications) and/or mesh networking.
  • the UEs 305 e.g., UE 305-1 and/or UE 305-2
  • the one or more sidelink channels 310 may use a PC5 interface and/or may operate in a high frequency band (e.g., the 5.9 GHz band) . Additionally, or alternatively, the UEs 305 may synchronize timing of transmission time intervals (TTIs) (e.g., frames, subframes, slots, or symbols) using global navigation satellite system (GNSS) timing.
  • TTIs transmission time intervals
  • GNSS global navigation satellite system
  • the one or more sidelink channels 310 may include a physical sidelink control channel (PSCCH) 315, a physical sidelink shared channel (PSSCH) 320, and/or a physical sidelink feedback channel (PSFCH) 325.
  • the PSCCH 315 may be used to communicate control information, similar to a physical downlink control channel (PDCCH) and/or a physical uplink control channel (PUCCH) used for cellular communications with a base station 110 via an access link or an access channel.
  • the PSSCH 320 may be used to communicate data, similar to a physical downlink shared channel (PDSCH) and/or a physical uplink shared channel (PUSCH) used for cellular communications with a base station 110 via an access link or an access channel.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the PSCCH 315 may carry sidelink control information (SCI) 330, which may indicate various control information used for sidelink communications, such as one or more resources (e.g., time resources, frequency resources, and/or spatial resources) where a transport block (TB) 335 may be carried on the PSSCH 320.
  • the TB 335 may include data.
  • the PSFCH 325 may be used to communicate sidelink feedback 340, such as hybrid automatic repeat request (HARQ) feedback (e.g., acknowledgement or negative acknowledgement (ACK/NACK) information) , transmit power control (TPC) , and/or a scheduling request (SR) .
  • HARQ hybrid automatic repeat request
  • TPC transmit power control
  • SR scheduling request
  • the SCI 330 may include multiple communications in different stages, such as a first stage SCI (SCI-1) and a second stage SCI (SCI-2) .
  • the SCI-1 may be transmitted on the PSCCH 315.
  • the SCI-2 may be transmitted on the PSSCH 320.
  • the SCI-1 may include, for example, an indication of one or more resources (e.g., time resources, frequency resources, and/or spatial resources) on the PSSCH 320, information for decoding sidelink communications on the PSSCH, a quality of service (QoS) priority value, a resource reservation period, a PSSCH DMRS pattern, an SCI format for the SCI-2, a beta offset for the SCI-2, a quantity of PSSCH DMRS ports, and/or an MCS.
  • the SCI-2 may include information associated with data transmissions on the PSSCH 320, such as a HARQ process ID, a new data indicator (NDI) , a source identifier, a destination identifier, and/or a channel state information (CSI) report trigger.
  • resources e.g., time resources, frequency resources, and/or spatial resources
  • QoS quality of service
  • the SCI-2 may include information associated with data transmissions on the PSSCH 320, such as a HARQ process ID, a new data indicator
  • the one or more sidelink channels 310 may use resource pools.
  • a scheduling assignment (e.g., included in SCI 330) may be transmitted in sub-channels using specific resource blocks (RBs) across time.
  • data transmissions (e.g., on the PSSCH 320) associated with a scheduling assignment may occupy adjacent RBs in the same subframe as the scheduling assignment (e.g., using frequency division multiplexing) .
  • a scheduling assignment and associated data transmissions are not transmitted on adjacent RBs.
  • a UE 305 may operate using a sidelink transmission mode (e.g., Mode 1) where resource selection and/or scheduling is performed by a base station 110.
  • the UE 305 may receive a grant (e.g., in downlink control information (DCI) or in a radio resource control (RRC) message, such as for configured grants) from the base station 110 for sidelink channel access and/or scheduling.
  • a UE 305 may operate using a transmission mode (e.g., Mode 2) where resource selection and/or scheduling is performed by the UE 305 (e.g., rather than a base station 110) .
  • the UE 305 may perform resource selection and/or scheduling by sensing channel availability for transmissions.
  • the UE 305 may measure an RSSI parameter (e.g., a sidelink-RSSI (S-RSSI) parameter) associated with various sidelink channels, may measure an RSRP parameter (e.g., a PSSCH-RSRP parameter) associated with various sidelink channels, and/or may measure an RSRQ parameter (e.g., a PSSCH-RSRQ parameter) associated with various sidelink channels, and may select a channel for transmission of a sidelink communication based at least in part on the measurement (s) .
  • RSSI parameter e.g., a sidelink-RSSI (S-RSSI) parameter
  • RSRP parameter e.g., a PSSCH-RSRP parameter
  • RSRQ parameter e.g., a PSSCH-RSRQ parameter
  • the UE 305 may perform resource selection and/or scheduling using SCI 330 received in the PSCCH 315, which may indicate occupied resources and/or channel parameters. Additionally, or alternatively, the UE 305 may perform resource selection and/or scheduling by determining a channel busy rate (CBR) associated with various sidelink channels, which may be used for rate control (e.g., by indicating a maximum number of resource blocks that the UE 305 can use for a particular set of subframes) .
  • CBR channel busy rate
  • a sidelink grant may indicate, for example, one or more parameters (e.g., transmission parameters) to be used for an upcoming sidelink transmission, such as one or more resource blocks to be used for the upcoming sidelink transmission on the PSSCH 320 (e.g., for TBs 335) , one or more subframes to be used for the upcoming sidelink transmission, and/or an MCS to be used for the upcoming sidelink transmission.
  • parameters e.g., transmission parameters
  • a UE 305 may generate a sidelink grant that indicates one or more parameters for semi-persistent scheduling (SPS) , such as a periodicity of a sidelink transmission. Additionally, or alternatively, the UE 305 may generate a sidelink grant for event-driven scheduling, such as for an on-demand sidelink message.
  • SPS semi-persistent scheduling
  • Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of selecting sidelink resources, in accordance with the present disclosure.
  • Example 400 shows a UE 402 (e.g., UE 305-1) that may receive communications on a sidelink channel from other UEs (e.g., a UE 305-2) , such as UE 404, UE 406, and/or UE 408, as shown in Fig. 4.
  • UE 402 e.g., UE 305-1
  • UEs e.g., a UE 305-2
  • UE 404 e.g., UE 404, UE 406, and/or UE 408, as shown in Fig. 4.
  • UE 404 is a transmitting UE that is transmitting communications to UE 402, which is a receiving UE. If UE 404 is to transmit a communication to UE 402, UE 404 may sense the sidelink channel in a sensing window to determine which sidelink resources (e.g., subcarriers, subchannels) are available.
  • a sidelink resource may be considered available if the sidelink resource was clear or had a signal energy (e.g., RSRP) that satisfied an availability threshold (e.g., measured interference or energy on the channel is lower than a maximum decibel-milliwatts (dBm) or dB, RSRP threshold) .
  • the availability threshold may be configured per transmission priority and receive priority pair.
  • UE 404 may measure DMRSs on a PSCCH or a PSSCH, according to a configuration.
  • UE 404 may prepare to transmit a communication to UE 402.
  • UE 404 may have already sensed previous sidelink resources and successfully decoded SCI from UE 406 and UE 408.
  • UE 404 may try to reserve sidelink resources, and thus may check the availability of the future sidelink resources reserved by UE 406 and UE 408 by sensing the sidelink channel in the sensing window.
  • UE 404 may measure an RSRP of a signal from UE 408 in sidelink resource 410, and an RSRP of a signal from UE 406 in sidelink resource 412.
  • the corresponding sidelink resource may be available for reservations by UE 404.
  • UE 404 may reserve the sidelink resource (which may be a random selection from available resources) .
  • UE 404 may select and reserve sidelink resource 414 for transmission. This may be in a time slot after which UE 406 and UE 408 had used sidelink resources, and UE 404 may have sensed these sidelink resources earlier.
  • the resource selection window may be a time window from which sidelink resources may be selected, and the resource selection window may extend for a remaining packet delay budget (PDB) .
  • PDB packet delay budget
  • T 0 shown in Fig. 4, may be a configured value, such as 100 milliseconds (ms) or 1100 ms.
  • T 1 may be a time duration that is specific to a UE’s implementation.
  • UE 404 may use SCIs detected during the sensing window. If another UE (e.g., 406, 408) is reserving a resource in the resource selection window, UE 404 may compare a measured RSRP from the other UE and compare it against an RSRP threshold. For example, UE 404 may compare the measured RSRP from the other UE against an RSRP threshold given for a pair of priorities (p i , p j ) , where p i is the priority of the packet for which UE 404 is reserving a resource, and p j is the priority of the packet of the other UE. If the measured RSRP is below the threshold, UE 404 may determine that the resource is available for transmitting the communication to UE 402.
  • p i the priority of the packet for which UE 404 is reserving a resource
  • p j is the priority of the packet of the other UE.
  • the UE 404 may request coordination information to assist UE 404 in selecting the resource. For example, UE 404 may transmit an inter-UE coordination request to the UE 402. The UE 402 may receive the inter-UE coordination request and may generate an inter-UE coordination message that includes scheme 1 coordination information.
  • the scheme 1 coordination information may indicate a preferred resource for the transmission of the communication (e.g., Type A coordination information) or a non-preferred resource for the transmission of the communication (e.g., Type B coordination information) .
  • the inter-UE coordination message may be a self-contained inter-UE coordination message.
  • a self-contained inter-UE coordination message may be an inter-UE coordination message that is transmitted separate from a data transmission (rather than multiplexed with a data transmission) .
  • the UE 402 may perform a resource sensing and selection procedure similar to that described above.
  • Some techniques and apparatuses described herein may relate to providing and receiving feedback (e.g., an ACK or a NACK) associated with an inter-UE coordination message (e.g., an inter-UE coordination request message or an inter-UE coordination response message) .
  • the feedback may be transmitted in a manner similar to that described elsewhere herein with respect to HARQ feedback.
  • feedback associated with an inter-UE coordination message may be transmitted via a PSFCH.
  • a self-contained inter-UE coordination message may be considered as corresponding to a specific type of data packet which may cause a UE receiving the self-contained inter-UE coordination message (e.g., a receiving UE) to provide feedback (e.g., ACK/NACK) to a UE transmitting the self-contained inter-UE coordination message (e.g., a transmitting UE) .
  • a receiving UE may transmit a NACK to a transmitting UE based at least in part on the receiving UE failing to properly decode a self-contained inter-UE coordination message received by the receiving UE.
  • the transmitting UE may receive the NACK and may retransmit the self-contained inter-UE coordination message to the receiving UE.
  • a reliability of a resource selection procedure that enables a UE to request coordination information for selecting a resource for a data transmission can be improved relative to a resource selection procedure that does not include providing or receiving feedback associated with an inter-UE coordination message.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 associated with feedback based inter-UE coordination message request and response, in accordance with the present disclosure.
  • example 500 includes communication between a first UE 120-1 and a second UE 120-2.
  • the first UE 120-1 and the second UE 120-2 may be included in a wireless network, such as wireless network 100.
  • the first UE 120-1 and the second UE 120-2 may communicate via sidelink communications, as described elsewhere herein.
  • the second UE 120-2 may transmit, and the first UE 120-1 may receive, a self-contained inter-UE coordination request message.
  • the self-contained inter-UE coordination request message may indicate a set of requirements associated with the second UE 120-2 transmitting a data packet to another UE (e.g., the first UE 120-1 or one or more other UEs) via sidelink communications.
  • the self-contained inter-UE coordination request message may indicate a size of the data packet, a priority associated with the data packet, or the UE to which the data packet is to be transmitted, among other examples.
  • the self-contained inter-UE coordination request message may indicate that the first UE 120-1 is to provide scheme 1 coordination information (e.g., an indication of a set of preferred resources to be utilized by the second UE 120-2 for transmitting a communication and/or an indication of a set of non-preferred resources) to the second UE 120-2.
  • scheme 1 coordination information e.g., an indication of a set of preferred resources to be utilized by the second UE 120-2 for transmitting a communication and/or an indication of a set of non-preferred resources
  • the second UE 120-2 may utilize the coordination information to assist the second UE 120-2 in selecting one or more resources for transmitting the data packet (e.g., to the first UE 120-1 or one or more other UEs) .
  • the self-contained inter-UE coordination request message may request inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the self-contained inter-UE coordination request message or a negative acknowledgement associated with receiving the self-contained inter-UE coordination request message.
  • the second UE 120-2 may transmit the self-contained inter-UE coordination request message via a reserved sidelink resource. For example, prior to transmitting the self-contained inter-UE coordination request message, the second UE 120-2 may transmit SCI reserving a set of resources for transmitting the self-contained inter-UE coordination request message. In some aspects, the SCI may reserve a set of sidelink resources for at least one retransmission of the self-contained inter-UE coordination request message, as described in greater detail elsewhere herein.
  • the first UE 120-1 may transmit, and the second UE 120-2 may receive, inter-UE coordination request feedback associated with the self-contained inter-UE coordination request message.
  • the first UE 120-1 may determine that the self-contained inter-UE coordination request message corresponds to a transmission of a data packet.
  • the first UE 120-1 may determine to transmit the inter-UE coordination request feedback based at least in part on the self-contained inter-UE coordination request message corresponding to a transmission of a data packet.
  • the first UE 120-1 may transmit the inter-UE coordination request feedback via a PSFCH as HARQ feedback, in a manner similar to that described elsewhere herein.
  • the inter-UE coordination request feedback may indicate a NACK, as described in greater detail elsewhere herein.
  • the inter-UE coordination request feedback may indicate an ACK based at least in part on the first UE 120-1 receiving and successfully decoding the self-contained inter-UE coordination request message.
  • the first UE 120-1 may transmit the inter-UE coordination request feedback indicating the ACK to indicate to the second UE 120-2 that the first UE 120-1 successfully received and decoded the self-contained inter-UE coordination request message.
  • the first UE 120-1 may perform a resource selection process to select one or more resources for the second UE 120-2. For example, the first UE 120-1 may sense a sidelink channel in a sensing window and may select one or more sidelink resources within a resource selection window that are available for the second UE 120-2 to transmit the data, as described elsewhere herein.
  • the first UE 120-1 may generate an inter-UE coordination response message that includes coordination information associated with the second UE 120-2 transmitting the data.
  • the coordination information may indicate one or more sidelink resources selected from the resource selection window, a set of preferred sidelink resources, and/or a set of non-preferred sidelink resources.
  • the first UE 120-1 may transmit, and the second UE 120-2 may receive, the self-contained inter-UE coordination response message.
  • the first UE 120-1 may transmit the self-contained inter-UE coordination response message via a reserved sidelink resource.
  • the first UE 120-1 may transmit SCI reserving a set of resources for transmitting the self-contained inter-UE coordination request message.
  • the SCI may reserve a set of sidelink resources for at least one retransmission of the self-contained inter-UE coordination response message, as described in greater detail elsewhere herein.
  • the second UE 120-2 may transmit, and the first UE 120-1 may receive, inter-UE coordination response feedback associated with the self-contained inter-UE coordination response message.
  • the second UE 120-2 may transmit the inter-UE coordination response feedback in a manner similar to that described elsewhere herein with respect to the inter-UE coordination request feedback.
  • the inter-UE coordination response feedback may indicate a NACK, as described in greater detail elsewhere herein.
  • the inter-UE coordination response feedback may indicate an ACK based at least in part on the second UE 120-2 receiving and decoding the self-contained inter-UE coordination response message.
  • the second UE 120-2 may perform a resource selection process to select one or more sidelink resources for transmitting the data.
  • the second UE 120-2 may select the one or more sidelink resources based at least in part on the coordination information included in the self-contained inter-UE coordination response message.
  • the self-contained inter-UE coordination response message may indicate a set of preferred sidelink resources for transmitting the data.
  • the second UE 120-2 may select the one or more sidelink resources from the set of preferred sidelink resources indicated in the self-contained inter-UE coordination response message.
  • the second UE 120-2 may select the one or more resources based at least in part on sensing information obtained by the second UE 120-2. For example, the second UE 120-2 may sense a sidelink channel in a sensing window and may select one or more sidelink resources within a resource selection window that are available for the second UE 120-2 to transmit the data, as described elsewhere herein.
  • the second UE 120-2 may transmit the data to one or more UEs via the selected sidelink resources. In some aspects, the second UE 120-2 may multicast the data to a group of UEs. In some aspects, the group of UEs may include the first UE 120-1. In some aspects, the first UE 120-1 may not be included in the group of UEs.
  • the second UE 120-2 may unicast the data to a single UE. For example, the second UE 120-2 may transmit the data to the first UE 120-1 or another UE via the selected sidelink resources. As shown by reference number 535, the second UE 120-2 may transmit the data to the first UE 120-1 via the selected sidelink resources.
  • the first UE 120-1 may transmit, and the second UE 120-2 may receive, feedback associated with the transmitted data.
  • the first UE 120-1 may transmit the feedback associated with the transmitted data in a manner similar to that described elsewhere herein with respect to the inter-UE coordination request feedback or the inter-UE coordination response feedback.
  • the feedback may indicate whether the first UE 120-1 successfully received and decoded the transmitted data.
  • the first UE 120-1 may transmit an ACK to the second UE 120-2 based at least in part on the first UE 120-1 successfully receiving and decoding the data transmitted by the second UE 120-2.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
  • Fig. 6 is a diagram illustrating an example 600 associated with feedback based inter-UE coordination message request and response, in accordance with the present disclosure.
  • example 600 includes communication between a first UE 120-1 and a second UE 120-2.
  • the first UE 120-1 and the second UE 120-2 may be included in a wireless network, such as wireless network 100.
  • the first UE 120-1 and the second UE 120-2 may communicate via sidelink communications, as described elsewhere herein.
  • the second UE 120-2 may transmit a self-contained inter-UE coordination request message to the first UE 120-1.
  • the self-contained inter-UE coordination request message may indicate a set of requirements associated with the second UE 120-2 transmitting a data packet to another UE (e.g., the first UE 120-1 or one or more other UEs) via sidelink communications.
  • the self-contained inter-UE coordination request message may indicate a size of the data packet, a priority associated with the data packet, or the UE to which the data packet is to be transmitted, among other examples.
  • the self-contained inter-UE coordination request message may indicate that the first UE 120-1 is to provide scheme 1 coordination information (e.g., an indication of a set of preferred resources to be utilized by the second UE 120-2 for transmitting a communication and/or an indication of a set of non-preferred resources) to the second UE 120-2.
  • scheme 1 coordination information e.g., an indication of a set of preferred resources to be utilized by the second UE 120-2 for transmitting a communication and/or an indication of a set of non-preferred resources
  • the second UE 120-2 may utilize the coordination information to assist the second UE 120-2 in selecting one or more resources for transmitting the data packet (e.g., to the first UE 120-1 or one or more other UEs) .
  • the self-contained inter-UE coordination request message may request inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the self-contained inter-UE coordination request message or a negative acknowledgement associated with receiving the self-contained inter-UE coordination request message.
  • the second UE 120-2 may transmit the self-contained inter-UE coordination request message via a reserved sidelink resource. For example, prior to transmitting the self-contained inter-UE coordination request message, the second UE 120-2 may transmit SCI reserving a set of resources for transmitting the self-contained inter-UE coordination request message. In some aspects, the SCI may reserve a set of sidelink resources for at least one retransmission of the self-contained inter-UE coordination request message, as described in greater detail elsewhere herein.
  • the first UE 120-1 may transmit, and the second UE 120-2 may receive, inter-UE coordination request feedback associated with the self-contained inter-UE coordination request message.
  • the second UE 120-2 may receive the inter-UE coordination request via a PSFCH in a manner similar to that described elsewhere herein.
  • the inter-UE coordination request feedback may indicate an ACK, as described elsewhere herein.
  • the inter-UE coordination request feedback may indicate a NACK.
  • the first UE 120-1 may transmit inter-UE coordination request feedback indicating a NACK based at least in part on being unable to successfully decode the self-contained inter-UE coordination request message.
  • the first UE 120-1 may not transmit (indicated in Fig. 6 as DTX) , and, therefore, the second UE 120-2 may not receive, the inter-UE coordination request feedback.
  • the first UE 120-1 may not receive the self-contained inter-UE coordination request message from the second UE 120-2 and, therefore, may not transmit any feedback associated with the self-contained inter-UE coordination request message to the second UE 120-2.
  • the second UE 120-2 may retransmit the self-contained inter-UE coordination request message to the first UE 120-1. In some aspects, the second UE 120-2 may retransmit the self-contained inter-UE coordination request message based at least in part on receiving the inter-UE coordination request feedback indicating the NACK. In some aspects, the second UE 120-2 may retransmit the self-contained inter-UE coordination request message based at least in part on not receiving the inter-UE coordination request feedback within a time period.
  • the second UE 120-2 may retransmit the self-contained inter-UE coordination request message via a reserved sidelink resource. For example, prior to the initial transmission of the self-contained inter-UE coordination request message, the second UE 120-2 may transmit SCI reserving a set of resources for transmitting the self-contained inter-UE coordination request message and at least one retransmission of the self-contained inter-UE coordination request message.
  • the first UE 120-1 may transmit, and the second UE 120-2 may receive, inter-UE coordination request feedback associated with the retransmission of the self-contained inter-UE coordination request message.
  • the inter-UE coordination request feedback may indicate a NACK, as described elsewhere herein.
  • the inter-UE coordination request feedback may indicate an ACK based at least in part on the first UE 120-1 receiving and successfully decoding the self-contained inter-UE coordination request message.
  • the first UE 120-1 may perform a resource selection process to select one or more sidelink resources for the second UE 120-2 and may transmit a self-contained inter-UE coordination response message to the second UE 120-2 based at least in part on receiving the retransmission of the self-contained inter-UE coordination request message.
  • the first UE 120-1 may perform the resource selection process and may transmit the self-contained inter-UE coordination response message to the second UE 120-2 in a manner similar to that described elsewhere herein.
  • the second UE 120-2 may receive the self-contained inter-UE coordination response message from the first UE 120-1, may perform a resource selection process to select one or more sidelink resources for a data transmission, and may transmit the data via the selected sidelink resources, in a manner similar to that described elsewhere herein.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
  • Fig. 7 is a diagram illustrating an example 700 associated with feedback based inter-UE coordination message request and response, in accordance with the present disclosure.
  • a resource window length includes a time interval T 1 and a resource selection window.
  • the resource window length and the time interval T 1 may be determined based at least in part on a configuration.
  • the configuration may be determined by an upper layer of a UE (e.g., UE 120) and may be provided to a physical (PHY) layer of the UE.
  • PHY physical
  • the resource window length may be determined based at least in part on whether inter-UE coordination feedback (e.g., inter-UE coordination request feedback or inter-UE coordination response feedback) is enabled for the UE. In some aspects, inter-UE coordination feedback may not be enabled and the resource window length may be determined based at least in part on T 2, min and a remaining PDB, as described elsewhere herein.
  • inter-UE coordination feedback e.g., inter-UE coordination request feedback or inter-UE coordination response feedback
  • inter-UE coordination feedback may not be enabled and the resource window length may be determined based at least in part on T 2, min and a remaining PDB, as described elsewhere herein.
  • inter-UE coordination feedback may be enabled for the UE.
  • the resource window length may be determined based at least in part on a selection of a set of sidelink resources of an initial self-contained inter-UE coordination request message or an initial self-contained inter-UE coordination response message and a selection of a set of sidelink resources for one or two retransmissions of the self-contained inter-UE coordination request message or the self-contained inter-UE coordination response message.
  • N e.g. 1 or 2
  • An initial resource window length may be determined based at least in part on T 2, min and a remaining PDB, as described elsewhere herein.
  • the resource window length may be determined based at least in part on a lesser of N ⁇ the initial resource window length and the remaining PDB (e.g., ) .
  • the resource window length may be determined based at least in part on the remaining PDB and T 2 being linearly scaled based at least in part on the quantity of resources to be selected or reserved. In this way, a larger resource window length may be configured based at least in part on the UE transmitting multiple self-contained inter-UE coordination request messages or self-contained inter-UE coordination response messages.
  • Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.
  • Fig. 8 is a diagram illustrating an example 800 associated with feedback based inter-UE coordination message request and response, in accordance with the present disclosure.
  • example 800 includes communication between a first UE 120-1 and a second UE 120-2.
  • the first UE 120-1 and the second UE 120-2 may be included in a wireless network, such as wireless network 100.
  • the first UE 120-1 and the second UE 120-2 may communicate via sidelink communications, as described elsewhere herein.
  • the second UE 120-2 may transmit a self-contained inter-UE coordination request message to the first UE 120-1.
  • the self-contained inter-UE coordination request message may indicate a set of requirements associated with the second UE 120-2 transmitting data to another UE (e.g., the first UE 120-1 or one or more other UEs) via sidelink communications.
  • the self-contained inter-UE coordination request message may indicate whether the transmission of the data is a periodic transmission or an aperiodic transmission, a periodicity of a periodic data transmission, a size of the data, a priority associated with the data, or the UE to which the data is to be transmitted, among other examples.
  • the self-contained inter-UE coordination request message may indicate that the first UE 120-1 is to periodically provide scheme 1 coordination information to the second UE 120-2.
  • the second UE 120-2 may utilize the periodic coordination information to assist the second UE 120-2 in selecting one or more resources for periodically transmitting the data (e.g., to the first UE 120-1 or one or more other UEs) .
  • the self-contained inter-UE coordination request message may request inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the self-contained inter-UE coordination request message or a negative acknowledgement associated with receiving the self-contained inter-UE coordination request message, as described elsewhere herein.
  • the second UE 120-2 may transmit the self-contained inter-UE coordination request message via reserved sidelink resources. For example, prior to transmitting the self-contained inter-UE coordination request message, the second UE 120-2 may transmit SCI reserving a set of resources for transmitting the self-contained inter-UE coordination request message. In some aspects, the SCI may reserve a set of sidelink resources for at least one retransmission of the self-contained inter-UE coordination request message, as described elsewhere herein.
  • the first UE 120-1 may receive the self-contained inter-UE coordination request message and may transmit inter-UE coordination request feedback associated with the self-contained inter-UE coordination request message. For example, the first UE 120-1 may successfully receive and decode the self-contained inter-UE coordination request message and may provide inter-UE coordination request feedback indicating an ACK, as described elsewhere herein.
  • the self-contained inter-UE coordination request message may indicate that the data transmission is an aperiodic data transmission.
  • the first UE 120-1 may provide a self-contained inter-UE coordination response message indicating coordination information for the aperiodic data transmission in a manner similar to that described elsewhere herein.
  • the self-contained inter-UE coordination request message may indicate that the data transmission is a periodic data transmission, a periodicity associated with the periodic data transmission, and/or that the first UE 120-1 is to periodically provide coordination information for the periodic data transmission based at least in part on the periodicity associated with the periodic data transmission.
  • the first UE 120-1 may perform a resource selection process to select a periodic sidelink resource for the second UE 120-2 to periodically transmit the data based at least in part on the self-contained inter-UE coordination request indicating that the data transmission is a periodic data transmission.
  • the first UE 120-1 may periodically transmit, and the second UE 120-2 may periodically receive, self-contained inter-UE coordination response messages.
  • Each self-contained inter-UE coordination response message may include coordination information for a next transmission of the data by the second UE 120-2.
  • the first UE 120-1 may transmit a first self-contained inter-UE coordination response message indicating coordination information for a first transmission of the data by the second UE 120-2.
  • the first UE 120-1 may transmit a second self-contained inter-UE coordination response message based at least in part on the periodicity indicated in the self-contained inter-UE coordination request message.
  • the second self-contained inter-UE coordination response message may indicate coordination information for a second transmission of the data by the second UE 120-2.
  • the first UE 120-1 may transmit additional self-contained inter-UE coordination response messages based at least in part on the periodicity in a similar manner.
  • the first UE 120-1 may periodically transmit the self-contained inter-UE coordination response messages without receiving any additional self-contained inter-UE coordination request messages from the second UE 120-2.
  • the second UE 120-2 may periodically transmit data based at least in part on the periodic self-contained inter-UE coordination response messages.
  • the second UE 120-2 may receive a periodic transmission of the self-contained inter-UE coordination response message and may perform a resource selection process to select a sidelink resource for a next transmission of the data in a manner similar to that described elsewhere herein.
  • the second UE 120-2 may determine to cause the first UE 120-1 to reselect the periodic sidelink resource. As shown by reference number 820, the second UE 120-2 may retransmit the self-contained inter-UE coordination request message to the first UE 120-1. The first UE 120-1 may receive the retransmission of the self-contained inter-UE coordination request message and, as shown by reference number 825, may perform a resource selection process to reselect the resource for the periodic data transmission.
  • the first UE 120-1 may periodically transmit a new self-contained inter-UE coordination response message indicating the reselected resource to the second UE 120-2.
  • the first UE 120-1 may periodically transmit the new self-contained inter-UE coordination response message based at least in part on the periodicity indicated in the self-contained inter-UE coordination request message in a manner similar to that described elsewhere herein.
  • the second UE 120-2 may periodically transmit the data via the reselected resource based at least in part on periodically receiving the self-contained inter-UE coordination response message.
  • Fig. 8 is provided as an example. Other examples may differ from what is described with respect to Fig. 8.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 900 is an example where the UE (e.g., UE 120) performs operations associated with feedback based inter-UE coordination message request and response.
  • the UE e.g., UE 120
  • process 900 may include transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message (block 910) .
  • the UE e.g., using communication manager 140 and/or transmission component 1304, depicted in Fig. 13
  • process 900 may include receiving the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message (block 920) .
  • the UE e.g., using communication manager 140 and/or reception component 1302, depicted in Fig. 13
  • Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the inter-UE coordination request message feedback is received via a PSFCH.
  • process 900 includes receiving an inter-UE coordination response message, and transmitting inter- UE coordination response message feedback indicating the positive acknowledgement associated with receiving the inter-UE coordination response message or the negative acknowledgement associated with receiving the inter-UE coordination response message.
  • the inter-UE coordination response message feedback is transmitted via a PSFCH.
  • process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
  • Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 1000 is an example where the UE (e.g., UE 120) performs operations associated with feedback based inter-UE coordination message request and response.
  • the UE e.g., UE 120
  • process 1000 may include transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message (block 1010) .
  • the UE e.g., using communication manager 140 and/or transmission component 1404, depicted in Fig. 14
  • process 1000 may include retransmitting the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period (block 1020) .
  • the UE e.g., using communication manager 140 and/or transmission component 1404, depicted in Fig. 14
  • Process 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the inter-UE coordination request message feedback is received via a PSFCH.
  • the inter-UE coordination request message is retransmitted via a reserved resource.
  • process 1000 includes transmitting sidelink control information reserving a set of resources for transmitting the inter-UE coordination request message and transmitting at least one retransmission of the inter-UE coordination request message.
  • process 1000 includes receiving sidelink control information reserving a set of resources for transmitting an inter-UE coordination response message, and transmitting at least one retransmission of the inter-UE coordination response message.
  • the inter-UE coordination request message is retransmitted based at least in part on not receiving the inter-UE coordination request message feedback within the time period, and process 1000 includes receiving the inter-UE coordination request message feedback based at least in part on retransmitting the inter-UE coordination request message.
  • process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
  • Fig. 11 is a diagram illustrating an example process 1100 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 1100 is an example where the UE (e.g., UE 120) performs operations associated with feedback based inter-UE coordination message request and response.
  • the UE e.g., UE 120
  • process 1100 may include receiving a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window (block 1110) .
  • the UE e.g., using communication manager 140 and/or reception component 1502, depicted in Fig. 15
  • process 1100 may include selecting, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window (block 1120) .
  • the UE e.g., using communication manager 140 and/or selection component 1508, depicted in Fig.
  • the 15) may select, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window, as described above.
  • process 1100 may include transmitting the self-contained inter-UE coordination message via the first sidelink resource (block 1130) .
  • the UE e.g., using communication manager 140 and/or transmission component 1504, depicted in Fig. 15
  • Process 1100 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 1100 includes receiving inter-UE coordination message feedback indicating a negative acknowledgement associated with receiving the self-contained inter-UE coordination message, and retransmitting the self-contained inter-UE coordination message via a second sidelink resource, of the one or more second sidelink resources, based at least in part on receiving the inter-UE coordination message feedback indicating the negative acknowledgement associated with receiving the self-contained inter-UE coordination message.
  • a length of the resource selection window is determined based at least in part on multiplying the initial time interval by a quantity of the one or more second sidelink resources.
  • a length of the resource selection window is determined based at least in part on a time interval associated with a packet delay budget of a data transmission associated with the self-contained inter-UE coordination message and an initial time interval associated with a resource selection window for selecting a resource for the data transmission.
  • the time interval associated with the packet delay budget of the data transmission associated with the self-contained inter-UE coordination message and the initial time interval associated with the resource selection window for selecting the resource for the data transmission are linearly scaled based at least in part on a quantity of the one or more second sidelink resources.
  • the time interval associated with the packet delay budget of the data transmission associated with the self-contained inter-UE coordination message and the initial time interval associated with the resource selection window for selecting the resource for the data transmission are determined by an upper layer of the UE and provided to a physical layer of the UE.
  • process 1100 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 11. Additionally, or alternatively, two or more of the blocks of process 1100 may be performed in parallel.
  • Fig. 12 is a diagram illustrating an example process 1200 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 1200 is an example where the UE (e.g., UE 120) performs operations associated with feedback based inter-UE coordination message request and response.
  • the UE e.g., UE 120
  • process 1200 may include receiving an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission (block 1210) .
  • the UE e.g., using communication manager 140 and/or reception component 1602, depicted in Fig. 16
  • process 1200 may include reserving a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information (block 1220) .
  • the UE e.g., using communication manager 140 and/or reservation component 1608, depicted in Fig. 16
  • process 1200 may include periodically transmitting the inter-UE coordination response message via the reserved periodic resource (block 1230) .
  • the UE e.g., using communication manager 140 and/or transmission component 1604, depicted in Fig. 16
  • Process 1200 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 1200 includes receiving a retransmission of the inter-UE coordination request message, performing a resource reselection process based at least in part on receiving the retransmission of the inter-UE coordination request message, and transmitting, via the reserved periodic resource, another inter-UE response message including reselected resource reservation coordination information based at least in part on performing the resource reselection process.
  • process 1200 includes receiving another inter-UE coordination request message requesting aperiodic resource reservation coordination information associated with an aperiodic data transmission, and reserving an aperiodic resource for transmitting another inter-UE coordination response message including the aperiodic resource reservation coordination information based at least in part on the other inter-UE coordination request message, and transmitting the other inter-UE coordination response message via the reserved aperiodic resource.
  • process 1200 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 12. Additionally, or alternatively, two or more of the blocks of process 1200 may be performed in parallel.
  • Fig. 13 is a diagram of an example apparatus 1300 for wireless communication.
  • the apparatus 1300 may be a UE, or a UE may include the apparatus 1300.
  • the apparatus 1300 includes a reception component 1302 and a transmission component 1304, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1300 may communicate with another apparatus 1306 (such as a UE, a base station, or another wireless communication device) using the reception component 1302 and the transmission component 1304.
  • the apparatus 1300 may include the communication manager 140.
  • the communication manager 140 may include a feedback component 1308, among other examples.
  • the apparatus 1300 may be configured to perform one or more operations described herein in connection with Figs. 5-8. Additionally, or alternatively, the apparatus 1300 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9.
  • the apparatus 1300 and/or one or more components shown in Fig. 13 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 13 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1302 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1306.
  • the reception component 1302 may provide received communications to one or more other components of the apparatus 1300.
  • the reception component 1302 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1300.
  • the reception component 1302 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 1304 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1306.
  • one or more other components of the apparatus 1300 may generate communications and may provide the generated communications to the transmission component 1304 for transmission to the apparatus 1306.
  • the transmission component 1304 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1306.
  • the transmission component 1304 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1304 may be co-located with the reception component 1302 in a transceiver.
  • the transmission component 1304 may transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message.
  • the reception component 1302 may receive the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
  • the reception component 1302 may receive an inter-UE coordination response message.
  • the feedback component 1308 may generate inter-UE coordination response message feedback indicating the positive acknowledgement associated with receiving the inter-UE coordination response message or the negative acknowledgement associated with receiving the inter-UE coordination response message.
  • the transmission component 1304 may transmit the inter-UE coordination response message feedback indicating the positive acknowledgement associated with receiving the inter-UE coordination response message or the negative acknowledgement associated with receiving the inter-UE coordination response message.
  • Fig. 13 The number and arrangement of components shown in Fig. 13 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 13. Furthermore, two or more components shown in Fig. 13 may be implemented within a single component, or a single component shown in Fig. 13 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 13 may perform one or more functions described as being performed by another set of components shown in Fig. 13.
  • Fig. 14 is a diagram of an example apparatus 1400 for wireless communication.
  • the apparatus 1400 may be a UE, or a UE may include the apparatus 1400.
  • the apparatus 1400 includes a reception component 1402 and a transmission component 1404, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1400 may communicate with another apparatus 1406 (such as a UE, a base station, or another wireless communication device) using the reception component 1402 and the transmission component 1404.
  • the apparatus 1400 may include the communication manager 140.
  • the communication manager 140 may include a feedback component 1408, among other examples.
  • the apparatus 1400 may be configured to perform one or more operations described herein in connection with Figs. 5-8. Additionally, or alternatively, the apparatus 1400 may be configured to perform one or more processes described herein, such as process 1000 of Fig. 10.
  • the apparatus 1400 and/or one or more components shown in Fig. 14 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 14 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1402 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1406.
  • the reception component 1402 may provide received communications to one or more other components of the apparatus 1400.
  • the reception component 1402 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1400.
  • the reception component 1402 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 1404 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1406.
  • one or more other components of the apparatus 1400 may generate communications and may provide the generated communications to the transmission component 1404 for transmission to the apparatus 1406.
  • the transmission component 1404 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1406.
  • the transmission component 1404 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1404 may be co-located with the reception component 1402 in a transceiver.
  • the transmission component 1404 may transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message.
  • the transmission component 1404 may retransmit the inter-UE coordination request message based at least in part on the feedback component 1408 receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
  • the transmission component 1404 may transmit sidelink control information reserving a set of resources for transmitting the inter-UE coordination request message and transmitting at least one retransmission of the inter-UE coordination request message.
  • the reception component 1402 may receive sidelink control information reserving a set of resources for transmitting an inter-UE coordination response message.
  • the reception component 1402 may receive the inter-UE coordination response message and at least one retransmission of the inter-UE coordination response message via the set of resources.
  • Fig. 14 The number and arrangement of components shown in Fig. 14 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 14. Furthermore, two or more components shown in Fig. 14 may be implemented within a single component, or a single component shown in Fig. 14 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 14 may perform one or more functions described as being performed by another set of components shown in Fig. 14.
  • Fig. 15 is a diagram of an example apparatus 1500 for wireless communication.
  • the apparatus 1500 may be a UE, or a UE may include the apparatus 1500.
  • the apparatus 1500 includes a reception component 1502 and a transmission component 1504, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1500 may communicate with another apparatus 1506 (such as a UE, a base station, or another wireless communication device) using the reception component 1502 and the transmission component 1504.
  • the apparatus 1500 may include the communication manager 140.
  • the communication manager 140 may include a selection component 1508, among other examples.
  • the apparatus 1500 may be configured to perform one or more operations described herein in connection with Figs. 5-8. Additionally, or alternatively, the apparatus 1500 may be configured to perform one or more processes described herein, such as process 1100 of Fig. 11.
  • the apparatus 1500 and/or one or more components shown in Fig. 15 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 15 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1502 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1506.
  • the reception component 1502 may provide received communications to one or more other components of the apparatus 1500.
  • the reception component 1502 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1500.
  • the reception component 1502 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 1504 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1506.
  • one or more other components of the apparatus 1500 may generate communications and may provide the generated communications to the transmission component 1504 for transmission to the apparatus 1506.
  • the transmission component 1504 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1506.
  • the transmission component 1504 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1504 may be co-located with the reception component 1502 in a transceiver.
  • the reception component 1502 may receive a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window.
  • the selection component 1508 may select, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window.
  • the transmission component 1504 may transmit the self-contained inter-UE coordination message via the first sidelink resource.
  • the reception component 1502 may receive inter-UE coordination message feedback indicating a negative acknowledgement associated with receiving the self-contained inter-UE coordination message.
  • the transmission component 1504 may retransmit the self-contained inter-UE coordination message via a second sidelink resource, of the one or more second sidelink resources, based at least in part on receiving the inter-UE coordination message feedback indicating the negative acknowledgement associated with receiving the self-contained inter-UE coordination message.
  • Fig. 15 The number and arrangement of components shown in Fig. 15 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 15. Furthermore, two or more components shown in Fig. 15 may be implemented within a single component, or a single component shown in Fig. 15 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 15 may perform one or more functions described as being performed by another set of components shown in Fig. 15.
  • Fig. 16 is a diagram of an example apparatus 1600 for wireless communication.
  • the apparatus 1600 may be a UE, or a UE may include the apparatus 1600.
  • the apparatus 1600 includes a reception component 1602 and a transmission component 1604, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1600 may communicate with another apparatus 1606 (such as a UE, a base station, or another wireless communication device) using the reception component 1602 and the transmission component 1604.
  • the apparatus 1600 may include the communication manager 140.
  • the communication manager 140 may include one or more of a reservation component 1608 or a performance component 1610, among other examples.
  • the apparatus 1600 may be configured to perform one or more operations described herein in connection with Figs. 5-8. Additionally, or alternatively, the apparatus 1600 may be configured to perform one or more processes described herein, such as process 1200 of Fig. 12.
  • the apparatus 1600 and/or one or more components shown in Fig. 16 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 16 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1602 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1606.
  • the reception component 1602 may provide received communications to one or more other components of the apparatus 1600.
  • the reception component 1602 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1600.
  • the reception component 1602 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 1604 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1606.
  • one or more other components of the apparatus 1600 may generate communications and may provide the generated communications to the transmission component 1604 for transmission to the apparatus 1606.
  • the transmission component 1604 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1606.
  • the transmission component 1604 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1604 may be co-located with the reception component 1602 in a transceiver.
  • the reception component 1602 may receive an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission.
  • the reservation component 1608 may reserve a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information.
  • the transmission component 1604 may periodically transmit the inter-UE coordination response message via the reserved periodic resource.
  • the reception component 1602 may receive a retransmission of the inter-UE coordination request message.
  • the performance component 1610 may perform a resource reselection process based at least in part on receiving the retransmission of the inter-UE coordination request message.
  • the transmission component 1604 may transmit, via the reserved periodic resource, another inter-UE response message including reselected resource reservation coordination information based at least in part on performing the resource reselection process.
  • the reception component 1602 may receive another inter-UE coordination request message requesting aperiodic resource reservation coordination information associated with an aperiodic data transmission.
  • the reservation component 1608 may reserve an aperiodic resource for transmitting another inter-UE coordination response message including the aperiodic resource reservation coordination information based at least in part on the other inter-UE coordination request message.
  • the transmission component 1604 may transmit the other inter-UE coordination response message via the reserved aperiodic resource.
  • Fig. 16 The number and arrangement of components shown in Fig. 16 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 16. Furthermore, two or more components shown in Fig. 16 may be implemented within a single component, or a single component shown in Fig. 16 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 16 may perform one or more functions described as being performed by another set of components shown in Fig. 16.
  • a method of wireless communication performed by a UE comprising: transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message; and receiving the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
  • Aspect 2 The method of Aspect 1, wherein the inter-UE coordination request message feedback is received via a PSFCH, wherein the inter-UE coordination request feedback corresponds to HARQ feedback.
  • Aspect 3 The method of one or more of Aspects 1 and 2, further comprising: receiving an inter-UE coordination response message; and transmitting inter-UE coordination response message feedback indicating the positive acknowledgement associated with receiving the inter-UE coordination response message or the negative acknowledgement associated with receiving the inter-UE coordination response message.
  • Aspect 4 The method of Aspect 3, wherein the inter-UE coordination response message feedback is transmitted via a PSFCH, and the inter-UE coordination request feedback corresponds to HARQ feedback.
  • a method of wireless communication performed by a UE comprising: transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message; and retransmitting the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
  • Aspect 6 The method of Aspect 5, wherein the inter-UE coordination request message feedback is received via a PSFCH.
  • Aspect 7 The method of one or more of Aspects 5 and 6, wherein the inter-UE coordination request message is retransmitted via a reserved resource.
  • Aspect 8 The method of one or more of Aspects 5 through 7, further comprising: transmitting sidelink control information reserving a set of resources for transmitting the inter-UE coordination request message and transmitting at least one retransmission of the inter-UE coordination request message.
  • Aspect 9 The method of one or more of Aspects 5 through 8, further comprising: receiving sidelink control information reserving a set of resources for transmitting an inter-UE coordination response message; and receiving the inter-UE coordination response message and at least one retransmission of the inter-UE coordination response message via the set of resources.
  • Aspect 10 The method of one or more of Aspects 5 through 9, wherein the inter-UE coordination request message is retransmitted based at least in part on not receiving the inter-UE coordination request message feedback within the time period, the method further comprising: receiving the inter-UE coordination request message feedback based at least in part on retransmitting the inter-UE coordination request message.
  • a method of wireless communication performed by a UE comprising: receiving a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window; selecting, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window; and transmitting the self-contained inter-UE coordination message via the first sidelink resource.
  • Aspect 12 The method of Aspect 11, further comprising: receiving inter-UE coordination message feedback indicating a negative acknowledgement associated with receiving the self-contained inter-UE coordination message; and retransmitting the self-contained inter-UE coordination message via a second sidelink resource, of the one or more second sidelink resources, based at least in part on receiving the inter-UE coordination message feedback indicating the negative acknowledgement associated with receiving the self-contained inter-UE coordination message.
  • Aspect 13 The method of one or more of Aspects 11 and 12, wherein a length of the resource selection window is determined based at least in part on a total quantity of the one or more second sidelink resources.
  • Aspect 14 The method of one or more of Aspects 11 through 13, wherein a length of the resource selection window is determined based at least in part on a time interval associated with a packet delay budget of a data transmission associated with the self-contained inter-UE coordination message and an initial time interval associated with a resource selection window for selecting a resource for the data transmission.
  • Aspect 15 The method of Aspect 14, wherein the time interval associated with the packet delay budget of the data transmission associated with the self-contained inter-UE coordination message and the initial time interval associated with the resource selection window for selecting the resource for the data transmission are linearly scaled based at least in part on a quantity of the one or more second sidelink resources.
  • Aspect 16 The method of Aspect 14, wherein the time interval associated with the packet delay budget of the data transmission associated with the self-contained inter-UE coordination message and the initial time interval associated with the resource selection window for selecting the resource for the data transmission are determined by an upper layer of the UE and provided to a physical layer of the UE.
  • a method of wireless communication performed by a UE comprising: receiving an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission; reserving a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information; and periodically transmitting the inter-UE coordination response message via the reserved periodic resource.
  • Aspect 18 The method of Aspect 17, further comprising: receiving a retransmission of the inter-UE coordination request message; performing a resource reselection process based at least in part on receiving the retransmission of the inter-UE coordination request message; and transmitting, via the reserved periodic resource, another inter-UE response message including reselected resource reservation coordination information based at least in part on performing the resource reselection process.
  • Aspect 19 The method of one or more of Aspects 17 and 18, further comprising: receiving another inter-UE coordination request message requesting aperiodic resource reservation coordination information associated with an aperiodic data transmission; and reserving an aperiodic resource for transmitting another inter-UE coordination response message including the aperiodic resource reservation coordination information based at least in part on the other inter-UE coordination request message; and transmitting the other inter-UE coordination response message via the reserved aperiodic resource.
  • Aspect 20 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1 through 4.
  • a device for wireless communication comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1 through 4.
  • Aspect 22 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1 through 4.
  • Aspect 23 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1 through 4.
  • Aspect 24 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1 through 4.
  • Aspect 25 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 5 through 10.
  • a device for wireless communication comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 5 through 10.
  • Aspect 27 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 5 through 10.
  • Aspect 28 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 5 through 10.
  • Aspect 29 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 5 through 10.
  • Aspect 30 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 11 through 16.
  • a device for wireless communication comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 11 through 16.
  • Aspect 32 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 11 through 16.
  • Aspect 33 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 11 through 16.
  • Aspect 34 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 11 through 16.
  • Aspect 35 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 17 through 19.
  • Aspect 36 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 17 through 19.
  • Aspect 37 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 17 through 19.
  • Aspect 38 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 17 through 19.
  • Aspect 39 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 17 through 19.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) .
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message. The UE may receive the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message. Numerous other aspects are described.

Description

FEEDBACK BASED INTER USER EQUIPMENT COORDINATION MESSAGE REQUEST AND RESPONSE
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for feedback based inter user equipment (inter-UE) coordination message request and response.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs. A UE may communicate with a base station via downlink communications and uplink communications. “Downlink” (or “DL” ) refers to a communication link from the base station to the UE, and “uplink” (or “UL” ) refers to a communication link from the UE to the base station.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different UEs to communicate on a municipal, national, regional, and/or global level. New Radio (NR) , which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services,  making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
Some aspects described herein relate to a method of wireless communication performed by a user equipment (UE) . The method may include transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message. The method may include receiving the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
Some aspects described herein relate to a method of wireless communication performed by a UE. The method may include transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message. The method may include retransmitting the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
Some aspects described herein relate to a method of wireless communication performed by a UE. The method may include receiving a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window. The method may include selecting, based at least in part on the  configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window. The method may include transmitting the self-contained inter-UE coordination message via the first sidelink resource.
Some aspects described herein relate to a method of wireless communication performed by a UE. The method may include receiving an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission. The method may include reserving a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information. The method may include periodically transmitting the inter-UE coordination response message via the reserved periodic resource.
Some aspects described herein relate to a UE for wireless communication. The UE may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message. The one or more processors may be configured to receive the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
Some aspects described herein relate to a UE for wireless communication. The UE may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message. The one or more processors may be configured to retransmit the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative  acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
Some aspects described herein relate to a UE for wireless communication. The UE may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to receive a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window. The one or more processors may be configured to select, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window. The one or more processors may be configured to transmit the self-contained inter-UE coordination message via the first sidelink resource.
Some aspects described herein relate to a UE for wireless communication. The UE may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to receive an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission. The one or more processors may be configured to reserve a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information. The one or more processors may be configured to periodically transmit the inter-UE coordination response message via the reserved periodic resource.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message. The set of instructions, when executed by one or more processors of the UE, may cause the UE to  receive the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message. The set of instructions, when executed by one or more processors of the UE, may cause the UE to retransmit the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window. The set of instructions, when executed by one or more processors of the UE, may cause the UE to select, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window. The set of instructions, when executed by one or more processors of the UE, may cause the UE to transmit the self-contained inter-UE coordination message via the first sidelink resource.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission. The set of instructions, when executed by one or more  processors of the UE, may cause the UE to reserve a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information. The set of instructions, when executed by one or more processors of the UE, may cause the UE to periodically transmit the inter-UE coordination response message via the reserved periodic resource.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message. The apparatus may include means for receiving the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message. The apparatus may include means for retransmitting the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for receiving a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window. The apparatus may include means for selecting, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window.  The apparatus may include means for transmitting the self-contained inter-UE coordination message via the first sidelink resource.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for receiving an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission. The apparatus may include means for reserving a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information. The apparatus may include means for periodically transmitting the inter-UE coordination response message via the reserved periodic resource.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages, will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
While aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios. Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements. For example, some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end- user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) . Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components. Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects. For example, transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) . It is intended that aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
Fig. 3 is a diagram illustrating an example of sidelink communication, in accordance with the present disclosure.
Fig. 4 is a diagram illustrating an example of selecting sidelink resources, in accordance with the present disclosure.
Figs. 5-8 are diagrams illustrating examples associated with feedback based inter-UE coordination message request and response, in accordance with the present disclosure.
Figs. 9-12 are diagrams illustrating example processes associated with feedback based inter-UE coordination message request and response, in accordance with the present disclosure.
Figs. 13-16 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. One skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
While aspects may be described herein using terminology commonly associated with a 5G or New Radio (NR) radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure. The wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples. The wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities. A base station 110 is an entity that communicates with UEs 120. A base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) . Each base station 110 may provide communication coverage for a particular geographic area. In the Third Generation Partnership Project (3GPP) , the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) . A base station 110 for a macro cell may be referred to as a macro base station. A base station 110 for a pico cell may be referred to as a pico base station. A base station 110 for a femto cell may be referred to as a femto base station or an in-home base station. In the example shown in Fig. 1, the BS 110a may be a macro base station for a macro cell 102a, the BS 110b may be a pico base station for a pico cell 102b, and the BS 110c may be a femto base station for a femto cell 102c. A base station may support one or multiple (e.g., three) cells.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) . In some examples, the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
The wireless network 100 may include one or more relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) . A relay station may be a UE 120 that can relay transmissions for other UEs 120. In the example shown in Fig. 1, the BS 110d (e.g., a relay base station) may communicate with the BS 110a (e.g., a macro base station) and the UE 120d in order to facilitate communication between the BS 110a and the UE 120d. A base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
The wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100. For example, macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110. The network controller 130 may communicate with the base stations 110 via a backhaul communication link. The base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
The UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile. A UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit. A UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a  cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, and/or any other suitable device that is configured to communicate via a wireless medium.
Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity. Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices. Some UEs 120 may be considered a Customer Premises Equipment. A UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components. In some examples, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In general, any number of wireless networks 100 may be deployed in a given geographic area. Each wireless network 100 may support a particular RAT and may operate on one or more frequencies. A RAT may be referred to as a radio technology, an air interface, or the like. A frequency may be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure  (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network. In such examples, a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4-1 (52.6 GHz –71 GHz) , FR4 (52.6 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above examples in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band. It is contemplated that  the frequencies included in these operating bands (e.g., FR1, FR2, FR3, FR4, FR4-a, FR4-1, and/or FR5) may be modified, and techniques described herein are applicable to those modified frequency ranges.
In some aspects, the UE 120 may include a communication manager 140. As described in more detail elsewhere herein, the communication manager 140 may perform one or more operations associated with feedback based inter-UE coordination message request and response. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure. The base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ≥ 1) . The UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ≥ 1) .
At the base station 110, a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) . The transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120. The base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120. The transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. The transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t. For example, each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.  Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal. The modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
At the UE 120, a set of antennas 252 (shown as antennas 252a through 252r) may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r. For example, each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254. Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples. Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples. In some examples, one or more components of the UE 120 may be included in a housing 284.
The network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292. The network controller 130 may include, for example, one or more devices in a core network. The network controller 130 may communicate with the base station 110 via the communication unit 294.
One or more antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more  antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at the UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280. The transmit processor 264 may generate reference symbols for one or more reference signals. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110. In some examples, the modem 254 of the UE 120 may include a modulator and a demodulator. In some examples, the UE 120 includes a transceiver. The transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266. The transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 5-16) .
At the base station 110, the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240. The base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244. The base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications. In some examples, the modem 232 of the base station 110 may include a modulator and a demodulator. In some examples, the base station 110 includes a transceiver. The transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230. The transceiver  may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 5-16) .
The controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with feedback based inter-UE coordination message request and response, as described in more detail elsewhere herein. For example, the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, process 1200 of Fig. 12, and/or other processes as described herein. The memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively. In some examples, the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, process 1200 of Fig. 12, and/or other processes as described herein. In some examples, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, the UE includes means for transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message; and/or means for receiving the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message. The means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
In some aspects, the UE includes means for transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message; and/or means for retransmitting the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period. The means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
In some aspects, the UE includes means for receiving a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window; means for selecting, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window; and/or means for transmitting the self-contained inter-UE coordination message via the first sidelink resource. The means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
In some aspects, the UE includes means for receiving an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission; means for reserving a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information; and/or means for periodically transmitting the inter-UE coordination response message via the reserved periodic resource. The means for the UE to perform operations  described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of sidelink communications, in accordance with the present disclosure.
As shown in Fig. 3, a first UE 305-1 may communicate with a second UE 305-2 (and one or more other UEs 305) via one or more sidelink channels 310. The UEs 305-1 and 305-2 may communicate using the one or more sidelink channels 310 for P2P communications, D2D communications, V2X communications (e.g., which may include V2V communications, V2I communications, and/or V2P communications) and/or mesh networking. In some aspects, the UEs 305 (e.g., UE 305-1 and/or UE 305-2) may correspond to one or more other UEs described elsewhere herein, such as UE 120. In some aspects, the one or more sidelink channels 310 may use a PC5 interface and/or may operate in a high frequency band (e.g., the 5.9 GHz band) . Additionally, or alternatively, the UEs 305 may synchronize timing of transmission time intervals (TTIs) (e.g., frames, subframes, slots, or symbols) using global navigation satellite system (GNSS) timing.
As further shown in Fig. 3, the one or more sidelink channels 310 may include a physical sidelink control channel (PSCCH) 315, a physical sidelink shared channel (PSSCH) 320, and/or a physical sidelink feedback channel (PSFCH) 325. The PSCCH 315 may be used to communicate control information, similar to a physical downlink control channel (PDCCH) and/or a physical uplink control channel (PUCCH) used for cellular communications with a base station 110 via an access link or an access channel. The PSSCH 320 may be used to communicate data, similar to a physical downlink shared channel (PDSCH) and/or a physical uplink shared channel (PUSCH) used for cellular communications with a base station 110 via an access link or an access channel.  For example, the PSCCH 315 may carry sidelink control information (SCI) 330, which may indicate various control information used for sidelink communications, such as one or more resources (e.g., time resources, frequency resources, and/or spatial resources) where a transport block (TB) 335 may be carried on the PSSCH 320. The TB 335 may include data. The PSFCH 325 may be used to communicate sidelink feedback 340, such as hybrid automatic repeat request (HARQ) feedback (e.g., acknowledgement or negative acknowledgement (ACK/NACK) information) , transmit power control (TPC) , and/or a scheduling request (SR) .
Although shown on the PSCCH 315, in some aspects, the SCI 330 may include multiple communications in different stages, such as a first stage SCI (SCI-1) and a second stage SCI (SCI-2) . The SCI-1 may be transmitted on the PSCCH 315. The SCI-2 may be transmitted on the PSSCH 320. The SCI-1 may include, for example, an indication of one or more resources (e.g., time resources, frequency resources, and/or spatial resources) on the PSSCH 320, information for decoding sidelink communications on the PSSCH, a quality of service (QoS) priority value, a resource reservation period, a PSSCH DMRS pattern, an SCI format for the SCI-2, a beta offset for the SCI-2, a quantity of PSSCH DMRS ports, and/or an MCS. The SCI-2 may include information associated with data transmissions on the PSSCH 320, such as a HARQ process ID, a new data indicator (NDI) , a source identifier, a destination identifier, and/or a channel state information (CSI) report trigger.
In some aspects, the one or more sidelink channels 310 may use resource pools. For example, a scheduling assignment (e.g., included in SCI 330) may be transmitted in sub-channels using specific resource blocks (RBs) across time. In some aspects, data transmissions (e.g., on the PSSCH 320) associated with a scheduling assignment may occupy adjacent RBs in the same subframe as the scheduling assignment (e.g., using frequency division multiplexing) . In some aspects, a scheduling assignment and associated data transmissions are not transmitted on adjacent RBs.
In some aspects, a UE 305 may operate using a sidelink transmission mode (e.g., Mode 1) where resource selection and/or scheduling is performed by a base station 110. For example, the UE 305 may receive a grant (e.g., in downlink control information (DCI) or in a radio resource control (RRC) message, such as for configured grants) from the base station 110 for sidelink channel access and/or scheduling. In some aspects, a UE 305 may operate using a transmission mode (e.g., Mode 2) where resource selection and/or scheduling is performed by the UE 305 (e.g., rather than a  base station 110) . In some aspects, the UE 305 may perform resource selection and/or scheduling by sensing channel availability for transmissions. For example, the UE 305 may measure an RSSI parameter (e.g., a sidelink-RSSI (S-RSSI) parameter) associated with various sidelink channels, may measure an RSRP parameter (e.g., a PSSCH-RSRP parameter) associated with various sidelink channels, and/or may measure an RSRQ parameter (e.g., a PSSCH-RSRQ parameter) associated with various sidelink channels, and may select a channel for transmission of a sidelink communication based at least in part on the measurement (s) .
Additionally, or alternatively, the UE 305 may perform resource selection and/or scheduling using SCI 330 received in the PSCCH 315, which may indicate occupied resources and/or channel parameters. Additionally, or alternatively, the UE 305 may perform resource selection and/or scheduling by determining a channel busy rate (CBR) associated with various sidelink channels, which may be used for rate control (e.g., by indicating a maximum number of resource blocks that the UE 305 can use for a particular set of subframes) .
In the transmission mode where resource selection and/or scheduling is performed by a UE 305, the UE 305 may generate sidelink grants, and may transmit the grants in SCI 330. A sidelink grant may indicate, for example, one or more parameters (e.g., transmission parameters) to be used for an upcoming sidelink transmission, such as one or more resource blocks to be used for the upcoming sidelink transmission on the PSSCH 320 (e.g., for TBs 335) , one or more subframes to be used for the upcoming sidelink transmission, and/or an MCS to be used for the upcoming sidelink transmission. In some aspects, a UE 305 may generate a sidelink grant that indicates one or more parameters for semi-persistent scheduling (SPS) , such as a periodicity of a sidelink transmission. Additionally, or alternatively, the UE 305 may generate a sidelink grant for event-driven scheduling, such as for an on-demand sidelink message.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of selecting sidelink resources, in accordance with the present disclosure. Example 400 shows a UE 402 (e.g., UE 305-1) that may receive communications on a sidelink channel from other UEs (e.g., a UE 305-2) , such as UE 404, UE 406, and/or UE 408, as shown in Fig. 4.
As shown in Fig. 4, UE 404 is a transmitting UE that is transmitting communications to UE 402, which is a receiving UE. If UE 404 is to transmit a  communication to UE 402, UE 404 may sense the sidelink channel in a sensing window to determine which sidelink resources (e.g., subcarriers, subchannels) are available. A sidelink resource may be considered available if the sidelink resource was clear or had a signal energy (e.g., RSRP) that satisfied an availability threshold (e.g., measured interference or energy on the channel is lower than a maximum decibel-milliwatts (dBm) or dB, RSRP threshold) . The availability threshold may be configured per transmission priority and receive priority pair. UE 404 may measure DMRSs on a PSCCH or a PSSCH, according to a configuration.
For example, UE 404 may prepare to transmit a communication to UE 402. UE 404 may have already sensed previous sidelink resources and successfully decoded SCI from UE 406 and UE 408. UE 404 may try to reserve sidelink resources, and thus may check the availability of the future sidelink resources reserved by UE 406 and UE 408 by sensing the sidelink channel in the sensing window. UE 404 may measure an RSRP of a signal from UE 408 in sidelink resource 410, and an RSRP of a signal from UE 406 in sidelink resource 412. If an observed RSRP satisfies the RSRP threshold (e.g., is lower than a maximum RSRP) , the corresponding sidelink resource may be available for reservations by UE 404. UE 404 may reserve the sidelink resource (which may be a random selection from available resources) . For example, UE 404 may select and reserve sidelink resource 414 for transmission. This may be in a time slot after which UE 406 and UE 408 had used sidelink resources, and UE 404 may have sensed these sidelink resources earlier.
There may be a resource selection trigger to trigger selection of sidelink resources after a processing time T proc, 0, and before another processing time T proc, 1 before a resource selection window from which sidelink resources are available. The resource selection window may be a time window from which sidelink resources may be selected, and the resource selection window may extend for a remaining packet delay budget (PDB) . T 0, shown in Fig. 4, may be a configured value, such as 100 milliseconds (ms) or 1100 ms. T 1 may be a time duration that is specific to a UE’s implementation. T 2, min may be configured per priority {1, 5, 10, 20} times 2 μ, where μ = 0, 1, 2, and 3 for subcarrier spacing of 15 kilohertz (kHz) , 30 kHz, 60 kHz, and 120 kHz, respectively.
If resource selection is triggered, UE 404 may use SCIs detected during the sensing window. If another UE (e.g., 406, 408) is reserving a resource in the resource selection window, UE 404 may compare a measured RSRP from the other UE and  compare it against an RSRP threshold. For example, UE 404 may compare the measured RSRP from the other UE against an RSRP threshold given for a pair of priorities (p i, p j) , where p i is the priority of the packet for which UE 404 is reserving a resource, and p j is the priority of the packet of the other UE. If the measured RSRP is below the threshold, UE 404 may determine that the resource is available for transmitting the communication to UE 402.
In some cases, prior to selecting the resource and/or transmitting the communication to UE 402, the UE 404 may request coordination information to assist UE 404 in selecting the resource. For example, UE 404 may transmit an inter-UE coordination request to the UE 402. The UE 402 may receive the inter-UE coordination request and may generate an inter-UE coordination message that includes scheme 1 coordination information. The scheme 1 coordination information may indicate a preferred resource for the transmission of the communication (e.g., Type A coordination information) or a non-preferred resource for the transmission of the communication (e.g., Type B coordination information) .
In some cases, the inter-UE coordination message may be a self-contained inter-UE coordination message. A self-contained inter-UE coordination message may be an inter-UE coordination message that is transmitted separate from a data transmission (rather than multiplexed with a data transmission) . The UE 402 may perform a resource sensing and selection procedure similar to that described above.
Some techniques and apparatuses described herein may relate to providing and receiving feedback (e.g., an ACK or a NACK) associated with an inter-UE coordination message (e.g., an inter-UE coordination request message or an inter-UE coordination response message) . In some aspects, the feedback may be transmitted in a manner similar to that described elsewhere herein with respect to HARQ feedback. For example, feedback associated with an inter-UE coordination message may be transmitted via a PSFCH.
In some aspects, a self-contained inter-UE coordination message may be considered as corresponding to a specific type of data packet which may cause a UE receiving the self-contained inter-UE coordination message (e.g., a receiving UE) to provide feedback (e.g., ACK/NACK) to a UE transmitting the self-contained inter-UE coordination message (e.g., a transmitting UE) . For example, a receiving UE may transmit a NACK to a transmitting UE based at least in part on the receiving UE failing to properly decode a self-contained inter-UE coordination message received by the  receiving UE. The transmitting UE may receive the NACK and may retransmit the self-contained inter-UE coordination message to the receiving UE. By providing and receiving feedback associated with an inter-UE coordination message, a reliability of a resource selection procedure that enables a UE to request coordination information for selecting a resource for a data transmission, as described elsewhere herein, can be improved relative to a resource selection procedure that does not include providing or receiving feedback associated with an inter-UE coordination message.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
Fig. 5 is a diagram illustrating an example 500 associated with feedback based inter-UE coordination message request and response, in accordance with the present disclosure. As shown in Fig. 5, example 500 includes communication between a first UE 120-1 and a second UE 120-2. In some aspects, the first UE 120-1 and the second UE 120-2 may be included in a wireless network, such as wireless network 100. The first UE 120-1 and the second UE 120-2 may communicate via sidelink communications, as described elsewhere herein.
As shown by reference number 505, the second UE 120-2 may transmit, and the first UE 120-1 may receive, a self-contained inter-UE coordination request message. The self-contained inter-UE coordination request message may indicate a set of requirements associated with the second UE 120-2 transmitting a data packet to another UE (e.g., the first UE 120-1 or one or more other UEs) via sidelink communications. For example, the self-contained inter-UE coordination request message may indicate a size of the data packet, a priority associated with the data packet, or the UE to which the data packet is to be transmitted, among other examples.
In some aspects, the self-contained inter-UE coordination request message may indicate that the first UE 120-1 is to provide scheme 1 coordination information (e.g., an indication of a set of preferred resources to be utilized by the second UE 120-2 for transmitting a communication and/or an indication of a set of non-preferred resources) to the second UE 120-2. The second UE 120-2 may utilize the coordination information to assist the second UE 120-2 in selecting one or more resources for transmitting the data packet (e.g., to the first UE 120-1 or one or more other UEs) .
In some aspects, the self-contained inter-UE coordination request message may request inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the self-contained inter-UE coordination  request message or a negative acknowledgement associated with receiving the self-contained inter-UE coordination request message.
In some aspects, the second UE 120-2 may transmit the self-contained inter-UE coordination request message via a reserved sidelink resource. For example, prior to transmitting the self-contained inter-UE coordination request message, the second UE 120-2 may transmit SCI reserving a set of resources for transmitting the self-contained inter-UE coordination request message. In some aspects, the SCI may reserve a set of sidelink resources for at least one retransmission of the self-contained inter-UE coordination request message, as described in greater detail elsewhere herein.
As shown by reference number 510, the first UE 120-1 may transmit, and the second UE 120-2 may receive, inter-UE coordination request feedback associated with the self-contained inter-UE coordination request message. In some aspects, the first UE 120-1 may determine that the self-contained inter-UE coordination request message corresponds to a transmission of a data packet. The first UE 120-1 may determine to transmit the inter-UE coordination request feedback based at least in part on the self-contained inter-UE coordination request message corresponding to a transmission of a data packet. For example, the first UE 120-1 may transmit the inter-UE coordination request feedback via a PSFCH as HARQ feedback, in a manner similar to that described elsewhere herein.
In some aspects, the inter-UE coordination request feedback may indicate a NACK, as described in greater detail elsewhere herein. In some aspects, as shown in Fig. 5, the inter-UE coordination request feedback may indicate an ACK based at least in part on the first UE 120-1 receiving and successfully decoding the self-contained inter-UE coordination request message. The first UE 120-1 may transmit the inter-UE coordination request feedback indicating the ACK to indicate to the second UE 120-2 that the first UE 120-1 successfully received and decoded the self-contained inter-UE coordination request message.
As shown by reference number 515, the first UE 120-1 may perform a resource selection process to select one or more resources for the second UE 120-2. For example, the first UE 120-1 may sense a sidelink channel in a sensing window and may select one or more sidelink resources within a resource selection window that are available for the second UE 120-2 to transmit the data, as described elsewhere herein.
In some aspects, the first UE 120-1 may generate an inter-UE coordination response message that includes coordination information associated with the second UE  120-2 transmitting the data. The coordination information may indicate one or more sidelink resources selected from the resource selection window, a set of preferred sidelink resources, and/or a set of non-preferred sidelink resources.
As shown by reference number 520, the first UE 120-1 may transmit, and the second UE 120-2 may receive, the self-contained inter-UE coordination response message. In some aspects, the first UE 120-1 may transmit the self-contained inter-UE coordination response message via a reserved sidelink resource. For example, the first UE 120-1 may transmit SCI reserving a set of resources for transmitting the self-contained inter-UE coordination request message. In some aspects, the SCI may reserve a set of sidelink resources for at least one retransmission of the self-contained inter-UE coordination response message, as described in greater detail elsewhere herein.
As shown by reference number 525, the second UE 120-2 may transmit, and the first UE 120-1 may receive, inter-UE coordination response feedback associated with the self-contained inter-UE coordination response message. In some aspects, the second UE 120-2 may transmit the inter-UE coordination response feedback in a manner similar to that described elsewhere herein with respect to the inter-UE coordination request feedback.
In some aspects, the inter-UE coordination response feedback may indicate a NACK, as described in greater detail elsewhere herein. In some aspects, as shown in Fig. 5, the inter-UE coordination response feedback may indicate an ACK based at least in part on the second UE 120-2 receiving and decoding the self-contained inter-UE coordination response message.
As shown by reference number reference number 530, the second UE 120-2 may perform a resource selection process to select one or more sidelink resources for transmitting the data. In some aspects, the second UE 120-2 may select the one or more sidelink resources based at least in part on the coordination information included in the self-contained inter-UE coordination response message. For example, the self-contained inter-UE coordination response message may indicate a set of preferred sidelink resources for transmitting the data. The second UE 120-2 may select the one or more sidelink resources from the set of preferred sidelink resources indicated in the self-contained inter-UE coordination response message.
Alternatively, or additionally, the second UE 120-2 may select the one or more resources based at least in part on sensing information obtained by the second UE 120-2. For example, the second UE 120-2 may sense a sidelink channel in a sensing  window and may select one or more sidelink resources within a resource selection window that are available for the second UE 120-2 to transmit the data, as described elsewhere herein.
In some aspects, the second UE 120-2 may transmit the data to one or more UEs via the selected sidelink resources. In some aspects, the second UE 120-2 may multicast the data to a group of UEs. In some aspects, the group of UEs may include the first UE 120-1. In some aspects, the first UE 120-1 may not be included in the group of UEs.
In some aspects, the second UE 120-2 may unicast the data to a single UE. For example, the second UE 120-2 may transmit the data to the first UE 120-1 or another UE via the selected sidelink resources. As shown by reference number 535, the second UE 120-2 may transmit the data to the first UE 120-1 via the selected sidelink resources.
As shown by reference number 540, the first UE 120-1 may transmit, and the second UE 120-2 may receive, feedback associated with the transmitted data. In some aspects, the first UE 120-1 may transmit the feedback associated with the transmitted data in a manner similar to that described elsewhere herein with respect to the inter-UE coordination request feedback or the inter-UE coordination response feedback.
The feedback may indicate whether the first UE 120-1 successfully received and decoded the transmitted data. For example, as shown in Fig. 5, the first UE 120-1 may transmit an ACK to the second UE 120-2 based at least in part on the first UE 120-1 successfully receiving and decoding the data transmitted by the second UE 120-2.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
Fig. 6 is a diagram illustrating an example 600 associated with feedback based inter-UE coordination message request and response, in accordance with the present disclosure. As shown in Fig. 6, example 600 includes communication between a first UE 120-1 and a second UE 120-2. In some aspects, the first UE 120-1 and the second UE 120-2 may be included in a wireless network, such as wireless network 100. The first UE 120-1 and the second UE 120-2 may communicate via sidelink communications, as described elsewhere herein.
As shown by reference number 605, the second UE 120-2 may transmit a self-contained inter-UE coordination request message to the first UE 120-1. The self-contained inter-UE coordination request message may indicate a set of requirements  associated with the second UE 120-2 transmitting a data packet to another UE (e.g., the first UE 120-1 or one or more other UEs) via sidelink communications. For example, the self-contained inter-UE coordination request message may indicate a size of the data packet, a priority associated with the data packet, or the UE to which the data packet is to be transmitted, among other examples.
In some aspects, the self-contained inter-UE coordination request message may indicate that the first UE 120-1 is to provide scheme 1 coordination information (e.g., an indication of a set of preferred resources to be utilized by the second UE 120-2 for transmitting a communication and/or an indication of a set of non-preferred resources) to the second UE 120-2. The second UE 120-2 may utilize the coordination information to assist the second UE 120-2 in selecting one or more resources for transmitting the data packet (e.g., to the first UE 120-1 or one or more other UEs) .
In some aspects, the self-contained inter-UE coordination request message may request inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the self-contained inter-UE coordination request message or a negative acknowledgement associated with receiving the self-contained inter-UE coordination request message.
In some aspects, the second UE 120-2 may transmit the self-contained inter-UE coordination request message via a reserved sidelink resource. For example, prior to transmitting the self-contained inter-UE coordination request message, the second UE 120-2 may transmit SCI reserving a set of resources for transmitting the self-contained inter-UE coordination request message. In some aspects, the SCI may reserve a set of sidelink resources for at least one retransmission of the self-contained inter-UE coordination request message, as described in greater detail elsewhere herein.
As shown by reference number 610, the first UE 120-1 may transmit, and the second UE 120-2 may receive, inter-UE coordination request feedback associated with the self-contained inter-UE coordination request message. In some aspects, the second UE 120-2 may receive the inter-UE coordination request via a PSFCH in a manner similar to that described elsewhere herein.
In some aspects, the inter-UE coordination request feedback may indicate an ACK, as described elsewhere herein. In some aspects, as shown in Fig. 6, the inter-UE coordination request feedback may indicate a NACK. For example, the first UE 120-1 may transmit inter-UE coordination request feedback indicating a NACK based at least  in part on being unable to successfully decode the self-contained inter-UE coordination request message.
In some aspects, as also shown in Fig. 6, the first UE 120-1 may not transmit (indicated in Fig. 6 as DTX) , and, therefore, the second UE 120-2 may not receive, the inter-UE coordination request feedback. For example, the first UE 120-1 may not receive the self-contained inter-UE coordination request message from the second UE 120-2 and, therefore, may not transmit any feedback associated with the self-contained inter-UE coordination request message to the second UE 120-2.
As shown by reference number 615, the second UE 120-2 may retransmit the self-contained inter-UE coordination request message to the first UE 120-1. In some aspects, the second UE 120-2 may retransmit the self-contained inter-UE coordination request message based at least in part on receiving the inter-UE coordination request feedback indicating the NACK. In some aspects, the second UE 120-2 may retransmit the self-contained inter-UE coordination request message based at least in part on not receiving the inter-UE coordination request feedback within a time period.
In some aspects, the second UE 120-2 may retransmit the self-contained inter-UE coordination request message via a reserved sidelink resource. For example, prior to the initial transmission of the self-contained inter-UE coordination request message, the second UE 120-2 may transmit SCI reserving a set of resources for transmitting the self-contained inter-UE coordination request message and at least one retransmission of the self-contained inter-UE coordination request message.
As shown by reference number 620, the first UE 120-1 may transmit, and the second UE 120-2 may receive, inter-UE coordination request feedback associated with the retransmission of the self-contained inter-UE coordination request message. In some aspects, the inter-UE coordination request feedback may indicate a NACK, as described elsewhere herein.
In some aspects, as shown in Fig. 6, the inter-UE coordination request feedback may indicate an ACK based at least in part on the first UE 120-1 receiving and successfully decoding the self-contained inter-UE coordination request message. In some aspects, the first UE 120-1 may perform a resource selection process to select one or more sidelink resources for the second UE 120-2 and may transmit a self-contained inter-UE coordination response message to the second UE 120-2 based at least in part on receiving the retransmission of the self-contained inter-UE coordination request message. The first UE 120-1 may perform the resource selection process and may  transmit the self-contained inter-UE coordination response message to the second UE 120-2 in a manner similar to that described elsewhere herein.
Further, in some aspects, the second UE 120-2 may receive the self-contained inter-UE coordination response message from the first UE 120-1, may perform a resource selection process to select one or more sidelink resources for a data transmission, and may transmit the data via the selected sidelink resources, in a manner similar to that described elsewhere herein.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
Fig. 7 is a diagram illustrating an example 700 associated with feedback based inter-UE coordination message request and response, in accordance with the present disclosure. As shown in Fig. 7, a resource window length
Figure PCTCN2021121163-appb-000001
includes a time interval T 1 and a resource selection window. In some aspects, the resource window length
Figure PCTCN2021121163-appb-000002
and the time interval T 1 may be determined based at least in part on a configuration. The configuration may be determined by an upper layer of a UE (e.g., UE 120) and may be provided to a physical (PHY) layer of the UE.
In some aspects, the resource window length
Figure PCTCN2021121163-appb-000003
may be determined based at least in part on whether inter-UE coordination feedback (e.g., inter-UE coordination request feedback or inter-UE coordination response feedback) is enabled for the UE. In some aspects, inter-UE coordination feedback may not be enabled and the resource window length
Figure PCTCN2021121163-appb-000004
may be determined based at least in part on T 2, min and a remaining PDB, as described elsewhere herein.
In some aspects, inter-UE coordination feedback may be enabled for the UE. The resource window length
Figure PCTCN2021121163-appb-000005
may be determined based at least in part on a selection of a set of sidelink resources of an initial self-contained inter-UE coordination request message or an initial self-contained inter-UE coordination response message and a selection of a set of sidelink resources for one or two retransmissions of the self-contained inter-UE coordination request message or the self-contained inter-UE coordination response message.
As an example, the PHY layer of the UE may receive a configuration indicating that feedback is enabled and that a set of sidelink resources is to be reserved for transmitting N (e.g., N = 1 or 2) retransmissions of a self-contained inter-UE coordination request message. An initial resource window length
Figure PCTCN2021121163-appb-000006
may be  determined based at least in part on T 2, min and a remaining PDB, as described elsewhere herein. The resource window length
Figure PCTCN2021121163-appb-000007
may be determined based at least in part on a lesser of N × the initial resource window length
Figure PCTCN2021121163-appb-000008
and the remaining PDB (e.g., 
Figure PCTCN2021121163-appb-000009
) . The resource window length
Figure PCTCN2021121163-appb-000010
may be determined based at least in part on the remaining PDB and T 2 being linearly scaled based at least in part on the quantity of resources to be selected or reserved. In this way, a larger resource window length
Figure PCTCN2021121163-appb-000011
may be configured based at least in part on the UE transmitting multiple self-contained inter-UE coordination request messages or self-contained inter-UE coordination response messages.
As indicated above, Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.
Fig. 8 is a diagram illustrating an example 800 associated with feedback based inter-UE coordination message request and response, in accordance with the present disclosure. As shown in Fig. 8, example 800 includes communication between a first UE 120-1 and a second UE 120-2. In some aspects, the first UE 120-1 and the second UE 120-2 may be included in a wireless network, such as wireless network 100. The first UE 120-1 and the second UE 120-2 may communicate via sidelink communications, as described elsewhere herein.
As shown by reference number 805, the second UE 120-2 may transmit a self-contained inter-UE coordination request message to the first UE 120-1. The self-contained inter-UE coordination request message may indicate a set of requirements associated with the second UE 120-2 transmitting data to another UE (e.g., the first UE 120-1 or one or more other UEs) via sidelink communications. For example, the self-contained inter-UE coordination request message may indicate whether the transmission of the data is a periodic transmission or an aperiodic transmission, a periodicity of a periodic data transmission, a size of the data, a priority associated with the data, or the UE to which the data is to be transmitted, among other examples.
In some aspects, the self-contained inter-UE coordination request message may indicate that the first UE 120-1 is to periodically provide scheme 1 coordination information to the second UE 120-2. The second UE 120-2 may utilize the periodic coordination information to assist the second UE 120-2 in selecting one or more resources for periodically transmitting the data (e.g., to the first UE 120-1 or one or more other UEs) .
In some aspects, the self-contained inter-UE coordination request message may request inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the self-contained inter-UE coordination request message or a negative acknowledgement associated with receiving the self-contained inter-UE coordination request message, as described elsewhere herein.
In some aspects, the second UE 120-2 may transmit the self-contained inter-UE coordination request message via reserved sidelink resources. For example, prior to transmitting the self-contained inter-UE coordination request message, the second UE 120-2 may transmit SCI reserving a set of resources for transmitting the self-contained inter-UE coordination request message. In some aspects, the SCI may reserve a set of sidelink resources for at least one retransmission of the self-contained inter-UE coordination request message, as described elsewhere herein.
In some aspects, the first UE 120-1 may receive the self-contained inter-UE coordination request message and may transmit inter-UE coordination request feedback associated with the self-contained inter-UE coordination request message. For example, the first UE 120-1 may successfully receive and decode the self-contained inter-UE coordination request message and may provide inter-UE coordination request feedback indicating an ACK, as described elsewhere herein.
In some aspects, the self-contained inter-UE coordination request message may indicate that the data transmission is an aperiodic data transmission. The first UE 120-1 may provide a self-contained inter-UE coordination response message indicating coordination information for the aperiodic data transmission in a manner similar to that described elsewhere herein.
In some aspects, the self-contained inter-UE coordination request message may indicate that the data transmission is a periodic data transmission, a periodicity associated with the periodic data transmission, and/or that the first UE 120-1 is to periodically provide coordination information for the periodic data transmission based at least in part on the periodicity associated with the periodic data transmission. The first UE 120-1 may perform a resource selection process to select a periodic sidelink resource for the second UE 120-2 to periodically transmit the data based at least in part on the self-contained inter-UE coordination request indicating that the data transmission is a periodic data transmission.
As shown by reference number 810, the first UE 120-1 may periodically transmit, and the second UE 120-2 may periodically receive, self-contained inter-UE  coordination response messages. Each self-contained inter-UE coordination response message may include coordination information for a next transmission of the data by the second UE 120-2.
As an example, the first UE 120-1 may transmit a first self-contained inter-UE coordination response message indicating coordination information for a first transmission of the data by the second UE 120-2. The first UE 120-1 may transmit a second self-contained inter-UE coordination response message based at least in part on the periodicity indicated in the self-contained inter-UE coordination request message. The second self-contained inter-UE coordination response message may indicate coordination information for a second transmission of the data by the second UE 120-2.
The first UE 120-1 may transmit additional self-contained inter-UE coordination response messages based at least in part on the periodicity in a similar manner. The first UE 120-1 may periodically transmit the self-contained inter-UE coordination response messages without receiving any additional self-contained inter-UE coordination request messages from the second UE 120-2.
As shown by reference number 815, the second UE 120-2 may periodically transmit data based at least in part on the periodic self-contained inter-UE coordination response messages. In some aspects, the second UE 120-2 may receive a periodic transmission of the self-contained inter-UE coordination response message and may perform a resource selection process to select a sidelink resource for a next transmission of the data in a manner similar to that described elsewhere herein.
In some aspects, the second UE 120-2 may determine to cause the first UE 120-1 to reselect the periodic sidelink resource. As shown by reference number 820, the second UE 120-2 may retransmit the self-contained inter-UE coordination request message to the first UE 120-1. The first UE 120-1 may receive the retransmission of the self-contained inter-UE coordination request message and, as shown by reference number 825, may perform a resource selection process to reselect the resource for the periodic data transmission.
As shown by reference number 830, the first UE 120-1 may periodically transmit a new self-contained inter-UE coordination response message indicating the reselected resource to the second UE 120-2. The first UE 120-1 may periodically transmit the new self-contained inter-UE coordination response message based at least in part on the periodicity indicated in the self-contained inter-UE coordination request message in a manner similar to that described elsewhere herein.
As shown by reference number 835, the second UE 120-2 may periodically transmit the data via the reselected resource based at least in part on periodically receiving the self-contained inter-UE coordination response message.
As indicated above, Fig. 8 is provided as an example. Other examples may differ from what is described with respect to Fig. 8.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a UE, in accordance with the present disclosure. Example process 900 is an example where the UE (e.g., UE 120) performs operations associated with feedback based inter-UE coordination message request and response.
As shown in Fig. 9, in some aspects, process 900 may include transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message (block 910) . For example, the UE (e.g., using communication manager 140 and/or transmission component 1304, depicted in Fig. 13) may transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include receiving the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message (block 920) . For example, the UE (e.g., using communication manager 140 and/or reception component 1302, depicted in Fig. 13) may receive the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message, as described above.
Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the inter-UE coordination request message feedback is received via a PSFCH.
In a second aspect, alone or in combination with the first aspect, process 900 includes receiving an inter-UE coordination response message, and transmitting inter- UE coordination response message feedback indicating the positive acknowledgement associated with receiving the inter-UE coordination response message or the negative acknowledgement associated with receiving the inter-UE coordination response message.
In a third aspect, alone or in combination with one or more of the first and second aspects, the inter-UE coordination response message feedback is transmitted via a PSFCH.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a UE, in accordance with the present disclosure. Example process 1000 is an example where the UE (e.g., UE 120) performs operations associated with feedback based inter-UE coordination message request and response.
As shown in Fig. 10, in some aspects, process 1000 may include transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message (block 1010) . For example, the UE (e.g., using communication manager 140 and/or transmission component 1404, depicted in Fig. 14) may transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message, as described above.
As further shown in Fig. 10, in some aspects, process 1000 may include retransmitting the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period (block 1020) . For example, the UE (e.g., using communication manager 140 and/or transmission component 1404, depicted in Fig. 14) may retransmit the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the  negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period, as described above.
Process 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the inter-UE coordination request message feedback is received via a PSFCH.
In a second aspect, alone or in combination with the first aspect, the inter-UE coordination request message is retransmitted via a reserved resource.
In a third aspect, alone or in combination with one or more of the first and second aspects, process 1000 includes transmitting sidelink control information reserving a set of resources for transmitting the inter-UE coordination request message and transmitting at least one retransmission of the inter-UE coordination request message.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 1000 includes receiving sidelink control information reserving a set of resources for transmitting an inter-UE coordination response message, and transmitting at least one retransmission of the inter-UE coordination response message.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the inter-UE coordination request message is retransmitted based at least in part on not receiving the inter-UE coordination request message feedback within the time period, and process 1000 includes receiving the inter-UE coordination request message feedback based at least in part on retransmitting the inter-UE coordination request message.
Although Fig. 10 shows example blocks of process 1000, in some aspects, process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
Fig. 11 is a diagram illustrating an example process 1100 performed, for example, by a UE, in accordance with the present disclosure. Example process 1100 is an example where the UE (e.g., UE 120) performs operations associated with feedback based inter-UE coordination message request and response.
As shown in Fig. 11, in some aspects, process 1100 may include receiving a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window (block 1110) . For example, the UE (e.g., using communication manager 140 and/or reception component 1502, depicted in Fig. 15) may receive a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window, as described above.
As further shown in Fig. 11, in some aspects, process 1100 may include selecting, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window (block 1120) . For example, the UE (e.g., using communication manager 140 and/or selection component 1508, depicted in Fig. 15) may select, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window, as described above.
As further shown in Fig. 11, in some aspects, process 1100 may include transmitting the self-contained inter-UE coordination message via the first sidelink resource (block 1130) . For example, the UE (e.g., using communication manager 140 and/or transmission component 1504, depicted in Fig. 15) may transmit the self-contained inter-UE coordination message via the first sidelink resource, as described above.
Process 1100 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, process 1100 includes receiving inter-UE coordination message feedback indicating a negative acknowledgement associated with receiving the self-contained inter-UE coordination message, and retransmitting the self-contained inter-UE coordination message via a second sidelink resource, of the one or more second sidelink resources, based at least in part on receiving the inter-UE coordination  message feedback indicating the negative acknowledgement associated with receiving the self-contained inter-UE coordination message.
In a second aspect, alone or in combination with the first aspect, a length of the resource selection window is determined based at least in part on multiplying the initial time interval by a quantity of the one or more second sidelink resources.
In a third aspect, alone or in combination with one or more of the first and second aspects, a length of the resource selection window is determined based at least in part on a time interval associated with a packet delay budget of a data transmission associated with the self-contained inter-UE coordination message and an initial time interval associated with a resource selection window for selecting a resource for the data transmission.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the time interval associated with the packet delay budget of the data transmission associated with the self-contained inter-UE coordination message and the initial time interval associated with the resource selection window for selecting the resource for the data transmission are linearly scaled based at least in part on a quantity of the one or more second sidelink resources.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the time interval associated with the packet delay budget of the data transmission associated with the self-contained inter-UE coordination message and the initial time interval associated with the resource selection window for selecting the resource for the data transmission are determined by an upper layer of the UE and provided to a physical layer of the UE.
Although Fig. 11 shows example blocks of process 1100, in some aspects, process 1100 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 11. Additionally, or alternatively, two or more of the blocks of process 1100 may be performed in parallel.
Fig. 12 is a diagram illustrating an example process 1200 performed, for example, by a UE, in accordance with the present disclosure. Example process 1200 is an example where the UE (e.g., UE 120) performs operations associated with feedback based inter-UE coordination message request and response.
As shown in Fig. 12, in some aspects, process 1200 may include receiving an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data  transmission (block 1210) . For example, the UE (e.g., using communication manager 140 and/or reception component 1602, depicted in Fig. 16) may receive an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission, as described above.
As further shown in Fig. 12, in some aspects, process 1200 may include reserving a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information (block 1220) . For example, the UE (e.g., using communication manager 140 and/or reservation component 1608, depicted in Fig. 16) may reserve a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information, as described above.
As further shown in Fig. 12, in some aspects, process 1200 may include periodically transmitting the inter-UE coordination response message via the reserved periodic resource (block 1230) . For example, the UE (e.g., using communication manager 140 and/or transmission component 1604, depicted in Fig. 16) may periodically transmit the inter-UE coordination response message via the reserved periodic resource, as described above.
Process 1200 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, process 1200 includes receiving a retransmission of the inter-UE coordination request message, performing a resource reselection process based at least in part on receiving the retransmission of the inter-UE coordination request message, and transmitting, via the reserved periodic resource, another inter-UE response message including reselected resource reservation coordination information based at least in part on performing the resource reselection process.
In a second aspect, alone or in combination with the first aspect, process 1200 includes receiving another inter-UE coordination request message requesting aperiodic resource reservation coordination information associated with an aperiodic data  transmission, and reserving an aperiodic resource for transmitting another inter-UE coordination response message including the aperiodic resource reservation coordination information based at least in part on the other inter-UE coordination request message, and transmitting the other inter-UE coordination response message via the reserved aperiodic resource.
Although Fig. 12 shows example blocks of process 1200, in some aspects, process 1200 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 12. Additionally, or alternatively, two or more of the blocks of process 1200 may be performed in parallel.
Fig. 13 is a diagram of an example apparatus 1300 for wireless communication. The apparatus 1300 may be a UE, or a UE may include the apparatus 1300. In some aspects, the apparatus 1300 includes a reception component 1302 and a transmission component 1304, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1300 may communicate with another apparatus 1306 (such as a UE, a base station, or another wireless communication device) using the reception component 1302 and the transmission component 1304. As further shown, the apparatus 1300 may include the communication manager 140. The communication manager 140 may include a feedback component 1308, among other examples.
In some aspects, the apparatus 1300 may be configured to perform one or more operations described herein in connection with Figs. 5-8. Additionally, or alternatively, the apparatus 1300 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9. In some aspects, the apparatus 1300 and/or one or more components shown in Fig. 13 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 13 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1302 may receive communications, such as reference signals, control information, data communications, or a combination thereof,  from the apparatus 1306. The reception component 1302 may provide received communications to one or more other components of the apparatus 1300. In some aspects, the reception component 1302 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1300. In some aspects, the reception component 1302 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 1304 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1306. In some aspects, one or more other components of the apparatus 1300 may generate communications and may provide the generated communications to the transmission component 1304 for transmission to the apparatus 1306. In some aspects, the transmission component 1304 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1306. In some aspects, the transmission component 1304 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1304 may be co-located with the reception component 1302 in a transceiver.
The transmission component 1304 may transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message. The reception component 1302 may receive the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
The reception component 1302 may receive an inter-UE coordination response message. The feedback component 1308 may generate inter-UE coordination response message feedback indicating the positive acknowledgement associated with receiving  the inter-UE coordination response message or the negative acknowledgement associated with receiving the inter-UE coordination response message.
The transmission component 1304 may transmit the inter-UE coordination response message feedback indicating the positive acknowledgement associated with receiving the inter-UE coordination response message or the negative acknowledgement associated with receiving the inter-UE coordination response message.
The number and arrangement of components shown in Fig. 13 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 13. Furthermore, two or more components shown in Fig. 13 may be implemented within a single component, or a single component shown in Fig. 13 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 13 may perform one or more functions described as being performed by another set of components shown in Fig. 13.
Fig. 14 is a diagram of an example apparatus 1400 for wireless communication. The apparatus 1400 may be a UE, or a UE may include the apparatus 1400. In some aspects, the apparatus 1400 includes a reception component 1402 and a transmission component 1404, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1400 may communicate with another apparatus 1406 (such as a UE, a base station, or another wireless communication device) using the reception component 1402 and the transmission component 1404. As further shown, the apparatus 1400 may include the communication manager 140. The communication manager 140 may include a feedback component 1408, among other examples.
In some aspects, the apparatus 1400 may be configured to perform one or more operations described herein in connection with Figs. 5-8. Additionally, or alternatively, the apparatus 1400 may be configured to perform one or more processes described herein, such as process 1000 of Fig. 10. In some aspects, the apparatus 1400 and/or one or more components shown in Fig. 14 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 14 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component)  may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1402 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1406. The reception component 1402 may provide received communications to one or more other components of the apparatus 1400. In some aspects, the reception component 1402 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1400. In some aspects, the reception component 1402 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 1404 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1406. In some aspects, one or more other components of the apparatus 1400 may generate communications and may provide the generated communications to the transmission component 1404 for transmission to the apparatus 1406. In some aspects, the transmission component 1404 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1406. In some aspects, the transmission component 1404 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1404 may be co-located with the reception component 1402 in a transceiver.
The transmission component 1404 may transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message. The transmission component 1404 may retransmit the  inter-UE coordination request message based at least in part on the feedback component 1408 receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
The transmission component 1404 may transmit sidelink control information reserving a set of resources for transmitting the inter-UE coordination request message and transmitting at least one retransmission of the inter-UE coordination request message.
The reception component 1402 may receive sidelink control information reserving a set of resources for transmitting an inter-UE coordination response message.
The reception component 1402 may receive the inter-UE coordination response message and at least one retransmission of the inter-UE coordination response message via the set of resources.
The number and arrangement of components shown in Fig. 14 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 14. Furthermore, two or more components shown in Fig. 14 may be implemented within a single component, or a single component shown in Fig. 14 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 14 may perform one or more functions described as being performed by another set of components shown in Fig. 14.
Fig. 15 is a diagram of an example apparatus 1500 for wireless communication. The apparatus 1500 may be a UE, or a UE may include the apparatus 1500. In some aspects, the apparatus 1500 includes a reception component 1502 and a transmission component 1504, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1500 may communicate with another apparatus 1506 (such as a UE, a base station, or another wireless communication device) using the reception component 1502 and the transmission component 1504. As further shown, the apparatus 1500 may include the communication manager 140. The communication manager 140 may include a selection component 1508, among other examples.
In some aspects, the apparatus 1500 may be configured to perform one or more operations described herein in connection with Figs. 5-8. Additionally, or alternatively, the apparatus 1500 may be configured to perform one or more processes  described herein, such as process 1100 of Fig. 11. In some aspects, the apparatus 1500 and/or one or more components shown in Fig. 15 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 15 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1502 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1506. The reception component 1502 may provide received communications to one or more other components of the apparatus 1500. In some aspects, the reception component 1502 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1500. In some aspects, the reception component 1502 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 1504 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1506. In some aspects, one or more other components of the apparatus 1500 may generate communications and may provide the generated communications to the transmission component 1504 for transmission to the apparatus 1506. In some aspects, the transmission component 1504 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1506. In some aspects, the transmission component 1504 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In  some aspects, the transmission component 1504 may be co-located with the reception component 1502 in a transceiver.
The reception component 1502 may receive a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window. The selection component 1508 may select, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window. The transmission component 1504 may transmit the self-contained inter-UE coordination message via the first sidelink resource.
The reception component 1502 may receive inter-UE coordination message feedback indicating a negative acknowledgement associated with receiving the self-contained inter-UE coordination message.
The transmission component 1504 may retransmit the self-contained inter-UE coordination message via a second sidelink resource, of the one or more second sidelink resources, based at least in part on receiving the inter-UE coordination message feedback indicating the negative acknowledgement associated with receiving the self-contained inter-UE coordination message.
The number and arrangement of components shown in Fig. 15 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 15. Furthermore, two or more components shown in Fig. 15 may be implemented within a single component, or a single component shown in Fig. 15 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 15 may perform one or more functions described as being performed by another set of components shown in Fig. 15.
Fig. 16 is a diagram of an example apparatus 1600 for wireless communication. The apparatus 1600 may be a UE, or a UE may include the apparatus 1600. In some aspects, the apparatus 1600 includes a reception component 1602 and a transmission component 1604, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1600 may communicate with another apparatus 1606 (such as a UE, a base  station, or another wireless communication device) using the reception component 1602 and the transmission component 1604. As further shown, the apparatus 1600 may include the communication manager 140. The communication manager 140 may include one or more of a reservation component 1608 or a performance component 1610, among other examples.
In some aspects, the apparatus 1600 may be configured to perform one or more operations described herein in connection with Figs. 5-8. Additionally, or alternatively, the apparatus 1600 may be configured to perform one or more processes described herein, such as process 1200 of Fig. 12. In some aspects, the apparatus 1600 and/or one or more components shown in Fig. 16 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 16 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1602 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1606. The reception component 1602 may provide received communications to one or more other components of the apparatus 1600. In some aspects, the reception component 1602 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1600. In some aspects, the reception component 1602 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 1604 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1606. In some aspects, one or more other components of the apparatus 1600 may generate communications and may provide the generated communications to  the transmission component 1604 for transmission to the apparatus 1606. In some aspects, the transmission component 1604 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1606. In some aspects, the transmission component 1604 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1604 may be co-located with the reception component 1602 in a transceiver.
The reception component 1602 may receive an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission. The reservation component 1608 may reserve a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information. The transmission component 1604 may periodically transmit the inter-UE coordination response message via the reserved periodic resource.
The reception component 1602 may receive a retransmission of the inter-UE coordination request message.
The performance component 1610 may perform a resource reselection process based at least in part on receiving the retransmission of the inter-UE coordination request message.
The transmission component 1604 may transmit, via the reserved periodic resource, another inter-UE response message including reselected resource reservation coordination information based at least in part on performing the resource reselection process.
The reception component 1602 may receive another inter-UE coordination request message requesting aperiodic resource reservation coordination information associated with an aperiodic data transmission.
The reservation component 1608 may reserve an aperiodic resource for transmitting another inter-UE coordination response message including the aperiodic  resource reservation coordination information based at least in part on the other inter-UE coordination request message.
The transmission component 1604 may transmit the other inter-UE coordination response message via the reserved aperiodic resource.
The number and arrangement of components shown in Fig. 16 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 16. Furthermore, two or more components shown in Fig. 16 may be implemented within a single component, or a single component shown in Fig. 16 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 16 may perform one or more functions described as being performed by another set of components shown in Fig. 16.
The following provides an overview of some Aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a UE, comprising: transmitting an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message; and receiving the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
Aspect 2: The method of Aspect 1, wherein the inter-UE coordination request message feedback is received via a PSFCH, wherein the inter-UE coordination request feedback corresponds to HARQ feedback.
Aspect 3: The method of one or more of Aspects 1 and 2, further comprising: receiving an inter-UE coordination response message; and transmitting inter-UE coordination response message feedback indicating the positive acknowledgement associated with receiving the inter-UE coordination response message or the negative acknowledgement associated with receiving the inter-UE coordination response message.
Aspect 4: The method of Aspect 3, wherein the inter-UE coordination response message feedback is transmitted via a PSFCH, and the inter-UE coordination request feedback corresponds to HARQ feedback.
Aspect 5: A method of wireless communication performed by a UE, comprising: transmitting an inter-UE coordination request message requesting inter-UE  coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message; and retransmitting the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
Aspect 6: The method of Aspect 5, wherein the inter-UE coordination request message feedback is received via a PSFCH.
Aspect 7: The method of one or more of Aspects 5 and 6, wherein the inter-UE coordination request message is retransmitted via a reserved resource.
Aspect 8: The method of one or more of Aspects 5 through 7, further comprising: transmitting sidelink control information reserving a set of resources for transmitting the inter-UE coordination request message and transmitting at least one retransmission of the inter-UE coordination request message.
Aspect 9: The method of one or more of Aspects 5 through 8, further comprising: receiving sidelink control information reserving a set of resources for transmitting an inter-UE coordination response message; and receiving the inter-UE coordination response message and at least one retransmission of the inter-UE coordination response message via the set of resources.
Aspect 10: The method of one or more of Aspects 5 through 9, wherein the inter-UE coordination request message is retransmitted based at least in part on not receiving the inter-UE coordination request message feedback within the time period, the method further comprising: receiving the inter-UE coordination request message feedback based at least in part on retransmitting the inter-UE coordination request message.
Aspect 11: A method of wireless communication performed by a UE, comprising: receiving a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window; selecting, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window;  and transmitting the self-contained inter-UE coordination message via the first sidelink resource.
Aspect 12: The method of Aspect 11, further comprising: receiving inter-UE coordination message feedback indicating a negative acknowledgement associated with receiving the self-contained inter-UE coordination message; and retransmitting the self-contained inter-UE coordination message via a second sidelink resource, of the one or more second sidelink resources, based at least in part on receiving the inter-UE coordination message feedback indicating the negative acknowledgement associated with receiving the self-contained inter-UE coordination message.
Aspect 13: The method of one or more of Aspects 11 and 12, wherein a length of the resource selection window is determined based at least in part on a total quantity of the one or more second sidelink resources.
Aspect 14: The method of one or more of Aspects 11 through 13, wherein a length of the resource selection window is determined based at least in part on a time interval associated with a packet delay budget of a data transmission associated with the self-contained inter-UE coordination message and an initial time interval associated with a resource selection window for selecting a resource for the data transmission.
Aspect 15: The method of Aspect 14, wherein the time interval associated with the packet delay budget of the data transmission associated with the self-contained inter-UE coordination message and the initial time interval associated with the resource selection window for selecting the resource for the data transmission are linearly scaled based at least in part on a quantity of the one or more second sidelink resources.
Aspect 16: The method of Aspect 14, wherein the time interval associated with the packet delay budget of the data transmission associated with the self-contained inter-UE coordination message and the initial time interval associated with the resource selection window for selecting the resource for the data transmission are determined by an upper layer of the UE and provided to a physical layer of the UE.
Aspect 17: A method of wireless communication performed by a UE, comprising: receiving an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission; reserving a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation  coordination information; and periodically transmitting the inter-UE coordination response message via the reserved periodic resource.
Aspect 18: The method of Aspect 17, further comprising: receiving a retransmission of the inter-UE coordination request message; performing a resource reselection process based at least in part on receiving the retransmission of the inter-UE coordination request message; and transmitting, via the reserved periodic resource, another inter-UE response message including reselected resource reservation coordination information based at least in part on performing the resource reselection process.
Aspect 19: The method of one or more of Aspects 17 and 18, further comprising: receiving another inter-UE coordination request message requesting aperiodic resource reservation coordination information associated with an aperiodic data transmission; and reserving an aperiodic resource for transmitting another inter-UE coordination response message including the aperiodic resource reservation coordination information based at least in part on the other inter-UE coordination request message; and transmitting the other inter-UE coordination response message via the reserved aperiodic resource.
Aspect 20: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1 through 4.
Aspect 21: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1 through 4.
Aspect 22: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1 through 4.
Aspect 23: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1 through 4.
Aspect 24: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1 through 4.
Aspect 25: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 5 through 10.
Aspect 26: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 5 through 10.
Aspect 27: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 5 through 10.
Aspect 28: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 5 through 10.
Aspect 29: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 5 through 10.
Aspect 30: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 11 through 16.
Aspect 31: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 11 through 16.
Aspect 32: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 11 through 16.
Aspect 33: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 11 through 16.
Aspect 34: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 11 through 16.
Aspect 35: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory  and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 17 through 19.
Aspect 36: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 17 through 19.
Aspect 37: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 17 through 19.
Aspect 38: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 17 through 19.
Aspect 39: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 17 through 19.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As used herein, a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods are described herein without reference to specific software code, since those skilled in the art will understand that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, “satisfying a threshold” may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. Many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. The disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) . Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (19)

  1. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message; and
    receive the inter-UE coordination request message feedback based at least in part on transmitting the inter-UE coordination request message.
  2. The UE of claim 1, wherein the inter-UE coordination request message feedback is received via a physical sidelink feedback channel (PSFCH) , wherein the inter-UE coordination request feedback corresponds to hybrid automatic repeat request (HARQ) feedback.
  3. The UE of claim 1, wherein the one or more processors are further configured to:
    receive an inter-UE coordination response message; and
    transmit inter-UE coordination response message feedback indicating the positive acknowledgement associated with receiving the inter-UE coordination response message or the negative acknowledgement associated with receiving the inter-UE coordination response message.
  4. The UE of claim 3, wherein the inter-UE coordination response message feedback is transmitted via a physical sidelink feedback channel (PSFCH) , wherein the inter-UE coordination request feedback corresponds to hybrid automatic repeat request (HARQ) feedback.
  5. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    transmit an inter-UE coordination request message requesting inter-UE coordination request message feedback indicating a positive acknowledgement associated with receiving the inter-UE coordination request message or a negative acknowledgement associated with receiving the inter-UE coordination request message; and
    retransmit the inter-UE coordination request message based at least in part on receiving inter-UE coordination request message feedback indicating the negative acknowledgement or based at least in part on not receiving the inter-UE coordination request message feedback within a time period.
  6. The UE of claim 5, wherein the inter-UE coordination request message feedback is received via a physical sidelink feedback channel (PSFCH) .
  7. The UE of claim 5, wherein the inter-UE coordination request message is retransmitted via a reserved resource.
  8. The UE of claim 5, wherein the one or more processors are further configured to:
    transmit sidelink control information reserving a set of resources for transmitting the inter-UE coordination request message and transmitting at least one retransmission of the inter-UE coordination request message.
  9. The UE of claim 5, wherein the one or more processors are further configured to:
    receive sidelink control information reserving a set of resources for transmitting an inter-UE coordination response message; and
    receive the inter-UE coordination response message and at least one retransmission of the inter-UE coordination response message via the set of resources.
  10. The UE of claim 5, wherein the inter-UE coordination request message is retransmitted based at least in part on not receiving the inter-UE coordination request message feedback within the time period, the method further comprising:
    receive the inter-UE coordination request message feedback based at least in part on retransmitting the inter-UE coordination request message.
  11. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    receive a configuration for selecting a first sidelink resource for a transmission of a self-contained inter-UE coordination message, the configuration indicating an initial time interval associated with a resource selection window;
    select, based at least in part on the configuration, the first sidelink resource for the transmission of the self-contained inter-UE coordination message and one or more second sidelink resources for one or more retransmissions of the self-contained inter-UE coordination message from a quantity of available resources within the resource selection window; and
    transmit the self-contained inter-UE coordination message via the first sidelink resource.
  12. The UE of claim 11, wherein the one or more processors are further configured to:
    receive inter-UE coordination message feedback indicating a negative acknowledgement associated with receiving the self-contained inter-UE coordination message; and
    retransmit the self-contained inter-UE coordination message via a second sidelink resource, of the one or more second sidelink resources, based at least in part on receiving the inter-UE coordination message feedback indicating the negative acknowledgement associated with receiving the self-contained inter-UE coordination message.
  13. The UE of claim 11, wherein a length of the resource selection window is determined based at least in part on a total quantity of the one or more second sidelink resources.
  14. The UE of claim 11, wherein a length of the resource selection window is determined based at least in part on a time interval associated with a packet delay budget of a data transmission associated with the self-contained inter-UE coordination  message and an initial time interval associated with a resource selection window for selecting a resource for the data transmission.
  15. The UE of claim 14, wherein the time interval associated with the packet delay budget of the data transmission associated with the self-contained inter-UE coordination message and the initial time interval associated with the resource selection window for selecting the resource for the data transmission are linearly scaled based at least in part on a quantity of the one or more second sidelink resources.
  16. The UE of claim 14, wherein the time interval associated with the packet delay budget of the data transmission associated with the self-contained inter-UE coordination message and the initial time interval associated with the resource selection window for selecting the resource for the data transmission are determined by an upper layer of the UE and provided to a physical layer of the UE.
  17. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    receive an inter-UE coordination request message indicating a periodicity for transmitting periodic resource reservation coordination information associated with a periodic data transmission;
    reserve a periodic resource for periodically transmitting an inter-UE coordination response message including the periodic resource reservation coordination information based at least in part on the inter-UE coordination request message indicating the periodicity for transmitting the periodic resource reservation coordination information; and
    periodically transmit the inter-UE coordination response message via the reserved periodic resource.
  18. The UE of claim 17, wherein the one or more processors are further configured to:
    receive a retransmission of the inter-UE coordination request message;
    perform a resource reselection process based at least in part on receiving the retransmission of the inter-UE coordination request message; and
    transmit, via the reserved periodic resource, another inter-UE response message including reselected resource reservation coordination information based at least in part on performing the resource reselection process.
  19. The UE of claim 17, wherein the one or more processors are further configured to:
    receive another inter-UE coordination request message requesting aperiodic resource reservation coordination information associated with an aperiodic data transmission; and
    reserve an aperiodic resource for transmitting another inter-UE coordination response message including the aperiodic resource reservation coordination information based at least in part on the other inter-UE coordination request message; and
    transmit the other inter-UE coordination response message via the reserved aperiodic resource.
PCT/CN2021/121163 2021-09-28 2021-09-28 Feedback based inter user equipment coordination message request and response WO2023050028A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121163 WO2023050028A1 (en) 2021-09-28 2021-09-28 Feedback based inter user equipment coordination message request and response

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121163 WO2023050028A1 (en) 2021-09-28 2021-09-28 Feedback based inter user equipment coordination message request and response

Publications (1)

Publication Number Publication Date
WO2023050028A1 true WO2023050028A1 (en) 2023-04-06

Family

ID=85780935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121163 WO2023050028A1 (en) 2021-09-28 2021-09-28 Feedback based inter user equipment coordination message request and response

Country Status (1)

Country Link
WO (1) WO2023050028A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020139811A1 (en) * 2018-12-28 2020-07-02 Google Llc User-equipment-coordination set for a wireless network
WO2020263683A1 (en) * 2019-06-27 2020-12-30 Qualcomm Incorporated Techniques for cross-carrier retransmission
CN112291743A (en) * 2020-10-23 2021-01-29 大唐高鸿数据网络技术股份有限公司 Resource selection method and device and terminal equipment
CN112423273A (en) * 2020-10-13 2021-02-26 之江实验室 Coordinated communication method, user terminal and computer-readable storage medium
WO2021067249A1 (en) * 2019-09-30 2021-04-08 Qualcomm Incorporated Triggering power saving modes with scheduling downlink control information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020139811A1 (en) * 2018-12-28 2020-07-02 Google Llc User-equipment-coordination set for a wireless network
WO2020263683A1 (en) * 2019-06-27 2020-12-30 Qualcomm Incorporated Techniques for cross-carrier retransmission
WO2021067249A1 (en) * 2019-09-30 2021-04-08 Qualcomm Incorporated Triggering power saving modes with scheduling downlink control information
CN112423273A (en) * 2020-10-13 2021-02-26 之江实验室 Coordinated communication method, user terminal and computer-readable storage medium
CN112291743A (en) * 2020-10-23 2021-01-29 大唐高鸿数据网络技术股份有限公司 Resource selection method and device and terminal equipment

Similar Documents

Publication Publication Date Title
US20230171803A1 (en) Discontinuous transmission in shared channel occupancy time for sidelink communication in unlicensed spectrum
US20240015701A1 (en) Transmitting resource collision indication on sidelink feedback channel
US11805496B2 (en) Sidelink resource information signaling for sidelink resource selection
US11765736B2 (en) Fast feedback for sidelink channels
US20230171808A1 (en) Location-based channel occupancy sharing for sidelink communication in unlicensed spectrum
EP4150999A1 (en) Legacy control channel format support
US20230049962A1 (en) Techniques for joint sidelink relay scheduling downlink control information
WO2021159435A1 (en) Reservation periodicity for nr v2x periodic scheduling
WO2023050028A1 (en) Feedback based inter user equipment coordination message request and response
WO2023050076A1 (en) Recovering procedure for inter user equipment coordination message request and response failure
WO2023050030A1 (en) Resource selection for self-contained inter-user-equipment coordination message
WO2023019457A1 (en) Forwarding sidelink resource reservation information
US11917584B2 (en) Sidelink beam or transmission parameter range restriction
WO2023029025A1 (en) Resource conflict indications for sidelink resources
WO2023035254A1 (en) Sensing for coordination of sidelink resources
US20230239118A1 (en) Feedback for sidelink transmissions
WO2023184349A1 (en) Sidelink interference reduction
US11997544B2 (en) Reusing sidelink resources
US11877354B2 (en) Assistance information for full-duplex relay user equipment selection
US20230128447A1 (en) Piggybacking channel state information on sidelink shared channel
US20230232401A1 (en) Sidelink reference signal and measurement report sharing
US20240015772A1 (en) Sidelink resources based on interference cancelation capability
US20230216556A1 (en) Transmission diversity scheme requests for sidelink
US20230110549A1 (en) Indicating full duplex use of reserved sidelink resources
US20230284096A1 (en) Techniques for resource reservations for user equipment relays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE